xref: /openbmc/linux/mm/huge_memory.c (revision afb46f79)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
24 
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28 
29 /*
30  * By default transparent hugepage support is disabled in order that avoid
31  * to risk increase the memory footprint of applications without a guaranteed
32  * benefit. When transparent hugepage support is enabled, is for all mappings,
33  * and khugepaged scans all mappings.
34  * Defrag is invoked by khugepaged hugepage allocations and by page faults
35  * for all hugepage allocations.
36  */
37 unsigned long transparent_hugepage_flags __read_mostly =
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
39 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
40 #endif
41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
43 #endif
44 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
45 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
46 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
47 
48 /* default scan 8*512 pte (or vmas) every 30 second */
49 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
50 static unsigned int khugepaged_pages_collapsed;
51 static unsigned int khugepaged_full_scans;
52 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
53 /* during fragmentation poll the hugepage allocator once every minute */
54 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
55 static struct task_struct *khugepaged_thread __read_mostly;
56 static DEFINE_MUTEX(khugepaged_mutex);
57 static DEFINE_SPINLOCK(khugepaged_mm_lock);
58 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
59 /*
60  * default collapse hugepages if there is at least one pte mapped like
61  * it would have happened if the vma was large enough during page
62  * fault.
63  */
64 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
65 
66 static int khugepaged(void *none);
67 static int khugepaged_slab_init(void);
68 
69 #define MM_SLOTS_HASH_BITS 10
70 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
71 
72 static struct kmem_cache *mm_slot_cache __read_mostly;
73 
74 /**
75  * struct mm_slot - hash lookup from mm to mm_slot
76  * @hash: hash collision list
77  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78  * @mm: the mm that this information is valid for
79  */
80 struct mm_slot {
81 	struct hlist_node hash;
82 	struct list_head mm_node;
83 	struct mm_struct *mm;
84 };
85 
86 /**
87  * struct khugepaged_scan - cursor for scanning
88  * @mm_head: the head of the mm list to scan
89  * @mm_slot: the current mm_slot we are scanning
90  * @address: the next address inside that to be scanned
91  *
92  * There is only the one khugepaged_scan instance of this cursor structure.
93  */
94 struct khugepaged_scan {
95 	struct list_head mm_head;
96 	struct mm_slot *mm_slot;
97 	unsigned long address;
98 };
99 static struct khugepaged_scan khugepaged_scan = {
100 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
101 };
102 
103 
104 static int set_recommended_min_free_kbytes(void)
105 {
106 	struct zone *zone;
107 	int nr_zones = 0;
108 	unsigned long recommended_min;
109 
110 	if (!khugepaged_enabled())
111 		return 0;
112 
113 	for_each_populated_zone(zone)
114 		nr_zones++;
115 
116 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 	recommended_min = pageblock_nr_pages * nr_zones * 2;
118 
119 	/*
120 	 * Make sure that on average at least two pageblocks are almost free
121 	 * of another type, one for a migratetype to fall back to and a
122 	 * second to avoid subsequent fallbacks of other types There are 3
123 	 * MIGRATE_TYPES we care about.
124 	 */
125 	recommended_min += pageblock_nr_pages * nr_zones *
126 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
127 
128 	/* don't ever allow to reserve more than 5% of the lowmem */
129 	recommended_min = min(recommended_min,
130 			      (unsigned long) nr_free_buffer_pages() / 20);
131 	recommended_min <<= (PAGE_SHIFT-10);
132 
133 	if (recommended_min > min_free_kbytes) {
134 		if (user_min_free_kbytes >= 0)
135 			pr_info("raising min_free_kbytes from %d to %lu "
136 				"to help transparent hugepage allocations\n",
137 				min_free_kbytes, recommended_min);
138 
139 		min_free_kbytes = recommended_min;
140 	}
141 	setup_per_zone_wmarks();
142 	return 0;
143 }
144 late_initcall(set_recommended_min_free_kbytes);
145 
146 static int start_khugepaged(void)
147 {
148 	int err = 0;
149 	if (khugepaged_enabled()) {
150 		if (!khugepaged_thread)
151 			khugepaged_thread = kthread_run(khugepaged, NULL,
152 							"khugepaged");
153 		if (unlikely(IS_ERR(khugepaged_thread))) {
154 			printk(KERN_ERR
155 			       "khugepaged: kthread_run(khugepaged) failed\n");
156 			err = PTR_ERR(khugepaged_thread);
157 			khugepaged_thread = NULL;
158 		}
159 
160 		if (!list_empty(&khugepaged_scan.mm_head))
161 			wake_up_interruptible(&khugepaged_wait);
162 
163 		set_recommended_min_free_kbytes();
164 	} else if (khugepaged_thread) {
165 		kthread_stop(khugepaged_thread);
166 		khugepaged_thread = NULL;
167 	}
168 
169 	return err;
170 }
171 
172 static atomic_t huge_zero_refcount;
173 static struct page *huge_zero_page __read_mostly;
174 
175 static inline bool is_huge_zero_page(struct page *page)
176 {
177 	return ACCESS_ONCE(huge_zero_page) == page;
178 }
179 
180 static inline bool is_huge_zero_pmd(pmd_t pmd)
181 {
182 	return is_huge_zero_page(pmd_page(pmd));
183 }
184 
185 static struct page *get_huge_zero_page(void)
186 {
187 	struct page *zero_page;
188 retry:
189 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
190 		return ACCESS_ONCE(huge_zero_page);
191 
192 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
193 			HPAGE_PMD_ORDER);
194 	if (!zero_page) {
195 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
196 		return NULL;
197 	}
198 	count_vm_event(THP_ZERO_PAGE_ALLOC);
199 	preempt_disable();
200 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
201 		preempt_enable();
202 		__free_page(zero_page);
203 		goto retry;
204 	}
205 
206 	/* We take additional reference here. It will be put back by shrinker */
207 	atomic_set(&huge_zero_refcount, 2);
208 	preempt_enable();
209 	return ACCESS_ONCE(huge_zero_page);
210 }
211 
212 static void put_huge_zero_page(void)
213 {
214 	/*
215 	 * Counter should never go to zero here. Only shrinker can put
216 	 * last reference.
217 	 */
218 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
219 }
220 
221 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
222 					struct shrink_control *sc)
223 {
224 	/* we can free zero page only if last reference remains */
225 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
226 }
227 
228 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
229 				       struct shrink_control *sc)
230 {
231 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
232 		struct page *zero_page = xchg(&huge_zero_page, NULL);
233 		BUG_ON(zero_page == NULL);
234 		__free_page(zero_page);
235 		return HPAGE_PMD_NR;
236 	}
237 
238 	return 0;
239 }
240 
241 static struct shrinker huge_zero_page_shrinker = {
242 	.count_objects = shrink_huge_zero_page_count,
243 	.scan_objects = shrink_huge_zero_page_scan,
244 	.seeks = DEFAULT_SEEKS,
245 };
246 
247 #ifdef CONFIG_SYSFS
248 
249 static ssize_t double_flag_show(struct kobject *kobj,
250 				struct kobj_attribute *attr, char *buf,
251 				enum transparent_hugepage_flag enabled,
252 				enum transparent_hugepage_flag req_madv)
253 {
254 	if (test_bit(enabled, &transparent_hugepage_flags)) {
255 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
256 		return sprintf(buf, "[always] madvise never\n");
257 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
258 		return sprintf(buf, "always [madvise] never\n");
259 	else
260 		return sprintf(buf, "always madvise [never]\n");
261 }
262 static ssize_t double_flag_store(struct kobject *kobj,
263 				 struct kobj_attribute *attr,
264 				 const char *buf, size_t count,
265 				 enum transparent_hugepage_flag enabled,
266 				 enum transparent_hugepage_flag req_madv)
267 {
268 	if (!memcmp("always", buf,
269 		    min(sizeof("always")-1, count))) {
270 		set_bit(enabled, &transparent_hugepage_flags);
271 		clear_bit(req_madv, &transparent_hugepage_flags);
272 	} else if (!memcmp("madvise", buf,
273 			   min(sizeof("madvise")-1, count))) {
274 		clear_bit(enabled, &transparent_hugepage_flags);
275 		set_bit(req_madv, &transparent_hugepage_flags);
276 	} else if (!memcmp("never", buf,
277 			   min(sizeof("never")-1, count))) {
278 		clear_bit(enabled, &transparent_hugepage_flags);
279 		clear_bit(req_madv, &transparent_hugepage_flags);
280 	} else
281 		return -EINVAL;
282 
283 	return count;
284 }
285 
286 static ssize_t enabled_show(struct kobject *kobj,
287 			    struct kobj_attribute *attr, char *buf)
288 {
289 	return double_flag_show(kobj, attr, buf,
290 				TRANSPARENT_HUGEPAGE_FLAG,
291 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
292 }
293 static ssize_t enabled_store(struct kobject *kobj,
294 			     struct kobj_attribute *attr,
295 			     const char *buf, size_t count)
296 {
297 	ssize_t ret;
298 
299 	ret = double_flag_store(kobj, attr, buf, count,
300 				TRANSPARENT_HUGEPAGE_FLAG,
301 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
302 
303 	if (ret > 0) {
304 		int err;
305 
306 		mutex_lock(&khugepaged_mutex);
307 		err = start_khugepaged();
308 		mutex_unlock(&khugepaged_mutex);
309 
310 		if (err)
311 			ret = err;
312 	}
313 
314 	return ret;
315 }
316 static struct kobj_attribute enabled_attr =
317 	__ATTR(enabled, 0644, enabled_show, enabled_store);
318 
319 static ssize_t single_flag_show(struct kobject *kobj,
320 				struct kobj_attribute *attr, char *buf,
321 				enum transparent_hugepage_flag flag)
322 {
323 	return sprintf(buf, "%d\n",
324 		       !!test_bit(flag, &transparent_hugepage_flags));
325 }
326 
327 static ssize_t single_flag_store(struct kobject *kobj,
328 				 struct kobj_attribute *attr,
329 				 const char *buf, size_t count,
330 				 enum transparent_hugepage_flag flag)
331 {
332 	unsigned long value;
333 	int ret;
334 
335 	ret = kstrtoul(buf, 10, &value);
336 	if (ret < 0)
337 		return ret;
338 	if (value > 1)
339 		return -EINVAL;
340 
341 	if (value)
342 		set_bit(flag, &transparent_hugepage_flags);
343 	else
344 		clear_bit(flag, &transparent_hugepage_flags);
345 
346 	return count;
347 }
348 
349 /*
350  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
351  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
352  * memory just to allocate one more hugepage.
353  */
354 static ssize_t defrag_show(struct kobject *kobj,
355 			   struct kobj_attribute *attr, char *buf)
356 {
357 	return double_flag_show(kobj, attr, buf,
358 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
359 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
360 }
361 static ssize_t defrag_store(struct kobject *kobj,
362 			    struct kobj_attribute *attr,
363 			    const char *buf, size_t count)
364 {
365 	return double_flag_store(kobj, attr, buf, count,
366 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
367 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
368 }
369 static struct kobj_attribute defrag_attr =
370 	__ATTR(defrag, 0644, defrag_show, defrag_store);
371 
372 static ssize_t use_zero_page_show(struct kobject *kobj,
373 		struct kobj_attribute *attr, char *buf)
374 {
375 	return single_flag_show(kobj, attr, buf,
376 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static ssize_t use_zero_page_store(struct kobject *kobj,
379 		struct kobj_attribute *attr, const char *buf, size_t count)
380 {
381 	return single_flag_store(kobj, attr, buf, count,
382 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383 }
384 static struct kobj_attribute use_zero_page_attr =
385 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
386 #ifdef CONFIG_DEBUG_VM
387 static ssize_t debug_cow_show(struct kobject *kobj,
388 				struct kobj_attribute *attr, char *buf)
389 {
390 	return single_flag_show(kobj, attr, buf,
391 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
392 }
393 static ssize_t debug_cow_store(struct kobject *kobj,
394 			       struct kobj_attribute *attr,
395 			       const char *buf, size_t count)
396 {
397 	return single_flag_store(kobj, attr, buf, count,
398 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
399 }
400 static struct kobj_attribute debug_cow_attr =
401 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
402 #endif /* CONFIG_DEBUG_VM */
403 
404 static struct attribute *hugepage_attr[] = {
405 	&enabled_attr.attr,
406 	&defrag_attr.attr,
407 	&use_zero_page_attr.attr,
408 #ifdef CONFIG_DEBUG_VM
409 	&debug_cow_attr.attr,
410 #endif
411 	NULL,
412 };
413 
414 static struct attribute_group hugepage_attr_group = {
415 	.attrs = hugepage_attr,
416 };
417 
418 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
419 					 struct kobj_attribute *attr,
420 					 char *buf)
421 {
422 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
423 }
424 
425 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
426 					  struct kobj_attribute *attr,
427 					  const char *buf, size_t count)
428 {
429 	unsigned long msecs;
430 	int err;
431 
432 	err = kstrtoul(buf, 10, &msecs);
433 	if (err || msecs > UINT_MAX)
434 		return -EINVAL;
435 
436 	khugepaged_scan_sleep_millisecs = msecs;
437 	wake_up_interruptible(&khugepaged_wait);
438 
439 	return count;
440 }
441 static struct kobj_attribute scan_sleep_millisecs_attr =
442 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
443 	       scan_sleep_millisecs_store);
444 
445 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
446 					  struct kobj_attribute *attr,
447 					  char *buf)
448 {
449 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
450 }
451 
452 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
453 					   struct kobj_attribute *attr,
454 					   const char *buf, size_t count)
455 {
456 	unsigned long msecs;
457 	int err;
458 
459 	err = kstrtoul(buf, 10, &msecs);
460 	if (err || msecs > UINT_MAX)
461 		return -EINVAL;
462 
463 	khugepaged_alloc_sleep_millisecs = msecs;
464 	wake_up_interruptible(&khugepaged_wait);
465 
466 	return count;
467 }
468 static struct kobj_attribute alloc_sleep_millisecs_attr =
469 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
470 	       alloc_sleep_millisecs_store);
471 
472 static ssize_t pages_to_scan_show(struct kobject *kobj,
473 				  struct kobj_attribute *attr,
474 				  char *buf)
475 {
476 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
477 }
478 static ssize_t pages_to_scan_store(struct kobject *kobj,
479 				   struct kobj_attribute *attr,
480 				   const char *buf, size_t count)
481 {
482 	int err;
483 	unsigned long pages;
484 
485 	err = kstrtoul(buf, 10, &pages);
486 	if (err || !pages || pages > UINT_MAX)
487 		return -EINVAL;
488 
489 	khugepaged_pages_to_scan = pages;
490 
491 	return count;
492 }
493 static struct kobj_attribute pages_to_scan_attr =
494 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
495 	       pages_to_scan_store);
496 
497 static ssize_t pages_collapsed_show(struct kobject *kobj,
498 				    struct kobj_attribute *attr,
499 				    char *buf)
500 {
501 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
502 }
503 static struct kobj_attribute pages_collapsed_attr =
504 	__ATTR_RO(pages_collapsed);
505 
506 static ssize_t full_scans_show(struct kobject *kobj,
507 			       struct kobj_attribute *attr,
508 			       char *buf)
509 {
510 	return sprintf(buf, "%u\n", khugepaged_full_scans);
511 }
512 static struct kobj_attribute full_scans_attr =
513 	__ATTR_RO(full_scans);
514 
515 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
516 				      struct kobj_attribute *attr, char *buf)
517 {
518 	return single_flag_show(kobj, attr, buf,
519 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
520 }
521 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
522 				       struct kobj_attribute *attr,
523 				       const char *buf, size_t count)
524 {
525 	return single_flag_store(kobj, attr, buf, count,
526 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
527 }
528 static struct kobj_attribute khugepaged_defrag_attr =
529 	__ATTR(defrag, 0644, khugepaged_defrag_show,
530 	       khugepaged_defrag_store);
531 
532 /*
533  * max_ptes_none controls if khugepaged should collapse hugepages over
534  * any unmapped ptes in turn potentially increasing the memory
535  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
536  * reduce the available free memory in the system as it
537  * runs. Increasing max_ptes_none will instead potentially reduce the
538  * free memory in the system during the khugepaged scan.
539  */
540 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
541 					     struct kobj_attribute *attr,
542 					     char *buf)
543 {
544 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
545 }
546 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
547 					      struct kobj_attribute *attr,
548 					      const char *buf, size_t count)
549 {
550 	int err;
551 	unsigned long max_ptes_none;
552 
553 	err = kstrtoul(buf, 10, &max_ptes_none);
554 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
555 		return -EINVAL;
556 
557 	khugepaged_max_ptes_none = max_ptes_none;
558 
559 	return count;
560 }
561 static struct kobj_attribute khugepaged_max_ptes_none_attr =
562 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
563 	       khugepaged_max_ptes_none_store);
564 
565 static struct attribute *khugepaged_attr[] = {
566 	&khugepaged_defrag_attr.attr,
567 	&khugepaged_max_ptes_none_attr.attr,
568 	&pages_to_scan_attr.attr,
569 	&pages_collapsed_attr.attr,
570 	&full_scans_attr.attr,
571 	&scan_sleep_millisecs_attr.attr,
572 	&alloc_sleep_millisecs_attr.attr,
573 	NULL,
574 };
575 
576 static struct attribute_group khugepaged_attr_group = {
577 	.attrs = khugepaged_attr,
578 	.name = "khugepaged",
579 };
580 
581 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
582 {
583 	int err;
584 
585 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
586 	if (unlikely(!*hugepage_kobj)) {
587 		printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
588 		return -ENOMEM;
589 	}
590 
591 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
592 	if (err) {
593 		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
594 		goto delete_obj;
595 	}
596 
597 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
598 	if (err) {
599 		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
600 		goto remove_hp_group;
601 	}
602 
603 	return 0;
604 
605 remove_hp_group:
606 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
607 delete_obj:
608 	kobject_put(*hugepage_kobj);
609 	return err;
610 }
611 
612 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
613 {
614 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
615 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
616 	kobject_put(hugepage_kobj);
617 }
618 #else
619 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
620 {
621 	return 0;
622 }
623 
624 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
625 {
626 }
627 #endif /* CONFIG_SYSFS */
628 
629 static int __init hugepage_init(void)
630 {
631 	int err;
632 	struct kobject *hugepage_kobj;
633 
634 	if (!has_transparent_hugepage()) {
635 		transparent_hugepage_flags = 0;
636 		return -EINVAL;
637 	}
638 
639 	err = hugepage_init_sysfs(&hugepage_kobj);
640 	if (err)
641 		return err;
642 
643 	err = khugepaged_slab_init();
644 	if (err)
645 		goto out;
646 
647 	register_shrinker(&huge_zero_page_shrinker);
648 
649 	/*
650 	 * By default disable transparent hugepages on smaller systems,
651 	 * where the extra memory used could hurt more than TLB overhead
652 	 * is likely to save.  The admin can still enable it through /sys.
653 	 */
654 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
655 		transparent_hugepage_flags = 0;
656 
657 	start_khugepaged();
658 
659 	return 0;
660 out:
661 	hugepage_exit_sysfs(hugepage_kobj);
662 	return err;
663 }
664 subsys_initcall(hugepage_init);
665 
666 static int __init setup_transparent_hugepage(char *str)
667 {
668 	int ret = 0;
669 	if (!str)
670 		goto out;
671 	if (!strcmp(str, "always")) {
672 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 			&transparent_hugepage_flags);
674 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 			  &transparent_hugepage_flags);
676 		ret = 1;
677 	} else if (!strcmp(str, "madvise")) {
678 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 			  &transparent_hugepage_flags);
680 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 			&transparent_hugepage_flags);
682 		ret = 1;
683 	} else if (!strcmp(str, "never")) {
684 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
685 			  &transparent_hugepage_flags);
686 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
687 			  &transparent_hugepage_flags);
688 		ret = 1;
689 	}
690 out:
691 	if (!ret)
692 		printk(KERN_WARNING
693 		       "transparent_hugepage= cannot parse, ignored\n");
694 	return ret;
695 }
696 __setup("transparent_hugepage=", setup_transparent_hugepage);
697 
698 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
699 {
700 	if (likely(vma->vm_flags & VM_WRITE))
701 		pmd = pmd_mkwrite(pmd);
702 	return pmd;
703 }
704 
705 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
706 {
707 	pmd_t entry;
708 	entry = mk_pmd(page, prot);
709 	entry = pmd_mkhuge(entry);
710 	return entry;
711 }
712 
713 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
714 					struct vm_area_struct *vma,
715 					unsigned long haddr, pmd_t *pmd,
716 					struct page *page)
717 {
718 	pgtable_t pgtable;
719 	spinlock_t *ptl;
720 
721 	VM_BUG_ON_PAGE(!PageCompound(page), page);
722 	pgtable = pte_alloc_one(mm, haddr);
723 	if (unlikely(!pgtable))
724 		return VM_FAULT_OOM;
725 
726 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
727 	/*
728 	 * The memory barrier inside __SetPageUptodate makes sure that
729 	 * clear_huge_page writes become visible before the set_pmd_at()
730 	 * write.
731 	 */
732 	__SetPageUptodate(page);
733 
734 	ptl = pmd_lock(mm, pmd);
735 	if (unlikely(!pmd_none(*pmd))) {
736 		spin_unlock(ptl);
737 		mem_cgroup_uncharge_page(page);
738 		put_page(page);
739 		pte_free(mm, pgtable);
740 	} else {
741 		pmd_t entry;
742 		entry = mk_huge_pmd(page, vma->vm_page_prot);
743 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
744 		page_add_new_anon_rmap(page, vma, haddr);
745 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
746 		set_pmd_at(mm, haddr, pmd, entry);
747 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
748 		atomic_long_inc(&mm->nr_ptes);
749 		spin_unlock(ptl);
750 	}
751 
752 	return 0;
753 }
754 
755 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
756 {
757 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
758 }
759 
760 static inline struct page *alloc_hugepage_vma(int defrag,
761 					      struct vm_area_struct *vma,
762 					      unsigned long haddr, int nd,
763 					      gfp_t extra_gfp)
764 {
765 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
766 			       HPAGE_PMD_ORDER, vma, haddr, nd);
767 }
768 
769 /* Caller must hold page table lock. */
770 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
771 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
772 		struct page *zero_page)
773 {
774 	pmd_t entry;
775 	if (!pmd_none(*pmd))
776 		return false;
777 	entry = mk_pmd(zero_page, vma->vm_page_prot);
778 	entry = pmd_wrprotect(entry);
779 	entry = pmd_mkhuge(entry);
780 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
781 	set_pmd_at(mm, haddr, pmd, entry);
782 	atomic_long_inc(&mm->nr_ptes);
783 	return true;
784 }
785 
786 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
787 			       unsigned long address, pmd_t *pmd,
788 			       unsigned int flags)
789 {
790 	struct page *page;
791 	unsigned long haddr = address & HPAGE_PMD_MASK;
792 
793 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
794 		return VM_FAULT_FALLBACK;
795 	if (unlikely(anon_vma_prepare(vma)))
796 		return VM_FAULT_OOM;
797 	if (unlikely(khugepaged_enter(vma)))
798 		return VM_FAULT_OOM;
799 	if (!(flags & FAULT_FLAG_WRITE) &&
800 			transparent_hugepage_use_zero_page()) {
801 		spinlock_t *ptl;
802 		pgtable_t pgtable;
803 		struct page *zero_page;
804 		bool set;
805 		pgtable = pte_alloc_one(mm, haddr);
806 		if (unlikely(!pgtable))
807 			return VM_FAULT_OOM;
808 		zero_page = get_huge_zero_page();
809 		if (unlikely(!zero_page)) {
810 			pte_free(mm, pgtable);
811 			count_vm_event(THP_FAULT_FALLBACK);
812 			return VM_FAULT_FALLBACK;
813 		}
814 		ptl = pmd_lock(mm, pmd);
815 		set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
816 				zero_page);
817 		spin_unlock(ptl);
818 		if (!set) {
819 			pte_free(mm, pgtable);
820 			put_huge_zero_page();
821 		}
822 		return 0;
823 	}
824 	page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
825 			vma, haddr, numa_node_id(), 0);
826 	if (unlikely(!page)) {
827 		count_vm_event(THP_FAULT_FALLBACK);
828 		return VM_FAULT_FALLBACK;
829 	}
830 	if (unlikely(mem_cgroup_charge_anon(page, mm, GFP_KERNEL))) {
831 		put_page(page);
832 		count_vm_event(THP_FAULT_FALLBACK);
833 		return VM_FAULT_FALLBACK;
834 	}
835 	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
836 		mem_cgroup_uncharge_page(page);
837 		put_page(page);
838 		count_vm_event(THP_FAULT_FALLBACK);
839 		return VM_FAULT_FALLBACK;
840 	}
841 
842 	count_vm_event(THP_FAULT_ALLOC);
843 	return 0;
844 }
845 
846 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
847 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
848 		  struct vm_area_struct *vma)
849 {
850 	spinlock_t *dst_ptl, *src_ptl;
851 	struct page *src_page;
852 	pmd_t pmd;
853 	pgtable_t pgtable;
854 	int ret;
855 
856 	ret = -ENOMEM;
857 	pgtable = pte_alloc_one(dst_mm, addr);
858 	if (unlikely(!pgtable))
859 		goto out;
860 
861 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
862 	src_ptl = pmd_lockptr(src_mm, src_pmd);
863 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
864 
865 	ret = -EAGAIN;
866 	pmd = *src_pmd;
867 	if (unlikely(!pmd_trans_huge(pmd))) {
868 		pte_free(dst_mm, pgtable);
869 		goto out_unlock;
870 	}
871 	/*
872 	 * When page table lock is held, the huge zero pmd should not be
873 	 * under splitting since we don't split the page itself, only pmd to
874 	 * a page table.
875 	 */
876 	if (is_huge_zero_pmd(pmd)) {
877 		struct page *zero_page;
878 		bool set;
879 		/*
880 		 * get_huge_zero_page() will never allocate a new page here,
881 		 * since we already have a zero page to copy. It just takes a
882 		 * reference.
883 		 */
884 		zero_page = get_huge_zero_page();
885 		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
886 				zero_page);
887 		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
888 		ret = 0;
889 		goto out_unlock;
890 	}
891 
892 	if (unlikely(pmd_trans_splitting(pmd))) {
893 		/* split huge page running from under us */
894 		spin_unlock(src_ptl);
895 		spin_unlock(dst_ptl);
896 		pte_free(dst_mm, pgtable);
897 
898 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
899 		goto out;
900 	}
901 	src_page = pmd_page(pmd);
902 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
903 	get_page(src_page);
904 	page_dup_rmap(src_page);
905 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
906 
907 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
908 	pmd = pmd_mkold(pmd_wrprotect(pmd));
909 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
910 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
911 	atomic_long_inc(&dst_mm->nr_ptes);
912 
913 	ret = 0;
914 out_unlock:
915 	spin_unlock(src_ptl);
916 	spin_unlock(dst_ptl);
917 out:
918 	return ret;
919 }
920 
921 void huge_pmd_set_accessed(struct mm_struct *mm,
922 			   struct vm_area_struct *vma,
923 			   unsigned long address,
924 			   pmd_t *pmd, pmd_t orig_pmd,
925 			   int dirty)
926 {
927 	spinlock_t *ptl;
928 	pmd_t entry;
929 	unsigned long haddr;
930 
931 	ptl = pmd_lock(mm, pmd);
932 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
933 		goto unlock;
934 
935 	entry = pmd_mkyoung(orig_pmd);
936 	haddr = address & HPAGE_PMD_MASK;
937 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
938 		update_mmu_cache_pmd(vma, address, pmd);
939 
940 unlock:
941 	spin_unlock(ptl);
942 }
943 
944 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
945 					struct vm_area_struct *vma,
946 					unsigned long address,
947 					pmd_t *pmd, pmd_t orig_pmd,
948 					struct page *page,
949 					unsigned long haddr)
950 {
951 	spinlock_t *ptl;
952 	pgtable_t pgtable;
953 	pmd_t _pmd;
954 	int ret = 0, i;
955 	struct page **pages;
956 	unsigned long mmun_start;	/* For mmu_notifiers */
957 	unsigned long mmun_end;		/* For mmu_notifiers */
958 
959 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
960 			GFP_KERNEL);
961 	if (unlikely(!pages)) {
962 		ret |= VM_FAULT_OOM;
963 		goto out;
964 	}
965 
966 	for (i = 0; i < HPAGE_PMD_NR; i++) {
967 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
968 					       __GFP_OTHER_NODE,
969 					       vma, address, page_to_nid(page));
970 		if (unlikely(!pages[i] ||
971 			     mem_cgroup_charge_anon(pages[i], mm,
972 						       GFP_KERNEL))) {
973 			if (pages[i])
974 				put_page(pages[i]);
975 			mem_cgroup_uncharge_start();
976 			while (--i >= 0) {
977 				mem_cgroup_uncharge_page(pages[i]);
978 				put_page(pages[i]);
979 			}
980 			mem_cgroup_uncharge_end();
981 			kfree(pages);
982 			ret |= VM_FAULT_OOM;
983 			goto out;
984 		}
985 	}
986 
987 	for (i = 0; i < HPAGE_PMD_NR; i++) {
988 		copy_user_highpage(pages[i], page + i,
989 				   haddr + PAGE_SIZE * i, vma);
990 		__SetPageUptodate(pages[i]);
991 		cond_resched();
992 	}
993 
994 	mmun_start = haddr;
995 	mmun_end   = haddr + HPAGE_PMD_SIZE;
996 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
997 
998 	ptl = pmd_lock(mm, pmd);
999 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1000 		goto out_free_pages;
1001 	VM_BUG_ON_PAGE(!PageHead(page), page);
1002 
1003 	pmdp_clear_flush(vma, haddr, pmd);
1004 	/* leave pmd empty until pte is filled */
1005 
1006 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1007 	pmd_populate(mm, &_pmd, pgtable);
1008 
1009 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1010 		pte_t *pte, entry;
1011 		entry = mk_pte(pages[i], vma->vm_page_prot);
1012 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1013 		page_add_new_anon_rmap(pages[i], vma, haddr);
1014 		pte = pte_offset_map(&_pmd, haddr);
1015 		VM_BUG_ON(!pte_none(*pte));
1016 		set_pte_at(mm, haddr, pte, entry);
1017 		pte_unmap(pte);
1018 	}
1019 	kfree(pages);
1020 
1021 	smp_wmb(); /* make pte visible before pmd */
1022 	pmd_populate(mm, pmd, pgtable);
1023 	page_remove_rmap(page);
1024 	spin_unlock(ptl);
1025 
1026 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1027 
1028 	ret |= VM_FAULT_WRITE;
1029 	put_page(page);
1030 
1031 out:
1032 	return ret;
1033 
1034 out_free_pages:
1035 	spin_unlock(ptl);
1036 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1037 	mem_cgroup_uncharge_start();
1038 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1039 		mem_cgroup_uncharge_page(pages[i]);
1040 		put_page(pages[i]);
1041 	}
1042 	mem_cgroup_uncharge_end();
1043 	kfree(pages);
1044 	goto out;
1045 }
1046 
1047 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1048 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1049 {
1050 	spinlock_t *ptl;
1051 	int ret = 0;
1052 	struct page *page = NULL, *new_page;
1053 	unsigned long haddr;
1054 	unsigned long mmun_start;	/* For mmu_notifiers */
1055 	unsigned long mmun_end;		/* For mmu_notifiers */
1056 
1057 	ptl = pmd_lockptr(mm, pmd);
1058 	VM_BUG_ON(!vma->anon_vma);
1059 	haddr = address & HPAGE_PMD_MASK;
1060 	if (is_huge_zero_pmd(orig_pmd))
1061 		goto alloc;
1062 	spin_lock(ptl);
1063 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1064 		goto out_unlock;
1065 
1066 	page = pmd_page(orig_pmd);
1067 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1068 	if (page_mapcount(page) == 1) {
1069 		pmd_t entry;
1070 		entry = pmd_mkyoung(orig_pmd);
1071 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1072 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1073 			update_mmu_cache_pmd(vma, address, pmd);
1074 		ret |= VM_FAULT_WRITE;
1075 		goto out_unlock;
1076 	}
1077 	get_page(page);
1078 	spin_unlock(ptl);
1079 alloc:
1080 	if (transparent_hugepage_enabled(vma) &&
1081 	    !transparent_hugepage_debug_cow())
1082 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1083 					      vma, haddr, numa_node_id(), 0);
1084 	else
1085 		new_page = NULL;
1086 
1087 	if (unlikely(!new_page)) {
1088 		if (!page) {
1089 			split_huge_page_pmd(vma, address, pmd);
1090 			ret |= VM_FAULT_FALLBACK;
1091 		} else {
1092 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1093 					pmd, orig_pmd, page, haddr);
1094 			if (ret & VM_FAULT_OOM) {
1095 				split_huge_page(page);
1096 				ret |= VM_FAULT_FALLBACK;
1097 			}
1098 			put_page(page);
1099 		}
1100 		count_vm_event(THP_FAULT_FALLBACK);
1101 		goto out;
1102 	}
1103 
1104 	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) {
1105 		put_page(new_page);
1106 		if (page) {
1107 			split_huge_page(page);
1108 			put_page(page);
1109 		} else
1110 			split_huge_page_pmd(vma, address, pmd);
1111 		ret |= VM_FAULT_FALLBACK;
1112 		count_vm_event(THP_FAULT_FALLBACK);
1113 		goto out;
1114 	}
1115 
1116 	count_vm_event(THP_FAULT_ALLOC);
1117 
1118 	if (!page)
1119 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1120 	else
1121 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1122 	__SetPageUptodate(new_page);
1123 
1124 	mmun_start = haddr;
1125 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1126 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1127 
1128 	spin_lock(ptl);
1129 	if (page)
1130 		put_page(page);
1131 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1132 		spin_unlock(ptl);
1133 		mem_cgroup_uncharge_page(new_page);
1134 		put_page(new_page);
1135 		goto out_mn;
1136 	} else {
1137 		pmd_t entry;
1138 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1139 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1140 		pmdp_clear_flush(vma, haddr, pmd);
1141 		page_add_new_anon_rmap(new_page, vma, haddr);
1142 		set_pmd_at(mm, haddr, pmd, entry);
1143 		update_mmu_cache_pmd(vma, address, pmd);
1144 		if (!page) {
1145 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1146 			put_huge_zero_page();
1147 		} else {
1148 			VM_BUG_ON_PAGE(!PageHead(page), page);
1149 			page_remove_rmap(page);
1150 			put_page(page);
1151 		}
1152 		ret |= VM_FAULT_WRITE;
1153 	}
1154 	spin_unlock(ptl);
1155 out_mn:
1156 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1157 out:
1158 	return ret;
1159 out_unlock:
1160 	spin_unlock(ptl);
1161 	return ret;
1162 }
1163 
1164 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1165 				   unsigned long addr,
1166 				   pmd_t *pmd,
1167 				   unsigned int flags)
1168 {
1169 	struct mm_struct *mm = vma->vm_mm;
1170 	struct page *page = NULL;
1171 
1172 	assert_spin_locked(pmd_lockptr(mm, pmd));
1173 
1174 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1175 		goto out;
1176 
1177 	/* Avoid dumping huge zero page */
1178 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1179 		return ERR_PTR(-EFAULT);
1180 
1181 	/* Full NUMA hinting faults to serialise migration in fault paths */
1182 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1183 		goto out;
1184 
1185 	page = pmd_page(*pmd);
1186 	VM_BUG_ON_PAGE(!PageHead(page), page);
1187 	if (flags & FOLL_TOUCH) {
1188 		pmd_t _pmd;
1189 		/*
1190 		 * We should set the dirty bit only for FOLL_WRITE but
1191 		 * for now the dirty bit in the pmd is meaningless.
1192 		 * And if the dirty bit will become meaningful and
1193 		 * we'll only set it with FOLL_WRITE, an atomic
1194 		 * set_bit will be required on the pmd to set the
1195 		 * young bit, instead of the current set_pmd_at.
1196 		 */
1197 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1198 		if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1199 					  pmd, _pmd,  1))
1200 			update_mmu_cache_pmd(vma, addr, pmd);
1201 	}
1202 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1203 		if (page->mapping && trylock_page(page)) {
1204 			lru_add_drain();
1205 			if (page->mapping)
1206 				mlock_vma_page(page);
1207 			unlock_page(page);
1208 		}
1209 	}
1210 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1211 	VM_BUG_ON_PAGE(!PageCompound(page), page);
1212 	if (flags & FOLL_GET)
1213 		get_page_foll(page);
1214 
1215 out:
1216 	return page;
1217 }
1218 
1219 /* NUMA hinting page fault entry point for trans huge pmds */
1220 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1221 				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1222 {
1223 	spinlock_t *ptl;
1224 	struct anon_vma *anon_vma = NULL;
1225 	struct page *page;
1226 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1227 	int page_nid = -1, this_nid = numa_node_id();
1228 	int target_nid, last_cpupid = -1;
1229 	bool page_locked;
1230 	bool migrated = false;
1231 	int flags = 0;
1232 
1233 	ptl = pmd_lock(mm, pmdp);
1234 	if (unlikely(!pmd_same(pmd, *pmdp)))
1235 		goto out_unlock;
1236 
1237 	/*
1238 	 * If there are potential migrations, wait for completion and retry
1239 	 * without disrupting NUMA hinting information. Do not relock and
1240 	 * check_same as the page may no longer be mapped.
1241 	 */
1242 	if (unlikely(pmd_trans_migrating(*pmdp))) {
1243 		spin_unlock(ptl);
1244 		wait_migrate_huge_page(vma->anon_vma, pmdp);
1245 		goto out;
1246 	}
1247 
1248 	page = pmd_page(pmd);
1249 	BUG_ON(is_huge_zero_page(page));
1250 	page_nid = page_to_nid(page);
1251 	last_cpupid = page_cpupid_last(page);
1252 	count_vm_numa_event(NUMA_HINT_FAULTS);
1253 	if (page_nid == this_nid) {
1254 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1255 		flags |= TNF_FAULT_LOCAL;
1256 	}
1257 
1258 	/*
1259 	 * Avoid grouping on DSO/COW pages in specific and RO pages
1260 	 * in general, RO pages shouldn't hurt as much anyway since
1261 	 * they can be in shared cache state.
1262 	 */
1263 	if (!pmd_write(pmd))
1264 		flags |= TNF_NO_GROUP;
1265 
1266 	/*
1267 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1268 	 * page_table_lock if at all possible
1269 	 */
1270 	page_locked = trylock_page(page);
1271 	target_nid = mpol_misplaced(page, vma, haddr);
1272 	if (target_nid == -1) {
1273 		/* If the page was locked, there are no parallel migrations */
1274 		if (page_locked)
1275 			goto clear_pmdnuma;
1276 	}
1277 
1278 	/* Migration could have started since the pmd_trans_migrating check */
1279 	if (!page_locked) {
1280 		spin_unlock(ptl);
1281 		wait_on_page_locked(page);
1282 		page_nid = -1;
1283 		goto out;
1284 	}
1285 
1286 	/*
1287 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1288 	 * to serialises splits
1289 	 */
1290 	get_page(page);
1291 	spin_unlock(ptl);
1292 	anon_vma = page_lock_anon_vma_read(page);
1293 
1294 	/* Confirm the PMD did not change while page_table_lock was released */
1295 	spin_lock(ptl);
1296 	if (unlikely(!pmd_same(pmd, *pmdp))) {
1297 		unlock_page(page);
1298 		put_page(page);
1299 		page_nid = -1;
1300 		goto out_unlock;
1301 	}
1302 
1303 	/* Bail if we fail to protect against THP splits for any reason */
1304 	if (unlikely(!anon_vma)) {
1305 		put_page(page);
1306 		page_nid = -1;
1307 		goto clear_pmdnuma;
1308 	}
1309 
1310 	/*
1311 	 * Migrate the THP to the requested node, returns with page unlocked
1312 	 * and pmd_numa cleared.
1313 	 */
1314 	spin_unlock(ptl);
1315 	migrated = migrate_misplaced_transhuge_page(mm, vma,
1316 				pmdp, pmd, addr, page, target_nid);
1317 	if (migrated) {
1318 		flags |= TNF_MIGRATED;
1319 		page_nid = target_nid;
1320 	}
1321 
1322 	goto out;
1323 clear_pmdnuma:
1324 	BUG_ON(!PageLocked(page));
1325 	pmd = pmd_mknonnuma(pmd);
1326 	set_pmd_at(mm, haddr, pmdp, pmd);
1327 	VM_BUG_ON(pmd_numa(*pmdp));
1328 	update_mmu_cache_pmd(vma, addr, pmdp);
1329 	unlock_page(page);
1330 out_unlock:
1331 	spin_unlock(ptl);
1332 
1333 out:
1334 	if (anon_vma)
1335 		page_unlock_anon_vma_read(anon_vma);
1336 
1337 	if (page_nid != -1)
1338 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1339 
1340 	return 0;
1341 }
1342 
1343 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1344 		 pmd_t *pmd, unsigned long addr)
1345 {
1346 	spinlock_t *ptl;
1347 	int ret = 0;
1348 
1349 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1350 		struct page *page;
1351 		pgtable_t pgtable;
1352 		pmd_t orig_pmd;
1353 		/*
1354 		 * For architectures like ppc64 we look at deposited pgtable
1355 		 * when calling pmdp_get_and_clear. So do the
1356 		 * pgtable_trans_huge_withdraw after finishing pmdp related
1357 		 * operations.
1358 		 */
1359 		orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1360 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1361 		pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1362 		if (is_huge_zero_pmd(orig_pmd)) {
1363 			atomic_long_dec(&tlb->mm->nr_ptes);
1364 			spin_unlock(ptl);
1365 			put_huge_zero_page();
1366 		} else {
1367 			page = pmd_page(orig_pmd);
1368 			page_remove_rmap(page);
1369 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1370 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1371 			VM_BUG_ON_PAGE(!PageHead(page), page);
1372 			atomic_long_dec(&tlb->mm->nr_ptes);
1373 			spin_unlock(ptl);
1374 			tlb_remove_page(tlb, page);
1375 		}
1376 		pte_free(tlb->mm, pgtable);
1377 		ret = 1;
1378 	}
1379 	return ret;
1380 }
1381 
1382 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1383 		unsigned long addr, unsigned long end,
1384 		unsigned char *vec)
1385 {
1386 	spinlock_t *ptl;
1387 	int ret = 0;
1388 
1389 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1390 		/*
1391 		 * All logical pages in the range are present
1392 		 * if backed by a huge page.
1393 		 */
1394 		spin_unlock(ptl);
1395 		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1396 		ret = 1;
1397 	}
1398 
1399 	return ret;
1400 }
1401 
1402 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1403 		  unsigned long old_addr,
1404 		  unsigned long new_addr, unsigned long old_end,
1405 		  pmd_t *old_pmd, pmd_t *new_pmd)
1406 {
1407 	spinlock_t *old_ptl, *new_ptl;
1408 	int ret = 0;
1409 	pmd_t pmd;
1410 
1411 	struct mm_struct *mm = vma->vm_mm;
1412 
1413 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1414 	    (new_addr & ~HPAGE_PMD_MASK) ||
1415 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1416 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1417 		goto out;
1418 
1419 	/*
1420 	 * The destination pmd shouldn't be established, free_pgtables()
1421 	 * should have release it.
1422 	 */
1423 	if (WARN_ON(!pmd_none(*new_pmd))) {
1424 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1425 		goto out;
1426 	}
1427 
1428 	/*
1429 	 * We don't have to worry about the ordering of src and dst
1430 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1431 	 */
1432 	ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1433 	if (ret == 1) {
1434 		new_ptl = pmd_lockptr(mm, new_pmd);
1435 		if (new_ptl != old_ptl)
1436 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1437 		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1438 		VM_BUG_ON(!pmd_none(*new_pmd));
1439 
1440 		if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1441 			pgtable_t pgtable;
1442 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1443 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1444 		}
1445 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1446 		if (new_ptl != old_ptl)
1447 			spin_unlock(new_ptl);
1448 		spin_unlock(old_ptl);
1449 	}
1450 out:
1451 	return ret;
1452 }
1453 
1454 /*
1455  * Returns
1456  *  - 0 if PMD could not be locked
1457  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1458  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1459  */
1460 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1461 		unsigned long addr, pgprot_t newprot, int prot_numa)
1462 {
1463 	struct mm_struct *mm = vma->vm_mm;
1464 	spinlock_t *ptl;
1465 	int ret = 0;
1466 
1467 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1468 		pmd_t entry;
1469 		ret = 1;
1470 		if (!prot_numa) {
1471 			entry = pmdp_get_and_clear(mm, addr, pmd);
1472 			if (pmd_numa(entry))
1473 				entry = pmd_mknonnuma(entry);
1474 			entry = pmd_modify(entry, newprot);
1475 			ret = HPAGE_PMD_NR;
1476 			set_pmd_at(mm, addr, pmd, entry);
1477 			BUG_ON(pmd_write(entry));
1478 		} else {
1479 			struct page *page = pmd_page(*pmd);
1480 
1481 			/*
1482 			 * Do not trap faults against the zero page. The
1483 			 * read-only data is likely to be read-cached on the
1484 			 * local CPU cache and it is less useful to know about
1485 			 * local vs remote hits on the zero page.
1486 			 */
1487 			if (!is_huge_zero_page(page) &&
1488 			    !pmd_numa(*pmd)) {
1489 				pmdp_set_numa(mm, addr, pmd);
1490 				ret = HPAGE_PMD_NR;
1491 			}
1492 		}
1493 		spin_unlock(ptl);
1494 	}
1495 
1496 	return ret;
1497 }
1498 
1499 /*
1500  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1501  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1502  *
1503  * Note that if it returns 1, this routine returns without unlocking page
1504  * table locks. So callers must unlock them.
1505  */
1506 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1507 		spinlock_t **ptl)
1508 {
1509 	*ptl = pmd_lock(vma->vm_mm, pmd);
1510 	if (likely(pmd_trans_huge(*pmd))) {
1511 		if (unlikely(pmd_trans_splitting(*pmd))) {
1512 			spin_unlock(*ptl);
1513 			wait_split_huge_page(vma->anon_vma, pmd);
1514 			return -1;
1515 		} else {
1516 			/* Thp mapped by 'pmd' is stable, so we can
1517 			 * handle it as it is. */
1518 			return 1;
1519 		}
1520 	}
1521 	spin_unlock(*ptl);
1522 	return 0;
1523 }
1524 
1525 /*
1526  * This function returns whether a given @page is mapped onto the @address
1527  * in the virtual space of @mm.
1528  *
1529  * When it's true, this function returns *pmd with holding the page table lock
1530  * and passing it back to the caller via @ptl.
1531  * If it's false, returns NULL without holding the page table lock.
1532  */
1533 pmd_t *page_check_address_pmd(struct page *page,
1534 			      struct mm_struct *mm,
1535 			      unsigned long address,
1536 			      enum page_check_address_pmd_flag flag,
1537 			      spinlock_t **ptl)
1538 {
1539 	pgd_t *pgd;
1540 	pud_t *pud;
1541 	pmd_t *pmd;
1542 
1543 	if (address & ~HPAGE_PMD_MASK)
1544 		return NULL;
1545 
1546 	pgd = pgd_offset(mm, address);
1547 	if (!pgd_present(*pgd))
1548 		return NULL;
1549 	pud = pud_offset(pgd, address);
1550 	if (!pud_present(*pud))
1551 		return NULL;
1552 	pmd = pmd_offset(pud, address);
1553 
1554 	*ptl = pmd_lock(mm, pmd);
1555 	if (!pmd_present(*pmd))
1556 		goto unlock;
1557 	if (pmd_page(*pmd) != page)
1558 		goto unlock;
1559 	/*
1560 	 * split_vma() may create temporary aliased mappings. There is
1561 	 * no risk as long as all huge pmd are found and have their
1562 	 * splitting bit set before __split_huge_page_refcount
1563 	 * runs. Finding the same huge pmd more than once during the
1564 	 * same rmap walk is not a problem.
1565 	 */
1566 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1567 	    pmd_trans_splitting(*pmd))
1568 		goto unlock;
1569 	if (pmd_trans_huge(*pmd)) {
1570 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1571 			  !pmd_trans_splitting(*pmd));
1572 		return pmd;
1573 	}
1574 unlock:
1575 	spin_unlock(*ptl);
1576 	return NULL;
1577 }
1578 
1579 static int __split_huge_page_splitting(struct page *page,
1580 				       struct vm_area_struct *vma,
1581 				       unsigned long address)
1582 {
1583 	struct mm_struct *mm = vma->vm_mm;
1584 	spinlock_t *ptl;
1585 	pmd_t *pmd;
1586 	int ret = 0;
1587 	/* For mmu_notifiers */
1588 	const unsigned long mmun_start = address;
1589 	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1590 
1591 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1592 	pmd = page_check_address_pmd(page, mm, address,
1593 			PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1594 	if (pmd) {
1595 		/*
1596 		 * We can't temporarily set the pmd to null in order
1597 		 * to split it, the pmd must remain marked huge at all
1598 		 * times or the VM won't take the pmd_trans_huge paths
1599 		 * and it won't wait on the anon_vma->root->rwsem to
1600 		 * serialize against split_huge_page*.
1601 		 */
1602 		pmdp_splitting_flush(vma, address, pmd);
1603 		ret = 1;
1604 		spin_unlock(ptl);
1605 	}
1606 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1607 
1608 	return ret;
1609 }
1610 
1611 static void __split_huge_page_refcount(struct page *page,
1612 				       struct list_head *list)
1613 {
1614 	int i;
1615 	struct zone *zone = page_zone(page);
1616 	struct lruvec *lruvec;
1617 	int tail_count = 0;
1618 
1619 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1620 	spin_lock_irq(&zone->lru_lock);
1621 	lruvec = mem_cgroup_page_lruvec(page, zone);
1622 
1623 	compound_lock(page);
1624 	/* complete memcg works before add pages to LRU */
1625 	mem_cgroup_split_huge_fixup(page);
1626 
1627 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1628 		struct page *page_tail = page + i;
1629 
1630 		/* tail_page->_mapcount cannot change */
1631 		BUG_ON(page_mapcount(page_tail) < 0);
1632 		tail_count += page_mapcount(page_tail);
1633 		/* check for overflow */
1634 		BUG_ON(tail_count < 0);
1635 		BUG_ON(atomic_read(&page_tail->_count) != 0);
1636 		/*
1637 		 * tail_page->_count is zero and not changing from
1638 		 * under us. But get_page_unless_zero() may be running
1639 		 * from under us on the tail_page. If we used
1640 		 * atomic_set() below instead of atomic_add(), we
1641 		 * would then run atomic_set() concurrently with
1642 		 * get_page_unless_zero(), and atomic_set() is
1643 		 * implemented in C not using locked ops. spin_unlock
1644 		 * on x86 sometime uses locked ops because of PPro
1645 		 * errata 66, 92, so unless somebody can guarantee
1646 		 * atomic_set() here would be safe on all archs (and
1647 		 * not only on x86), it's safer to use atomic_add().
1648 		 */
1649 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1650 			   &page_tail->_count);
1651 
1652 		/* after clearing PageTail the gup refcount can be released */
1653 		smp_mb();
1654 
1655 		/*
1656 		 * retain hwpoison flag of the poisoned tail page:
1657 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1658 		 *   by the memory-failure.
1659 		 */
1660 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1661 		page_tail->flags |= (page->flags &
1662 				     ((1L << PG_referenced) |
1663 				      (1L << PG_swapbacked) |
1664 				      (1L << PG_mlocked) |
1665 				      (1L << PG_uptodate) |
1666 				      (1L << PG_active) |
1667 				      (1L << PG_unevictable)));
1668 		page_tail->flags |= (1L << PG_dirty);
1669 
1670 		/* clear PageTail before overwriting first_page */
1671 		smp_wmb();
1672 
1673 		/*
1674 		 * __split_huge_page_splitting() already set the
1675 		 * splitting bit in all pmd that could map this
1676 		 * hugepage, that will ensure no CPU can alter the
1677 		 * mapcount on the head page. The mapcount is only
1678 		 * accounted in the head page and it has to be
1679 		 * transferred to all tail pages in the below code. So
1680 		 * for this code to be safe, the split the mapcount
1681 		 * can't change. But that doesn't mean userland can't
1682 		 * keep changing and reading the page contents while
1683 		 * we transfer the mapcount, so the pmd splitting
1684 		 * status is achieved setting a reserved bit in the
1685 		 * pmd, not by clearing the present bit.
1686 		*/
1687 		page_tail->_mapcount = page->_mapcount;
1688 
1689 		BUG_ON(page_tail->mapping);
1690 		page_tail->mapping = page->mapping;
1691 
1692 		page_tail->index = page->index + i;
1693 		page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1694 
1695 		BUG_ON(!PageAnon(page_tail));
1696 		BUG_ON(!PageUptodate(page_tail));
1697 		BUG_ON(!PageDirty(page_tail));
1698 		BUG_ON(!PageSwapBacked(page_tail));
1699 
1700 		lru_add_page_tail(page, page_tail, lruvec, list);
1701 	}
1702 	atomic_sub(tail_count, &page->_count);
1703 	BUG_ON(atomic_read(&page->_count) <= 0);
1704 
1705 	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1706 
1707 	ClearPageCompound(page);
1708 	compound_unlock(page);
1709 	spin_unlock_irq(&zone->lru_lock);
1710 
1711 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1712 		struct page *page_tail = page + i;
1713 		BUG_ON(page_count(page_tail) <= 0);
1714 		/*
1715 		 * Tail pages may be freed if there wasn't any mapping
1716 		 * like if add_to_swap() is running on a lru page that
1717 		 * had its mapping zapped. And freeing these pages
1718 		 * requires taking the lru_lock so we do the put_page
1719 		 * of the tail pages after the split is complete.
1720 		 */
1721 		put_page(page_tail);
1722 	}
1723 
1724 	/*
1725 	 * Only the head page (now become a regular page) is required
1726 	 * to be pinned by the caller.
1727 	 */
1728 	BUG_ON(page_count(page) <= 0);
1729 }
1730 
1731 static int __split_huge_page_map(struct page *page,
1732 				 struct vm_area_struct *vma,
1733 				 unsigned long address)
1734 {
1735 	struct mm_struct *mm = vma->vm_mm;
1736 	spinlock_t *ptl;
1737 	pmd_t *pmd, _pmd;
1738 	int ret = 0, i;
1739 	pgtable_t pgtable;
1740 	unsigned long haddr;
1741 
1742 	pmd = page_check_address_pmd(page, mm, address,
1743 			PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1744 	if (pmd) {
1745 		pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1746 		pmd_populate(mm, &_pmd, pgtable);
1747 
1748 		haddr = address;
1749 		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1750 			pte_t *pte, entry;
1751 			BUG_ON(PageCompound(page+i));
1752 			entry = mk_pte(page + i, vma->vm_page_prot);
1753 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1754 			if (!pmd_write(*pmd))
1755 				entry = pte_wrprotect(entry);
1756 			else
1757 				BUG_ON(page_mapcount(page) != 1);
1758 			if (!pmd_young(*pmd))
1759 				entry = pte_mkold(entry);
1760 			if (pmd_numa(*pmd))
1761 				entry = pte_mknuma(entry);
1762 			pte = pte_offset_map(&_pmd, haddr);
1763 			BUG_ON(!pte_none(*pte));
1764 			set_pte_at(mm, haddr, pte, entry);
1765 			pte_unmap(pte);
1766 		}
1767 
1768 		smp_wmb(); /* make pte visible before pmd */
1769 		/*
1770 		 * Up to this point the pmd is present and huge and
1771 		 * userland has the whole access to the hugepage
1772 		 * during the split (which happens in place). If we
1773 		 * overwrite the pmd with the not-huge version
1774 		 * pointing to the pte here (which of course we could
1775 		 * if all CPUs were bug free), userland could trigger
1776 		 * a small page size TLB miss on the small sized TLB
1777 		 * while the hugepage TLB entry is still established
1778 		 * in the huge TLB. Some CPU doesn't like that. See
1779 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1780 		 * Erratum 383 on page 93. Intel should be safe but is
1781 		 * also warns that it's only safe if the permission
1782 		 * and cache attributes of the two entries loaded in
1783 		 * the two TLB is identical (which should be the case
1784 		 * here). But it is generally safer to never allow
1785 		 * small and huge TLB entries for the same virtual
1786 		 * address to be loaded simultaneously. So instead of
1787 		 * doing "pmd_populate(); flush_tlb_range();" we first
1788 		 * mark the current pmd notpresent (atomically because
1789 		 * here the pmd_trans_huge and pmd_trans_splitting
1790 		 * must remain set at all times on the pmd until the
1791 		 * split is complete for this pmd), then we flush the
1792 		 * SMP TLB and finally we write the non-huge version
1793 		 * of the pmd entry with pmd_populate.
1794 		 */
1795 		pmdp_invalidate(vma, address, pmd);
1796 		pmd_populate(mm, pmd, pgtable);
1797 		ret = 1;
1798 		spin_unlock(ptl);
1799 	}
1800 
1801 	return ret;
1802 }
1803 
1804 /* must be called with anon_vma->root->rwsem held */
1805 static void __split_huge_page(struct page *page,
1806 			      struct anon_vma *anon_vma,
1807 			      struct list_head *list)
1808 {
1809 	int mapcount, mapcount2;
1810 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1811 	struct anon_vma_chain *avc;
1812 
1813 	BUG_ON(!PageHead(page));
1814 	BUG_ON(PageTail(page));
1815 
1816 	mapcount = 0;
1817 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1818 		struct vm_area_struct *vma = avc->vma;
1819 		unsigned long addr = vma_address(page, vma);
1820 		BUG_ON(is_vma_temporary_stack(vma));
1821 		mapcount += __split_huge_page_splitting(page, vma, addr);
1822 	}
1823 	/*
1824 	 * It is critical that new vmas are added to the tail of the
1825 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1826 	 * and establishes a child pmd before
1827 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1828 	 * we fail to prevent copy_huge_pmd() from running until the
1829 	 * whole __split_huge_page() is complete), we will still see
1830 	 * the newly established pmd of the child later during the
1831 	 * walk, to be able to set it as pmd_trans_splitting too.
1832 	 */
1833 	if (mapcount != page_mapcount(page))
1834 		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1835 		       mapcount, page_mapcount(page));
1836 	BUG_ON(mapcount != page_mapcount(page));
1837 
1838 	__split_huge_page_refcount(page, list);
1839 
1840 	mapcount2 = 0;
1841 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1842 		struct vm_area_struct *vma = avc->vma;
1843 		unsigned long addr = vma_address(page, vma);
1844 		BUG_ON(is_vma_temporary_stack(vma));
1845 		mapcount2 += __split_huge_page_map(page, vma, addr);
1846 	}
1847 	if (mapcount != mapcount2)
1848 		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1849 		       mapcount, mapcount2, page_mapcount(page));
1850 	BUG_ON(mapcount != mapcount2);
1851 }
1852 
1853 /*
1854  * Split a hugepage into normal pages. This doesn't change the position of head
1855  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1856  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1857  * from the hugepage.
1858  * Return 0 if the hugepage is split successfully otherwise return 1.
1859  */
1860 int split_huge_page_to_list(struct page *page, struct list_head *list)
1861 {
1862 	struct anon_vma *anon_vma;
1863 	int ret = 1;
1864 
1865 	BUG_ON(is_huge_zero_page(page));
1866 	BUG_ON(!PageAnon(page));
1867 
1868 	/*
1869 	 * The caller does not necessarily hold an mmap_sem that would prevent
1870 	 * the anon_vma disappearing so we first we take a reference to it
1871 	 * and then lock the anon_vma for write. This is similar to
1872 	 * page_lock_anon_vma_read except the write lock is taken to serialise
1873 	 * against parallel split or collapse operations.
1874 	 */
1875 	anon_vma = page_get_anon_vma(page);
1876 	if (!anon_vma)
1877 		goto out;
1878 	anon_vma_lock_write(anon_vma);
1879 
1880 	ret = 0;
1881 	if (!PageCompound(page))
1882 		goto out_unlock;
1883 
1884 	BUG_ON(!PageSwapBacked(page));
1885 	__split_huge_page(page, anon_vma, list);
1886 	count_vm_event(THP_SPLIT);
1887 
1888 	BUG_ON(PageCompound(page));
1889 out_unlock:
1890 	anon_vma_unlock_write(anon_vma);
1891 	put_anon_vma(anon_vma);
1892 out:
1893 	return ret;
1894 }
1895 
1896 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1897 
1898 int hugepage_madvise(struct vm_area_struct *vma,
1899 		     unsigned long *vm_flags, int advice)
1900 {
1901 	switch (advice) {
1902 	case MADV_HUGEPAGE:
1903 #ifdef CONFIG_S390
1904 		/*
1905 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1906 		 * can't handle this properly after s390_enable_sie, so we simply
1907 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1908 		 */
1909 		if (mm_has_pgste(vma->vm_mm))
1910 			return 0;
1911 #endif
1912 		/*
1913 		 * Be somewhat over-protective like KSM for now!
1914 		 */
1915 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1916 			return -EINVAL;
1917 		*vm_flags &= ~VM_NOHUGEPAGE;
1918 		*vm_flags |= VM_HUGEPAGE;
1919 		/*
1920 		 * If the vma become good for khugepaged to scan,
1921 		 * register it here without waiting a page fault that
1922 		 * may not happen any time soon.
1923 		 */
1924 		if (unlikely(khugepaged_enter_vma_merge(vma)))
1925 			return -ENOMEM;
1926 		break;
1927 	case MADV_NOHUGEPAGE:
1928 		/*
1929 		 * Be somewhat over-protective like KSM for now!
1930 		 */
1931 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1932 			return -EINVAL;
1933 		*vm_flags &= ~VM_HUGEPAGE;
1934 		*vm_flags |= VM_NOHUGEPAGE;
1935 		/*
1936 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1937 		 * this vma even if we leave the mm registered in khugepaged if
1938 		 * it got registered before VM_NOHUGEPAGE was set.
1939 		 */
1940 		break;
1941 	}
1942 
1943 	return 0;
1944 }
1945 
1946 static int __init khugepaged_slab_init(void)
1947 {
1948 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1949 					  sizeof(struct mm_slot),
1950 					  __alignof__(struct mm_slot), 0, NULL);
1951 	if (!mm_slot_cache)
1952 		return -ENOMEM;
1953 
1954 	return 0;
1955 }
1956 
1957 static inline struct mm_slot *alloc_mm_slot(void)
1958 {
1959 	if (!mm_slot_cache)	/* initialization failed */
1960 		return NULL;
1961 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1962 }
1963 
1964 static inline void free_mm_slot(struct mm_slot *mm_slot)
1965 {
1966 	kmem_cache_free(mm_slot_cache, mm_slot);
1967 }
1968 
1969 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1970 {
1971 	struct mm_slot *mm_slot;
1972 
1973 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1974 		if (mm == mm_slot->mm)
1975 			return mm_slot;
1976 
1977 	return NULL;
1978 }
1979 
1980 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1981 				    struct mm_slot *mm_slot)
1982 {
1983 	mm_slot->mm = mm;
1984 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1985 }
1986 
1987 static inline int khugepaged_test_exit(struct mm_struct *mm)
1988 {
1989 	return atomic_read(&mm->mm_users) == 0;
1990 }
1991 
1992 int __khugepaged_enter(struct mm_struct *mm)
1993 {
1994 	struct mm_slot *mm_slot;
1995 	int wakeup;
1996 
1997 	mm_slot = alloc_mm_slot();
1998 	if (!mm_slot)
1999 		return -ENOMEM;
2000 
2001 	/* __khugepaged_exit() must not run from under us */
2002 	VM_BUG_ON(khugepaged_test_exit(mm));
2003 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2004 		free_mm_slot(mm_slot);
2005 		return 0;
2006 	}
2007 
2008 	spin_lock(&khugepaged_mm_lock);
2009 	insert_to_mm_slots_hash(mm, mm_slot);
2010 	/*
2011 	 * Insert just behind the scanning cursor, to let the area settle
2012 	 * down a little.
2013 	 */
2014 	wakeup = list_empty(&khugepaged_scan.mm_head);
2015 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2016 	spin_unlock(&khugepaged_mm_lock);
2017 
2018 	atomic_inc(&mm->mm_count);
2019 	if (wakeup)
2020 		wake_up_interruptible(&khugepaged_wait);
2021 
2022 	return 0;
2023 }
2024 
2025 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2026 {
2027 	unsigned long hstart, hend;
2028 	if (!vma->anon_vma)
2029 		/*
2030 		 * Not yet faulted in so we will register later in the
2031 		 * page fault if needed.
2032 		 */
2033 		return 0;
2034 	if (vma->vm_ops)
2035 		/* khugepaged not yet working on file or special mappings */
2036 		return 0;
2037 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2038 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2039 	hend = vma->vm_end & HPAGE_PMD_MASK;
2040 	if (hstart < hend)
2041 		return khugepaged_enter(vma);
2042 	return 0;
2043 }
2044 
2045 void __khugepaged_exit(struct mm_struct *mm)
2046 {
2047 	struct mm_slot *mm_slot;
2048 	int free = 0;
2049 
2050 	spin_lock(&khugepaged_mm_lock);
2051 	mm_slot = get_mm_slot(mm);
2052 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2053 		hash_del(&mm_slot->hash);
2054 		list_del(&mm_slot->mm_node);
2055 		free = 1;
2056 	}
2057 	spin_unlock(&khugepaged_mm_lock);
2058 
2059 	if (free) {
2060 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2061 		free_mm_slot(mm_slot);
2062 		mmdrop(mm);
2063 	} else if (mm_slot) {
2064 		/*
2065 		 * This is required to serialize against
2066 		 * khugepaged_test_exit() (which is guaranteed to run
2067 		 * under mmap sem read mode). Stop here (after we
2068 		 * return all pagetables will be destroyed) until
2069 		 * khugepaged has finished working on the pagetables
2070 		 * under the mmap_sem.
2071 		 */
2072 		down_write(&mm->mmap_sem);
2073 		up_write(&mm->mmap_sem);
2074 	}
2075 }
2076 
2077 static void release_pte_page(struct page *page)
2078 {
2079 	/* 0 stands for page_is_file_cache(page) == false */
2080 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2081 	unlock_page(page);
2082 	putback_lru_page(page);
2083 }
2084 
2085 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2086 {
2087 	while (--_pte >= pte) {
2088 		pte_t pteval = *_pte;
2089 		if (!pte_none(pteval))
2090 			release_pte_page(pte_page(pteval));
2091 	}
2092 }
2093 
2094 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2095 					unsigned long address,
2096 					pte_t *pte)
2097 {
2098 	struct page *page;
2099 	pte_t *_pte;
2100 	int referenced = 0, none = 0;
2101 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2102 	     _pte++, address += PAGE_SIZE) {
2103 		pte_t pteval = *_pte;
2104 		if (pte_none(pteval)) {
2105 			if (++none <= khugepaged_max_ptes_none)
2106 				continue;
2107 			else
2108 				goto out;
2109 		}
2110 		if (!pte_present(pteval) || !pte_write(pteval))
2111 			goto out;
2112 		page = vm_normal_page(vma, address, pteval);
2113 		if (unlikely(!page))
2114 			goto out;
2115 
2116 		VM_BUG_ON_PAGE(PageCompound(page), page);
2117 		VM_BUG_ON_PAGE(!PageAnon(page), page);
2118 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2119 
2120 		/* cannot use mapcount: can't collapse if there's a gup pin */
2121 		if (page_count(page) != 1)
2122 			goto out;
2123 		/*
2124 		 * We can do it before isolate_lru_page because the
2125 		 * page can't be freed from under us. NOTE: PG_lock
2126 		 * is needed to serialize against split_huge_page
2127 		 * when invoked from the VM.
2128 		 */
2129 		if (!trylock_page(page))
2130 			goto out;
2131 		/*
2132 		 * Isolate the page to avoid collapsing an hugepage
2133 		 * currently in use by the VM.
2134 		 */
2135 		if (isolate_lru_page(page)) {
2136 			unlock_page(page);
2137 			goto out;
2138 		}
2139 		/* 0 stands for page_is_file_cache(page) == false */
2140 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2141 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2142 		VM_BUG_ON_PAGE(PageLRU(page), page);
2143 
2144 		/* If there is no mapped pte young don't collapse the page */
2145 		if (pte_young(pteval) || PageReferenced(page) ||
2146 		    mmu_notifier_test_young(vma->vm_mm, address))
2147 			referenced = 1;
2148 	}
2149 	if (likely(referenced))
2150 		return 1;
2151 out:
2152 	release_pte_pages(pte, _pte);
2153 	return 0;
2154 }
2155 
2156 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2157 				      struct vm_area_struct *vma,
2158 				      unsigned long address,
2159 				      spinlock_t *ptl)
2160 {
2161 	pte_t *_pte;
2162 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2163 		pte_t pteval = *_pte;
2164 		struct page *src_page;
2165 
2166 		if (pte_none(pteval)) {
2167 			clear_user_highpage(page, address);
2168 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2169 		} else {
2170 			src_page = pte_page(pteval);
2171 			copy_user_highpage(page, src_page, address, vma);
2172 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2173 			release_pte_page(src_page);
2174 			/*
2175 			 * ptl mostly unnecessary, but preempt has to
2176 			 * be disabled to update the per-cpu stats
2177 			 * inside page_remove_rmap().
2178 			 */
2179 			spin_lock(ptl);
2180 			/*
2181 			 * paravirt calls inside pte_clear here are
2182 			 * superfluous.
2183 			 */
2184 			pte_clear(vma->vm_mm, address, _pte);
2185 			page_remove_rmap(src_page);
2186 			spin_unlock(ptl);
2187 			free_page_and_swap_cache(src_page);
2188 		}
2189 
2190 		address += PAGE_SIZE;
2191 		page++;
2192 	}
2193 }
2194 
2195 static void khugepaged_alloc_sleep(void)
2196 {
2197 	wait_event_freezable_timeout(khugepaged_wait, false,
2198 			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2199 }
2200 
2201 static int khugepaged_node_load[MAX_NUMNODES];
2202 
2203 #ifdef CONFIG_NUMA
2204 static int khugepaged_find_target_node(void)
2205 {
2206 	static int last_khugepaged_target_node = NUMA_NO_NODE;
2207 	int nid, target_node = 0, max_value = 0;
2208 
2209 	/* find first node with max normal pages hit */
2210 	for (nid = 0; nid < MAX_NUMNODES; nid++)
2211 		if (khugepaged_node_load[nid] > max_value) {
2212 			max_value = khugepaged_node_load[nid];
2213 			target_node = nid;
2214 		}
2215 
2216 	/* do some balance if several nodes have the same hit record */
2217 	if (target_node <= last_khugepaged_target_node)
2218 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2219 				nid++)
2220 			if (max_value == khugepaged_node_load[nid]) {
2221 				target_node = nid;
2222 				break;
2223 			}
2224 
2225 	last_khugepaged_target_node = target_node;
2226 	return target_node;
2227 }
2228 
2229 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2230 {
2231 	if (IS_ERR(*hpage)) {
2232 		if (!*wait)
2233 			return false;
2234 
2235 		*wait = false;
2236 		*hpage = NULL;
2237 		khugepaged_alloc_sleep();
2238 	} else if (*hpage) {
2239 		put_page(*hpage);
2240 		*hpage = NULL;
2241 	}
2242 
2243 	return true;
2244 }
2245 
2246 static struct page
2247 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2248 		       struct vm_area_struct *vma, unsigned long address,
2249 		       int node)
2250 {
2251 	VM_BUG_ON_PAGE(*hpage, *hpage);
2252 	/*
2253 	 * Allocate the page while the vma is still valid and under
2254 	 * the mmap_sem read mode so there is no memory allocation
2255 	 * later when we take the mmap_sem in write mode. This is more
2256 	 * friendly behavior (OTOH it may actually hide bugs) to
2257 	 * filesystems in userland with daemons allocating memory in
2258 	 * the userland I/O paths.  Allocating memory with the
2259 	 * mmap_sem in read mode is good idea also to allow greater
2260 	 * scalability.
2261 	 */
2262 	*hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2263 		khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2264 	/*
2265 	 * After allocating the hugepage, release the mmap_sem read lock in
2266 	 * preparation for taking it in write mode.
2267 	 */
2268 	up_read(&mm->mmap_sem);
2269 	if (unlikely(!*hpage)) {
2270 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2271 		*hpage = ERR_PTR(-ENOMEM);
2272 		return NULL;
2273 	}
2274 
2275 	count_vm_event(THP_COLLAPSE_ALLOC);
2276 	return *hpage;
2277 }
2278 #else
2279 static int khugepaged_find_target_node(void)
2280 {
2281 	return 0;
2282 }
2283 
2284 static inline struct page *alloc_hugepage(int defrag)
2285 {
2286 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2287 			   HPAGE_PMD_ORDER);
2288 }
2289 
2290 static struct page *khugepaged_alloc_hugepage(bool *wait)
2291 {
2292 	struct page *hpage;
2293 
2294 	do {
2295 		hpage = alloc_hugepage(khugepaged_defrag());
2296 		if (!hpage) {
2297 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2298 			if (!*wait)
2299 				return NULL;
2300 
2301 			*wait = false;
2302 			khugepaged_alloc_sleep();
2303 		} else
2304 			count_vm_event(THP_COLLAPSE_ALLOC);
2305 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2306 
2307 	return hpage;
2308 }
2309 
2310 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2311 {
2312 	if (!*hpage)
2313 		*hpage = khugepaged_alloc_hugepage(wait);
2314 
2315 	if (unlikely(!*hpage))
2316 		return false;
2317 
2318 	return true;
2319 }
2320 
2321 static struct page
2322 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2323 		       struct vm_area_struct *vma, unsigned long address,
2324 		       int node)
2325 {
2326 	up_read(&mm->mmap_sem);
2327 	VM_BUG_ON(!*hpage);
2328 	return  *hpage;
2329 }
2330 #endif
2331 
2332 static bool hugepage_vma_check(struct vm_area_struct *vma)
2333 {
2334 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2335 	    (vma->vm_flags & VM_NOHUGEPAGE))
2336 		return false;
2337 
2338 	if (!vma->anon_vma || vma->vm_ops)
2339 		return false;
2340 	if (is_vma_temporary_stack(vma))
2341 		return false;
2342 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2343 	return true;
2344 }
2345 
2346 static void collapse_huge_page(struct mm_struct *mm,
2347 				   unsigned long address,
2348 				   struct page **hpage,
2349 				   struct vm_area_struct *vma,
2350 				   int node)
2351 {
2352 	pmd_t *pmd, _pmd;
2353 	pte_t *pte;
2354 	pgtable_t pgtable;
2355 	struct page *new_page;
2356 	spinlock_t *pmd_ptl, *pte_ptl;
2357 	int isolated;
2358 	unsigned long hstart, hend;
2359 	unsigned long mmun_start;	/* For mmu_notifiers */
2360 	unsigned long mmun_end;		/* For mmu_notifiers */
2361 
2362 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2363 
2364 	/* release the mmap_sem read lock. */
2365 	new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2366 	if (!new_page)
2367 		return;
2368 
2369 	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)))
2370 		return;
2371 
2372 	/*
2373 	 * Prevent all access to pagetables with the exception of
2374 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2375 	 * handled by the anon_vma lock + PG_lock.
2376 	 */
2377 	down_write(&mm->mmap_sem);
2378 	if (unlikely(khugepaged_test_exit(mm)))
2379 		goto out;
2380 
2381 	vma = find_vma(mm, address);
2382 	if (!vma)
2383 		goto out;
2384 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2385 	hend = vma->vm_end & HPAGE_PMD_MASK;
2386 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2387 		goto out;
2388 	if (!hugepage_vma_check(vma))
2389 		goto out;
2390 	pmd = mm_find_pmd(mm, address);
2391 	if (!pmd)
2392 		goto out;
2393 	if (pmd_trans_huge(*pmd))
2394 		goto out;
2395 
2396 	anon_vma_lock_write(vma->anon_vma);
2397 
2398 	pte = pte_offset_map(pmd, address);
2399 	pte_ptl = pte_lockptr(mm, pmd);
2400 
2401 	mmun_start = address;
2402 	mmun_end   = address + HPAGE_PMD_SIZE;
2403 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2404 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2405 	/*
2406 	 * After this gup_fast can't run anymore. This also removes
2407 	 * any huge TLB entry from the CPU so we won't allow
2408 	 * huge and small TLB entries for the same virtual address
2409 	 * to avoid the risk of CPU bugs in that area.
2410 	 */
2411 	_pmd = pmdp_clear_flush(vma, address, pmd);
2412 	spin_unlock(pmd_ptl);
2413 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2414 
2415 	spin_lock(pte_ptl);
2416 	isolated = __collapse_huge_page_isolate(vma, address, pte);
2417 	spin_unlock(pte_ptl);
2418 
2419 	if (unlikely(!isolated)) {
2420 		pte_unmap(pte);
2421 		spin_lock(pmd_ptl);
2422 		BUG_ON(!pmd_none(*pmd));
2423 		/*
2424 		 * We can only use set_pmd_at when establishing
2425 		 * hugepmds and never for establishing regular pmds that
2426 		 * points to regular pagetables. Use pmd_populate for that
2427 		 */
2428 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2429 		spin_unlock(pmd_ptl);
2430 		anon_vma_unlock_write(vma->anon_vma);
2431 		goto out;
2432 	}
2433 
2434 	/*
2435 	 * All pages are isolated and locked so anon_vma rmap
2436 	 * can't run anymore.
2437 	 */
2438 	anon_vma_unlock_write(vma->anon_vma);
2439 
2440 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2441 	pte_unmap(pte);
2442 	__SetPageUptodate(new_page);
2443 	pgtable = pmd_pgtable(_pmd);
2444 
2445 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2446 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2447 
2448 	/*
2449 	 * spin_lock() below is not the equivalent of smp_wmb(), so
2450 	 * this is needed to avoid the copy_huge_page writes to become
2451 	 * visible after the set_pmd_at() write.
2452 	 */
2453 	smp_wmb();
2454 
2455 	spin_lock(pmd_ptl);
2456 	BUG_ON(!pmd_none(*pmd));
2457 	page_add_new_anon_rmap(new_page, vma, address);
2458 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2459 	set_pmd_at(mm, address, pmd, _pmd);
2460 	update_mmu_cache_pmd(vma, address, pmd);
2461 	spin_unlock(pmd_ptl);
2462 
2463 	*hpage = NULL;
2464 
2465 	khugepaged_pages_collapsed++;
2466 out_up_write:
2467 	up_write(&mm->mmap_sem);
2468 	return;
2469 
2470 out:
2471 	mem_cgroup_uncharge_page(new_page);
2472 	goto out_up_write;
2473 }
2474 
2475 static int khugepaged_scan_pmd(struct mm_struct *mm,
2476 			       struct vm_area_struct *vma,
2477 			       unsigned long address,
2478 			       struct page **hpage)
2479 {
2480 	pmd_t *pmd;
2481 	pte_t *pte, *_pte;
2482 	int ret = 0, referenced = 0, none = 0;
2483 	struct page *page;
2484 	unsigned long _address;
2485 	spinlock_t *ptl;
2486 	int node = NUMA_NO_NODE;
2487 
2488 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2489 
2490 	pmd = mm_find_pmd(mm, address);
2491 	if (!pmd)
2492 		goto out;
2493 	if (pmd_trans_huge(*pmd))
2494 		goto out;
2495 
2496 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2497 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2498 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2499 	     _pte++, _address += PAGE_SIZE) {
2500 		pte_t pteval = *_pte;
2501 		if (pte_none(pteval)) {
2502 			if (++none <= khugepaged_max_ptes_none)
2503 				continue;
2504 			else
2505 				goto out_unmap;
2506 		}
2507 		if (!pte_present(pteval) || !pte_write(pteval))
2508 			goto out_unmap;
2509 		page = vm_normal_page(vma, _address, pteval);
2510 		if (unlikely(!page))
2511 			goto out_unmap;
2512 		/*
2513 		 * Record which node the original page is from and save this
2514 		 * information to khugepaged_node_load[].
2515 		 * Khupaged will allocate hugepage from the node has the max
2516 		 * hit record.
2517 		 */
2518 		node = page_to_nid(page);
2519 		khugepaged_node_load[node]++;
2520 		VM_BUG_ON_PAGE(PageCompound(page), page);
2521 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2522 			goto out_unmap;
2523 		/* cannot use mapcount: can't collapse if there's a gup pin */
2524 		if (page_count(page) != 1)
2525 			goto out_unmap;
2526 		if (pte_young(pteval) || PageReferenced(page) ||
2527 		    mmu_notifier_test_young(vma->vm_mm, address))
2528 			referenced = 1;
2529 	}
2530 	if (referenced)
2531 		ret = 1;
2532 out_unmap:
2533 	pte_unmap_unlock(pte, ptl);
2534 	if (ret) {
2535 		node = khugepaged_find_target_node();
2536 		/* collapse_huge_page will return with the mmap_sem released */
2537 		collapse_huge_page(mm, address, hpage, vma, node);
2538 	}
2539 out:
2540 	return ret;
2541 }
2542 
2543 static void collect_mm_slot(struct mm_slot *mm_slot)
2544 {
2545 	struct mm_struct *mm = mm_slot->mm;
2546 
2547 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2548 
2549 	if (khugepaged_test_exit(mm)) {
2550 		/* free mm_slot */
2551 		hash_del(&mm_slot->hash);
2552 		list_del(&mm_slot->mm_node);
2553 
2554 		/*
2555 		 * Not strictly needed because the mm exited already.
2556 		 *
2557 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2558 		 */
2559 
2560 		/* khugepaged_mm_lock actually not necessary for the below */
2561 		free_mm_slot(mm_slot);
2562 		mmdrop(mm);
2563 	}
2564 }
2565 
2566 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2567 					    struct page **hpage)
2568 	__releases(&khugepaged_mm_lock)
2569 	__acquires(&khugepaged_mm_lock)
2570 {
2571 	struct mm_slot *mm_slot;
2572 	struct mm_struct *mm;
2573 	struct vm_area_struct *vma;
2574 	int progress = 0;
2575 
2576 	VM_BUG_ON(!pages);
2577 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2578 
2579 	if (khugepaged_scan.mm_slot)
2580 		mm_slot = khugepaged_scan.mm_slot;
2581 	else {
2582 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2583 				     struct mm_slot, mm_node);
2584 		khugepaged_scan.address = 0;
2585 		khugepaged_scan.mm_slot = mm_slot;
2586 	}
2587 	spin_unlock(&khugepaged_mm_lock);
2588 
2589 	mm = mm_slot->mm;
2590 	down_read(&mm->mmap_sem);
2591 	if (unlikely(khugepaged_test_exit(mm)))
2592 		vma = NULL;
2593 	else
2594 		vma = find_vma(mm, khugepaged_scan.address);
2595 
2596 	progress++;
2597 	for (; vma; vma = vma->vm_next) {
2598 		unsigned long hstart, hend;
2599 
2600 		cond_resched();
2601 		if (unlikely(khugepaged_test_exit(mm))) {
2602 			progress++;
2603 			break;
2604 		}
2605 		if (!hugepage_vma_check(vma)) {
2606 skip:
2607 			progress++;
2608 			continue;
2609 		}
2610 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2611 		hend = vma->vm_end & HPAGE_PMD_MASK;
2612 		if (hstart >= hend)
2613 			goto skip;
2614 		if (khugepaged_scan.address > hend)
2615 			goto skip;
2616 		if (khugepaged_scan.address < hstart)
2617 			khugepaged_scan.address = hstart;
2618 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2619 
2620 		while (khugepaged_scan.address < hend) {
2621 			int ret;
2622 			cond_resched();
2623 			if (unlikely(khugepaged_test_exit(mm)))
2624 				goto breakouterloop;
2625 
2626 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2627 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2628 				  hend);
2629 			ret = khugepaged_scan_pmd(mm, vma,
2630 						  khugepaged_scan.address,
2631 						  hpage);
2632 			/* move to next address */
2633 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2634 			progress += HPAGE_PMD_NR;
2635 			if (ret)
2636 				/* we released mmap_sem so break loop */
2637 				goto breakouterloop_mmap_sem;
2638 			if (progress >= pages)
2639 				goto breakouterloop;
2640 		}
2641 	}
2642 breakouterloop:
2643 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2644 breakouterloop_mmap_sem:
2645 
2646 	spin_lock(&khugepaged_mm_lock);
2647 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2648 	/*
2649 	 * Release the current mm_slot if this mm is about to die, or
2650 	 * if we scanned all vmas of this mm.
2651 	 */
2652 	if (khugepaged_test_exit(mm) || !vma) {
2653 		/*
2654 		 * Make sure that if mm_users is reaching zero while
2655 		 * khugepaged runs here, khugepaged_exit will find
2656 		 * mm_slot not pointing to the exiting mm.
2657 		 */
2658 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2659 			khugepaged_scan.mm_slot = list_entry(
2660 				mm_slot->mm_node.next,
2661 				struct mm_slot, mm_node);
2662 			khugepaged_scan.address = 0;
2663 		} else {
2664 			khugepaged_scan.mm_slot = NULL;
2665 			khugepaged_full_scans++;
2666 		}
2667 
2668 		collect_mm_slot(mm_slot);
2669 	}
2670 
2671 	return progress;
2672 }
2673 
2674 static int khugepaged_has_work(void)
2675 {
2676 	return !list_empty(&khugepaged_scan.mm_head) &&
2677 		khugepaged_enabled();
2678 }
2679 
2680 static int khugepaged_wait_event(void)
2681 {
2682 	return !list_empty(&khugepaged_scan.mm_head) ||
2683 		kthread_should_stop();
2684 }
2685 
2686 static void khugepaged_do_scan(void)
2687 {
2688 	struct page *hpage = NULL;
2689 	unsigned int progress = 0, pass_through_head = 0;
2690 	unsigned int pages = khugepaged_pages_to_scan;
2691 	bool wait = true;
2692 
2693 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2694 
2695 	while (progress < pages) {
2696 		if (!khugepaged_prealloc_page(&hpage, &wait))
2697 			break;
2698 
2699 		cond_resched();
2700 
2701 		if (unlikely(kthread_should_stop() || freezing(current)))
2702 			break;
2703 
2704 		spin_lock(&khugepaged_mm_lock);
2705 		if (!khugepaged_scan.mm_slot)
2706 			pass_through_head++;
2707 		if (khugepaged_has_work() &&
2708 		    pass_through_head < 2)
2709 			progress += khugepaged_scan_mm_slot(pages - progress,
2710 							    &hpage);
2711 		else
2712 			progress = pages;
2713 		spin_unlock(&khugepaged_mm_lock);
2714 	}
2715 
2716 	if (!IS_ERR_OR_NULL(hpage))
2717 		put_page(hpage);
2718 }
2719 
2720 static void khugepaged_wait_work(void)
2721 {
2722 	try_to_freeze();
2723 
2724 	if (khugepaged_has_work()) {
2725 		if (!khugepaged_scan_sleep_millisecs)
2726 			return;
2727 
2728 		wait_event_freezable_timeout(khugepaged_wait,
2729 					     kthread_should_stop(),
2730 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2731 		return;
2732 	}
2733 
2734 	if (khugepaged_enabled())
2735 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2736 }
2737 
2738 static int khugepaged(void *none)
2739 {
2740 	struct mm_slot *mm_slot;
2741 
2742 	set_freezable();
2743 	set_user_nice(current, 19);
2744 
2745 	while (!kthread_should_stop()) {
2746 		khugepaged_do_scan();
2747 		khugepaged_wait_work();
2748 	}
2749 
2750 	spin_lock(&khugepaged_mm_lock);
2751 	mm_slot = khugepaged_scan.mm_slot;
2752 	khugepaged_scan.mm_slot = NULL;
2753 	if (mm_slot)
2754 		collect_mm_slot(mm_slot);
2755 	spin_unlock(&khugepaged_mm_lock);
2756 	return 0;
2757 }
2758 
2759 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2760 		unsigned long haddr, pmd_t *pmd)
2761 {
2762 	struct mm_struct *mm = vma->vm_mm;
2763 	pgtable_t pgtable;
2764 	pmd_t _pmd;
2765 	int i;
2766 
2767 	pmdp_clear_flush(vma, haddr, pmd);
2768 	/* leave pmd empty until pte is filled */
2769 
2770 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2771 	pmd_populate(mm, &_pmd, pgtable);
2772 
2773 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2774 		pte_t *pte, entry;
2775 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2776 		entry = pte_mkspecial(entry);
2777 		pte = pte_offset_map(&_pmd, haddr);
2778 		VM_BUG_ON(!pte_none(*pte));
2779 		set_pte_at(mm, haddr, pte, entry);
2780 		pte_unmap(pte);
2781 	}
2782 	smp_wmb(); /* make pte visible before pmd */
2783 	pmd_populate(mm, pmd, pgtable);
2784 	put_huge_zero_page();
2785 }
2786 
2787 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2788 		pmd_t *pmd)
2789 {
2790 	spinlock_t *ptl;
2791 	struct page *page;
2792 	struct mm_struct *mm = vma->vm_mm;
2793 	unsigned long haddr = address & HPAGE_PMD_MASK;
2794 	unsigned long mmun_start;	/* For mmu_notifiers */
2795 	unsigned long mmun_end;		/* For mmu_notifiers */
2796 
2797 	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2798 
2799 	mmun_start = haddr;
2800 	mmun_end   = haddr + HPAGE_PMD_SIZE;
2801 again:
2802 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2803 	ptl = pmd_lock(mm, pmd);
2804 	if (unlikely(!pmd_trans_huge(*pmd))) {
2805 		spin_unlock(ptl);
2806 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2807 		return;
2808 	}
2809 	if (is_huge_zero_pmd(*pmd)) {
2810 		__split_huge_zero_page_pmd(vma, haddr, pmd);
2811 		spin_unlock(ptl);
2812 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2813 		return;
2814 	}
2815 	page = pmd_page(*pmd);
2816 	VM_BUG_ON_PAGE(!page_count(page), page);
2817 	get_page(page);
2818 	spin_unlock(ptl);
2819 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2820 
2821 	split_huge_page(page);
2822 
2823 	put_page(page);
2824 
2825 	/*
2826 	 * We don't always have down_write of mmap_sem here: a racing
2827 	 * do_huge_pmd_wp_page() might have copied-on-write to another
2828 	 * huge page before our split_huge_page() got the anon_vma lock.
2829 	 */
2830 	if (unlikely(pmd_trans_huge(*pmd)))
2831 		goto again;
2832 }
2833 
2834 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2835 		pmd_t *pmd)
2836 {
2837 	struct vm_area_struct *vma;
2838 
2839 	vma = find_vma(mm, address);
2840 	BUG_ON(vma == NULL);
2841 	split_huge_page_pmd(vma, address, pmd);
2842 }
2843 
2844 static void split_huge_page_address(struct mm_struct *mm,
2845 				    unsigned long address)
2846 {
2847 	pmd_t *pmd;
2848 
2849 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2850 
2851 	pmd = mm_find_pmd(mm, address);
2852 	if (!pmd)
2853 		return;
2854 	/*
2855 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2856 	 * materialize from under us.
2857 	 */
2858 	split_huge_page_pmd_mm(mm, address, pmd);
2859 }
2860 
2861 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2862 			     unsigned long start,
2863 			     unsigned long end,
2864 			     long adjust_next)
2865 {
2866 	/*
2867 	 * If the new start address isn't hpage aligned and it could
2868 	 * previously contain an hugepage: check if we need to split
2869 	 * an huge pmd.
2870 	 */
2871 	if (start & ~HPAGE_PMD_MASK &&
2872 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2873 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2874 		split_huge_page_address(vma->vm_mm, start);
2875 
2876 	/*
2877 	 * If the new end address isn't hpage aligned and it could
2878 	 * previously contain an hugepage: check if we need to split
2879 	 * an huge pmd.
2880 	 */
2881 	if (end & ~HPAGE_PMD_MASK &&
2882 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2883 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2884 		split_huge_page_address(vma->vm_mm, end);
2885 
2886 	/*
2887 	 * If we're also updating the vma->vm_next->vm_start, if the new
2888 	 * vm_next->vm_start isn't page aligned and it could previously
2889 	 * contain an hugepage: check if we need to split an huge pmd.
2890 	 */
2891 	if (adjust_next > 0) {
2892 		struct vm_area_struct *next = vma->vm_next;
2893 		unsigned long nstart = next->vm_start;
2894 		nstart += adjust_next << PAGE_SHIFT;
2895 		if (nstart & ~HPAGE_PMD_MASK &&
2896 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2897 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2898 			split_huge_page_address(next->vm_mm, nstart);
2899 	}
2900 }
2901