xref: /openbmc/linux/mm/huge_memory.c (revision ac8b6f14)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 static struct page *get_huge_zero_page(void)
66 {
67 	struct page *zero_page;
68 retry:
69 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70 		return READ_ONCE(huge_zero_page);
71 
72 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73 			HPAGE_PMD_ORDER);
74 	if (!zero_page) {
75 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76 		return NULL;
77 	}
78 	count_vm_event(THP_ZERO_PAGE_ALLOC);
79 	preempt_disable();
80 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81 		preempt_enable();
82 		__free_pages(zero_page, compound_order(zero_page));
83 		goto retry;
84 	}
85 
86 	/* We take additional reference here. It will be put back by shrinker */
87 	atomic_set(&huge_zero_refcount, 2);
88 	preempt_enable();
89 	return READ_ONCE(huge_zero_page);
90 }
91 
92 static void put_huge_zero_page(void)
93 {
94 	/*
95 	 * Counter should never go to zero here. Only shrinker can put
96 	 * last reference.
97 	 */
98 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
99 }
100 
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102 {
103 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 		return READ_ONCE(huge_zero_page);
105 
106 	if (!get_huge_zero_page())
107 		return NULL;
108 
109 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 		put_huge_zero_page();
111 
112 	return READ_ONCE(huge_zero_page);
113 }
114 
115 void mm_put_huge_zero_page(struct mm_struct *mm)
116 {
117 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 		put_huge_zero_page();
119 }
120 
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 					struct shrink_control *sc)
123 {
124 	/* we can free zero page only if last reference remains */
125 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126 }
127 
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 				       struct shrink_control *sc)
130 {
131 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 		struct page *zero_page = xchg(&huge_zero_page, NULL);
133 		BUG_ON(zero_page == NULL);
134 		__free_pages(zero_page, compound_order(zero_page));
135 		return HPAGE_PMD_NR;
136 	}
137 
138 	return 0;
139 }
140 
141 static struct shrinker huge_zero_page_shrinker = {
142 	.count_objects = shrink_huge_zero_page_count,
143 	.scan_objects = shrink_huge_zero_page_scan,
144 	.seeks = DEFAULT_SEEKS,
145 };
146 
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149 			    struct kobj_attribute *attr, char *buf)
150 {
151 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 		return sprintf(buf, "[always] madvise never\n");
153 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 		return sprintf(buf, "always [madvise] never\n");
155 	else
156 		return sprintf(buf, "always madvise [never]\n");
157 }
158 
159 static ssize_t enabled_store(struct kobject *kobj,
160 			     struct kobj_attribute *attr,
161 			     const char *buf, size_t count)
162 {
163 	ssize_t ret = count;
164 
165 	if (!memcmp("always", buf,
166 		    min(sizeof("always")-1, count))) {
167 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 	} else if (!memcmp("madvise", buf,
170 			   min(sizeof("madvise")-1, count))) {
171 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 	} else if (!memcmp("never", buf,
174 			   min(sizeof("never")-1, count))) {
175 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 	} else
178 		ret = -EINVAL;
179 
180 	if (ret > 0) {
181 		int err = start_stop_khugepaged();
182 		if (err)
183 			ret = err;
184 	}
185 	return ret;
186 }
187 static struct kobj_attribute enabled_attr =
188 	__ATTR(enabled, 0644, enabled_show, enabled_store);
189 
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 				struct kobj_attribute *attr, char *buf,
192 				enum transparent_hugepage_flag flag)
193 {
194 	return sprintf(buf, "%d\n",
195 		       !!test_bit(flag, &transparent_hugepage_flags));
196 }
197 
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 				 struct kobj_attribute *attr,
200 				 const char *buf, size_t count,
201 				 enum transparent_hugepage_flag flag)
202 {
203 	unsigned long value;
204 	int ret;
205 
206 	ret = kstrtoul(buf, 10, &value);
207 	if (ret < 0)
208 		return ret;
209 	if (value > 1)
210 		return -EINVAL;
211 
212 	if (value)
213 		set_bit(flag, &transparent_hugepage_flags);
214 	else
215 		clear_bit(flag, &transparent_hugepage_flags);
216 
217 	return count;
218 }
219 
220 static ssize_t defrag_show(struct kobject *kobj,
221 			   struct kobj_attribute *attr, char *buf)
222 {
223 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
232 }
233 
234 static ssize_t defrag_store(struct kobject *kobj,
235 			    struct kobj_attribute *attr,
236 			    const char *buf, size_t count)
237 {
238 	if (!memcmp("always", buf,
239 		    min(sizeof("always")-1, count))) {
240 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 	} else if (!memcmp("defer+madvise", buf,
245 		    min(sizeof("defer+madvise")-1, count))) {
246 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 	} else if (!memcmp("defer", buf,
251 		    min(sizeof("defer")-1, count))) {
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 	} else if (!memcmp("madvise", buf,
257 			   min(sizeof("madvise")-1, count))) {
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 	} else if (!memcmp("never", buf,
263 			   min(sizeof("never")-1, count))) {
264 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 	} else
269 		return -EINVAL;
270 
271 	return count;
272 }
273 static struct kobj_attribute defrag_attr =
274 	__ATTR(defrag, 0644, defrag_show, defrag_store);
275 
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277 		struct kobj_attribute *attr, char *buf)
278 {
279 	return single_hugepage_flag_show(kobj, attr, buf,
280 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281 }
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283 		struct kobj_attribute *attr, const char *buf, size_t count)
284 {
285 	return single_hugepage_flag_store(kobj, attr, buf, count,
286 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287 }
288 static struct kobj_attribute use_zero_page_attr =
289 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
290 
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 		struct kobj_attribute *attr, char *buf)
293 {
294 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295 }
296 static struct kobj_attribute hpage_pmd_size_attr =
297 	__ATTR_RO(hpage_pmd_size);
298 
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301 				struct kobj_attribute *attr, char *buf)
302 {
303 	return single_hugepage_flag_show(kobj, attr, buf,
304 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305 }
306 static ssize_t debug_cow_store(struct kobject *kobj,
307 			       struct kobj_attribute *attr,
308 			       const char *buf, size_t count)
309 {
310 	return single_hugepage_flag_store(kobj, attr, buf, count,
311 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 }
313 static struct kobj_attribute debug_cow_attr =
314 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
316 
317 static struct attribute *hugepage_attr[] = {
318 	&enabled_attr.attr,
319 	&defrag_attr.attr,
320 	&use_zero_page_attr.attr,
321 	&hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 	&shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326 	&debug_cow_attr.attr,
327 #endif
328 	NULL,
329 };
330 
331 static const struct attribute_group hugepage_attr_group = {
332 	.attrs = hugepage_attr,
333 };
334 
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 {
337 	int err;
338 
339 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 	if (unlikely(!*hugepage_kobj)) {
341 		pr_err("failed to create transparent hugepage kobject\n");
342 		return -ENOMEM;
343 	}
344 
345 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 	if (err) {
347 		pr_err("failed to register transparent hugepage group\n");
348 		goto delete_obj;
349 	}
350 
351 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 	if (err) {
353 		pr_err("failed to register transparent hugepage group\n");
354 		goto remove_hp_group;
355 	}
356 
357 	return 0;
358 
359 remove_hp_group:
360 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 	kobject_put(*hugepage_kobj);
363 	return err;
364 }
365 
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 	kobject_put(hugepage_kobj);
371 }
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374 {
375 	return 0;
376 }
377 
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 }
381 #endif /* CONFIG_SYSFS */
382 
383 static int __init hugepage_init(void)
384 {
385 	int err;
386 	struct kobject *hugepage_kobj;
387 
388 	if (!has_transparent_hugepage()) {
389 		transparent_hugepage_flags = 0;
390 		return -EINVAL;
391 	}
392 
393 	/*
394 	 * hugepages can't be allocated by the buddy allocator
395 	 */
396 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 	/*
398 	 * we use page->mapping and page->index in second tail page
399 	 * as list_head: assuming THP order >= 2
400 	 */
401 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402 
403 	err = hugepage_init_sysfs(&hugepage_kobj);
404 	if (err)
405 		goto err_sysfs;
406 
407 	err = khugepaged_init();
408 	if (err)
409 		goto err_slab;
410 
411 	err = register_shrinker(&huge_zero_page_shrinker);
412 	if (err)
413 		goto err_hzp_shrinker;
414 	err = register_shrinker(&deferred_split_shrinker);
415 	if (err)
416 		goto err_split_shrinker;
417 
418 	/*
419 	 * By default disable transparent hugepages on smaller systems,
420 	 * where the extra memory used could hurt more than TLB overhead
421 	 * is likely to save.  The admin can still enable it through /sys.
422 	 */
423 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424 		transparent_hugepage_flags = 0;
425 		return 0;
426 	}
427 
428 	err = start_stop_khugepaged();
429 	if (err)
430 		goto err_khugepaged;
431 
432 	return 0;
433 err_khugepaged:
434 	unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436 	unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438 	khugepaged_destroy();
439 err_slab:
440 	hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442 	return err;
443 }
444 subsys_initcall(hugepage_init);
445 
446 static int __init setup_transparent_hugepage(char *str)
447 {
448 	int ret = 0;
449 	if (!str)
450 		goto out;
451 	if (!strcmp(str, "always")) {
452 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 			&transparent_hugepage_flags);
454 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 			  &transparent_hugepage_flags);
456 		ret = 1;
457 	} else if (!strcmp(str, "madvise")) {
458 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 			  &transparent_hugepage_flags);
460 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 			&transparent_hugepage_flags);
462 		ret = 1;
463 	} else if (!strcmp(str, "never")) {
464 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 			  &transparent_hugepage_flags);
466 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 			  &transparent_hugepage_flags);
468 		ret = 1;
469 	}
470 out:
471 	if (!ret)
472 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 	return ret;
474 }
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
476 
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478 {
479 	if (likely(vma->vm_flags & VM_WRITE))
480 		pmd = pmd_mkwrite(pmd);
481 	return pmd;
482 }
483 
484 static inline struct list_head *page_deferred_list(struct page *page)
485 {
486 	/* ->lru in the tail pages is occupied by compound_head. */
487 	return &page[2].deferred_list;
488 }
489 
490 void prep_transhuge_page(struct page *page)
491 {
492 	/*
493 	 * we use page->mapping and page->indexlru in second tail page
494 	 * as list_head: assuming THP order >= 2
495 	 */
496 
497 	INIT_LIST_HEAD(page_deferred_list(page));
498 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499 }
500 
501 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
502 		loff_t off, unsigned long flags, unsigned long size)
503 {
504 	unsigned long addr;
505 	loff_t off_end = off + len;
506 	loff_t off_align = round_up(off, size);
507 	unsigned long len_pad;
508 
509 	if (off_end <= off_align || (off_end - off_align) < size)
510 		return 0;
511 
512 	len_pad = len + size;
513 	if (len_pad < len || (off + len_pad) < off)
514 		return 0;
515 
516 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
517 					      off >> PAGE_SHIFT, flags);
518 	if (IS_ERR_VALUE(addr))
519 		return 0;
520 
521 	addr += (off - addr) & (size - 1);
522 	return addr;
523 }
524 
525 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
526 		unsigned long len, unsigned long pgoff, unsigned long flags)
527 {
528 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
529 
530 	if (addr)
531 		goto out;
532 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
533 		goto out;
534 
535 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
536 	if (addr)
537 		return addr;
538 
539  out:
540 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
541 }
542 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
543 
544 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
545 			struct page *page, gfp_t gfp)
546 {
547 	struct vm_area_struct *vma = vmf->vma;
548 	struct mem_cgroup *memcg;
549 	pgtable_t pgtable;
550 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
551 	vm_fault_t ret = 0;
552 
553 	VM_BUG_ON_PAGE(!PageCompound(page), page);
554 
555 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
556 		put_page(page);
557 		count_vm_event(THP_FAULT_FALLBACK);
558 		return VM_FAULT_FALLBACK;
559 	}
560 
561 	pgtable = pte_alloc_one(vma->vm_mm, haddr);
562 	if (unlikely(!pgtable)) {
563 		ret = VM_FAULT_OOM;
564 		goto release;
565 	}
566 
567 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
568 	/*
569 	 * The memory barrier inside __SetPageUptodate makes sure that
570 	 * clear_huge_page writes become visible before the set_pmd_at()
571 	 * write.
572 	 */
573 	__SetPageUptodate(page);
574 
575 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
576 	if (unlikely(!pmd_none(*vmf->pmd))) {
577 		goto unlock_release;
578 	} else {
579 		pmd_t entry;
580 
581 		ret = check_stable_address_space(vma->vm_mm);
582 		if (ret)
583 			goto unlock_release;
584 
585 		/* Deliver the page fault to userland */
586 		if (userfaultfd_missing(vma)) {
587 			vm_fault_t ret2;
588 
589 			spin_unlock(vmf->ptl);
590 			mem_cgroup_cancel_charge(page, memcg, true);
591 			put_page(page);
592 			pte_free(vma->vm_mm, pgtable);
593 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
594 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
595 			return ret2;
596 		}
597 
598 		entry = mk_huge_pmd(page, vma->vm_page_prot);
599 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
600 		page_add_new_anon_rmap(page, vma, haddr, true);
601 		mem_cgroup_commit_charge(page, memcg, false, true);
602 		lru_cache_add_active_or_unevictable(page, vma);
603 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
604 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
605 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
606 		mm_inc_nr_ptes(vma->vm_mm);
607 		spin_unlock(vmf->ptl);
608 		count_vm_event(THP_FAULT_ALLOC);
609 	}
610 
611 	return 0;
612 unlock_release:
613 	spin_unlock(vmf->ptl);
614 release:
615 	if (pgtable)
616 		pte_free(vma->vm_mm, pgtable);
617 	mem_cgroup_cancel_charge(page, memcg, true);
618 	put_page(page);
619 	return ret;
620 
621 }
622 
623 /*
624  * always: directly stall for all thp allocations
625  * defer: wake kswapd and fail if not immediately available
626  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
627  *		  fail if not immediately available
628  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
629  *	    available
630  * never: never stall for any thp allocation
631  */
632 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
633 {
634 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
635 
636 	/* Always do synchronous compaction */
637 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
638 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
639 
640 	/* Kick kcompactd and fail quickly */
641 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
642 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
643 
644 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
645 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
646 		return GFP_TRANSHUGE_LIGHT |
647 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
648 					__GFP_KSWAPD_RECLAIM);
649 
650 	/* Only do synchronous compaction if madvised */
651 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
652 		return GFP_TRANSHUGE_LIGHT |
653 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
654 
655 	return GFP_TRANSHUGE_LIGHT;
656 }
657 
658 /* Caller must hold page table lock. */
659 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
660 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
661 		struct page *zero_page)
662 {
663 	pmd_t entry;
664 	if (!pmd_none(*pmd))
665 		return false;
666 	entry = mk_pmd(zero_page, vma->vm_page_prot);
667 	entry = pmd_mkhuge(entry);
668 	if (pgtable)
669 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
670 	set_pmd_at(mm, haddr, pmd, entry);
671 	mm_inc_nr_ptes(mm);
672 	return true;
673 }
674 
675 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
676 {
677 	struct vm_area_struct *vma = vmf->vma;
678 	gfp_t gfp;
679 	struct page *page;
680 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
681 
682 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
683 		return VM_FAULT_FALLBACK;
684 	if (unlikely(anon_vma_prepare(vma)))
685 		return VM_FAULT_OOM;
686 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
687 		return VM_FAULT_OOM;
688 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
689 			!mm_forbids_zeropage(vma->vm_mm) &&
690 			transparent_hugepage_use_zero_page()) {
691 		pgtable_t pgtable;
692 		struct page *zero_page;
693 		bool set;
694 		vm_fault_t ret;
695 		pgtable = pte_alloc_one(vma->vm_mm, haddr);
696 		if (unlikely(!pgtable))
697 			return VM_FAULT_OOM;
698 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
699 		if (unlikely(!zero_page)) {
700 			pte_free(vma->vm_mm, pgtable);
701 			count_vm_event(THP_FAULT_FALLBACK);
702 			return VM_FAULT_FALLBACK;
703 		}
704 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
705 		ret = 0;
706 		set = false;
707 		if (pmd_none(*vmf->pmd)) {
708 			ret = check_stable_address_space(vma->vm_mm);
709 			if (ret) {
710 				spin_unlock(vmf->ptl);
711 			} else if (userfaultfd_missing(vma)) {
712 				spin_unlock(vmf->ptl);
713 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
714 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
715 			} else {
716 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
717 						   haddr, vmf->pmd, zero_page);
718 				spin_unlock(vmf->ptl);
719 				set = true;
720 			}
721 		} else
722 			spin_unlock(vmf->ptl);
723 		if (!set)
724 			pte_free(vma->vm_mm, pgtable);
725 		return ret;
726 	}
727 	gfp = alloc_hugepage_direct_gfpmask(vma);
728 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
729 	if (unlikely(!page)) {
730 		count_vm_event(THP_FAULT_FALLBACK);
731 		return VM_FAULT_FALLBACK;
732 	}
733 	prep_transhuge_page(page);
734 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
735 }
736 
737 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
738 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
739 		pgtable_t pgtable)
740 {
741 	struct mm_struct *mm = vma->vm_mm;
742 	pmd_t entry;
743 	spinlock_t *ptl;
744 
745 	ptl = pmd_lock(mm, pmd);
746 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
747 	if (pfn_t_devmap(pfn))
748 		entry = pmd_mkdevmap(entry);
749 	if (write) {
750 		entry = pmd_mkyoung(pmd_mkdirty(entry));
751 		entry = maybe_pmd_mkwrite(entry, vma);
752 	}
753 
754 	if (pgtable) {
755 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
756 		mm_inc_nr_ptes(mm);
757 	}
758 
759 	set_pmd_at(mm, addr, pmd, entry);
760 	update_mmu_cache_pmd(vma, addr, pmd);
761 	spin_unlock(ptl);
762 }
763 
764 vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
765 			pmd_t *pmd, pfn_t pfn, bool write)
766 {
767 	pgprot_t pgprot = vma->vm_page_prot;
768 	pgtable_t pgtable = NULL;
769 	/*
770 	 * If we had pmd_special, we could avoid all these restrictions,
771 	 * but we need to be consistent with PTEs and architectures that
772 	 * can't support a 'special' bit.
773 	 */
774 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
775 			!pfn_t_devmap(pfn));
776 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
777 						(VM_PFNMAP|VM_MIXEDMAP));
778 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
779 
780 	if (addr < vma->vm_start || addr >= vma->vm_end)
781 		return VM_FAULT_SIGBUS;
782 
783 	if (arch_needs_pgtable_deposit()) {
784 		pgtable = pte_alloc_one(vma->vm_mm, addr);
785 		if (!pgtable)
786 			return VM_FAULT_OOM;
787 	}
788 
789 	track_pfn_insert(vma, &pgprot, pfn);
790 
791 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
792 	return VM_FAULT_NOPAGE;
793 }
794 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
795 
796 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
797 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
798 {
799 	if (likely(vma->vm_flags & VM_WRITE))
800 		pud = pud_mkwrite(pud);
801 	return pud;
802 }
803 
804 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
805 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
806 {
807 	struct mm_struct *mm = vma->vm_mm;
808 	pud_t entry;
809 	spinlock_t *ptl;
810 
811 	ptl = pud_lock(mm, pud);
812 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
813 	if (pfn_t_devmap(pfn))
814 		entry = pud_mkdevmap(entry);
815 	if (write) {
816 		entry = pud_mkyoung(pud_mkdirty(entry));
817 		entry = maybe_pud_mkwrite(entry, vma);
818 	}
819 	set_pud_at(mm, addr, pud, entry);
820 	update_mmu_cache_pud(vma, addr, pud);
821 	spin_unlock(ptl);
822 }
823 
824 vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
825 			pud_t *pud, pfn_t pfn, bool write)
826 {
827 	pgprot_t pgprot = vma->vm_page_prot;
828 	/*
829 	 * If we had pud_special, we could avoid all these restrictions,
830 	 * but we need to be consistent with PTEs and architectures that
831 	 * can't support a 'special' bit.
832 	 */
833 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
834 			!pfn_t_devmap(pfn));
835 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
836 						(VM_PFNMAP|VM_MIXEDMAP));
837 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
838 
839 	if (addr < vma->vm_start || addr >= vma->vm_end)
840 		return VM_FAULT_SIGBUS;
841 
842 	track_pfn_insert(vma, &pgprot, pfn);
843 
844 	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
845 	return VM_FAULT_NOPAGE;
846 }
847 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
848 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
849 
850 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
851 		pmd_t *pmd, int flags)
852 {
853 	pmd_t _pmd;
854 
855 	_pmd = pmd_mkyoung(*pmd);
856 	if (flags & FOLL_WRITE)
857 		_pmd = pmd_mkdirty(_pmd);
858 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
859 				pmd, _pmd, flags & FOLL_WRITE))
860 		update_mmu_cache_pmd(vma, addr, pmd);
861 }
862 
863 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
864 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
865 {
866 	unsigned long pfn = pmd_pfn(*pmd);
867 	struct mm_struct *mm = vma->vm_mm;
868 	struct page *page;
869 
870 	assert_spin_locked(pmd_lockptr(mm, pmd));
871 
872 	/*
873 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
874 	 * not be in this function with `flags & FOLL_COW` set.
875 	 */
876 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
877 
878 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
879 		return NULL;
880 
881 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
882 		/* pass */;
883 	else
884 		return NULL;
885 
886 	if (flags & FOLL_TOUCH)
887 		touch_pmd(vma, addr, pmd, flags);
888 
889 	/*
890 	 * device mapped pages can only be returned if the
891 	 * caller will manage the page reference count.
892 	 */
893 	if (!(flags & FOLL_GET))
894 		return ERR_PTR(-EEXIST);
895 
896 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
897 	*pgmap = get_dev_pagemap(pfn, *pgmap);
898 	if (!*pgmap)
899 		return ERR_PTR(-EFAULT);
900 	page = pfn_to_page(pfn);
901 	get_page(page);
902 
903 	return page;
904 }
905 
906 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
907 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
908 		  struct vm_area_struct *vma)
909 {
910 	spinlock_t *dst_ptl, *src_ptl;
911 	struct page *src_page;
912 	pmd_t pmd;
913 	pgtable_t pgtable = NULL;
914 	int ret = -ENOMEM;
915 
916 	/* Skip if can be re-fill on fault */
917 	if (!vma_is_anonymous(vma))
918 		return 0;
919 
920 	pgtable = pte_alloc_one(dst_mm, addr);
921 	if (unlikely(!pgtable))
922 		goto out;
923 
924 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
925 	src_ptl = pmd_lockptr(src_mm, src_pmd);
926 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
927 
928 	ret = -EAGAIN;
929 	pmd = *src_pmd;
930 
931 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
932 	if (unlikely(is_swap_pmd(pmd))) {
933 		swp_entry_t entry = pmd_to_swp_entry(pmd);
934 
935 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
936 		if (is_write_migration_entry(entry)) {
937 			make_migration_entry_read(&entry);
938 			pmd = swp_entry_to_pmd(entry);
939 			if (pmd_swp_soft_dirty(*src_pmd))
940 				pmd = pmd_swp_mksoft_dirty(pmd);
941 			set_pmd_at(src_mm, addr, src_pmd, pmd);
942 		}
943 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
944 		mm_inc_nr_ptes(dst_mm);
945 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
946 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
947 		ret = 0;
948 		goto out_unlock;
949 	}
950 #endif
951 
952 	if (unlikely(!pmd_trans_huge(pmd))) {
953 		pte_free(dst_mm, pgtable);
954 		goto out_unlock;
955 	}
956 	/*
957 	 * When page table lock is held, the huge zero pmd should not be
958 	 * under splitting since we don't split the page itself, only pmd to
959 	 * a page table.
960 	 */
961 	if (is_huge_zero_pmd(pmd)) {
962 		struct page *zero_page;
963 		/*
964 		 * get_huge_zero_page() will never allocate a new page here,
965 		 * since we already have a zero page to copy. It just takes a
966 		 * reference.
967 		 */
968 		zero_page = mm_get_huge_zero_page(dst_mm);
969 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
970 				zero_page);
971 		ret = 0;
972 		goto out_unlock;
973 	}
974 
975 	src_page = pmd_page(pmd);
976 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
977 	get_page(src_page);
978 	page_dup_rmap(src_page, true);
979 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
980 	mm_inc_nr_ptes(dst_mm);
981 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
982 
983 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
984 	pmd = pmd_mkold(pmd_wrprotect(pmd));
985 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
986 
987 	ret = 0;
988 out_unlock:
989 	spin_unlock(src_ptl);
990 	spin_unlock(dst_ptl);
991 out:
992 	return ret;
993 }
994 
995 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
996 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
997 		pud_t *pud, int flags)
998 {
999 	pud_t _pud;
1000 
1001 	_pud = pud_mkyoung(*pud);
1002 	if (flags & FOLL_WRITE)
1003 		_pud = pud_mkdirty(_pud);
1004 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1005 				pud, _pud, flags & FOLL_WRITE))
1006 		update_mmu_cache_pud(vma, addr, pud);
1007 }
1008 
1009 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1010 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1011 {
1012 	unsigned long pfn = pud_pfn(*pud);
1013 	struct mm_struct *mm = vma->vm_mm;
1014 	struct page *page;
1015 
1016 	assert_spin_locked(pud_lockptr(mm, pud));
1017 
1018 	if (flags & FOLL_WRITE && !pud_write(*pud))
1019 		return NULL;
1020 
1021 	if (pud_present(*pud) && pud_devmap(*pud))
1022 		/* pass */;
1023 	else
1024 		return NULL;
1025 
1026 	if (flags & FOLL_TOUCH)
1027 		touch_pud(vma, addr, pud, flags);
1028 
1029 	/*
1030 	 * device mapped pages can only be returned if the
1031 	 * caller will manage the page reference count.
1032 	 */
1033 	if (!(flags & FOLL_GET))
1034 		return ERR_PTR(-EEXIST);
1035 
1036 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1037 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1038 	if (!*pgmap)
1039 		return ERR_PTR(-EFAULT);
1040 	page = pfn_to_page(pfn);
1041 	get_page(page);
1042 
1043 	return page;
1044 }
1045 
1046 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1047 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1048 		  struct vm_area_struct *vma)
1049 {
1050 	spinlock_t *dst_ptl, *src_ptl;
1051 	pud_t pud;
1052 	int ret;
1053 
1054 	dst_ptl = pud_lock(dst_mm, dst_pud);
1055 	src_ptl = pud_lockptr(src_mm, src_pud);
1056 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1057 
1058 	ret = -EAGAIN;
1059 	pud = *src_pud;
1060 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1061 		goto out_unlock;
1062 
1063 	/*
1064 	 * When page table lock is held, the huge zero pud should not be
1065 	 * under splitting since we don't split the page itself, only pud to
1066 	 * a page table.
1067 	 */
1068 	if (is_huge_zero_pud(pud)) {
1069 		/* No huge zero pud yet */
1070 	}
1071 
1072 	pudp_set_wrprotect(src_mm, addr, src_pud);
1073 	pud = pud_mkold(pud_wrprotect(pud));
1074 	set_pud_at(dst_mm, addr, dst_pud, pud);
1075 
1076 	ret = 0;
1077 out_unlock:
1078 	spin_unlock(src_ptl);
1079 	spin_unlock(dst_ptl);
1080 	return ret;
1081 }
1082 
1083 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1084 {
1085 	pud_t entry;
1086 	unsigned long haddr;
1087 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1088 
1089 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1090 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1091 		goto unlock;
1092 
1093 	entry = pud_mkyoung(orig_pud);
1094 	if (write)
1095 		entry = pud_mkdirty(entry);
1096 	haddr = vmf->address & HPAGE_PUD_MASK;
1097 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1098 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1099 
1100 unlock:
1101 	spin_unlock(vmf->ptl);
1102 }
1103 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1104 
1105 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1106 {
1107 	pmd_t entry;
1108 	unsigned long haddr;
1109 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1110 
1111 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1112 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1113 		goto unlock;
1114 
1115 	entry = pmd_mkyoung(orig_pmd);
1116 	if (write)
1117 		entry = pmd_mkdirty(entry);
1118 	haddr = vmf->address & HPAGE_PMD_MASK;
1119 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1120 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1121 
1122 unlock:
1123 	spin_unlock(vmf->ptl);
1124 }
1125 
1126 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1127 			pmd_t orig_pmd, struct page *page)
1128 {
1129 	struct vm_area_struct *vma = vmf->vma;
1130 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1131 	struct mem_cgroup *memcg;
1132 	pgtable_t pgtable;
1133 	pmd_t _pmd;
1134 	int i;
1135 	vm_fault_t ret = 0;
1136 	struct page **pages;
1137 	unsigned long mmun_start;	/* For mmu_notifiers */
1138 	unsigned long mmun_end;		/* For mmu_notifiers */
1139 
1140 	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1141 			      GFP_KERNEL);
1142 	if (unlikely(!pages)) {
1143 		ret |= VM_FAULT_OOM;
1144 		goto out;
1145 	}
1146 
1147 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1148 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1149 					       vmf->address, page_to_nid(page));
1150 		if (unlikely(!pages[i] ||
1151 			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1152 				     GFP_KERNEL, &memcg, false))) {
1153 			if (pages[i])
1154 				put_page(pages[i]);
1155 			while (--i >= 0) {
1156 				memcg = (void *)page_private(pages[i]);
1157 				set_page_private(pages[i], 0);
1158 				mem_cgroup_cancel_charge(pages[i], memcg,
1159 						false);
1160 				put_page(pages[i]);
1161 			}
1162 			kfree(pages);
1163 			ret |= VM_FAULT_OOM;
1164 			goto out;
1165 		}
1166 		set_page_private(pages[i], (unsigned long)memcg);
1167 	}
1168 
1169 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1170 		copy_user_highpage(pages[i], page + i,
1171 				   haddr + PAGE_SIZE * i, vma);
1172 		__SetPageUptodate(pages[i]);
1173 		cond_resched();
1174 	}
1175 
1176 	mmun_start = haddr;
1177 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1178 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1179 
1180 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1181 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1182 		goto out_free_pages;
1183 	VM_BUG_ON_PAGE(!PageHead(page), page);
1184 
1185 	/*
1186 	 * Leave pmd empty until pte is filled note we must notify here as
1187 	 * concurrent CPU thread might write to new page before the call to
1188 	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1189 	 * device seeing memory write in different order than CPU.
1190 	 *
1191 	 * See Documentation/vm/mmu_notifier.rst
1192 	 */
1193 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1194 
1195 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1196 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1197 
1198 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1199 		pte_t entry;
1200 		entry = mk_pte(pages[i], vma->vm_page_prot);
1201 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1202 		memcg = (void *)page_private(pages[i]);
1203 		set_page_private(pages[i], 0);
1204 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1205 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1206 		lru_cache_add_active_or_unevictable(pages[i], vma);
1207 		vmf->pte = pte_offset_map(&_pmd, haddr);
1208 		VM_BUG_ON(!pte_none(*vmf->pte));
1209 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1210 		pte_unmap(vmf->pte);
1211 	}
1212 	kfree(pages);
1213 
1214 	smp_wmb(); /* make pte visible before pmd */
1215 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1216 	page_remove_rmap(page, true);
1217 	spin_unlock(vmf->ptl);
1218 
1219 	/*
1220 	 * No need to double call mmu_notifier->invalidate_range() callback as
1221 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1222 	 */
1223 	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1224 						mmun_end);
1225 
1226 	ret |= VM_FAULT_WRITE;
1227 	put_page(page);
1228 
1229 out:
1230 	return ret;
1231 
1232 out_free_pages:
1233 	spin_unlock(vmf->ptl);
1234 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1235 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1236 		memcg = (void *)page_private(pages[i]);
1237 		set_page_private(pages[i], 0);
1238 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1239 		put_page(pages[i]);
1240 	}
1241 	kfree(pages);
1242 	goto out;
1243 }
1244 
1245 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1246 {
1247 	struct vm_area_struct *vma = vmf->vma;
1248 	struct page *page = NULL, *new_page;
1249 	struct mem_cgroup *memcg;
1250 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1251 	unsigned long mmun_start;	/* For mmu_notifiers */
1252 	unsigned long mmun_end;		/* For mmu_notifiers */
1253 	gfp_t huge_gfp;			/* for allocation and charge */
1254 	vm_fault_t ret = 0;
1255 
1256 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1257 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1258 	if (is_huge_zero_pmd(orig_pmd))
1259 		goto alloc;
1260 	spin_lock(vmf->ptl);
1261 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1262 		goto out_unlock;
1263 
1264 	page = pmd_page(orig_pmd);
1265 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1266 	/*
1267 	 * We can only reuse the page if nobody else maps the huge page or it's
1268 	 * part.
1269 	 */
1270 	if (!trylock_page(page)) {
1271 		get_page(page);
1272 		spin_unlock(vmf->ptl);
1273 		lock_page(page);
1274 		spin_lock(vmf->ptl);
1275 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1276 			unlock_page(page);
1277 			put_page(page);
1278 			goto out_unlock;
1279 		}
1280 		put_page(page);
1281 	}
1282 	if (reuse_swap_page(page, NULL)) {
1283 		pmd_t entry;
1284 		entry = pmd_mkyoung(orig_pmd);
1285 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1286 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1287 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1288 		ret |= VM_FAULT_WRITE;
1289 		unlock_page(page);
1290 		goto out_unlock;
1291 	}
1292 	unlock_page(page);
1293 	get_page(page);
1294 	spin_unlock(vmf->ptl);
1295 alloc:
1296 	if (transparent_hugepage_enabled(vma) &&
1297 	    !transparent_hugepage_debug_cow()) {
1298 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1299 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1300 	} else
1301 		new_page = NULL;
1302 
1303 	if (likely(new_page)) {
1304 		prep_transhuge_page(new_page);
1305 	} else {
1306 		if (!page) {
1307 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1308 			ret |= VM_FAULT_FALLBACK;
1309 		} else {
1310 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1311 			if (ret & VM_FAULT_OOM) {
1312 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1313 				ret |= VM_FAULT_FALLBACK;
1314 			}
1315 			put_page(page);
1316 		}
1317 		count_vm_event(THP_FAULT_FALLBACK);
1318 		goto out;
1319 	}
1320 
1321 	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1322 					huge_gfp, &memcg, true))) {
1323 		put_page(new_page);
1324 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1325 		if (page)
1326 			put_page(page);
1327 		ret |= VM_FAULT_FALLBACK;
1328 		count_vm_event(THP_FAULT_FALLBACK);
1329 		goto out;
1330 	}
1331 
1332 	count_vm_event(THP_FAULT_ALLOC);
1333 
1334 	if (!page)
1335 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1336 	else
1337 		copy_user_huge_page(new_page, page, vmf->address,
1338 				    vma, HPAGE_PMD_NR);
1339 	__SetPageUptodate(new_page);
1340 
1341 	mmun_start = haddr;
1342 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1343 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1344 
1345 	spin_lock(vmf->ptl);
1346 	if (page)
1347 		put_page(page);
1348 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1349 		spin_unlock(vmf->ptl);
1350 		mem_cgroup_cancel_charge(new_page, memcg, true);
1351 		put_page(new_page);
1352 		goto out_mn;
1353 	} else {
1354 		pmd_t entry;
1355 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1356 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1357 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1358 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1359 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1360 		lru_cache_add_active_or_unevictable(new_page, vma);
1361 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1362 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1363 		if (!page) {
1364 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1365 		} else {
1366 			VM_BUG_ON_PAGE(!PageHead(page), page);
1367 			page_remove_rmap(page, true);
1368 			put_page(page);
1369 		}
1370 		ret |= VM_FAULT_WRITE;
1371 	}
1372 	spin_unlock(vmf->ptl);
1373 out_mn:
1374 	/*
1375 	 * No need to double call mmu_notifier->invalidate_range() callback as
1376 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1377 	 */
1378 	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1379 					       mmun_end);
1380 out:
1381 	return ret;
1382 out_unlock:
1383 	spin_unlock(vmf->ptl);
1384 	return ret;
1385 }
1386 
1387 /*
1388  * FOLL_FORCE can write to even unwritable pmd's, but only
1389  * after we've gone through a COW cycle and they are dirty.
1390  */
1391 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1392 {
1393 	return pmd_write(pmd) ||
1394 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1395 }
1396 
1397 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1398 				   unsigned long addr,
1399 				   pmd_t *pmd,
1400 				   unsigned int flags)
1401 {
1402 	struct mm_struct *mm = vma->vm_mm;
1403 	struct page *page = NULL;
1404 
1405 	assert_spin_locked(pmd_lockptr(mm, pmd));
1406 
1407 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1408 		goto out;
1409 
1410 	/* Avoid dumping huge zero page */
1411 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1412 		return ERR_PTR(-EFAULT);
1413 
1414 	/* Full NUMA hinting faults to serialise migration in fault paths */
1415 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1416 		goto out;
1417 
1418 	page = pmd_page(*pmd);
1419 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1420 	if (flags & FOLL_TOUCH)
1421 		touch_pmd(vma, addr, pmd, flags);
1422 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1423 		/*
1424 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1425 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1426 		 *
1427 		 * For anon THP:
1428 		 *
1429 		 * In most cases the pmd is the only mapping of the page as we
1430 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1431 		 * writable private mappings in populate_vma_page_range().
1432 		 *
1433 		 * The only scenario when we have the page shared here is if we
1434 		 * mlocking read-only mapping shared over fork(). We skip
1435 		 * mlocking such pages.
1436 		 *
1437 		 * For file THP:
1438 		 *
1439 		 * We can expect PageDoubleMap() to be stable under page lock:
1440 		 * for file pages we set it in page_add_file_rmap(), which
1441 		 * requires page to be locked.
1442 		 */
1443 
1444 		if (PageAnon(page) && compound_mapcount(page) != 1)
1445 			goto skip_mlock;
1446 		if (PageDoubleMap(page) || !page->mapping)
1447 			goto skip_mlock;
1448 		if (!trylock_page(page))
1449 			goto skip_mlock;
1450 		lru_add_drain();
1451 		if (page->mapping && !PageDoubleMap(page))
1452 			mlock_vma_page(page);
1453 		unlock_page(page);
1454 	}
1455 skip_mlock:
1456 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1457 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1458 	if (flags & FOLL_GET)
1459 		get_page(page);
1460 
1461 out:
1462 	return page;
1463 }
1464 
1465 /* NUMA hinting page fault entry point for trans huge pmds */
1466 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1467 {
1468 	struct vm_area_struct *vma = vmf->vma;
1469 	struct anon_vma *anon_vma = NULL;
1470 	struct page *page;
1471 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1472 	int page_nid = -1, this_nid = numa_node_id();
1473 	int target_nid, last_cpupid = -1;
1474 	bool page_locked;
1475 	bool migrated = false;
1476 	bool was_writable;
1477 	int flags = 0;
1478 
1479 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1480 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1481 		goto out_unlock;
1482 
1483 	/*
1484 	 * If there are potential migrations, wait for completion and retry
1485 	 * without disrupting NUMA hinting information. Do not relock and
1486 	 * check_same as the page may no longer be mapped.
1487 	 */
1488 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1489 		page = pmd_page(*vmf->pmd);
1490 		if (!get_page_unless_zero(page))
1491 			goto out_unlock;
1492 		spin_unlock(vmf->ptl);
1493 		wait_on_page_locked(page);
1494 		put_page(page);
1495 		goto out;
1496 	}
1497 
1498 	page = pmd_page(pmd);
1499 	BUG_ON(is_huge_zero_page(page));
1500 	page_nid = page_to_nid(page);
1501 	last_cpupid = page_cpupid_last(page);
1502 	count_vm_numa_event(NUMA_HINT_FAULTS);
1503 	if (page_nid == this_nid) {
1504 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1505 		flags |= TNF_FAULT_LOCAL;
1506 	}
1507 
1508 	/* See similar comment in do_numa_page for explanation */
1509 	if (!pmd_savedwrite(pmd))
1510 		flags |= TNF_NO_GROUP;
1511 
1512 	/*
1513 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1514 	 * page_table_lock if at all possible
1515 	 */
1516 	page_locked = trylock_page(page);
1517 	target_nid = mpol_misplaced(page, vma, haddr);
1518 	if (target_nid == -1) {
1519 		/* If the page was locked, there are no parallel migrations */
1520 		if (page_locked)
1521 			goto clear_pmdnuma;
1522 	}
1523 
1524 	/* Migration could have started since the pmd_trans_migrating check */
1525 	if (!page_locked) {
1526 		page_nid = -1;
1527 		if (!get_page_unless_zero(page))
1528 			goto out_unlock;
1529 		spin_unlock(vmf->ptl);
1530 		wait_on_page_locked(page);
1531 		put_page(page);
1532 		goto out;
1533 	}
1534 
1535 	/*
1536 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1537 	 * to serialises splits
1538 	 */
1539 	get_page(page);
1540 	spin_unlock(vmf->ptl);
1541 	anon_vma = page_lock_anon_vma_read(page);
1542 
1543 	/* Confirm the PMD did not change while page_table_lock was released */
1544 	spin_lock(vmf->ptl);
1545 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1546 		unlock_page(page);
1547 		put_page(page);
1548 		page_nid = -1;
1549 		goto out_unlock;
1550 	}
1551 
1552 	/* Bail if we fail to protect against THP splits for any reason */
1553 	if (unlikely(!anon_vma)) {
1554 		put_page(page);
1555 		page_nid = -1;
1556 		goto clear_pmdnuma;
1557 	}
1558 
1559 	/*
1560 	 * Since we took the NUMA fault, we must have observed the !accessible
1561 	 * bit. Make sure all other CPUs agree with that, to avoid them
1562 	 * modifying the page we're about to migrate.
1563 	 *
1564 	 * Must be done under PTL such that we'll observe the relevant
1565 	 * inc_tlb_flush_pending().
1566 	 *
1567 	 * We are not sure a pending tlb flush here is for a huge page
1568 	 * mapping or not. Hence use the tlb range variant
1569 	 */
1570 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1571 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1572 		/*
1573 		 * change_huge_pmd() released the pmd lock before
1574 		 * invalidating the secondary MMUs sharing the primary
1575 		 * MMU pagetables (with ->invalidate_range()). The
1576 		 * mmu_notifier_invalidate_range_end() (which
1577 		 * internally calls ->invalidate_range()) in
1578 		 * change_pmd_range() will run after us, so we can't
1579 		 * rely on it here and we need an explicit invalidate.
1580 		 */
1581 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1582 					      haddr + HPAGE_PMD_SIZE);
1583 	}
1584 
1585 	/*
1586 	 * Migrate the THP to the requested node, returns with page unlocked
1587 	 * and access rights restored.
1588 	 */
1589 	spin_unlock(vmf->ptl);
1590 
1591 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1592 				vmf->pmd, pmd, vmf->address, page, target_nid);
1593 	if (migrated) {
1594 		flags |= TNF_MIGRATED;
1595 		page_nid = target_nid;
1596 	} else
1597 		flags |= TNF_MIGRATE_FAIL;
1598 
1599 	goto out;
1600 clear_pmdnuma:
1601 	BUG_ON(!PageLocked(page));
1602 	was_writable = pmd_savedwrite(pmd);
1603 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1604 	pmd = pmd_mkyoung(pmd);
1605 	if (was_writable)
1606 		pmd = pmd_mkwrite(pmd);
1607 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1608 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1609 	unlock_page(page);
1610 out_unlock:
1611 	spin_unlock(vmf->ptl);
1612 
1613 out:
1614 	if (anon_vma)
1615 		page_unlock_anon_vma_read(anon_vma);
1616 
1617 	if (page_nid != -1)
1618 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1619 				flags);
1620 
1621 	return 0;
1622 }
1623 
1624 /*
1625  * Return true if we do MADV_FREE successfully on entire pmd page.
1626  * Otherwise, return false.
1627  */
1628 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1629 		pmd_t *pmd, unsigned long addr, unsigned long next)
1630 {
1631 	spinlock_t *ptl;
1632 	pmd_t orig_pmd;
1633 	struct page *page;
1634 	struct mm_struct *mm = tlb->mm;
1635 	bool ret = false;
1636 
1637 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1638 
1639 	ptl = pmd_trans_huge_lock(pmd, vma);
1640 	if (!ptl)
1641 		goto out_unlocked;
1642 
1643 	orig_pmd = *pmd;
1644 	if (is_huge_zero_pmd(orig_pmd))
1645 		goto out;
1646 
1647 	if (unlikely(!pmd_present(orig_pmd))) {
1648 		VM_BUG_ON(thp_migration_supported() &&
1649 				  !is_pmd_migration_entry(orig_pmd));
1650 		goto out;
1651 	}
1652 
1653 	page = pmd_page(orig_pmd);
1654 	/*
1655 	 * If other processes are mapping this page, we couldn't discard
1656 	 * the page unless they all do MADV_FREE so let's skip the page.
1657 	 */
1658 	if (page_mapcount(page) != 1)
1659 		goto out;
1660 
1661 	if (!trylock_page(page))
1662 		goto out;
1663 
1664 	/*
1665 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1666 	 * will deactivate only them.
1667 	 */
1668 	if (next - addr != HPAGE_PMD_SIZE) {
1669 		get_page(page);
1670 		spin_unlock(ptl);
1671 		split_huge_page(page);
1672 		unlock_page(page);
1673 		put_page(page);
1674 		goto out_unlocked;
1675 	}
1676 
1677 	if (PageDirty(page))
1678 		ClearPageDirty(page);
1679 	unlock_page(page);
1680 
1681 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1682 		pmdp_invalidate(vma, addr, pmd);
1683 		orig_pmd = pmd_mkold(orig_pmd);
1684 		orig_pmd = pmd_mkclean(orig_pmd);
1685 
1686 		set_pmd_at(mm, addr, pmd, orig_pmd);
1687 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1688 	}
1689 
1690 	mark_page_lazyfree(page);
1691 	ret = true;
1692 out:
1693 	spin_unlock(ptl);
1694 out_unlocked:
1695 	return ret;
1696 }
1697 
1698 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1699 {
1700 	pgtable_t pgtable;
1701 
1702 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1703 	pte_free(mm, pgtable);
1704 	mm_dec_nr_ptes(mm);
1705 }
1706 
1707 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1708 		 pmd_t *pmd, unsigned long addr)
1709 {
1710 	pmd_t orig_pmd;
1711 	spinlock_t *ptl;
1712 
1713 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1714 
1715 	ptl = __pmd_trans_huge_lock(pmd, vma);
1716 	if (!ptl)
1717 		return 0;
1718 	/*
1719 	 * For architectures like ppc64 we look at deposited pgtable
1720 	 * when calling pmdp_huge_get_and_clear. So do the
1721 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1722 	 * operations.
1723 	 */
1724 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1725 			tlb->fullmm);
1726 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1727 	if (vma_is_dax(vma)) {
1728 		if (arch_needs_pgtable_deposit())
1729 			zap_deposited_table(tlb->mm, pmd);
1730 		spin_unlock(ptl);
1731 		if (is_huge_zero_pmd(orig_pmd))
1732 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1733 	} else if (is_huge_zero_pmd(orig_pmd)) {
1734 		zap_deposited_table(tlb->mm, pmd);
1735 		spin_unlock(ptl);
1736 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1737 	} else {
1738 		struct page *page = NULL;
1739 		int flush_needed = 1;
1740 
1741 		if (pmd_present(orig_pmd)) {
1742 			page = pmd_page(orig_pmd);
1743 			page_remove_rmap(page, true);
1744 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1745 			VM_BUG_ON_PAGE(!PageHead(page), page);
1746 		} else if (thp_migration_supported()) {
1747 			swp_entry_t entry;
1748 
1749 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1750 			entry = pmd_to_swp_entry(orig_pmd);
1751 			page = pfn_to_page(swp_offset(entry));
1752 			flush_needed = 0;
1753 		} else
1754 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1755 
1756 		if (PageAnon(page)) {
1757 			zap_deposited_table(tlb->mm, pmd);
1758 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1759 		} else {
1760 			if (arch_needs_pgtable_deposit())
1761 				zap_deposited_table(tlb->mm, pmd);
1762 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1763 		}
1764 
1765 		spin_unlock(ptl);
1766 		if (flush_needed)
1767 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1768 	}
1769 	return 1;
1770 }
1771 
1772 #ifndef pmd_move_must_withdraw
1773 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1774 					 spinlock_t *old_pmd_ptl,
1775 					 struct vm_area_struct *vma)
1776 {
1777 	/*
1778 	 * With split pmd lock we also need to move preallocated
1779 	 * PTE page table if new_pmd is on different PMD page table.
1780 	 *
1781 	 * We also don't deposit and withdraw tables for file pages.
1782 	 */
1783 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1784 }
1785 #endif
1786 
1787 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1788 {
1789 #ifdef CONFIG_MEM_SOFT_DIRTY
1790 	if (unlikely(is_pmd_migration_entry(pmd)))
1791 		pmd = pmd_swp_mksoft_dirty(pmd);
1792 	else if (pmd_present(pmd))
1793 		pmd = pmd_mksoft_dirty(pmd);
1794 #endif
1795 	return pmd;
1796 }
1797 
1798 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1799 		  unsigned long new_addr, unsigned long old_end,
1800 		  pmd_t *old_pmd, pmd_t *new_pmd)
1801 {
1802 	spinlock_t *old_ptl, *new_ptl;
1803 	pmd_t pmd;
1804 	struct mm_struct *mm = vma->vm_mm;
1805 	bool force_flush = false;
1806 
1807 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1808 	    (new_addr & ~HPAGE_PMD_MASK) ||
1809 	    old_end - old_addr < HPAGE_PMD_SIZE)
1810 		return false;
1811 
1812 	/*
1813 	 * The destination pmd shouldn't be established, free_pgtables()
1814 	 * should have release it.
1815 	 */
1816 	if (WARN_ON(!pmd_none(*new_pmd))) {
1817 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1818 		return false;
1819 	}
1820 
1821 	/*
1822 	 * We don't have to worry about the ordering of src and dst
1823 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1824 	 */
1825 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1826 	if (old_ptl) {
1827 		new_ptl = pmd_lockptr(mm, new_pmd);
1828 		if (new_ptl != old_ptl)
1829 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1830 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1831 		if (pmd_present(pmd))
1832 			force_flush = true;
1833 		VM_BUG_ON(!pmd_none(*new_pmd));
1834 
1835 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1836 			pgtable_t pgtable;
1837 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1838 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1839 		}
1840 		pmd = move_soft_dirty_pmd(pmd);
1841 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1842 		if (force_flush)
1843 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1844 		if (new_ptl != old_ptl)
1845 			spin_unlock(new_ptl);
1846 		spin_unlock(old_ptl);
1847 		return true;
1848 	}
1849 	return false;
1850 }
1851 
1852 /*
1853  * Returns
1854  *  - 0 if PMD could not be locked
1855  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1856  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1857  */
1858 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1859 		unsigned long addr, pgprot_t newprot, int prot_numa)
1860 {
1861 	struct mm_struct *mm = vma->vm_mm;
1862 	spinlock_t *ptl;
1863 	pmd_t entry;
1864 	bool preserve_write;
1865 	int ret;
1866 
1867 	ptl = __pmd_trans_huge_lock(pmd, vma);
1868 	if (!ptl)
1869 		return 0;
1870 
1871 	preserve_write = prot_numa && pmd_write(*pmd);
1872 	ret = 1;
1873 
1874 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1875 	if (is_swap_pmd(*pmd)) {
1876 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1877 
1878 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1879 		if (is_write_migration_entry(entry)) {
1880 			pmd_t newpmd;
1881 			/*
1882 			 * A protection check is difficult so
1883 			 * just be safe and disable write
1884 			 */
1885 			make_migration_entry_read(&entry);
1886 			newpmd = swp_entry_to_pmd(entry);
1887 			if (pmd_swp_soft_dirty(*pmd))
1888 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1889 			set_pmd_at(mm, addr, pmd, newpmd);
1890 		}
1891 		goto unlock;
1892 	}
1893 #endif
1894 
1895 	/*
1896 	 * Avoid trapping faults against the zero page. The read-only
1897 	 * data is likely to be read-cached on the local CPU and
1898 	 * local/remote hits to the zero page are not interesting.
1899 	 */
1900 	if (prot_numa && is_huge_zero_pmd(*pmd))
1901 		goto unlock;
1902 
1903 	if (prot_numa && pmd_protnone(*pmd))
1904 		goto unlock;
1905 
1906 	/*
1907 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1908 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1909 	 * which is also under down_read(mmap_sem):
1910 	 *
1911 	 *	CPU0:				CPU1:
1912 	 *				change_huge_pmd(prot_numa=1)
1913 	 *				 pmdp_huge_get_and_clear_notify()
1914 	 * madvise_dontneed()
1915 	 *  zap_pmd_range()
1916 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1917 	 *   // skip the pmd
1918 	 *				 set_pmd_at();
1919 	 *				 // pmd is re-established
1920 	 *
1921 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1922 	 * which may break userspace.
1923 	 *
1924 	 * pmdp_invalidate() is required to make sure we don't miss
1925 	 * dirty/young flags set by hardware.
1926 	 */
1927 	entry = pmdp_invalidate(vma, addr, pmd);
1928 
1929 	entry = pmd_modify(entry, newprot);
1930 	if (preserve_write)
1931 		entry = pmd_mk_savedwrite(entry);
1932 	ret = HPAGE_PMD_NR;
1933 	set_pmd_at(mm, addr, pmd, entry);
1934 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1935 unlock:
1936 	spin_unlock(ptl);
1937 	return ret;
1938 }
1939 
1940 /*
1941  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1942  *
1943  * Note that if it returns page table lock pointer, this routine returns without
1944  * unlocking page table lock. So callers must unlock it.
1945  */
1946 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1947 {
1948 	spinlock_t *ptl;
1949 	ptl = pmd_lock(vma->vm_mm, pmd);
1950 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1951 			pmd_devmap(*pmd)))
1952 		return ptl;
1953 	spin_unlock(ptl);
1954 	return NULL;
1955 }
1956 
1957 /*
1958  * Returns true if a given pud maps a thp, false otherwise.
1959  *
1960  * Note that if it returns true, this routine returns without unlocking page
1961  * table lock. So callers must unlock it.
1962  */
1963 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1964 {
1965 	spinlock_t *ptl;
1966 
1967 	ptl = pud_lock(vma->vm_mm, pud);
1968 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1969 		return ptl;
1970 	spin_unlock(ptl);
1971 	return NULL;
1972 }
1973 
1974 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1975 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1976 		 pud_t *pud, unsigned long addr)
1977 {
1978 	pud_t orig_pud;
1979 	spinlock_t *ptl;
1980 
1981 	ptl = __pud_trans_huge_lock(pud, vma);
1982 	if (!ptl)
1983 		return 0;
1984 	/*
1985 	 * For architectures like ppc64 we look at deposited pgtable
1986 	 * when calling pudp_huge_get_and_clear. So do the
1987 	 * pgtable_trans_huge_withdraw after finishing pudp related
1988 	 * operations.
1989 	 */
1990 	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1991 			tlb->fullmm);
1992 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1993 	if (vma_is_dax(vma)) {
1994 		spin_unlock(ptl);
1995 		/* No zero page support yet */
1996 	} else {
1997 		/* No support for anonymous PUD pages yet */
1998 		BUG();
1999 	}
2000 	return 1;
2001 }
2002 
2003 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2004 		unsigned long haddr)
2005 {
2006 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2007 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2008 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2009 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2010 
2011 	count_vm_event(THP_SPLIT_PUD);
2012 
2013 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2014 }
2015 
2016 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2017 		unsigned long address)
2018 {
2019 	spinlock_t *ptl;
2020 	struct mm_struct *mm = vma->vm_mm;
2021 	unsigned long haddr = address & HPAGE_PUD_MASK;
2022 
2023 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2024 	ptl = pud_lock(mm, pud);
2025 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2026 		goto out;
2027 	__split_huge_pud_locked(vma, pud, haddr);
2028 
2029 out:
2030 	spin_unlock(ptl);
2031 	/*
2032 	 * No need to double call mmu_notifier->invalidate_range() callback as
2033 	 * the above pudp_huge_clear_flush_notify() did already call it.
2034 	 */
2035 	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2036 					       HPAGE_PUD_SIZE);
2037 }
2038 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2039 
2040 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2041 		unsigned long haddr, pmd_t *pmd)
2042 {
2043 	struct mm_struct *mm = vma->vm_mm;
2044 	pgtable_t pgtable;
2045 	pmd_t _pmd;
2046 	int i;
2047 
2048 	/*
2049 	 * Leave pmd empty until pte is filled note that it is fine to delay
2050 	 * notification until mmu_notifier_invalidate_range_end() as we are
2051 	 * replacing a zero pmd write protected page with a zero pte write
2052 	 * protected page.
2053 	 *
2054 	 * See Documentation/vm/mmu_notifier.rst
2055 	 */
2056 	pmdp_huge_clear_flush(vma, haddr, pmd);
2057 
2058 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2059 	pmd_populate(mm, &_pmd, pgtable);
2060 
2061 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2062 		pte_t *pte, entry;
2063 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2064 		entry = pte_mkspecial(entry);
2065 		pte = pte_offset_map(&_pmd, haddr);
2066 		VM_BUG_ON(!pte_none(*pte));
2067 		set_pte_at(mm, haddr, pte, entry);
2068 		pte_unmap(pte);
2069 	}
2070 	smp_wmb(); /* make pte visible before pmd */
2071 	pmd_populate(mm, pmd, pgtable);
2072 }
2073 
2074 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2075 		unsigned long haddr, bool freeze)
2076 {
2077 	struct mm_struct *mm = vma->vm_mm;
2078 	struct page *page;
2079 	pgtable_t pgtable;
2080 	pmd_t old_pmd, _pmd;
2081 	bool young, write, soft_dirty, pmd_migration = false;
2082 	unsigned long addr;
2083 	int i;
2084 
2085 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2086 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2087 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2088 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2089 				&& !pmd_devmap(*pmd));
2090 
2091 	count_vm_event(THP_SPLIT_PMD);
2092 
2093 	if (!vma_is_anonymous(vma)) {
2094 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2095 		/*
2096 		 * We are going to unmap this huge page. So
2097 		 * just go ahead and zap it
2098 		 */
2099 		if (arch_needs_pgtable_deposit())
2100 			zap_deposited_table(mm, pmd);
2101 		if (vma_is_dax(vma))
2102 			return;
2103 		page = pmd_page(_pmd);
2104 		if (!PageDirty(page) && pmd_dirty(_pmd))
2105 			set_page_dirty(page);
2106 		if (!PageReferenced(page) && pmd_young(_pmd))
2107 			SetPageReferenced(page);
2108 		page_remove_rmap(page, true);
2109 		put_page(page);
2110 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2111 		return;
2112 	} else if (is_huge_zero_pmd(*pmd)) {
2113 		/*
2114 		 * FIXME: Do we want to invalidate secondary mmu by calling
2115 		 * mmu_notifier_invalidate_range() see comments below inside
2116 		 * __split_huge_pmd() ?
2117 		 *
2118 		 * We are going from a zero huge page write protected to zero
2119 		 * small page also write protected so it does not seems useful
2120 		 * to invalidate secondary mmu at this time.
2121 		 */
2122 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2123 	}
2124 
2125 	/*
2126 	 * Up to this point the pmd is present and huge and userland has the
2127 	 * whole access to the hugepage during the split (which happens in
2128 	 * place). If we overwrite the pmd with the not-huge version pointing
2129 	 * to the pte here (which of course we could if all CPUs were bug
2130 	 * free), userland could trigger a small page size TLB miss on the
2131 	 * small sized TLB while the hugepage TLB entry is still established in
2132 	 * the huge TLB. Some CPU doesn't like that.
2133 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2134 	 * 383 on page 93. Intel should be safe but is also warns that it's
2135 	 * only safe if the permission and cache attributes of the two entries
2136 	 * loaded in the two TLB is identical (which should be the case here).
2137 	 * But it is generally safer to never allow small and huge TLB entries
2138 	 * for the same virtual address to be loaded simultaneously. So instead
2139 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2140 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2141 	 * must remain set at all times on the pmd until the split is complete
2142 	 * for this pmd), then we flush the SMP TLB and finally we write the
2143 	 * non-huge version of the pmd entry with pmd_populate.
2144 	 */
2145 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2146 
2147 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2148 	pmd_migration = is_pmd_migration_entry(old_pmd);
2149 	if (pmd_migration) {
2150 		swp_entry_t entry;
2151 
2152 		entry = pmd_to_swp_entry(old_pmd);
2153 		page = pfn_to_page(swp_offset(entry));
2154 	} else
2155 #endif
2156 		page = pmd_page(old_pmd);
2157 	VM_BUG_ON_PAGE(!page_count(page), page);
2158 	page_ref_add(page, HPAGE_PMD_NR - 1);
2159 	if (pmd_dirty(old_pmd))
2160 		SetPageDirty(page);
2161 	write = pmd_write(old_pmd);
2162 	young = pmd_young(old_pmd);
2163 	soft_dirty = pmd_soft_dirty(old_pmd);
2164 
2165 	/*
2166 	 * Withdraw the table only after we mark the pmd entry invalid.
2167 	 * This's critical for some architectures (Power).
2168 	 */
2169 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2170 	pmd_populate(mm, &_pmd, pgtable);
2171 
2172 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2173 		pte_t entry, *pte;
2174 		/*
2175 		 * Note that NUMA hinting access restrictions are not
2176 		 * transferred to avoid any possibility of altering
2177 		 * permissions across VMAs.
2178 		 */
2179 		if (freeze || pmd_migration) {
2180 			swp_entry_t swp_entry;
2181 			swp_entry = make_migration_entry(page + i, write);
2182 			entry = swp_entry_to_pte(swp_entry);
2183 			if (soft_dirty)
2184 				entry = pte_swp_mksoft_dirty(entry);
2185 		} else {
2186 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2187 			entry = maybe_mkwrite(entry, vma);
2188 			if (!write)
2189 				entry = pte_wrprotect(entry);
2190 			if (!young)
2191 				entry = pte_mkold(entry);
2192 			if (soft_dirty)
2193 				entry = pte_mksoft_dirty(entry);
2194 		}
2195 		pte = pte_offset_map(&_pmd, addr);
2196 		BUG_ON(!pte_none(*pte));
2197 		set_pte_at(mm, addr, pte, entry);
2198 		atomic_inc(&page[i]._mapcount);
2199 		pte_unmap(pte);
2200 	}
2201 
2202 	/*
2203 	 * Set PG_double_map before dropping compound_mapcount to avoid
2204 	 * false-negative page_mapped().
2205 	 */
2206 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2207 		for (i = 0; i < HPAGE_PMD_NR; i++)
2208 			atomic_inc(&page[i]._mapcount);
2209 	}
2210 
2211 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2212 		/* Last compound_mapcount is gone. */
2213 		__dec_node_page_state(page, NR_ANON_THPS);
2214 		if (TestClearPageDoubleMap(page)) {
2215 			/* No need in mapcount reference anymore */
2216 			for (i = 0; i < HPAGE_PMD_NR; i++)
2217 				atomic_dec(&page[i]._mapcount);
2218 		}
2219 	}
2220 
2221 	smp_wmb(); /* make pte visible before pmd */
2222 	pmd_populate(mm, pmd, pgtable);
2223 
2224 	if (freeze) {
2225 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2226 			page_remove_rmap(page + i, false);
2227 			put_page(page + i);
2228 		}
2229 	}
2230 }
2231 
2232 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2233 		unsigned long address, bool freeze, struct page *page)
2234 {
2235 	spinlock_t *ptl;
2236 	struct mm_struct *mm = vma->vm_mm;
2237 	unsigned long haddr = address & HPAGE_PMD_MASK;
2238 
2239 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2240 	ptl = pmd_lock(mm, pmd);
2241 
2242 	/*
2243 	 * If caller asks to setup a migration entries, we need a page to check
2244 	 * pmd against. Otherwise we can end up replacing wrong page.
2245 	 */
2246 	VM_BUG_ON(freeze && !page);
2247 	if (page && page != pmd_page(*pmd))
2248 	        goto out;
2249 
2250 	if (pmd_trans_huge(*pmd)) {
2251 		page = pmd_page(*pmd);
2252 		if (PageMlocked(page))
2253 			clear_page_mlock(page);
2254 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2255 		goto out;
2256 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2257 out:
2258 	spin_unlock(ptl);
2259 	/*
2260 	 * No need to double call mmu_notifier->invalidate_range() callback.
2261 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2262 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2263 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2264 	 *    fault will trigger a flush_notify before pointing to a new page
2265 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2266 	 *    page in the meantime)
2267 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2268 	 *     to invalidate secondary tlb entry they are all still valid.
2269 	 *     any further changes to individual pte will notify. So no need
2270 	 *     to call mmu_notifier->invalidate_range()
2271 	 */
2272 	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2273 					       HPAGE_PMD_SIZE);
2274 }
2275 
2276 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2277 		bool freeze, struct page *page)
2278 {
2279 	pgd_t *pgd;
2280 	p4d_t *p4d;
2281 	pud_t *pud;
2282 	pmd_t *pmd;
2283 
2284 	pgd = pgd_offset(vma->vm_mm, address);
2285 	if (!pgd_present(*pgd))
2286 		return;
2287 
2288 	p4d = p4d_offset(pgd, address);
2289 	if (!p4d_present(*p4d))
2290 		return;
2291 
2292 	pud = pud_offset(p4d, address);
2293 	if (!pud_present(*pud))
2294 		return;
2295 
2296 	pmd = pmd_offset(pud, address);
2297 
2298 	__split_huge_pmd(vma, pmd, address, freeze, page);
2299 }
2300 
2301 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2302 			     unsigned long start,
2303 			     unsigned long end,
2304 			     long adjust_next)
2305 {
2306 	/*
2307 	 * If the new start address isn't hpage aligned and it could
2308 	 * previously contain an hugepage: check if we need to split
2309 	 * an huge pmd.
2310 	 */
2311 	if (start & ~HPAGE_PMD_MASK &&
2312 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2313 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2314 		split_huge_pmd_address(vma, start, false, NULL);
2315 
2316 	/*
2317 	 * If the new end address isn't hpage aligned and it could
2318 	 * previously contain an hugepage: check if we need to split
2319 	 * an huge pmd.
2320 	 */
2321 	if (end & ~HPAGE_PMD_MASK &&
2322 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2323 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2324 		split_huge_pmd_address(vma, end, false, NULL);
2325 
2326 	/*
2327 	 * If we're also updating the vma->vm_next->vm_start, if the new
2328 	 * vm_next->vm_start isn't page aligned and it could previously
2329 	 * contain an hugepage: check if we need to split an huge pmd.
2330 	 */
2331 	if (adjust_next > 0) {
2332 		struct vm_area_struct *next = vma->vm_next;
2333 		unsigned long nstart = next->vm_start;
2334 		nstart += adjust_next << PAGE_SHIFT;
2335 		if (nstart & ~HPAGE_PMD_MASK &&
2336 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2337 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2338 			split_huge_pmd_address(next, nstart, false, NULL);
2339 	}
2340 }
2341 
2342 static void unmap_page(struct page *page)
2343 {
2344 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2345 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2346 	bool unmap_success;
2347 
2348 	VM_BUG_ON_PAGE(!PageHead(page), page);
2349 
2350 	if (PageAnon(page))
2351 		ttu_flags |= TTU_SPLIT_FREEZE;
2352 
2353 	unmap_success = try_to_unmap(page, ttu_flags);
2354 	VM_BUG_ON_PAGE(!unmap_success, page);
2355 }
2356 
2357 static void remap_page(struct page *page)
2358 {
2359 	int i;
2360 	if (PageTransHuge(page)) {
2361 		remove_migration_ptes(page, page, true);
2362 	} else {
2363 		for (i = 0; i < HPAGE_PMD_NR; i++)
2364 			remove_migration_ptes(page + i, page + i, true);
2365 	}
2366 }
2367 
2368 static void __split_huge_page_tail(struct page *head, int tail,
2369 		struct lruvec *lruvec, struct list_head *list)
2370 {
2371 	struct page *page_tail = head + tail;
2372 
2373 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2374 
2375 	/*
2376 	 * Clone page flags before unfreezing refcount.
2377 	 *
2378 	 * After successful get_page_unless_zero() might follow flags change,
2379 	 * for exmaple lock_page() which set PG_waiters.
2380 	 */
2381 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2382 	page_tail->flags |= (head->flags &
2383 			((1L << PG_referenced) |
2384 			 (1L << PG_swapbacked) |
2385 			 (1L << PG_swapcache) |
2386 			 (1L << PG_mlocked) |
2387 			 (1L << PG_uptodate) |
2388 			 (1L << PG_active) |
2389 			 (1L << PG_workingset) |
2390 			 (1L << PG_locked) |
2391 			 (1L << PG_unevictable) |
2392 			 (1L << PG_dirty)));
2393 
2394 	/* ->mapping in first tail page is compound_mapcount */
2395 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2396 			page_tail);
2397 	page_tail->mapping = head->mapping;
2398 	page_tail->index = head->index + tail;
2399 
2400 	/* Page flags must be visible before we make the page non-compound. */
2401 	smp_wmb();
2402 
2403 	/*
2404 	 * Clear PageTail before unfreezing page refcount.
2405 	 *
2406 	 * After successful get_page_unless_zero() might follow put_page()
2407 	 * which needs correct compound_head().
2408 	 */
2409 	clear_compound_head(page_tail);
2410 
2411 	/* Finally unfreeze refcount. Additional reference from page cache. */
2412 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2413 					  PageSwapCache(head)));
2414 
2415 	if (page_is_young(head))
2416 		set_page_young(page_tail);
2417 	if (page_is_idle(head))
2418 		set_page_idle(page_tail);
2419 
2420 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2421 
2422 	/*
2423 	 * always add to the tail because some iterators expect new
2424 	 * pages to show after the currently processed elements - e.g.
2425 	 * migrate_pages
2426 	 */
2427 	lru_add_page_tail(head, page_tail, lruvec, list);
2428 }
2429 
2430 static void __split_huge_page(struct page *page, struct list_head *list,
2431 		pgoff_t end, unsigned long flags)
2432 {
2433 	struct page *head = compound_head(page);
2434 	struct zone *zone = page_zone(head);
2435 	struct lruvec *lruvec;
2436 	int i;
2437 
2438 	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2439 
2440 	/* complete memcg works before add pages to LRU */
2441 	mem_cgroup_split_huge_fixup(head);
2442 
2443 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2444 		__split_huge_page_tail(head, i, lruvec, list);
2445 		/* Some pages can be beyond i_size: drop them from page cache */
2446 		if (head[i].index >= end) {
2447 			ClearPageDirty(head + i);
2448 			__delete_from_page_cache(head + i, NULL);
2449 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2450 				shmem_uncharge(head->mapping->host, 1);
2451 			put_page(head + i);
2452 		}
2453 	}
2454 
2455 	ClearPageCompound(head);
2456 	/* See comment in __split_huge_page_tail() */
2457 	if (PageAnon(head)) {
2458 		/* Additional pin to swap cache */
2459 		if (PageSwapCache(head))
2460 			page_ref_add(head, 2);
2461 		else
2462 			page_ref_inc(head);
2463 	} else {
2464 		/* Additional pin to page cache */
2465 		page_ref_add(head, 2);
2466 		xa_unlock(&head->mapping->i_pages);
2467 	}
2468 
2469 	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2470 
2471 	remap_page(head);
2472 
2473 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2474 		struct page *subpage = head + i;
2475 		if (subpage == page)
2476 			continue;
2477 		unlock_page(subpage);
2478 
2479 		/*
2480 		 * Subpages may be freed if there wasn't any mapping
2481 		 * like if add_to_swap() is running on a lru page that
2482 		 * had its mapping zapped. And freeing these pages
2483 		 * requires taking the lru_lock so we do the put_page
2484 		 * of the tail pages after the split is complete.
2485 		 */
2486 		put_page(subpage);
2487 	}
2488 }
2489 
2490 int total_mapcount(struct page *page)
2491 {
2492 	int i, compound, ret;
2493 
2494 	VM_BUG_ON_PAGE(PageTail(page), page);
2495 
2496 	if (likely(!PageCompound(page)))
2497 		return atomic_read(&page->_mapcount) + 1;
2498 
2499 	compound = compound_mapcount(page);
2500 	if (PageHuge(page))
2501 		return compound;
2502 	ret = compound;
2503 	for (i = 0; i < HPAGE_PMD_NR; i++)
2504 		ret += atomic_read(&page[i]._mapcount) + 1;
2505 	/* File pages has compound_mapcount included in _mapcount */
2506 	if (!PageAnon(page))
2507 		return ret - compound * HPAGE_PMD_NR;
2508 	if (PageDoubleMap(page))
2509 		ret -= HPAGE_PMD_NR;
2510 	return ret;
2511 }
2512 
2513 /*
2514  * This calculates accurately how many mappings a transparent hugepage
2515  * has (unlike page_mapcount() which isn't fully accurate). This full
2516  * accuracy is primarily needed to know if copy-on-write faults can
2517  * reuse the page and change the mapping to read-write instead of
2518  * copying them. At the same time this returns the total_mapcount too.
2519  *
2520  * The function returns the highest mapcount any one of the subpages
2521  * has. If the return value is one, even if different processes are
2522  * mapping different subpages of the transparent hugepage, they can
2523  * all reuse it, because each process is reusing a different subpage.
2524  *
2525  * The total_mapcount is instead counting all virtual mappings of the
2526  * subpages. If the total_mapcount is equal to "one", it tells the
2527  * caller all mappings belong to the same "mm" and in turn the
2528  * anon_vma of the transparent hugepage can become the vma->anon_vma
2529  * local one as no other process may be mapping any of the subpages.
2530  *
2531  * It would be more accurate to replace page_mapcount() with
2532  * page_trans_huge_mapcount(), however we only use
2533  * page_trans_huge_mapcount() in the copy-on-write faults where we
2534  * need full accuracy to avoid breaking page pinning, because
2535  * page_trans_huge_mapcount() is slower than page_mapcount().
2536  */
2537 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2538 {
2539 	int i, ret, _total_mapcount, mapcount;
2540 
2541 	/* hugetlbfs shouldn't call it */
2542 	VM_BUG_ON_PAGE(PageHuge(page), page);
2543 
2544 	if (likely(!PageTransCompound(page))) {
2545 		mapcount = atomic_read(&page->_mapcount) + 1;
2546 		if (total_mapcount)
2547 			*total_mapcount = mapcount;
2548 		return mapcount;
2549 	}
2550 
2551 	page = compound_head(page);
2552 
2553 	_total_mapcount = ret = 0;
2554 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2555 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2556 		ret = max(ret, mapcount);
2557 		_total_mapcount += mapcount;
2558 	}
2559 	if (PageDoubleMap(page)) {
2560 		ret -= 1;
2561 		_total_mapcount -= HPAGE_PMD_NR;
2562 	}
2563 	mapcount = compound_mapcount(page);
2564 	ret += mapcount;
2565 	_total_mapcount += mapcount;
2566 	if (total_mapcount)
2567 		*total_mapcount = _total_mapcount;
2568 	return ret;
2569 }
2570 
2571 /* Racy check whether the huge page can be split */
2572 bool can_split_huge_page(struct page *page, int *pextra_pins)
2573 {
2574 	int extra_pins;
2575 
2576 	/* Additional pins from page cache */
2577 	if (PageAnon(page))
2578 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2579 	else
2580 		extra_pins = HPAGE_PMD_NR;
2581 	if (pextra_pins)
2582 		*pextra_pins = extra_pins;
2583 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2584 }
2585 
2586 /*
2587  * This function splits huge page into normal pages. @page can point to any
2588  * subpage of huge page to split. Split doesn't change the position of @page.
2589  *
2590  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2591  * The huge page must be locked.
2592  *
2593  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2594  *
2595  * Both head page and tail pages will inherit mapping, flags, and so on from
2596  * the hugepage.
2597  *
2598  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2599  * they are not mapped.
2600  *
2601  * Returns 0 if the hugepage is split successfully.
2602  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2603  * us.
2604  */
2605 int split_huge_page_to_list(struct page *page, struct list_head *list)
2606 {
2607 	struct page *head = compound_head(page);
2608 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2609 	struct anon_vma *anon_vma = NULL;
2610 	struct address_space *mapping = NULL;
2611 	int count, mapcount, extra_pins, ret;
2612 	bool mlocked;
2613 	unsigned long flags;
2614 	pgoff_t end;
2615 
2616 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2617 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2618 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2619 
2620 	if (PageWriteback(page))
2621 		return -EBUSY;
2622 
2623 	if (PageAnon(head)) {
2624 		/*
2625 		 * The caller does not necessarily hold an mmap_sem that would
2626 		 * prevent the anon_vma disappearing so we first we take a
2627 		 * reference to it and then lock the anon_vma for write. This
2628 		 * is similar to page_lock_anon_vma_read except the write lock
2629 		 * is taken to serialise against parallel split or collapse
2630 		 * operations.
2631 		 */
2632 		anon_vma = page_get_anon_vma(head);
2633 		if (!anon_vma) {
2634 			ret = -EBUSY;
2635 			goto out;
2636 		}
2637 		end = -1;
2638 		mapping = NULL;
2639 		anon_vma_lock_write(anon_vma);
2640 	} else {
2641 		mapping = head->mapping;
2642 
2643 		/* Truncated ? */
2644 		if (!mapping) {
2645 			ret = -EBUSY;
2646 			goto out;
2647 		}
2648 
2649 		anon_vma = NULL;
2650 		i_mmap_lock_read(mapping);
2651 
2652 		/*
2653 		 *__split_huge_page() may need to trim off pages beyond EOF:
2654 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2655 		 * which cannot be nested inside the page tree lock. So note
2656 		 * end now: i_size itself may be changed at any moment, but
2657 		 * head page lock is good enough to serialize the trimming.
2658 		 */
2659 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2660 	}
2661 
2662 	/*
2663 	 * Racy check if we can split the page, before unmap_page() will
2664 	 * split PMDs
2665 	 */
2666 	if (!can_split_huge_page(head, &extra_pins)) {
2667 		ret = -EBUSY;
2668 		goto out_unlock;
2669 	}
2670 
2671 	mlocked = PageMlocked(page);
2672 	unmap_page(head);
2673 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2674 
2675 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2676 	if (mlocked)
2677 		lru_add_drain();
2678 
2679 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2680 	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2681 
2682 	if (mapping) {
2683 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2684 
2685 		/*
2686 		 * Check if the head page is present in page cache.
2687 		 * We assume all tail are present too, if head is there.
2688 		 */
2689 		xa_lock(&mapping->i_pages);
2690 		if (xas_load(&xas) != head)
2691 			goto fail;
2692 	}
2693 
2694 	/* Prevent deferred_split_scan() touching ->_refcount */
2695 	spin_lock(&pgdata->split_queue_lock);
2696 	count = page_count(head);
2697 	mapcount = total_mapcount(head);
2698 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2699 		if (!list_empty(page_deferred_list(head))) {
2700 			pgdata->split_queue_len--;
2701 			list_del(page_deferred_list(head));
2702 		}
2703 		if (mapping)
2704 			__dec_node_page_state(page, NR_SHMEM_THPS);
2705 		spin_unlock(&pgdata->split_queue_lock);
2706 		__split_huge_page(page, list, end, flags);
2707 		if (PageSwapCache(head)) {
2708 			swp_entry_t entry = { .val = page_private(head) };
2709 
2710 			ret = split_swap_cluster(entry);
2711 		} else
2712 			ret = 0;
2713 	} else {
2714 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2715 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2716 					mapcount, count);
2717 			if (PageTail(page))
2718 				dump_page(head, NULL);
2719 			dump_page(page, "total_mapcount(head) > 0");
2720 			BUG();
2721 		}
2722 		spin_unlock(&pgdata->split_queue_lock);
2723 fail:		if (mapping)
2724 			xa_unlock(&mapping->i_pages);
2725 		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2726 		remap_page(head);
2727 		ret = -EBUSY;
2728 	}
2729 
2730 out_unlock:
2731 	if (anon_vma) {
2732 		anon_vma_unlock_write(anon_vma);
2733 		put_anon_vma(anon_vma);
2734 	}
2735 	if (mapping)
2736 		i_mmap_unlock_read(mapping);
2737 out:
2738 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2739 	return ret;
2740 }
2741 
2742 void free_transhuge_page(struct page *page)
2743 {
2744 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2745 	unsigned long flags;
2746 
2747 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2748 	if (!list_empty(page_deferred_list(page))) {
2749 		pgdata->split_queue_len--;
2750 		list_del(page_deferred_list(page));
2751 	}
2752 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2753 	free_compound_page(page);
2754 }
2755 
2756 void deferred_split_huge_page(struct page *page)
2757 {
2758 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2759 	unsigned long flags;
2760 
2761 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2762 
2763 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2764 	if (list_empty(page_deferred_list(page))) {
2765 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2766 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2767 		pgdata->split_queue_len++;
2768 	}
2769 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2770 }
2771 
2772 static unsigned long deferred_split_count(struct shrinker *shrink,
2773 		struct shrink_control *sc)
2774 {
2775 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2776 	return READ_ONCE(pgdata->split_queue_len);
2777 }
2778 
2779 static unsigned long deferred_split_scan(struct shrinker *shrink,
2780 		struct shrink_control *sc)
2781 {
2782 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2783 	unsigned long flags;
2784 	LIST_HEAD(list), *pos, *next;
2785 	struct page *page;
2786 	int split = 0;
2787 
2788 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2789 	/* Take pin on all head pages to avoid freeing them under us */
2790 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2791 		page = list_entry((void *)pos, struct page, mapping);
2792 		page = compound_head(page);
2793 		if (get_page_unless_zero(page)) {
2794 			list_move(page_deferred_list(page), &list);
2795 		} else {
2796 			/* We lost race with put_compound_page() */
2797 			list_del_init(page_deferred_list(page));
2798 			pgdata->split_queue_len--;
2799 		}
2800 		if (!--sc->nr_to_scan)
2801 			break;
2802 	}
2803 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2804 
2805 	list_for_each_safe(pos, next, &list) {
2806 		page = list_entry((void *)pos, struct page, mapping);
2807 		if (!trylock_page(page))
2808 			goto next;
2809 		/* split_huge_page() removes page from list on success */
2810 		if (!split_huge_page(page))
2811 			split++;
2812 		unlock_page(page);
2813 next:
2814 		put_page(page);
2815 	}
2816 
2817 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2818 	list_splice_tail(&list, &pgdata->split_queue);
2819 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2820 
2821 	/*
2822 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2823 	 * This can happen if pages were freed under us.
2824 	 */
2825 	if (!split && list_empty(&pgdata->split_queue))
2826 		return SHRINK_STOP;
2827 	return split;
2828 }
2829 
2830 static struct shrinker deferred_split_shrinker = {
2831 	.count_objects = deferred_split_count,
2832 	.scan_objects = deferred_split_scan,
2833 	.seeks = DEFAULT_SEEKS,
2834 	.flags = SHRINKER_NUMA_AWARE,
2835 };
2836 
2837 #ifdef CONFIG_DEBUG_FS
2838 static int split_huge_pages_set(void *data, u64 val)
2839 {
2840 	struct zone *zone;
2841 	struct page *page;
2842 	unsigned long pfn, max_zone_pfn;
2843 	unsigned long total = 0, split = 0;
2844 
2845 	if (val != 1)
2846 		return -EINVAL;
2847 
2848 	for_each_populated_zone(zone) {
2849 		max_zone_pfn = zone_end_pfn(zone);
2850 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2851 			if (!pfn_valid(pfn))
2852 				continue;
2853 
2854 			page = pfn_to_page(pfn);
2855 			if (!get_page_unless_zero(page))
2856 				continue;
2857 
2858 			if (zone != page_zone(page))
2859 				goto next;
2860 
2861 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2862 				goto next;
2863 
2864 			total++;
2865 			lock_page(page);
2866 			if (!split_huge_page(page))
2867 				split++;
2868 			unlock_page(page);
2869 next:
2870 			put_page(page);
2871 		}
2872 	}
2873 
2874 	pr_info("%lu of %lu THP split\n", split, total);
2875 
2876 	return 0;
2877 }
2878 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2879 		"%llu\n");
2880 
2881 static int __init split_huge_pages_debugfs(void)
2882 {
2883 	void *ret;
2884 
2885 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2886 			&split_huge_pages_fops);
2887 	if (!ret)
2888 		pr_warn("Failed to create split_huge_pages in debugfs");
2889 	return 0;
2890 }
2891 late_initcall(split_huge_pages_debugfs);
2892 #endif
2893 
2894 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2895 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2896 		struct page *page)
2897 {
2898 	struct vm_area_struct *vma = pvmw->vma;
2899 	struct mm_struct *mm = vma->vm_mm;
2900 	unsigned long address = pvmw->address;
2901 	pmd_t pmdval;
2902 	swp_entry_t entry;
2903 	pmd_t pmdswp;
2904 
2905 	if (!(pvmw->pmd && !pvmw->pte))
2906 		return;
2907 
2908 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2909 	pmdval = *pvmw->pmd;
2910 	pmdp_invalidate(vma, address, pvmw->pmd);
2911 	if (pmd_dirty(pmdval))
2912 		set_page_dirty(page);
2913 	entry = make_migration_entry(page, pmd_write(pmdval));
2914 	pmdswp = swp_entry_to_pmd(entry);
2915 	if (pmd_soft_dirty(pmdval))
2916 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2917 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2918 	page_remove_rmap(page, true);
2919 	put_page(page);
2920 }
2921 
2922 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2923 {
2924 	struct vm_area_struct *vma = pvmw->vma;
2925 	struct mm_struct *mm = vma->vm_mm;
2926 	unsigned long address = pvmw->address;
2927 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2928 	pmd_t pmde;
2929 	swp_entry_t entry;
2930 
2931 	if (!(pvmw->pmd && !pvmw->pte))
2932 		return;
2933 
2934 	entry = pmd_to_swp_entry(*pvmw->pmd);
2935 	get_page(new);
2936 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2937 	if (pmd_swp_soft_dirty(*pvmw->pmd))
2938 		pmde = pmd_mksoft_dirty(pmde);
2939 	if (is_write_migration_entry(entry))
2940 		pmde = maybe_pmd_mkwrite(pmde, vma);
2941 
2942 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2943 	if (PageAnon(new))
2944 		page_add_anon_rmap(new, vma, mmun_start, true);
2945 	else
2946 		page_add_file_rmap(new, true);
2947 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2948 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2949 		mlock_vma_page(new);
2950 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2951 }
2952 #endif
2953