1 /* 2 * Copyright (C) 2009 Red Hat, Inc. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/mm.h> 11 #include <linux/sched.h> 12 #include <linux/sched/coredump.h> 13 #include <linux/sched/numa_balancing.h> 14 #include <linux/highmem.h> 15 #include <linux/hugetlb.h> 16 #include <linux/mmu_notifier.h> 17 #include <linux/rmap.h> 18 #include <linux/swap.h> 19 #include <linux/shrinker.h> 20 #include <linux/mm_inline.h> 21 #include <linux/swapops.h> 22 #include <linux/dax.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 36 #include <asm/tlb.h> 37 #include <asm/pgalloc.h> 38 #include "internal.h" 39 40 /* 41 * By default transparent hugepage support is disabled in order that avoid 42 * to risk increase the memory footprint of applications without a guaranteed 43 * benefit. When transparent hugepage support is enabled, is for all mappings, 44 * and khugepaged scans all mappings. 45 * Defrag is invoked by khugepaged hugepage allocations and by page faults 46 * for all hugepage allocations. 47 */ 48 unsigned long transparent_hugepage_flags __read_mostly = 49 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 50 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 51 #endif 52 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 53 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 54 #endif 55 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 57 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 58 59 static struct shrinker deferred_split_shrinker; 60 61 static atomic_t huge_zero_refcount; 62 struct page *huge_zero_page __read_mostly; 63 64 static struct page *get_huge_zero_page(void) 65 { 66 struct page *zero_page; 67 retry: 68 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 69 return READ_ONCE(huge_zero_page); 70 71 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 72 HPAGE_PMD_ORDER); 73 if (!zero_page) { 74 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 75 return NULL; 76 } 77 count_vm_event(THP_ZERO_PAGE_ALLOC); 78 preempt_disable(); 79 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 80 preempt_enable(); 81 __free_pages(zero_page, compound_order(zero_page)); 82 goto retry; 83 } 84 85 /* We take additional reference here. It will be put back by shrinker */ 86 atomic_set(&huge_zero_refcount, 2); 87 preempt_enable(); 88 return READ_ONCE(huge_zero_page); 89 } 90 91 static void put_huge_zero_page(void) 92 { 93 /* 94 * Counter should never go to zero here. Only shrinker can put 95 * last reference. 96 */ 97 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 98 } 99 100 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 101 { 102 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 103 return READ_ONCE(huge_zero_page); 104 105 if (!get_huge_zero_page()) 106 return NULL; 107 108 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 109 put_huge_zero_page(); 110 111 return READ_ONCE(huge_zero_page); 112 } 113 114 void mm_put_huge_zero_page(struct mm_struct *mm) 115 { 116 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 117 put_huge_zero_page(); 118 } 119 120 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 121 struct shrink_control *sc) 122 { 123 /* we can free zero page only if last reference remains */ 124 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 125 } 126 127 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 128 struct shrink_control *sc) 129 { 130 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 131 struct page *zero_page = xchg(&huge_zero_page, NULL); 132 BUG_ON(zero_page == NULL); 133 __free_pages(zero_page, compound_order(zero_page)); 134 return HPAGE_PMD_NR; 135 } 136 137 return 0; 138 } 139 140 static struct shrinker huge_zero_page_shrinker = { 141 .count_objects = shrink_huge_zero_page_count, 142 .scan_objects = shrink_huge_zero_page_scan, 143 .seeks = DEFAULT_SEEKS, 144 }; 145 146 #ifdef CONFIG_SYSFS 147 static ssize_t enabled_show(struct kobject *kobj, 148 struct kobj_attribute *attr, char *buf) 149 { 150 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 151 return sprintf(buf, "[always] madvise never\n"); 152 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) 153 return sprintf(buf, "always [madvise] never\n"); 154 else 155 return sprintf(buf, "always madvise [never]\n"); 156 } 157 158 static ssize_t enabled_store(struct kobject *kobj, 159 struct kobj_attribute *attr, 160 const char *buf, size_t count) 161 { 162 ssize_t ret = count; 163 164 if (!memcmp("always", buf, 165 min(sizeof("always")-1, count))) { 166 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 167 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 168 } else if (!memcmp("madvise", buf, 169 min(sizeof("madvise")-1, count))) { 170 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 171 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 172 } else if (!memcmp("never", buf, 173 min(sizeof("never")-1, count))) { 174 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 175 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 176 } else 177 ret = -EINVAL; 178 179 if (ret > 0) { 180 int err = start_stop_khugepaged(); 181 if (err) 182 ret = err; 183 } 184 return ret; 185 } 186 static struct kobj_attribute enabled_attr = 187 __ATTR(enabled, 0644, enabled_show, enabled_store); 188 189 ssize_t single_hugepage_flag_show(struct kobject *kobj, 190 struct kobj_attribute *attr, char *buf, 191 enum transparent_hugepage_flag flag) 192 { 193 return sprintf(buf, "%d\n", 194 !!test_bit(flag, &transparent_hugepage_flags)); 195 } 196 197 ssize_t single_hugepage_flag_store(struct kobject *kobj, 198 struct kobj_attribute *attr, 199 const char *buf, size_t count, 200 enum transparent_hugepage_flag flag) 201 { 202 unsigned long value; 203 int ret; 204 205 ret = kstrtoul(buf, 10, &value); 206 if (ret < 0) 207 return ret; 208 if (value > 1) 209 return -EINVAL; 210 211 if (value) 212 set_bit(flag, &transparent_hugepage_flags); 213 else 214 clear_bit(flag, &transparent_hugepage_flags); 215 216 return count; 217 } 218 219 static ssize_t defrag_show(struct kobject *kobj, 220 struct kobj_attribute *attr, char *buf) 221 { 222 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 223 return sprintf(buf, "[always] defer defer+madvise madvise never\n"); 224 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 225 return sprintf(buf, "always [defer] defer+madvise madvise never\n"); 226 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 227 return sprintf(buf, "always defer [defer+madvise] madvise never\n"); 228 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 229 return sprintf(buf, "always defer defer+madvise [madvise] never\n"); 230 return sprintf(buf, "always defer defer+madvise madvise [never]\n"); 231 } 232 233 static ssize_t defrag_store(struct kobject *kobj, 234 struct kobj_attribute *attr, 235 const char *buf, size_t count) 236 { 237 if (!memcmp("always", buf, 238 min(sizeof("always")-1, count))) { 239 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 242 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 243 } else if (!memcmp("defer", buf, 244 min(sizeof("defer")-1, count))) { 245 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 248 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 249 } else if (!memcmp("defer+madvise", buf, 250 min(sizeof("defer+madvise")-1, count))) { 251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 255 } else if (!memcmp("madvise", buf, 256 min(sizeof("madvise")-1, count))) { 257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 260 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 261 } else if (!memcmp("never", buf, 262 min(sizeof("never")-1, count))) { 263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 267 } else 268 return -EINVAL; 269 270 return count; 271 } 272 static struct kobj_attribute defrag_attr = 273 __ATTR(defrag, 0644, defrag_show, defrag_store); 274 275 static ssize_t use_zero_page_show(struct kobject *kobj, 276 struct kobj_attribute *attr, char *buf) 277 { 278 return single_hugepage_flag_show(kobj, attr, buf, 279 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 280 } 281 static ssize_t use_zero_page_store(struct kobject *kobj, 282 struct kobj_attribute *attr, const char *buf, size_t count) 283 { 284 return single_hugepage_flag_store(kobj, attr, buf, count, 285 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 286 } 287 static struct kobj_attribute use_zero_page_attr = 288 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 289 290 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 291 struct kobj_attribute *attr, char *buf) 292 { 293 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE); 294 } 295 static struct kobj_attribute hpage_pmd_size_attr = 296 __ATTR_RO(hpage_pmd_size); 297 298 #ifdef CONFIG_DEBUG_VM 299 static ssize_t debug_cow_show(struct kobject *kobj, 300 struct kobj_attribute *attr, char *buf) 301 { 302 return single_hugepage_flag_show(kobj, attr, buf, 303 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 304 } 305 static ssize_t debug_cow_store(struct kobject *kobj, 306 struct kobj_attribute *attr, 307 const char *buf, size_t count) 308 { 309 return single_hugepage_flag_store(kobj, attr, buf, count, 310 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 311 } 312 static struct kobj_attribute debug_cow_attr = 313 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 314 #endif /* CONFIG_DEBUG_VM */ 315 316 static struct attribute *hugepage_attr[] = { 317 &enabled_attr.attr, 318 &defrag_attr.attr, 319 &use_zero_page_attr.attr, 320 &hpage_pmd_size_attr.attr, 321 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) 322 &shmem_enabled_attr.attr, 323 #endif 324 #ifdef CONFIG_DEBUG_VM 325 &debug_cow_attr.attr, 326 #endif 327 NULL, 328 }; 329 330 static struct attribute_group hugepage_attr_group = { 331 .attrs = hugepage_attr, 332 }; 333 334 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 335 { 336 int err; 337 338 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 339 if (unlikely(!*hugepage_kobj)) { 340 pr_err("failed to create transparent hugepage kobject\n"); 341 return -ENOMEM; 342 } 343 344 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 345 if (err) { 346 pr_err("failed to register transparent hugepage group\n"); 347 goto delete_obj; 348 } 349 350 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 351 if (err) { 352 pr_err("failed to register transparent hugepage group\n"); 353 goto remove_hp_group; 354 } 355 356 return 0; 357 358 remove_hp_group: 359 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 360 delete_obj: 361 kobject_put(*hugepage_kobj); 362 return err; 363 } 364 365 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 366 { 367 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 368 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 369 kobject_put(hugepage_kobj); 370 } 371 #else 372 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 373 { 374 return 0; 375 } 376 377 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 378 { 379 } 380 #endif /* CONFIG_SYSFS */ 381 382 static int __init hugepage_init(void) 383 { 384 int err; 385 struct kobject *hugepage_kobj; 386 387 if (!has_transparent_hugepage()) { 388 transparent_hugepage_flags = 0; 389 return -EINVAL; 390 } 391 392 /* 393 * hugepages can't be allocated by the buddy allocator 394 */ 395 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 396 /* 397 * we use page->mapping and page->index in second tail page 398 * as list_head: assuming THP order >= 2 399 */ 400 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 401 402 err = hugepage_init_sysfs(&hugepage_kobj); 403 if (err) 404 goto err_sysfs; 405 406 err = khugepaged_init(); 407 if (err) 408 goto err_slab; 409 410 err = register_shrinker(&huge_zero_page_shrinker); 411 if (err) 412 goto err_hzp_shrinker; 413 err = register_shrinker(&deferred_split_shrinker); 414 if (err) 415 goto err_split_shrinker; 416 417 /* 418 * By default disable transparent hugepages on smaller systems, 419 * where the extra memory used could hurt more than TLB overhead 420 * is likely to save. The admin can still enable it through /sys. 421 */ 422 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) { 423 transparent_hugepage_flags = 0; 424 return 0; 425 } 426 427 err = start_stop_khugepaged(); 428 if (err) 429 goto err_khugepaged; 430 431 return 0; 432 err_khugepaged: 433 unregister_shrinker(&deferred_split_shrinker); 434 err_split_shrinker: 435 unregister_shrinker(&huge_zero_page_shrinker); 436 err_hzp_shrinker: 437 khugepaged_destroy(); 438 err_slab: 439 hugepage_exit_sysfs(hugepage_kobj); 440 err_sysfs: 441 return err; 442 } 443 subsys_initcall(hugepage_init); 444 445 static int __init setup_transparent_hugepage(char *str) 446 { 447 int ret = 0; 448 if (!str) 449 goto out; 450 if (!strcmp(str, "always")) { 451 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 452 &transparent_hugepage_flags); 453 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 454 &transparent_hugepage_flags); 455 ret = 1; 456 } else if (!strcmp(str, "madvise")) { 457 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 458 &transparent_hugepage_flags); 459 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 460 &transparent_hugepage_flags); 461 ret = 1; 462 } else if (!strcmp(str, "never")) { 463 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 464 &transparent_hugepage_flags); 465 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 466 &transparent_hugepage_flags); 467 ret = 1; 468 } 469 out: 470 if (!ret) 471 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 472 return ret; 473 } 474 __setup("transparent_hugepage=", setup_transparent_hugepage); 475 476 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 477 { 478 if (likely(vma->vm_flags & VM_WRITE)) 479 pmd = pmd_mkwrite(pmd); 480 return pmd; 481 } 482 483 static inline struct list_head *page_deferred_list(struct page *page) 484 { 485 /* 486 * ->lru in the tail pages is occupied by compound_head. 487 * Let's use ->mapping + ->index in the second tail page as list_head. 488 */ 489 return (struct list_head *)&page[2].mapping; 490 } 491 492 void prep_transhuge_page(struct page *page) 493 { 494 /* 495 * we use page->mapping and page->indexlru in second tail page 496 * as list_head: assuming THP order >= 2 497 */ 498 499 INIT_LIST_HEAD(page_deferred_list(page)); 500 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 501 } 502 503 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len, 504 loff_t off, unsigned long flags, unsigned long size) 505 { 506 unsigned long addr; 507 loff_t off_end = off + len; 508 loff_t off_align = round_up(off, size); 509 unsigned long len_pad; 510 511 if (off_end <= off_align || (off_end - off_align) < size) 512 return 0; 513 514 len_pad = len + size; 515 if (len_pad < len || (off + len_pad) < off) 516 return 0; 517 518 addr = current->mm->get_unmapped_area(filp, 0, len_pad, 519 off >> PAGE_SHIFT, flags); 520 if (IS_ERR_VALUE(addr)) 521 return 0; 522 523 addr += (off - addr) & (size - 1); 524 return addr; 525 } 526 527 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 528 unsigned long len, unsigned long pgoff, unsigned long flags) 529 { 530 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 531 532 if (addr) 533 goto out; 534 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) 535 goto out; 536 537 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE); 538 if (addr) 539 return addr; 540 541 out: 542 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 543 } 544 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 545 546 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page, 547 gfp_t gfp) 548 { 549 struct vm_area_struct *vma = vmf->vma; 550 struct mem_cgroup *memcg; 551 pgtable_t pgtable; 552 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 553 554 VM_BUG_ON_PAGE(!PageCompound(page), page); 555 556 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) { 557 put_page(page); 558 count_vm_event(THP_FAULT_FALLBACK); 559 return VM_FAULT_FALLBACK; 560 } 561 562 pgtable = pte_alloc_one(vma->vm_mm, haddr); 563 if (unlikely(!pgtable)) { 564 mem_cgroup_cancel_charge(page, memcg, true); 565 put_page(page); 566 return VM_FAULT_OOM; 567 } 568 569 clear_huge_page(page, haddr, HPAGE_PMD_NR); 570 /* 571 * The memory barrier inside __SetPageUptodate makes sure that 572 * clear_huge_page writes become visible before the set_pmd_at() 573 * write. 574 */ 575 __SetPageUptodate(page); 576 577 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 578 if (unlikely(!pmd_none(*vmf->pmd))) { 579 spin_unlock(vmf->ptl); 580 mem_cgroup_cancel_charge(page, memcg, true); 581 put_page(page); 582 pte_free(vma->vm_mm, pgtable); 583 } else { 584 pmd_t entry; 585 586 /* Deliver the page fault to userland */ 587 if (userfaultfd_missing(vma)) { 588 int ret; 589 590 spin_unlock(vmf->ptl); 591 mem_cgroup_cancel_charge(page, memcg, true); 592 put_page(page); 593 pte_free(vma->vm_mm, pgtable); 594 ret = handle_userfault(vmf, VM_UFFD_MISSING); 595 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 596 return ret; 597 } 598 599 entry = mk_huge_pmd(page, vma->vm_page_prot); 600 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 601 page_add_new_anon_rmap(page, vma, haddr, true); 602 mem_cgroup_commit_charge(page, memcg, false, true); 603 lru_cache_add_active_or_unevictable(page, vma); 604 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 605 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 606 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 607 atomic_long_inc(&vma->vm_mm->nr_ptes); 608 spin_unlock(vmf->ptl); 609 count_vm_event(THP_FAULT_ALLOC); 610 } 611 612 return 0; 613 } 614 615 /* 616 * always: directly stall for all thp allocations 617 * defer: wake kswapd and fail if not immediately available 618 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 619 * fail if not immediately available 620 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 621 * available 622 * never: never stall for any thp allocation 623 */ 624 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) 625 { 626 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); 627 628 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 629 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 630 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 631 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 632 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 633 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM : 634 __GFP_KSWAPD_RECLAIM); 635 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 636 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM : 637 0); 638 return GFP_TRANSHUGE_LIGHT; 639 } 640 641 /* Caller must hold page table lock. */ 642 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 643 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 644 struct page *zero_page) 645 { 646 pmd_t entry; 647 if (!pmd_none(*pmd)) 648 return false; 649 entry = mk_pmd(zero_page, vma->vm_page_prot); 650 entry = pmd_mkhuge(entry); 651 if (pgtable) 652 pgtable_trans_huge_deposit(mm, pmd, pgtable); 653 set_pmd_at(mm, haddr, pmd, entry); 654 atomic_long_inc(&mm->nr_ptes); 655 return true; 656 } 657 658 int do_huge_pmd_anonymous_page(struct vm_fault *vmf) 659 { 660 struct vm_area_struct *vma = vmf->vma; 661 gfp_t gfp; 662 struct page *page; 663 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 664 665 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 666 return VM_FAULT_FALLBACK; 667 if (unlikely(anon_vma_prepare(vma))) 668 return VM_FAULT_OOM; 669 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 670 return VM_FAULT_OOM; 671 if (!(vmf->flags & FAULT_FLAG_WRITE) && 672 !mm_forbids_zeropage(vma->vm_mm) && 673 transparent_hugepage_use_zero_page()) { 674 pgtable_t pgtable; 675 struct page *zero_page; 676 bool set; 677 int ret; 678 pgtable = pte_alloc_one(vma->vm_mm, haddr); 679 if (unlikely(!pgtable)) 680 return VM_FAULT_OOM; 681 zero_page = mm_get_huge_zero_page(vma->vm_mm); 682 if (unlikely(!zero_page)) { 683 pte_free(vma->vm_mm, pgtable); 684 count_vm_event(THP_FAULT_FALLBACK); 685 return VM_FAULT_FALLBACK; 686 } 687 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 688 ret = 0; 689 set = false; 690 if (pmd_none(*vmf->pmd)) { 691 if (userfaultfd_missing(vma)) { 692 spin_unlock(vmf->ptl); 693 ret = handle_userfault(vmf, VM_UFFD_MISSING); 694 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 695 } else { 696 set_huge_zero_page(pgtable, vma->vm_mm, vma, 697 haddr, vmf->pmd, zero_page); 698 spin_unlock(vmf->ptl); 699 set = true; 700 } 701 } else 702 spin_unlock(vmf->ptl); 703 if (!set) 704 pte_free(vma->vm_mm, pgtable); 705 return ret; 706 } 707 gfp = alloc_hugepage_direct_gfpmask(vma); 708 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 709 if (unlikely(!page)) { 710 count_vm_event(THP_FAULT_FALLBACK); 711 return VM_FAULT_FALLBACK; 712 } 713 prep_transhuge_page(page); 714 return __do_huge_pmd_anonymous_page(vmf, page, gfp); 715 } 716 717 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 718 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write) 719 { 720 struct mm_struct *mm = vma->vm_mm; 721 pmd_t entry; 722 spinlock_t *ptl; 723 724 ptl = pmd_lock(mm, pmd); 725 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 726 if (pfn_t_devmap(pfn)) 727 entry = pmd_mkdevmap(entry); 728 if (write) { 729 entry = pmd_mkyoung(pmd_mkdirty(entry)); 730 entry = maybe_pmd_mkwrite(entry, vma); 731 } 732 set_pmd_at(mm, addr, pmd, entry); 733 update_mmu_cache_pmd(vma, addr, pmd); 734 spin_unlock(ptl); 735 } 736 737 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 738 pmd_t *pmd, pfn_t pfn, bool write) 739 { 740 pgprot_t pgprot = vma->vm_page_prot; 741 /* 742 * If we had pmd_special, we could avoid all these restrictions, 743 * but we need to be consistent with PTEs and architectures that 744 * can't support a 'special' bit. 745 */ 746 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 747 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 748 (VM_PFNMAP|VM_MIXEDMAP)); 749 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 750 BUG_ON(!pfn_t_devmap(pfn)); 751 752 if (addr < vma->vm_start || addr >= vma->vm_end) 753 return VM_FAULT_SIGBUS; 754 755 track_pfn_insert(vma, &pgprot, pfn); 756 757 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write); 758 return VM_FAULT_NOPAGE; 759 } 760 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 761 762 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 763 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 764 { 765 if (likely(vma->vm_flags & VM_WRITE)) 766 pud = pud_mkwrite(pud); 767 return pud; 768 } 769 770 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 771 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 772 { 773 struct mm_struct *mm = vma->vm_mm; 774 pud_t entry; 775 spinlock_t *ptl; 776 777 ptl = pud_lock(mm, pud); 778 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 779 if (pfn_t_devmap(pfn)) 780 entry = pud_mkdevmap(entry); 781 if (write) { 782 entry = pud_mkyoung(pud_mkdirty(entry)); 783 entry = maybe_pud_mkwrite(entry, vma); 784 } 785 set_pud_at(mm, addr, pud, entry); 786 update_mmu_cache_pud(vma, addr, pud); 787 spin_unlock(ptl); 788 } 789 790 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 791 pud_t *pud, pfn_t pfn, bool write) 792 { 793 pgprot_t pgprot = vma->vm_page_prot; 794 /* 795 * If we had pud_special, we could avoid all these restrictions, 796 * but we need to be consistent with PTEs and architectures that 797 * can't support a 'special' bit. 798 */ 799 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 800 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 801 (VM_PFNMAP|VM_MIXEDMAP)); 802 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 803 BUG_ON(!pfn_t_devmap(pfn)); 804 805 if (addr < vma->vm_start || addr >= vma->vm_end) 806 return VM_FAULT_SIGBUS; 807 808 track_pfn_insert(vma, &pgprot, pfn); 809 810 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write); 811 return VM_FAULT_NOPAGE; 812 } 813 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 814 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 815 816 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 817 pmd_t *pmd) 818 { 819 pmd_t _pmd; 820 821 /* 822 * We should set the dirty bit only for FOLL_WRITE but for now 823 * the dirty bit in the pmd is meaningless. And if the dirty 824 * bit will become meaningful and we'll only set it with 825 * FOLL_WRITE, an atomic set_bit will be required on the pmd to 826 * set the young bit, instead of the current set_pmd_at. 827 */ 828 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); 829 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 830 pmd, _pmd, 1)) 831 update_mmu_cache_pmd(vma, addr, pmd); 832 } 833 834 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 835 pmd_t *pmd, int flags) 836 { 837 unsigned long pfn = pmd_pfn(*pmd); 838 struct mm_struct *mm = vma->vm_mm; 839 struct dev_pagemap *pgmap; 840 struct page *page; 841 842 assert_spin_locked(pmd_lockptr(mm, pmd)); 843 844 /* 845 * When we COW a devmap PMD entry, we split it into PTEs, so we should 846 * not be in this function with `flags & FOLL_COW` set. 847 */ 848 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); 849 850 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 851 return NULL; 852 853 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 854 /* pass */; 855 else 856 return NULL; 857 858 if (flags & FOLL_TOUCH) 859 touch_pmd(vma, addr, pmd); 860 861 /* 862 * device mapped pages can only be returned if the 863 * caller will manage the page reference count. 864 */ 865 if (!(flags & FOLL_GET)) 866 return ERR_PTR(-EEXIST); 867 868 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 869 pgmap = get_dev_pagemap(pfn, NULL); 870 if (!pgmap) 871 return ERR_PTR(-EFAULT); 872 page = pfn_to_page(pfn); 873 get_page(page); 874 put_dev_pagemap(pgmap); 875 876 return page; 877 } 878 879 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 880 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 881 struct vm_area_struct *vma) 882 { 883 spinlock_t *dst_ptl, *src_ptl; 884 struct page *src_page; 885 pmd_t pmd; 886 pgtable_t pgtable = NULL; 887 int ret = -ENOMEM; 888 889 /* Skip if can be re-fill on fault */ 890 if (!vma_is_anonymous(vma)) 891 return 0; 892 893 pgtable = pte_alloc_one(dst_mm, addr); 894 if (unlikely(!pgtable)) 895 goto out; 896 897 dst_ptl = pmd_lock(dst_mm, dst_pmd); 898 src_ptl = pmd_lockptr(src_mm, src_pmd); 899 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 900 901 ret = -EAGAIN; 902 pmd = *src_pmd; 903 if (unlikely(!pmd_trans_huge(pmd))) { 904 pte_free(dst_mm, pgtable); 905 goto out_unlock; 906 } 907 /* 908 * When page table lock is held, the huge zero pmd should not be 909 * under splitting since we don't split the page itself, only pmd to 910 * a page table. 911 */ 912 if (is_huge_zero_pmd(pmd)) { 913 struct page *zero_page; 914 /* 915 * get_huge_zero_page() will never allocate a new page here, 916 * since we already have a zero page to copy. It just takes a 917 * reference. 918 */ 919 zero_page = mm_get_huge_zero_page(dst_mm); 920 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 921 zero_page); 922 ret = 0; 923 goto out_unlock; 924 } 925 926 src_page = pmd_page(pmd); 927 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 928 get_page(src_page); 929 page_dup_rmap(src_page, true); 930 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 931 atomic_long_inc(&dst_mm->nr_ptes); 932 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 933 934 pmdp_set_wrprotect(src_mm, addr, src_pmd); 935 pmd = pmd_mkold(pmd_wrprotect(pmd)); 936 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 937 938 ret = 0; 939 out_unlock: 940 spin_unlock(src_ptl); 941 spin_unlock(dst_ptl); 942 out: 943 return ret; 944 } 945 946 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 947 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 948 pud_t *pud) 949 { 950 pud_t _pud; 951 952 /* 953 * We should set the dirty bit only for FOLL_WRITE but for now 954 * the dirty bit in the pud is meaningless. And if the dirty 955 * bit will become meaningful and we'll only set it with 956 * FOLL_WRITE, an atomic set_bit will be required on the pud to 957 * set the young bit, instead of the current set_pud_at. 958 */ 959 _pud = pud_mkyoung(pud_mkdirty(*pud)); 960 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 961 pud, _pud, 1)) 962 update_mmu_cache_pud(vma, addr, pud); 963 } 964 965 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 966 pud_t *pud, int flags) 967 { 968 unsigned long pfn = pud_pfn(*pud); 969 struct mm_struct *mm = vma->vm_mm; 970 struct dev_pagemap *pgmap; 971 struct page *page; 972 973 assert_spin_locked(pud_lockptr(mm, pud)); 974 975 if (flags & FOLL_WRITE && !pud_write(*pud)) 976 return NULL; 977 978 if (pud_present(*pud) && pud_devmap(*pud)) 979 /* pass */; 980 else 981 return NULL; 982 983 if (flags & FOLL_TOUCH) 984 touch_pud(vma, addr, pud); 985 986 /* 987 * device mapped pages can only be returned if the 988 * caller will manage the page reference count. 989 */ 990 if (!(flags & FOLL_GET)) 991 return ERR_PTR(-EEXIST); 992 993 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 994 pgmap = get_dev_pagemap(pfn, NULL); 995 if (!pgmap) 996 return ERR_PTR(-EFAULT); 997 page = pfn_to_page(pfn); 998 get_page(page); 999 put_dev_pagemap(pgmap); 1000 1001 return page; 1002 } 1003 1004 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1005 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1006 struct vm_area_struct *vma) 1007 { 1008 spinlock_t *dst_ptl, *src_ptl; 1009 pud_t pud; 1010 int ret; 1011 1012 dst_ptl = pud_lock(dst_mm, dst_pud); 1013 src_ptl = pud_lockptr(src_mm, src_pud); 1014 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1015 1016 ret = -EAGAIN; 1017 pud = *src_pud; 1018 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1019 goto out_unlock; 1020 1021 /* 1022 * When page table lock is held, the huge zero pud should not be 1023 * under splitting since we don't split the page itself, only pud to 1024 * a page table. 1025 */ 1026 if (is_huge_zero_pud(pud)) { 1027 /* No huge zero pud yet */ 1028 } 1029 1030 pudp_set_wrprotect(src_mm, addr, src_pud); 1031 pud = pud_mkold(pud_wrprotect(pud)); 1032 set_pud_at(dst_mm, addr, dst_pud, pud); 1033 1034 ret = 0; 1035 out_unlock: 1036 spin_unlock(src_ptl); 1037 spin_unlock(dst_ptl); 1038 return ret; 1039 } 1040 1041 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1042 { 1043 pud_t entry; 1044 unsigned long haddr; 1045 bool write = vmf->flags & FAULT_FLAG_WRITE; 1046 1047 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1048 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1049 goto unlock; 1050 1051 entry = pud_mkyoung(orig_pud); 1052 if (write) 1053 entry = pud_mkdirty(entry); 1054 haddr = vmf->address & HPAGE_PUD_MASK; 1055 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write)) 1056 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud); 1057 1058 unlock: 1059 spin_unlock(vmf->ptl); 1060 } 1061 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1062 1063 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd) 1064 { 1065 pmd_t entry; 1066 unsigned long haddr; 1067 bool write = vmf->flags & FAULT_FLAG_WRITE; 1068 1069 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1070 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1071 goto unlock; 1072 1073 entry = pmd_mkyoung(orig_pmd); 1074 if (write) 1075 entry = pmd_mkdirty(entry); 1076 haddr = vmf->address & HPAGE_PMD_MASK; 1077 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) 1078 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); 1079 1080 unlock: 1081 spin_unlock(vmf->ptl); 1082 } 1083 1084 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd, 1085 struct page *page) 1086 { 1087 struct vm_area_struct *vma = vmf->vma; 1088 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1089 struct mem_cgroup *memcg; 1090 pgtable_t pgtable; 1091 pmd_t _pmd; 1092 int ret = 0, i; 1093 struct page **pages; 1094 unsigned long mmun_start; /* For mmu_notifiers */ 1095 unsigned long mmun_end; /* For mmu_notifiers */ 1096 1097 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, 1098 GFP_KERNEL); 1099 if (unlikely(!pages)) { 1100 ret |= VM_FAULT_OOM; 1101 goto out; 1102 } 1103 1104 for (i = 0; i < HPAGE_PMD_NR; i++) { 1105 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma, 1106 vmf->address, page_to_nid(page)); 1107 if (unlikely(!pages[i] || 1108 mem_cgroup_try_charge(pages[i], vma->vm_mm, 1109 GFP_KERNEL, &memcg, false))) { 1110 if (pages[i]) 1111 put_page(pages[i]); 1112 while (--i >= 0) { 1113 memcg = (void *)page_private(pages[i]); 1114 set_page_private(pages[i], 0); 1115 mem_cgroup_cancel_charge(pages[i], memcg, 1116 false); 1117 put_page(pages[i]); 1118 } 1119 kfree(pages); 1120 ret |= VM_FAULT_OOM; 1121 goto out; 1122 } 1123 set_page_private(pages[i], (unsigned long)memcg); 1124 } 1125 1126 for (i = 0; i < HPAGE_PMD_NR; i++) { 1127 copy_user_highpage(pages[i], page + i, 1128 haddr + PAGE_SIZE * i, vma); 1129 __SetPageUptodate(pages[i]); 1130 cond_resched(); 1131 } 1132 1133 mmun_start = haddr; 1134 mmun_end = haddr + HPAGE_PMD_SIZE; 1135 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 1136 1137 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1138 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1139 goto out_free_pages; 1140 VM_BUG_ON_PAGE(!PageHead(page), page); 1141 1142 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 1143 /* leave pmd empty until pte is filled */ 1144 1145 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd); 1146 pmd_populate(vma->vm_mm, &_pmd, pgtable); 1147 1148 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1149 pte_t entry; 1150 entry = mk_pte(pages[i], vma->vm_page_prot); 1151 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1152 memcg = (void *)page_private(pages[i]); 1153 set_page_private(pages[i], 0); 1154 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false); 1155 mem_cgroup_commit_charge(pages[i], memcg, false, false); 1156 lru_cache_add_active_or_unevictable(pages[i], vma); 1157 vmf->pte = pte_offset_map(&_pmd, haddr); 1158 VM_BUG_ON(!pte_none(*vmf->pte)); 1159 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry); 1160 pte_unmap(vmf->pte); 1161 } 1162 kfree(pages); 1163 1164 smp_wmb(); /* make pte visible before pmd */ 1165 pmd_populate(vma->vm_mm, vmf->pmd, pgtable); 1166 page_remove_rmap(page, true); 1167 spin_unlock(vmf->ptl); 1168 1169 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1170 1171 ret |= VM_FAULT_WRITE; 1172 put_page(page); 1173 1174 out: 1175 return ret; 1176 1177 out_free_pages: 1178 spin_unlock(vmf->ptl); 1179 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1180 for (i = 0; i < HPAGE_PMD_NR; i++) { 1181 memcg = (void *)page_private(pages[i]); 1182 set_page_private(pages[i], 0); 1183 mem_cgroup_cancel_charge(pages[i], memcg, false); 1184 put_page(pages[i]); 1185 } 1186 kfree(pages); 1187 goto out; 1188 } 1189 1190 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd) 1191 { 1192 struct vm_area_struct *vma = vmf->vma; 1193 struct page *page = NULL, *new_page; 1194 struct mem_cgroup *memcg; 1195 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1196 unsigned long mmun_start; /* For mmu_notifiers */ 1197 unsigned long mmun_end; /* For mmu_notifiers */ 1198 gfp_t huge_gfp; /* for allocation and charge */ 1199 int ret = 0; 1200 1201 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1202 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1203 if (is_huge_zero_pmd(orig_pmd)) 1204 goto alloc; 1205 spin_lock(vmf->ptl); 1206 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1207 goto out_unlock; 1208 1209 page = pmd_page(orig_pmd); 1210 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 1211 /* 1212 * We can only reuse the page if nobody else maps the huge page or it's 1213 * part. 1214 */ 1215 if (page_trans_huge_mapcount(page, NULL) == 1) { 1216 pmd_t entry; 1217 entry = pmd_mkyoung(orig_pmd); 1218 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1219 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1220 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1221 ret |= VM_FAULT_WRITE; 1222 goto out_unlock; 1223 } 1224 get_page(page); 1225 spin_unlock(vmf->ptl); 1226 alloc: 1227 if (transparent_hugepage_enabled(vma) && 1228 !transparent_hugepage_debug_cow()) { 1229 huge_gfp = alloc_hugepage_direct_gfpmask(vma); 1230 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER); 1231 } else 1232 new_page = NULL; 1233 1234 if (likely(new_page)) { 1235 prep_transhuge_page(new_page); 1236 } else { 1237 if (!page) { 1238 split_huge_pmd(vma, vmf->pmd, vmf->address); 1239 ret |= VM_FAULT_FALLBACK; 1240 } else { 1241 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page); 1242 if (ret & VM_FAULT_OOM) { 1243 split_huge_pmd(vma, vmf->pmd, vmf->address); 1244 ret |= VM_FAULT_FALLBACK; 1245 } 1246 put_page(page); 1247 } 1248 count_vm_event(THP_FAULT_FALLBACK); 1249 goto out; 1250 } 1251 1252 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm, 1253 huge_gfp, &memcg, true))) { 1254 put_page(new_page); 1255 split_huge_pmd(vma, vmf->pmd, vmf->address); 1256 if (page) 1257 put_page(page); 1258 ret |= VM_FAULT_FALLBACK; 1259 count_vm_event(THP_FAULT_FALLBACK); 1260 goto out; 1261 } 1262 1263 count_vm_event(THP_FAULT_ALLOC); 1264 1265 if (!page) 1266 clear_huge_page(new_page, haddr, HPAGE_PMD_NR); 1267 else 1268 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); 1269 __SetPageUptodate(new_page); 1270 1271 mmun_start = haddr; 1272 mmun_end = haddr + HPAGE_PMD_SIZE; 1273 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 1274 1275 spin_lock(vmf->ptl); 1276 if (page) 1277 put_page(page); 1278 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1279 spin_unlock(vmf->ptl); 1280 mem_cgroup_cancel_charge(new_page, memcg, true); 1281 put_page(new_page); 1282 goto out_mn; 1283 } else { 1284 pmd_t entry; 1285 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1286 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1287 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 1288 page_add_new_anon_rmap(new_page, vma, haddr, true); 1289 mem_cgroup_commit_charge(new_page, memcg, false, true); 1290 lru_cache_add_active_or_unevictable(new_page, vma); 1291 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 1292 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1293 if (!page) { 1294 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1295 } else { 1296 VM_BUG_ON_PAGE(!PageHead(page), page); 1297 page_remove_rmap(page, true); 1298 put_page(page); 1299 } 1300 ret |= VM_FAULT_WRITE; 1301 } 1302 spin_unlock(vmf->ptl); 1303 out_mn: 1304 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1305 out: 1306 return ret; 1307 out_unlock: 1308 spin_unlock(vmf->ptl); 1309 return ret; 1310 } 1311 1312 /* 1313 * FOLL_FORCE can write to even unwritable pmd's, but only 1314 * after we've gone through a COW cycle and they are dirty. 1315 */ 1316 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) 1317 { 1318 return pmd_write(pmd) || 1319 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); 1320 } 1321 1322 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1323 unsigned long addr, 1324 pmd_t *pmd, 1325 unsigned int flags) 1326 { 1327 struct mm_struct *mm = vma->vm_mm; 1328 struct page *page = NULL; 1329 1330 assert_spin_locked(pmd_lockptr(mm, pmd)); 1331 1332 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) 1333 goto out; 1334 1335 /* Avoid dumping huge zero page */ 1336 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1337 return ERR_PTR(-EFAULT); 1338 1339 /* Full NUMA hinting faults to serialise migration in fault paths */ 1340 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1341 goto out; 1342 1343 page = pmd_page(*pmd); 1344 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1345 if (flags & FOLL_TOUCH) 1346 touch_pmd(vma, addr, pmd); 1347 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1348 /* 1349 * We don't mlock() pte-mapped THPs. This way we can avoid 1350 * leaking mlocked pages into non-VM_LOCKED VMAs. 1351 * 1352 * For anon THP: 1353 * 1354 * In most cases the pmd is the only mapping of the page as we 1355 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1356 * writable private mappings in populate_vma_page_range(). 1357 * 1358 * The only scenario when we have the page shared here is if we 1359 * mlocking read-only mapping shared over fork(). We skip 1360 * mlocking such pages. 1361 * 1362 * For file THP: 1363 * 1364 * We can expect PageDoubleMap() to be stable under page lock: 1365 * for file pages we set it in page_add_file_rmap(), which 1366 * requires page to be locked. 1367 */ 1368 1369 if (PageAnon(page) && compound_mapcount(page) != 1) 1370 goto skip_mlock; 1371 if (PageDoubleMap(page) || !page->mapping) 1372 goto skip_mlock; 1373 if (!trylock_page(page)) 1374 goto skip_mlock; 1375 lru_add_drain(); 1376 if (page->mapping && !PageDoubleMap(page)) 1377 mlock_vma_page(page); 1378 unlock_page(page); 1379 } 1380 skip_mlock: 1381 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1382 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1383 if (flags & FOLL_GET) 1384 get_page(page); 1385 1386 out: 1387 return page; 1388 } 1389 1390 /* NUMA hinting page fault entry point for trans huge pmds */ 1391 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd) 1392 { 1393 struct vm_area_struct *vma = vmf->vma; 1394 struct anon_vma *anon_vma = NULL; 1395 struct page *page; 1396 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1397 int page_nid = -1, this_nid = numa_node_id(); 1398 int target_nid, last_cpupid = -1; 1399 bool page_locked; 1400 bool migrated = false; 1401 bool was_writable; 1402 int flags = 0; 1403 1404 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1405 if (unlikely(!pmd_same(pmd, *vmf->pmd))) 1406 goto out_unlock; 1407 1408 /* 1409 * If there are potential migrations, wait for completion and retry 1410 * without disrupting NUMA hinting information. Do not relock and 1411 * check_same as the page may no longer be mapped. 1412 */ 1413 if (unlikely(pmd_trans_migrating(*vmf->pmd))) { 1414 page = pmd_page(*vmf->pmd); 1415 spin_unlock(vmf->ptl); 1416 wait_on_page_locked(page); 1417 goto out; 1418 } 1419 1420 page = pmd_page(pmd); 1421 BUG_ON(is_huge_zero_page(page)); 1422 page_nid = page_to_nid(page); 1423 last_cpupid = page_cpupid_last(page); 1424 count_vm_numa_event(NUMA_HINT_FAULTS); 1425 if (page_nid == this_nid) { 1426 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1427 flags |= TNF_FAULT_LOCAL; 1428 } 1429 1430 /* See similar comment in do_numa_page for explanation */ 1431 if (!pmd_savedwrite(pmd)) 1432 flags |= TNF_NO_GROUP; 1433 1434 /* 1435 * Acquire the page lock to serialise THP migrations but avoid dropping 1436 * page_table_lock if at all possible 1437 */ 1438 page_locked = trylock_page(page); 1439 target_nid = mpol_misplaced(page, vma, haddr); 1440 if (target_nid == -1) { 1441 /* If the page was locked, there are no parallel migrations */ 1442 if (page_locked) 1443 goto clear_pmdnuma; 1444 } 1445 1446 /* Migration could have started since the pmd_trans_migrating check */ 1447 if (!page_locked) { 1448 spin_unlock(vmf->ptl); 1449 wait_on_page_locked(page); 1450 page_nid = -1; 1451 goto out; 1452 } 1453 1454 /* 1455 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1456 * to serialises splits 1457 */ 1458 get_page(page); 1459 spin_unlock(vmf->ptl); 1460 anon_vma = page_lock_anon_vma_read(page); 1461 1462 /* Confirm the PMD did not change while page_table_lock was released */ 1463 spin_lock(vmf->ptl); 1464 if (unlikely(!pmd_same(pmd, *vmf->pmd))) { 1465 unlock_page(page); 1466 put_page(page); 1467 page_nid = -1; 1468 goto out_unlock; 1469 } 1470 1471 /* Bail if we fail to protect against THP splits for any reason */ 1472 if (unlikely(!anon_vma)) { 1473 put_page(page); 1474 page_nid = -1; 1475 goto clear_pmdnuma; 1476 } 1477 1478 /* 1479 * Migrate the THP to the requested node, returns with page unlocked 1480 * and access rights restored. 1481 */ 1482 spin_unlock(vmf->ptl); 1483 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, 1484 vmf->pmd, pmd, vmf->address, page, target_nid); 1485 if (migrated) { 1486 flags |= TNF_MIGRATED; 1487 page_nid = target_nid; 1488 } else 1489 flags |= TNF_MIGRATE_FAIL; 1490 1491 goto out; 1492 clear_pmdnuma: 1493 BUG_ON(!PageLocked(page)); 1494 was_writable = pmd_savedwrite(pmd); 1495 pmd = pmd_modify(pmd, vma->vm_page_prot); 1496 pmd = pmd_mkyoung(pmd); 1497 if (was_writable) 1498 pmd = pmd_mkwrite(pmd); 1499 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1500 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1501 unlock_page(page); 1502 out_unlock: 1503 spin_unlock(vmf->ptl); 1504 1505 out: 1506 if (anon_vma) 1507 page_unlock_anon_vma_read(anon_vma); 1508 1509 if (page_nid != -1) 1510 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1511 flags); 1512 1513 return 0; 1514 } 1515 1516 /* 1517 * Return true if we do MADV_FREE successfully on entire pmd page. 1518 * Otherwise, return false. 1519 */ 1520 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1521 pmd_t *pmd, unsigned long addr, unsigned long next) 1522 { 1523 spinlock_t *ptl; 1524 pmd_t orig_pmd; 1525 struct page *page; 1526 struct mm_struct *mm = tlb->mm; 1527 bool ret = false; 1528 1529 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); 1530 1531 ptl = pmd_trans_huge_lock(pmd, vma); 1532 if (!ptl) 1533 goto out_unlocked; 1534 1535 orig_pmd = *pmd; 1536 if (is_huge_zero_pmd(orig_pmd)) 1537 goto out; 1538 1539 page = pmd_page(orig_pmd); 1540 /* 1541 * If other processes are mapping this page, we couldn't discard 1542 * the page unless they all do MADV_FREE so let's skip the page. 1543 */ 1544 if (page_mapcount(page) != 1) 1545 goto out; 1546 1547 if (!trylock_page(page)) 1548 goto out; 1549 1550 /* 1551 * If user want to discard part-pages of THP, split it so MADV_FREE 1552 * will deactivate only them. 1553 */ 1554 if (next - addr != HPAGE_PMD_SIZE) { 1555 get_page(page); 1556 spin_unlock(ptl); 1557 split_huge_page(page); 1558 put_page(page); 1559 unlock_page(page); 1560 goto out_unlocked; 1561 } 1562 1563 if (PageDirty(page)) 1564 ClearPageDirty(page); 1565 unlock_page(page); 1566 1567 if (PageActive(page)) 1568 deactivate_page(page); 1569 1570 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1571 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1572 tlb->fullmm); 1573 orig_pmd = pmd_mkold(orig_pmd); 1574 orig_pmd = pmd_mkclean(orig_pmd); 1575 1576 set_pmd_at(mm, addr, pmd, orig_pmd); 1577 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1578 } 1579 ret = true; 1580 out: 1581 spin_unlock(ptl); 1582 out_unlocked: 1583 return ret; 1584 } 1585 1586 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1587 { 1588 pgtable_t pgtable; 1589 1590 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1591 pte_free(mm, pgtable); 1592 atomic_long_dec(&mm->nr_ptes); 1593 } 1594 1595 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1596 pmd_t *pmd, unsigned long addr) 1597 { 1598 pmd_t orig_pmd; 1599 spinlock_t *ptl; 1600 1601 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); 1602 1603 ptl = __pmd_trans_huge_lock(pmd, vma); 1604 if (!ptl) 1605 return 0; 1606 /* 1607 * For architectures like ppc64 we look at deposited pgtable 1608 * when calling pmdp_huge_get_and_clear. So do the 1609 * pgtable_trans_huge_withdraw after finishing pmdp related 1610 * operations. 1611 */ 1612 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1613 tlb->fullmm); 1614 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1615 if (vma_is_dax(vma)) { 1616 spin_unlock(ptl); 1617 if (is_huge_zero_pmd(orig_pmd)) 1618 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1619 } else if (is_huge_zero_pmd(orig_pmd)) { 1620 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd)); 1621 atomic_long_dec(&tlb->mm->nr_ptes); 1622 spin_unlock(ptl); 1623 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1624 } else { 1625 struct page *page = pmd_page(orig_pmd); 1626 page_remove_rmap(page, true); 1627 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1628 VM_BUG_ON_PAGE(!PageHead(page), page); 1629 if (PageAnon(page)) { 1630 pgtable_t pgtable; 1631 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd); 1632 pte_free(tlb->mm, pgtable); 1633 atomic_long_dec(&tlb->mm->nr_ptes); 1634 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1635 } else { 1636 if (arch_needs_pgtable_deposit()) 1637 zap_deposited_table(tlb->mm, pmd); 1638 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1639 } 1640 spin_unlock(ptl); 1641 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1642 } 1643 return 1; 1644 } 1645 1646 #ifndef pmd_move_must_withdraw 1647 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1648 spinlock_t *old_pmd_ptl, 1649 struct vm_area_struct *vma) 1650 { 1651 /* 1652 * With split pmd lock we also need to move preallocated 1653 * PTE page table if new_pmd is on different PMD page table. 1654 * 1655 * We also don't deposit and withdraw tables for file pages. 1656 */ 1657 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1658 } 1659 #endif 1660 1661 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1662 unsigned long new_addr, unsigned long old_end, 1663 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush) 1664 { 1665 spinlock_t *old_ptl, *new_ptl; 1666 pmd_t pmd; 1667 struct mm_struct *mm = vma->vm_mm; 1668 bool force_flush = false; 1669 1670 if ((old_addr & ~HPAGE_PMD_MASK) || 1671 (new_addr & ~HPAGE_PMD_MASK) || 1672 old_end - old_addr < HPAGE_PMD_SIZE) 1673 return false; 1674 1675 /* 1676 * The destination pmd shouldn't be established, free_pgtables() 1677 * should have release it. 1678 */ 1679 if (WARN_ON(!pmd_none(*new_pmd))) { 1680 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1681 return false; 1682 } 1683 1684 /* 1685 * We don't have to worry about the ordering of src and dst 1686 * ptlocks because exclusive mmap_sem prevents deadlock. 1687 */ 1688 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1689 if (old_ptl) { 1690 new_ptl = pmd_lockptr(mm, new_pmd); 1691 if (new_ptl != old_ptl) 1692 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1693 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1694 if (pmd_present(pmd) && pmd_dirty(pmd)) 1695 force_flush = true; 1696 VM_BUG_ON(!pmd_none(*new_pmd)); 1697 1698 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1699 pgtable_t pgtable; 1700 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1701 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1702 } 1703 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); 1704 if (new_ptl != old_ptl) 1705 spin_unlock(new_ptl); 1706 if (force_flush) 1707 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1708 else 1709 *need_flush = true; 1710 spin_unlock(old_ptl); 1711 return true; 1712 } 1713 return false; 1714 } 1715 1716 /* 1717 * Returns 1718 * - 0 if PMD could not be locked 1719 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1720 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1721 */ 1722 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1723 unsigned long addr, pgprot_t newprot, int prot_numa) 1724 { 1725 struct mm_struct *mm = vma->vm_mm; 1726 spinlock_t *ptl; 1727 int ret = 0; 1728 1729 ptl = __pmd_trans_huge_lock(pmd, vma); 1730 if (ptl) { 1731 pmd_t entry; 1732 bool preserve_write = prot_numa && pmd_write(*pmd); 1733 ret = 1; 1734 1735 /* 1736 * Avoid trapping faults against the zero page. The read-only 1737 * data is likely to be read-cached on the local CPU and 1738 * local/remote hits to the zero page are not interesting. 1739 */ 1740 if (prot_numa && is_huge_zero_pmd(*pmd)) { 1741 spin_unlock(ptl); 1742 return ret; 1743 } 1744 1745 if (!prot_numa || !pmd_protnone(*pmd)) { 1746 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd); 1747 entry = pmd_modify(entry, newprot); 1748 if (preserve_write) 1749 entry = pmd_mk_savedwrite(entry); 1750 ret = HPAGE_PMD_NR; 1751 set_pmd_at(mm, addr, pmd, entry); 1752 BUG_ON(vma_is_anonymous(vma) && !preserve_write && 1753 pmd_write(entry)); 1754 } 1755 spin_unlock(ptl); 1756 } 1757 1758 return ret; 1759 } 1760 1761 /* 1762 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1763 * 1764 * Note that if it returns page table lock pointer, this routine returns without 1765 * unlocking page table lock. So callers must unlock it. 1766 */ 1767 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1768 { 1769 spinlock_t *ptl; 1770 ptl = pmd_lock(vma->vm_mm, pmd); 1771 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd))) 1772 return ptl; 1773 spin_unlock(ptl); 1774 return NULL; 1775 } 1776 1777 /* 1778 * Returns true if a given pud maps a thp, false otherwise. 1779 * 1780 * Note that if it returns true, this routine returns without unlocking page 1781 * table lock. So callers must unlock it. 1782 */ 1783 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1784 { 1785 spinlock_t *ptl; 1786 1787 ptl = pud_lock(vma->vm_mm, pud); 1788 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1789 return ptl; 1790 spin_unlock(ptl); 1791 return NULL; 1792 } 1793 1794 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1795 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1796 pud_t *pud, unsigned long addr) 1797 { 1798 pud_t orig_pud; 1799 spinlock_t *ptl; 1800 1801 ptl = __pud_trans_huge_lock(pud, vma); 1802 if (!ptl) 1803 return 0; 1804 /* 1805 * For architectures like ppc64 we look at deposited pgtable 1806 * when calling pudp_huge_get_and_clear. So do the 1807 * pgtable_trans_huge_withdraw after finishing pudp related 1808 * operations. 1809 */ 1810 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud, 1811 tlb->fullmm); 1812 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1813 if (vma_is_dax(vma)) { 1814 spin_unlock(ptl); 1815 /* No zero page support yet */ 1816 } else { 1817 /* No support for anonymous PUD pages yet */ 1818 BUG(); 1819 } 1820 return 1; 1821 } 1822 1823 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 1824 unsigned long haddr) 1825 { 1826 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 1827 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1828 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 1829 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 1830 1831 count_vm_event(THP_SPLIT_PMD); 1832 1833 pudp_huge_clear_flush_notify(vma, haddr, pud); 1834 } 1835 1836 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 1837 unsigned long address) 1838 { 1839 spinlock_t *ptl; 1840 struct mm_struct *mm = vma->vm_mm; 1841 unsigned long haddr = address & HPAGE_PUD_MASK; 1842 1843 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE); 1844 ptl = pud_lock(mm, pud); 1845 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 1846 goto out; 1847 __split_huge_pud_locked(vma, pud, haddr); 1848 1849 out: 1850 spin_unlock(ptl); 1851 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE); 1852 } 1853 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1854 1855 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1856 unsigned long haddr, pmd_t *pmd) 1857 { 1858 struct mm_struct *mm = vma->vm_mm; 1859 pgtable_t pgtable; 1860 pmd_t _pmd; 1861 int i; 1862 1863 /* leave pmd empty until pte is filled */ 1864 pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1865 1866 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1867 pmd_populate(mm, &_pmd, pgtable); 1868 1869 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1870 pte_t *pte, entry; 1871 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 1872 entry = pte_mkspecial(entry); 1873 pte = pte_offset_map(&_pmd, haddr); 1874 VM_BUG_ON(!pte_none(*pte)); 1875 set_pte_at(mm, haddr, pte, entry); 1876 pte_unmap(pte); 1877 } 1878 smp_wmb(); /* make pte visible before pmd */ 1879 pmd_populate(mm, pmd, pgtable); 1880 } 1881 1882 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 1883 unsigned long haddr, bool freeze) 1884 { 1885 struct mm_struct *mm = vma->vm_mm; 1886 struct page *page; 1887 pgtable_t pgtable; 1888 pmd_t _pmd; 1889 bool young, write, dirty, soft_dirty; 1890 unsigned long addr; 1891 int i; 1892 1893 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 1894 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1895 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 1896 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)); 1897 1898 count_vm_event(THP_SPLIT_PMD); 1899 1900 if (!vma_is_anonymous(vma)) { 1901 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1902 /* 1903 * We are going to unmap this huge page. So 1904 * just go ahead and zap it 1905 */ 1906 if (arch_needs_pgtable_deposit()) 1907 zap_deposited_table(mm, pmd); 1908 if (vma_is_dax(vma)) 1909 return; 1910 page = pmd_page(_pmd); 1911 if (!PageReferenced(page) && pmd_young(_pmd)) 1912 SetPageReferenced(page); 1913 page_remove_rmap(page, true); 1914 put_page(page); 1915 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1916 return; 1917 } else if (is_huge_zero_pmd(*pmd)) { 1918 return __split_huge_zero_page_pmd(vma, haddr, pmd); 1919 } 1920 1921 page = pmd_page(*pmd); 1922 VM_BUG_ON_PAGE(!page_count(page), page); 1923 page_ref_add(page, HPAGE_PMD_NR - 1); 1924 write = pmd_write(*pmd); 1925 young = pmd_young(*pmd); 1926 dirty = pmd_dirty(*pmd); 1927 soft_dirty = pmd_soft_dirty(*pmd); 1928 1929 pmdp_huge_split_prepare(vma, haddr, pmd); 1930 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1931 pmd_populate(mm, &_pmd, pgtable); 1932 1933 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 1934 pte_t entry, *pte; 1935 /* 1936 * Note that NUMA hinting access restrictions are not 1937 * transferred to avoid any possibility of altering 1938 * permissions across VMAs. 1939 */ 1940 if (freeze) { 1941 swp_entry_t swp_entry; 1942 swp_entry = make_migration_entry(page + i, write); 1943 entry = swp_entry_to_pte(swp_entry); 1944 if (soft_dirty) 1945 entry = pte_swp_mksoft_dirty(entry); 1946 } else { 1947 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 1948 entry = maybe_mkwrite(entry, vma); 1949 if (!write) 1950 entry = pte_wrprotect(entry); 1951 if (!young) 1952 entry = pte_mkold(entry); 1953 if (soft_dirty) 1954 entry = pte_mksoft_dirty(entry); 1955 } 1956 if (dirty) 1957 SetPageDirty(page + i); 1958 pte = pte_offset_map(&_pmd, addr); 1959 BUG_ON(!pte_none(*pte)); 1960 set_pte_at(mm, addr, pte, entry); 1961 atomic_inc(&page[i]._mapcount); 1962 pte_unmap(pte); 1963 } 1964 1965 /* 1966 * Set PG_double_map before dropping compound_mapcount to avoid 1967 * false-negative page_mapped(). 1968 */ 1969 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) { 1970 for (i = 0; i < HPAGE_PMD_NR; i++) 1971 atomic_inc(&page[i]._mapcount); 1972 } 1973 1974 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 1975 /* Last compound_mapcount is gone. */ 1976 __dec_node_page_state(page, NR_ANON_THPS); 1977 if (TestClearPageDoubleMap(page)) { 1978 /* No need in mapcount reference anymore */ 1979 for (i = 0; i < HPAGE_PMD_NR; i++) 1980 atomic_dec(&page[i]._mapcount); 1981 } 1982 } 1983 1984 smp_wmb(); /* make pte visible before pmd */ 1985 /* 1986 * Up to this point the pmd is present and huge and userland has the 1987 * whole access to the hugepage during the split (which happens in 1988 * place). If we overwrite the pmd with the not-huge version pointing 1989 * to the pte here (which of course we could if all CPUs were bug 1990 * free), userland could trigger a small page size TLB miss on the 1991 * small sized TLB while the hugepage TLB entry is still established in 1992 * the huge TLB. Some CPU doesn't like that. 1993 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum 1994 * 383 on page 93. Intel should be safe but is also warns that it's 1995 * only safe if the permission and cache attributes of the two entries 1996 * loaded in the two TLB is identical (which should be the case here). 1997 * But it is generally safer to never allow small and huge TLB entries 1998 * for the same virtual address to be loaded simultaneously. So instead 1999 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2000 * current pmd notpresent (atomically because here the pmd_trans_huge 2001 * and pmd_trans_splitting must remain set at all times on the pmd 2002 * until the split is complete for this pmd), then we flush the SMP TLB 2003 * and finally we write the non-huge version of the pmd entry with 2004 * pmd_populate. 2005 */ 2006 pmdp_invalidate(vma, haddr, pmd); 2007 pmd_populate(mm, pmd, pgtable); 2008 2009 if (freeze) { 2010 for (i = 0; i < HPAGE_PMD_NR; i++) { 2011 page_remove_rmap(page + i, false); 2012 put_page(page + i); 2013 } 2014 } 2015 } 2016 2017 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2018 unsigned long address, bool freeze, struct page *page) 2019 { 2020 spinlock_t *ptl; 2021 struct mm_struct *mm = vma->vm_mm; 2022 unsigned long haddr = address & HPAGE_PMD_MASK; 2023 2024 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE); 2025 ptl = pmd_lock(mm, pmd); 2026 2027 /* 2028 * If caller asks to setup a migration entries, we need a page to check 2029 * pmd against. Otherwise we can end up replacing wrong page. 2030 */ 2031 VM_BUG_ON(freeze && !page); 2032 if (page && page != pmd_page(*pmd)) 2033 goto out; 2034 2035 if (pmd_trans_huge(*pmd)) { 2036 page = pmd_page(*pmd); 2037 if (PageMlocked(page)) 2038 clear_page_mlock(page); 2039 } else if (!pmd_devmap(*pmd)) 2040 goto out; 2041 __split_huge_pmd_locked(vma, pmd, haddr, freeze); 2042 out: 2043 spin_unlock(ptl); 2044 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE); 2045 } 2046 2047 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2048 bool freeze, struct page *page) 2049 { 2050 pgd_t *pgd; 2051 pud_t *pud; 2052 pmd_t *pmd; 2053 2054 pgd = pgd_offset(vma->vm_mm, address); 2055 if (!pgd_present(*pgd)) 2056 return; 2057 2058 pud = pud_offset(pgd, address); 2059 if (!pud_present(*pud)) 2060 return; 2061 2062 pmd = pmd_offset(pud, address); 2063 2064 __split_huge_pmd(vma, pmd, address, freeze, page); 2065 } 2066 2067 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2068 unsigned long start, 2069 unsigned long end, 2070 long adjust_next) 2071 { 2072 /* 2073 * If the new start address isn't hpage aligned and it could 2074 * previously contain an hugepage: check if we need to split 2075 * an huge pmd. 2076 */ 2077 if (start & ~HPAGE_PMD_MASK && 2078 (start & HPAGE_PMD_MASK) >= vma->vm_start && 2079 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2080 split_huge_pmd_address(vma, start, false, NULL); 2081 2082 /* 2083 * If the new end address isn't hpage aligned and it could 2084 * previously contain an hugepage: check if we need to split 2085 * an huge pmd. 2086 */ 2087 if (end & ~HPAGE_PMD_MASK && 2088 (end & HPAGE_PMD_MASK) >= vma->vm_start && 2089 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2090 split_huge_pmd_address(vma, end, false, NULL); 2091 2092 /* 2093 * If we're also updating the vma->vm_next->vm_start, if the new 2094 * vm_next->vm_start isn't page aligned and it could previously 2095 * contain an hugepage: check if we need to split an huge pmd. 2096 */ 2097 if (adjust_next > 0) { 2098 struct vm_area_struct *next = vma->vm_next; 2099 unsigned long nstart = next->vm_start; 2100 nstart += adjust_next << PAGE_SHIFT; 2101 if (nstart & ~HPAGE_PMD_MASK && 2102 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 2103 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 2104 split_huge_pmd_address(next, nstart, false, NULL); 2105 } 2106 } 2107 2108 static void freeze_page(struct page *page) 2109 { 2110 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | 2111 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD; 2112 int ret; 2113 2114 VM_BUG_ON_PAGE(!PageHead(page), page); 2115 2116 if (PageAnon(page)) 2117 ttu_flags |= TTU_MIGRATION; 2118 2119 ret = try_to_unmap(page, ttu_flags); 2120 VM_BUG_ON_PAGE(ret, page); 2121 } 2122 2123 static void unfreeze_page(struct page *page) 2124 { 2125 int i; 2126 if (PageTransHuge(page)) { 2127 remove_migration_ptes(page, page, true); 2128 } else { 2129 for (i = 0; i < HPAGE_PMD_NR; i++) 2130 remove_migration_ptes(page + i, page + i, true); 2131 } 2132 } 2133 2134 static void __split_huge_page_tail(struct page *head, int tail, 2135 struct lruvec *lruvec, struct list_head *list) 2136 { 2137 struct page *page_tail = head + tail; 2138 2139 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2140 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail); 2141 2142 /* 2143 * tail_page->_refcount is zero and not changing from under us. But 2144 * get_page_unless_zero() may be running from under us on the 2145 * tail_page. If we used atomic_set() below instead of atomic_inc() or 2146 * atomic_add(), we would then run atomic_set() concurrently with 2147 * get_page_unless_zero(), and atomic_set() is implemented in C not 2148 * using locked ops. spin_unlock on x86 sometime uses locked ops 2149 * because of PPro errata 66, 92, so unless somebody can guarantee 2150 * atomic_set() here would be safe on all archs (and not only on x86), 2151 * it's safer to use atomic_inc()/atomic_add(). 2152 */ 2153 if (PageAnon(head)) { 2154 page_ref_inc(page_tail); 2155 } else { 2156 /* Additional pin to radix tree */ 2157 page_ref_add(page_tail, 2); 2158 } 2159 2160 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2161 page_tail->flags |= (head->flags & 2162 ((1L << PG_referenced) | 2163 (1L << PG_swapbacked) | 2164 (1L << PG_mlocked) | 2165 (1L << PG_uptodate) | 2166 (1L << PG_active) | 2167 (1L << PG_locked) | 2168 (1L << PG_unevictable) | 2169 (1L << PG_dirty))); 2170 2171 /* 2172 * After clearing PageTail the gup refcount can be released. 2173 * Page flags also must be visible before we make the page non-compound. 2174 */ 2175 smp_wmb(); 2176 2177 clear_compound_head(page_tail); 2178 2179 if (page_is_young(head)) 2180 set_page_young(page_tail); 2181 if (page_is_idle(head)) 2182 set_page_idle(page_tail); 2183 2184 /* ->mapping in first tail page is compound_mapcount */ 2185 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2186 page_tail); 2187 page_tail->mapping = head->mapping; 2188 2189 page_tail->index = head->index + tail; 2190 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2191 lru_add_page_tail(head, page_tail, lruvec, list); 2192 } 2193 2194 static void __split_huge_page(struct page *page, struct list_head *list, 2195 unsigned long flags) 2196 { 2197 struct page *head = compound_head(page); 2198 struct zone *zone = page_zone(head); 2199 struct lruvec *lruvec; 2200 pgoff_t end = -1; 2201 int i; 2202 2203 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat); 2204 2205 /* complete memcg works before add pages to LRU */ 2206 mem_cgroup_split_huge_fixup(head); 2207 2208 if (!PageAnon(page)) 2209 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE); 2210 2211 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 2212 __split_huge_page_tail(head, i, lruvec, list); 2213 /* Some pages can be beyond i_size: drop them from page cache */ 2214 if (head[i].index >= end) { 2215 __ClearPageDirty(head + i); 2216 __delete_from_page_cache(head + i, NULL); 2217 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) 2218 shmem_uncharge(head->mapping->host, 1); 2219 put_page(head + i); 2220 } 2221 } 2222 2223 ClearPageCompound(head); 2224 /* See comment in __split_huge_page_tail() */ 2225 if (PageAnon(head)) { 2226 page_ref_inc(head); 2227 } else { 2228 /* Additional pin to radix tree */ 2229 page_ref_add(head, 2); 2230 spin_unlock(&head->mapping->tree_lock); 2231 } 2232 2233 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 2234 2235 unfreeze_page(head); 2236 2237 for (i = 0; i < HPAGE_PMD_NR; i++) { 2238 struct page *subpage = head + i; 2239 if (subpage == page) 2240 continue; 2241 unlock_page(subpage); 2242 2243 /* 2244 * Subpages may be freed if there wasn't any mapping 2245 * like if add_to_swap() is running on a lru page that 2246 * had its mapping zapped. And freeing these pages 2247 * requires taking the lru_lock so we do the put_page 2248 * of the tail pages after the split is complete. 2249 */ 2250 put_page(subpage); 2251 } 2252 } 2253 2254 int total_mapcount(struct page *page) 2255 { 2256 int i, compound, ret; 2257 2258 VM_BUG_ON_PAGE(PageTail(page), page); 2259 2260 if (likely(!PageCompound(page))) 2261 return atomic_read(&page->_mapcount) + 1; 2262 2263 compound = compound_mapcount(page); 2264 if (PageHuge(page)) 2265 return compound; 2266 ret = compound; 2267 for (i = 0; i < HPAGE_PMD_NR; i++) 2268 ret += atomic_read(&page[i]._mapcount) + 1; 2269 /* File pages has compound_mapcount included in _mapcount */ 2270 if (!PageAnon(page)) 2271 return ret - compound * HPAGE_PMD_NR; 2272 if (PageDoubleMap(page)) 2273 ret -= HPAGE_PMD_NR; 2274 return ret; 2275 } 2276 2277 /* 2278 * This calculates accurately how many mappings a transparent hugepage 2279 * has (unlike page_mapcount() which isn't fully accurate). This full 2280 * accuracy is primarily needed to know if copy-on-write faults can 2281 * reuse the page and change the mapping to read-write instead of 2282 * copying them. At the same time this returns the total_mapcount too. 2283 * 2284 * The function returns the highest mapcount any one of the subpages 2285 * has. If the return value is one, even if different processes are 2286 * mapping different subpages of the transparent hugepage, they can 2287 * all reuse it, because each process is reusing a different subpage. 2288 * 2289 * The total_mapcount is instead counting all virtual mappings of the 2290 * subpages. If the total_mapcount is equal to "one", it tells the 2291 * caller all mappings belong to the same "mm" and in turn the 2292 * anon_vma of the transparent hugepage can become the vma->anon_vma 2293 * local one as no other process may be mapping any of the subpages. 2294 * 2295 * It would be more accurate to replace page_mapcount() with 2296 * page_trans_huge_mapcount(), however we only use 2297 * page_trans_huge_mapcount() in the copy-on-write faults where we 2298 * need full accuracy to avoid breaking page pinning, because 2299 * page_trans_huge_mapcount() is slower than page_mapcount(). 2300 */ 2301 int page_trans_huge_mapcount(struct page *page, int *total_mapcount) 2302 { 2303 int i, ret, _total_mapcount, mapcount; 2304 2305 /* hugetlbfs shouldn't call it */ 2306 VM_BUG_ON_PAGE(PageHuge(page), page); 2307 2308 if (likely(!PageTransCompound(page))) { 2309 mapcount = atomic_read(&page->_mapcount) + 1; 2310 if (total_mapcount) 2311 *total_mapcount = mapcount; 2312 return mapcount; 2313 } 2314 2315 page = compound_head(page); 2316 2317 _total_mapcount = ret = 0; 2318 for (i = 0; i < HPAGE_PMD_NR; i++) { 2319 mapcount = atomic_read(&page[i]._mapcount) + 1; 2320 ret = max(ret, mapcount); 2321 _total_mapcount += mapcount; 2322 } 2323 if (PageDoubleMap(page)) { 2324 ret -= 1; 2325 _total_mapcount -= HPAGE_PMD_NR; 2326 } 2327 mapcount = compound_mapcount(page); 2328 ret += mapcount; 2329 _total_mapcount += mapcount; 2330 if (total_mapcount) 2331 *total_mapcount = _total_mapcount; 2332 return ret; 2333 } 2334 2335 /* 2336 * This function splits huge page into normal pages. @page can point to any 2337 * subpage of huge page to split. Split doesn't change the position of @page. 2338 * 2339 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2340 * The huge page must be locked. 2341 * 2342 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2343 * 2344 * Both head page and tail pages will inherit mapping, flags, and so on from 2345 * the hugepage. 2346 * 2347 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2348 * they are not mapped. 2349 * 2350 * Returns 0 if the hugepage is split successfully. 2351 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2352 * us. 2353 */ 2354 int split_huge_page_to_list(struct page *page, struct list_head *list) 2355 { 2356 struct page *head = compound_head(page); 2357 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); 2358 struct anon_vma *anon_vma = NULL; 2359 struct address_space *mapping = NULL; 2360 int count, mapcount, extra_pins, ret; 2361 bool mlocked; 2362 unsigned long flags; 2363 2364 VM_BUG_ON_PAGE(is_huge_zero_page(page), page); 2365 VM_BUG_ON_PAGE(!PageLocked(page), page); 2366 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 2367 VM_BUG_ON_PAGE(!PageCompound(page), page); 2368 2369 if (PageAnon(head)) { 2370 /* 2371 * The caller does not necessarily hold an mmap_sem that would 2372 * prevent the anon_vma disappearing so we first we take a 2373 * reference to it and then lock the anon_vma for write. This 2374 * is similar to page_lock_anon_vma_read except the write lock 2375 * is taken to serialise against parallel split or collapse 2376 * operations. 2377 */ 2378 anon_vma = page_get_anon_vma(head); 2379 if (!anon_vma) { 2380 ret = -EBUSY; 2381 goto out; 2382 } 2383 extra_pins = 0; 2384 mapping = NULL; 2385 anon_vma_lock_write(anon_vma); 2386 } else { 2387 mapping = head->mapping; 2388 2389 /* Truncated ? */ 2390 if (!mapping) { 2391 ret = -EBUSY; 2392 goto out; 2393 } 2394 2395 /* Addidional pins from radix tree */ 2396 extra_pins = HPAGE_PMD_NR; 2397 anon_vma = NULL; 2398 i_mmap_lock_read(mapping); 2399 } 2400 2401 /* 2402 * Racy check if we can split the page, before freeze_page() will 2403 * split PMDs 2404 */ 2405 if (total_mapcount(head) != page_count(head) - extra_pins - 1) { 2406 ret = -EBUSY; 2407 goto out_unlock; 2408 } 2409 2410 mlocked = PageMlocked(page); 2411 freeze_page(head); 2412 VM_BUG_ON_PAGE(compound_mapcount(head), head); 2413 2414 /* Make sure the page is not on per-CPU pagevec as it takes pin */ 2415 if (mlocked) 2416 lru_add_drain(); 2417 2418 /* prevent PageLRU to go away from under us, and freeze lru stats */ 2419 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags); 2420 2421 if (mapping) { 2422 void **pslot; 2423 2424 spin_lock(&mapping->tree_lock); 2425 pslot = radix_tree_lookup_slot(&mapping->page_tree, 2426 page_index(head)); 2427 /* 2428 * Check if the head page is present in radix tree. 2429 * We assume all tail are present too, if head is there. 2430 */ 2431 if (radix_tree_deref_slot_protected(pslot, 2432 &mapping->tree_lock) != head) 2433 goto fail; 2434 } 2435 2436 /* Prevent deferred_split_scan() touching ->_refcount */ 2437 spin_lock(&pgdata->split_queue_lock); 2438 count = page_count(head); 2439 mapcount = total_mapcount(head); 2440 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { 2441 if (!list_empty(page_deferred_list(head))) { 2442 pgdata->split_queue_len--; 2443 list_del(page_deferred_list(head)); 2444 } 2445 if (mapping) 2446 __dec_node_page_state(page, NR_SHMEM_THPS); 2447 spin_unlock(&pgdata->split_queue_lock); 2448 __split_huge_page(page, list, flags); 2449 ret = 0; 2450 } else { 2451 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { 2452 pr_alert("total_mapcount: %u, page_count(): %u\n", 2453 mapcount, count); 2454 if (PageTail(page)) 2455 dump_page(head, NULL); 2456 dump_page(page, "total_mapcount(head) > 0"); 2457 BUG(); 2458 } 2459 spin_unlock(&pgdata->split_queue_lock); 2460 fail: if (mapping) 2461 spin_unlock(&mapping->tree_lock); 2462 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 2463 unfreeze_page(head); 2464 ret = -EBUSY; 2465 } 2466 2467 out_unlock: 2468 if (anon_vma) { 2469 anon_vma_unlock_write(anon_vma); 2470 put_anon_vma(anon_vma); 2471 } 2472 if (mapping) 2473 i_mmap_unlock_read(mapping); 2474 out: 2475 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2476 return ret; 2477 } 2478 2479 void free_transhuge_page(struct page *page) 2480 { 2481 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2482 unsigned long flags; 2483 2484 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2485 if (!list_empty(page_deferred_list(page))) { 2486 pgdata->split_queue_len--; 2487 list_del(page_deferred_list(page)); 2488 } 2489 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2490 free_compound_page(page); 2491 } 2492 2493 void deferred_split_huge_page(struct page *page) 2494 { 2495 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2496 unsigned long flags; 2497 2498 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2499 2500 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2501 if (list_empty(page_deferred_list(page))) { 2502 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2503 list_add_tail(page_deferred_list(page), &pgdata->split_queue); 2504 pgdata->split_queue_len++; 2505 } 2506 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2507 } 2508 2509 static unsigned long deferred_split_count(struct shrinker *shrink, 2510 struct shrink_control *sc) 2511 { 2512 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2513 return ACCESS_ONCE(pgdata->split_queue_len); 2514 } 2515 2516 static unsigned long deferred_split_scan(struct shrinker *shrink, 2517 struct shrink_control *sc) 2518 { 2519 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2520 unsigned long flags; 2521 LIST_HEAD(list), *pos, *next; 2522 struct page *page; 2523 int split = 0; 2524 2525 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2526 /* Take pin on all head pages to avoid freeing them under us */ 2527 list_for_each_safe(pos, next, &pgdata->split_queue) { 2528 page = list_entry((void *)pos, struct page, mapping); 2529 page = compound_head(page); 2530 if (get_page_unless_zero(page)) { 2531 list_move(page_deferred_list(page), &list); 2532 } else { 2533 /* We lost race with put_compound_page() */ 2534 list_del_init(page_deferred_list(page)); 2535 pgdata->split_queue_len--; 2536 } 2537 if (!--sc->nr_to_scan) 2538 break; 2539 } 2540 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2541 2542 list_for_each_safe(pos, next, &list) { 2543 page = list_entry((void *)pos, struct page, mapping); 2544 lock_page(page); 2545 /* split_huge_page() removes page from list on success */ 2546 if (!split_huge_page(page)) 2547 split++; 2548 unlock_page(page); 2549 put_page(page); 2550 } 2551 2552 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2553 list_splice_tail(&list, &pgdata->split_queue); 2554 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2555 2556 /* 2557 * Stop shrinker if we didn't split any page, but the queue is empty. 2558 * This can happen if pages were freed under us. 2559 */ 2560 if (!split && list_empty(&pgdata->split_queue)) 2561 return SHRINK_STOP; 2562 return split; 2563 } 2564 2565 static struct shrinker deferred_split_shrinker = { 2566 .count_objects = deferred_split_count, 2567 .scan_objects = deferred_split_scan, 2568 .seeks = DEFAULT_SEEKS, 2569 .flags = SHRINKER_NUMA_AWARE, 2570 }; 2571 2572 #ifdef CONFIG_DEBUG_FS 2573 static int split_huge_pages_set(void *data, u64 val) 2574 { 2575 struct zone *zone; 2576 struct page *page; 2577 unsigned long pfn, max_zone_pfn; 2578 unsigned long total = 0, split = 0; 2579 2580 if (val != 1) 2581 return -EINVAL; 2582 2583 for_each_populated_zone(zone) { 2584 max_zone_pfn = zone_end_pfn(zone); 2585 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2586 if (!pfn_valid(pfn)) 2587 continue; 2588 2589 page = pfn_to_page(pfn); 2590 if (!get_page_unless_zero(page)) 2591 continue; 2592 2593 if (zone != page_zone(page)) 2594 goto next; 2595 2596 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2597 goto next; 2598 2599 total++; 2600 lock_page(page); 2601 if (!split_huge_page(page)) 2602 split++; 2603 unlock_page(page); 2604 next: 2605 put_page(page); 2606 } 2607 } 2608 2609 pr_info("%lu of %lu THP split\n", split, total); 2610 2611 return 0; 2612 } 2613 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, 2614 "%llu\n"); 2615 2616 static int __init split_huge_pages_debugfs(void) 2617 { 2618 void *ret; 2619 2620 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 2621 &split_huge_pages_fops); 2622 if (!ret) 2623 pr_warn("Failed to create split_huge_pages in debugfs"); 2624 return 0; 2625 } 2626 late_initcall(split_huge_pages_debugfs); 2627 #endif 2628