xref: /openbmc/linux/mm/huge_memory.c (revision aac5987a)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 
36 #include <asm/tlb.h>
37 #include <asm/pgalloc.h>
38 #include "internal.h"
39 
40 /*
41  * By default transparent hugepage support is disabled in order that avoid
42  * to risk increase the memory footprint of applications without a guaranteed
43  * benefit. When transparent hugepage support is enabled, is for all mappings,
44  * and khugepaged scans all mappings.
45  * Defrag is invoked by khugepaged hugepage allocations and by page faults
46  * for all hugepage allocations.
47  */
48 unsigned long transparent_hugepage_flags __read_mostly =
49 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
50 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
51 #endif
52 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
53 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
54 #endif
55 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
58 
59 static struct shrinker deferred_split_shrinker;
60 
61 static atomic_t huge_zero_refcount;
62 struct page *huge_zero_page __read_mostly;
63 
64 static struct page *get_huge_zero_page(void)
65 {
66 	struct page *zero_page;
67 retry:
68 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
69 		return READ_ONCE(huge_zero_page);
70 
71 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
72 			HPAGE_PMD_ORDER);
73 	if (!zero_page) {
74 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
75 		return NULL;
76 	}
77 	count_vm_event(THP_ZERO_PAGE_ALLOC);
78 	preempt_disable();
79 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
80 		preempt_enable();
81 		__free_pages(zero_page, compound_order(zero_page));
82 		goto retry;
83 	}
84 
85 	/* We take additional reference here. It will be put back by shrinker */
86 	atomic_set(&huge_zero_refcount, 2);
87 	preempt_enable();
88 	return READ_ONCE(huge_zero_page);
89 }
90 
91 static void put_huge_zero_page(void)
92 {
93 	/*
94 	 * Counter should never go to zero here. Only shrinker can put
95 	 * last reference.
96 	 */
97 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
98 }
99 
100 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
101 {
102 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
103 		return READ_ONCE(huge_zero_page);
104 
105 	if (!get_huge_zero_page())
106 		return NULL;
107 
108 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
109 		put_huge_zero_page();
110 
111 	return READ_ONCE(huge_zero_page);
112 }
113 
114 void mm_put_huge_zero_page(struct mm_struct *mm)
115 {
116 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
117 		put_huge_zero_page();
118 }
119 
120 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
121 					struct shrink_control *sc)
122 {
123 	/* we can free zero page only if last reference remains */
124 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
125 }
126 
127 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
128 				       struct shrink_control *sc)
129 {
130 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
131 		struct page *zero_page = xchg(&huge_zero_page, NULL);
132 		BUG_ON(zero_page == NULL);
133 		__free_pages(zero_page, compound_order(zero_page));
134 		return HPAGE_PMD_NR;
135 	}
136 
137 	return 0;
138 }
139 
140 static struct shrinker huge_zero_page_shrinker = {
141 	.count_objects = shrink_huge_zero_page_count,
142 	.scan_objects = shrink_huge_zero_page_scan,
143 	.seeks = DEFAULT_SEEKS,
144 };
145 
146 #ifdef CONFIG_SYSFS
147 static ssize_t enabled_show(struct kobject *kobj,
148 			    struct kobj_attribute *attr, char *buf)
149 {
150 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
151 		return sprintf(buf, "[always] madvise never\n");
152 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
153 		return sprintf(buf, "always [madvise] never\n");
154 	else
155 		return sprintf(buf, "always madvise [never]\n");
156 }
157 
158 static ssize_t enabled_store(struct kobject *kobj,
159 			     struct kobj_attribute *attr,
160 			     const char *buf, size_t count)
161 {
162 	ssize_t ret = count;
163 
164 	if (!memcmp("always", buf,
165 		    min(sizeof("always")-1, count))) {
166 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
167 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
168 	} else if (!memcmp("madvise", buf,
169 			   min(sizeof("madvise")-1, count))) {
170 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
171 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
172 	} else if (!memcmp("never", buf,
173 			   min(sizeof("never")-1, count))) {
174 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
175 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
176 	} else
177 		ret = -EINVAL;
178 
179 	if (ret > 0) {
180 		int err = start_stop_khugepaged();
181 		if (err)
182 			ret = err;
183 	}
184 	return ret;
185 }
186 static struct kobj_attribute enabled_attr =
187 	__ATTR(enabled, 0644, enabled_show, enabled_store);
188 
189 ssize_t single_hugepage_flag_show(struct kobject *kobj,
190 				struct kobj_attribute *attr, char *buf,
191 				enum transparent_hugepage_flag flag)
192 {
193 	return sprintf(buf, "%d\n",
194 		       !!test_bit(flag, &transparent_hugepage_flags));
195 }
196 
197 ssize_t single_hugepage_flag_store(struct kobject *kobj,
198 				 struct kobj_attribute *attr,
199 				 const char *buf, size_t count,
200 				 enum transparent_hugepage_flag flag)
201 {
202 	unsigned long value;
203 	int ret;
204 
205 	ret = kstrtoul(buf, 10, &value);
206 	if (ret < 0)
207 		return ret;
208 	if (value > 1)
209 		return -EINVAL;
210 
211 	if (value)
212 		set_bit(flag, &transparent_hugepage_flags);
213 	else
214 		clear_bit(flag, &transparent_hugepage_flags);
215 
216 	return count;
217 }
218 
219 static ssize_t defrag_show(struct kobject *kobj,
220 			   struct kobj_attribute *attr, char *buf)
221 {
222 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
223 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
224 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
225 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
226 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
227 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
228 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
229 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
230 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
231 }
232 
233 static ssize_t defrag_store(struct kobject *kobj,
234 			    struct kobj_attribute *attr,
235 			    const char *buf, size_t count)
236 {
237 	if (!memcmp("always", buf,
238 		    min(sizeof("always")-1, count))) {
239 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
240 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
241 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
242 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
243 	} else if (!memcmp("defer", buf,
244 		    min(sizeof("defer")-1, count))) {
245 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
246 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
247 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
248 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
249 	} else if (!memcmp("defer+madvise", buf,
250 		    min(sizeof("defer+madvise")-1, count))) {
251 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
253 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
255 	} else if (!memcmp("madvise", buf,
256 			   min(sizeof("madvise")-1, count))) {
257 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
259 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
261 	} else if (!memcmp("never", buf,
262 			   min(sizeof("never")-1, count))) {
263 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
264 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
267 	} else
268 		return -EINVAL;
269 
270 	return count;
271 }
272 static struct kobj_attribute defrag_attr =
273 	__ATTR(defrag, 0644, defrag_show, defrag_store);
274 
275 static ssize_t use_zero_page_show(struct kobject *kobj,
276 		struct kobj_attribute *attr, char *buf)
277 {
278 	return single_hugepage_flag_show(kobj, attr, buf,
279 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
280 }
281 static ssize_t use_zero_page_store(struct kobject *kobj,
282 		struct kobj_attribute *attr, const char *buf, size_t count)
283 {
284 	return single_hugepage_flag_store(kobj, attr, buf, count,
285 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
286 }
287 static struct kobj_attribute use_zero_page_attr =
288 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
289 
290 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
291 		struct kobj_attribute *attr, char *buf)
292 {
293 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
294 }
295 static struct kobj_attribute hpage_pmd_size_attr =
296 	__ATTR_RO(hpage_pmd_size);
297 
298 #ifdef CONFIG_DEBUG_VM
299 static ssize_t debug_cow_show(struct kobject *kobj,
300 				struct kobj_attribute *attr, char *buf)
301 {
302 	return single_hugepage_flag_show(kobj, attr, buf,
303 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
304 }
305 static ssize_t debug_cow_store(struct kobject *kobj,
306 			       struct kobj_attribute *attr,
307 			       const char *buf, size_t count)
308 {
309 	return single_hugepage_flag_store(kobj, attr, buf, count,
310 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
311 }
312 static struct kobj_attribute debug_cow_attr =
313 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
314 #endif /* CONFIG_DEBUG_VM */
315 
316 static struct attribute *hugepage_attr[] = {
317 	&enabled_attr.attr,
318 	&defrag_attr.attr,
319 	&use_zero_page_attr.attr,
320 	&hpage_pmd_size_attr.attr,
321 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
322 	&shmem_enabled_attr.attr,
323 #endif
324 #ifdef CONFIG_DEBUG_VM
325 	&debug_cow_attr.attr,
326 #endif
327 	NULL,
328 };
329 
330 static struct attribute_group hugepage_attr_group = {
331 	.attrs = hugepage_attr,
332 };
333 
334 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
335 {
336 	int err;
337 
338 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
339 	if (unlikely(!*hugepage_kobj)) {
340 		pr_err("failed to create transparent hugepage kobject\n");
341 		return -ENOMEM;
342 	}
343 
344 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
345 	if (err) {
346 		pr_err("failed to register transparent hugepage group\n");
347 		goto delete_obj;
348 	}
349 
350 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
351 	if (err) {
352 		pr_err("failed to register transparent hugepage group\n");
353 		goto remove_hp_group;
354 	}
355 
356 	return 0;
357 
358 remove_hp_group:
359 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
360 delete_obj:
361 	kobject_put(*hugepage_kobj);
362 	return err;
363 }
364 
365 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
366 {
367 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
368 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
369 	kobject_put(hugepage_kobj);
370 }
371 #else
372 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
373 {
374 	return 0;
375 }
376 
377 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
378 {
379 }
380 #endif /* CONFIG_SYSFS */
381 
382 static int __init hugepage_init(void)
383 {
384 	int err;
385 	struct kobject *hugepage_kobj;
386 
387 	if (!has_transparent_hugepage()) {
388 		transparent_hugepage_flags = 0;
389 		return -EINVAL;
390 	}
391 
392 	/*
393 	 * hugepages can't be allocated by the buddy allocator
394 	 */
395 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
396 	/*
397 	 * we use page->mapping and page->index in second tail page
398 	 * as list_head: assuming THP order >= 2
399 	 */
400 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
401 
402 	err = hugepage_init_sysfs(&hugepage_kobj);
403 	if (err)
404 		goto err_sysfs;
405 
406 	err = khugepaged_init();
407 	if (err)
408 		goto err_slab;
409 
410 	err = register_shrinker(&huge_zero_page_shrinker);
411 	if (err)
412 		goto err_hzp_shrinker;
413 	err = register_shrinker(&deferred_split_shrinker);
414 	if (err)
415 		goto err_split_shrinker;
416 
417 	/*
418 	 * By default disable transparent hugepages on smaller systems,
419 	 * where the extra memory used could hurt more than TLB overhead
420 	 * is likely to save.  The admin can still enable it through /sys.
421 	 */
422 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
423 		transparent_hugepage_flags = 0;
424 		return 0;
425 	}
426 
427 	err = start_stop_khugepaged();
428 	if (err)
429 		goto err_khugepaged;
430 
431 	return 0;
432 err_khugepaged:
433 	unregister_shrinker(&deferred_split_shrinker);
434 err_split_shrinker:
435 	unregister_shrinker(&huge_zero_page_shrinker);
436 err_hzp_shrinker:
437 	khugepaged_destroy();
438 err_slab:
439 	hugepage_exit_sysfs(hugepage_kobj);
440 err_sysfs:
441 	return err;
442 }
443 subsys_initcall(hugepage_init);
444 
445 static int __init setup_transparent_hugepage(char *str)
446 {
447 	int ret = 0;
448 	if (!str)
449 		goto out;
450 	if (!strcmp(str, "always")) {
451 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
452 			&transparent_hugepage_flags);
453 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
454 			  &transparent_hugepage_flags);
455 		ret = 1;
456 	} else if (!strcmp(str, "madvise")) {
457 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
458 			  &transparent_hugepage_flags);
459 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
460 			&transparent_hugepage_flags);
461 		ret = 1;
462 	} else if (!strcmp(str, "never")) {
463 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
464 			  &transparent_hugepage_flags);
465 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
466 			  &transparent_hugepage_flags);
467 		ret = 1;
468 	}
469 out:
470 	if (!ret)
471 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
472 	return ret;
473 }
474 __setup("transparent_hugepage=", setup_transparent_hugepage);
475 
476 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
477 {
478 	if (likely(vma->vm_flags & VM_WRITE))
479 		pmd = pmd_mkwrite(pmd);
480 	return pmd;
481 }
482 
483 static inline struct list_head *page_deferred_list(struct page *page)
484 {
485 	/*
486 	 * ->lru in the tail pages is occupied by compound_head.
487 	 * Let's use ->mapping + ->index in the second tail page as list_head.
488 	 */
489 	return (struct list_head *)&page[2].mapping;
490 }
491 
492 void prep_transhuge_page(struct page *page)
493 {
494 	/*
495 	 * we use page->mapping and page->indexlru in second tail page
496 	 * as list_head: assuming THP order >= 2
497 	 */
498 
499 	INIT_LIST_HEAD(page_deferred_list(page));
500 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
501 }
502 
503 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
504 		loff_t off, unsigned long flags, unsigned long size)
505 {
506 	unsigned long addr;
507 	loff_t off_end = off + len;
508 	loff_t off_align = round_up(off, size);
509 	unsigned long len_pad;
510 
511 	if (off_end <= off_align || (off_end - off_align) < size)
512 		return 0;
513 
514 	len_pad = len + size;
515 	if (len_pad < len || (off + len_pad) < off)
516 		return 0;
517 
518 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
519 					      off >> PAGE_SHIFT, flags);
520 	if (IS_ERR_VALUE(addr))
521 		return 0;
522 
523 	addr += (off - addr) & (size - 1);
524 	return addr;
525 }
526 
527 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
528 		unsigned long len, unsigned long pgoff, unsigned long flags)
529 {
530 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
531 
532 	if (addr)
533 		goto out;
534 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
535 		goto out;
536 
537 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
538 	if (addr)
539 		return addr;
540 
541  out:
542 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
543 }
544 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
545 
546 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
547 		gfp_t gfp)
548 {
549 	struct vm_area_struct *vma = vmf->vma;
550 	struct mem_cgroup *memcg;
551 	pgtable_t pgtable;
552 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
553 
554 	VM_BUG_ON_PAGE(!PageCompound(page), page);
555 
556 	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
557 		put_page(page);
558 		count_vm_event(THP_FAULT_FALLBACK);
559 		return VM_FAULT_FALLBACK;
560 	}
561 
562 	pgtable = pte_alloc_one(vma->vm_mm, haddr);
563 	if (unlikely(!pgtable)) {
564 		mem_cgroup_cancel_charge(page, memcg, true);
565 		put_page(page);
566 		return VM_FAULT_OOM;
567 	}
568 
569 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
570 	/*
571 	 * The memory barrier inside __SetPageUptodate makes sure that
572 	 * clear_huge_page writes become visible before the set_pmd_at()
573 	 * write.
574 	 */
575 	__SetPageUptodate(page);
576 
577 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
578 	if (unlikely(!pmd_none(*vmf->pmd))) {
579 		spin_unlock(vmf->ptl);
580 		mem_cgroup_cancel_charge(page, memcg, true);
581 		put_page(page);
582 		pte_free(vma->vm_mm, pgtable);
583 	} else {
584 		pmd_t entry;
585 
586 		/* Deliver the page fault to userland */
587 		if (userfaultfd_missing(vma)) {
588 			int ret;
589 
590 			spin_unlock(vmf->ptl);
591 			mem_cgroup_cancel_charge(page, memcg, true);
592 			put_page(page);
593 			pte_free(vma->vm_mm, pgtable);
594 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
595 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
596 			return ret;
597 		}
598 
599 		entry = mk_huge_pmd(page, vma->vm_page_prot);
600 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
601 		page_add_new_anon_rmap(page, vma, haddr, true);
602 		mem_cgroup_commit_charge(page, memcg, false, true);
603 		lru_cache_add_active_or_unevictable(page, vma);
604 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
605 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
606 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
607 		atomic_long_inc(&vma->vm_mm->nr_ptes);
608 		spin_unlock(vmf->ptl);
609 		count_vm_event(THP_FAULT_ALLOC);
610 	}
611 
612 	return 0;
613 }
614 
615 /*
616  * always: directly stall for all thp allocations
617  * defer: wake kswapd and fail if not immediately available
618  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
619  *		  fail if not immediately available
620  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
621  *	    available
622  * never: never stall for any thp allocation
623  */
624 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
625 {
626 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
627 
628 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
629 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
630 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
631 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
632 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
633 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
634 							     __GFP_KSWAPD_RECLAIM);
635 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
636 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
637 							     0);
638 	return GFP_TRANSHUGE_LIGHT;
639 }
640 
641 /* Caller must hold page table lock. */
642 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
643 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
644 		struct page *zero_page)
645 {
646 	pmd_t entry;
647 	if (!pmd_none(*pmd))
648 		return false;
649 	entry = mk_pmd(zero_page, vma->vm_page_prot);
650 	entry = pmd_mkhuge(entry);
651 	if (pgtable)
652 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
653 	set_pmd_at(mm, haddr, pmd, entry);
654 	atomic_long_inc(&mm->nr_ptes);
655 	return true;
656 }
657 
658 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
659 {
660 	struct vm_area_struct *vma = vmf->vma;
661 	gfp_t gfp;
662 	struct page *page;
663 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
664 
665 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
666 		return VM_FAULT_FALLBACK;
667 	if (unlikely(anon_vma_prepare(vma)))
668 		return VM_FAULT_OOM;
669 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
670 		return VM_FAULT_OOM;
671 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
672 			!mm_forbids_zeropage(vma->vm_mm) &&
673 			transparent_hugepage_use_zero_page()) {
674 		pgtable_t pgtable;
675 		struct page *zero_page;
676 		bool set;
677 		int ret;
678 		pgtable = pte_alloc_one(vma->vm_mm, haddr);
679 		if (unlikely(!pgtable))
680 			return VM_FAULT_OOM;
681 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
682 		if (unlikely(!zero_page)) {
683 			pte_free(vma->vm_mm, pgtable);
684 			count_vm_event(THP_FAULT_FALLBACK);
685 			return VM_FAULT_FALLBACK;
686 		}
687 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
688 		ret = 0;
689 		set = false;
690 		if (pmd_none(*vmf->pmd)) {
691 			if (userfaultfd_missing(vma)) {
692 				spin_unlock(vmf->ptl);
693 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
694 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
695 			} else {
696 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
697 						   haddr, vmf->pmd, zero_page);
698 				spin_unlock(vmf->ptl);
699 				set = true;
700 			}
701 		} else
702 			spin_unlock(vmf->ptl);
703 		if (!set)
704 			pte_free(vma->vm_mm, pgtable);
705 		return ret;
706 	}
707 	gfp = alloc_hugepage_direct_gfpmask(vma);
708 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
709 	if (unlikely(!page)) {
710 		count_vm_event(THP_FAULT_FALLBACK);
711 		return VM_FAULT_FALLBACK;
712 	}
713 	prep_transhuge_page(page);
714 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
715 }
716 
717 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
718 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
719 {
720 	struct mm_struct *mm = vma->vm_mm;
721 	pmd_t entry;
722 	spinlock_t *ptl;
723 
724 	ptl = pmd_lock(mm, pmd);
725 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
726 	if (pfn_t_devmap(pfn))
727 		entry = pmd_mkdevmap(entry);
728 	if (write) {
729 		entry = pmd_mkyoung(pmd_mkdirty(entry));
730 		entry = maybe_pmd_mkwrite(entry, vma);
731 	}
732 	set_pmd_at(mm, addr, pmd, entry);
733 	update_mmu_cache_pmd(vma, addr, pmd);
734 	spin_unlock(ptl);
735 }
736 
737 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
738 			pmd_t *pmd, pfn_t pfn, bool write)
739 {
740 	pgprot_t pgprot = vma->vm_page_prot;
741 	/*
742 	 * If we had pmd_special, we could avoid all these restrictions,
743 	 * but we need to be consistent with PTEs and architectures that
744 	 * can't support a 'special' bit.
745 	 */
746 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
747 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
748 						(VM_PFNMAP|VM_MIXEDMAP));
749 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
750 	BUG_ON(!pfn_t_devmap(pfn));
751 
752 	if (addr < vma->vm_start || addr >= vma->vm_end)
753 		return VM_FAULT_SIGBUS;
754 
755 	track_pfn_insert(vma, &pgprot, pfn);
756 
757 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
758 	return VM_FAULT_NOPAGE;
759 }
760 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
761 
762 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
763 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
764 {
765 	if (likely(vma->vm_flags & VM_WRITE))
766 		pud = pud_mkwrite(pud);
767 	return pud;
768 }
769 
770 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
771 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
772 {
773 	struct mm_struct *mm = vma->vm_mm;
774 	pud_t entry;
775 	spinlock_t *ptl;
776 
777 	ptl = pud_lock(mm, pud);
778 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
779 	if (pfn_t_devmap(pfn))
780 		entry = pud_mkdevmap(entry);
781 	if (write) {
782 		entry = pud_mkyoung(pud_mkdirty(entry));
783 		entry = maybe_pud_mkwrite(entry, vma);
784 	}
785 	set_pud_at(mm, addr, pud, entry);
786 	update_mmu_cache_pud(vma, addr, pud);
787 	spin_unlock(ptl);
788 }
789 
790 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
791 			pud_t *pud, pfn_t pfn, bool write)
792 {
793 	pgprot_t pgprot = vma->vm_page_prot;
794 	/*
795 	 * If we had pud_special, we could avoid all these restrictions,
796 	 * but we need to be consistent with PTEs and architectures that
797 	 * can't support a 'special' bit.
798 	 */
799 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
800 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
801 						(VM_PFNMAP|VM_MIXEDMAP));
802 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
803 	BUG_ON(!pfn_t_devmap(pfn));
804 
805 	if (addr < vma->vm_start || addr >= vma->vm_end)
806 		return VM_FAULT_SIGBUS;
807 
808 	track_pfn_insert(vma, &pgprot, pfn);
809 
810 	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
811 	return VM_FAULT_NOPAGE;
812 }
813 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
814 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
815 
816 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
817 		pmd_t *pmd)
818 {
819 	pmd_t _pmd;
820 
821 	/*
822 	 * We should set the dirty bit only for FOLL_WRITE but for now
823 	 * the dirty bit in the pmd is meaningless.  And if the dirty
824 	 * bit will become meaningful and we'll only set it with
825 	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
826 	 * set the young bit, instead of the current set_pmd_at.
827 	 */
828 	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
829 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
830 				pmd, _pmd,  1))
831 		update_mmu_cache_pmd(vma, addr, pmd);
832 }
833 
834 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
835 		pmd_t *pmd, int flags)
836 {
837 	unsigned long pfn = pmd_pfn(*pmd);
838 	struct mm_struct *mm = vma->vm_mm;
839 	struct dev_pagemap *pgmap;
840 	struct page *page;
841 
842 	assert_spin_locked(pmd_lockptr(mm, pmd));
843 
844 	/*
845 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
846 	 * not be in this function with `flags & FOLL_COW` set.
847 	 */
848 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
849 
850 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
851 		return NULL;
852 
853 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
854 		/* pass */;
855 	else
856 		return NULL;
857 
858 	if (flags & FOLL_TOUCH)
859 		touch_pmd(vma, addr, pmd);
860 
861 	/*
862 	 * device mapped pages can only be returned if the
863 	 * caller will manage the page reference count.
864 	 */
865 	if (!(flags & FOLL_GET))
866 		return ERR_PTR(-EEXIST);
867 
868 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
869 	pgmap = get_dev_pagemap(pfn, NULL);
870 	if (!pgmap)
871 		return ERR_PTR(-EFAULT);
872 	page = pfn_to_page(pfn);
873 	get_page(page);
874 	put_dev_pagemap(pgmap);
875 
876 	return page;
877 }
878 
879 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
880 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
881 		  struct vm_area_struct *vma)
882 {
883 	spinlock_t *dst_ptl, *src_ptl;
884 	struct page *src_page;
885 	pmd_t pmd;
886 	pgtable_t pgtable = NULL;
887 	int ret = -ENOMEM;
888 
889 	/* Skip if can be re-fill on fault */
890 	if (!vma_is_anonymous(vma))
891 		return 0;
892 
893 	pgtable = pte_alloc_one(dst_mm, addr);
894 	if (unlikely(!pgtable))
895 		goto out;
896 
897 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
898 	src_ptl = pmd_lockptr(src_mm, src_pmd);
899 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
900 
901 	ret = -EAGAIN;
902 	pmd = *src_pmd;
903 	if (unlikely(!pmd_trans_huge(pmd))) {
904 		pte_free(dst_mm, pgtable);
905 		goto out_unlock;
906 	}
907 	/*
908 	 * When page table lock is held, the huge zero pmd should not be
909 	 * under splitting since we don't split the page itself, only pmd to
910 	 * a page table.
911 	 */
912 	if (is_huge_zero_pmd(pmd)) {
913 		struct page *zero_page;
914 		/*
915 		 * get_huge_zero_page() will never allocate a new page here,
916 		 * since we already have a zero page to copy. It just takes a
917 		 * reference.
918 		 */
919 		zero_page = mm_get_huge_zero_page(dst_mm);
920 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
921 				zero_page);
922 		ret = 0;
923 		goto out_unlock;
924 	}
925 
926 	src_page = pmd_page(pmd);
927 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
928 	get_page(src_page);
929 	page_dup_rmap(src_page, true);
930 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
931 	atomic_long_inc(&dst_mm->nr_ptes);
932 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
933 
934 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
935 	pmd = pmd_mkold(pmd_wrprotect(pmd));
936 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
937 
938 	ret = 0;
939 out_unlock:
940 	spin_unlock(src_ptl);
941 	spin_unlock(dst_ptl);
942 out:
943 	return ret;
944 }
945 
946 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
947 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
948 		pud_t *pud)
949 {
950 	pud_t _pud;
951 
952 	/*
953 	 * We should set the dirty bit only for FOLL_WRITE but for now
954 	 * the dirty bit in the pud is meaningless.  And if the dirty
955 	 * bit will become meaningful and we'll only set it with
956 	 * FOLL_WRITE, an atomic set_bit will be required on the pud to
957 	 * set the young bit, instead of the current set_pud_at.
958 	 */
959 	_pud = pud_mkyoung(pud_mkdirty(*pud));
960 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
961 				pud, _pud,  1))
962 		update_mmu_cache_pud(vma, addr, pud);
963 }
964 
965 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
966 		pud_t *pud, int flags)
967 {
968 	unsigned long pfn = pud_pfn(*pud);
969 	struct mm_struct *mm = vma->vm_mm;
970 	struct dev_pagemap *pgmap;
971 	struct page *page;
972 
973 	assert_spin_locked(pud_lockptr(mm, pud));
974 
975 	if (flags & FOLL_WRITE && !pud_write(*pud))
976 		return NULL;
977 
978 	if (pud_present(*pud) && pud_devmap(*pud))
979 		/* pass */;
980 	else
981 		return NULL;
982 
983 	if (flags & FOLL_TOUCH)
984 		touch_pud(vma, addr, pud);
985 
986 	/*
987 	 * device mapped pages can only be returned if the
988 	 * caller will manage the page reference count.
989 	 */
990 	if (!(flags & FOLL_GET))
991 		return ERR_PTR(-EEXIST);
992 
993 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
994 	pgmap = get_dev_pagemap(pfn, NULL);
995 	if (!pgmap)
996 		return ERR_PTR(-EFAULT);
997 	page = pfn_to_page(pfn);
998 	get_page(page);
999 	put_dev_pagemap(pgmap);
1000 
1001 	return page;
1002 }
1003 
1004 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1005 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1006 		  struct vm_area_struct *vma)
1007 {
1008 	spinlock_t *dst_ptl, *src_ptl;
1009 	pud_t pud;
1010 	int ret;
1011 
1012 	dst_ptl = pud_lock(dst_mm, dst_pud);
1013 	src_ptl = pud_lockptr(src_mm, src_pud);
1014 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1015 
1016 	ret = -EAGAIN;
1017 	pud = *src_pud;
1018 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1019 		goto out_unlock;
1020 
1021 	/*
1022 	 * When page table lock is held, the huge zero pud should not be
1023 	 * under splitting since we don't split the page itself, only pud to
1024 	 * a page table.
1025 	 */
1026 	if (is_huge_zero_pud(pud)) {
1027 		/* No huge zero pud yet */
1028 	}
1029 
1030 	pudp_set_wrprotect(src_mm, addr, src_pud);
1031 	pud = pud_mkold(pud_wrprotect(pud));
1032 	set_pud_at(dst_mm, addr, dst_pud, pud);
1033 
1034 	ret = 0;
1035 out_unlock:
1036 	spin_unlock(src_ptl);
1037 	spin_unlock(dst_ptl);
1038 	return ret;
1039 }
1040 
1041 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1042 {
1043 	pud_t entry;
1044 	unsigned long haddr;
1045 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1046 
1047 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1048 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1049 		goto unlock;
1050 
1051 	entry = pud_mkyoung(orig_pud);
1052 	if (write)
1053 		entry = pud_mkdirty(entry);
1054 	haddr = vmf->address & HPAGE_PUD_MASK;
1055 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1056 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1057 
1058 unlock:
1059 	spin_unlock(vmf->ptl);
1060 }
1061 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1062 
1063 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1064 {
1065 	pmd_t entry;
1066 	unsigned long haddr;
1067 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1068 
1069 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1070 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1071 		goto unlock;
1072 
1073 	entry = pmd_mkyoung(orig_pmd);
1074 	if (write)
1075 		entry = pmd_mkdirty(entry);
1076 	haddr = vmf->address & HPAGE_PMD_MASK;
1077 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1078 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1079 
1080 unlock:
1081 	spin_unlock(vmf->ptl);
1082 }
1083 
1084 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1085 		struct page *page)
1086 {
1087 	struct vm_area_struct *vma = vmf->vma;
1088 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1089 	struct mem_cgroup *memcg;
1090 	pgtable_t pgtable;
1091 	pmd_t _pmd;
1092 	int ret = 0, i;
1093 	struct page **pages;
1094 	unsigned long mmun_start;	/* For mmu_notifiers */
1095 	unsigned long mmun_end;		/* For mmu_notifiers */
1096 
1097 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1098 			GFP_KERNEL);
1099 	if (unlikely(!pages)) {
1100 		ret |= VM_FAULT_OOM;
1101 		goto out;
1102 	}
1103 
1104 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1105 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1106 					       vmf->address, page_to_nid(page));
1107 		if (unlikely(!pages[i] ||
1108 			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
1109 				     GFP_KERNEL, &memcg, false))) {
1110 			if (pages[i])
1111 				put_page(pages[i]);
1112 			while (--i >= 0) {
1113 				memcg = (void *)page_private(pages[i]);
1114 				set_page_private(pages[i], 0);
1115 				mem_cgroup_cancel_charge(pages[i], memcg,
1116 						false);
1117 				put_page(pages[i]);
1118 			}
1119 			kfree(pages);
1120 			ret |= VM_FAULT_OOM;
1121 			goto out;
1122 		}
1123 		set_page_private(pages[i], (unsigned long)memcg);
1124 	}
1125 
1126 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1127 		copy_user_highpage(pages[i], page + i,
1128 				   haddr + PAGE_SIZE * i, vma);
1129 		__SetPageUptodate(pages[i]);
1130 		cond_resched();
1131 	}
1132 
1133 	mmun_start = haddr;
1134 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1135 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1136 
1137 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1138 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1139 		goto out_free_pages;
1140 	VM_BUG_ON_PAGE(!PageHead(page), page);
1141 
1142 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1143 	/* leave pmd empty until pte is filled */
1144 
1145 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1146 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1147 
1148 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1149 		pte_t entry;
1150 		entry = mk_pte(pages[i], vma->vm_page_prot);
1151 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1152 		memcg = (void *)page_private(pages[i]);
1153 		set_page_private(pages[i], 0);
1154 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1155 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1156 		lru_cache_add_active_or_unevictable(pages[i], vma);
1157 		vmf->pte = pte_offset_map(&_pmd, haddr);
1158 		VM_BUG_ON(!pte_none(*vmf->pte));
1159 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1160 		pte_unmap(vmf->pte);
1161 	}
1162 	kfree(pages);
1163 
1164 	smp_wmb(); /* make pte visible before pmd */
1165 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1166 	page_remove_rmap(page, true);
1167 	spin_unlock(vmf->ptl);
1168 
1169 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1170 
1171 	ret |= VM_FAULT_WRITE;
1172 	put_page(page);
1173 
1174 out:
1175 	return ret;
1176 
1177 out_free_pages:
1178 	spin_unlock(vmf->ptl);
1179 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1180 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1181 		memcg = (void *)page_private(pages[i]);
1182 		set_page_private(pages[i], 0);
1183 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1184 		put_page(pages[i]);
1185 	}
1186 	kfree(pages);
1187 	goto out;
1188 }
1189 
1190 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1191 {
1192 	struct vm_area_struct *vma = vmf->vma;
1193 	struct page *page = NULL, *new_page;
1194 	struct mem_cgroup *memcg;
1195 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1196 	unsigned long mmun_start;	/* For mmu_notifiers */
1197 	unsigned long mmun_end;		/* For mmu_notifiers */
1198 	gfp_t huge_gfp;			/* for allocation and charge */
1199 	int ret = 0;
1200 
1201 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1202 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1203 	if (is_huge_zero_pmd(orig_pmd))
1204 		goto alloc;
1205 	spin_lock(vmf->ptl);
1206 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1207 		goto out_unlock;
1208 
1209 	page = pmd_page(orig_pmd);
1210 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1211 	/*
1212 	 * We can only reuse the page if nobody else maps the huge page or it's
1213 	 * part.
1214 	 */
1215 	if (page_trans_huge_mapcount(page, NULL) == 1) {
1216 		pmd_t entry;
1217 		entry = pmd_mkyoung(orig_pmd);
1218 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1219 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1220 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1221 		ret |= VM_FAULT_WRITE;
1222 		goto out_unlock;
1223 	}
1224 	get_page(page);
1225 	spin_unlock(vmf->ptl);
1226 alloc:
1227 	if (transparent_hugepage_enabled(vma) &&
1228 	    !transparent_hugepage_debug_cow()) {
1229 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1230 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1231 	} else
1232 		new_page = NULL;
1233 
1234 	if (likely(new_page)) {
1235 		prep_transhuge_page(new_page);
1236 	} else {
1237 		if (!page) {
1238 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1239 			ret |= VM_FAULT_FALLBACK;
1240 		} else {
1241 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1242 			if (ret & VM_FAULT_OOM) {
1243 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1244 				ret |= VM_FAULT_FALLBACK;
1245 			}
1246 			put_page(page);
1247 		}
1248 		count_vm_event(THP_FAULT_FALLBACK);
1249 		goto out;
1250 	}
1251 
1252 	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1253 					huge_gfp, &memcg, true))) {
1254 		put_page(new_page);
1255 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1256 		if (page)
1257 			put_page(page);
1258 		ret |= VM_FAULT_FALLBACK;
1259 		count_vm_event(THP_FAULT_FALLBACK);
1260 		goto out;
1261 	}
1262 
1263 	count_vm_event(THP_FAULT_ALLOC);
1264 
1265 	if (!page)
1266 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1267 	else
1268 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1269 	__SetPageUptodate(new_page);
1270 
1271 	mmun_start = haddr;
1272 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1273 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1274 
1275 	spin_lock(vmf->ptl);
1276 	if (page)
1277 		put_page(page);
1278 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1279 		spin_unlock(vmf->ptl);
1280 		mem_cgroup_cancel_charge(new_page, memcg, true);
1281 		put_page(new_page);
1282 		goto out_mn;
1283 	} else {
1284 		pmd_t entry;
1285 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1286 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1287 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1288 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1289 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1290 		lru_cache_add_active_or_unevictable(new_page, vma);
1291 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1292 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1293 		if (!page) {
1294 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1295 		} else {
1296 			VM_BUG_ON_PAGE(!PageHead(page), page);
1297 			page_remove_rmap(page, true);
1298 			put_page(page);
1299 		}
1300 		ret |= VM_FAULT_WRITE;
1301 	}
1302 	spin_unlock(vmf->ptl);
1303 out_mn:
1304 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1305 out:
1306 	return ret;
1307 out_unlock:
1308 	spin_unlock(vmf->ptl);
1309 	return ret;
1310 }
1311 
1312 /*
1313  * FOLL_FORCE can write to even unwritable pmd's, but only
1314  * after we've gone through a COW cycle and they are dirty.
1315  */
1316 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1317 {
1318 	return pmd_write(pmd) ||
1319 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1320 }
1321 
1322 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1323 				   unsigned long addr,
1324 				   pmd_t *pmd,
1325 				   unsigned int flags)
1326 {
1327 	struct mm_struct *mm = vma->vm_mm;
1328 	struct page *page = NULL;
1329 
1330 	assert_spin_locked(pmd_lockptr(mm, pmd));
1331 
1332 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1333 		goto out;
1334 
1335 	/* Avoid dumping huge zero page */
1336 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1337 		return ERR_PTR(-EFAULT);
1338 
1339 	/* Full NUMA hinting faults to serialise migration in fault paths */
1340 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1341 		goto out;
1342 
1343 	page = pmd_page(*pmd);
1344 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1345 	if (flags & FOLL_TOUCH)
1346 		touch_pmd(vma, addr, pmd);
1347 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1348 		/*
1349 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1350 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1351 		 *
1352 		 * For anon THP:
1353 		 *
1354 		 * In most cases the pmd is the only mapping of the page as we
1355 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1356 		 * writable private mappings in populate_vma_page_range().
1357 		 *
1358 		 * The only scenario when we have the page shared here is if we
1359 		 * mlocking read-only mapping shared over fork(). We skip
1360 		 * mlocking such pages.
1361 		 *
1362 		 * For file THP:
1363 		 *
1364 		 * We can expect PageDoubleMap() to be stable under page lock:
1365 		 * for file pages we set it in page_add_file_rmap(), which
1366 		 * requires page to be locked.
1367 		 */
1368 
1369 		if (PageAnon(page) && compound_mapcount(page) != 1)
1370 			goto skip_mlock;
1371 		if (PageDoubleMap(page) || !page->mapping)
1372 			goto skip_mlock;
1373 		if (!trylock_page(page))
1374 			goto skip_mlock;
1375 		lru_add_drain();
1376 		if (page->mapping && !PageDoubleMap(page))
1377 			mlock_vma_page(page);
1378 		unlock_page(page);
1379 	}
1380 skip_mlock:
1381 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1382 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1383 	if (flags & FOLL_GET)
1384 		get_page(page);
1385 
1386 out:
1387 	return page;
1388 }
1389 
1390 /* NUMA hinting page fault entry point for trans huge pmds */
1391 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1392 {
1393 	struct vm_area_struct *vma = vmf->vma;
1394 	struct anon_vma *anon_vma = NULL;
1395 	struct page *page;
1396 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1397 	int page_nid = -1, this_nid = numa_node_id();
1398 	int target_nid, last_cpupid = -1;
1399 	bool page_locked;
1400 	bool migrated = false;
1401 	bool was_writable;
1402 	int flags = 0;
1403 
1404 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1405 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1406 		goto out_unlock;
1407 
1408 	/*
1409 	 * If there are potential migrations, wait for completion and retry
1410 	 * without disrupting NUMA hinting information. Do not relock and
1411 	 * check_same as the page may no longer be mapped.
1412 	 */
1413 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1414 		page = pmd_page(*vmf->pmd);
1415 		spin_unlock(vmf->ptl);
1416 		wait_on_page_locked(page);
1417 		goto out;
1418 	}
1419 
1420 	page = pmd_page(pmd);
1421 	BUG_ON(is_huge_zero_page(page));
1422 	page_nid = page_to_nid(page);
1423 	last_cpupid = page_cpupid_last(page);
1424 	count_vm_numa_event(NUMA_HINT_FAULTS);
1425 	if (page_nid == this_nid) {
1426 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1427 		flags |= TNF_FAULT_LOCAL;
1428 	}
1429 
1430 	/* See similar comment in do_numa_page for explanation */
1431 	if (!pmd_savedwrite(pmd))
1432 		flags |= TNF_NO_GROUP;
1433 
1434 	/*
1435 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1436 	 * page_table_lock if at all possible
1437 	 */
1438 	page_locked = trylock_page(page);
1439 	target_nid = mpol_misplaced(page, vma, haddr);
1440 	if (target_nid == -1) {
1441 		/* If the page was locked, there are no parallel migrations */
1442 		if (page_locked)
1443 			goto clear_pmdnuma;
1444 	}
1445 
1446 	/* Migration could have started since the pmd_trans_migrating check */
1447 	if (!page_locked) {
1448 		spin_unlock(vmf->ptl);
1449 		wait_on_page_locked(page);
1450 		page_nid = -1;
1451 		goto out;
1452 	}
1453 
1454 	/*
1455 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1456 	 * to serialises splits
1457 	 */
1458 	get_page(page);
1459 	spin_unlock(vmf->ptl);
1460 	anon_vma = page_lock_anon_vma_read(page);
1461 
1462 	/* Confirm the PMD did not change while page_table_lock was released */
1463 	spin_lock(vmf->ptl);
1464 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1465 		unlock_page(page);
1466 		put_page(page);
1467 		page_nid = -1;
1468 		goto out_unlock;
1469 	}
1470 
1471 	/* Bail if we fail to protect against THP splits for any reason */
1472 	if (unlikely(!anon_vma)) {
1473 		put_page(page);
1474 		page_nid = -1;
1475 		goto clear_pmdnuma;
1476 	}
1477 
1478 	/*
1479 	 * Migrate the THP to the requested node, returns with page unlocked
1480 	 * and access rights restored.
1481 	 */
1482 	spin_unlock(vmf->ptl);
1483 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1484 				vmf->pmd, pmd, vmf->address, page, target_nid);
1485 	if (migrated) {
1486 		flags |= TNF_MIGRATED;
1487 		page_nid = target_nid;
1488 	} else
1489 		flags |= TNF_MIGRATE_FAIL;
1490 
1491 	goto out;
1492 clear_pmdnuma:
1493 	BUG_ON(!PageLocked(page));
1494 	was_writable = pmd_savedwrite(pmd);
1495 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1496 	pmd = pmd_mkyoung(pmd);
1497 	if (was_writable)
1498 		pmd = pmd_mkwrite(pmd);
1499 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1500 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1501 	unlock_page(page);
1502 out_unlock:
1503 	spin_unlock(vmf->ptl);
1504 
1505 out:
1506 	if (anon_vma)
1507 		page_unlock_anon_vma_read(anon_vma);
1508 
1509 	if (page_nid != -1)
1510 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1511 				flags);
1512 
1513 	return 0;
1514 }
1515 
1516 /*
1517  * Return true if we do MADV_FREE successfully on entire pmd page.
1518  * Otherwise, return false.
1519  */
1520 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1521 		pmd_t *pmd, unsigned long addr, unsigned long next)
1522 {
1523 	spinlock_t *ptl;
1524 	pmd_t orig_pmd;
1525 	struct page *page;
1526 	struct mm_struct *mm = tlb->mm;
1527 	bool ret = false;
1528 
1529 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1530 
1531 	ptl = pmd_trans_huge_lock(pmd, vma);
1532 	if (!ptl)
1533 		goto out_unlocked;
1534 
1535 	orig_pmd = *pmd;
1536 	if (is_huge_zero_pmd(orig_pmd))
1537 		goto out;
1538 
1539 	page = pmd_page(orig_pmd);
1540 	/*
1541 	 * If other processes are mapping this page, we couldn't discard
1542 	 * the page unless they all do MADV_FREE so let's skip the page.
1543 	 */
1544 	if (page_mapcount(page) != 1)
1545 		goto out;
1546 
1547 	if (!trylock_page(page))
1548 		goto out;
1549 
1550 	/*
1551 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1552 	 * will deactivate only them.
1553 	 */
1554 	if (next - addr != HPAGE_PMD_SIZE) {
1555 		get_page(page);
1556 		spin_unlock(ptl);
1557 		split_huge_page(page);
1558 		put_page(page);
1559 		unlock_page(page);
1560 		goto out_unlocked;
1561 	}
1562 
1563 	if (PageDirty(page))
1564 		ClearPageDirty(page);
1565 	unlock_page(page);
1566 
1567 	if (PageActive(page))
1568 		deactivate_page(page);
1569 
1570 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1571 		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1572 			tlb->fullmm);
1573 		orig_pmd = pmd_mkold(orig_pmd);
1574 		orig_pmd = pmd_mkclean(orig_pmd);
1575 
1576 		set_pmd_at(mm, addr, pmd, orig_pmd);
1577 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1578 	}
1579 	ret = true;
1580 out:
1581 	spin_unlock(ptl);
1582 out_unlocked:
1583 	return ret;
1584 }
1585 
1586 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1587 {
1588 	pgtable_t pgtable;
1589 
1590 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1591 	pte_free(mm, pgtable);
1592 	atomic_long_dec(&mm->nr_ptes);
1593 }
1594 
1595 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1596 		 pmd_t *pmd, unsigned long addr)
1597 {
1598 	pmd_t orig_pmd;
1599 	spinlock_t *ptl;
1600 
1601 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1602 
1603 	ptl = __pmd_trans_huge_lock(pmd, vma);
1604 	if (!ptl)
1605 		return 0;
1606 	/*
1607 	 * For architectures like ppc64 we look at deposited pgtable
1608 	 * when calling pmdp_huge_get_and_clear. So do the
1609 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1610 	 * operations.
1611 	 */
1612 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1613 			tlb->fullmm);
1614 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1615 	if (vma_is_dax(vma)) {
1616 		spin_unlock(ptl);
1617 		if (is_huge_zero_pmd(orig_pmd))
1618 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1619 	} else if (is_huge_zero_pmd(orig_pmd)) {
1620 		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1621 		atomic_long_dec(&tlb->mm->nr_ptes);
1622 		spin_unlock(ptl);
1623 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1624 	} else {
1625 		struct page *page = pmd_page(orig_pmd);
1626 		page_remove_rmap(page, true);
1627 		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1628 		VM_BUG_ON_PAGE(!PageHead(page), page);
1629 		if (PageAnon(page)) {
1630 			pgtable_t pgtable;
1631 			pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1632 			pte_free(tlb->mm, pgtable);
1633 			atomic_long_dec(&tlb->mm->nr_ptes);
1634 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1635 		} else {
1636 			if (arch_needs_pgtable_deposit())
1637 				zap_deposited_table(tlb->mm, pmd);
1638 			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1639 		}
1640 		spin_unlock(ptl);
1641 		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1642 	}
1643 	return 1;
1644 }
1645 
1646 #ifndef pmd_move_must_withdraw
1647 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1648 					 spinlock_t *old_pmd_ptl,
1649 					 struct vm_area_struct *vma)
1650 {
1651 	/*
1652 	 * With split pmd lock we also need to move preallocated
1653 	 * PTE page table if new_pmd is on different PMD page table.
1654 	 *
1655 	 * We also don't deposit and withdraw tables for file pages.
1656 	 */
1657 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1658 }
1659 #endif
1660 
1661 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1662 		  unsigned long new_addr, unsigned long old_end,
1663 		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1664 {
1665 	spinlock_t *old_ptl, *new_ptl;
1666 	pmd_t pmd;
1667 	struct mm_struct *mm = vma->vm_mm;
1668 	bool force_flush = false;
1669 
1670 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1671 	    (new_addr & ~HPAGE_PMD_MASK) ||
1672 	    old_end - old_addr < HPAGE_PMD_SIZE)
1673 		return false;
1674 
1675 	/*
1676 	 * The destination pmd shouldn't be established, free_pgtables()
1677 	 * should have release it.
1678 	 */
1679 	if (WARN_ON(!pmd_none(*new_pmd))) {
1680 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1681 		return false;
1682 	}
1683 
1684 	/*
1685 	 * We don't have to worry about the ordering of src and dst
1686 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1687 	 */
1688 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1689 	if (old_ptl) {
1690 		new_ptl = pmd_lockptr(mm, new_pmd);
1691 		if (new_ptl != old_ptl)
1692 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1693 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1694 		if (pmd_present(pmd) && pmd_dirty(pmd))
1695 			force_flush = true;
1696 		VM_BUG_ON(!pmd_none(*new_pmd));
1697 
1698 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1699 			pgtable_t pgtable;
1700 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1701 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1702 		}
1703 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1704 		if (new_ptl != old_ptl)
1705 			spin_unlock(new_ptl);
1706 		if (force_flush)
1707 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1708 		else
1709 			*need_flush = true;
1710 		spin_unlock(old_ptl);
1711 		return true;
1712 	}
1713 	return false;
1714 }
1715 
1716 /*
1717  * Returns
1718  *  - 0 if PMD could not be locked
1719  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1720  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1721  */
1722 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1723 		unsigned long addr, pgprot_t newprot, int prot_numa)
1724 {
1725 	struct mm_struct *mm = vma->vm_mm;
1726 	spinlock_t *ptl;
1727 	int ret = 0;
1728 
1729 	ptl = __pmd_trans_huge_lock(pmd, vma);
1730 	if (ptl) {
1731 		pmd_t entry;
1732 		bool preserve_write = prot_numa && pmd_write(*pmd);
1733 		ret = 1;
1734 
1735 		/*
1736 		 * Avoid trapping faults against the zero page. The read-only
1737 		 * data is likely to be read-cached on the local CPU and
1738 		 * local/remote hits to the zero page are not interesting.
1739 		 */
1740 		if (prot_numa && is_huge_zero_pmd(*pmd)) {
1741 			spin_unlock(ptl);
1742 			return ret;
1743 		}
1744 
1745 		if (!prot_numa || !pmd_protnone(*pmd)) {
1746 			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1747 			entry = pmd_modify(entry, newprot);
1748 			if (preserve_write)
1749 				entry = pmd_mk_savedwrite(entry);
1750 			ret = HPAGE_PMD_NR;
1751 			set_pmd_at(mm, addr, pmd, entry);
1752 			BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1753 					pmd_write(entry));
1754 		}
1755 		spin_unlock(ptl);
1756 	}
1757 
1758 	return ret;
1759 }
1760 
1761 /*
1762  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1763  *
1764  * Note that if it returns page table lock pointer, this routine returns without
1765  * unlocking page table lock. So callers must unlock it.
1766  */
1767 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1768 {
1769 	spinlock_t *ptl;
1770 	ptl = pmd_lock(vma->vm_mm, pmd);
1771 	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1772 		return ptl;
1773 	spin_unlock(ptl);
1774 	return NULL;
1775 }
1776 
1777 /*
1778  * Returns true if a given pud maps a thp, false otherwise.
1779  *
1780  * Note that if it returns true, this routine returns without unlocking page
1781  * table lock. So callers must unlock it.
1782  */
1783 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1784 {
1785 	spinlock_t *ptl;
1786 
1787 	ptl = pud_lock(vma->vm_mm, pud);
1788 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1789 		return ptl;
1790 	spin_unlock(ptl);
1791 	return NULL;
1792 }
1793 
1794 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1795 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1796 		 pud_t *pud, unsigned long addr)
1797 {
1798 	pud_t orig_pud;
1799 	spinlock_t *ptl;
1800 
1801 	ptl = __pud_trans_huge_lock(pud, vma);
1802 	if (!ptl)
1803 		return 0;
1804 	/*
1805 	 * For architectures like ppc64 we look at deposited pgtable
1806 	 * when calling pudp_huge_get_and_clear. So do the
1807 	 * pgtable_trans_huge_withdraw after finishing pudp related
1808 	 * operations.
1809 	 */
1810 	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1811 			tlb->fullmm);
1812 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1813 	if (vma_is_dax(vma)) {
1814 		spin_unlock(ptl);
1815 		/* No zero page support yet */
1816 	} else {
1817 		/* No support for anonymous PUD pages yet */
1818 		BUG();
1819 	}
1820 	return 1;
1821 }
1822 
1823 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1824 		unsigned long haddr)
1825 {
1826 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1827 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1828 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1829 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1830 
1831 	count_vm_event(THP_SPLIT_PMD);
1832 
1833 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1834 }
1835 
1836 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1837 		unsigned long address)
1838 {
1839 	spinlock_t *ptl;
1840 	struct mm_struct *mm = vma->vm_mm;
1841 	unsigned long haddr = address & HPAGE_PUD_MASK;
1842 
1843 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
1844 	ptl = pud_lock(mm, pud);
1845 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1846 		goto out;
1847 	__split_huge_pud_locked(vma, pud, haddr);
1848 
1849 out:
1850 	spin_unlock(ptl);
1851 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
1852 }
1853 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1854 
1855 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1856 		unsigned long haddr, pmd_t *pmd)
1857 {
1858 	struct mm_struct *mm = vma->vm_mm;
1859 	pgtable_t pgtable;
1860 	pmd_t _pmd;
1861 	int i;
1862 
1863 	/* leave pmd empty until pte is filled */
1864 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1865 
1866 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1867 	pmd_populate(mm, &_pmd, pgtable);
1868 
1869 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1870 		pte_t *pte, entry;
1871 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1872 		entry = pte_mkspecial(entry);
1873 		pte = pte_offset_map(&_pmd, haddr);
1874 		VM_BUG_ON(!pte_none(*pte));
1875 		set_pte_at(mm, haddr, pte, entry);
1876 		pte_unmap(pte);
1877 	}
1878 	smp_wmb(); /* make pte visible before pmd */
1879 	pmd_populate(mm, pmd, pgtable);
1880 }
1881 
1882 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1883 		unsigned long haddr, bool freeze)
1884 {
1885 	struct mm_struct *mm = vma->vm_mm;
1886 	struct page *page;
1887 	pgtable_t pgtable;
1888 	pmd_t _pmd;
1889 	bool young, write, dirty, soft_dirty;
1890 	unsigned long addr;
1891 	int i;
1892 
1893 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1894 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1895 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1896 	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1897 
1898 	count_vm_event(THP_SPLIT_PMD);
1899 
1900 	if (!vma_is_anonymous(vma)) {
1901 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1902 		/*
1903 		 * We are going to unmap this huge page. So
1904 		 * just go ahead and zap it
1905 		 */
1906 		if (arch_needs_pgtable_deposit())
1907 			zap_deposited_table(mm, pmd);
1908 		if (vma_is_dax(vma))
1909 			return;
1910 		page = pmd_page(_pmd);
1911 		if (!PageReferenced(page) && pmd_young(_pmd))
1912 			SetPageReferenced(page);
1913 		page_remove_rmap(page, true);
1914 		put_page(page);
1915 		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1916 		return;
1917 	} else if (is_huge_zero_pmd(*pmd)) {
1918 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
1919 	}
1920 
1921 	page = pmd_page(*pmd);
1922 	VM_BUG_ON_PAGE(!page_count(page), page);
1923 	page_ref_add(page, HPAGE_PMD_NR - 1);
1924 	write = pmd_write(*pmd);
1925 	young = pmd_young(*pmd);
1926 	dirty = pmd_dirty(*pmd);
1927 	soft_dirty = pmd_soft_dirty(*pmd);
1928 
1929 	pmdp_huge_split_prepare(vma, haddr, pmd);
1930 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1931 	pmd_populate(mm, &_pmd, pgtable);
1932 
1933 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1934 		pte_t entry, *pte;
1935 		/*
1936 		 * Note that NUMA hinting access restrictions are not
1937 		 * transferred to avoid any possibility of altering
1938 		 * permissions across VMAs.
1939 		 */
1940 		if (freeze) {
1941 			swp_entry_t swp_entry;
1942 			swp_entry = make_migration_entry(page + i, write);
1943 			entry = swp_entry_to_pte(swp_entry);
1944 			if (soft_dirty)
1945 				entry = pte_swp_mksoft_dirty(entry);
1946 		} else {
1947 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1948 			entry = maybe_mkwrite(entry, vma);
1949 			if (!write)
1950 				entry = pte_wrprotect(entry);
1951 			if (!young)
1952 				entry = pte_mkold(entry);
1953 			if (soft_dirty)
1954 				entry = pte_mksoft_dirty(entry);
1955 		}
1956 		if (dirty)
1957 			SetPageDirty(page + i);
1958 		pte = pte_offset_map(&_pmd, addr);
1959 		BUG_ON(!pte_none(*pte));
1960 		set_pte_at(mm, addr, pte, entry);
1961 		atomic_inc(&page[i]._mapcount);
1962 		pte_unmap(pte);
1963 	}
1964 
1965 	/*
1966 	 * Set PG_double_map before dropping compound_mapcount to avoid
1967 	 * false-negative page_mapped().
1968 	 */
1969 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1970 		for (i = 0; i < HPAGE_PMD_NR; i++)
1971 			atomic_inc(&page[i]._mapcount);
1972 	}
1973 
1974 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1975 		/* Last compound_mapcount is gone. */
1976 		__dec_node_page_state(page, NR_ANON_THPS);
1977 		if (TestClearPageDoubleMap(page)) {
1978 			/* No need in mapcount reference anymore */
1979 			for (i = 0; i < HPAGE_PMD_NR; i++)
1980 				atomic_dec(&page[i]._mapcount);
1981 		}
1982 	}
1983 
1984 	smp_wmb(); /* make pte visible before pmd */
1985 	/*
1986 	 * Up to this point the pmd is present and huge and userland has the
1987 	 * whole access to the hugepage during the split (which happens in
1988 	 * place). If we overwrite the pmd with the not-huge version pointing
1989 	 * to the pte here (which of course we could if all CPUs were bug
1990 	 * free), userland could trigger a small page size TLB miss on the
1991 	 * small sized TLB while the hugepage TLB entry is still established in
1992 	 * the huge TLB. Some CPU doesn't like that.
1993 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1994 	 * 383 on page 93. Intel should be safe but is also warns that it's
1995 	 * only safe if the permission and cache attributes of the two entries
1996 	 * loaded in the two TLB is identical (which should be the case here).
1997 	 * But it is generally safer to never allow small and huge TLB entries
1998 	 * for the same virtual address to be loaded simultaneously. So instead
1999 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2000 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2001 	 * and pmd_trans_splitting must remain set at all times on the pmd
2002 	 * until the split is complete for this pmd), then we flush the SMP TLB
2003 	 * and finally we write the non-huge version of the pmd entry with
2004 	 * pmd_populate.
2005 	 */
2006 	pmdp_invalidate(vma, haddr, pmd);
2007 	pmd_populate(mm, pmd, pgtable);
2008 
2009 	if (freeze) {
2010 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2011 			page_remove_rmap(page + i, false);
2012 			put_page(page + i);
2013 		}
2014 	}
2015 }
2016 
2017 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2018 		unsigned long address, bool freeze, struct page *page)
2019 {
2020 	spinlock_t *ptl;
2021 	struct mm_struct *mm = vma->vm_mm;
2022 	unsigned long haddr = address & HPAGE_PMD_MASK;
2023 
2024 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2025 	ptl = pmd_lock(mm, pmd);
2026 
2027 	/*
2028 	 * If caller asks to setup a migration entries, we need a page to check
2029 	 * pmd against. Otherwise we can end up replacing wrong page.
2030 	 */
2031 	VM_BUG_ON(freeze && !page);
2032 	if (page && page != pmd_page(*pmd))
2033 	        goto out;
2034 
2035 	if (pmd_trans_huge(*pmd)) {
2036 		page = pmd_page(*pmd);
2037 		if (PageMlocked(page))
2038 			clear_page_mlock(page);
2039 	} else if (!pmd_devmap(*pmd))
2040 		goto out;
2041 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2042 out:
2043 	spin_unlock(ptl);
2044 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2045 }
2046 
2047 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2048 		bool freeze, struct page *page)
2049 {
2050 	pgd_t *pgd;
2051 	pud_t *pud;
2052 	pmd_t *pmd;
2053 
2054 	pgd = pgd_offset(vma->vm_mm, address);
2055 	if (!pgd_present(*pgd))
2056 		return;
2057 
2058 	pud = pud_offset(pgd, address);
2059 	if (!pud_present(*pud))
2060 		return;
2061 
2062 	pmd = pmd_offset(pud, address);
2063 
2064 	__split_huge_pmd(vma, pmd, address, freeze, page);
2065 }
2066 
2067 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2068 			     unsigned long start,
2069 			     unsigned long end,
2070 			     long adjust_next)
2071 {
2072 	/*
2073 	 * If the new start address isn't hpage aligned and it could
2074 	 * previously contain an hugepage: check if we need to split
2075 	 * an huge pmd.
2076 	 */
2077 	if (start & ~HPAGE_PMD_MASK &&
2078 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2079 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2080 		split_huge_pmd_address(vma, start, false, NULL);
2081 
2082 	/*
2083 	 * If the new end address isn't hpage aligned and it could
2084 	 * previously contain an hugepage: check if we need to split
2085 	 * an huge pmd.
2086 	 */
2087 	if (end & ~HPAGE_PMD_MASK &&
2088 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2089 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2090 		split_huge_pmd_address(vma, end, false, NULL);
2091 
2092 	/*
2093 	 * If we're also updating the vma->vm_next->vm_start, if the new
2094 	 * vm_next->vm_start isn't page aligned and it could previously
2095 	 * contain an hugepage: check if we need to split an huge pmd.
2096 	 */
2097 	if (adjust_next > 0) {
2098 		struct vm_area_struct *next = vma->vm_next;
2099 		unsigned long nstart = next->vm_start;
2100 		nstart += adjust_next << PAGE_SHIFT;
2101 		if (nstart & ~HPAGE_PMD_MASK &&
2102 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2103 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2104 			split_huge_pmd_address(next, nstart, false, NULL);
2105 	}
2106 }
2107 
2108 static void freeze_page(struct page *page)
2109 {
2110 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2111 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2112 	int ret;
2113 
2114 	VM_BUG_ON_PAGE(!PageHead(page), page);
2115 
2116 	if (PageAnon(page))
2117 		ttu_flags |= TTU_MIGRATION;
2118 
2119 	ret = try_to_unmap(page, ttu_flags);
2120 	VM_BUG_ON_PAGE(ret, page);
2121 }
2122 
2123 static void unfreeze_page(struct page *page)
2124 {
2125 	int i;
2126 	if (PageTransHuge(page)) {
2127 		remove_migration_ptes(page, page, true);
2128 	} else {
2129 		for (i = 0; i < HPAGE_PMD_NR; i++)
2130 			remove_migration_ptes(page + i, page + i, true);
2131 	}
2132 }
2133 
2134 static void __split_huge_page_tail(struct page *head, int tail,
2135 		struct lruvec *lruvec, struct list_head *list)
2136 {
2137 	struct page *page_tail = head + tail;
2138 
2139 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2140 	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
2141 
2142 	/*
2143 	 * tail_page->_refcount is zero and not changing from under us. But
2144 	 * get_page_unless_zero() may be running from under us on the
2145 	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2146 	 * atomic_add(), we would then run atomic_set() concurrently with
2147 	 * get_page_unless_zero(), and atomic_set() is implemented in C not
2148 	 * using locked ops. spin_unlock on x86 sometime uses locked ops
2149 	 * because of PPro errata 66, 92, so unless somebody can guarantee
2150 	 * atomic_set() here would be safe on all archs (and not only on x86),
2151 	 * it's safer to use atomic_inc()/atomic_add().
2152 	 */
2153 	if (PageAnon(head)) {
2154 		page_ref_inc(page_tail);
2155 	} else {
2156 		/* Additional pin to radix tree */
2157 		page_ref_add(page_tail, 2);
2158 	}
2159 
2160 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2161 	page_tail->flags |= (head->flags &
2162 			((1L << PG_referenced) |
2163 			 (1L << PG_swapbacked) |
2164 			 (1L << PG_mlocked) |
2165 			 (1L << PG_uptodate) |
2166 			 (1L << PG_active) |
2167 			 (1L << PG_locked) |
2168 			 (1L << PG_unevictable) |
2169 			 (1L << PG_dirty)));
2170 
2171 	/*
2172 	 * After clearing PageTail the gup refcount can be released.
2173 	 * Page flags also must be visible before we make the page non-compound.
2174 	 */
2175 	smp_wmb();
2176 
2177 	clear_compound_head(page_tail);
2178 
2179 	if (page_is_young(head))
2180 		set_page_young(page_tail);
2181 	if (page_is_idle(head))
2182 		set_page_idle(page_tail);
2183 
2184 	/* ->mapping in first tail page is compound_mapcount */
2185 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2186 			page_tail);
2187 	page_tail->mapping = head->mapping;
2188 
2189 	page_tail->index = head->index + tail;
2190 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2191 	lru_add_page_tail(head, page_tail, lruvec, list);
2192 }
2193 
2194 static void __split_huge_page(struct page *page, struct list_head *list,
2195 		unsigned long flags)
2196 {
2197 	struct page *head = compound_head(page);
2198 	struct zone *zone = page_zone(head);
2199 	struct lruvec *lruvec;
2200 	pgoff_t end = -1;
2201 	int i;
2202 
2203 	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2204 
2205 	/* complete memcg works before add pages to LRU */
2206 	mem_cgroup_split_huge_fixup(head);
2207 
2208 	if (!PageAnon(page))
2209 		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2210 
2211 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2212 		__split_huge_page_tail(head, i, lruvec, list);
2213 		/* Some pages can be beyond i_size: drop them from page cache */
2214 		if (head[i].index >= end) {
2215 			__ClearPageDirty(head + i);
2216 			__delete_from_page_cache(head + i, NULL);
2217 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2218 				shmem_uncharge(head->mapping->host, 1);
2219 			put_page(head + i);
2220 		}
2221 	}
2222 
2223 	ClearPageCompound(head);
2224 	/* See comment in __split_huge_page_tail() */
2225 	if (PageAnon(head)) {
2226 		page_ref_inc(head);
2227 	} else {
2228 		/* Additional pin to radix tree */
2229 		page_ref_add(head, 2);
2230 		spin_unlock(&head->mapping->tree_lock);
2231 	}
2232 
2233 	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2234 
2235 	unfreeze_page(head);
2236 
2237 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2238 		struct page *subpage = head + i;
2239 		if (subpage == page)
2240 			continue;
2241 		unlock_page(subpage);
2242 
2243 		/*
2244 		 * Subpages may be freed if there wasn't any mapping
2245 		 * like if add_to_swap() is running on a lru page that
2246 		 * had its mapping zapped. And freeing these pages
2247 		 * requires taking the lru_lock so we do the put_page
2248 		 * of the tail pages after the split is complete.
2249 		 */
2250 		put_page(subpage);
2251 	}
2252 }
2253 
2254 int total_mapcount(struct page *page)
2255 {
2256 	int i, compound, ret;
2257 
2258 	VM_BUG_ON_PAGE(PageTail(page), page);
2259 
2260 	if (likely(!PageCompound(page)))
2261 		return atomic_read(&page->_mapcount) + 1;
2262 
2263 	compound = compound_mapcount(page);
2264 	if (PageHuge(page))
2265 		return compound;
2266 	ret = compound;
2267 	for (i = 0; i < HPAGE_PMD_NR; i++)
2268 		ret += atomic_read(&page[i]._mapcount) + 1;
2269 	/* File pages has compound_mapcount included in _mapcount */
2270 	if (!PageAnon(page))
2271 		return ret - compound * HPAGE_PMD_NR;
2272 	if (PageDoubleMap(page))
2273 		ret -= HPAGE_PMD_NR;
2274 	return ret;
2275 }
2276 
2277 /*
2278  * This calculates accurately how many mappings a transparent hugepage
2279  * has (unlike page_mapcount() which isn't fully accurate). This full
2280  * accuracy is primarily needed to know if copy-on-write faults can
2281  * reuse the page and change the mapping to read-write instead of
2282  * copying them. At the same time this returns the total_mapcount too.
2283  *
2284  * The function returns the highest mapcount any one of the subpages
2285  * has. If the return value is one, even if different processes are
2286  * mapping different subpages of the transparent hugepage, they can
2287  * all reuse it, because each process is reusing a different subpage.
2288  *
2289  * The total_mapcount is instead counting all virtual mappings of the
2290  * subpages. If the total_mapcount is equal to "one", it tells the
2291  * caller all mappings belong to the same "mm" and in turn the
2292  * anon_vma of the transparent hugepage can become the vma->anon_vma
2293  * local one as no other process may be mapping any of the subpages.
2294  *
2295  * It would be more accurate to replace page_mapcount() with
2296  * page_trans_huge_mapcount(), however we only use
2297  * page_trans_huge_mapcount() in the copy-on-write faults where we
2298  * need full accuracy to avoid breaking page pinning, because
2299  * page_trans_huge_mapcount() is slower than page_mapcount().
2300  */
2301 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2302 {
2303 	int i, ret, _total_mapcount, mapcount;
2304 
2305 	/* hugetlbfs shouldn't call it */
2306 	VM_BUG_ON_PAGE(PageHuge(page), page);
2307 
2308 	if (likely(!PageTransCompound(page))) {
2309 		mapcount = atomic_read(&page->_mapcount) + 1;
2310 		if (total_mapcount)
2311 			*total_mapcount = mapcount;
2312 		return mapcount;
2313 	}
2314 
2315 	page = compound_head(page);
2316 
2317 	_total_mapcount = ret = 0;
2318 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2319 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2320 		ret = max(ret, mapcount);
2321 		_total_mapcount += mapcount;
2322 	}
2323 	if (PageDoubleMap(page)) {
2324 		ret -= 1;
2325 		_total_mapcount -= HPAGE_PMD_NR;
2326 	}
2327 	mapcount = compound_mapcount(page);
2328 	ret += mapcount;
2329 	_total_mapcount += mapcount;
2330 	if (total_mapcount)
2331 		*total_mapcount = _total_mapcount;
2332 	return ret;
2333 }
2334 
2335 /*
2336  * This function splits huge page into normal pages. @page can point to any
2337  * subpage of huge page to split. Split doesn't change the position of @page.
2338  *
2339  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2340  * The huge page must be locked.
2341  *
2342  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2343  *
2344  * Both head page and tail pages will inherit mapping, flags, and so on from
2345  * the hugepage.
2346  *
2347  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2348  * they are not mapped.
2349  *
2350  * Returns 0 if the hugepage is split successfully.
2351  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2352  * us.
2353  */
2354 int split_huge_page_to_list(struct page *page, struct list_head *list)
2355 {
2356 	struct page *head = compound_head(page);
2357 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2358 	struct anon_vma *anon_vma = NULL;
2359 	struct address_space *mapping = NULL;
2360 	int count, mapcount, extra_pins, ret;
2361 	bool mlocked;
2362 	unsigned long flags;
2363 
2364 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2365 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2366 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2367 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2368 
2369 	if (PageAnon(head)) {
2370 		/*
2371 		 * The caller does not necessarily hold an mmap_sem that would
2372 		 * prevent the anon_vma disappearing so we first we take a
2373 		 * reference to it and then lock the anon_vma for write. This
2374 		 * is similar to page_lock_anon_vma_read except the write lock
2375 		 * is taken to serialise against parallel split or collapse
2376 		 * operations.
2377 		 */
2378 		anon_vma = page_get_anon_vma(head);
2379 		if (!anon_vma) {
2380 			ret = -EBUSY;
2381 			goto out;
2382 		}
2383 		extra_pins = 0;
2384 		mapping = NULL;
2385 		anon_vma_lock_write(anon_vma);
2386 	} else {
2387 		mapping = head->mapping;
2388 
2389 		/* Truncated ? */
2390 		if (!mapping) {
2391 			ret = -EBUSY;
2392 			goto out;
2393 		}
2394 
2395 		/* Addidional pins from radix tree */
2396 		extra_pins = HPAGE_PMD_NR;
2397 		anon_vma = NULL;
2398 		i_mmap_lock_read(mapping);
2399 	}
2400 
2401 	/*
2402 	 * Racy check if we can split the page, before freeze_page() will
2403 	 * split PMDs
2404 	 */
2405 	if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2406 		ret = -EBUSY;
2407 		goto out_unlock;
2408 	}
2409 
2410 	mlocked = PageMlocked(page);
2411 	freeze_page(head);
2412 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2413 
2414 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2415 	if (mlocked)
2416 		lru_add_drain();
2417 
2418 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2419 	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2420 
2421 	if (mapping) {
2422 		void **pslot;
2423 
2424 		spin_lock(&mapping->tree_lock);
2425 		pslot = radix_tree_lookup_slot(&mapping->page_tree,
2426 				page_index(head));
2427 		/*
2428 		 * Check if the head page is present in radix tree.
2429 		 * We assume all tail are present too, if head is there.
2430 		 */
2431 		if (radix_tree_deref_slot_protected(pslot,
2432 					&mapping->tree_lock) != head)
2433 			goto fail;
2434 	}
2435 
2436 	/* Prevent deferred_split_scan() touching ->_refcount */
2437 	spin_lock(&pgdata->split_queue_lock);
2438 	count = page_count(head);
2439 	mapcount = total_mapcount(head);
2440 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2441 		if (!list_empty(page_deferred_list(head))) {
2442 			pgdata->split_queue_len--;
2443 			list_del(page_deferred_list(head));
2444 		}
2445 		if (mapping)
2446 			__dec_node_page_state(page, NR_SHMEM_THPS);
2447 		spin_unlock(&pgdata->split_queue_lock);
2448 		__split_huge_page(page, list, flags);
2449 		ret = 0;
2450 	} else {
2451 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2452 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2453 					mapcount, count);
2454 			if (PageTail(page))
2455 				dump_page(head, NULL);
2456 			dump_page(page, "total_mapcount(head) > 0");
2457 			BUG();
2458 		}
2459 		spin_unlock(&pgdata->split_queue_lock);
2460 fail:		if (mapping)
2461 			spin_unlock(&mapping->tree_lock);
2462 		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2463 		unfreeze_page(head);
2464 		ret = -EBUSY;
2465 	}
2466 
2467 out_unlock:
2468 	if (anon_vma) {
2469 		anon_vma_unlock_write(anon_vma);
2470 		put_anon_vma(anon_vma);
2471 	}
2472 	if (mapping)
2473 		i_mmap_unlock_read(mapping);
2474 out:
2475 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2476 	return ret;
2477 }
2478 
2479 void free_transhuge_page(struct page *page)
2480 {
2481 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2482 	unsigned long flags;
2483 
2484 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2485 	if (!list_empty(page_deferred_list(page))) {
2486 		pgdata->split_queue_len--;
2487 		list_del(page_deferred_list(page));
2488 	}
2489 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2490 	free_compound_page(page);
2491 }
2492 
2493 void deferred_split_huge_page(struct page *page)
2494 {
2495 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2496 	unsigned long flags;
2497 
2498 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2499 
2500 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2501 	if (list_empty(page_deferred_list(page))) {
2502 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2503 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2504 		pgdata->split_queue_len++;
2505 	}
2506 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2507 }
2508 
2509 static unsigned long deferred_split_count(struct shrinker *shrink,
2510 		struct shrink_control *sc)
2511 {
2512 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2513 	return ACCESS_ONCE(pgdata->split_queue_len);
2514 }
2515 
2516 static unsigned long deferred_split_scan(struct shrinker *shrink,
2517 		struct shrink_control *sc)
2518 {
2519 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2520 	unsigned long flags;
2521 	LIST_HEAD(list), *pos, *next;
2522 	struct page *page;
2523 	int split = 0;
2524 
2525 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2526 	/* Take pin on all head pages to avoid freeing them under us */
2527 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2528 		page = list_entry((void *)pos, struct page, mapping);
2529 		page = compound_head(page);
2530 		if (get_page_unless_zero(page)) {
2531 			list_move(page_deferred_list(page), &list);
2532 		} else {
2533 			/* We lost race with put_compound_page() */
2534 			list_del_init(page_deferred_list(page));
2535 			pgdata->split_queue_len--;
2536 		}
2537 		if (!--sc->nr_to_scan)
2538 			break;
2539 	}
2540 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2541 
2542 	list_for_each_safe(pos, next, &list) {
2543 		page = list_entry((void *)pos, struct page, mapping);
2544 		lock_page(page);
2545 		/* split_huge_page() removes page from list on success */
2546 		if (!split_huge_page(page))
2547 			split++;
2548 		unlock_page(page);
2549 		put_page(page);
2550 	}
2551 
2552 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2553 	list_splice_tail(&list, &pgdata->split_queue);
2554 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2555 
2556 	/*
2557 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2558 	 * This can happen if pages were freed under us.
2559 	 */
2560 	if (!split && list_empty(&pgdata->split_queue))
2561 		return SHRINK_STOP;
2562 	return split;
2563 }
2564 
2565 static struct shrinker deferred_split_shrinker = {
2566 	.count_objects = deferred_split_count,
2567 	.scan_objects = deferred_split_scan,
2568 	.seeks = DEFAULT_SEEKS,
2569 	.flags = SHRINKER_NUMA_AWARE,
2570 };
2571 
2572 #ifdef CONFIG_DEBUG_FS
2573 static int split_huge_pages_set(void *data, u64 val)
2574 {
2575 	struct zone *zone;
2576 	struct page *page;
2577 	unsigned long pfn, max_zone_pfn;
2578 	unsigned long total = 0, split = 0;
2579 
2580 	if (val != 1)
2581 		return -EINVAL;
2582 
2583 	for_each_populated_zone(zone) {
2584 		max_zone_pfn = zone_end_pfn(zone);
2585 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2586 			if (!pfn_valid(pfn))
2587 				continue;
2588 
2589 			page = pfn_to_page(pfn);
2590 			if (!get_page_unless_zero(page))
2591 				continue;
2592 
2593 			if (zone != page_zone(page))
2594 				goto next;
2595 
2596 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2597 				goto next;
2598 
2599 			total++;
2600 			lock_page(page);
2601 			if (!split_huge_page(page))
2602 				split++;
2603 			unlock_page(page);
2604 next:
2605 			put_page(page);
2606 		}
2607 	}
2608 
2609 	pr_info("%lu of %lu THP split\n", split, total);
2610 
2611 	return 0;
2612 }
2613 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2614 		"%llu\n");
2615 
2616 static int __init split_huge_pages_debugfs(void)
2617 {
2618 	void *ret;
2619 
2620 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2621 			&split_huge_pages_fops);
2622 	if (!ret)
2623 		pr_warn("Failed to create split_huge_pages in debugfs");
2624 	return 0;
2625 }
2626 late_initcall(split_huge_pages_debugfs);
2627 #endif
2628