xref: /openbmc/linux/mm/huge_memory.c (revision a8a28aff)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/kthread.h>
20 #include <linux/khugepaged.h>
21 #include <linux/freezer.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/migrate.h>
25 #include <linux/hashtable.h>
26 
27 #include <asm/tlb.h>
28 #include <asm/pgalloc.h>
29 #include "internal.h"
30 
31 /*
32  * By default transparent hugepage support is disabled in order that avoid
33  * to risk increase the memory footprint of applications without a guaranteed
34  * benefit. When transparent hugepage support is enabled, is for all mappings,
35  * and khugepaged scans all mappings.
36  * Defrag is invoked by khugepaged hugepage allocations and by page faults
37  * for all hugepage allocations.
38  */
39 unsigned long transparent_hugepage_flags __read_mostly =
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
41 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
42 #endif
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
45 #endif
46 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
47 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
48 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
49 
50 /* default scan 8*512 pte (or vmas) every 30 second */
51 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
52 static unsigned int khugepaged_pages_collapsed;
53 static unsigned int khugepaged_full_scans;
54 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
55 /* during fragmentation poll the hugepage allocator once every minute */
56 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
57 static struct task_struct *khugepaged_thread __read_mostly;
58 static DEFINE_MUTEX(khugepaged_mutex);
59 static DEFINE_SPINLOCK(khugepaged_mm_lock);
60 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
61 /*
62  * default collapse hugepages if there is at least one pte mapped like
63  * it would have happened if the vma was large enough during page
64  * fault.
65  */
66 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
67 
68 static int khugepaged(void *none);
69 static int khugepaged_slab_init(void);
70 
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
73 
74 static struct kmem_cache *mm_slot_cache __read_mostly;
75 
76 /**
77  * struct mm_slot - hash lookup from mm to mm_slot
78  * @hash: hash collision list
79  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80  * @mm: the mm that this information is valid for
81  */
82 struct mm_slot {
83 	struct hlist_node hash;
84 	struct list_head mm_node;
85 	struct mm_struct *mm;
86 };
87 
88 /**
89  * struct khugepaged_scan - cursor for scanning
90  * @mm_head: the head of the mm list to scan
91  * @mm_slot: the current mm_slot we are scanning
92  * @address: the next address inside that to be scanned
93  *
94  * There is only the one khugepaged_scan instance of this cursor structure.
95  */
96 struct khugepaged_scan {
97 	struct list_head mm_head;
98 	struct mm_slot *mm_slot;
99 	unsigned long address;
100 };
101 static struct khugepaged_scan khugepaged_scan = {
102 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
103 };
104 
105 
106 static int set_recommended_min_free_kbytes(void)
107 {
108 	struct zone *zone;
109 	int nr_zones = 0;
110 	unsigned long recommended_min;
111 
112 	if (!khugepaged_enabled())
113 		return 0;
114 
115 	for_each_populated_zone(zone)
116 		nr_zones++;
117 
118 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
119 	recommended_min = pageblock_nr_pages * nr_zones * 2;
120 
121 	/*
122 	 * Make sure that on average at least two pageblocks are almost free
123 	 * of another type, one for a migratetype to fall back to and a
124 	 * second to avoid subsequent fallbacks of other types There are 3
125 	 * MIGRATE_TYPES we care about.
126 	 */
127 	recommended_min += pageblock_nr_pages * nr_zones *
128 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
129 
130 	/* don't ever allow to reserve more than 5% of the lowmem */
131 	recommended_min = min(recommended_min,
132 			      (unsigned long) nr_free_buffer_pages() / 20);
133 	recommended_min <<= (PAGE_SHIFT-10);
134 
135 	if (recommended_min > min_free_kbytes) {
136 		if (user_min_free_kbytes >= 0)
137 			pr_info("raising min_free_kbytes from %d to %lu "
138 				"to help transparent hugepage allocations\n",
139 				min_free_kbytes, recommended_min);
140 
141 		min_free_kbytes = recommended_min;
142 	}
143 	setup_per_zone_wmarks();
144 	return 0;
145 }
146 late_initcall(set_recommended_min_free_kbytes);
147 
148 static int start_khugepaged(void)
149 {
150 	int err = 0;
151 	if (khugepaged_enabled()) {
152 		if (!khugepaged_thread)
153 			khugepaged_thread = kthread_run(khugepaged, NULL,
154 							"khugepaged");
155 		if (unlikely(IS_ERR(khugepaged_thread))) {
156 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
157 			err = PTR_ERR(khugepaged_thread);
158 			khugepaged_thread = NULL;
159 		}
160 
161 		if (!list_empty(&khugepaged_scan.mm_head))
162 			wake_up_interruptible(&khugepaged_wait);
163 
164 		set_recommended_min_free_kbytes();
165 	} else if (khugepaged_thread) {
166 		kthread_stop(khugepaged_thread);
167 		khugepaged_thread = NULL;
168 	}
169 
170 	return err;
171 }
172 
173 static atomic_t huge_zero_refcount;
174 static struct page *huge_zero_page __read_mostly;
175 
176 static inline bool is_huge_zero_page(struct page *page)
177 {
178 	return ACCESS_ONCE(huge_zero_page) == page;
179 }
180 
181 static inline bool is_huge_zero_pmd(pmd_t pmd)
182 {
183 	return is_huge_zero_page(pmd_page(pmd));
184 }
185 
186 static struct page *get_huge_zero_page(void)
187 {
188 	struct page *zero_page;
189 retry:
190 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
191 		return ACCESS_ONCE(huge_zero_page);
192 
193 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
194 			HPAGE_PMD_ORDER);
195 	if (!zero_page) {
196 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
197 		return NULL;
198 	}
199 	count_vm_event(THP_ZERO_PAGE_ALLOC);
200 	preempt_disable();
201 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
202 		preempt_enable();
203 		__free_page(zero_page);
204 		goto retry;
205 	}
206 
207 	/* We take additional reference here. It will be put back by shrinker */
208 	atomic_set(&huge_zero_refcount, 2);
209 	preempt_enable();
210 	return ACCESS_ONCE(huge_zero_page);
211 }
212 
213 static void put_huge_zero_page(void)
214 {
215 	/*
216 	 * Counter should never go to zero here. Only shrinker can put
217 	 * last reference.
218 	 */
219 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
220 }
221 
222 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
223 					struct shrink_control *sc)
224 {
225 	/* we can free zero page only if last reference remains */
226 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
227 }
228 
229 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
230 				       struct shrink_control *sc)
231 {
232 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
233 		struct page *zero_page = xchg(&huge_zero_page, NULL);
234 		BUG_ON(zero_page == NULL);
235 		__free_page(zero_page);
236 		return HPAGE_PMD_NR;
237 	}
238 
239 	return 0;
240 }
241 
242 static struct shrinker huge_zero_page_shrinker = {
243 	.count_objects = shrink_huge_zero_page_count,
244 	.scan_objects = shrink_huge_zero_page_scan,
245 	.seeks = DEFAULT_SEEKS,
246 };
247 
248 #ifdef CONFIG_SYSFS
249 
250 static ssize_t double_flag_show(struct kobject *kobj,
251 				struct kobj_attribute *attr, char *buf,
252 				enum transparent_hugepage_flag enabled,
253 				enum transparent_hugepage_flag req_madv)
254 {
255 	if (test_bit(enabled, &transparent_hugepage_flags)) {
256 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
257 		return sprintf(buf, "[always] madvise never\n");
258 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
259 		return sprintf(buf, "always [madvise] never\n");
260 	else
261 		return sprintf(buf, "always madvise [never]\n");
262 }
263 static ssize_t double_flag_store(struct kobject *kobj,
264 				 struct kobj_attribute *attr,
265 				 const char *buf, size_t count,
266 				 enum transparent_hugepage_flag enabled,
267 				 enum transparent_hugepage_flag req_madv)
268 {
269 	if (!memcmp("always", buf,
270 		    min(sizeof("always")-1, count))) {
271 		set_bit(enabled, &transparent_hugepage_flags);
272 		clear_bit(req_madv, &transparent_hugepage_flags);
273 	} else if (!memcmp("madvise", buf,
274 			   min(sizeof("madvise")-1, count))) {
275 		clear_bit(enabled, &transparent_hugepage_flags);
276 		set_bit(req_madv, &transparent_hugepage_flags);
277 	} else if (!memcmp("never", buf,
278 			   min(sizeof("never")-1, count))) {
279 		clear_bit(enabled, &transparent_hugepage_flags);
280 		clear_bit(req_madv, &transparent_hugepage_flags);
281 	} else
282 		return -EINVAL;
283 
284 	return count;
285 }
286 
287 static ssize_t enabled_show(struct kobject *kobj,
288 			    struct kobj_attribute *attr, char *buf)
289 {
290 	return double_flag_show(kobj, attr, buf,
291 				TRANSPARENT_HUGEPAGE_FLAG,
292 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
293 }
294 static ssize_t enabled_store(struct kobject *kobj,
295 			     struct kobj_attribute *attr,
296 			     const char *buf, size_t count)
297 {
298 	ssize_t ret;
299 
300 	ret = double_flag_store(kobj, attr, buf, count,
301 				TRANSPARENT_HUGEPAGE_FLAG,
302 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
303 
304 	if (ret > 0) {
305 		int err;
306 
307 		mutex_lock(&khugepaged_mutex);
308 		err = start_khugepaged();
309 		mutex_unlock(&khugepaged_mutex);
310 
311 		if (err)
312 			ret = err;
313 	}
314 
315 	return ret;
316 }
317 static struct kobj_attribute enabled_attr =
318 	__ATTR(enabled, 0644, enabled_show, enabled_store);
319 
320 static ssize_t single_flag_show(struct kobject *kobj,
321 				struct kobj_attribute *attr, char *buf,
322 				enum transparent_hugepage_flag flag)
323 {
324 	return sprintf(buf, "%d\n",
325 		       !!test_bit(flag, &transparent_hugepage_flags));
326 }
327 
328 static ssize_t single_flag_store(struct kobject *kobj,
329 				 struct kobj_attribute *attr,
330 				 const char *buf, size_t count,
331 				 enum transparent_hugepage_flag flag)
332 {
333 	unsigned long value;
334 	int ret;
335 
336 	ret = kstrtoul(buf, 10, &value);
337 	if (ret < 0)
338 		return ret;
339 	if (value > 1)
340 		return -EINVAL;
341 
342 	if (value)
343 		set_bit(flag, &transparent_hugepage_flags);
344 	else
345 		clear_bit(flag, &transparent_hugepage_flags);
346 
347 	return count;
348 }
349 
350 /*
351  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
352  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
353  * memory just to allocate one more hugepage.
354  */
355 static ssize_t defrag_show(struct kobject *kobj,
356 			   struct kobj_attribute *attr, char *buf)
357 {
358 	return double_flag_show(kobj, attr, buf,
359 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
360 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
361 }
362 static ssize_t defrag_store(struct kobject *kobj,
363 			    struct kobj_attribute *attr,
364 			    const char *buf, size_t count)
365 {
366 	return double_flag_store(kobj, attr, buf, count,
367 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
368 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
369 }
370 static struct kobj_attribute defrag_attr =
371 	__ATTR(defrag, 0644, defrag_show, defrag_store);
372 
373 static ssize_t use_zero_page_show(struct kobject *kobj,
374 		struct kobj_attribute *attr, char *buf)
375 {
376 	return single_flag_show(kobj, attr, buf,
377 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378 }
379 static ssize_t use_zero_page_store(struct kobject *kobj,
380 		struct kobj_attribute *attr, const char *buf, size_t count)
381 {
382 	return single_flag_store(kobj, attr, buf, count,
383 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
384 }
385 static struct kobj_attribute use_zero_page_attr =
386 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
387 #ifdef CONFIG_DEBUG_VM
388 static ssize_t debug_cow_show(struct kobject *kobj,
389 				struct kobj_attribute *attr, char *buf)
390 {
391 	return single_flag_show(kobj, attr, buf,
392 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
393 }
394 static ssize_t debug_cow_store(struct kobject *kobj,
395 			       struct kobj_attribute *attr,
396 			       const char *buf, size_t count)
397 {
398 	return single_flag_store(kobj, attr, buf, count,
399 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
400 }
401 static struct kobj_attribute debug_cow_attr =
402 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
403 #endif /* CONFIG_DEBUG_VM */
404 
405 static struct attribute *hugepage_attr[] = {
406 	&enabled_attr.attr,
407 	&defrag_attr.attr,
408 	&use_zero_page_attr.attr,
409 #ifdef CONFIG_DEBUG_VM
410 	&debug_cow_attr.attr,
411 #endif
412 	NULL,
413 };
414 
415 static struct attribute_group hugepage_attr_group = {
416 	.attrs = hugepage_attr,
417 };
418 
419 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
420 					 struct kobj_attribute *attr,
421 					 char *buf)
422 {
423 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
424 }
425 
426 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
427 					  struct kobj_attribute *attr,
428 					  const char *buf, size_t count)
429 {
430 	unsigned long msecs;
431 	int err;
432 
433 	err = kstrtoul(buf, 10, &msecs);
434 	if (err || msecs > UINT_MAX)
435 		return -EINVAL;
436 
437 	khugepaged_scan_sleep_millisecs = msecs;
438 	wake_up_interruptible(&khugepaged_wait);
439 
440 	return count;
441 }
442 static struct kobj_attribute scan_sleep_millisecs_attr =
443 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
444 	       scan_sleep_millisecs_store);
445 
446 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
447 					  struct kobj_attribute *attr,
448 					  char *buf)
449 {
450 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
451 }
452 
453 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
454 					   struct kobj_attribute *attr,
455 					   const char *buf, size_t count)
456 {
457 	unsigned long msecs;
458 	int err;
459 
460 	err = kstrtoul(buf, 10, &msecs);
461 	if (err || msecs > UINT_MAX)
462 		return -EINVAL;
463 
464 	khugepaged_alloc_sleep_millisecs = msecs;
465 	wake_up_interruptible(&khugepaged_wait);
466 
467 	return count;
468 }
469 static struct kobj_attribute alloc_sleep_millisecs_attr =
470 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
471 	       alloc_sleep_millisecs_store);
472 
473 static ssize_t pages_to_scan_show(struct kobject *kobj,
474 				  struct kobj_attribute *attr,
475 				  char *buf)
476 {
477 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
478 }
479 static ssize_t pages_to_scan_store(struct kobject *kobj,
480 				   struct kobj_attribute *attr,
481 				   const char *buf, size_t count)
482 {
483 	int err;
484 	unsigned long pages;
485 
486 	err = kstrtoul(buf, 10, &pages);
487 	if (err || !pages || pages > UINT_MAX)
488 		return -EINVAL;
489 
490 	khugepaged_pages_to_scan = pages;
491 
492 	return count;
493 }
494 static struct kobj_attribute pages_to_scan_attr =
495 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
496 	       pages_to_scan_store);
497 
498 static ssize_t pages_collapsed_show(struct kobject *kobj,
499 				    struct kobj_attribute *attr,
500 				    char *buf)
501 {
502 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
503 }
504 static struct kobj_attribute pages_collapsed_attr =
505 	__ATTR_RO(pages_collapsed);
506 
507 static ssize_t full_scans_show(struct kobject *kobj,
508 			       struct kobj_attribute *attr,
509 			       char *buf)
510 {
511 	return sprintf(buf, "%u\n", khugepaged_full_scans);
512 }
513 static struct kobj_attribute full_scans_attr =
514 	__ATTR_RO(full_scans);
515 
516 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
517 				      struct kobj_attribute *attr, char *buf)
518 {
519 	return single_flag_show(kobj, attr, buf,
520 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
521 }
522 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
523 				       struct kobj_attribute *attr,
524 				       const char *buf, size_t count)
525 {
526 	return single_flag_store(kobj, attr, buf, count,
527 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
528 }
529 static struct kobj_attribute khugepaged_defrag_attr =
530 	__ATTR(defrag, 0644, khugepaged_defrag_show,
531 	       khugepaged_defrag_store);
532 
533 /*
534  * max_ptes_none controls if khugepaged should collapse hugepages over
535  * any unmapped ptes in turn potentially increasing the memory
536  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
537  * reduce the available free memory in the system as it
538  * runs. Increasing max_ptes_none will instead potentially reduce the
539  * free memory in the system during the khugepaged scan.
540  */
541 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
542 					     struct kobj_attribute *attr,
543 					     char *buf)
544 {
545 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
546 }
547 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
548 					      struct kobj_attribute *attr,
549 					      const char *buf, size_t count)
550 {
551 	int err;
552 	unsigned long max_ptes_none;
553 
554 	err = kstrtoul(buf, 10, &max_ptes_none);
555 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
556 		return -EINVAL;
557 
558 	khugepaged_max_ptes_none = max_ptes_none;
559 
560 	return count;
561 }
562 static struct kobj_attribute khugepaged_max_ptes_none_attr =
563 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
564 	       khugepaged_max_ptes_none_store);
565 
566 static struct attribute *khugepaged_attr[] = {
567 	&khugepaged_defrag_attr.attr,
568 	&khugepaged_max_ptes_none_attr.attr,
569 	&pages_to_scan_attr.attr,
570 	&pages_collapsed_attr.attr,
571 	&full_scans_attr.attr,
572 	&scan_sleep_millisecs_attr.attr,
573 	&alloc_sleep_millisecs_attr.attr,
574 	NULL,
575 };
576 
577 static struct attribute_group khugepaged_attr_group = {
578 	.attrs = khugepaged_attr,
579 	.name = "khugepaged",
580 };
581 
582 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
583 {
584 	int err;
585 
586 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
587 	if (unlikely(!*hugepage_kobj)) {
588 		pr_err("failed to create transparent hugepage kobject\n");
589 		return -ENOMEM;
590 	}
591 
592 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
593 	if (err) {
594 		pr_err("failed to register transparent hugepage group\n");
595 		goto delete_obj;
596 	}
597 
598 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
599 	if (err) {
600 		pr_err("failed to register transparent hugepage group\n");
601 		goto remove_hp_group;
602 	}
603 
604 	return 0;
605 
606 remove_hp_group:
607 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
608 delete_obj:
609 	kobject_put(*hugepage_kobj);
610 	return err;
611 }
612 
613 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
614 {
615 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
616 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
617 	kobject_put(hugepage_kobj);
618 }
619 #else
620 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
621 {
622 	return 0;
623 }
624 
625 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
626 {
627 }
628 #endif /* CONFIG_SYSFS */
629 
630 static int __init hugepage_init(void)
631 {
632 	int err;
633 	struct kobject *hugepage_kobj;
634 
635 	if (!has_transparent_hugepage()) {
636 		transparent_hugepage_flags = 0;
637 		return -EINVAL;
638 	}
639 
640 	err = hugepage_init_sysfs(&hugepage_kobj);
641 	if (err)
642 		return err;
643 
644 	err = khugepaged_slab_init();
645 	if (err)
646 		goto out;
647 
648 	register_shrinker(&huge_zero_page_shrinker);
649 
650 	/*
651 	 * By default disable transparent hugepages on smaller systems,
652 	 * where the extra memory used could hurt more than TLB overhead
653 	 * is likely to save.  The admin can still enable it through /sys.
654 	 */
655 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
656 		transparent_hugepage_flags = 0;
657 
658 	start_khugepaged();
659 
660 	return 0;
661 out:
662 	hugepage_exit_sysfs(hugepage_kobj);
663 	return err;
664 }
665 subsys_initcall(hugepage_init);
666 
667 static int __init setup_transparent_hugepage(char *str)
668 {
669 	int ret = 0;
670 	if (!str)
671 		goto out;
672 	if (!strcmp(str, "always")) {
673 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
674 			&transparent_hugepage_flags);
675 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
676 			  &transparent_hugepage_flags);
677 		ret = 1;
678 	} else if (!strcmp(str, "madvise")) {
679 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
680 			  &transparent_hugepage_flags);
681 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
682 			&transparent_hugepage_flags);
683 		ret = 1;
684 	} else if (!strcmp(str, "never")) {
685 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
686 			  &transparent_hugepage_flags);
687 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
688 			  &transparent_hugepage_flags);
689 		ret = 1;
690 	}
691 out:
692 	if (!ret)
693 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
694 	return ret;
695 }
696 __setup("transparent_hugepage=", setup_transparent_hugepage);
697 
698 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
699 {
700 	if (likely(vma->vm_flags & VM_WRITE))
701 		pmd = pmd_mkwrite(pmd);
702 	return pmd;
703 }
704 
705 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
706 {
707 	pmd_t entry;
708 	entry = mk_pmd(page, prot);
709 	entry = pmd_mkhuge(entry);
710 	return entry;
711 }
712 
713 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
714 					struct vm_area_struct *vma,
715 					unsigned long haddr, pmd_t *pmd,
716 					struct page *page)
717 {
718 	pgtable_t pgtable;
719 	spinlock_t *ptl;
720 
721 	VM_BUG_ON_PAGE(!PageCompound(page), page);
722 	pgtable = pte_alloc_one(mm, haddr);
723 	if (unlikely(!pgtable))
724 		return VM_FAULT_OOM;
725 
726 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
727 	/*
728 	 * The memory barrier inside __SetPageUptodate makes sure that
729 	 * clear_huge_page writes become visible before the set_pmd_at()
730 	 * write.
731 	 */
732 	__SetPageUptodate(page);
733 
734 	ptl = pmd_lock(mm, pmd);
735 	if (unlikely(!pmd_none(*pmd))) {
736 		spin_unlock(ptl);
737 		mem_cgroup_uncharge_page(page);
738 		put_page(page);
739 		pte_free(mm, pgtable);
740 	} else {
741 		pmd_t entry;
742 		entry = mk_huge_pmd(page, vma->vm_page_prot);
743 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
744 		page_add_new_anon_rmap(page, vma, haddr);
745 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
746 		set_pmd_at(mm, haddr, pmd, entry);
747 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
748 		atomic_long_inc(&mm->nr_ptes);
749 		spin_unlock(ptl);
750 	}
751 
752 	return 0;
753 }
754 
755 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
756 {
757 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
758 }
759 
760 static inline struct page *alloc_hugepage_vma(int defrag,
761 					      struct vm_area_struct *vma,
762 					      unsigned long haddr, int nd,
763 					      gfp_t extra_gfp)
764 {
765 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
766 			       HPAGE_PMD_ORDER, vma, haddr, nd);
767 }
768 
769 /* Caller must hold page table lock. */
770 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
771 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
772 		struct page *zero_page)
773 {
774 	pmd_t entry;
775 	if (!pmd_none(*pmd))
776 		return false;
777 	entry = mk_pmd(zero_page, vma->vm_page_prot);
778 	entry = pmd_wrprotect(entry);
779 	entry = pmd_mkhuge(entry);
780 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
781 	set_pmd_at(mm, haddr, pmd, entry);
782 	atomic_long_inc(&mm->nr_ptes);
783 	return true;
784 }
785 
786 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
787 			       unsigned long address, pmd_t *pmd,
788 			       unsigned int flags)
789 {
790 	struct page *page;
791 	unsigned long haddr = address & HPAGE_PMD_MASK;
792 
793 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
794 		return VM_FAULT_FALLBACK;
795 	if (unlikely(anon_vma_prepare(vma)))
796 		return VM_FAULT_OOM;
797 	if (unlikely(khugepaged_enter(vma)))
798 		return VM_FAULT_OOM;
799 	if (!(flags & FAULT_FLAG_WRITE) &&
800 			transparent_hugepage_use_zero_page()) {
801 		spinlock_t *ptl;
802 		pgtable_t pgtable;
803 		struct page *zero_page;
804 		bool set;
805 		pgtable = pte_alloc_one(mm, haddr);
806 		if (unlikely(!pgtable))
807 			return VM_FAULT_OOM;
808 		zero_page = get_huge_zero_page();
809 		if (unlikely(!zero_page)) {
810 			pte_free(mm, pgtable);
811 			count_vm_event(THP_FAULT_FALLBACK);
812 			return VM_FAULT_FALLBACK;
813 		}
814 		ptl = pmd_lock(mm, pmd);
815 		set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
816 				zero_page);
817 		spin_unlock(ptl);
818 		if (!set) {
819 			pte_free(mm, pgtable);
820 			put_huge_zero_page();
821 		}
822 		return 0;
823 	}
824 	page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
825 			vma, haddr, numa_node_id(), 0);
826 	if (unlikely(!page)) {
827 		count_vm_event(THP_FAULT_FALLBACK);
828 		return VM_FAULT_FALLBACK;
829 	}
830 	if (unlikely(mem_cgroup_charge_anon(page, mm, GFP_KERNEL))) {
831 		put_page(page);
832 		count_vm_event(THP_FAULT_FALLBACK);
833 		return VM_FAULT_FALLBACK;
834 	}
835 	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
836 		mem_cgroup_uncharge_page(page);
837 		put_page(page);
838 		count_vm_event(THP_FAULT_FALLBACK);
839 		return VM_FAULT_FALLBACK;
840 	}
841 
842 	count_vm_event(THP_FAULT_ALLOC);
843 	return 0;
844 }
845 
846 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
847 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
848 		  struct vm_area_struct *vma)
849 {
850 	spinlock_t *dst_ptl, *src_ptl;
851 	struct page *src_page;
852 	pmd_t pmd;
853 	pgtable_t pgtable;
854 	int ret;
855 
856 	ret = -ENOMEM;
857 	pgtable = pte_alloc_one(dst_mm, addr);
858 	if (unlikely(!pgtable))
859 		goto out;
860 
861 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
862 	src_ptl = pmd_lockptr(src_mm, src_pmd);
863 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
864 
865 	ret = -EAGAIN;
866 	pmd = *src_pmd;
867 	if (unlikely(!pmd_trans_huge(pmd))) {
868 		pte_free(dst_mm, pgtable);
869 		goto out_unlock;
870 	}
871 	/*
872 	 * When page table lock is held, the huge zero pmd should not be
873 	 * under splitting since we don't split the page itself, only pmd to
874 	 * a page table.
875 	 */
876 	if (is_huge_zero_pmd(pmd)) {
877 		struct page *zero_page;
878 		bool set;
879 		/*
880 		 * get_huge_zero_page() will never allocate a new page here,
881 		 * since we already have a zero page to copy. It just takes a
882 		 * reference.
883 		 */
884 		zero_page = get_huge_zero_page();
885 		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
886 				zero_page);
887 		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
888 		ret = 0;
889 		goto out_unlock;
890 	}
891 
892 	if (unlikely(pmd_trans_splitting(pmd))) {
893 		/* split huge page running from under us */
894 		spin_unlock(src_ptl);
895 		spin_unlock(dst_ptl);
896 		pte_free(dst_mm, pgtable);
897 
898 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
899 		goto out;
900 	}
901 	src_page = pmd_page(pmd);
902 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
903 	get_page(src_page);
904 	page_dup_rmap(src_page);
905 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
906 
907 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
908 	pmd = pmd_mkold(pmd_wrprotect(pmd));
909 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
910 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
911 	atomic_long_inc(&dst_mm->nr_ptes);
912 
913 	ret = 0;
914 out_unlock:
915 	spin_unlock(src_ptl);
916 	spin_unlock(dst_ptl);
917 out:
918 	return ret;
919 }
920 
921 void huge_pmd_set_accessed(struct mm_struct *mm,
922 			   struct vm_area_struct *vma,
923 			   unsigned long address,
924 			   pmd_t *pmd, pmd_t orig_pmd,
925 			   int dirty)
926 {
927 	spinlock_t *ptl;
928 	pmd_t entry;
929 	unsigned long haddr;
930 
931 	ptl = pmd_lock(mm, pmd);
932 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
933 		goto unlock;
934 
935 	entry = pmd_mkyoung(orig_pmd);
936 	haddr = address & HPAGE_PMD_MASK;
937 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
938 		update_mmu_cache_pmd(vma, address, pmd);
939 
940 unlock:
941 	spin_unlock(ptl);
942 }
943 
944 /*
945  * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
946  * during copy_user_huge_page()'s copy_page_rep(): in the case when
947  * the source page gets split and a tail freed before copy completes.
948  * Called under pmd_lock of checked pmd, so safe from splitting itself.
949  */
950 static void get_user_huge_page(struct page *page)
951 {
952 	if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
953 		struct page *endpage = page + HPAGE_PMD_NR;
954 
955 		atomic_add(HPAGE_PMD_NR, &page->_count);
956 		while (++page < endpage)
957 			get_huge_page_tail(page);
958 	} else {
959 		get_page(page);
960 	}
961 }
962 
963 static void put_user_huge_page(struct page *page)
964 {
965 	if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
966 		struct page *endpage = page + HPAGE_PMD_NR;
967 
968 		while (page < endpage)
969 			put_page(page++);
970 	} else {
971 		put_page(page);
972 	}
973 }
974 
975 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
976 					struct vm_area_struct *vma,
977 					unsigned long address,
978 					pmd_t *pmd, pmd_t orig_pmd,
979 					struct page *page,
980 					unsigned long haddr)
981 {
982 	spinlock_t *ptl;
983 	pgtable_t pgtable;
984 	pmd_t _pmd;
985 	int ret = 0, i;
986 	struct page **pages;
987 	unsigned long mmun_start;	/* For mmu_notifiers */
988 	unsigned long mmun_end;		/* For mmu_notifiers */
989 
990 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
991 			GFP_KERNEL);
992 	if (unlikely(!pages)) {
993 		ret |= VM_FAULT_OOM;
994 		goto out;
995 	}
996 
997 	for (i = 0; i < HPAGE_PMD_NR; i++) {
998 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
999 					       __GFP_OTHER_NODE,
1000 					       vma, address, page_to_nid(page));
1001 		if (unlikely(!pages[i] ||
1002 			     mem_cgroup_charge_anon(pages[i], mm,
1003 						       GFP_KERNEL))) {
1004 			if (pages[i])
1005 				put_page(pages[i]);
1006 			mem_cgroup_uncharge_start();
1007 			while (--i >= 0) {
1008 				mem_cgroup_uncharge_page(pages[i]);
1009 				put_page(pages[i]);
1010 			}
1011 			mem_cgroup_uncharge_end();
1012 			kfree(pages);
1013 			ret |= VM_FAULT_OOM;
1014 			goto out;
1015 		}
1016 	}
1017 
1018 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1019 		copy_user_highpage(pages[i], page + i,
1020 				   haddr + PAGE_SIZE * i, vma);
1021 		__SetPageUptodate(pages[i]);
1022 		cond_resched();
1023 	}
1024 
1025 	mmun_start = haddr;
1026 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1027 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1028 
1029 	ptl = pmd_lock(mm, pmd);
1030 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1031 		goto out_free_pages;
1032 	VM_BUG_ON_PAGE(!PageHead(page), page);
1033 
1034 	pmdp_clear_flush(vma, haddr, pmd);
1035 	/* leave pmd empty until pte is filled */
1036 
1037 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1038 	pmd_populate(mm, &_pmd, pgtable);
1039 
1040 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1041 		pte_t *pte, entry;
1042 		entry = mk_pte(pages[i], vma->vm_page_prot);
1043 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1044 		page_add_new_anon_rmap(pages[i], vma, haddr);
1045 		pte = pte_offset_map(&_pmd, haddr);
1046 		VM_BUG_ON(!pte_none(*pte));
1047 		set_pte_at(mm, haddr, pte, entry);
1048 		pte_unmap(pte);
1049 	}
1050 	kfree(pages);
1051 
1052 	smp_wmb(); /* make pte visible before pmd */
1053 	pmd_populate(mm, pmd, pgtable);
1054 	page_remove_rmap(page);
1055 	spin_unlock(ptl);
1056 
1057 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1058 
1059 	ret |= VM_FAULT_WRITE;
1060 	put_page(page);
1061 
1062 out:
1063 	return ret;
1064 
1065 out_free_pages:
1066 	spin_unlock(ptl);
1067 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1068 	mem_cgroup_uncharge_start();
1069 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1070 		mem_cgroup_uncharge_page(pages[i]);
1071 		put_page(pages[i]);
1072 	}
1073 	mem_cgroup_uncharge_end();
1074 	kfree(pages);
1075 	goto out;
1076 }
1077 
1078 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1079 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1080 {
1081 	spinlock_t *ptl;
1082 	int ret = 0;
1083 	struct page *page = NULL, *new_page;
1084 	unsigned long haddr;
1085 	unsigned long mmun_start;	/* For mmu_notifiers */
1086 	unsigned long mmun_end;		/* For mmu_notifiers */
1087 
1088 	ptl = pmd_lockptr(mm, pmd);
1089 	VM_BUG_ON(!vma->anon_vma);
1090 	haddr = address & HPAGE_PMD_MASK;
1091 	if (is_huge_zero_pmd(orig_pmd))
1092 		goto alloc;
1093 	spin_lock(ptl);
1094 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1095 		goto out_unlock;
1096 
1097 	page = pmd_page(orig_pmd);
1098 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1099 	if (page_mapcount(page) == 1) {
1100 		pmd_t entry;
1101 		entry = pmd_mkyoung(orig_pmd);
1102 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1103 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1104 			update_mmu_cache_pmd(vma, address, pmd);
1105 		ret |= VM_FAULT_WRITE;
1106 		goto out_unlock;
1107 	}
1108 	get_user_huge_page(page);
1109 	spin_unlock(ptl);
1110 alloc:
1111 	if (transparent_hugepage_enabled(vma) &&
1112 	    !transparent_hugepage_debug_cow())
1113 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1114 					      vma, haddr, numa_node_id(), 0);
1115 	else
1116 		new_page = NULL;
1117 
1118 	if (unlikely(!new_page)) {
1119 		if (!page) {
1120 			split_huge_page_pmd(vma, address, pmd);
1121 			ret |= VM_FAULT_FALLBACK;
1122 		} else {
1123 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1124 					pmd, orig_pmd, page, haddr);
1125 			if (ret & VM_FAULT_OOM) {
1126 				split_huge_page(page);
1127 				ret |= VM_FAULT_FALLBACK;
1128 			}
1129 			put_user_huge_page(page);
1130 		}
1131 		count_vm_event(THP_FAULT_FALLBACK);
1132 		goto out;
1133 	}
1134 
1135 	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) {
1136 		put_page(new_page);
1137 		if (page) {
1138 			split_huge_page(page);
1139 			put_user_huge_page(page);
1140 		} else
1141 			split_huge_page_pmd(vma, address, pmd);
1142 		ret |= VM_FAULT_FALLBACK;
1143 		count_vm_event(THP_FAULT_FALLBACK);
1144 		goto out;
1145 	}
1146 
1147 	count_vm_event(THP_FAULT_ALLOC);
1148 
1149 	if (!page)
1150 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1151 	else
1152 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1153 	__SetPageUptodate(new_page);
1154 
1155 	mmun_start = haddr;
1156 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1157 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1158 
1159 	spin_lock(ptl);
1160 	if (page)
1161 		put_user_huge_page(page);
1162 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1163 		spin_unlock(ptl);
1164 		mem_cgroup_uncharge_page(new_page);
1165 		put_page(new_page);
1166 		goto out_mn;
1167 	} else {
1168 		pmd_t entry;
1169 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1170 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1171 		pmdp_clear_flush(vma, haddr, pmd);
1172 		page_add_new_anon_rmap(new_page, vma, haddr);
1173 		set_pmd_at(mm, haddr, pmd, entry);
1174 		update_mmu_cache_pmd(vma, address, pmd);
1175 		if (!page) {
1176 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1177 			put_huge_zero_page();
1178 		} else {
1179 			VM_BUG_ON_PAGE(!PageHead(page), page);
1180 			page_remove_rmap(page);
1181 			put_page(page);
1182 		}
1183 		ret |= VM_FAULT_WRITE;
1184 	}
1185 	spin_unlock(ptl);
1186 out_mn:
1187 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1188 out:
1189 	return ret;
1190 out_unlock:
1191 	spin_unlock(ptl);
1192 	return ret;
1193 }
1194 
1195 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1196 				   unsigned long addr,
1197 				   pmd_t *pmd,
1198 				   unsigned int flags)
1199 {
1200 	struct mm_struct *mm = vma->vm_mm;
1201 	struct page *page = NULL;
1202 
1203 	assert_spin_locked(pmd_lockptr(mm, pmd));
1204 
1205 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1206 		goto out;
1207 
1208 	/* Avoid dumping huge zero page */
1209 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1210 		return ERR_PTR(-EFAULT);
1211 
1212 	/* Full NUMA hinting faults to serialise migration in fault paths */
1213 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1214 		goto out;
1215 
1216 	page = pmd_page(*pmd);
1217 	VM_BUG_ON_PAGE(!PageHead(page), page);
1218 	if (flags & FOLL_TOUCH) {
1219 		pmd_t _pmd;
1220 		/*
1221 		 * We should set the dirty bit only for FOLL_WRITE but
1222 		 * for now the dirty bit in the pmd is meaningless.
1223 		 * And if the dirty bit will become meaningful and
1224 		 * we'll only set it with FOLL_WRITE, an atomic
1225 		 * set_bit will be required on the pmd to set the
1226 		 * young bit, instead of the current set_pmd_at.
1227 		 */
1228 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1229 		if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1230 					  pmd, _pmd,  1))
1231 			update_mmu_cache_pmd(vma, addr, pmd);
1232 	}
1233 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1234 		if (page->mapping && trylock_page(page)) {
1235 			lru_add_drain();
1236 			if (page->mapping)
1237 				mlock_vma_page(page);
1238 			unlock_page(page);
1239 		}
1240 	}
1241 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1242 	VM_BUG_ON_PAGE(!PageCompound(page), page);
1243 	if (flags & FOLL_GET)
1244 		get_page_foll(page);
1245 
1246 out:
1247 	return page;
1248 }
1249 
1250 /* NUMA hinting page fault entry point for trans huge pmds */
1251 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1252 				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1253 {
1254 	spinlock_t *ptl;
1255 	struct anon_vma *anon_vma = NULL;
1256 	struct page *page;
1257 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1258 	int page_nid = -1, this_nid = numa_node_id();
1259 	int target_nid, last_cpupid = -1;
1260 	bool page_locked;
1261 	bool migrated = false;
1262 	int flags = 0;
1263 
1264 	ptl = pmd_lock(mm, pmdp);
1265 	if (unlikely(!pmd_same(pmd, *pmdp)))
1266 		goto out_unlock;
1267 
1268 	/*
1269 	 * If there are potential migrations, wait for completion and retry
1270 	 * without disrupting NUMA hinting information. Do not relock and
1271 	 * check_same as the page may no longer be mapped.
1272 	 */
1273 	if (unlikely(pmd_trans_migrating(*pmdp))) {
1274 		spin_unlock(ptl);
1275 		wait_migrate_huge_page(vma->anon_vma, pmdp);
1276 		goto out;
1277 	}
1278 
1279 	page = pmd_page(pmd);
1280 	BUG_ON(is_huge_zero_page(page));
1281 	page_nid = page_to_nid(page);
1282 	last_cpupid = page_cpupid_last(page);
1283 	count_vm_numa_event(NUMA_HINT_FAULTS);
1284 	if (page_nid == this_nid) {
1285 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1286 		flags |= TNF_FAULT_LOCAL;
1287 	}
1288 
1289 	/*
1290 	 * Avoid grouping on DSO/COW pages in specific and RO pages
1291 	 * in general, RO pages shouldn't hurt as much anyway since
1292 	 * they can be in shared cache state.
1293 	 */
1294 	if (!pmd_write(pmd))
1295 		flags |= TNF_NO_GROUP;
1296 
1297 	/*
1298 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1299 	 * page_table_lock if at all possible
1300 	 */
1301 	page_locked = trylock_page(page);
1302 	target_nid = mpol_misplaced(page, vma, haddr);
1303 	if (target_nid == -1) {
1304 		/* If the page was locked, there are no parallel migrations */
1305 		if (page_locked)
1306 			goto clear_pmdnuma;
1307 	}
1308 
1309 	/* Migration could have started since the pmd_trans_migrating check */
1310 	if (!page_locked) {
1311 		spin_unlock(ptl);
1312 		wait_on_page_locked(page);
1313 		page_nid = -1;
1314 		goto out;
1315 	}
1316 
1317 	/*
1318 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1319 	 * to serialises splits
1320 	 */
1321 	get_page(page);
1322 	spin_unlock(ptl);
1323 	anon_vma = page_lock_anon_vma_read(page);
1324 
1325 	/* Confirm the PMD did not change while page_table_lock was released */
1326 	spin_lock(ptl);
1327 	if (unlikely(!pmd_same(pmd, *pmdp))) {
1328 		unlock_page(page);
1329 		put_page(page);
1330 		page_nid = -1;
1331 		goto out_unlock;
1332 	}
1333 
1334 	/* Bail if we fail to protect against THP splits for any reason */
1335 	if (unlikely(!anon_vma)) {
1336 		put_page(page);
1337 		page_nid = -1;
1338 		goto clear_pmdnuma;
1339 	}
1340 
1341 	/*
1342 	 * Migrate the THP to the requested node, returns with page unlocked
1343 	 * and pmd_numa cleared.
1344 	 */
1345 	spin_unlock(ptl);
1346 	migrated = migrate_misplaced_transhuge_page(mm, vma,
1347 				pmdp, pmd, addr, page, target_nid);
1348 	if (migrated) {
1349 		flags |= TNF_MIGRATED;
1350 		page_nid = target_nid;
1351 	}
1352 
1353 	goto out;
1354 clear_pmdnuma:
1355 	BUG_ON(!PageLocked(page));
1356 	pmd = pmd_mknonnuma(pmd);
1357 	set_pmd_at(mm, haddr, pmdp, pmd);
1358 	VM_BUG_ON(pmd_numa(*pmdp));
1359 	update_mmu_cache_pmd(vma, addr, pmdp);
1360 	unlock_page(page);
1361 out_unlock:
1362 	spin_unlock(ptl);
1363 
1364 out:
1365 	if (anon_vma)
1366 		page_unlock_anon_vma_read(anon_vma);
1367 
1368 	if (page_nid != -1)
1369 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1370 
1371 	return 0;
1372 }
1373 
1374 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1375 		 pmd_t *pmd, unsigned long addr)
1376 {
1377 	spinlock_t *ptl;
1378 	int ret = 0;
1379 
1380 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1381 		struct page *page;
1382 		pgtable_t pgtable;
1383 		pmd_t orig_pmd;
1384 		/*
1385 		 * For architectures like ppc64 we look at deposited pgtable
1386 		 * when calling pmdp_get_and_clear. So do the
1387 		 * pgtable_trans_huge_withdraw after finishing pmdp related
1388 		 * operations.
1389 		 */
1390 		orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1391 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1392 		pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1393 		if (is_huge_zero_pmd(orig_pmd)) {
1394 			atomic_long_dec(&tlb->mm->nr_ptes);
1395 			spin_unlock(ptl);
1396 			put_huge_zero_page();
1397 		} else {
1398 			page = pmd_page(orig_pmd);
1399 			page_remove_rmap(page);
1400 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1401 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1402 			VM_BUG_ON_PAGE(!PageHead(page), page);
1403 			atomic_long_dec(&tlb->mm->nr_ptes);
1404 			spin_unlock(ptl);
1405 			tlb_remove_page(tlb, page);
1406 		}
1407 		pte_free(tlb->mm, pgtable);
1408 		ret = 1;
1409 	}
1410 	return ret;
1411 }
1412 
1413 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1414 		unsigned long addr, unsigned long end,
1415 		unsigned char *vec)
1416 {
1417 	spinlock_t *ptl;
1418 	int ret = 0;
1419 
1420 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1421 		/*
1422 		 * All logical pages in the range are present
1423 		 * if backed by a huge page.
1424 		 */
1425 		spin_unlock(ptl);
1426 		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1427 		ret = 1;
1428 	}
1429 
1430 	return ret;
1431 }
1432 
1433 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1434 		  unsigned long old_addr,
1435 		  unsigned long new_addr, unsigned long old_end,
1436 		  pmd_t *old_pmd, pmd_t *new_pmd)
1437 {
1438 	spinlock_t *old_ptl, *new_ptl;
1439 	int ret = 0;
1440 	pmd_t pmd;
1441 
1442 	struct mm_struct *mm = vma->vm_mm;
1443 
1444 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1445 	    (new_addr & ~HPAGE_PMD_MASK) ||
1446 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1447 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1448 		goto out;
1449 
1450 	/*
1451 	 * The destination pmd shouldn't be established, free_pgtables()
1452 	 * should have release it.
1453 	 */
1454 	if (WARN_ON(!pmd_none(*new_pmd))) {
1455 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1456 		goto out;
1457 	}
1458 
1459 	/*
1460 	 * We don't have to worry about the ordering of src and dst
1461 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1462 	 */
1463 	ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1464 	if (ret == 1) {
1465 		new_ptl = pmd_lockptr(mm, new_pmd);
1466 		if (new_ptl != old_ptl)
1467 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1468 		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1469 		VM_BUG_ON(!pmd_none(*new_pmd));
1470 
1471 		if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1472 			pgtable_t pgtable;
1473 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1474 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1475 		}
1476 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1477 		if (new_ptl != old_ptl)
1478 			spin_unlock(new_ptl);
1479 		spin_unlock(old_ptl);
1480 	}
1481 out:
1482 	return ret;
1483 }
1484 
1485 /*
1486  * Returns
1487  *  - 0 if PMD could not be locked
1488  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1489  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1490  */
1491 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1492 		unsigned long addr, pgprot_t newprot, int prot_numa)
1493 {
1494 	struct mm_struct *mm = vma->vm_mm;
1495 	spinlock_t *ptl;
1496 	int ret = 0;
1497 
1498 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1499 		pmd_t entry;
1500 		ret = 1;
1501 		if (!prot_numa) {
1502 			entry = pmdp_get_and_clear(mm, addr, pmd);
1503 			if (pmd_numa(entry))
1504 				entry = pmd_mknonnuma(entry);
1505 			entry = pmd_modify(entry, newprot);
1506 			ret = HPAGE_PMD_NR;
1507 			set_pmd_at(mm, addr, pmd, entry);
1508 			BUG_ON(pmd_write(entry));
1509 		} else {
1510 			struct page *page = pmd_page(*pmd);
1511 
1512 			/*
1513 			 * Do not trap faults against the zero page. The
1514 			 * read-only data is likely to be read-cached on the
1515 			 * local CPU cache and it is less useful to know about
1516 			 * local vs remote hits on the zero page.
1517 			 */
1518 			if (!is_huge_zero_page(page) &&
1519 			    !pmd_numa(*pmd)) {
1520 				pmdp_set_numa(mm, addr, pmd);
1521 				ret = HPAGE_PMD_NR;
1522 			}
1523 		}
1524 		spin_unlock(ptl);
1525 	}
1526 
1527 	return ret;
1528 }
1529 
1530 /*
1531  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1532  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1533  *
1534  * Note that if it returns 1, this routine returns without unlocking page
1535  * table locks. So callers must unlock them.
1536  */
1537 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1538 		spinlock_t **ptl)
1539 {
1540 	*ptl = pmd_lock(vma->vm_mm, pmd);
1541 	if (likely(pmd_trans_huge(*pmd))) {
1542 		if (unlikely(pmd_trans_splitting(*pmd))) {
1543 			spin_unlock(*ptl);
1544 			wait_split_huge_page(vma->anon_vma, pmd);
1545 			return -1;
1546 		} else {
1547 			/* Thp mapped by 'pmd' is stable, so we can
1548 			 * handle it as it is. */
1549 			return 1;
1550 		}
1551 	}
1552 	spin_unlock(*ptl);
1553 	return 0;
1554 }
1555 
1556 /*
1557  * This function returns whether a given @page is mapped onto the @address
1558  * in the virtual space of @mm.
1559  *
1560  * When it's true, this function returns *pmd with holding the page table lock
1561  * and passing it back to the caller via @ptl.
1562  * If it's false, returns NULL without holding the page table lock.
1563  */
1564 pmd_t *page_check_address_pmd(struct page *page,
1565 			      struct mm_struct *mm,
1566 			      unsigned long address,
1567 			      enum page_check_address_pmd_flag flag,
1568 			      spinlock_t **ptl)
1569 {
1570 	pgd_t *pgd;
1571 	pud_t *pud;
1572 	pmd_t *pmd;
1573 
1574 	if (address & ~HPAGE_PMD_MASK)
1575 		return NULL;
1576 
1577 	pgd = pgd_offset(mm, address);
1578 	if (!pgd_present(*pgd))
1579 		return NULL;
1580 	pud = pud_offset(pgd, address);
1581 	if (!pud_present(*pud))
1582 		return NULL;
1583 	pmd = pmd_offset(pud, address);
1584 
1585 	*ptl = pmd_lock(mm, pmd);
1586 	if (!pmd_present(*pmd))
1587 		goto unlock;
1588 	if (pmd_page(*pmd) != page)
1589 		goto unlock;
1590 	/*
1591 	 * split_vma() may create temporary aliased mappings. There is
1592 	 * no risk as long as all huge pmd are found and have their
1593 	 * splitting bit set before __split_huge_page_refcount
1594 	 * runs. Finding the same huge pmd more than once during the
1595 	 * same rmap walk is not a problem.
1596 	 */
1597 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1598 	    pmd_trans_splitting(*pmd))
1599 		goto unlock;
1600 	if (pmd_trans_huge(*pmd)) {
1601 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1602 			  !pmd_trans_splitting(*pmd));
1603 		return pmd;
1604 	}
1605 unlock:
1606 	spin_unlock(*ptl);
1607 	return NULL;
1608 }
1609 
1610 static int __split_huge_page_splitting(struct page *page,
1611 				       struct vm_area_struct *vma,
1612 				       unsigned long address)
1613 {
1614 	struct mm_struct *mm = vma->vm_mm;
1615 	spinlock_t *ptl;
1616 	pmd_t *pmd;
1617 	int ret = 0;
1618 	/* For mmu_notifiers */
1619 	const unsigned long mmun_start = address;
1620 	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1621 
1622 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1623 	pmd = page_check_address_pmd(page, mm, address,
1624 			PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1625 	if (pmd) {
1626 		/*
1627 		 * We can't temporarily set the pmd to null in order
1628 		 * to split it, the pmd must remain marked huge at all
1629 		 * times or the VM won't take the pmd_trans_huge paths
1630 		 * and it won't wait on the anon_vma->root->rwsem to
1631 		 * serialize against split_huge_page*.
1632 		 */
1633 		pmdp_splitting_flush(vma, address, pmd);
1634 		ret = 1;
1635 		spin_unlock(ptl);
1636 	}
1637 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1638 
1639 	return ret;
1640 }
1641 
1642 static void __split_huge_page_refcount(struct page *page,
1643 				       struct list_head *list)
1644 {
1645 	int i;
1646 	struct zone *zone = page_zone(page);
1647 	struct lruvec *lruvec;
1648 	int tail_count = 0;
1649 
1650 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1651 	spin_lock_irq(&zone->lru_lock);
1652 	lruvec = mem_cgroup_page_lruvec(page, zone);
1653 
1654 	compound_lock(page);
1655 	/* complete memcg works before add pages to LRU */
1656 	mem_cgroup_split_huge_fixup(page);
1657 
1658 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1659 		struct page *page_tail = page + i;
1660 
1661 		/* tail_page->_mapcount cannot change */
1662 		BUG_ON(page_mapcount(page_tail) < 0);
1663 		tail_count += page_mapcount(page_tail);
1664 		/* check for overflow */
1665 		BUG_ON(tail_count < 0);
1666 		BUG_ON(atomic_read(&page_tail->_count) != 0);
1667 		/*
1668 		 * tail_page->_count is zero and not changing from
1669 		 * under us. But get_page_unless_zero() may be running
1670 		 * from under us on the tail_page. If we used
1671 		 * atomic_set() below instead of atomic_add(), we
1672 		 * would then run atomic_set() concurrently with
1673 		 * get_page_unless_zero(), and atomic_set() is
1674 		 * implemented in C not using locked ops. spin_unlock
1675 		 * on x86 sometime uses locked ops because of PPro
1676 		 * errata 66, 92, so unless somebody can guarantee
1677 		 * atomic_set() here would be safe on all archs (and
1678 		 * not only on x86), it's safer to use atomic_add().
1679 		 */
1680 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1681 			   &page_tail->_count);
1682 
1683 		/* after clearing PageTail the gup refcount can be released */
1684 		smp_mb();
1685 
1686 		/*
1687 		 * retain hwpoison flag of the poisoned tail page:
1688 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1689 		 *   by the memory-failure.
1690 		 */
1691 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1692 		page_tail->flags |= (page->flags &
1693 				     ((1L << PG_referenced) |
1694 				      (1L << PG_swapbacked) |
1695 				      (1L << PG_mlocked) |
1696 				      (1L << PG_uptodate) |
1697 				      (1L << PG_active) |
1698 				      (1L << PG_unevictable)));
1699 		page_tail->flags |= (1L << PG_dirty);
1700 
1701 		/* clear PageTail before overwriting first_page */
1702 		smp_wmb();
1703 
1704 		/*
1705 		 * __split_huge_page_splitting() already set the
1706 		 * splitting bit in all pmd that could map this
1707 		 * hugepage, that will ensure no CPU can alter the
1708 		 * mapcount on the head page. The mapcount is only
1709 		 * accounted in the head page and it has to be
1710 		 * transferred to all tail pages in the below code. So
1711 		 * for this code to be safe, the split the mapcount
1712 		 * can't change. But that doesn't mean userland can't
1713 		 * keep changing and reading the page contents while
1714 		 * we transfer the mapcount, so the pmd splitting
1715 		 * status is achieved setting a reserved bit in the
1716 		 * pmd, not by clearing the present bit.
1717 		*/
1718 		page_tail->_mapcount = page->_mapcount;
1719 
1720 		BUG_ON(page_tail->mapping);
1721 		page_tail->mapping = page->mapping;
1722 
1723 		page_tail->index = page->index + i;
1724 		page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1725 
1726 		BUG_ON(!PageAnon(page_tail));
1727 		BUG_ON(!PageUptodate(page_tail));
1728 		BUG_ON(!PageDirty(page_tail));
1729 		BUG_ON(!PageSwapBacked(page_tail));
1730 
1731 		lru_add_page_tail(page, page_tail, lruvec, list);
1732 	}
1733 	atomic_sub(tail_count, &page->_count);
1734 	BUG_ON(atomic_read(&page->_count) <= 0);
1735 
1736 	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1737 
1738 	ClearPageCompound(page);
1739 	compound_unlock(page);
1740 	spin_unlock_irq(&zone->lru_lock);
1741 
1742 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1743 		struct page *page_tail = page + i;
1744 		BUG_ON(page_count(page_tail) <= 0);
1745 		/*
1746 		 * Tail pages may be freed if there wasn't any mapping
1747 		 * like if add_to_swap() is running on a lru page that
1748 		 * had its mapping zapped. And freeing these pages
1749 		 * requires taking the lru_lock so we do the put_page
1750 		 * of the tail pages after the split is complete.
1751 		 */
1752 		put_page(page_tail);
1753 	}
1754 
1755 	/*
1756 	 * Only the head page (now become a regular page) is required
1757 	 * to be pinned by the caller.
1758 	 */
1759 	BUG_ON(page_count(page) <= 0);
1760 }
1761 
1762 static int __split_huge_page_map(struct page *page,
1763 				 struct vm_area_struct *vma,
1764 				 unsigned long address)
1765 {
1766 	struct mm_struct *mm = vma->vm_mm;
1767 	spinlock_t *ptl;
1768 	pmd_t *pmd, _pmd;
1769 	int ret = 0, i;
1770 	pgtable_t pgtable;
1771 	unsigned long haddr;
1772 
1773 	pmd = page_check_address_pmd(page, mm, address,
1774 			PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1775 	if (pmd) {
1776 		pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1777 		pmd_populate(mm, &_pmd, pgtable);
1778 
1779 		haddr = address;
1780 		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1781 			pte_t *pte, entry;
1782 			BUG_ON(PageCompound(page+i));
1783 			entry = mk_pte(page + i, vma->vm_page_prot);
1784 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1785 			if (!pmd_write(*pmd))
1786 				entry = pte_wrprotect(entry);
1787 			else
1788 				BUG_ON(page_mapcount(page) != 1);
1789 			if (!pmd_young(*pmd))
1790 				entry = pte_mkold(entry);
1791 			if (pmd_numa(*pmd))
1792 				entry = pte_mknuma(entry);
1793 			pte = pte_offset_map(&_pmd, haddr);
1794 			BUG_ON(!pte_none(*pte));
1795 			set_pte_at(mm, haddr, pte, entry);
1796 			pte_unmap(pte);
1797 		}
1798 
1799 		smp_wmb(); /* make pte visible before pmd */
1800 		/*
1801 		 * Up to this point the pmd is present and huge and
1802 		 * userland has the whole access to the hugepage
1803 		 * during the split (which happens in place). If we
1804 		 * overwrite the pmd with the not-huge version
1805 		 * pointing to the pte here (which of course we could
1806 		 * if all CPUs were bug free), userland could trigger
1807 		 * a small page size TLB miss on the small sized TLB
1808 		 * while the hugepage TLB entry is still established
1809 		 * in the huge TLB. Some CPU doesn't like that. See
1810 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1811 		 * Erratum 383 on page 93. Intel should be safe but is
1812 		 * also warns that it's only safe if the permission
1813 		 * and cache attributes of the two entries loaded in
1814 		 * the two TLB is identical (which should be the case
1815 		 * here). But it is generally safer to never allow
1816 		 * small and huge TLB entries for the same virtual
1817 		 * address to be loaded simultaneously. So instead of
1818 		 * doing "pmd_populate(); flush_tlb_range();" we first
1819 		 * mark the current pmd notpresent (atomically because
1820 		 * here the pmd_trans_huge and pmd_trans_splitting
1821 		 * must remain set at all times on the pmd until the
1822 		 * split is complete for this pmd), then we flush the
1823 		 * SMP TLB and finally we write the non-huge version
1824 		 * of the pmd entry with pmd_populate.
1825 		 */
1826 		pmdp_invalidate(vma, address, pmd);
1827 		pmd_populate(mm, pmd, pgtable);
1828 		ret = 1;
1829 		spin_unlock(ptl);
1830 	}
1831 
1832 	return ret;
1833 }
1834 
1835 /* must be called with anon_vma->root->rwsem held */
1836 static void __split_huge_page(struct page *page,
1837 			      struct anon_vma *anon_vma,
1838 			      struct list_head *list)
1839 {
1840 	int mapcount, mapcount2;
1841 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1842 	struct anon_vma_chain *avc;
1843 
1844 	BUG_ON(!PageHead(page));
1845 	BUG_ON(PageTail(page));
1846 
1847 	mapcount = 0;
1848 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1849 		struct vm_area_struct *vma = avc->vma;
1850 		unsigned long addr = vma_address(page, vma);
1851 		BUG_ON(is_vma_temporary_stack(vma));
1852 		mapcount += __split_huge_page_splitting(page, vma, addr);
1853 	}
1854 	/*
1855 	 * It is critical that new vmas are added to the tail of the
1856 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1857 	 * and establishes a child pmd before
1858 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1859 	 * we fail to prevent copy_huge_pmd() from running until the
1860 	 * whole __split_huge_page() is complete), we will still see
1861 	 * the newly established pmd of the child later during the
1862 	 * walk, to be able to set it as pmd_trans_splitting too.
1863 	 */
1864 	if (mapcount != page_mapcount(page)) {
1865 		pr_err("mapcount %d page_mapcount %d\n",
1866 			mapcount, page_mapcount(page));
1867 		BUG();
1868 	}
1869 
1870 	__split_huge_page_refcount(page, list);
1871 
1872 	mapcount2 = 0;
1873 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1874 		struct vm_area_struct *vma = avc->vma;
1875 		unsigned long addr = vma_address(page, vma);
1876 		BUG_ON(is_vma_temporary_stack(vma));
1877 		mapcount2 += __split_huge_page_map(page, vma, addr);
1878 	}
1879 	if (mapcount != mapcount2) {
1880 		pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1881 			mapcount, mapcount2, page_mapcount(page));
1882 		BUG();
1883 	}
1884 }
1885 
1886 /*
1887  * Split a hugepage into normal pages. This doesn't change the position of head
1888  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1889  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1890  * from the hugepage.
1891  * Return 0 if the hugepage is split successfully otherwise return 1.
1892  */
1893 int split_huge_page_to_list(struct page *page, struct list_head *list)
1894 {
1895 	struct anon_vma *anon_vma;
1896 	int ret = 1;
1897 
1898 	BUG_ON(is_huge_zero_page(page));
1899 	BUG_ON(!PageAnon(page));
1900 
1901 	/*
1902 	 * The caller does not necessarily hold an mmap_sem that would prevent
1903 	 * the anon_vma disappearing so we first we take a reference to it
1904 	 * and then lock the anon_vma for write. This is similar to
1905 	 * page_lock_anon_vma_read except the write lock is taken to serialise
1906 	 * against parallel split or collapse operations.
1907 	 */
1908 	anon_vma = page_get_anon_vma(page);
1909 	if (!anon_vma)
1910 		goto out;
1911 	anon_vma_lock_write(anon_vma);
1912 
1913 	ret = 0;
1914 	if (!PageCompound(page))
1915 		goto out_unlock;
1916 
1917 	BUG_ON(!PageSwapBacked(page));
1918 	__split_huge_page(page, anon_vma, list);
1919 	count_vm_event(THP_SPLIT);
1920 
1921 	BUG_ON(PageCompound(page));
1922 out_unlock:
1923 	anon_vma_unlock_write(anon_vma);
1924 	put_anon_vma(anon_vma);
1925 out:
1926 	return ret;
1927 }
1928 
1929 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1930 
1931 int hugepage_madvise(struct vm_area_struct *vma,
1932 		     unsigned long *vm_flags, int advice)
1933 {
1934 	switch (advice) {
1935 	case MADV_HUGEPAGE:
1936 #ifdef CONFIG_S390
1937 		/*
1938 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1939 		 * can't handle this properly after s390_enable_sie, so we simply
1940 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1941 		 */
1942 		if (mm_has_pgste(vma->vm_mm))
1943 			return 0;
1944 #endif
1945 		/*
1946 		 * Be somewhat over-protective like KSM for now!
1947 		 */
1948 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1949 			return -EINVAL;
1950 		*vm_flags &= ~VM_NOHUGEPAGE;
1951 		*vm_flags |= VM_HUGEPAGE;
1952 		/*
1953 		 * If the vma become good for khugepaged to scan,
1954 		 * register it here without waiting a page fault that
1955 		 * may not happen any time soon.
1956 		 */
1957 		if (unlikely(khugepaged_enter_vma_merge(vma)))
1958 			return -ENOMEM;
1959 		break;
1960 	case MADV_NOHUGEPAGE:
1961 		/*
1962 		 * Be somewhat over-protective like KSM for now!
1963 		 */
1964 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1965 			return -EINVAL;
1966 		*vm_flags &= ~VM_HUGEPAGE;
1967 		*vm_flags |= VM_NOHUGEPAGE;
1968 		/*
1969 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1970 		 * this vma even if we leave the mm registered in khugepaged if
1971 		 * it got registered before VM_NOHUGEPAGE was set.
1972 		 */
1973 		break;
1974 	}
1975 
1976 	return 0;
1977 }
1978 
1979 static int __init khugepaged_slab_init(void)
1980 {
1981 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1982 					  sizeof(struct mm_slot),
1983 					  __alignof__(struct mm_slot), 0, NULL);
1984 	if (!mm_slot_cache)
1985 		return -ENOMEM;
1986 
1987 	return 0;
1988 }
1989 
1990 static inline struct mm_slot *alloc_mm_slot(void)
1991 {
1992 	if (!mm_slot_cache)	/* initialization failed */
1993 		return NULL;
1994 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1995 }
1996 
1997 static inline void free_mm_slot(struct mm_slot *mm_slot)
1998 {
1999 	kmem_cache_free(mm_slot_cache, mm_slot);
2000 }
2001 
2002 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2003 {
2004 	struct mm_slot *mm_slot;
2005 
2006 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2007 		if (mm == mm_slot->mm)
2008 			return mm_slot;
2009 
2010 	return NULL;
2011 }
2012 
2013 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2014 				    struct mm_slot *mm_slot)
2015 {
2016 	mm_slot->mm = mm;
2017 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2018 }
2019 
2020 static inline int khugepaged_test_exit(struct mm_struct *mm)
2021 {
2022 	return atomic_read(&mm->mm_users) == 0;
2023 }
2024 
2025 int __khugepaged_enter(struct mm_struct *mm)
2026 {
2027 	struct mm_slot *mm_slot;
2028 	int wakeup;
2029 
2030 	mm_slot = alloc_mm_slot();
2031 	if (!mm_slot)
2032 		return -ENOMEM;
2033 
2034 	/* __khugepaged_exit() must not run from under us */
2035 	VM_BUG_ON(khugepaged_test_exit(mm));
2036 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2037 		free_mm_slot(mm_slot);
2038 		return 0;
2039 	}
2040 
2041 	spin_lock(&khugepaged_mm_lock);
2042 	insert_to_mm_slots_hash(mm, mm_slot);
2043 	/*
2044 	 * Insert just behind the scanning cursor, to let the area settle
2045 	 * down a little.
2046 	 */
2047 	wakeup = list_empty(&khugepaged_scan.mm_head);
2048 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2049 	spin_unlock(&khugepaged_mm_lock);
2050 
2051 	atomic_inc(&mm->mm_count);
2052 	if (wakeup)
2053 		wake_up_interruptible(&khugepaged_wait);
2054 
2055 	return 0;
2056 }
2057 
2058 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2059 {
2060 	unsigned long hstart, hend;
2061 	if (!vma->anon_vma)
2062 		/*
2063 		 * Not yet faulted in so we will register later in the
2064 		 * page fault if needed.
2065 		 */
2066 		return 0;
2067 	if (vma->vm_ops)
2068 		/* khugepaged not yet working on file or special mappings */
2069 		return 0;
2070 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2071 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2072 	hend = vma->vm_end & HPAGE_PMD_MASK;
2073 	if (hstart < hend)
2074 		return khugepaged_enter(vma);
2075 	return 0;
2076 }
2077 
2078 void __khugepaged_exit(struct mm_struct *mm)
2079 {
2080 	struct mm_slot *mm_slot;
2081 	int free = 0;
2082 
2083 	spin_lock(&khugepaged_mm_lock);
2084 	mm_slot = get_mm_slot(mm);
2085 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2086 		hash_del(&mm_slot->hash);
2087 		list_del(&mm_slot->mm_node);
2088 		free = 1;
2089 	}
2090 	spin_unlock(&khugepaged_mm_lock);
2091 
2092 	if (free) {
2093 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2094 		free_mm_slot(mm_slot);
2095 		mmdrop(mm);
2096 	} else if (mm_slot) {
2097 		/*
2098 		 * This is required to serialize against
2099 		 * khugepaged_test_exit() (which is guaranteed to run
2100 		 * under mmap sem read mode). Stop here (after we
2101 		 * return all pagetables will be destroyed) until
2102 		 * khugepaged has finished working on the pagetables
2103 		 * under the mmap_sem.
2104 		 */
2105 		down_write(&mm->mmap_sem);
2106 		up_write(&mm->mmap_sem);
2107 	}
2108 }
2109 
2110 static void release_pte_page(struct page *page)
2111 {
2112 	/* 0 stands for page_is_file_cache(page) == false */
2113 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2114 	unlock_page(page);
2115 	putback_lru_page(page);
2116 }
2117 
2118 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2119 {
2120 	while (--_pte >= pte) {
2121 		pte_t pteval = *_pte;
2122 		if (!pte_none(pteval))
2123 			release_pte_page(pte_page(pteval));
2124 	}
2125 }
2126 
2127 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2128 					unsigned long address,
2129 					pte_t *pte)
2130 {
2131 	struct page *page;
2132 	pte_t *_pte;
2133 	int referenced = 0, none = 0;
2134 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2135 	     _pte++, address += PAGE_SIZE) {
2136 		pte_t pteval = *_pte;
2137 		if (pte_none(pteval)) {
2138 			if (++none <= khugepaged_max_ptes_none)
2139 				continue;
2140 			else
2141 				goto out;
2142 		}
2143 		if (!pte_present(pteval) || !pte_write(pteval))
2144 			goto out;
2145 		page = vm_normal_page(vma, address, pteval);
2146 		if (unlikely(!page))
2147 			goto out;
2148 
2149 		VM_BUG_ON_PAGE(PageCompound(page), page);
2150 		VM_BUG_ON_PAGE(!PageAnon(page), page);
2151 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2152 
2153 		/* cannot use mapcount: can't collapse if there's a gup pin */
2154 		if (page_count(page) != 1)
2155 			goto out;
2156 		/*
2157 		 * We can do it before isolate_lru_page because the
2158 		 * page can't be freed from under us. NOTE: PG_lock
2159 		 * is needed to serialize against split_huge_page
2160 		 * when invoked from the VM.
2161 		 */
2162 		if (!trylock_page(page))
2163 			goto out;
2164 		/*
2165 		 * Isolate the page to avoid collapsing an hugepage
2166 		 * currently in use by the VM.
2167 		 */
2168 		if (isolate_lru_page(page)) {
2169 			unlock_page(page);
2170 			goto out;
2171 		}
2172 		/* 0 stands for page_is_file_cache(page) == false */
2173 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2174 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2175 		VM_BUG_ON_PAGE(PageLRU(page), page);
2176 
2177 		/* If there is no mapped pte young don't collapse the page */
2178 		if (pte_young(pteval) || PageReferenced(page) ||
2179 		    mmu_notifier_test_young(vma->vm_mm, address))
2180 			referenced = 1;
2181 	}
2182 	if (likely(referenced))
2183 		return 1;
2184 out:
2185 	release_pte_pages(pte, _pte);
2186 	return 0;
2187 }
2188 
2189 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2190 				      struct vm_area_struct *vma,
2191 				      unsigned long address,
2192 				      spinlock_t *ptl)
2193 {
2194 	pte_t *_pte;
2195 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2196 		pte_t pteval = *_pte;
2197 		struct page *src_page;
2198 
2199 		if (pte_none(pteval)) {
2200 			clear_user_highpage(page, address);
2201 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2202 		} else {
2203 			src_page = pte_page(pteval);
2204 			copy_user_highpage(page, src_page, address, vma);
2205 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2206 			release_pte_page(src_page);
2207 			/*
2208 			 * ptl mostly unnecessary, but preempt has to
2209 			 * be disabled to update the per-cpu stats
2210 			 * inside page_remove_rmap().
2211 			 */
2212 			spin_lock(ptl);
2213 			/*
2214 			 * paravirt calls inside pte_clear here are
2215 			 * superfluous.
2216 			 */
2217 			pte_clear(vma->vm_mm, address, _pte);
2218 			page_remove_rmap(src_page);
2219 			spin_unlock(ptl);
2220 			free_page_and_swap_cache(src_page);
2221 		}
2222 
2223 		address += PAGE_SIZE;
2224 		page++;
2225 	}
2226 }
2227 
2228 static void khugepaged_alloc_sleep(void)
2229 {
2230 	wait_event_freezable_timeout(khugepaged_wait, false,
2231 			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2232 }
2233 
2234 static int khugepaged_node_load[MAX_NUMNODES];
2235 
2236 #ifdef CONFIG_NUMA
2237 static int khugepaged_find_target_node(void)
2238 {
2239 	static int last_khugepaged_target_node = NUMA_NO_NODE;
2240 	int nid, target_node = 0, max_value = 0;
2241 
2242 	/* find first node with max normal pages hit */
2243 	for (nid = 0; nid < MAX_NUMNODES; nid++)
2244 		if (khugepaged_node_load[nid] > max_value) {
2245 			max_value = khugepaged_node_load[nid];
2246 			target_node = nid;
2247 		}
2248 
2249 	/* do some balance if several nodes have the same hit record */
2250 	if (target_node <= last_khugepaged_target_node)
2251 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2252 				nid++)
2253 			if (max_value == khugepaged_node_load[nid]) {
2254 				target_node = nid;
2255 				break;
2256 			}
2257 
2258 	last_khugepaged_target_node = target_node;
2259 	return target_node;
2260 }
2261 
2262 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2263 {
2264 	if (IS_ERR(*hpage)) {
2265 		if (!*wait)
2266 			return false;
2267 
2268 		*wait = false;
2269 		*hpage = NULL;
2270 		khugepaged_alloc_sleep();
2271 	} else if (*hpage) {
2272 		put_page(*hpage);
2273 		*hpage = NULL;
2274 	}
2275 
2276 	return true;
2277 }
2278 
2279 static struct page
2280 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2281 		       struct vm_area_struct *vma, unsigned long address,
2282 		       int node)
2283 {
2284 	VM_BUG_ON_PAGE(*hpage, *hpage);
2285 	/*
2286 	 * Allocate the page while the vma is still valid and under
2287 	 * the mmap_sem read mode so there is no memory allocation
2288 	 * later when we take the mmap_sem in write mode. This is more
2289 	 * friendly behavior (OTOH it may actually hide bugs) to
2290 	 * filesystems in userland with daemons allocating memory in
2291 	 * the userland I/O paths.  Allocating memory with the
2292 	 * mmap_sem in read mode is good idea also to allow greater
2293 	 * scalability.
2294 	 */
2295 	*hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2296 		khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2297 	/*
2298 	 * After allocating the hugepage, release the mmap_sem read lock in
2299 	 * preparation for taking it in write mode.
2300 	 */
2301 	up_read(&mm->mmap_sem);
2302 	if (unlikely(!*hpage)) {
2303 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2304 		*hpage = ERR_PTR(-ENOMEM);
2305 		return NULL;
2306 	}
2307 
2308 	count_vm_event(THP_COLLAPSE_ALLOC);
2309 	return *hpage;
2310 }
2311 #else
2312 static int khugepaged_find_target_node(void)
2313 {
2314 	return 0;
2315 }
2316 
2317 static inline struct page *alloc_hugepage(int defrag)
2318 {
2319 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2320 			   HPAGE_PMD_ORDER);
2321 }
2322 
2323 static struct page *khugepaged_alloc_hugepage(bool *wait)
2324 {
2325 	struct page *hpage;
2326 
2327 	do {
2328 		hpage = alloc_hugepage(khugepaged_defrag());
2329 		if (!hpage) {
2330 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2331 			if (!*wait)
2332 				return NULL;
2333 
2334 			*wait = false;
2335 			khugepaged_alloc_sleep();
2336 		} else
2337 			count_vm_event(THP_COLLAPSE_ALLOC);
2338 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2339 
2340 	return hpage;
2341 }
2342 
2343 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2344 {
2345 	if (!*hpage)
2346 		*hpage = khugepaged_alloc_hugepage(wait);
2347 
2348 	if (unlikely(!*hpage))
2349 		return false;
2350 
2351 	return true;
2352 }
2353 
2354 static struct page
2355 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2356 		       struct vm_area_struct *vma, unsigned long address,
2357 		       int node)
2358 {
2359 	up_read(&mm->mmap_sem);
2360 	VM_BUG_ON(!*hpage);
2361 	return  *hpage;
2362 }
2363 #endif
2364 
2365 static bool hugepage_vma_check(struct vm_area_struct *vma)
2366 {
2367 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2368 	    (vma->vm_flags & VM_NOHUGEPAGE))
2369 		return false;
2370 
2371 	if (!vma->anon_vma || vma->vm_ops)
2372 		return false;
2373 	if (is_vma_temporary_stack(vma))
2374 		return false;
2375 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2376 	return true;
2377 }
2378 
2379 static void collapse_huge_page(struct mm_struct *mm,
2380 				   unsigned long address,
2381 				   struct page **hpage,
2382 				   struct vm_area_struct *vma,
2383 				   int node)
2384 {
2385 	pmd_t *pmd, _pmd;
2386 	pte_t *pte;
2387 	pgtable_t pgtable;
2388 	struct page *new_page;
2389 	spinlock_t *pmd_ptl, *pte_ptl;
2390 	int isolated;
2391 	unsigned long hstart, hend;
2392 	unsigned long mmun_start;	/* For mmu_notifiers */
2393 	unsigned long mmun_end;		/* For mmu_notifiers */
2394 
2395 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2396 
2397 	/* release the mmap_sem read lock. */
2398 	new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2399 	if (!new_page)
2400 		return;
2401 
2402 	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)))
2403 		return;
2404 
2405 	/*
2406 	 * Prevent all access to pagetables with the exception of
2407 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2408 	 * handled by the anon_vma lock + PG_lock.
2409 	 */
2410 	down_write(&mm->mmap_sem);
2411 	if (unlikely(khugepaged_test_exit(mm)))
2412 		goto out;
2413 
2414 	vma = find_vma(mm, address);
2415 	if (!vma)
2416 		goto out;
2417 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2418 	hend = vma->vm_end & HPAGE_PMD_MASK;
2419 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2420 		goto out;
2421 	if (!hugepage_vma_check(vma))
2422 		goto out;
2423 	pmd = mm_find_pmd(mm, address);
2424 	if (!pmd)
2425 		goto out;
2426 
2427 	anon_vma_lock_write(vma->anon_vma);
2428 
2429 	pte = pte_offset_map(pmd, address);
2430 	pte_ptl = pte_lockptr(mm, pmd);
2431 
2432 	mmun_start = address;
2433 	mmun_end   = address + HPAGE_PMD_SIZE;
2434 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2435 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2436 	/*
2437 	 * After this gup_fast can't run anymore. This also removes
2438 	 * any huge TLB entry from the CPU so we won't allow
2439 	 * huge and small TLB entries for the same virtual address
2440 	 * to avoid the risk of CPU bugs in that area.
2441 	 */
2442 	_pmd = pmdp_clear_flush(vma, address, pmd);
2443 	spin_unlock(pmd_ptl);
2444 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2445 
2446 	spin_lock(pte_ptl);
2447 	isolated = __collapse_huge_page_isolate(vma, address, pte);
2448 	spin_unlock(pte_ptl);
2449 
2450 	if (unlikely(!isolated)) {
2451 		pte_unmap(pte);
2452 		spin_lock(pmd_ptl);
2453 		BUG_ON(!pmd_none(*pmd));
2454 		/*
2455 		 * We can only use set_pmd_at when establishing
2456 		 * hugepmds and never for establishing regular pmds that
2457 		 * points to regular pagetables. Use pmd_populate for that
2458 		 */
2459 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2460 		spin_unlock(pmd_ptl);
2461 		anon_vma_unlock_write(vma->anon_vma);
2462 		goto out;
2463 	}
2464 
2465 	/*
2466 	 * All pages are isolated and locked so anon_vma rmap
2467 	 * can't run anymore.
2468 	 */
2469 	anon_vma_unlock_write(vma->anon_vma);
2470 
2471 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2472 	pte_unmap(pte);
2473 	__SetPageUptodate(new_page);
2474 	pgtable = pmd_pgtable(_pmd);
2475 
2476 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2477 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2478 
2479 	/*
2480 	 * spin_lock() below is not the equivalent of smp_wmb(), so
2481 	 * this is needed to avoid the copy_huge_page writes to become
2482 	 * visible after the set_pmd_at() write.
2483 	 */
2484 	smp_wmb();
2485 
2486 	spin_lock(pmd_ptl);
2487 	BUG_ON(!pmd_none(*pmd));
2488 	page_add_new_anon_rmap(new_page, vma, address);
2489 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2490 	set_pmd_at(mm, address, pmd, _pmd);
2491 	update_mmu_cache_pmd(vma, address, pmd);
2492 	spin_unlock(pmd_ptl);
2493 
2494 	*hpage = NULL;
2495 
2496 	khugepaged_pages_collapsed++;
2497 out_up_write:
2498 	up_write(&mm->mmap_sem);
2499 	return;
2500 
2501 out:
2502 	mem_cgroup_uncharge_page(new_page);
2503 	goto out_up_write;
2504 }
2505 
2506 static int khugepaged_scan_pmd(struct mm_struct *mm,
2507 			       struct vm_area_struct *vma,
2508 			       unsigned long address,
2509 			       struct page **hpage)
2510 {
2511 	pmd_t *pmd;
2512 	pte_t *pte, *_pte;
2513 	int ret = 0, referenced = 0, none = 0;
2514 	struct page *page;
2515 	unsigned long _address;
2516 	spinlock_t *ptl;
2517 	int node = NUMA_NO_NODE;
2518 
2519 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2520 
2521 	pmd = mm_find_pmd(mm, address);
2522 	if (!pmd)
2523 		goto out;
2524 
2525 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2526 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2527 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2528 	     _pte++, _address += PAGE_SIZE) {
2529 		pte_t pteval = *_pte;
2530 		if (pte_none(pteval)) {
2531 			if (++none <= khugepaged_max_ptes_none)
2532 				continue;
2533 			else
2534 				goto out_unmap;
2535 		}
2536 		if (!pte_present(pteval) || !pte_write(pteval))
2537 			goto out_unmap;
2538 		page = vm_normal_page(vma, _address, pteval);
2539 		if (unlikely(!page))
2540 			goto out_unmap;
2541 		/*
2542 		 * Record which node the original page is from and save this
2543 		 * information to khugepaged_node_load[].
2544 		 * Khupaged will allocate hugepage from the node has the max
2545 		 * hit record.
2546 		 */
2547 		node = page_to_nid(page);
2548 		khugepaged_node_load[node]++;
2549 		VM_BUG_ON_PAGE(PageCompound(page), page);
2550 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2551 			goto out_unmap;
2552 		/* cannot use mapcount: can't collapse if there's a gup pin */
2553 		if (page_count(page) != 1)
2554 			goto out_unmap;
2555 		if (pte_young(pteval) || PageReferenced(page) ||
2556 		    mmu_notifier_test_young(vma->vm_mm, address))
2557 			referenced = 1;
2558 	}
2559 	if (referenced)
2560 		ret = 1;
2561 out_unmap:
2562 	pte_unmap_unlock(pte, ptl);
2563 	if (ret) {
2564 		node = khugepaged_find_target_node();
2565 		/* collapse_huge_page will return with the mmap_sem released */
2566 		collapse_huge_page(mm, address, hpage, vma, node);
2567 	}
2568 out:
2569 	return ret;
2570 }
2571 
2572 static void collect_mm_slot(struct mm_slot *mm_slot)
2573 {
2574 	struct mm_struct *mm = mm_slot->mm;
2575 
2576 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2577 
2578 	if (khugepaged_test_exit(mm)) {
2579 		/* free mm_slot */
2580 		hash_del(&mm_slot->hash);
2581 		list_del(&mm_slot->mm_node);
2582 
2583 		/*
2584 		 * Not strictly needed because the mm exited already.
2585 		 *
2586 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2587 		 */
2588 
2589 		/* khugepaged_mm_lock actually not necessary for the below */
2590 		free_mm_slot(mm_slot);
2591 		mmdrop(mm);
2592 	}
2593 }
2594 
2595 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2596 					    struct page **hpage)
2597 	__releases(&khugepaged_mm_lock)
2598 	__acquires(&khugepaged_mm_lock)
2599 {
2600 	struct mm_slot *mm_slot;
2601 	struct mm_struct *mm;
2602 	struct vm_area_struct *vma;
2603 	int progress = 0;
2604 
2605 	VM_BUG_ON(!pages);
2606 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2607 
2608 	if (khugepaged_scan.mm_slot)
2609 		mm_slot = khugepaged_scan.mm_slot;
2610 	else {
2611 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2612 				     struct mm_slot, mm_node);
2613 		khugepaged_scan.address = 0;
2614 		khugepaged_scan.mm_slot = mm_slot;
2615 	}
2616 	spin_unlock(&khugepaged_mm_lock);
2617 
2618 	mm = mm_slot->mm;
2619 	down_read(&mm->mmap_sem);
2620 	if (unlikely(khugepaged_test_exit(mm)))
2621 		vma = NULL;
2622 	else
2623 		vma = find_vma(mm, khugepaged_scan.address);
2624 
2625 	progress++;
2626 	for (; vma; vma = vma->vm_next) {
2627 		unsigned long hstart, hend;
2628 
2629 		cond_resched();
2630 		if (unlikely(khugepaged_test_exit(mm))) {
2631 			progress++;
2632 			break;
2633 		}
2634 		if (!hugepage_vma_check(vma)) {
2635 skip:
2636 			progress++;
2637 			continue;
2638 		}
2639 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2640 		hend = vma->vm_end & HPAGE_PMD_MASK;
2641 		if (hstart >= hend)
2642 			goto skip;
2643 		if (khugepaged_scan.address > hend)
2644 			goto skip;
2645 		if (khugepaged_scan.address < hstart)
2646 			khugepaged_scan.address = hstart;
2647 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2648 
2649 		while (khugepaged_scan.address < hend) {
2650 			int ret;
2651 			cond_resched();
2652 			if (unlikely(khugepaged_test_exit(mm)))
2653 				goto breakouterloop;
2654 
2655 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2656 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2657 				  hend);
2658 			ret = khugepaged_scan_pmd(mm, vma,
2659 						  khugepaged_scan.address,
2660 						  hpage);
2661 			/* move to next address */
2662 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2663 			progress += HPAGE_PMD_NR;
2664 			if (ret)
2665 				/* we released mmap_sem so break loop */
2666 				goto breakouterloop_mmap_sem;
2667 			if (progress >= pages)
2668 				goto breakouterloop;
2669 		}
2670 	}
2671 breakouterloop:
2672 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2673 breakouterloop_mmap_sem:
2674 
2675 	spin_lock(&khugepaged_mm_lock);
2676 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2677 	/*
2678 	 * Release the current mm_slot if this mm is about to die, or
2679 	 * if we scanned all vmas of this mm.
2680 	 */
2681 	if (khugepaged_test_exit(mm) || !vma) {
2682 		/*
2683 		 * Make sure that if mm_users is reaching zero while
2684 		 * khugepaged runs here, khugepaged_exit will find
2685 		 * mm_slot not pointing to the exiting mm.
2686 		 */
2687 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2688 			khugepaged_scan.mm_slot = list_entry(
2689 				mm_slot->mm_node.next,
2690 				struct mm_slot, mm_node);
2691 			khugepaged_scan.address = 0;
2692 		} else {
2693 			khugepaged_scan.mm_slot = NULL;
2694 			khugepaged_full_scans++;
2695 		}
2696 
2697 		collect_mm_slot(mm_slot);
2698 	}
2699 
2700 	return progress;
2701 }
2702 
2703 static int khugepaged_has_work(void)
2704 {
2705 	return !list_empty(&khugepaged_scan.mm_head) &&
2706 		khugepaged_enabled();
2707 }
2708 
2709 static int khugepaged_wait_event(void)
2710 {
2711 	return !list_empty(&khugepaged_scan.mm_head) ||
2712 		kthread_should_stop();
2713 }
2714 
2715 static void khugepaged_do_scan(void)
2716 {
2717 	struct page *hpage = NULL;
2718 	unsigned int progress = 0, pass_through_head = 0;
2719 	unsigned int pages = khugepaged_pages_to_scan;
2720 	bool wait = true;
2721 
2722 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2723 
2724 	while (progress < pages) {
2725 		if (!khugepaged_prealloc_page(&hpage, &wait))
2726 			break;
2727 
2728 		cond_resched();
2729 
2730 		if (unlikely(kthread_should_stop() || freezing(current)))
2731 			break;
2732 
2733 		spin_lock(&khugepaged_mm_lock);
2734 		if (!khugepaged_scan.mm_slot)
2735 			pass_through_head++;
2736 		if (khugepaged_has_work() &&
2737 		    pass_through_head < 2)
2738 			progress += khugepaged_scan_mm_slot(pages - progress,
2739 							    &hpage);
2740 		else
2741 			progress = pages;
2742 		spin_unlock(&khugepaged_mm_lock);
2743 	}
2744 
2745 	if (!IS_ERR_OR_NULL(hpage))
2746 		put_page(hpage);
2747 }
2748 
2749 static void khugepaged_wait_work(void)
2750 {
2751 	try_to_freeze();
2752 
2753 	if (khugepaged_has_work()) {
2754 		if (!khugepaged_scan_sleep_millisecs)
2755 			return;
2756 
2757 		wait_event_freezable_timeout(khugepaged_wait,
2758 					     kthread_should_stop(),
2759 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2760 		return;
2761 	}
2762 
2763 	if (khugepaged_enabled())
2764 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2765 }
2766 
2767 static int khugepaged(void *none)
2768 {
2769 	struct mm_slot *mm_slot;
2770 
2771 	set_freezable();
2772 	set_user_nice(current, MAX_NICE);
2773 
2774 	while (!kthread_should_stop()) {
2775 		khugepaged_do_scan();
2776 		khugepaged_wait_work();
2777 	}
2778 
2779 	spin_lock(&khugepaged_mm_lock);
2780 	mm_slot = khugepaged_scan.mm_slot;
2781 	khugepaged_scan.mm_slot = NULL;
2782 	if (mm_slot)
2783 		collect_mm_slot(mm_slot);
2784 	spin_unlock(&khugepaged_mm_lock);
2785 	return 0;
2786 }
2787 
2788 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2789 		unsigned long haddr, pmd_t *pmd)
2790 {
2791 	struct mm_struct *mm = vma->vm_mm;
2792 	pgtable_t pgtable;
2793 	pmd_t _pmd;
2794 	int i;
2795 
2796 	pmdp_clear_flush(vma, haddr, pmd);
2797 	/* leave pmd empty until pte is filled */
2798 
2799 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2800 	pmd_populate(mm, &_pmd, pgtable);
2801 
2802 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2803 		pte_t *pte, entry;
2804 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2805 		entry = pte_mkspecial(entry);
2806 		pte = pte_offset_map(&_pmd, haddr);
2807 		VM_BUG_ON(!pte_none(*pte));
2808 		set_pte_at(mm, haddr, pte, entry);
2809 		pte_unmap(pte);
2810 	}
2811 	smp_wmb(); /* make pte visible before pmd */
2812 	pmd_populate(mm, pmd, pgtable);
2813 	put_huge_zero_page();
2814 }
2815 
2816 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2817 		pmd_t *pmd)
2818 {
2819 	spinlock_t *ptl;
2820 	struct page *page;
2821 	struct mm_struct *mm = vma->vm_mm;
2822 	unsigned long haddr = address & HPAGE_PMD_MASK;
2823 	unsigned long mmun_start;	/* For mmu_notifiers */
2824 	unsigned long mmun_end;		/* For mmu_notifiers */
2825 
2826 	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2827 
2828 	mmun_start = haddr;
2829 	mmun_end   = haddr + HPAGE_PMD_SIZE;
2830 again:
2831 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2832 	ptl = pmd_lock(mm, pmd);
2833 	if (unlikely(!pmd_trans_huge(*pmd))) {
2834 		spin_unlock(ptl);
2835 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2836 		return;
2837 	}
2838 	if (is_huge_zero_pmd(*pmd)) {
2839 		__split_huge_zero_page_pmd(vma, haddr, pmd);
2840 		spin_unlock(ptl);
2841 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2842 		return;
2843 	}
2844 	page = pmd_page(*pmd);
2845 	VM_BUG_ON_PAGE(!page_count(page), page);
2846 	get_page(page);
2847 	spin_unlock(ptl);
2848 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2849 
2850 	split_huge_page(page);
2851 
2852 	put_page(page);
2853 
2854 	/*
2855 	 * We don't always have down_write of mmap_sem here: a racing
2856 	 * do_huge_pmd_wp_page() might have copied-on-write to another
2857 	 * huge page before our split_huge_page() got the anon_vma lock.
2858 	 */
2859 	if (unlikely(pmd_trans_huge(*pmd)))
2860 		goto again;
2861 }
2862 
2863 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2864 		pmd_t *pmd)
2865 {
2866 	struct vm_area_struct *vma;
2867 
2868 	vma = find_vma(mm, address);
2869 	BUG_ON(vma == NULL);
2870 	split_huge_page_pmd(vma, address, pmd);
2871 }
2872 
2873 static void split_huge_page_address(struct mm_struct *mm,
2874 				    unsigned long address)
2875 {
2876 	pgd_t *pgd;
2877 	pud_t *pud;
2878 	pmd_t *pmd;
2879 
2880 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2881 
2882 	pgd = pgd_offset(mm, address);
2883 	if (!pgd_present(*pgd))
2884 		return;
2885 
2886 	pud = pud_offset(pgd, address);
2887 	if (!pud_present(*pud))
2888 		return;
2889 
2890 	pmd = pmd_offset(pud, address);
2891 	if (!pmd_present(*pmd))
2892 		return;
2893 	/*
2894 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2895 	 * materialize from under us.
2896 	 */
2897 	split_huge_page_pmd_mm(mm, address, pmd);
2898 }
2899 
2900 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2901 			     unsigned long start,
2902 			     unsigned long end,
2903 			     long adjust_next)
2904 {
2905 	/*
2906 	 * If the new start address isn't hpage aligned and it could
2907 	 * previously contain an hugepage: check if we need to split
2908 	 * an huge pmd.
2909 	 */
2910 	if (start & ~HPAGE_PMD_MASK &&
2911 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2912 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2913 		split_huge_page_address(vma->vm_mm, start);
2914 
2915 	/*
2916 	 * If the new end address isn't hpage aligned and it could
2917 	 * previously contain an hugepage: check if we need to split
2918 	 * an huge pmd.
2919 	 */
2920 	if (end & ~HPAGE_PMD_MASK &&
2921 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2922 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2923 		split_huge_page_address(vma->vm_mm, end);
2924 
2925 	/*
2926 	 * If we're also updating the vma->vm_next->vm_start, if the new
2927 	 * vm_next->vm_start isn't page aligned and it could previously
2928 	 * contain an hugepage: check if we need to split an huge pmd.
2929 	 */
2930 	if (adjust_next > 0) {
2931 		struct vm_area_struct *next = vma->vm_next;
2932 		unsigned long nstart = next->vm_start;
2933 		nstart += adjust_next << PAGE_SHIFT;
2934 		if (nstart & ~HPAGE_PMD_MASK &&
2935 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2936 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2937 			split_huge_page_address(next->vm_mm, nstart);
2938 	}
2939 }
2940