xref: /openbmc/linux/mm/huge_memory.c (revision a5b2c10c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67 	/* The addr is used to check if the vma size fits */
68 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69 
70 	if (!transhuge_vma_suitable(vma, addr))
71 		return false;
72 	if (vma_is_anonymous(vma))
73 		return __transparent_hugepage_enabled(vma);
74 	if (vma_is_shmem(vma))
75 		return shmem_huge_enabled(vma);
76 
77 	return false;
78 }
79 
80 static struct page *get_huge_zero_page(void)
81 {
82 	struct page *zero_page;
83 retry:
84 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 		return READ_ONCE(huge_zero_page);
86 
87 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88 			HPAGE_PMD_ORDER);
89 	if (!zero_page) {
90 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91 		return NULL;
92 	}
93 	count_vm_event(THP_ZERO_PAGE_ALLOC);
94 	preempt_disable();
95 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 		preempt_enable();
97 		__free_pages(zero_page, compound_order(zero_page));
98 		goto retry;
99 	}
100 
101 	/* We take additional reference here. It will be put back by shrinker */
102 	atomic_set(&huge_zero_refcount, 2);
103 	preempt_enable();
104 	return READ_ONCE(huge_zero_page);
105 }
106 
107 static void put_huge_zero_page(void)
108 {
109 	/*
110 	 * Counter should never go to zero here. Only shrinker can put
111 	 * last reference.
112 	 */
113 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115 
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 		return READ_ONCE(huge_zero_page);
120 
121 	if (!get_huge_zero_page())
122 		return NULL;
123 
124 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 		put_huge_zero_page();
126 
127 	return READ_ONCE(huge_zero_page);
128 }
129 
130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 		put_huge_zero_page();
134 }
135 
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 					struct shrink_control *sc)
138 {
139 	/* we can free zero page only if last reference remains */
140 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142 
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 				       struct shrink_control *sc)
145 {
146 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 		struct page *zero_page = xchg(&huge_zero_page, NULL);
148 		BUG_ON(zero_page == NULL);
149 		__free_pages(zero_page, compound_order(zero_page));
150 		return HPAGE_PMD_NR;
151 	}
152 
153 	return 0;
154 }
155 
156 static struct shrinker huge_zero_page_shrinker = {
157 	.count_objects = shrink_huge_zero_page_count,
158 	.scan_objects = shrink_huge_zero_page_scan,
159 	.seeks = DEFAULT_SEEKS,
160 };
161 
162 #ifdef CONFIG_SYSFS
163 static ssize_t enabled_show(struct kobject *kobj,
164 			    struct kobj_attribute *attr, char *buf)
165 {
166 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 		return sprintf(buf, "[always] madvise never\n");
168 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 		return sprintf(buf, "always [madvise] never\n");
170 	else
171 		return sprintf(buf, "always madvise [never]\n");
172 }
173 
174 static ssize_t enabled_store(struct kobject *kobj,
175 			     struct kobj_attribute *attr,
176 			     const char *buf, size_t count)
177 {
178 	ssize_t ret = count;
179 
180 	if (sysfs_streq(buf, "always")) {
181 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 	} else if (sysfs_streq(buf, "madvise")) {
184 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
186 	} else if (sysfs_streq(buf, "never")) {
187 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 	} else
190 		ret = -EINVAL;
191 
192 	if (ret > 0) {
193 		int err = start_stop_khugepaged();
194 		if (err)
195 			ret = err;
196 	}
197 	return ret;
198 }
199 static struct kobj_attribute enabled_attr =
200 	__ATTR(enabled, 0644, enabled_show, enabled_store);
201 
202 ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 				struct kobj_attribute *attr, char *buf,
204 				enum transparent_hugepage_flag flag)
205 {
206 	return sprintf(buf, "%d\n",
207 		       !!test_bit(flag, &transparent_hugepage_flags));
208 }
209 
210 ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 				 struct kobj_attribute *attr,
212 				 const char *buf, size_t count,
213 				 enum transparent_hugepage_flag flag)
214 {
215 	unsigned long value;
216 	int ret;
217 
218 	ret = kstrtoul(buf, 10, &value);
219 	if (ret < 0)
220 		return ret;
221 	if (value > 1)
222 		return -EINVAL;
223 
224 	if (value)
225 		set_bit(flag, &transparent_hugepage_flags);
226 	else
227 		clear_bit(flag, &transparent_hugepage_flags);
228 
229 	return count;
230 }
231 
232 static ssize_t defrag_show(struct kobject *kobj,
233 			   struct kobj_attribute *attr, char *buf)
234 {
235 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244 }
245 
246 static ssize_t defrag_store(struct kobject *kobj,
247 			    struct kobj_attribute *attr,
248 			    const char *buf, size_t count)
249 {
250 	if (sysfs_streq(buf, "always")) {
251 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255 	} else if (sysfs_streq(buf, "defer+madvise")) {
256 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260 	} else if (sysfs_streq(buf, "defer")) {
261 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
265 	} else if (sysfs_streq(buf, "madvise")) {
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 	} else if (sysfs_streq(buf, "never")) {
271 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275 	} else
276 		return -EINVAL;
277 
278 	return count;
279 }
280 static struct kobj_attribute defrag_attr =
281 	__ATTR(defrag, 0644, defrag_show, defrag_store);
282 
283 static ssize_t use_zero_page_show(struct kobject *kobj,
284 		struct kobj_attribute *attr, char *buf)
285 {
286 	return single_hugepage_flag_show(kobj, attr, buf,
287 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 }
289 static ssize_t use_zero_page_store(struct kobject *kobj,
290 		struct kobj_attribute *attr, const char *buf, size_t count)
291 {
292 	return single_hugepage_flag_store(kobj, attr, buf, count,
293 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294 }
295 static struct kobj_attribute use_zero_page_attr =
296 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
297 
298 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 		struct kobj_attribute *attr, char *buf)
300 {
301 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302 }
303 static struct kobj_attribute hpage_pmd_size_attr =
304 	__ATTR_RO(hpage_pmd_size);
305 
306 static struct attribute *hugepage_attr[] = {
307 	&enabled_attr.attr,
308 	&defrag_attr.attr,
309 	&use_zero_page_attr.attr,
310 	&hpage_pmd_size_attr.attr,
311 #ifdef CONFIG_SHMEM
312 	&shmem_enabled_attr.attr,
313 #endif
314 	NULL,
315 };
316 
317 static const struct attribute_group hugepage_attr_group = {
318 	.attrs = hugepage_attr,
319 };
320 
321 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
322 {
323 	int err;
324 
325 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
326 	if (unlikely(!*hugepage_kobj)) {
327 		pr_err("failed to create transparent hugepage kobject\n");
328 		return -ENOMEM;
329 	}
330 
331 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
332 	if (err) {
333 		pr_err("failed to register transparent hugepage group\n");
334 		goto delete_obj;
335 	}
336 
337 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
338 	if (err) {
339 		pr_err("failed to register transparent hugepage group\n");
340 		goto remove_hp_group;
341 	}
342 
343 	return 0;
344 
345 remove_hp_group:
346 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
347 delete_obj:
348 	kobject_put(*hugepage_kobj);
349 	return err;
350 }
351 
352 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
353 {
354 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
355 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
356 	kobject_put(hugepage_kobj);
357 }
358 #else
359 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
360 {
361 	return 0;
362 }
363 
364 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365 {
366 }
367 #endif /* CONFIG_SYSFS */
368 
369 static int __init hugepage_init(void)
370 {
371 	int err;
372 	struct kobject *hugepage_kobj;
373 
374 	if (!has_transparent_hugepage()) {
375 		transparent_hugepage_flags = 0;
376 		return -EINVAL;
377 	}
378 
379 	/*
380 	 * hugepages can't be allocated by the buddy allocator
381 	 */
382 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
383 	/*
384 	 * we use page->mapping and page->index in second tail page
385 	 * as list_head: assuming THP order >= 2
386 	 */
387 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
388 
389 	err = hugepage_init_sysfs(&hugepage_kobj);
390 	if (err)
391 		goto err_sysfs;
392 
393 	err = khugepaged_init();
394 	if (err)
395 		goto err_slab;
396 
397 	err = register_shrinker(&huge_zero_page_shrinker);
398 	if (err)
399 		goto err_hzp_shrinker;
400 	err = register_shrinker(&deferred_split_shrinker);
401 	if (err)
402 		goto err_split_shrinker;
403 
404 	/*
405 	 * By default disable transparent hugepages on smaller systems,
406 	 * where the extra memory used could hurt more than TLB overhead
407 	 * is likely to save.  The admin can still enable it through /sys.
408 	 */
409 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
410 		transparent_hugepage_flags = 0;
411 		return 0;
412 	}
413 
414 	err = start_stop_khugepaged();
415 	if (err)
416 		goto err_khugepaged;
417 
418 	return 0;
419 err_khugepaged:
420 	unregister_shrinker(&deferred_split_shrinker);
421 err_split_shrinker:
422 	unregister_shrinker(&huge_zero_page_shrinker);
423 err_hzp_shrinker:
424 	khugepaged_destroy();
425 err_slab:
426 	hugepage_exit_sysfs(hugepage_kobj);
427 err_sysfs:
428 	return err;
429 }
430 subsys_initcall(hugepage_init);
431 
432 static int __init setup_transparent_hugepage(char *str)
433 {
434 	int ret = 0;
435 	if (!str)
436 		goto out;
437 	if (!strcmp(str, "always")) {
438 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
439 			&transparent_hugepage_flags);
440 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
441 			  &transparent_hugepage_flags);
442 		ret = 1;
443 	} else if (!strcmp(str, "madvise")) {
444 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
445 			  &transparent_hugepage_flags);
446 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
447 			&transparent_hugepage_flags);
448 		ret = 1;
449 	} else if (!strcmp(str, "never")) {
450 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
451 			  &transparent_hugepage_flags);
452 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
453 			  &transparent_hugepage_flags);
454 		ret = 1;
455 	}
456 out:
457 	if (!ret)
458 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
459 	return ret;
460 }
461 __setup("transparent_hugepage=", setup_transparent_hugepage);
462 
463 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
464 {
465 	if (likely(vma->vm_flags & VM_WRITE))
466 		pmd = pmd_mkwrite(pmd);
467 	return pmd;
468 }
469 
470 #ifdef CONFIG_MEMCG
471 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
472 {
473 	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
474 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
475 
476 	if (memcg)
477 		return &memcg->deferred_split_queue;
478 	else
479 		return &pgdat->deferred_split_queue;
480 }
481 #else
482 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
483 {
484 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
485 
486 	return &pgdat->deferred_split_queue;
487 }
488 #endif
489 
490 void prep_transhuge_page(struct page *page)
491 {
492 	/*
493 	 * we use page->mapping and page->indexlru in second tail page
494 	 * as list_head: assuming THP order >= 2
495 	 */
496 
497 	INIT_LIST_HEAD(page_deferred_list(page));
498 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499 }
500 
501 bool is_transparent_hugepage(struct page *page)
502 {
503 	if (!PageCompound(page))
504 		return false;
505 
506 	page = compound_head(page);
507 	return is_huge_zero_page(page) ||
508 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
509 }
510 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
511 
512 static unsigned long __thp_get_unmapped_area(struct file *filp,
513 		unsigned long addr, unsigned long len,
514 		loff_t off, unsigned long flags, unsigned long size)
515 {
516 	loff_t off_end = off + len;
517 	loff_t off_align = round_up(off, size);
518 	unsigned long len_pad, ret;
519 
520 	if (off_end <= off_align || (off_end - off_align) < size)
521 		return 0;
522 
523 	len_pad = len + size;
524 	if (len_pad < len || (off + len_pad) < off)
525 		return 0;
526 
527 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
528 					      off >> PAGE_SHIFT, flags);
529 
530 	/*
531 	 * The failure might be due to length padding. The caller will retry
532 	 * without the padding.
533 	 */
534 	if (IS_ERR_VALUE(ret))
535 		return 0;
536 
537 	/*
538 	 * Do not try to align to THP boundary if allocation at the address
539 	 * hint succeeds.
540 	 */
541 	if (ret == addr)
542 		return addr;
543 
544 	ret += (off - ret) & (size - 1);
545 	return ret;
546 }
547 
548 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
549 		unsigned long len, unsigned long pgoff, unsigned long flags)
550 {
551 	unsigned long ret;
552 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
553 
554 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
555 		goto out;
556 
557 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
558 	if (ret)
559 		return ret;
560 out:
561 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
562 }
563 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
564 
565 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
566 			struct page *page, gfp_t gfp)
567 {
568 	struct vm_area_struct *vma = vmf->vma;
569 	pgtable_t pgtable;
570 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
571 	vm_fault_t ret = 0;
572 
573 	VM_BUG_ON_PAGE(!PageCompound(page), page);
574 
575 	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
576 		put_page(page);
577 		count_vm_event(THP_FAULT_FALLBACK);
578 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
579 		return VM_FAULT_FALLBACK;
580 	}
581 	cgroup_throttle_swaprate(page, gfp);
582 
583 	pgtable = pte_alloc_one(vma->vm_mm);
584 	if (unlikely(!pgtable)) {
585 		ret = VM_FAULT_OOM;
586 		goto release;
587 	}
588 
589 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
590 	/*
591 	 * The memory barrier inside __SetPageUptodate makes sure that
592 	 * clear_huge_page writes become visible before the set_pmd_at()
593 	 * write.
594 	 */
595 	__SetPageUptodate(page);
596 
597 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
598 	if (unlikely(!pmd_none(*vmf->pmd))) {
599 		goto unlock_release;
600 	} else {
601 		pmd_t entry;
602 
603 		ret = check_stable_address_space(vma->vm_mm);
604 		if (ret)
605 			goto unlock_release;
606 
607 		/* Deliver the page fault to userland */
608 		if (userfaultfd_missing(vma)) {
609 			vm_fault_t ret2;
610 
611 			spin_unlock(vmf->ptl);
612 			put_page(page);
613 			pte_free(vma->vm_mm, pgtable);
614 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
615 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
616 			return ret2;
617 		}
618 
619 		entry = mk_huge_pmd(page, vma->vm_page_prot);
620 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
621 		page_add_new_anon_rmap(page, vma, haddr, true);
622 		lru_cache_add_inactive_or_unevictable(page, vma);
623 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
624 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
625 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
626 		mm_inc_nr_ptes(vma->vm_mm);
627 		spin_unlock(vmf->ptl);
628 		count_vm_event(THP_FAULT_ALLOC);
629 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
630 	}
631 
632 	return 0;
633 unlock_release:
634 	spin_unlock(vmf->ptl);
635 release:
636 	if (pgtable)
637 		pte_free(vma->vm_mm, pgtable);
638 	put_page(page);
639 	return ret;
640 
641 }
642 
643 /*
644  * always: directly stall for all thp allocations
645  * defer: wake kswapd and fail if not immediately available
646  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
647  *		  fail if not immediately available
648  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
649  *	    available
650  * never: never stall for any thp allocation
651  */
652 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
653 {
654 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
655 
656 	/* Always do synchronous compaction */
657 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
658 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
659 
660 	/* Kick kcompactd and fail quickly */
661 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
662 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
663 
664 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
665 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
666 		return GFP_TRANSHUGE_LIGHT |
667 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
668 					__GFP_KSWAPD_RECLAIM);
669 
670 	/* Only do synchronous compaction if madvised */
671 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
672 		return GFP_TRANSHUGE_LIGHT |
673 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
674 
675 	return GFP_TRANSHUGE_LIGHT;
676 }
677 
678 /* Caller must hold page table lock. */
679 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
680 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
681 		struct page *zero_page)
682 {
683 	pmd_t entry;
684 	if (!pmd_none(*pmd))
685 		return false;
686 	entry = mk_pmd(zero_page, vma->vm_page_prot);
687 	entry = pmd_mkhuge(entry);
688 	if (pgtable)
689 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
690 	set_pmd_at(mm, haddr, pmd, entry);
691 	mm_inc_nr_ptes(mm);
692 	return true;
693 }
694 
695 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
696 {
697 	struct vm_area_struct *vma = vmf->vma;
698 	gfp_t gfp;
699 	struct page *page;
700 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
701 
702 	if (!transhuge_vma_suitable(vma, haddr))
703 		return VM_FAULT_FALLBACK;
704 	if (unlikely(anon_vma_prepare(vma)))
705 		return VM_FAULT_OOM;
706 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
707 		return VM_FAULT_OOM;
708 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
709 			!mm_forbids_zeropage(vma->vm_mm) &&
710 			transparent_hugepage_use_zero_page()) {
711 		pgtable_t pgtable;
712 		struct page *zero_page;
713 		bool set;
714 		vm_fault_t ret;
715 		pgtable = pte_alloc_one(vma->vm_mm);
716 		if (unlikely(!pgtable))
717 			return VM_FAULT_OOM;
718 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
719 		if (unlikely(!zero_page)) {
720 			pte_free(vma->vm_mm, pgtable);
721 			count_vm_event(THP_FAULT_FALLBACK);
722 			return VM_FAULT_FALLBACK;
723 		}
724 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
725 		ret = 0;
726 		set = false;
727 		if (pmd_none(*vmf->pmd)) {
728 			ret = check_stable_address_space(vma->vm_mm);
729 			if (ret) {
730 				spin_unlock(vmf->ptl);
731 			} else if (userfaultfd_missing(vma)) {
732 				spin_unlock(vmf->ptl);
733 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
734 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
735 			} else {
736 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
737 						   haddr, vmf->pmd, zero_page);
738 				spin_unlock(vmf->ptl);
739 				set = true;
740 			}
741 		} else
742 			spin_unlock(vmf->ptl);
743 		if (!set)
744 			pte_free(vma->vm_mm, pgtable);
745 		return ret;
746 	}
747 	gfp = alloc_hugepage_direct_gfpmask(vma);
748 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
749 	if (unlikely(!page)) {
750 		count_vm_event(THP_FAULT_FALLBACK);
751 		return VM_FAULT_FALLBACK;
752 	}
753 	prep_transhuge_page(page);
754 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
755 }
756 
757 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
758 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
759 		pgtable_t pgtable)
760 {
761 	struct mm_struct *mm = vma->vm_mm;
762 	pmd_t entry;
763 	spinlock_t *ptl;
764 
765 	ptl = pmd_lock(mm, pmd);
766 	if (!pmd_none(*pmd)) {
767 		if (write) {
768 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
769 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
770 				goto out_unlock;
771 			}
772 			entry = pmd_mkyoung(*pmd);
773 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
774 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
775 				update_mmu_cache_pmd(vma, addr, pmd);
776 		}
777 
778 		goto out_unlock;
779 	}
780 
781 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
782 	if (pfn_t_devmap(pfn))
783 		entry = pmd_mkdevmap(entry);
784 	if (write) {
785 		entry = pmd_mkyoung(pmd_mkdirty(entry));
786 		entry = maybe_pmd_mkwrite(entry, vma);
787 	}
788 
789 	if (pgtable) {
790 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
791 		mm_inc_nr_ptes(mm);
792 		pgtable = NULL;
793 	}
794 
795 	set_pmd_at(mm, addr, pmd, entry);
796 	update_mmu_cache_pmd(vma, addr, pmd);
797 
798 out_unlock:
799 	spin_unlock(ptl);
800 	if (pgtable)
801 		pte_free(mm, pgtable);
802 }
803 
804 /**
805  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
806  * @vmf: Structure describing the fault
807  * @pfn: pfn to insert
808  * @pgprot: page protection to use
809  * @write: whether it's a write fault
810  *
811  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
812  * also consult the vmf_insert_mixed_prot() documentation when
813  * @pgprot != @vmf->vma->vm_page_prot.
814  *
815  * Return: vm_fault_t value.
816  */
817 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
818 				   pgprot_t pgprot, bool write)
819 {
820 	unsigned long addr = vmf->address & PMD_MASK;
821 	struct vm_area_struct *vma = vmf->vma;
822 	pgtable_t pgtable = NULL;
823 
824 	/*
825 	 * If we had pmd_special, we could avoid all these restrictions,
826 	 * but we need to be consistent with PTEs and architectures that
827 	 * can't support a 'special' bit.
828 	 */
829 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
830 			!pfn_t_devmap(pfn));
831 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
832 						(VM_PFNMAP|VM_MIXEDMAP));
833 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
834 
835 	if (addr < vma->vm_start || addr >= vma->vm_end)
836 		return VM_FAULT_SIGBUS;
837 
838 	if (arch_needs_pgtable_deposit()) {
839 		pgtable = pte_alloc_one(vma->vm_mm);
840 		if (!pgtable)
841 			return VM_FAULT_OOM;
842 	}
843 
844 	track_pfn_insert(vma, &pgprot, pfn);
845 
846 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
847 	return VM_FAULT_NOPAGE;
848 }
849 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
850 
851 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
852 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
853 {
854 	if (likely(vma->vm_flags & VM_WRITE))
855 		pud = pud_mkwrite(pud);
856 	return pud;
857 }
858 
859 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
860 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
861 {
862 	struct mm_struct *mm = vma->vm_mm;
863 	pud_t entry;
864 	spinlock_t *ptl;
865 
866 	ptl = pud_lock(mm, pud);
867 	if (!pud_none(*pud)) {
868 		if (write) {
869 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
870 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
871 				goto out_unlock;
872 			}
873 			entry = pud_mkyoung(*pud);
874 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
875 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
876 				update_mmu_cache_pud(vma, addr, pud);
877 		}
878 		goto out_unlock;
879 	}
880 
881 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
882 	if (pfn_t_devmap(pfn))
883 		entry = pud_mkdevmap(entry);
884 	if (write) {
885 		entry = pud_mkyoung(pud_mkdirty(entry));
886 		entry = maybe_pud_mkwrite(entry, vma);
887 	}
888 	set_pud_at(mm, addr, pud, entry);
889 	update_mmu_cache_pud(vma, addr, pud);
890 
891 out_unlock:
892 	spin_unlock(ptl);
893 }
894 
895 /**
896  * vmf_insert_pfn_pud_prot - insert a pud size pfn
897  * @vmf: Structure describing the fault
898  * @pfn: pfn to insert
899  * @pgprot: page protection to use
900  * @write: whether it's a write fault
901  *
902  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
903  * also consult the vmf_insert_mixed_prot() documentation when
904  * @pgprot != @vmf->vma->vm_page_prot.
905  *
906  * Return: vm_fault_t value.
907  */
908 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
909 				   pgprot_t pgprot, bool write)
910 {
911 	unsigned long addr = vmf->address & PUD_MASK;
912 	struct vm_area_struct *vma = vmf->vma;
913 
914 	/*
915 	 * If we had pud_special, we could avoid all these restrictions,
916 	 * but we need to be consistent with PTEs and architectures that
917 	 * can't support a 'special' bit.
918 	 */
919 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
920 			!pfn_t_devmap(pfn));
921 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
922 						(VM_PFNMAP|VM_MIXEDMAP));
923 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
924 
925 	if (addr < vma->vm_start || addr >= vma->vm_end)
926 		return VM_FAULT_SIGBUS;
927 
928 	track_pfn_insert(vma, &pgprot, pfn);
929 
930 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
931 	return VM_FAULT_NOPAGE;
932 }
933 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
934 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
935 
936 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
937 		pmd_t *pmd, int flags)
938 {
939 	pmd_t _pmd;
940 
941 	_pmd = pmd_mkyoung(*pmd);
942 	if (flags & FOLL_WRITE)
943 		_pmd = pmd_mkdirty(_pmd);
944 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
945 				pmd, _pmd, flags & FOLL_WRITE))
946 		update_mmu_cache_pmd(vma, addr, pmd);
947 }
948 
949 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
950 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
951 {
952 	unsigned long pfn = pmd_pfn(*pmd);
953 	struct mm_struct *mm = vma->vm_mm;
954 	struct page *page;
955 
956 	assert_spin_locked(pmd_lockptr(mm, pmd));
957 
958 	/*
959 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
960 	 * not be in this function with `flags & FOLL_COW` set.
961 	 */
962 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
963 
964 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
965 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
966 			 (FOLL_PIN | FOLL_GET)))
967 		return NULL;
968 
969 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
970 		return NULL;
971 
972 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
973 		/* pass */;
974 	else
975 		return NULL;
976 
977 	if (flags & FOLL_TOUCH)
978 		touch_pmd(vma, addr, pmd, flags);
979 
980 	/*
981 	 * device mapped pages can only be returned if the
982 	 * caller will manage the page reference count.
983 	 */
984 	if (!(flags & (FOLL_GET | FOLL_PIN)))
985 		return ERR_PTR(-EEXIST);
986 
987 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
988 	*pgmap = get_dev_pagemap(pfn, *pgmap);
989 	if (!*pgmap)
990 		return ERR_PTR(-EFAULT);
991 	page = pfn_to_page(pfn);
992 	if (!try_grab_page(page, flags))
993 		page = ERR_PTR(-ENOMEM);
994 
995 	return page;
996 }
997 
998 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
999 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1000 		  struct vm_area_struct *vma)
1001 {
1002 	spinlock_t *dst_ptl, *src_ptl;
1003 	struct page *src_page;
1004 	pmd_t pmd;
1005 	pgtable_t pgtable = NULL;
1006 	int ret = -ENOMEM;
1007 
1008 	/* Skip if can be re-fill on fault */
1009 	if (!vma_is_anonymous(vma))
1010 		return 0;
1011 
1012 	pgtable = pte_alloc_one(dst_mm);
1013 	if (unlikely(!pgtable))
1014 		goto out;
1015 
1016 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1017 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1018 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1019 
1020 	ret = -EAGAIN;
1021 	pmd = *src_pmd;
1022 
1023 	/*
1024 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1025 	 * does not have the VM_UFFD_WP, which means that the uffd
1026 	 * fork event is not enabled.
1027 	 */
1028 	if (!(vma->vm_flags & VM_UFFD_WP))
1029 		pmd = pmd_clear_uffd_wp(pmd);
1030 
1031 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1032 	if (unlikely(is_swap_pmd(pmd))) {
1033 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1034 
1035 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1036 		if (is_write_migration_entry(entry)) {
1037 			make_migration_entry_read(&entry);
1038 			pmd = swp_entry_to_pmd(entry);
1039 			if (pmd_swp_soft_dirty(*src_pmd))
1040 				pmd = pmd_swp_mksoft_dirty(pmd);
1041 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1042 		}
1043 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1044 		mm_inc_nr_ptes(dst_mm);
1045 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1046 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1047 		ret = 0;
1048 		goto out_unlock;
1049 	}
1050 #endif
1051 
1052 	if (unlikely(!pmd_trans_huge(pmd))) {
1053 		pte_free(dst_mm, pgtable);
1054 		goto out_unlock;
1055 	}
1056 	/*
1057 	 * When page table lock is held, the huge zero pmd should not be
1058 	 * under splitting since we don't split the page itself, only pmd to
1059 	 * a page table.
1060 	 */
1061 	if (is_huge_zero_pmd(pmd)) {
1062 		struct page *zero_page;
1063 		/*
1064 		 * get_huge_zero_page() will never allocate a new page here,
1065 		 * since we already have a zero page to copy. It just takes a
1066 		 * reference.
1067 		 */
1068 		zero_page = mm_get_huge_zero_page(dst_mm);
1069 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1070 				zero_page);
1071 		ret = 0;
1072 		goto out_unlock;
1073 	}
1074 
1075 	src_page = pmd_page(pmd);
1076 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1077 	get_page(src_page);
1078 	page_dup_rmap(src_page, true);
1079 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1080 	mm_inc_nr_ptes(dst_mm);
1081 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1082 
1083 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1084 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1085 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1086 
1087 	ret = 0;
1088 out_unlock:
1089 	spin_unlock(src_ptl);
1090 	spin_unlock(dst_ptl);
1091 out:
1092 	return ret;
1093 }
1094 
1095 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1096 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1097 		pud_t *pud, int flags)
1098 {
1099 	pud_t _pud;
1100 
1101 	_pud = pud_mkyoung(*pud);
1102 	if (flags & FOLL_WRITE)
1103 		_pud = pud_mkdirty(_pud);
1104 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1105 				pud, _pud, flags & FOLL_WRITE))
1106 		update_mmu_cache_pud(vma, addr, pud);
1107 }
1108 
1109 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1110 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1111 {
1112 	unsigned long pfn = pud_pfn(*pud);
1113 	struct mm_struct *mm = vma->vm_mm;
1114 	struct page *page;
1115 
1116 	assert_spin_locked(pud_lockptr(mm, pud));
1117 
1118 	if (flags & FOLL_WRITE && !pud_write(*pud))
1119 		return NULL;
1120 
1121 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1122 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1123 			 (FOLL_PIN | FOLL_GET)))
1124 		return NULL;
1125 
1126 	if (pud_present(*pud) && pud_devmap(*pud))
1127 		/* pass */;
1128 	else
1129 		return NULL;
1130 
1131 	if (flags & FOLL_TOUCH)
1132 		touch_pud(vma, addr, pud, flags);
1133 
1134 	/*
1135 	 * device mapped pages can only be returned if the
1136 	 * caller will manage the page reference count.
1137 	 *
1138 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1139 	 */
1140 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1141 		return ERR_PTR(-EEXIST);
1142 
1143 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1144 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1145 	if (!*pgmap)
1146 		return ERR_PTR(-EFAULT);
1147 	page = pfn_to_page(pfn);
1148 	if (!try_grab_page(page, flags))
1149 		page = ERR_PTR(-ENOMEM);
1150 
1151 	return page;
1152 }
1153 
1154 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1155 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1156 		  struct vm_area_struct *vma)
1157 {
1158 	spinlock_t *dst_ptl, *src_ptl;
1159 	pud_t pud;
1160 	int ret;
1161 
1162 	dst_ptl = pud_lock(dst_mm, dst_pud);
1163 	src_ptl = pud_lockptr(src_mm, src_pud);
1164 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1165 
1166 	ret = -EAGAIN;
1167 	pud = *src_pud;
1168 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1169 		goto out_unlock;
1170 
1171 	/*
1172 	 * When page table lock is held, the huge zero pud should not be
1173 	 * under splitting since we don't split the page itself, only pud to
1174 	 * a page table.
1175 	 */
1176 	if (is_huge_zero_pud(pud)) {
1177 		/* No huge zero pud yet */
1178 	}
1179 
1180 	pudp_set_wrprotect(src_mm, addr, src_pud);
1181 	pud = pud_mkold(pud_wrprotect(pud));
1182 	set_pud_at(dst_mm, addr, dst_pud, pud);
1183 
1184 	ret = 0;
1185 out_unlock:
1186 	spin_unlock(src_ptl);
1187 	spin_unlock(dst_ptl);
1188 	return ret;
1189 }
1190 
1191 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1192 {
1193 	pud_t entry;
1194 	unsigned long haddr;
1195 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1196 
1197 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1198 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1199 		goto unlock;
1200 
1201 	entry = pud_mkyoung(orig_pud);
1202 	if (write)
1203 		entry = pud_mkdirty(entry);
1204 	haddr = vmf->address & HPAGE_PUD_MASK;
1205 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1206 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1207 
1208 unlock:
1209 	spin_unlock(vmf->ptl);
1210 }
1211 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1212 
1213 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1214 {
1215 	pmd_t entry;
1216 	unsigned long haddr;
1217 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1218 
1219 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1220 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1221 		goto unlock;
1222 
1223 	entry = pmd_mkyoung(orig_pmd);
1224 	if (write)
1225 		entry = pmd_mkdirty(entry);
1226 	haddr = vmf->address & HPAGE_PMD_MASK;
1227 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1228 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1229 
1230 unlock:
1231 	spin_unlock(vmf->ptl);
1232 }
1233 
1234 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1235 {
1236 	struct vm_area_struct *vma = vmf->vma;
1237 	struct page *page;
1238 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1239 
1240 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1241 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1242 
1243 	if (is_huge_zero_pmd(orig_pmd))
1244 		goto fallback;
1245 
1246 	spin_lock(vmf->ptl);
1247 
1248 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1249 		spin_unlock(vmf->ptl);
1250 		return 0;
1251 	}
1252 
1253 	page = pmd_page(orig_pmd);
1254 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1255 
1256 	/* Lock page for reuse_swap_page() */
1257 	if (!trylock_page(page)) {
1258 		get_page(page);
1259 		spin_unlock(vmf->ptl);
1260 		lock_page(page);
1261 		spin_lock(vmf->ptl);
1262 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1263 			spin_unlock(vmf->ptl);
1264 			unlock_page(page);
1265 			put_page(page);
1266 			return 0;
1267 		}
1268 		put_page(page);
1269 	}
1270 
1271 	/*
1272 	 * We can only reuse the page if nobody else maps the huge page or it's
1273 	 * part.
1274 	 */
1275 	if (reuse_swap_page(page, NULL)) {
1276 		pmd_t entry;
1277 		entry = pmd_mkyoung(orig_pmd);
1278 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1279 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1280 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1281 		unlock_page(page);
1282 		spin_unlock(vmf->ptl);
1283 		return VM_FAULT_WRITE;
1284 	}
1285 
1286 	unlock_page(page);
1287 	spin_unlock(vmf->ptl);
1288 fallback:
1289 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1290 	return VM_FAULT_FALLBACK;
1291 }
1292 
1293 /*
1294  * FOLL_FORCE can write to even unwritable pmd's, but only
1295  * after we've gone through a COW cycle and they are dirty.
1296  */
1297 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1298 {
1299 	return pmd_write(pmd) ||
1300 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1301 }
1302 
1303 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1304 				   unsigned long addr,
1305 				   pmd_t *pmd,
1306 				   unsigned int flags)
1307 {
1308 	struct mm_struct *mm = vma->vm_mm;
1309 	struct page *page = NULL;
1310 
1311 	assert_spin_locked(pmd_lockptr(mm, pmd));
1312 
1313 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1314 		goto out;
1315 
1316 	/* Avoid dumping huge zero page */
1317 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1318 		return ERR_PTR(-EFAULT);
1319 
1320 	/* Full NUMA hinting faults to serialise migration in fault paths */
1321 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1322 		goto out;
1323 
1324 	page = pmd_page(*pmd);
1325 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1326 
1327 	if (!try_grab_page(page, flags))
1328 		return ERR_PTR(-ENOMEM);
1329 
1330 	if (flags & FOLL_TOUCH)
1331 		touch_pmd(vma, addr, pmd, flags);
1332 
1333 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1334 		/*
1335 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1336 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1337 		 *
1338 		 * For anon THP:
1339 		 *
1340 		 * In most cases the pmd is the only mapping of the page as we
1341 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1342 		 * writable private mappings in populate_vma_page_range().
1343 		 *
1344 		 * The only scenario when we have the page shared here is if we
1345 		 * mlocking read-only mapping shared over fork(). We skip
1346 		 * mlocking such pages.
1347 		 *
1348 		 * For file THP:
1349 		 *
1350 		 * We can expect PageDoubleMap() to be stable under page lock:
1351 		 * for file pages we set it in page_add_file_rmap(), which
1352 		 * requires page to be locked.
1353 		 */
1354 
1355 		if (PageAnon(page) && compound_mapcount(page) != 1)
1356 			goto skip_mlock;
1357 		if (PageDoubleMap(page) || !page->mapping)
1358 			goto skip_mlock;
1359 		if (!trylock_page(page))
1360 			goto skip_mlock;
1361 		if (page->mapping && !PageDoubleMap(page))
1362 			mlock_vma_page(page);
1363 		unlock_page(page);
1364 	}
1365 skip_mlock:
1366 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1367 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1368 
1369 out:
1370 	return page;
1371 }
1372 
1373 /* NUMA hinting page fault entry point for trans huge pmds */
1374 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1375 {
1376 	struct vm_area_struct *vma = vmf->vma;
1377 	struct anon_vma *anon_vma = NULL;
1378 	struct page *page;
1379 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1380 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1381 	int target_nid, last_cpupid = -1;
1382 	bool page_locked;
1383 	bool migrated = false;
1384 	bool was_writable;
1385 	int flags = 0;
1386 
1387 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1388 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1389 		goto out_unlock;
1390 
1391 	/*
1392 	 * If there are potential migrations, wait for completion and retry
1393 	 * without disrupting NUMA hinting information. Do not relock and
1394 	 * check_same as the page may no longer be mapped.
1395 	 */
1396 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1397 		page = pmd_page(*vmf->pmd);
1398 		if (!get_page_unless_zero(page))
1399 			goto out_unlock;
1400 		spin_unlock(vmf->ptl);
1401 		put_and_wait_on_page_locked(page);
1402 		goto out;
1403 	}
1404 
1405 	page = pmd_page(pmd);
1406 	BUG_ON(is_huge_zero_page(page));
1407 	page_nid = page_to_nid(page);
1408 	last_cpupid = page_cpupid_last(page);
1409 	count_vm_numa_event(NUMA_HINT_FAULTS);
1410 	if (page_nid == this_nid) {
1411 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1412 		flags |= TNF_FAULT_LOCAL;
1413 	}
1414 
1415 	/* See similar comment in do_numa_page for explanation */
1416 	if (!pmd_savedwrite(pmd))
1417 		flags |= TNF_NO_GROUP;
1418 
1419 	/*
1420 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1421 	 * page_table_lock if at all possible
1422 	 */
1423 	page_locked = trylock_page(page);
1424 	target_nid = mpol_misplaced(page, vma, haddr);
1425 	if (target_nid == NUMA_NO_NODE) {
1426 		/* If the page was locked, there are no parallel migrations */
1427 		if (page_locked)
1428 			goto clear_pmdnuma;
1429 	}
1430 
1431 	/* Migration could have started since the pmd_trans_migrating check */
1432 	if (!page_locked) {
1433 		page_nid = NUMA_NO_NODE;
1434 		if (!get_page_unless_zero(page))
1435 			goto out_unlock;
1436 		spin_unlock(vmf->ptl);
1437 		put_and_wait_on_page_locked(page);
1438 		goto out;
1439 	}
1440 
1441 	/*
1442 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1443 	 * to serialises splits
1444 	 */
1445 	get_page(page);
1446 	spin_unlock(vmf->ptl);
1447 	anon_vma = page_lock_anon_vma_read(page);
1448 
1449 	/* Confirm the PMD did not change while page_table_lock was released */
1450 	spin_lock(vmf->ptl);
1451 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1452 		unlock_page(page);
1453 		put_page(page);
1454 		page_nid = NUMA_NO_NODE;
1455 		goto out_unlock;
1456 	}
1457 
1458 	/* Bail if we fail to protect against THP splits for any reason */
1459 	if (unlikely(!anon_vma)) {
1460 		put_page(page);
1461 		page_nid = NUMA_NO_NODE;
1462 		goto clear_pmdnuma;
1463 	}
1464 
1465 	/*
1466 	 * Since we took the NUMA fault, we must have observed the !accessible
1467 	 * bit. Make sure all other CPUs agree with that, to avoid them
1468 	 * modifying the page we're about to migrate.
1469 	 *
1470 	 * Must be done under PTL such that we'll observe the relevant
1471 	 * inc_tlb_flush_pending().
1472 	 *
1473 	 * We are not sure a pending tlb flush here is for a huge page
1474 	 * mapping or not. Hence use the tlb range variant
1475 	 */
1476 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1477 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1478 		/*
1479 		 * change_huge_pmd() released the pmd lock before
1480 		 * invalidating the secondary MMUs sharing the primary
1481 		 * MMU pagetables (with ->invalidate_range()). The
1482 		 * mmu_notifier_invalidate_range_end() (which
1483 		 * internally calls ->invalidate_range()) in
1484 		 * change_pmd_range() will run after us, so we can't
1485 		 * rely on it here and we need an explicit invalidate.
1486 		 */
1487 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1488 					      haddr + HPAGE_PMD_SIZE);
1489 	}
1490 
1491 	/*
1492 	 * Migrate the THP to the requested node, returns with page unlocked
1493 	 * and access rights restored.
1494 	 */
1495 	spin_unlock(vmf->ptl);
1496 
1497 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1498 				vmf->pmd, pmd, vmf->address, page, target_nid);
1499 	if (migrated) {
1500 		flags |= TNF_MIGRATED;
1501 		page_nid = target_nid;
1502 	} else
1503 		flags |= TNF_MIGRATE_FAIL;
1504 
1505 	goto out;
1506 clear_pmdnuma:
1507 	BUG_ON(!PageLocked(page));
1508 	was_writable = pmd_savedwrite(pmd);
1509 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1510 	pmd = pmd_mkyoung(pmd);
1511 	if (was_writable)
1512 		pmd = pmd_mkwrite(pmd);
1513 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1514 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1515 	unlock_page(page);
1516 out_unlock:
1517 	spin_unlock(vmf->ptl);
1518 
1519 out:
1520 	if (anon_vma)
1521 		page_unlock_anon_vma_read(anon_vma);
1522 
1523 	if (page_nid != NUMA_NO_NODE)
1524 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1525 				flags);
1526 
1527 	return 0;
1528 }
1529 
1530 /*
1531  * Return true if we do MADV_FREE successfully on entire pmd page.
1532  * Otherwise, return false.
1533  */
1534 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1535 		pmd_t *pmd, unsigned long addr, unsigned long next)
1536 {
1537 	spinlock_t *ptl;
1538 	pmd_t orig_pmd;
1539 	struct page *page;
1540 	struct mm_struct *mm = tlb->mm;
1541 	bool ret = false;
1542 
1543 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1544 
1545 	ptl = pmd_trans_huge_lock(pmd, vma);
1546 	if (!ptl)
1547 		goto out_unlocked;
1548 
1549 	orig_pmd = *pmd;
1550 	if (is_huge_zero_pmd(orig_pmd))
1551 		goto out;
1552 
1553 	if (unlikely(!pmd_present(orig_pmd))) {
1554 		VM_BUG_ON(thp_migration_supported() &&
1555 				  !is_pmd_migration_entry(orig_pmd));
1556 		goto out;
1557 	}
1558 
1559 	page = pmd_page(orig_pmd);
1560 	/*
1561 	 * If other processes are mapping this page, we couldn't discard
1562 	 * the page unless they all do MADV_FREE so let's skip the page.
1563 	 */
1564 	if (page_mapcount(page) != 1)
1565 		goto out;
1566 
1567 	if (!trylock_page(page))
1568 		goto out;
1569 
1570 	/*
1571 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1572 	 * will deactivate only them.
1573 	 */
1574 	if (next - addr != HPAGE_PMD_SIZE) {
1575 		get_page(page);
1576 		spin_unlock(ptl);
1577 		split_huge_page(page);
1578 		unlock_page(page);
1579 		put_page(page);
1580 		goto out_unlocked;
1581 	}
1582 
1583 	if (PageDirty(page))
1584 		ClearPageDirty(page);
1585 	unlock_page(page);
1586 
1587 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1588 		pmdp_invalidate(vma, addr, pmd);
1589 		orig_pmd = pmd_mkold(orig_pmd);
1590 		orig_pmd = pmd_mkclean(orig_pmd);
1591 
1592 		set_pmd_at(mm, addr, pmd, orig_pmd);
1593 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1594 	}
1595 
1596 	mark_page_lazyfree(page);
1597 	ret = true;
1598 out:
1599 	spin_unlock(ptl);
1600 out_unlocked:
1601 	return ret;
1602 }
1603 
1604 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1605 {
1606 	pgtable_t pgtable;
1607 
1608 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1609 	pte_free(mm, pgtable);
1610 	mm_dec_nr_ptes(mm);
1611 }
1612 
1613 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1614 		 pmd_t *pmd, unsigned long addr)
1615 {
1616 	pmd_t orig_pmd;
1617 	spinlock_t *ptl;
1618 
1619 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1620 
1621 	ptl = __pmd_trans_huge_lock(pmd, vma);
1622 	if (!ptl)
1623 		return 0;
1624 	/*
1625 	 * For architectures like ppc64 we look at deposited pgtable
1626 	 * when calling pmdp_huge_get_and_clear. So do the
1627 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1628 	 * operations.
1629 	 */
1630 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1631 						tlb->fullmm);
1632 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1633 	if (vma_is_special_huge(vma)) {
1634 		if (arch_needs_pgtable_deposit())
1635 			zap_deposited_table(tlb->mm, pmd);
1636 		spin_unlock(ptl);
1637 		if (is_huge_zero_pmd(orig_pmd))
1638 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1639 	} else if (is_huge_zero_pmd(orig_pmd)) {
1640 		zap_deposited_table(tlb->mm, pmd);
1641 		spin_unlock(ptl);
1642 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1643 	} else {
1644 		struct page *page = NULL;
1645 		int flush_needed = 1;
1646 
1647 		if (pmd_present(orig_pmd)) {
1648 			page = pmd_page(orig_pmd);
1649 			page_remove_rmap(page, true);
1650 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1651 			VM_BUG_ON_PAGE(!PageHead(page), page);
1652 		} else if (thp_migration_supported()) {
1653 			swp_entry_t entry;
1654 
1655 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1656 			entry = pmd_to_swp_entry(orig_pmd);
1657 			page = pfn_to_page(swp_offset(entry));
1658 			flush_needed = 0;
1659 		} else
1660 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1661 
1662 		if (PageAnon(page)) {
1663 			zap_deposited_table(tlb->mm, pmd);
1664 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1665 		} else {
1666 			if (arch_needs_pgtable_deposit())
1667 				zap_deposited_table(tlb->mm, pmd);
1668 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1669 		}
1670 
1671 		spin_unlock(ptl);
1672 		if (flush_needed)
1673 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1674 	}
1675 	return 1;
1676 }
1677 
1678 #ifndef pmd_move_must_withdraw
1679 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1680 					 spinlock_t *old_pmd_ptl,
1681 					 struct vm_area_struct *vma)
1682 {
1683 	/*
1684 	 * With split pmd lock we also need to move preallocated
1685 	 * PTE page table if new_pmd is on different PMD page table.
1686 	 *
1687 	 * We also don't deposit and withdraw tables for file pages.
1688 	 */
1689 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1690 }
1691 #endif
1692 
1693 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1694 {
1695 #ifdef CONFIG_MEM_SOFT_DIRTY
1696 	if (unlikely(is_pmd_migration_entry(pmd)))
1697 		pmd = pmd_swp_mksoft_dirty(pmd);
1698 	else if (pmd_present(pmd))
1699 		pmd = pmd_mksoft_dirty(pmd);
1700 #endif
1701 	return pmd;
1702 }
1703 
1704 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1705 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1706 {
1707 	spinlock_t *old_ptl, *new_ptl;
1708 	pmd_t pmd;
1709 	struct mm_struct *mm = vma->vm_mm;
1710 	bool force_flush = false;
1711 
1712 	/*
1713 	 * The destination pmd shouldn't be established, free_pgtables()
1714 	 * should have release it.
1715 	 */
1716 	if (WARN_ON(!pmd_none(*new_pmd))) {
1717 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1718 		return false;
1719 	}
1720 
1721 	/*
1722 	 * We don't have to worry about the ordering of src and dst
1723 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1724 	 */
1725 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1726 	if (old_ptl) {
1727 		new_ptl = pmd_lockptr(mm, new_pmd);
1728 		if (new_ptl != old_ptl)
1729 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1730 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1731 		if (pmd_present(pmd))
1732 			force_flush = true;
1733 		VM_BUG_ON(!pmd_none(*new_pmd));
1734 
1735 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1736 			pgtable_t pgtable;
1737 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1738 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1739 		}
1740 		pmd = move_soft_dirty_pmd(pmd);
1741 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1742 		if (force_flush)
1743 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1744 		if (new_ptl != old_ptl)
1745 			spin_unlock(new_ptl);
1746 		spin_unlock(old_ptl);
1747 		return true;
1748 	}
1749 	return false;
1750 }
1751 
1752 /*
1753  * Returns
1754  *  - 0 if PMD could not be locked
1755  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1756  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1757  */
1758 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1759 		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1760 {
1761 	struct mm_struct *mm = vma->vm_mm;
1762 	spinlock_t *ptl;
1763 	pmd_t entry;
1764 	bool preserve_write;
1765 	int ret;
1766 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1767 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1768 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1769 
1770 	ptl = __pmd_trans_huge_lock(pmd, vma);
1771 	if (!ptl)
1772 		return 0;
1773 
1774 	preserve_write = prot_numa && pmd_write(*pmd);
1775 	ret = 1;
1776 
1777 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1778 	if (is_swap_pmd(*pmd)) {
1779 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1780 
1781 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1782 		if (is_write_migration_entry(entry)) {
1783 			pmd_t newpmd;
1784 			/*
1785 			 * A protection check is difficult so
1786 			 * just be safe and disable write
1787 			 */
1788 			make_migration_entry_read(&entry);
1789 			newpmd = swp_entry_to_pmd(entry);
1790 			if (pmd_swp_soft_dirty(*pmd))
1791 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1792 			set_pmd_at(mm, addr, pmd, newpmd);
1793 		}
1794 		goto unlock;
1795 	}
1796 #endif
1797 
1798 	/*
1799 	 * Avoid trapping faults against the zero page. The read-only
1800 	 * data is likely to be read-cached on the local CPU and
1801 	 * local/remote hits to the zero page are not interesting.
1802 	 */
1803 	if (prot_numa && is_huge_zero_pmd(*pmd))
1804 		goto unlock;
1805 
1806 	if (prot_numa && pmd_protnone(*pmd))
1807 		goto unlock;
1808 
1809 	/*
1810 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1811 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1812 	 * which is also under mmap_read_lock(mm):
1813 	 *
1814 	 *	CPU0:				CPU1:
1815 	 *				change_huge_pmd(prot_numa=1)
1816 	 *				 pmdp_huge_get_and_clear_notify()
1817 	 * madvise_dontneed()
1818 	 *  zap_pmd_range()
1819 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1820 	 *   // skip the pmd
1821 	 *				 set_pmd_at();
1822 	 *				 // pmd is re-established
1823 	 *
1824 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1825 	 * which may break userspace.
1826 	 *
1827 	 * pmdp_invalidate() is required to make sure we don't miss
1828 	 * dirty/young flags set by hardware.
1829 	 */
1830 	entry = pmdp_invalidate(vma, addr, pmd);
1831 
1832 	entry = pmd_modify(entry, newprot);
1833 	if (preserve_write)
1834 		entry = pmd_mk_savedwrite(entry);
1835 	if (uffd_wp) {
1836 		entry = pmd_wrprotect(entry);
1837 		entry = pmd_mkuffd_wp(entry);
1838 	} else if (uffd_wp_resolve) {
1839 		/*
1840 		 * Leave the write bit to be handled by PF interrupt
1841 		 * handler, then things like COW could be properly
1842 		 * handled.
1843 		 */
1844 		entry = pmd_clear_uffd_wp(entry);
1845 	}
1846 	ret = HPAGE_PMD_NR;
1847 	set_pmd_at(mm, addr, pmd, entry);
1848 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1849 unlock:
1850 	spin_unlock(ptl);
1851 	return ret;
1852 }
1853 
1854 /*
1855  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1856  *
1857  * Note that if it returns page table lock pointer, this routine returns without
1858  * unlocking page table lock. So callers must unlock it.
1859  */
1860 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1861 {
1862 	spinlock_t *ptl;
1863 	ptl = pmd_lock(vma->vm_mm, pmd);
1864 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1865 			pmd_devmap(*pmd)))
1866 		return ptl;
1867 	spin_unlock(ptl);
1868 	return NULL;
1869 }
1870 
1871 /*
1872  * Returns true if a given pud maps a thp, false otherwise.
1873  *
1874  * Note that if it returns true, this routine returns without unlocking page
1875  * table lock. So callers must unlock it.
1876  */
1877 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1878 {
1879 	spinlock_t *ptl;
1880 
1881 	ptl = pud_lock(vma->vm_mm, pud);
1882 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1883 		return ptl;
1884 	spin_unlock(ptl);
1885 	return NULL;
1886 }
1887 
1888 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1889 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1890 		 pud_t *pud, unsigned long addr)
1891 {
1892 	spinlock_t *ptl;
1893 
1894 	ptl = __pud_trans_huge_lock(pud, vma);
1895 	if (!ptl)
1896 		return 0;
1897 	/*
1898 	 * For architectures like ppc64 we look at deposited pgtable
1899 	 * when calling pudp_huge_get_and_clear. So do the
1900 	 * pgtable_trans_huge_withdraw after finishing pudp related
1901 	 * operations.
1902 	 */
1903 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1904 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1905 	if (vma_is_special_huge(vma)) {
1906 		spin_unlock(ptl);
1907 		/* No zero page support yet */
1908 	} else {
1909 		/* No support for anonymous PUD pages yet */
1910 		BUG();
1911 	}
1912 	return 1;
1913 }
1914 
1915 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1916 		unsigned long haddr)
1917 {
1918 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1919 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1920 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1921 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1922 
1923 	count_vm_event(THP_SPLIT_PUD);
1924 
1925 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1926 }
1927 
1928 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1929 		unsigned long address)
1930 {
1931 	spinlock_t *ptl;
1932 	struct mmu_notifier_range range;
1933 
1934 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1935 				address & HPAGE_PUD_MASK,
1936 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1937 	mmu_notifier_invalidate_range_start(&range);
1938 	ptl = pud_lock(vma->vm_mm, pud);
1939 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1940 		goto out;
1941 	__split_huge_pud_locked(vma, pud, range.start);
1942 
1943 out:
1944 	spin_unlock(ptl);
1945 	/*
1946 	 * No need to double call mmu_notifier->invalidate_range() callback as
1947 	 * the above pudp_huge_clear_flush_notify() did already call it.
1948 	 */
1949 	mmu_notifier_invalidate_range_only_end(&range);
1950 }
1951 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1952 
1953 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1954 		unsigned long haddr, pmd_t *pmd)
1955 {
1956 	struct mm_struct *mm = vma->vm_mm;
1957 	pgtable_t pgtable;
1958 	pmd_t _pmd;
1959 	int i;
1960 
1961 	/*
1962 	 * Leave pmd empty until pte is filled note that it is fine to delay
1963 	 * notification until mmu_notifier_invalidate_range_end() as we are
1964 	 * replacing a zero pmd write protected page with a zero pte write
1965 	 * protected page.
1966 	 *
1967 	 * See Documentation/vm/mmu_notifier.rst
1968 	 */
1969 	pmdp_huge_clear_flush(vma, haddr, pmd);
1970 
1971 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1972 	pmd_populate(mm, &_pmd, pgtable);
1973 
1974 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1975 		pte_t *pte, entry;
1976 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1977 		entry = pte_mkspecial(entry);
1978 		pte = pte_offset_map(&_pmd, haddr);
1979 		VM_BUG_ON(!pte_none(*pte));
1980 		set_pte_at(mm, haddr, pte, entry);
1981 		pte_unmap(pte);
1982 	}
1983 	smp_wmb(); /* make pte visible before pmd */
1984 	pmd_populate(mm, pmd, pgtable);
1985 }
1986 
1987 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1988 		unsigned long haddr, bool freeze)
1989 {
1990 	struct mm_struct *mm = vma->vm_mm;
1991 	struct page *page;
1992 	pgtable_t pgtable;
1993 	pmd_t old_pmd, _pmd;
1994 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1995 	unsigned long addr;
1996 	int i;
1997 
1998 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1999 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2000 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2001 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2002 				&& !pmd_devmap(*pmd));
2003 
2004 	count_vm_event(THP_SPLIT_PMD);
2005 
2006 	if (!vma_is_anonymous(vma)) {
2007 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2008 		/*
2009 		 * We are going to unmap this huge page. So
2010 		 * just go ahead and zap it
2011 		 */
2012 		if (arch_needs_pgtable_deposit())
2013 			zap_deposited_table(mm, pmd);
2014 		if (vma_is_special_huge(vma))
2015 			return;
2016 		page = pmd_page(_pmd);
2017 		if (!PageDirty(page) && pmd_dirty(_pmd))
2018 			set_page_dirty(page);
2019 		if (!PageReferenced(page) && pmd_young(_pmd))
2020 			SetPageReferenced(page);
2021 		page_remove_rmap(page, true);
2022 		put_page(page);
2023 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2024 		return;
2025 	} else if (is_huge_zero_pmd(*pmd)) {
2026 		/*
2027 		 * FIXME: Do we want to invalidate secondary mmu by calling
2028 		 * mmu_notifier_invalidate_range() see comments below inside
2029 		 * __split_huge_pmd() ?
2030 		 *
2031 		 * We are going from a zero huge page write protected to zero
2032 		 * small page also write protected so it does not seems useful
2033 		 * to invalidate secondary mmu at this time.
2034 		 */
2035 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2036 	}
2037 
2038 	/*
2039 	 * Up to this point the pmd is present and huge and userland has the
2040 	 * whole access to the hugepage during the split (which happens in
2041 	 * place). If we overwrite the pmd with the not-huge version pointing
2042 	 * to the pte here (which of course we could if all CPUs were bug
2043 	 * free), userland could trigger a small page size TLB miss on the
2044 	 * small sized TLB while the hugepage TLB entry is still established in
2045 	 * the huge TLB. Some CPU doesn't like that.
2046 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2047 	 * 383 on page 105. Intel should be safe but is also warns that it's
2048 	 * only safe if the permission and cache attributes of the two entries
2049 	 * loaded in the two TLB is identical (which should be the case here).
2050 	 * But it is generally safer to never allow small and huge TLB entries
2051 	 * for the same virtual address to be loaded simultaneously. So instead
2052 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2053 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2054 	 * must remain set at all times on the pmd until the split is complete
2055 	 * for this pmd), then we flush the SMP TLB and finally we write the
2056 	 * non-huge version of the pmd entry with pmd_populate.
2057 	 */
2058 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2059 
2060 	pmd_migration = is_pmd_migration_entry(old_pmd);
2061 	if (unlikely(pmd_migration)) {
2062 		swp_entry_t entry;
2063 
2064 		entry = pmd_to_swp_entry(old_pmd);
2065 		page = pfn_to_page(swp_offset(entry));
2066 		write = is_write_migration_entry(entry);
2067 		young = false;
2068 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2069 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2070 	} else {
2071 		page = pmd_page(old_pmd);
2072 		if (pmd_dirty(old_pmd))
2073 			SetPageDirty(page);
2074 		write = pmd_write(old_pmd);
2075 		young = pmd_young(old_pmd);
2076 		soft_dirty = pmd_soft_dirty(old_pmd);
2077 		uffd_wp = pmd_uffd_wp(old_pmd);
2078 	}
2079 	VM_BUG_ON_PAGE(!page_count(page), page);
2080 	page_ref_add(page, HPAGE_PMD_NR - 1);
2081 
2082 	/*
2083 	 * Withdraw the table only after we mark the pmd entry invalid.
2084 	 * This's critical for some architectures (Power).
2085 	 */
2086 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2087 	pmd_populate(mm, &_pmd, pgtable);
2088 
2089 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2090 		pte_t entry, *pte;
2091 		/*
2092 		 * Note that NUMA hinting access restrictions are not
2093 		 * transferred to avoid any possibility of altering
2094 		 * permissions across VMAs.
2095 		 */
2096 		if (freeze || pmd_migration) {
2097 			swp_entry_t swp_entry;
2098 			swp_entry = make_migration_entry(page + i, write);
2099 			entry = swp_entry_to_pte(swp_entry);
2100 			if (soft_dirty)
2101 				entry = pte_swp_mksoft_dirty(entry);
2102 			if (uffd_wp)
2103 				entry = pte_swp_mkuffd_wp(entry);
2104 		} else {
2105 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2106 			entry = maybe_mkwrite(entry, vma);
2107 			if (!write)
2108 				entry = pte_wrprotect(entry);
2109 			if (!young)
2110 				entry = pte_mkold(entry);
2111 			if (soft_dirty)
2112 				entry = pte_mksoft_dirty(entry);
2113 			if (uffd_wp)
2114 				entry = pte_mkuffd_wp(entry);
2115 		}
2116 		pte = pte_offset_map(&_pmd, addr);
2117 		BUG_ON(!pte_none(*pte));
2118 		set_pte_at(mm, addr, pte, entry);
2119 		atomic_inc(&page[i]._mapcount);
2120 		pte_unmap(pte);
2121 	}
2122 
2123 	/*
2124 	 * Set PG_double_map before dropping compound_mapcount to avoid
2125 	 * false-negative page_mapped().
2126 	 */
2127 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2128 		for (i = 0; i < HPAGE_PMD_NR; i++)
2129 			atomic_inc(&page[i]._mapcount);
2130 	}
2131 
2132 	lock_page_memcg(page);
2133 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2134 		/* Last compound_mapcount is gone. */
2135 		__dec_lruvec_page_state(page, NR_ANON_THPS);
2136 		if (TestClearPageDoubleMap(page)) {
2137 			/* No need in mapcount reference anymore */
2138 			for (i = 0; i < HPAGE_PMD_NR; i++)
2139 				atomic_dec(&page[i]._mapcount);
2140 		}
2141 	}
2142 	unlock_page_memcg(page);
2143 
2144 	smp_wmb(); /* make pte visible before pmd */
2145 	pmd_populate(mm, pmd, pgtable);
2146 
2147 	if (freeze) {
2148 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2149 			page_remove_rmap(page + i, false);
2150 			put_page(page + i);
2151 		}
2152 	}
2153 }
2154 
2155 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2156 		unsigned long address, bool freeze, struct page *page)
2157 {
2158 	spinlock_t *ptl;
2159 	struct mmu_notifier_range range;
2160 	bool was_locked = false;
2161 	pmd_t _pmd;
2162 
2163 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2164 				address & HPAGE_PMD_MASK,
2165 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2166 	mmu_notifier_invalidate_range_start(&range);
2167 	ptl = pmd_lock(vma->vm_mm, pmd);
2168 
2169 	/*
2170 	 * If caller asks to setup a migration entries, we need a page to check
2171 	 * pmd against. Otherwise we can end up replacing wrong page.
2172 	 */
2173 	VM_BUG_ON(freeze && !page);
2174 	if (page) {
2175 		VM_WARN_ON_ONCE(!PageLocked(page));
2176 		was_locked = true;
2177 		if (page != pmd_page(*pmd))
2178 			goto out;
2179 	}
2180 
2181 repeat:
2182 	if (pmd_trans_huge(*pmd)) {
2183 		if (!page) {
2184 			page = pmd_page(*pmd);
2185 			if (unlikely(!trylock_page(page))) {
2186 				get_page(page);
2187 				_pmd = *pmd;
2188 				spin_unlock(ptl);
2189 				lock_page(page);
2190 				spin_lock(ptl);
2191 				if (unlikely(!pmd_same(*pmd, _pmd))) {
2192 					unlock_page(page);
2193 					put_page(page);
2194 					page = NULL;
2195 					goto repeat;
2196 				}
2197 				put_page(page);
2198 			}
2199 		}
2200 		if (PageMlocked(page))
2201 			clear_page_mlock(page);
2202 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2203 		goto out;
2204 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2205 out:
2206 	spin_unlock(ptl);
2207 	if (!was_locked && page)
2208 		unlock_page(page);
2209 	/*
2210 	 * No need to double call mmu_notifier->invalidate_range() callback.
2211 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2212 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2213 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2214 	 *    fault will trigger a flush_notify before pointing to a new page
2215 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2216 	 *    page in the meantime)
2217 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2218 	 *     to invalidate secondary tlb entry they are all still valid.
2219 	 *     any further changes to individual pte will notify. So no need
2220 	 *     to call mmu_notifier->invalidate_range()
2221 	 */
2222 	mmu_notifier_invalidate_range_only_end(&range);
2223 }
2224 
2225 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2226 		bool freeze, struct page *page)
2227 {
2228 	pgd_t *pgd;
2229 	p4d_t *p4d;
2230 	pud_t *pud;
2231 	pmd_t *pmd;
2232 
2233 	pgd = pgd_offset(vma->vm_mm, address);
2234 	if (!pgd_present(*pgd))
2235 		return;
2236 
2237 	p4d = p4d_offset(pgd, address);
2238 	if (!p4d_present(*p4d))
2239 		return;
2240 
2241 	pud = pud_offset(p4d, address);
2242 	if (!pud_present(*pud))
2243 		return;
2244 
2245 	pmd = pmd_offset(pud, address);
2246 
2247 	__split_huge_pmd(vma, pmd, address, freeze, page);
2248 }
2249 
2250 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2251 			     unsigned long start,
2252 			     unsigned long end,
2253 			     long adjust_next)
2254 {
2255 	/*
2256 	 * If the new start address isn't hpage aligned and it could
2257 	 * previously contain an hugepage: check if we need to split
2258 	 * an huge pmd.
2259 	 */
2260 	if (start & ~HPAGE_PMD_MASK &&
2261 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2262 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2263 		split_huge_pmd_address(vma, start, false, NULL);
2264 
2265 	/*
2266 	 * If the new end address isn't hpage aligned and it could
2267 	 * previously contain an hugepage: check if we need to split
2268 	 * an huge pmd.
2269 	 */
2270 	if (end & ~HPAGE_PMD_MASK &&
2271 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2272 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2273 		split_huge_pmd_address(vma, end, false, NULL);
2274 
2275 	/*
2276 	 * If we're also updating the vma->vm_next->vm_start, if the new
2277 	 * vm_next->vm_start isn't page aligned and it could previously
2278 	 * contain an hugepage: check if we need to split an huge pmd.
2279 	 */
2280 	if (adjust_next > 0) {
2281 		struct vm_area_struct *next = vma->vm_next;
2282 		unsigned long nstart = next->vm_start;
2283 		nstart += adjust_next << PAGE_SHIFT;
2284 		if (nstart & ~HPAGE_PMD_MASK &&
2285 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2286 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2287 			split_huge_pmd_address(next, nstart, false, NULL);
2288 	}
2289 }
2290 
2291 static void unmap_page(struct page *page)
2292 {
2293 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2294 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2295 	bool unmap_success;
2296 
2297 	VM_BUG_ON_PAGE(!PageHead(page), page);
2298 
2299 	if (PageAnon(page))
2300 		ttu_flags |= TTU_SPLIT_FREEZE;
2301 
2302 	unmap_success = try_to_unmap(page, ttu_flags);
2303 	VM_BUG_ON_PAGE(!unmap_success, page);
2304 }
2305 
2306 static void remap_page(struct page *page)
2307 {
2308 	int i;
2309 	if (PageTransHuge(page)) {
2310 		remove_migration_ptes(page, page, true);
2311 	} else {
2312 		for (i = 0; i < HPAGE_PMD_NR; i++)
2313 			remove_migration_ptes(page + i, page + i, true);
2314 	}
2315 }
2316 
2317 static void __split_huge_page_tail(struct page *head, int tail,
2318 		struct lruvec *lruvec, struct list_head *list)
2319 {
2320 	struct page *page_tail = head + tail;
2321 
2322 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2323 
2324 	/*
2325 	 * Clone page flags before unfreezing refcount.
2326 	 *
2327 	 * After successful get_page_unless_zero() might follow flags change,
2328 	 * for exmaple lock_page() which set PG_waiters.
2329 	 */
2330 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2331 	page_tail->flags |= (head->flags &
2332 			((1L << PG_referenced) |
2333 			 (1L << PG_swapbacked) |
2334 			 (1L << PG_swapcache) |
2335 			 (1L << PG_mlocked) |
2336 			 (1L << PG_uptodate) |
2337 			 (1L << PG_active) |
2338 			 (1L << PG_workingset) |
2339 			 (1L << PG_locked) |
2340 			 (1L << PG_unevictable) |
2341 			 (1L << PG_dirty)));
2342 
2343 	/* ->mapping in first tail page is compound_mapcount */
2344 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2345 			page_tail);
2346 	page_tail->mapping = head->mapping;
2347 	page_tail->index = head->index + tail;
2348 
2349 	/* Page flags must be visible before we make the page non-compound. */
2350 	smp_wmb();
2351 
2352 	/*
2353 	 * Clear PageTail before unfreezing page refcount.
2354 	 *
2355 	 * After successful get_page_unless_zero() might follow put_page()
2356 	 * which needs correct compound_head().
2357 	 */
2358 	clear_compound_head(page_tail);
2359 
2360 	/* Finally unfreeze refcount. Additional reference from page cache. */
2361 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2362 					  PageSwapCache(head)));
2363 
2364 	if (page_is_young(head))
2365 		set_page_young(page_tail);
2366 	if (page_is_idle(head))
2367 		set_page_idle(page_tail);
2368 
2369 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2370 
2371 	/*
2372 	 * always add to the tail because some iterators expect new
2373 	 * pages to show after the currently processed elements - e.g.
2374 	 * migrate_pages
2375 	 */
2376 	lru_add_page_tail(head, page_tail, lruvec, list);
2377 }
2378 
2379 static void __split_huge_page(struct page *page, struct list_head *list,
2380 		pgoff_t end, unsigned long flags)
2381 {
2382 	struct page *head = compound_head(page);
2383 	pg_data_t *pgdat = page_pgdat(head);
2384 	struct lruvec *lruvec;
2385 	struct address_space *swap_cache = NULL;
2386 	unsigned long offset = 0;
2387 	int i;
2388 
2389 	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2390 
2391 	/* complete memcg works before add pages to LRU */
2392 	mem_cgroup_split_huge_fixup(head);
2393 
2394 	if (PageAnon(head) && PageSwapCache(head)) {
2395 		swp_entry_t entry = { .val = page_private(head) };
2396 
2397 		offset = swp_offset(entry);
2398 		swap_cache = swap_address_space(entry);
2399 		xa_lock(&swap_cache->i_pages);
2400 	}
2401 
2402 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2403 		__split_huge_page_tail(head, i, lruvec, list);
2404 		/* Some pages can be beyond i_size: drop them from page cache */
2405 		if (head[i].index >= end) {
2406 			ClearPageDirty(head + i);
2407 			__delete_from_page_cache(head + i, NULL);
2408 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2409 				shmem_uncharge(head->mapping->host, 1);
2410 			put_page(head + i);
2411 		} else if (!PageAnon(page)) {
2412 			__xa_store(&head->mapping->i_pages, head[i].index,
2413 					head + i, 0);
2414 		} else if (swap_cache) {
2415 			__xa_store(&swap_cache->i_pages, offset + i,
2416 					head + i, 0);
2417 		}
2418 	}
2419 
2420 	ClearPageCompound(head);
2421 
2422 	split_page_owner(head, HPAGE_PMD_ORDER);
2423 
2424 	/* See comment in __split_huge_page_tail() */
2425 	if (PageAnon(head)) {
2426 		/* Additional pin to swap cache */
2427 		if (PageSwapCache(head)) {
2428 			page_ref_add(head, 2);
2429 			xa_unlock(&swap_cache->i_pages);
2430 		} else {
2431 			page_ref_inc(head);
2432 		}
2433 	} else {
2434 		/* Additional pin to page cache */
2435 		page_ref_add(head, 2);
2436 		xa_unlock(&head->mapping->i_pages);
2437 	}
2438 
2439 	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2440 
2441 	remap_page(head);
2442 
2443 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2444 		struct page *subpage = head + i;
2445 		if (subpage == page)
2446 			continue;
2447 		unlock_page(subpage);
2448 
2449 		/*
2450 		 * Subpages may be freed if there wasn't any mapping
2451 		 * like if add_to_swap() is running on a lru page that
2452 		 * had its mapping zapped. And freeing these pages
2453 		 * requires taking the lru_lock so we do the put_page
2454 		 * of the tail pages after the split is complete.
2455 		 */
2456 		put_page(subpage);
2457 	}
2458 }
2459 
2460 int total_mapcount(struct page *page)
2461 {
2462 	int i, compound, ret;
2463 
2464 	VM_BUG_ON_PAGE(PageTail(page), page);
2465 
2466 	if (likely(!PageCompound(page)))
2467 		return atomic_read(&page->_mapcount) + 1;
2468 
2469 	compound = compound_mapcount(page);
2470 	if (PageHuge(page))
2471 		return compound;
2472 	ret = compound;
2473 	for (i = 0; i < HPAGE_PMD_NR; i++)
2474 		ret += atomic_read(&page[i]._mapcount) + 1;
2475 	/* File pages has compound_mapcount included in _mapcount */
2476 	if (!PageAnon(page))
2477 		return ret - compound * HPAGE_PMD_NR;
2478 	if (PageDoubleMap(page))
2479 		ret -= HPAGE_PMD_NR;
2480 	return ret;
2481 }
2482 
2483 /*
2484  * This calculates accurately how many mappings a transparent hugepage
2485  * has (unlike page_mapcount() which isn't fully accurate). This full
2486  * accuracy is primarily needed to know if copy-on-write faults can
2487  * reuse the page and change the mapping to read-write instead of
2488  * copying them. At the same time this returns the total_mapcount too.
2489  *
2490  * The function returns the highest mapcount any one of the subpages
2491  * has. If the return value is one, even if different processes are
2492  * mapping different subpages of the transparent hugepage, they can
2493  * all reuse it, because each process is reusing a different subpage.
2494  *
2495  * The total_mapcount is instead counting all virtual mappings of the
2496  * subpages. If the total_mapcount is equal to "one", it tells the
2497  * caller all mappings belong to the same "mm" and in turn the
2498  * anon_vma of the transparent hugepage can become the vma->anon_vma
2499  * local one as no other process may be mapping any of the subpages.
2500  *
2501  * It would be more accurate to replace page_mapcount() with
2502  * page_trans_huge_mapcount(), however we only use
2503  * page_trans_huge_mapcount() in the copy-on-write faults where we
2504  * need full accuracy to avoid breaking page pinning, because
2505  * page_trans_huge_mapcount() is slower than page_mapcount().
2506  */
2507 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2508 {
2509 	int i, ret, _total_mapcount, mapcount;
2510 
2511 	/* hugetlbfs shouldn't call it */
2512 	VM_BUG_ON_PAGE(PageHuge(page), page);
2513 
2514 	if (likely(!PageTransCompound(page))) {
2515 		mapcount = atomic_read(&page->_mapcount) + 1;
2516 		if (total_mapcount)
2517 			*total_mapcount = mapcount;
2518 		return mapcount;
2519 	}
2520 
2521 	page = compound_head(page);
2522 
2523 	_total_mapcount = ret = 0;
2524 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2525 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2526 		ret = max(ret, mapcount);
2527 		_total_mapcount += mapcount;
2528 	}
2529 	if (PageDoubleMap(page)) {
2530 		ret -= 1;
2531 		_total_mapcount -= HPAGE_PMD_NR;
2532 	}
2533 	mapcount = compound_mapcount(page);
2534 	ret += mapcount;
2535 	_total_mapcount += mapcount;
2536 	if (total_mapcount)
2537 		*total_mapcount = _total_mapcount;
2538 	return ret;
2539 }
2540 
2541 /* Racy check whether the huge page can be split */
2542 bool can_split_huge_page(struct page *page, int *pextra_pins)
2543 {
2544 	int extra_pins;
2545 
2546 	/* Additional pins from page cache */
2547 	if (PageAnon(page))
2548 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2549 	else
2550 		extra_pins = HPAGE_PMD_NR;
2551 	if (pextra_pins)
2552 		*pextra_pins = extra_pins;
2553 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2554 }
2555 
2556 /*
2557  * This function splits huge page into normal pages. @page can point to any
2558  * subpage of huge page to split. Split doesn't change the position of @page.
2559  *
2560  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2561  * The huge page must be locked.
2562  *
2563  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2564  *
2565  * Both head page and tail pages will inherit mapping, flags, and so on from
2566  * the hugepage.
2567  *
2568  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2569  * they are not mapped.
2570  *
2571  * Returns 0 if the hugepage is split successfully.
2572  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2573  * us.
2574  */
2575 int split_huge_page_to_list(struct page *page, struct list_head *list)
2576 {
2577 	struct page *head = compound_head(page);
2578 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2579 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2580 	struct anon_vma *anon_vma = NULL;
2581 	struct address_space *mapping = NULL;
2582 	int count, mapcount, extra_pins, ret;
2583 	unsigned long flags;
2584 	pgoff_t end;
2585 
2586 	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2587 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2588 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2589 
2590 	if (PageWriteback(head))
2591 		return -EBUSY;
2592 
2593 	if (PageAnon(head)) {
2594 		/*
2595 		 * The caller does not necessarily hold an mmap_lock that would
2596 		 * prevent the anon_vma disappearing so we first we take a
2597 		 * reference to it and then lock the anon_vma for write. This
2598 		 * is similar to page_lock_anon_vma_read except the write lock
2599 		 * is taken to serialise against parallel split or collapse
2600 		 * operations.
2601 		 */
2602 		anon_vma = page_get_anon_vma(head);
2603 		if (!anon_vma) {
2604 			ret = -EBUSY;
2605 			goto out;
2606 		}
2607 		end = -1;
2608 		mapping = NULL;
2609 		anon_vma_lock_write(anon_vma);
2610 	} else {
2611 		mapping = head->mapping;
2612 
2613 		/* Truncated ? */
2614 		if (!mapping) {
2615 			ret = -EBUSY;
2616 			goto out;
2617 		}
2618 
2619 		anon_vma = NULL;
2620 		i_mmap_lock_read(mapping);
2621 
2622 		/*
2623 		 *__split_huge_page() may need to trim off pages beyond EOF:
2624 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2625 		 * which cannot be nested inside the page tree lock. So note
2626 		 * end now: i_size itself may be changed at any moment, but
2627 		 * head page lock is good enough to serialize the trimming.
2628 		 */
2629 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2630 	}
2631 
2632 	/*
2633 	 * Racy check if we can split the page, before unmap_page() will
2634 	 * split PMDs
2635 	 */
2636 	if (!can_split_huge_page(head, &extra_pins)) {
2637 		ret = -EBUSY;
2638 		goto out_unlock;
2639 	}
2640 
2641 	unmap_page(head);
2642 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2643 
2644 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2645 	spin_lock_irqsave(&pgdata->lru_lock, flags);
2646 
2647 	if (mapping) {
2648 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2649 
2650 		/*
2651 		 * Check if the head page is present in page cache.
2652 		 * We assume all tail are present too, if head is there.
2653 		 */
2654 		xa_lock(&mapping->i_pages);
2655 		if (xas_load(&xas) != head)
2656 			goto fail;
2657 	}
2658 
2659 	/* Prevent deferred_split_scan() touching ->_refcount */
2660 	spin_lock(&ds_queue->split_queue_lock);
2661 	count = page_count(head);
2662 	mapcount = total_mapcount(head);
2663 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2664 		if (!list_empty(page_deferred_list(head))) {
2665 			ds_queue->split_queue_len--;
2666 			list_del(page_deferred_list(head));
2667 		}
2668 		spin_unlock(&ds_queue->split_queue_lock);
2669 		if (mapping) {
2670 			if (PageSwapBacked(head))
2671 				__dec_node_page_state(head, NR_SHMEM_THPS);
2672 			else
2673 				__dec_node_page_state(head, NR_FILE_THPS);
2674 		}
2675 
2676 		__split_huge_page(page, list, end, flags);
2677 		if (PageSwapCache(head)) {
2678 			swp_entry_t entry = { .val = page_private(head) };
2679 
2680 			ret = split_swap_cluster(entry);
2681 		} else
2682 			ret = 0;
2683 	} else {
2684 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2685 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2686 					mapcount, count);
2687 			if (PageTail(page))
2688 				dump_page(head, NULL);
2689 			dump_page(page, "total_mapcount(head) > 0");
2690 			BUG();
2691 		}
2692 		spin_unlock(&ds_queue->split_queue_lock);
2693 fail:		if (mapping)
2694 			xa_unlock(&mapping->i_pages);
2695 		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2696 		remap_page(head);
2697 		ret = -EBUSY;
2698 	}
2699 
2700 out_unlock:
2701 	if (anon_vma) {
2702 		anon_vma_unlock_write(anon_vma);
2703 		put_anon_vma(anon_vma);
2704 	}
2705 	if (mapping)
2706 		i_mmap_unlock_read(mapping);
2707 out:
2708 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2709 	return ret;
2710 }
2711 
2712 void free_transhuge_page(struct page *page)
2713 {
2714 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2715 	unsigned long flags;
2716 
2717 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2718 	if (!list_empty(page_deferred_list(page))) {
2719 		ds_queue->split_queue_len--;
2720 		list_del(page_deferred_list(page));
2721 	}
2722 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2723 	free_compound_page(page);
2724 }
2725 
2726 void deferred_split_huge_page(struct page *page)
2727 {
2728 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2729 #ifdef CONFIG_MEMCG
2730 	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2731 #endif
2732 	unsigned long flags;
2733 
2734 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2735 
2736 	/*
2737 	 * The try_to_unmap() in page reclaim path might reach here too,
2738 	 * this may cause a race condition to corrupt deferred split queue.
2739 	 * And, if page reclaim is already handling the same page, it is
2740 	 * unnecessary to handle it again in shrinker.
2741 	 *
2742 	 * Check PageSwapCache to determine if the page is being
2743 	 * handled by page reclaim since THP swap would add the page into
2744 	 * swap cache before calling try_to_unmap().
2745 	 */
2746 	if (PageSwapCache(page))
2747 		return;
2748 
2749 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2750 	if (list_empty(page_deferred_list(page))) {
2751 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2752 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2753 		ds_queue->split_queue_len++;
2754 #ifdef CONFIG_MEMCG
2755 		if (memcg)
2756 			memcg_set_shrinker_bit(memcg, page_to_nid(page),
2757 					       deferred_split_shrinker.id);
2758 #endif
2759 	}
2760 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2761 }
2762 
2763 static unsigned long deferred_split_count(struct shrinker *shrink,
2764 		struct shrink_control *sc)
2765 {
2766 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2767 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2768 
2769 #ifdef CONFIG_MEMCG
2770 	if (sc->memcg)
2771 		ds_queue = &sc->memcg->deferred_split_queue;
2772 #endif
2773 	return READ_ONCE(ds_queue->split_queue_len);
2774 }
2775 
2776 static unsigned long deferred_split_scan(struct shrinker *shrink,
2777 		struct shrink_control *sc)
2778 {
2779 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2780 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2781 	unsigned long flags;
2782 	LIST_HEAD(list), *pos, *next;
2783 	struct page *page;
2784 	int split = 0;
2785 
2786 #ifdef CONFIG_MEMCG
2787 	if (sc->memcg)
2788 		ds_queue = &sc->memcg->deferred_split_queue;
2789 #endif
2790 
2791 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2792 	/* Take pin on all head pages to avoid freeing them under us */
2793 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2794 		page = list_entry((void *)pos, struct page, mapping);
2795 		page = compound_head(page);
2796 		if (get_page_unless_zero(page)) {
2797 			list_move(page_deferred_list(page), &list);
2798 		} else {
2799 			/* We lost race with put_compound_page() */
2800 			list_del_init(page_deferred_list(page));
2801 			ds_queue->split_queue_len--;
2802 		}
2803 		if (!--sc->nr_to_scan)
2804 			break;
2805 	}
2806 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2807 
2808 	list_for_each_safe(pos, next, &list) {
2809 		page = list_entry((void *)pos, struct page, mapping);
2810 		if (!trylock_page(page))
2811 			goto next;
2812 		/* split_huge_page() removes page from list on success */
2813 		if (!split_huge_page(page))
2814 			split++;
2815 		unlock_page(page);
2816 next:
2817 		put_page(page);
2818 	}
2819 
2820 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2821 	list_splice_tail(&list, &ds_queue->split_queue);
2822 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2823 
2824 	/*
2825 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2826 	 * This can happen if pages were freed under us.
2827 	 */
2828 	if (!split && list_empty(&ds_queue->split_queue))
2829 		return SHRINK_STOP;
2830 	return split;
2831 }
2832 
2833 static struct shrinker deferred_split_shrinker = {
2834 	.count_objects = deferred_split_count,
2835 	.scan_objects = deferred_split_scan,
2836 	.seeks = DEFAULT_SEEKS,
2837 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2838 		 SHRINKER_NONSLAB,
2839 };
2840 
2841 #ifdef CONFIG_DEBUG_FS
2842 static int split_huge_pages_set(void *data, u64 val)
2843 {
2844 	struct zone *zone;
2845 	struct page *page;
2846 	unsigned long pfn, max_zone_pfn;
2847 	unsigned long total = 0, split = 0;
2848 
2849 	if (val != 1)
2850 		return -EINVAL;
2851 
2852 	for_each_populated_zone(zone) {
2853 		max_zone_pfn = zone_end_pfn(zone);
2854 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2855 			if (!pfn_valid(pfn))
2856 				continue;
2857 
2858 			page = pfn_to_page(pfn);
2859 			if (!get_page_unless_zero(page))
2860 				continue;
2861 
2862 			if (zone != page_zone(page))
2863 				goto next;
2864 
2865 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2866 				goto next;
2867 
2868 			total++;
2869 			lock_page(page);
2870 			if (!split_huge_page(page))
2871 				split++;
2872 			unlock_page(page);
2873 next:
2874 			put_page(page);
2875 		}
2876 	}
2877 
2878 	pr_info("%lu of %lu THP split\n", split, total);
2879 
2880 	return 0;
2881 }
2882 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2883 		"%llu\n");
2884 
2885 static int __init split_huge_pages_debugfs(void)
2886 {
2887 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2888 			    &split_huge_pages_fops);
2889 	return 0;
2890 }
2891 late_initcall(split_huge_pages_debugfs);
2892 #endif
2893 
2894 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2895 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2896 		struct page *page)
2897 {
2898 	struct vm_area_struct *vma = pvmw->vma;
2899 	struct mm_struct *mm = vma->vm_mm;
2900 	unsigned long address = pvmw->address;
2901 	pmd_t pmdval;
2902 	swp_entry_t entry;
2903 	pmd_t pmdswp;
2904 
2905 	if (!(pvmw->pmd && !pvmw->pte))
2906 		return;
2907 
2908 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2909 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2910 	if (pmd_dirty(pmdval))
2911 		set_page_dirty(page);
2912 	entry = make_migration_entry(page, pmd_write(pmdval));
2913 	pmdswp = swp_entry_to_pmd(entry);
2914 	if (pmd_soft_dirty(pmdval))
2915 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2916 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2917 	page_remove_rmap(page, true);
2918 	put_page(page);
2919 }
2920 
2921 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2922 {
2923 	struct vm_area_struct *vma = pvmw->vma;
2924 	struct mm_struct *mm = vma->vm_mm;
2925 	unsigned long address = pvmw->address;
2926 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2927 	pmd_t pmde;
2928 	swp_entry_t entry;
2929 
2930 	if (!(pvmw->pmd && !pvmw->pte))
2931 		return;
2932 
2933 	entry = pmd_to_swp_entry(*pvmw->pmd);
2934 	get_page(new);
2935 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2936 	if (pmd_swp_soft_dirty(*pvmw->pmd))
2937 		pmde = pmd_mksoft_dirty(pmde);
2938 	if (is_write_migration_entry(entry))
2939 		pmde = maybe_pmd_mkwrite(pmde, vma);
2940 
2941 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2942 	if (PageAnon(new))
2943 		page_add_anon_rmap(new, vma, mmun_start, true);
2944 	else
2945 		page_add_file_rmap(new, true);
2946 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2947 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2948 		mlock_vma_page(new);
2949 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2950 }
2951 #endif
2952