1 /* 2 * Copyright (C) 2009 Red Hat, Inc. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/highmem.h> 11 #include <linux/hugetlb.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/rmap.h> 14 #include <linux/swap.h> 15 #include <linux/mm_inline.h> 16 #include <linux/kthread.h> 17 #include <linux/khugepaged.h> 18 #include <linux/freezer.h> 19 #include <linux/mman.h> 20 #include <asm/tlb.h> 21 #include <asm/pgalloc.h> 22 #include "internal.h" 23 24 /* 25 * By default transparent hugepage support is enabled for all mappings 26 * and khugepaged scans all mappings. Defrag is only invoked by 27 * khugepaged hugepage allocations and by page faults inside 28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived 29 * allocations. 30 */ 31 unsigned long transparent_hugepage_flags __read_mostly = 32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 33 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 34 #endif 35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 37 #endif 38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)| 39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 40 41 /* default scan 8*512 pte (or vmas) every 30 second */ 42 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8; 43 static unsigned int khugepaged_pages_collapsed; 44 static unsigned int khugepaged_full_scans; 45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 46 /* during fragmentation poll the hugepage allocator once every minute */ 47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 48 static struct task_struct *khugepaged_thread __read_mostly; 49 static DEFINE_MUTEX(khugepaged_mutex); 50 static DEFINE_SPINLOCK(khugepaged_mm_lock); 51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 52 /* 53 * default collapse hugepages if there is at least one pte mapped like 54 * it would have happened if the vma was large enough during page 55 * fault. 56 */ 57 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1; 58 59 static int khugepaged(void *none); 60 static int mm_slots_hash_init(void); 61 static int khugepaged_slab_init(void); 62 static void khugepaged_slab_free(void); 63 64 #define MM_SLOTS_HASH_HEADS 1024 65 static struct hlist_head *mm_slots_hash __read_mostly; 66 static struct kmem_cache *mm_slot_cache __read_mostly; 67 68 /** 69 * struct mm_slot - hash lookup from mm to mm_slot 70 * @hash: hash collision list 71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head 72 * @mm: the mm that this information is valid for 73 */ 74 struct mm_slot { 75 struct hlist_node hash; 76 struct list_head mm_node; 77 struct mm_struct *mm; 78 }; 79 80 /** 81 * struct khugepaged_scan - cursor for scanning 82 * @mm_head: the head of the mm list to scan 83 * @mm_slot: the current mm_slot we are scanning 84 * @address: the next address inside that to be scanned 85 * 86 * There is only the one khugepaged_scan instance of this cursor structure. 87 */ 88 struct khugepaged_scan { 89 struct list_head mm_head; 90 struct mm_slot *mm_slot; 91 unsigned long address; 92 } khugepaged_scan = { 93 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 94 }; 95 96 97 static int set_recommended_min_free_kbytes(void) 98 { 99 struct zone *zone; 100 int nr_zones = 0; 101 unsigned long recommended_min; 102 extern int min_free_kbytes; 103 104 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG, 105 &transparent_hugepage_flags) && 106 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 107 &transparent_hugepage_flags)) 108 return 0; 109 110 for_each_populated_zone(zone) 111 nr_zones++; 112 113 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */ 114 recommended_min = pageblock_nr_pages * nr_zones * 2; 115 116 /* 117 * Make sure that on average at least two pageblocks are almost free 118 * of another type, one for a migratetype to fall back to and a 119 * second to avoid subsequent fallbacks of other types There are 3 120 * MIGRATE_TYPES we care about. 121 */ 122 recommended_min += pageblock_nr_pages * nr_zones * 123 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 124 125 /* don't ever allow to reserve more than 5% of the lowmem */ 126 recommended_min = min(recommended_min, 127 (unsigned long) nr_free_buffer_pages() / 20); 128 recommended_min <<= (PAGE_SHIFT-10); 129 130 if (recommended_min > min_free_kbytes) 131 min_free_kbytes = recommended_min; 132 setup_per_zone_wmarks(); 133 return 0; 134 } 135 late_initcall(set_recommended_min_free_kbytes); 136 137 static int start_khugepaged(void) 138 { 139 int err = 0; 140 if (khugepaged_enabled()) { 141 int wakeup; 142 if (unlikely(!mm_slot_cache || !mm_slots_hash)) { 143 err = -ENOMEM; 144 goto out; 145 } 146 mutex_lock(&khugepaged_mutex); 147 if (!khugepaged_thread) 148 khugepaged_thread = kthread_run(khugepaged, NULL, 149 "khugepaged"); 150 if (unlikely(IS_ERR(khugepaged_thread))) { 151 printk(KERN_ERR 152 "khugepaged: kthread_run(khugepaged) failed\n"); 153 err = PTR_ERR(khugepaged_thread); 154 khugepaged_thread = NULL; 155 } 156 wakeup = !list_empty(&khugepaged_scan.mm_head); 157 mutex_unlock(&khugepaged_mutex); 158 if (wakeup) 159 wake_up_interruptible(&khugepaged_wait); 160 161 set_recommended_min_free_kbytes(); 162 } else 163 /* wakeup to exit */ 164 wake_up_interruptible(&khugepaged_wait); 165 out: 166 return err; 167 } 168 169 #ifdef CONFIG_SYSFS 170 171 static ssize_t double_flag_show(struct kobject *kobj, 172 struct kobj_attribute *attr, char *buf, 173 enum transparent_hugepage_flag enabled, 174 enum transparent_hugepage_flag req_madv) 175 { 176 if (test_bit(enabled, &transparent_hugepage_flags)) { 177 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags)); 178 return sprintf(buf, "[always] madvise never\n"); 179 } else if (test_bit(req_madv, &transparent_hugepage_flags)) 180 return sprintf(buf, "always [madvise] never\n"); 181 else 182 return sprintf(buf, "always madvise [never]\n"); 183 } 184 static ssize_t double_flag_store(struct kobject *kobj, 185 struct kobj_attribute *attr, 186 const char *buf, size_t count, 187 enum transparent_hugepage_flag enabled, 188 enum transparent_hugepage_flag req_madv) 189 { 190 if (!memcmp("always", buf, 191 min(sizeof("always")-1, count))) { 192 set_bit(enabled, &transparent_hugepage_flags); 193 clear_bit(req_madv, &transparent_hugepage_flags); 194 } else if (!memcmp("madvise", buf, 195 min(sizeof("madvise")-1, count))) { 196 clear_bit(enabled, &transparent_hugepage_flags); 197 set_bit(req_madv, &transparent_hugepage_flags); 198 } else if (!memcmp("never", buf, 199 min(sizeof("never")-1, count))) { 200 clear_bit(enabled, &transparent_hugepage_flags); 201 clear_bit(req_madv, &transparent_hugepage_flags); 202 } else 203 return -EINVAL; 204 205 return count; 206 } 207 208 static ssize_t enabled_show(struct kobject *kobj, 209 struct kobj_attribute *attr, char *buf) 210 { 211 return double_flag_show(kobj, attr, buf, 212 TRANSPARENT_HUGEPAGE_FLAG, 213 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); 214 } 215 static ssize_t enabled_store(struct kobject *kobj, 216 struct kobj_attribute *attr, 217 const char *buf, size_t count) 218 { 219 ssize_t ret; 220 221 ret = double_flag_store(kobj, attr, buf, count, 222 TRANSPARENT_HUGEPAGE_FLAG, 223 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); 224 225 if (ret > 0) { 226 int err = start_khugepaged(); 227 if (err) 228 ret = err; 229 } 230 231 if (ret > 0 && 232 (test_bit(TRANSPARENT_HUGEPAGE_FLAG, 233 &transparent_hugepage_flags) || 234 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 235 &transparent_hugepage_flags))) 236 set_recommended_min_free_kbytes(); 237 238 return ret; 239 } 240 static struct kobj_attribute enabled_attr = 241 __ATTR(enabled, 0644, enabled_show, enabled_store); 242 243 static ssize_t single_flag_show(struct kobject *kobj, 244 struct kobj_attribute *attr, char *buf, 245 enum transparent_hugepage_flag flag) 246 { 247 return sprintf(buf, "%d\n", 248 !!test_bit(flag, &transparent_hugepage_flags)); 249 } 250 251 static ssize_t single_flag_store(struct kobject *kobj, 252 struct kobj_attribute *attr, 253 const char *buf, size_t count, 254 enum transparent_hugepage_flag flag) 255 { 256 unsigned long value; 257 int ret; 258 259 ret = kstrtoul(buf, 10, &value); 260 if (ret < 0) 261 return ret; 262 if (value > 1) 263 return -EINVAL; 264 265 if (value) 266 set_bit(flag, &transparent_hugepage_flags); 267 else 268 clear_bit(flag, &transparent_hugepage_flags); 269 270 return count; 271 } 272 273 /* 274 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind 275 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of 276 * memory just to allocate one more hugepage. 277 */ 278 static ssize_t defrag_show(struct kobject *kobj, 279 struct kobj_attribute *attr, char *buf) 280 { 281 return double_flag_show(kobj, attr, buf, 282 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, 283 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); 284 } 285 static ssize_t defrag_store(struct kobject *kobj, 286 struct kobj_attribute *attr, 287 const char *buf, size_t count) 288 { 289 return double_flag_store(kobj, attr, buf, count, 290 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, 291 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); 292 } 293 static struct kobj_attribute defrag_attr = 294 __ATTR(defrag, 0644, defrag_show, defrag_store); 295 296 #ifdef CONFIG_DEBUG_VM 297 static ssize_t debug_cow_show(struct kobject *kobj, 298 struct kobj_attribute *attr, char *buf) 299 { 300 return single_flag_show(kobj, attr, buf, 301 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 302 } 303 static ssize_t debug_cow_store(struct kobject *kobj, 304 struct kobj_attribute *attr, 305 const char *buf, size_t count) 306 { 307 return single_flag_store(kobj, attr, buf, count, 308 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 309 } 310 static struct kobj_attribute debug_cow_attr = 311 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 312 #endif /* CONFIG_DEBUG_VM */ 313 314 static struct attribute *hugepage_attr[] = { 315 &enabled_attr.attr, 316 &defrag_attr.attr, 317 #ifdef CONFIG_DEBUG_VM 318 &debug_cow_attr.attr, 319 #endif 320 NULL, 321 }; 322 323 static struct attribute_group hugepage_attr_group = { 324 .attrs = hugepage_attr, 325 }; 326 327 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 328 struct kobj_attribute *attr, 329 char *buf) 330 { 331 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs); 332 } 333 334 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 335 struct kobj_attribute *attr, 336 const char *buf, size_t count) 337 { 338 unsigned long msecs; 339 int err; 340 341 err = strict_strtoul(buf, 10, &msecs); 342 if (err || msecs > UINT_MAX) 343 return -EINVAL; 344 345 khugepaged_scan_sleep_millisecs = msecs; 346 wake_up_interruptible(&khugepaged_wait); 347 348 return count; 349 } 350 static struct kobj_attribute scan_sleep_millisecs_attr = 351 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, 352 scan_sleep_millisecs_store); 353 354 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 355 struct kobj_attribute *attr, 356 char *buf) 357 { 358 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 359 } 360 361 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 362 struct kobj_attribute *attr, 363 const char *buf, size_t count) 364 { 365 unsigned long msecs; 366 int err; 367 368 err = strict_strtoul(buf, 10, &msecs); 369 if (err || msecs > UINT_MAX) 370 return -EINVAL; 371 372 khugepaged_alloc_sleep_millisecs = msecs; 373 wake_up_interruptible(&khugepaged_wait); 374 375 return count; 376 } 377 static struct kobj_attribute alloc_sleep_millisecs_attr = 378 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, 379 alloc_sleep_millisecs_store); 380 381 static ssize_t pages_to_scan_show(struct kobject *kobj, 382 struct kobj_attribute *attr, 383 char *buf) 384 { 385 return sprintf(buf, "%u\n", khugepaged_pages_to_scan); 386 } 387 static ssize_t pages_to_scan_store(struct kobject *kobj, 388 struct kobj_attribute *attr, 389 const char *buf, size_t count) 390 { 391 int err; 392 unsigned long pages; 393 394 err = strict_strtoul(buf, 10, &pages); 395 if (err || !pages || pages > UINT_MAX) 396 return -EINVAL; 397 398 khugepaged_pages_to_scan = pages; 399 400 return count; 401 } 402 static struct kobj_attribute pages_to_scan_attr = 403 __ATTR(pages_to_scan, 0644, pages_to_scan_show, 404 pages_to_scan_store); 405 406 static ssize_t pages_collapsed_show(struct kobject *kobj, 407 struct kobj_attribute *attr, 408 char *buf) 409 { 410 return sprintf(buf, "%u\n", khugepaged_pages_collapsed); 411 } 412 static struct kobj_attribute pages_collapsed_attr = 413 __ATTR_RO(pages_collapsed); 414 415 static ssize_t full_scans_show(struct kobject *kobj, 416 struct kobj_attribute *attr, 417 char *buf) 418 { 419 return sprintf(buf, "%u\n", khugepaged_full_scans); 420 } 421 static struct kobj_attribute full_scans_attr = 422 __ATTR_RO(full_scans); 423 424 static ssize_t khugepaged_defrag_show(struct kobject *kobj, 425 struct kobj_attribute *attr, char *buf) 426 { 427 return single_flag_show(kobj, attr, buf, 428 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 429 } 430 static ssize_t khugepaged_defrag_store(struct kobject *kobj, 431 struct kobj_attribute *attr, 432 const char *buf, size_t count) 433 { 434 return single_flag_store(kobj, attr, buf, count, 435 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 436 } 437 static struct kobj_attribute khugepaged_defrag_attr = 438 __ATTR(defrag, 0644, khugepaged_defrag_show, 439 khugepaged_defrag_store); 440 441 /* 442 * max_ptes_none controls if khugepaged should collapse hugepages over 443 * any unmapped ptes in turn potentially increasing the memory 444 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 445 * reduce the available free memory in the system as it 446 * runs. Increasing max_ptes_none will instead potentially reduce the 447 * free memory in the system during the khugepaged scan. 448 */ 449 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, 450 struct kobj_attribute *attr, 451 char *buf) 452 { 453 return sprintf(buf, "%u\n", khugepaged_max_ptes_none); 454 } 455 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, 456 struct kobj_attribute *attr, 457 const char *buf, size_t count) 458 { 459 int err; 460 unsigned long max_ptes_none; 461 462 err = strict_strtoul(buf, 10, &max_ptes_none); 463 if (err || max_ptes_none > HPAGE_PMD_NR-1) 464 return -EINVAL; 465 466 khugepaged_max_ptes_none = max_ptes_none; 467 468 return count; 469 } 470 static struct kobj_attribute khugepaged_max_ptes_none_attr = 471 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, 472 khugepaged_max_ptes_none_store); 473 474 static struct attribute *khugepaged_attr[] = { 475 &khugepaged_defrag_attr.attr, 476 &khugepaged_max_ptes_none_attr.attr, 477 &pages_to_scan_attr.attr, 478 &pages_collapsed_attr.attr, 479 &full_scans_attr.attr, 480 &scan_sleep_millisecs_attr.attr, 481 &alloc_sleep_millisecs_attr.attr, 482 NULL, 483 }; 484 485 static struct attribute_group khugepaged_attr_group = { 486 .attrs = khugepaged_attr, 487 .name = "khugepaged", 488 }; 489 #endif /* CONFIG_SYSFS */ 490 491 static int __init hugepage_init(void) 492 { 493 int err; 494 #ifdef CONFIG_SYSFS 495 static struct kobject *hugepage_kobj; 496 #endif 497 498 err = -EINVAL; 499 if (!has_transparent_hugepage()) { 500 transparent_hugepage_flags = 0; 501 goto out; 502 } 503 504 #ifdef CONFIG_SYSFS 505 err = -ENOMEM; 506 hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 507 if (unlikely(!hugepage_kobj)) { 508 printk(KERN_ERR "hugepage: failed kobject create\n"); 509 goto out; 510 } 511 512 err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group); 513 if (err) { 514 printk(KERN_ERR "hugepage: failed register hugeage group\n"); 515 goto out; 516 } 517 518 err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group); 519 if (err) { 520 printk(KERN_ERR "hugepage: failed register hugeage group\n"); 521 goto out; 522 } 523 #endif 524 525 err = khugepaged_slab_init(); 526 if (err) 527 goto out; 528 529 err = mm_slots_hash_init(); 530 if (err) { 531 khugepaged_slab_free(); 532 goto out; 533 } 534 535 /* 536 * By default disable transparent hugepages on smaller systems, 537 * where the extra memory used could hurt more than TLB overhead 538 * is likely to save. The admin can still enable it through /sys. 539 */ 540 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) 541 transparent_hugepage_flags = 0; 542 543 start_khugepaged(); 544 545 set_recommended_min_free_kbytes(); 546 547 out: 548 return err; 549 } 550 module_init(hugepage_init) 551 552 static int __init setup_transparent_hugepage(char *str) 553 { 554 int ret = 0; 555 if (!str) 556 goto out; 557 if (!strcmp(str, "always")) { 558 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 559 &transparent_hugepage_flags); 560 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 561 &transparent_hugepage_flags); 562 ret = 1; 563 } else if (!strcmp(str, "madvise")) { 564 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 565 &transparent_hugepage_flags); 566 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 567 &transparent_hugepage_flags); 568 ret = 1; 569 } else if (!strcmp(str, "never")) { 570 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 571 &transparent_hugepage_flags); 572 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 573 &transparent_hugepage_flags); 574 ret = 1; 575 } 576 out: 577 if (!ret) 578 printk(KERN_WARNING 579 "transparent_hugepage= cannot parse, ignored\n"); 580 return ret; 581 } 582 __setup("transparent_hugepage=", setup_transparent_hugepage); 583 584 static void prepare_pmd_huge_pte(pgtable_t pgtable, 585 struct mm_struct *mm) 586 { 587 assert_spin_locked(&mm->page_table_lock); 588 589 /* FIFO */ 590 if (!mm->pmd_huge_pte) 591 INIT_LIST_HEAD(&pgtable->lru); 592 else 593 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru); 594 mm->pmd_huge_pte = pgtable; 595 } 596 597 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 598 { 599 if (likely(vma->vm_flags & VM_WRITE)) 600 pmd = pmd_mkwrite(pmd); 601 return pmd; 602 } 603 604 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, 605 struct vm_area_struct *vma, 606 unsigned long haddr, pmd_t *pmd, 607 struct page *page) 608 { 609 int ret = 0; 610 pgtable_t pgtable; 611 612 VM_BUG_ON(!PageCompound(page)); 613 pgtable = pte_alloc_one(mm, haddr); 614 if (unlikely(!pgtable)) { 615 mem_cgroup_uncharge_page(page); 616 put_page(page); 617 return VM_FAULT_OOM; 618 } 619 620 clear_huge_page(page, haddr, HPAGE_PMD_NR); 621 __SetPageUptodate(page); 622 623 spin_lock(&mm->page_table_lock); 624 if (unlikely(!pmd_none(*pmd))) { 625 spin_unlock(&mm->page_table_lock); 626 mem_cgroup_uncharge_page(page); 627 put_page(page); 628 pte_free(mm, pgtable); 629 } else { 630 pmd_t entry; 631 entry = mk_pmd(page, vma->vm_page_prot); 632 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 633 entry = pmd_mkhuge(entry); 634 /* 635 * The spinlocking to take the lru_lock inside 636 * page_add_new_anon_rmap() acts as a full memory 637 * barrier to be sure clear_huge_page writes become 638 * visible after the set_pmd_at() write. 639 */ 640 page_add_new_anon_rmap(page, vma, haddr); 641 set_pmd_at(mm, haddr, pmd, entry); 642 prepare_pmd_huge_pte(pgtable, mm); 643 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); 644 spin_unlock(&mm->page_table_lock); 645 } 646 647 return ret; 648 } 649 650 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp) 651 { 652 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp; 653 } 654 655 static inline struct page *alloc_hugepage_vma(int defrag, 656 struct vm_area_struct *vma, 657 unsigned long haddr, int nd, 658 gfp_t extra_gfp) 659 { 660 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp), 661 HPAGE_PMD_ORDER, vma, haddr, nd); 662 } 663 664 #ifndef CONFIG_NUMA 665 static inline struct page *alloc_hugepage(int defrag) 666 { 667 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0), 668 HPAGE_PMD_ORDER); 669 } 670 #endif 671 672 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 673 unsigned long address, pmd_t *pmd, 674 unsigned int flags) 675 { 676 struct page *page; 677 unsigned long haddr = address & HPAGE_PMD_MASK; 678 pte_t *pte; 679 680 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) { 681 if (unlikely(anon_vma_prepare(vma))) 682 return VM_FAULT_OOM; 683 if (unlikely(khugepaged_enter(vma))) 684 return VM_FAULT_OOM; 685 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), 686 vma, haddr, numa_node_id(), 0); 687 if (unlikely(!page)) { 688 count_vm_event(THP_FAULT_FALLBACK); 689 goto out; 690 } 691 count_vm_event(THP_FAULT_ALLOC); 692 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) { 693 put_page(page); 694 goto out; 695 } 696 697 return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page); 698 } 699 out: 700 /* 701 * Use __pte_alloc instead of pte_alloc_map, because we can't 702 * run pte_offset_map on the pmd, if an huge pmd could 703 * materialize from under us from a different thread. 704 */ 705 if (unlikely(__pte_alloc(mm, vma, pmd, address))) 706 return VM_FAULT_OOM; 707 /* if an huge pmd materialized from under us just retry later */ 708 if (unlikely(pmd_trans_huge(*pmd))) 709 return 0; 710 /* 711 * A regular pmd is established and it can't morph into a huge pmd 712 * from under us anymore at this point because we hold the mmap_sem 713 * read mode and khugepaged takes it in write mode. So now it's 714 * safe to run pte_offset_map(). 715 */ 716 pte = pte_offset_map(pmd, address); 717 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 718 } 719 720 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 721 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 722 struct vm_area_struct *vma) 723 { 724 struct page *src_page; 725 pmd_t pmd; 726 pgtable_t pgtable; 727 int ret; 728 729 ret = -ENOMEM; 730 pgtable = pte_alloc_one(dst_mm, addr); 731 if (unlikely(!pgtable)) 732 goto out; 733 734 spin_lock(&dst_mm->page_table_lock); 735 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING); 736 737 ret = -EAGAIN; 738 pmd = *src_pmd; 739 if (unlikely(!pmd_trans_huge(pmd))) { 740 pte_free(dst_mm, pgtable); 741 goto out_unlock; 742 } 743 if (unlikely(pmd_trans_splitting(pmd))) { 744 /* split huge page running from under us */ 745 spin_unlock(&src_mm->page_table_lock); 746 spin_unlock(&dst_mm->page_table_lock); 747 pte_free(dst_mm, pgtable); 748 749 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */ 750 goto out; 751 } 752 src_page = pmd_page(pmd); 753 VM_BUG_ON(!PageHead(src_page)); 754 get_page(src_page); 755 page_dup_rmap(src_page); 756 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 757 758 pmdp_set_wrprotect(src_mm, addr, src_pmd); 759 pmd = pmd_mkold(pmd_wrprotect(pmd)); 760 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 761 prepare_pmd_huge_pte(pgtable, dst_mm); 762 763 ret = 0; 764 out_unlock: 765 spin_unlock(&src_mm->page_table_lock); 766 spin_unlock(&dst_mm->page_table_lock); 767 out: 768 return ret; 769 } 770 771 /* no "address" argument so destroys page coloring of some arch */ 772 pgtable_t get_pmd_huge_pte(struct mm_struct *mm) 773 { 774 pgtable_t pgtable; 775 776 assert_spin_locked(&mm->page_table_lock); 777 778 /* FIFO */ 779 pgtable = mm->pmd_huge_pte; 780 if (list_empty(&pgtable->lru)) 781 mm->pmd_huge_pte = NULL; 782 else { 783 mm->pmd_huge_pte = list_entry(pgtable->lru.next, 784 struct page, lru); 785 list_del(&pgtable->lru); 786 } 787 return pgtable; 788 } 789 790 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm, 791 struct vm_area_struct *vma, 792 unsigned long address, 793 pmd_t *pmd, pmd_t orig_pmd, 794 struct page *page, 795 unsigned long haddr) 796 { 797 pgtable_t pgtable; 798 pmd_t _pmd; 799 int ret = 0, i; 800 struct page **pages; 801 802 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, 803 GFP_KERNEL); 804 if (unlikely(!pages)) { 805 ret |= VM_FAULT_OOM; 806 goto out; 807 } 808 809 for (i = 0; i < HPAGE_PMD_NR; i++) { 810 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | 811 __GFP_OTHER_NODE, 812 vma, address, page_to_nid(page)); 813 if (unlikely(!pages[i] || 814 mem_cgroup_newpage_charge(pages[i], mm, 815 GFP_KERNEL))) { 816 if (pages[i]) 817 put_page(pages[i]); 818 mem_cgroup_uncharge_start(); 819 while (--i >= 0) { 820 mem_cgroup_uncharge_page(pages[i]); 821 put_page(pages[i]); 822 } 823 mem_cgroup_uncharge_end(); 824 kfree(pages); 825 ret |= VM_FAULT_OOM; 826 goto out; 827 } 828 } 829 830 for (i = 0; i < HPAGE_PMD_NR; i++) { 831 copy_user_highpage(pages[i], page + i, 832 haddr + PAGE_SHIFT*i, vma); 833 __SetPageUptodate(pages[i]); 834 cond_resched(); 835 } 836 837 spin_lock(&mm->page_table_lock); 838 if (unlikely(!pmd_same(*pmd, orig_pmd))) 839 goto out_free_pages; 840 VM_BUG_ON(!PageHead(page)); 841 842 pmdp_clear_flush_notify(vma, haddr, pmd); 843 /* leave pmd empty until pte is filled */ 844 845 pgtable = get_pmd_huge_pte(mm); 846 pmd_populate(mm, &_pmd, pgtable); 847 848 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 849 pte_t *pte, entry; 850 entry = mk_pte(pages[i], vma->vm_page_prot); 851 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 852 page_add_new_anon_rmap(pages[i], vma, haddr); 853 pte = pte_offset_map(&_pmd, haddr); 854 VM_BUG_ON(!pte_none(*pte)); 855 set_pte_at(mm, haddr, pte, entry); 856 pte_unmap(pte); 857 } 858 kfree(pages); 859 860 mm->nr_ptes++; 861 smp_wmb(); /* make pte visible before pmd */ 862 pmd_populate(mm, pmd, pgtable); 863 page_remove_rmap(page); 864 spin_unlock(&mm->page_table_lock); 865 866 ret |= VM_FAULT_WRITE; 867 put_page(page); 868 869 out: 870 return ret; 871 872 out_free_pages: 873 spin_unlock(&mm->page_table_lock); 874 mem_cgroup_uncharge_start(); 875 for (i = 0; i < HPAGE_PMD_NR; i++) { 876 mem_cgroup_uncharge_page(pages[i]); 877 put_page(pages[i]); 878 } 879 mem_cgroup_uncharge_end(); 880 kfree(pages); 881 goto out; 882 } 883 884 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 885 unsigned long address, pmd_t *pmd, pmd_t orig_pmd) 886 { 887 int ret = 0; 888 struct page *page, *new_page; 889 unsigned long haddr; 890 891 VM_BUG_ON(!vma->anon_vma); 892 spin_lock(&mm->page_table_lock); 893 if (unlikely(!pmd_same(*pmd, orig_pmd))) 894 goto out_unlock; 895 896 page = pmd_page(orig_pmd); 897 VM_BUG_ON(!PageCompound(page) || !PageHead(page)); 898 haddr = address & HPAGE_PMD_MASK; 899 if (page_mapcount(page) == 1) { 900 pmd_t entry; 901 entry = pmd_mkyoung(orig_pmd); 902 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 903 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1)) 904 update_mmu_cache(vma, address, entry); 905 ret |= VM_FAULT_WRITE; 906 goto out_unlock; 907 } 908 get_page(page); 909 spin_unlock(&mm->page_table_lock); 910 911 if (transparent_hugepage_enabled(vma) && 912 !transparent_hugepage_debug_cow()) 913 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), 914 vma, haddr, numa_node_id(), 0); 915 else 916 new_page = NULL; 917 918 if (unlikely(!new_page)) { 919 count_vm_event(THP_FAULT_FALLBACK); 920 ret = do_huge_pmd_wp_page_fallback(mm, vma, address, 921 pmd, orig_pmd, page, haddr); 922 put_page(page); 923 goto out; 924 } 925 count_vm_event(THP_FAULT_ALLOC); 926 927 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) { 928 put_page(new_page); 929 put_page(page); 930 ret |= VM_FAULT_OOM; 931 goto out; 932 } 933 934 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); 935 __SetPageUptodate(new_page); 936 937 spin_lock(&mm->page_table_lock); 938 put_page(page); 939 if (unlikely(!pmd_same(*pmd, orig_pmd))) { 940 mem_cgroup_uncharge_page(new_page); 941 put_page(new_page); 942 } else { 943 pmd_t entry; 944 VM_BUG_ON(!PageHead(page)); 945 entry = mk_pmd(new_page, vma->vm_page_prot); 946 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 947 entry = pmd_mkhuge(entry); 948 pmdp_clear_flush_notify(vma, haddr, pmd); 949 page_add_new_anon_rmap(new_page, vma, haddr); 950 set_pmd_at(mm, haddr, pmd, entry); 951 update_mmu_cache(vma, address, entry); 952 page_remove_rmap(page); 953 put_page(page); 954 ret |= VM_FAULT_WRITE; 955 } 956 out_unlock: 957 spin_unlock(&mm->page_table_lock); 958 out: 959 return ret; 960 } 961 962 struct page *follow_trans_huge_pmd(struct mm_struct *mm, 963 unsigned long addr, 964 pmd_t *pmd, 965 unsigned int flags) 966 { 967 struct page *page = NULL; 968 969 assert_spin_locked(&mm->page_table_lock); 970 971 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 972 goto out; 973 974 page = pmd_page(*pmd); 975 VM_BUG_ON(!PageHead(page)); 976 if (flags & FOLL_TOUCH) { 977 pmd_t _pmd; 978 /* 979 * We should set the dirty bit only for FOLL_WRITE but 980 * for now the dirty bit in the pmd is meaningless. 981 * And if the dirty bit will become meaningful and 982 * we'll only set it with FOLL_WRITE, an atomic 983 * set_bit will be required on the pmd to set the 984 * young bit, instead of the current set_pmd_at. 985 */ 986 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); 987 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd); 988 } 989 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 990 VM_BUG_ON(!PageCompound(page)); 991 if (flags & FOLL_GET) 992 get_page(page); 993 994 out: 995 return page; 996 } 997 998 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 999 pmd_t *pmd) 1000 { 1001 int ret = 0; 1002 1003 spin_lock(&tlb->mm->page_table_lock); 1004 if (likely(pmd_trans_huge(*pmd))) { 1005 if (unlikely(pmd_trans_splitting(*pmd))) { 1006 spin_unlock(&tlb->mm->page_table_lock); 1007 wait_split_huge_page(vma->anon_vma, 1008 pmd); 1009 } else { 1010 struct page *page; 1011 pgtable_t pgtable; 1012 pgtable = get_pmd_huge_pte(tlb->mm); 1013 page = pmd_page(*pmd); 1014 pmd_clear(pmd); 1015 page_remove_rmap(page); 1016 VM_BUG_ON(page_mapcount(page) < 0); 1017 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1018 VM_BUG_ON(!PageHead(page)); 1019 spin_unlock(&tlb->mm->page_table_lock); 1020 tlb_remove_page(tlb, page); 1021 pte_free(tlb->mm, pgtable); 1022 ret = 1; 1023 } 1024 } else 1025 spin_unlock(&tlb->mm->page_table_lock); 1026 1027 return ret; 1028 } 1029 1030 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1031 unsigned long addr, unsigned long end, 1032 unsigned char *vec) 1033 { 1034 int ret = 0; 1035 1036 spin_lock(&vma->vm_mm->page_table_lock); 1037 if (likely(pmd_trans_huge(*pmd))) { 1038 ret = !pmd_trans_splitting(*pmd); 1039 spin_unlock(&vma->vm_mm->page_table_lock); 1040 if (unlikely(!ret)) 1041 wait_split_huge_page(vma->anon_vma, pmd); 1042 else { 1043 /* 1044 * All logical pages in the range are present 1045 * if backed by a huge page. 1046 */ 1047 memset(vec, 1, (end - addr) >> PAGE_SHIFT); 1048 } 1049 } else 1050 spin_unlock(&vma->vm_mm->page_table_lock); 1051 1052 return ret; 1053 } 1054 1055 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1056 unsigned long addr, pgprot_t newprot) 1057 { 1058 struct mm_struct *mm = vma->vm_mm; 1059 int ret = 0; 1060 1061 spin_lock(&mm->page_table_lock); 1062 if (likely(pmd_trans_huge(*pmd))) { 1063 if (unlikely(pmd_trans_splitting(*pmd))) { 1064 spin_unlock(&mm->page_table_lock); 1065 wait_split_huge_page(vma->anon_vma, pmd); 1066 } else { 1067 pmd_t entry; 1068 1069 entry = pmdp_get_and_clear(mm, addr, pmd); 1070 entry = pmd_modify(entry, newprot); 1071 set_pmd_at(mm, addr, pmd, entry); 1072 spin_unlock(&vma->vm_mm->page_table_lock); 1073 flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE); 1074 ret = 1; 1075 } 1076 } else 1077 spin_unlock(&vma->vm_mm->page_table_lock); 1078 1079 return ret; 1080 } 1081 1082 pmd_t *page_check_address_pmd(struct page *page, 1083 struct mm_struct *mm, 1084 unsigned long address, 1085 enum page_check_address_pmd_flag flag) 1086 { 1087 pgd_t *pgd; 1088 pud_t *pud; 1089 pmd_t *pmd, *ret = NULL; 1090 1091 if (address & ~HPAGE_PMD_MASK) 1092 goto out; 1093 1094 pgd = pgd_offset(mm, address); 1095 if (!pgd_present(*pgd)) 1096 goto out; 1097 1098 pud = pud_offset(pgd, address); 1099 if (!pud_present(*pud)) 1100 goto out; 1101 1102 pmd = pmd_offset(pud, address); 1103 if (pmd_none(*pmd)) 1104 goto out; 1105 if (pmd_page(*pmd) != page) 1106 goto out; 1107 /* 1108 * split_vma() may create temporary aliased mappings. There is 1109 * no risk as long as all huge pmd are found and have their 1110 * splitting bit set before __split_huge_page_refcount 1111 * runs. Finding the same huge pmd more than once during the 1112 * same rmap walk is not a problem. 1113 */ 1114 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG && 1115 pmd_trans_splitting(*pmd)) 1116 goto out; 1117 if (pmd_trans_huge(*pmd)) { 1118 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG && 1119 !pmd_trans_splitting(*pmd)); 1120 ret = pmd; 1121 } 1122 out: 1123 return ret; 1124 } 1125 1126 static int __split_huge_page_splitting(struct page *page, 1127 struct vm_area_struct *vma, 1128 unsigned long address) 1129 { 1130 struct mm_struct *mm = vma->vm_mm; 1131 pmd_t *pmd; 1132 int ret = 0; 1133 1134 spin_lock(&mm->page_table_lock); 1135 pmd = page_check_address_pmd(page, mm, address, 1136 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG); 1137 if (pmd) { 1138 /* 1139 * We can't temporarily set the pmd to null in order 1140 * to split it, the pmd must remain marked huge at all 1141 * times or the VM won't take the pmd_trans_huge paths 1142 * and it won't wait on the anon_vma->root->mutex to 1143 * serialize against split_huge_page*. 1144 */ 1145 pmdp_splitting_flush_notify(vma, address, pmd); 1146 ret = 1; 1147 } 1148 spin_unlock(&mm->page_table_lock); 1149 1150 return ret; 1151 } 1152 1153 static void __split_huge_page_refcount(struct page *page) 1154 { 1155 int i; 1156 unsigned long head_index = page->index; 1157 struct zone *zone = page_zone(page); 1158 int zonestat; 1159 1160 /* prevent PageLRU to go away from under us, and freeze lru stats */ 1161 spin_lock_irq(&zone->lru_lock); 1162 compound_lock(page); 1163 1164 for (i = 1; i < HPAGE_PMD_NR; i++) { 1165 struct page *page_tail = page + i; 1166 1167 /* tail_page->_count cannot change */ 1168 atomic_sub(atomic_read(&page_tail->_count), &page->_count); 1169 BUG_ON(page_count(page) <= 0); 1170 atomic_add(page_mapcount(page) + 1, &page_tail->_count); 1171 BUG_ON(atomic_read(&page_tail->_count) <= 0); 1172 1173 /* after clearing PageTail the gup refcount can be released */ 1174 smp_mb(); 1175 1176 /* 1177 * retain hwpoison flag of the poisoned tail page: 1178 * fix for the unsuitable process killed on Guest Machine(KVM) 1179 * by the memory-failure. 1180 */ 1181 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON; 1182 page_tail->flags |= (page->flags & 1183 ((1L << PG_referenced) | 1184 (1L << PG_swapbacked) | 1185 (1L << PG_mlocked) | 1186 (1L << PG_uptodate))); 1187 page_tail->flags |= (1L << PG_dirty); 1188 1189 /* 1190 * 1) clear PageTail before overwriting first_page 1191 * 2) clear PageTail before clearing PageHead for VM_BUG_ON 1192 */ 1193 smp_wmb(); 1194 1195 /* 1196 * __split_huge_page_splitting() already set the 1197 * splitting bit in all pmd that could map this 1198 * hugepage, that will ensure no CPU can alter the 1199 * mapcount on the head page. The mapcount is only 1200 * accounted in the head page and it has to be 1201 * transferred to all tail pages in the below code. So 1202 * for this code to be safe, the split the mapcount 1203 * can't change. But that doesn't mean userland can't 1204 * keep changing and reading the page contents while 1205 * we transfer the mapcount, so the pmd splitting 1206 * status is achieved setting a reserved bit in the 1207 * pmd, not by clearing the present bit. 1208 */ 1209 BUG_ON(page_mapcount(page_tail)); 1210 page_tail->_mapcount = page->_mapcount; 1211 1212 BUG_ON(page_tail->mapping); 1213 page_tail->mapping = page->mapping; 1214 1215 page_tail->index = ++head_index; 1216 1217 BUG_ON(!PageAnon(page_tail)); 1218 BUG_ON(!PageUptodate(page_tail)); 1219 BUG_ON(!PageDirty(page_tail)); 1220 BUG_ON(!PageSwapBacked(page_tail)); 1221 1222 mem_cgroup_split_huge_fixup(page, page_tail); 1223 1224 lru_add_page_tail(zone, page, page_tail); 1225 } 1226 1227 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1228 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR); 1229 1230 /* 1231 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics, 1232 * so adjust those appropriately if this page is on the LRU. 1233 */ 1234 if (PageLRU(page)) { 1235 zonestat = NR_LRU_BASE + page_lru(page); 1236 __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1)); 1237 } 1238 1239 ClearPageCompound(page); 1240 compound_unlock(page); 1241 spin_unlock_irq(&zone->lru_lock); 1242 1243 for (i = 1; i < HPAGE_PMD_NR; i++) { 1244 struct page *page_tail = page + i; 1245 BUG_ON(page_count(page_tail) <= 0); 1246 /* 1247 * Tail pages may be freed if there wasn't any mapping 1248 * like if add_to_swap() is running on a lru page that 1249 * had its mapping zapped. And freeing these pages 1250 * requires taking the lru_lock so we do the put_page 1251 * of the tail pages after the split is complete. 1252 */ 1253 put_page(page_tail); 1254 } 1255 1256 /* 1257 * Only the head page (now become a regular page) is required 1258 * to be pinned by the caller. 1259 */ 1260 BUG_ON(page_count(page) <= 0); 1261 } 1262 1263 static int __split_huge_page_map(struct page *page, 1264 struct vm_area_struct *vma, 1265 unsigned long address) 1266 { 1267 struct mm_struct *mm = vma->vm_mm; 1268 pmd_t *pmd, _pmd; 1269 int ret = 0, i; 1270 pgtable_t pgtable; 1271 unsigned long haddr; 1272 1273 spin_lock(&mm->page_table_lock); 1274 pmd = page_check_address_pmd(page, mm, address, 1275 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG); 1276 if (pmd) { 1277 pgtable = get_pmd_huge_pte(mm); 1278 pmd_populate(mm, &_pmd, pgtable); 1279 1280 for (i = 0, haddr = address; i < HPAGE_PMD_NR; 1281 i++, haddr += PAGE_SIZE) { 1282 pte_t *pte, entry; 1283 BUG_ON(PageCompound(page+i)); 1284 entry = mk_pte(page + i, vma->vm_page_prot); 1285 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1286 if (!pmd_write(*pmd)) 1287 entry = pte_wrprotect(entry); 1288 else 1289 BUG_ON(page_mapcount(page) != 1); 1290 if (!pmd_young(*pmd)) 1291 entry = pte_mkold(entry); 1292 pte = pte_offset_map(&_pmd, haddr); 1293 BUG_ON(!pte_none(*pte)); 1294 set_pte_at(mm, haddr, pte, entry); 1295 pte_unmap(pte); 1296 } 1297 1298 mm->nr_ptes++; 1299 smp_wmb(); /* make pte visible before pmd */ 1300 /* 1301 * Up to this point the pmd is present and huge and 1302 * userland has the whole access to the hugepage 1303 * during the split (which happens in place). If we 1304 * overwrite the pmd with the not-huge version 1305 * pointing to the pte here (which of course we could 1306 * if all CPUs were bug free), userland could trigger 1307 * a small page size TLB miss on the small sized TLB 1308 * while the hugepage TLB entry is still established 1309 * in the huge TLB. Some CPU doesn't like that. See 1310 * http://support.amd.com/us/Processor_TechDocs/41322.pdf, 1311 * Erratum 383 on page 93. Intel should be safe but is 1312 * also warns that it's only safe if the permission 1313 * and cache attributes of the two entries loaded in 1314 * the two TLB is identical (which should be the case 1315 * here). But it is generally safer to never allow 1316 * small and huge TLB entries for the same virtual 1317 * address to be loaded simultaneously. So instead of 1318 * doing "pmd_populate(); flush_tlb_range();" we first 1319 * mark the current pmd notpresent (atomically because 1320 * here the pmd_trans_huge and pmd_trans_splitting 1321 * must remain set at all times on the pmd until the 1322 * split is complete for this pmd), then we flush the 1323 * SMP TLB and finally we write the non-huge version 1324 * of the pmd entry with pmd_populate. 1325 */ 1326 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd)); 1327 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); 1328 pmd_populate(mm, pmd, pgtable); 1329 ret = 1; 1330 } 1331 spin_unlock(&mm->page_table_lock); 1332 1333 return ret; 1334 } 1335 1336 /* must be called with anon_vma->root->mutex hold */ 1337 static void __split_huge_page(struct page *page, 1338 struct anon_vma *anon_vma) 1339 { 1340 int mapcount, mapcount2; 1341 struct anon_vma_chain *avc; 1342 1343 BUG_ON(!PageHead(page)); 1344 BUG_ON(PageTail(page)); 1345 1346 mapcount = 0; 1347 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1348 struct vm_area_struct *vma = avc->vma; 1349 unsigned long addr = vma_address(page, vma); 1350 BUG_ON(is_vma_temporary_stack(vma)); 1351 if (addr == -EFAULT) 1352 continue; 1353 mapcount += __split_huge_page_splitting(page, vma, addr); 1354 } 1355 /* 1356 * It is critical that new vmas are added to the tail of the 1357 * anon_vma list. This guarantes that if copy_huge_pmd() runs 1358 * and establishes a child pmd before 1359 * __split_huge_page_splitting() freezes the parent pmd (so if 1360 * we fail to prevent copy_huge_pmd() from running until the 1361 * whole __split_huge_page() is complete), we will still see 1362 * the newly established pmd of the child later during the 1363 * walk, to be able to set it as pmd_trans_splitting too. 1364 */ 1365 if (mapcount != page_mapcount(page)) 1366 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1367 mapcount, page_mapcount(page)); 1368 BUG_ON(mapcount != page_mapcount(page)); 1369 1370 __split_huge_page_refcount(page); 1371 1372 mapcount2 = 0; 1373 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1374 struct vm_area_struct *vma = avc->vma; 1375 unsigned long addr = vma_address(page, vma); 1376 BUG_ON(is_vma_temporary_stack(vma)); 1377 if (addr == -EFAULT) 1378 continue; 1379 mapcount2 += __split_huge_page_map(page, vma, addr); 1380 } 1381 if (mapcount != mapcount2) 1382 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n", 1383 mapcount, mapcount2, page_mapcount(page)); 1384 BUG_ON(mapcount != mapcount2); 1385 } 1386 1387 int split_huge_page(struct page *page) 1388 { 1389 struct anon_vma *anon_vma; 1390 int ret = 1; 1391 1392 BUG_ON(!PageAnon(page)); 1393 anon_vma = page_lock_anon_vma(page); 1394 if (!anon_vma) 1395 goto out; 1396 ret = 0; 1397 if (!PageCompound(page)) 1398 goto out_unlock; 1399 1400 BUG_ON(!PageSwapBacked(page)); 1401 __split_huge_page(page, anon_vma); 1402 count_vm_event(THP_SPLIT); 1403 1404 BUG_ON(PageCompound(page)); 1405 out_unlock: 1406 page_unlock_anon_vma(anon_vma); 1407 out: 1408 return ret; 1409 } 1410 1411 #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \ 1412 VM_HUGETLB|VM_SHARED|VM_MAYSHARE) 1413 1414 int hugepage_madvise(struct vm_area_struct *vma, 1415 unsigned long *vm_flags, int advice) 1416 { 1417 switch (advice) { 1418 case MADV_HUGEPAGE: 1419 /* 1420 * Be somewhat over-protective like KSM for now! 1421 */ 1422 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP)) 1423 return -EINVAL; 1424 *vm_flags &= ~VM_NOHUGEPAGE; 1425 *vm_flags |= VM_HUGEPAGE; 1426 /* 1427 * If the vma become good for khugepaged to scan, 1428 * register it here without waiting a page fault that 1429 * may not happen any time soon. 1430 */ 1431 if (unlikely(khugepaged_enter_vma_merge(vma))) 1432 return -ENOMEM; 1433 break; 1434 case MADV_NOHUGEPAGE: 1435 /* 1436 * Be somewhat over-protective like KSM for now! 1437 */ 1438 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP)) 1439 return -EINVAL; 1440 *vm_flags &= ~VM_HUGEPAGE; 1441 *vm_flags |= VM_NOHUGEPAGE; 1442 /* 1443 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 1444 * this vma even if we leave the mm registered in khugepaged if 1445 * it got registered before VM_NOHUGEPAGE was set. 1446 */ 1447 break; 1448 } 1449 1450 return 0; 1451 } 1452 1453 static int __init khugepaged_slab_init(void) 1454 { 1455 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 1456 sizeof(struct mm_slot), 1457 __alignof__(struct mm_slot), 0, NULL); 1458 if (!mm_slot_cache) 1459 return -ENOMEM; 1460 1461 return 0; 1462 } 1463 1464 static void __init khugepaged_slab_free(void) 1465 { 1466 kmem_cache_destroy(mm_slot_cache); 1467 mm_slot_cache = NULL; 1468 } 1469 1470 static inline struct mm_slot *alloc_mm_slot(void) 1471 { 1472 if (!mm_slot_cache) /* initialization failed */ 1473 return NULL; 1474 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 1475 } 1476 1477 static inline void free_mm_slot(struct mm_slot *mm_slot) 1478 { 1479 kmem_cache_free(mm_slot_cache, mm_slot); 1480 } 1481 1482 static int __init mm_slots_hash_init(void) 1483 { 1484 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head), 1485 GFP_KERNEL); 1486 if (!mm_slots_hash) 1487 return -ENOMEM; 1488 return 0; 1489 } 1490 1491 #if 0 1492 static void __init mm_slots_hash_free(void) 1493 { 1494 kfree(mm_slots_hash); 1495 mm_slots_hash = NULL; 1496 } 1497 #endif 1498 1499 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 1500 { 1501 struct mm_slot *mm_slot; 1502 struct hlist_head *bucket; 1503 struct hlist_node *node; 1504 1505 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) 1506 % MM_SLOTS_HASH_HEADS]; 1507 hlist_for_each_entry(mm_slot, node, bucket, hash) { 1508 if (mm == mm_slot->mm) 1509 return mm_slot; 1510 } 1511 return NULL; 1512 } 1513 1514 static void insert_to_mm_slots_hash(struct mm_struct *mm, 1515 struct mm_slot *mm_slot) 1516 { 1517 struct hlist_head *bucket; 1518 1519 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) 1520 % MM_SLOTS_HASH_HEADS]; 1521 mm_slot->mm = mm; 1522 hlist_add_head(&mm_slot->hash, bucket); 1523 } 1524 1525 static inline int khugepaged_test_exit(struct mm_struct *mm) 1526 { 1527 return atomic_read(&mm->mm_users) == 0; 1528 } 1529 1530 int __khugepaged_enter(struct mm_struct *mm) 1531 { 1532 struct mm_slot *mm_slot; 1533 int wakeup; 1534 1535 mm_slot = alloc_mm_slot(); 1536 if (!mm_slot) 1537 return -ENOMEM; 1538 1539 /* __khugepaged_exit() must not run from under us */ 1540 VM_BUG_ON(khugepaged_test_exit(mm)); 1541 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 1542 free_mm_slot(mm_slot); 1543 return 0; 1544 } 1545 1546 spin_lock(&khugepaged_mm_lock); 1547 insert_to_mm_slots_hash(mm, mm_slot); 1548 /* 1549 * Insert just behind the scanning cursor, to let the area settle 1550 * down a little. 1551 */ 1552 wakeup = list_empty(&khugepaged_scan.mm_head); 1553 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); 1554 spin_unlock(&khugepaged_mm_lock); 1555 1556 atomic_inc(&mm->mm_count); 1557 if (wakeup) 1558 wake_up_interruptible(&khugepaged_wait); 1559 1560 return 0; 1561 } 1562 1563 int khugepaged_enter_vma_merge(struct vm_area_struct *vma) 1564 { 1565 unsigned long hstart, hend; 1566 if (!vma->anon_vma) 1567 /* 1568 * Not yet faulted in so we will register later in the 1569 * page fault if needed. 1570 */ 1571 return 0; 1572 if (vma->vm_ops) 1573 /* khugepaged not yet working on file or special mappings */ 1574 return 0; 1575 /* 1576 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be 1577 * true too, verify it here. 1578 */ 1579 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP); 1580 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 1581 hend = vma->vm_end & HPAGE_PMD_MASK; 1582 if (hstart < hend) 1583 return khugepaged_enter(vma); 1584 return 0; 1585 } 1586 1587 void __khugepaged_exit(struct mm_struct *mm) 1588 { 1589 struct mm_slot *mm_slot; 1590 int free = 0; 1591 1592 spin_lock(&khugepaged_mm_lock); 1593 mm_slot = get_mm_slot(mm); 1594 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 1595 hlist_del(&mm_slot->hash); 1596 list_del(&mm_slot->mm_node); 1597 free = 1; 1598 } 1599 spin_unlock(&khugepaged_mm_lock); 1600 1601 if (free) { 1602 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1603 free_mm_slot(mm_slot); 1604 mmdrop(mm); 1605 } else if (mm_slot) { 1606 /* 1607 * This is required to serialize against 1608 * khugepaged_test_exit() (which is guaranteed to run 1609 * under mmap sem read mode). Stop here (after we 1610 * return all pagetables will be destroyed) until 1611 * khugepaged has finished working on the pagetables 1612 * under the mmap_sem. 1613 */ 1614 down_write(&mm->mmap_sem); 1615 up_write(&mm->mmap_sem); 1616 } 1617 } 1618 1619 static void release_pte_page(struct page *page) 1620 { 1621 /* 0 stands for page_is_file_cache(page) == false */ 1622 dec_zone_page_state(page, NR_ISOLATED_ANON + 0); 1623 unlock_page(page); 1624 putback_lru_page(page); 1625 } 1626 1627 static void release_pte_pages(pte_t *pte, pte_t *_pte) 1628 { 1629 while (--_pte >= pte) { 1630 pte_t pteval = *_pte; 1631 if (!pte_none(pteval)) 1632 release_pte_page(pte_page(pteval)); 1633 } 1634 } 1635 1636 static void release_all_pte_pages(pte_t *pte) 1637 { 1638 release_pte_pages(pte, pte + HPAGE_PMD_NR); 1639 } 1640 1641 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 1642 unsigned long address, 1643 pte_t *pte) 1644 { 1645 struct page *page; 1646 pte_t *_pte; 1647 int referenced = 0, isolated = 0, none = 0; 1648 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; 1649 _pte++, address += PAGE_SIZE) { 1650 pte_t pteval = *_pte; 1651 if (pte_none(pteval)) { 1652 if (++none <= khugepaged_max_ptes_none) 1653 continue; 1654 else { 1655 release_pte_pages(pte, _pte); 1656 goto out; 1657 } 1658 } 1659 if (!pte_present(pteval) || !pte_write(pteval)) { 1660 release_pte_pages(pte, _pte); 1661 goto out; 1662 } 1663 page = vm_normal_page(vma, address, pteval); 1664 if (unlikely(!page)) { 1665 release_pte_pages(pte, _pte); 1666 goto out; 1667 } 1668 VM_BUG_ON(PageCompound(page)); 1669 BUG_ON(!PageAnon(page)); 1670 VM_BUG_ON(!PageSwapBacked(page)); 1671 1672 /* cannot use mapcount: can't collapse if there's a gup pin */ 1673 if (page_count(page) != 1) { 1674 release_pte_pages(pte, _pte); 1675 goto out; 1676 } 1677 /* 1678 * We can do it before isolate_lru_page because the 1679 * page can't be freed from under us. NOTE: PG_lock 1680 * is needed to serialize against split_huge_page 1681 * when invoked from the VM. 1682 */ 1683 if (!trylock_page(page)) { 1684 release_pte_pages(pte, _pte); 1685 goto out; 1686 } 1687 /* 1688 * Isolate the page to avoid collapsing an hugepage 1689 * currently in use by the VM. 1690 */ 1691 if (isolate_lru_page(page)) { 1692 unlock_page(page); 1693 release_pte_pages(pte, _pte); 1694 goto out; 1695 } 1696 /* 0 stands for page_is_file_cache(page) == false */ 1697 inc_zone_page_state(page, NR_ISOLATED_ANON + 0); 1698 VM_BUG_ON(!PageLocked(page)); 1699 VM_BUG_ON(PageLRU(page)); 1700 1701 /* If there is no mapped pte young don't collapse the page */ 1702 if (pte_young(pteval) || PageReferenced(page) || 1703 mmu_notifier_test_young(vma->vm_mm, address)) 1704 referenced = 1; 1705 } 1706 if (unlikely(!referenced)) 1707 release_all_pte_pages(pte); 1708 else 1709 isolated = 1; 1710 out: 1711 return isolated; 1712 } 1713 1714 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 1715 struct vm_area_struct *vma, 1716 unsigned long address, 1717 spinlock_t *ptl) 1718 { 1719 pte_t *_pte; 1720 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) { 1721 pte_t pteval = *_pte; 1722 struct page *src_page; 1723 1724 if (pte_none(pteval)) { 1725 clear_user_highpage(page, address); 1726 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 1727 } else { 1728 src_page = pte_page(pteval); 1729 copy_user_highpage(page, src_page, address, vma); 1730 VM_BUG_ON(page_mapcount(src_page) != 1); 1731 VM_BUG_ON(page_count(src_page) != 2); 1732 release_pte_page(src_page); 1733 /* 1734 * ptl mostly unnecessary, but preempt has to 1735 * be disabled to update the per-cpu stats 1736 * inside page_remove_rmap(). 1737 */ 1738 spin_lock(ptl); 1739 /* 1740 * paravirt calls inside pte_clear here are 1741 * superfluous. 1742 */ 1743 pte_clear(vma->vm_mm, address, _pte); 1744 page_remove_rmap(src_page); 1745 spin_unlock(ptl); 1746 free_page_and_swap_cache(src_page); 1747 } 1748 1749 address += PAGE_SIZE; 1750 page++; 1751 } 1752 } 1753 1754 static void collapse_huge_page(struct mm_struct *mm, 1755 unsigned long address, 1756 struct page **hpage, 1757 struct vm_area_struct *vma, 1758 int node) 1759 { 1760 pgd_t *pgd; 1761 pud_t *pud; 1762 pmd_t *pmd, _pmd; 1763 pte_t *pte; 1764 pgtable_t pgtable; 1765 struct page *new_page; 1766 spinlock_t *ptl; 1767 int isolated; 1768 unsigned long hstart, hend; 1769 1770 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1771 #ifndef CONFIG_NUMA 1772 up_read(&mm->mmap_sem); 1773 VM_BUG_ON(!*hpage); 1774 new_page = *hpage; 1775 #else 1776 VM_BUG_ON(*hpage); 1777 /* 1778 * Allocate the page while the vma is still valid and under 1779 * the mmap_sem read mode so there is no memory allocation 1780 * later when we take the mmap_sem in write mode. This is more 1781 * friendly behavior (OTOH it may actually hide bugs) to 1782 * filesystems in userland with daemons allocating memory in 1783 * the userland I/O paths. Allocating memory with the 1784 * mmap_sem in read mode is good idea also to allow greater 1785 * scalability. 1786 */ 1787 new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address, 1788 node, __GFP_OTHER_NODE); 1789 1790 /* 1791 * After allocating the hugepage, release the mmap_sem read lock in 1792 * preparation for taking it in write mode. 1793 */ 1794 up_read(&mm->mmap_sem); 1795 if (unlikely(!new_page)) { 1796 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 1797 *hpage = ERR_PTR(-ENOMEM); 1798 return; 1799 } 1800 #endif 1801 1802 count_vm_event(THP_COLLAPSE_ALLOC); 1803 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) { 1804 #ifdef CONFIG_NUMA 1805 put_page(new_page); 1806 #endif 1807 return; 1808 } 1809 1810 /* 1811 * Prevent all access to pagetables with the exception of 1812 * gup_fast later hanlded by the ptep_clear_flush and the VM 1813 * handled by the anon_vma lock + PG_lock. 1814 */ 1815 down_write(&mm->mmap_sem); 1816 if (unlikely(khugepaged_test_exit(mm))) 1817 goto out; 1818 1819 vma = find_vma(mm, address); 1820 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 1821 hend = vma->vm_end & HPAGE_PMD_MASK; 1822 if (address < hstart || address + HPAGE_PMD_SIZE > hend) 1823 goto out; 1824 1825 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || 1826 (vma->vm_flags & VM_NOHUGEPAGE)) 1827 goto out; 1828 1829 if (!vma->anon_vma || vma->vm_ops) 1830 goto out; 1831 if (is_vma_temporary_stack(vma)) 1832 goto out; 1833 /* 1834 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be 1835 * true too, verify it here. 1836 */ 1837 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP); 1838 1839 pgd = pgd_offset(mm, address); 1840 if (!pgd_present(*pgd)) 1841 goto out; 1842 1843 pud = pud_offset(pgd, address); 1844 if (!pud_present(*pud)) 1845 goto out; 1846 1847 pmd = pmd_offset(pud, address); 1848 /* pmd can't go away or become huge under us */ 1849 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd)) 1850 goto out; 1851 1852 anon_vma_lock(vma->anon_vma); 1853 1854 pte = pte_offset_map(pmd, address); 1855 ptl = pte_lockptr(mm, pmd); 1856 1857 spin_lock(&mm->page_table_lock); /* probably unnecessary */ 1858 /* 1859 * After this gup_fast can't run anymore. This also removes 1860 * any huge TLB entry from the CPU so we won't allow 1861 * huge and small TLB entries for the same virtual address 1862 * to avoid the risk of CPU bugs in that area. 1863 */ 1864 _pmd = pmdp_clear_flush_notify(vma, address, pmd); 1865 spin_unlock(&mm->page_table_lock); 1866 1867 spin_lock(ptl); 1868 isolated = __collapse_huge_page_isolate(vma, address, pte); 1869 spin_unlock(ptl); 1870 1871 if (unlikely(!isolated)) { 1872 pte_unmap(pte); 1873 spin_lock(&mm->page_table_lock); 1874 BUG_ON(!pmd_none(*pmd)); 1875 set_pmd_at(mm, address, pmd, _pmd); 1876 spin_unlock(&mm->page_table_lock); 1877 anon_vma_unlock(vma->anon_vma); 1878 goto out; 1879 } 1880 1881 /* 1882 * All pages are isolated and locked so anon_vma rmap 1883 * can't run anymore. 1884 */ 1885 anon_vma_unlock(vma->anon_vma); 1886 1887 __collapse_huge_page_copy(pte, new_page, vma, address, ptl); 1888 pte_unmap(pte); 1889 __SetPageUptodate(new_page); 1890 pgtable = pmd_pgtable(_pmd); 1891 VM_BUG_ON(page_count(pgtable) != 1); 1892 VM_BUG_ON(page_mapcount(pgtable) != 0); 1893 1894 _pmd = mk_pmd(new_page, vma->vm_page_prot); 1895 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1896 _pmd = pmd_mkhuge(_pmd); 1897 1898 /* 1899 * spin_lock() below is not the equivalent of smp_wmb(), so 1900 * this is needed to avoid the copy_huge_page writes to become 1901 * visible after the set_pmd_at() write. 1902 */ 1903 smp_wmb(); 1904 1905 spin_lock(&mm->page_table_lock); 1906 BUG_ON(!pmd_none(*pmd)); 1907 page_add_new_anon_rmap(new_page, vma, address); 1908 set_pmd_at(mm, address, pmd, _pmd); 1909 update_mmu_cache(vma, address, entry); 1910 prepare_pmd_huge_pte(pgtable, mm); 1911 mm->nr_ptes--; 1912 spin_unlock(&mm->page_table_lock); 1913 1914 #ifndef CONFIG_NUMA 1915 *hpage = NULL; 1916 #endif 1917 khugepaged_pages_collapsed++; 1918 out_up_write: 1919 up_write(&mm->mmap_sem); 1920 return; 1921 1922 out: 1923 mem_cgroup_uncharge_page(new_page); 1924 #ifdef CONFIG_NUMA 1925 put_page(new_page); 1926 #endif 1927 goto out_up_write; 1928 } 1929 1930 static int khugepaged_scan_pmd(struct mm_struct *mm, 1931 struct vm_area_struct *vma, 1932 unsigned long address, 1933 struct page **hpage) 1934 { 1935 pgd_t *pgd; 1936 pud_t *pud; 1937 pmd_t *pmd; 1938 pte_t *pte, *_pte; 1939 int ret = 0, referenced = 0, none = 0; 1940 struct page *page; 1941 unsigned long _address; 1942 spinlock_t *ptl; 1943 int node = -1; 1944 1945 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1946 1947 pgd = pgd_offset(mm, address); 1948 if (!pgd_present(*pgd)) 1949 goto out; 1950 1951 pud = pud_offset(pgd, address); 1952 if (!pud_present(*pud)) 1953 goto out; 1954 1955 pmd = pmd_offset(pud, address); 1956 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd)) 1957 goto out; 1958 1959 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1960 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; 1961 _pte++, _address += PAGE_SIZE) { 1962 pte_t pteval = *_pte; 1963 if (pte_none(pteval)) { 1964 if (++none <= khugepaged_max_ptes_none) 1965 continue; 1966 else 1967 goto out_unmap; 1968 } 1969 if (!pte_present(pteval) || !pte_write(pteval)) 1970 goto out_unmap; 1971 page = vm_normal_page(vma, _address, pteval); 1972 if (unlikely(!page)) 1973 goto out_unmap; 1974 /* 1975 * Chose the node of the first page. This could 1976 * be more sophisticated and look at more pages, 1977 * but isn't for now. 1978 */ 1979 if (node == -1) 1980 node = page_to_nid(page); 1981 VM_BUG_ON(PageCompound(page)); 1982 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page)) 1983 goto out_unmap; 1984 /* cannot use mapcount: can't collapse if there's a gup pin */ 1985 if (page_count(page) != 1) 1986 goto out_unmap; 1987 if (pte_young(pteval) || PageReferenced(page) || 1988 mmu_notifier_test_young(vma->vm_mm, address)) 1989 referenced = 1; 1990 } 1991 if (referenced) 1992 ret = 1; 1993 out_unmap: 1994 pte_unmap_unlock(pte, ptl); 1995 if (ret) 1996 /* collapse_huge_page will return with the mmap_sem released */ 1997 collapse_huge_page(mm, address, hpage, vma, node); 1998 out: 1999 return ret; 2000 } 2001 2002 static void collect_mm_slot(struct mm_slot *mm_slot) 2003 { 2004 struct mm_struct *mm = mm_slot->mm; 2005 2006 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock)); 2007 2008 if (khugepaged_test_exit(mm)) { 2009 /* free mm_slot */ 2010 hlist_del(&mm_slot->hash); 2011 list_del(&mm_slot->mm_node); 2012 2013 /* 2014 * Not strictly needed because the mm exited already. 2015 * 2016 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 2017 */ 2018 2019 /* khugepaged_mm_lock actually not necessary for the below */ 2020 free_mm_slot(mm_slot); 2021 mmdrop(mm); 2022 } 2023 } 2024 2025 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, 2026 struct page **hpage) 2027 { 2028 struct mm_slot *mm_slot; 2029 struct mm_struct *mm; 2030 struct vm_area_struct *vma; 2031 int progress = 0; 2032 2033 VM_BUG_ON(!pages); 2034 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock)); 2035 2036 if (khugepaged_scan.mm_slot) 2037 mm_slot = khugepaged_scan.mm_slot; 2038 else { 2039 mm_slot = list_entry(khugepaged_scan.mm_head.next, 2040 struct mm_slot, mm_node); 2041 khugepaged_scan.address = 0; 2042 khugepaged_scan.mm_slot = mm_slot; 2043 } 2044 spin_unlock(&khugepaged_mm_lock); 2045 2046 mm = mm_slot->mm; 2047 down_read(&mm->mmap_sem); 2048 if (unlikely(khugepaged_test_exit(mm))) 2049 vma = NULL; 2050 else 2051 vma = find_vma(mm, khugepaged_scan.address); 2052 2053 progress++; 2054 for (; vma; vma = vma->vm_next) { 2055 unsigned long hstart, hend; 2056 2057 cond_resched(); 2058 if (unlikely(khugepaged_test_exit(mm))) { 2059 progress++; 2060 break; 2061 } 2062 2063 if ((!(vma->vm_flags & VM_HUGEPAGE) && 2064 !khugepaged_always()) || 2065 (vma->vm_flags & VM_NOHUGEPAGE)) { 2066 skip: 2067 progress++; 2068 continue; 2069 } 2070 if (!vma->anon_vma || vma->vm_ops) 2071 goto skip; 2072 if (is_vma_temporary_stack(vma)) 2073 goto skip; 2074 /* 2075 * If is_pfn_mapping() is true is_learn_pfn_mapping() 2076 * must be true too, verify it here. 2077 */ 2078 VM_BUG_ON(is_linear_pfn_mapping(vma) || 2079 vma->vm_flags & VM_NO_THP); 2080 2081 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2082 hend = vma->vm_end & HPAGE_PMD_MASK; 2083 if (hstart >= hend) 2084 goto skip; 2085 if (khugepaged_scan.address > hend) 2086 goto skip; 2087 if (khugepaged_scan.address < hstart) 2088 khugepaged_scan.address = hstart; 2089 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2090 2091 while (khugepaged_scan.address < hend) { 2092 int ret; 2093 cond_resched(); 2094 if (unlikely(khugepaged_test_exit(mm))) 2095 goto breakouterloop; 2096 2097 VM_BUG_ON(khugepaged_scan.address < hstart || 2098 khugepaged_scan.address + HPAGE_PMD_SIZE > 2099 hend); 2100 ret = khugepaged_scan_pmd(mm, vma, 2101 khugepaged_scan.address, 2102 hpage); 2103 /* move to next address */ 2104 khugepaged_scan.address += HPAGE_PMD_SIZE; 2105 progress += HPAGE_PMD_NR; 2106 if (ret) 2107 /* we released mmap_sem so break loop */ 2108 goto breakouterloop_mmap_sem; 2109 if (progress >= pages) 2110 goto breakouterloop; 2111 } 2112 } 2113 breakouterloop: 2114 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */ 2115 breakouterloop_mmap_sem: 2116 2117 spin_lock(&khugepaged_mm_lock); 2118 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2119 /* 2120 * Release the current mm_slot if this mm is about to die, or 2121 * if we scanned all vmas of this mm. 2122 */ 2123 if (khugepaged_test_exit(mm) || !vma) { 2124 /* 2125 * Make sure that if mm_users is reaching zero while 2126 * khugepaged runs here, khugepaged_exit will find 2127 * mm_slot not pointing to the exiting mm. 2128 */ 2129 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { 2130 khugepaged_scan.mm_slot = list_entry( 2131 mm_slot->mm_node.next, 2132 struct mm_slot, mm_node); 2133 khugepaged_scan.address = 0; 2134 } else { 2135 khugepaged_scan.mm_slot = NULL; 2136 khugepaged_full_scans++; 2137 } 2138 2139 collect_mm_slot(mm_slot); 2140 } 2141 2142 return progress; 2143 } 2144 2145 static int khugepaged_has_work(void) 2146 { 2147 return !list_empty(&khugepaged_scan.mm_head) && 2148 khugepaged_enabled(); 2149 } 2150 2151 static int khugepaged_wait_event(void) 2152 { 2153 return !list_empty(&khugepaged_scan.mm_head) || 2154 !khugepaged_enabled(); 2155 } 2156 2157 static void khugepaged_do_scan(struct page **hpage) 2158 { 2159 unsigned int progress = 0, pass_through_head = 0; 2160 unsigned int pages = khugepaged_pages_to_scan; 2161 2162 barrier(); /* write khugepaged_pages_to_scan to local stack */ 2163 2164 while (progress < pages) { 2165 cond_resched(); 2166 2167 #ifndef CONFIG_NUMA 2168 if (!*hpage) { 2169 *hpage = alloc_hugepage(khugepaged_defrag()); 2170 if (unlikely(!*hpage)) { 2171 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 2172 break; 2173 } 2174 count_vm_event(THP_COLLAPSE_ALLOC); 2175 } 2176 #else 2177 if (IS_ERR(*hpage)) 2178 break; 2179 #endif 2180 2181 if (unlikely(kthread_should_stop() || freezing(current))) 2182 break; 2183 2184 spin_lock(&khugepaged_mm_lock); 2185 if (!khugepaged_scan.mm_slot) 2186 pass_through_head++; 2187 if (khugepaged_has_work() && 2188 pass_through_head < 2) 2189 progress += khugepaged_scan_mm_slot(pages - progress, 2190 hpage); 2191 else 2192 progress = pages; 2193 spin_unlock(&khugepaged_mm_lock); 2194 } 2195 } 2196 2197 static void khugepaged_alloc_sleep(void) 2198 { 2199 DEFINE_WAIT(wait); 2200 add_wait_queue(&khugepaged_wait, &wait); 2201 schedule_timeout_interruptible( 2202 msecs_to_jiffies( 2203 khugepaged_alloc_sleep_millisecs)); 2204 remove_wait_queue(&khugepaged_wait, &wait); 2205 } 2206 2207 #ifndef CONFIG_NUMA 2208 static struct page *khugepaged_alloc_hugepage(void) 2209 { 2210 struct page *hpage; 2211 2212 do { 2213 hpage = alloc_hugepage(khugepaged_defrag()); 2214 if (!hpage) { 2215 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 2216 khugepaged_alloc_sleep(); 2217 } else 2218 count_vm_event(THP_COLLAPSE_ALLOC); 2219 } while (unlikely(!hpage) && 2220 likely(khugepaged_enabled())); 2221 return hpage; 2222 } 2223 #endif 2224 2225 static void khugepaged_loop(void) 2226 { 2227 struct page *hpage; 2228 2229 #ifdef CONFIG_NUMA 2230 hpage = NULL; 2231 #endif 2232 while (likely(khugepaged_enabled())) { 2233 #ifndef CONFIG_NUMA 2234 hpage = khugepaged_alloc_hugepage(); 2235 if (unlikely(!hpage)) 2236 break; 2237 #else 2238 if (IS_ERR(hpage)) { 2239 khugepaged_alloc_sleep(); 2240 hpage = NULL; 2241 } 2242 #endif 2243 2244 khugepaged_do_scan(&hpage); 2245 #ifndef CONFIG_NUMA 2246 if (hpage) 2247 put_page(hpage); 2248 #endif 2249 try_to_freeze(); 2250 if (unlikely(kthread_should_stop())) 2251 break; 2252 if (khugepaged_has_work()) { 2253 DEFINE_WAIT(wait); 2254 if (!khugepaged_scan_sleep_millisecs) 2255 continue; 2256 add_wait_queue(&khugepaged_wait, &wait); 2257 schedule_timeout_interruptible( 2258 msecs_to_jiffies( 2259 khugepaged_scan_sleep_millisecs)); 2260 remove_wait_queue(&khugepaged_wait, &wait); 2261 } else if (khugepaged_enabled()) 2262 wait_event_freezable(khugepaged_wait, 2263 khugepaged_wait_event()); 2264 } 2265 } 2266 2267 static int khugepaged(void *none) 2268 { 2269 struct mm_slot *mm_slot; 2270 2271 set_freezable(); 2272 set_user_nice(current, 19); 2273 2274 /* serialize with start_khugepaged() */ 2275 mutex_lock(&khugepaged_mutex); 2276 2277 for (;;) { 2278 mutex_unlock(&khugepaged_mutex); 2279 VM_BUG_ON(khugepaged_thread != current); 2280 khugepaged_loop(); 2281 VM_BUG_ON(khugepaged_thread != current); 2282 2283 mutex_lock(&khugepaged_mutex); 2284 if (!khugepaged_enabled()) 2285 break; 2286 if (unlikely(kthread_should_stop())) 2287 break; 2288 } 2289 2290 spin_lock(&khugepaged_mm_lock); 2291 mm_slot = khugepaged_scan.mm_slot; 2292 khugepaged_scan.mm_slot = NULL; 2293 if (mm_slot) 2294 collect_mm_slot(mm_slot); 2295 spin_unlock(&khugepaged_mm_lock); 2296 2297 khugepaged_thread = NULL; 2298 mutex_unlock(&khugepaged_mutex); 2299 2300 return 0; 2301 } 2302 2303 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd) 2304 { 2305 struct page *page; 2306 2307 spin_lock(&mm->page_table_lock); 2308 if (unlikely(!pmd_trans_huge(*pmd))) { 2309 spin_unlock(&mm->page_table_lock); 2310 return; 2311 } 2312 page = pmd_page(*pmd); 2313 VM_BUG_ON(!page_count(page)); 2314 get_page(page); 2315 spin_unlock(&mm->page_table_lock); 2316 2317 split_huge_page(page); 2318 2319 put_page(page); 2320 BUG_ON(pmd_trans_huge(*pmd)); 2321 } 2322 2323 static void split_huge_page_address(struct mm_struct *mm, 2324 unsigned long address) 2325 { 2326 pgd_t *pgd; 2327 pud_t *pud; 2328 pmd_t *pmd; 2329 2330 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK)); 2331 2332 pgd = pgd_offset(mm, address); 2333 if (!pgd_present(*pgd)) 2334 return; 2335 2336 pud = pud_offset(pgd, address); 2337 if (!pud_present(*pud)) 2338 return; 2339 2340 pmd = pmd_offset(pud, address); 2341 if (!pmd_present(*pmd)) 2342 return; 2343 /* 2344 * Caller holds the mmap_sem write mode, so a huge pmd cannot 2345 * materialize from under us. 2346 */ 2347 split_huge_page_pmd(mm, pmd); 2348 } 2349 2350 void __vma_adjust_trans_huge(struct vm_area_struct *vma, 2351 unsigned long start, 2352 unsigned long end, 2353 long adjust_next) 2354 { 2355 /* 2356 * If the new start address isn't hpage aligned and it could 2357 * previously contain an hugepage: check if we need to split 2358 * an huge pmd. 2359 */ 2360 if (start & ~HPAGE_PMD_MASK && 2361 (start & HPAGE_PMD_MASK) >= vma->vm_start && 2362 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2363 split_huge_page_address(vma->vm_mm, start); 2364 2365 /* 2366 * If the new end address isn't hpage aligned and it could 2367 * previously contain an hugepage: check if we need to split 2368 * an huge pmd. 2369 */ 2370 if (end & ~HPAGE_PMD_MASK && 2371 (end & HPAGE_PMD_MASK) >= vma->vm_start && 2372 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2373 split_huge_page_address(vma->vm_mm, end); 2374 2375 /* 2376 * If we're also updating the vma->vm_next->vm_start, if the new 2377 * vm_next->vm_start isn't page aligned and it could previously 2378 * contain an hugepage: check if we need to split an huge pmd. 2379 */ 2380 if (adjust_next > 0) { 2381 struct vm_area_struct *next = vma->vm_next; 2382 unsigned long nstart = next->vm_start; 2383 nstart += adjust_next << PAGE_SHIFT; 2384 if (nstart & ~HPAGE_PMD_MASK && 2385 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 2386 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 2387 split_huge_page_address(next->vm_mm, nstart); 2388 } 2389 } 2390