xref: /openbmc/linux/mm/huge_memory.c (revision 9b358af7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/dax.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/oom.h>
35 #include <linux/numa.h>
36 #include <linux/page_owner.h>
37 
38 #include <asm/tlb.h>
39 #include <asm/pgalloc.h>
40 #include "internal.h"
41 
42 /*
43  * By default, transparent hugepage support is disabled in order to avoid
44  * risking an increased memory footprint for applications that are not
45  * guaranteed to benefit from it. When transparent hugepage support is
46  * enabled, it is for all mappings, and khugepaged scans all mappings.
47  * Defrag is invoked by khugepaged hugepage allocations and by page faults
48  * for all hugepage allocations.
49  */
50 unsigned long transparent_hugepage_flags __read_mostly =
51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
52 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 #endif
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56 #endif
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 
61 static struct shrinker deferred_split_shrinker;
62 
63 static atomic_t huge_zero_refcount;
64 struct page *huge_zero_page __read_mostly;
65 
66 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67 {
68 	/* The addr is used to check if the vma size fits */
69 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
70 
71 	if (!transhuge_vma_suitable(vma, addr))
72 		return false;
73 	if (vma_is_anonymous(vma))
74 		return __transparent_hugepage_enabled(vma);
75 	if (vma_is_shmem(vma))
76 		return shmem_huge_enabled(vma);
77 
78 	return false;
79 }
80 
81 static bool get_huge_zero_page(void)
82 {
83 	struct page *zero_page;
84 retry:
85 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
86 		return true;
87 
88 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
89 			HPAGE_PMD_ORDER);
90 	if (!zero_page) {
91 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
92 		return false;
93 	}
94 	count_vm_event(THP_ZERO_PAGE_ALLOC);
95 	preempt_disable();
96 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97 		preempt_enable();
98 		__free_pages(zero_page, compound_order(zero_page));
99 		goto retry;
100 	}
101 
102 	/* We take additional reference here. It will be put back by shrinker */
103 	atomic_set(&huge_zero_refcount, 2);
104 	preempt_enable();
105 	return true;
106 }
107 
108 static void put_huge_zero_page(void)
109 {
110 	/*
111 	 * Counter should never go to zero here. Only shrinker can put
112 	 * last reference.
113 	 */
114 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
115 }
116 
117 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
118 {
119 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
120 		return READ_ONCE(huge_zero_page);
121 
122 	if (!get_huge_zero_page())
123 		return NULL;
124 
125 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
126 		put_huge_zero_page();
127 
128 	return READ_ONCE(huge_zero_page);
129 }
130 
131 void mm_put_huge_zero_page(struct mm_struct *mm)
132 {
133 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
134 		put_huge_zero_page();
135 }
136 
137 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
138 					struct shrink_control *sc)
139 {
140 	/* we can free zero page only if last reference remains */
141 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
142 }
143 
144 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
145 				       struct shrink_control *sc)
146 {
147 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
148 		struct page *zero_page = xchg(&huge_zero_page, NULL);
149 		BUG_ON(zero_page == NULL);
150 		__free_pages(zero_page, compound_order(zero_page));
151 		return HPAGE_PMD_NR;
152 	}
153 
154 	return 0;
155 }
156 
157 static struct shrinker huge_zero_page_shrinker = {
158 	.count_objects = shrink_huge_zero_page_count,
159 	.scan_objects = shrink_huge_zero_page_scan,
160 	.seeks = DEFAULT_SEEKS,
161 };
162 
163 #ifdef CONFIG_SYSFS
164 static ssize_t enabled_show(struct kobject *kobj,
165 			    struct kobj_attribute *attr, char *buf)
166 {
167 	const char *output;
168 
169 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
170 		output = "[always] madvise never";
171 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
172 			  &transparent_hugepage_flags))
173 		output = "always [madvise] never";
174 	else
175 		output = "always madvise [never]";
176 
177 	return sysfs_emit(buf, "%s\n", output);
178 }
179 
180 static ssize_t enabled_store(struct kobject *kobj,
181 			     struct kobj_attribute *attr,
182 			     const char *buf, size_t count)
183 {
184 	ssize_t ret = count;
185 
186 	if (sysfs_streq(buf, "always")) {
187 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
188 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
189 	} else if (sysfs_streq(buf, "madvise")) {
190 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
191 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
192 	} else if (sysfs_streq(buf, "never")) {
193 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
194 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
195 	} else
196 		ret = -EINVAL;
197 
198 	if (ret > 0) {
199 		int err = start_stop_khugepaged();
200 		if (err)
201 			ret = err;
202 	}
203 	return ret;
204 }
205 static struct kobj_attribute enabled_attr =
206 	__ATTR(enabled, 0644, enabled_show, enabled_store);
207 
208 ssize_t single_hugepage_flag_show(struct kobject *kobj,
209 				  struct kobj_attribute *attr, char *buf,
210 				  enum transparent_hugepage_flag flag)
211 {
212 	return sysfs_emit(buf, "%d\n",
213 			  !!test_bit(flag, &transparent_hugepage_flags));
214 }
215 
216 ssize_t single_hugepage_flag_store(struct kobject *kobj,
217 				 struct kobj_attribute *attr,
218 				 const char *buf, size_t count,
219 				 enum transparent_hugepage_flag flag)
220 {
221 	unsigned long value;
222 	int ret;
223 
224 	ret = kstrtoul(buf, 10, &value);
225 	if (ret < 0)
226 		return ret;
227 	if (value > 1)
228 		return -EINVAL;
229 
230 	if (value)
231 		set_bit(flag, &transparent_hugepage_flags);
232 	else
233 		clear_bit(flag, &transparent_hugepage_flags);
234 
235 	return count;
236 }
237 
238 static ssize_t defrag_show(struct kobject *kobj,
239 			   struct kobj_attribute *attr, char *buf)
240 {
241 	const char *output;
242 
243 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
244 		     &transparent_hugepage_flags))
245 		output = "[always] defer defer+madvise madvise never";
246 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
247 			  &transparent_hugepage_flags))
248 		output = "always [defer] defer+madvise madvise never";
249 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
250 			  &transparent_hugepage_flags))
251 		output = "always defer [defer+madvise] madvise never";
252 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
253 			  &transparent_hugepage_flags))
254 		output = "always defer defer+madvise [madvise] never";
255 	else
256 		output = "always defer defer+madvise madvise [never]";
257 
258 	return sysfs_emit(buf, "%s\n", output);
259 }
260 
261 static ssize_t defrag_store(struct kobject *kobj,
262 			    struct kobj_attribute *attr,
263 			    const char *buf, size_t count)
264 {
265 	if (sysfs_streq(buf, "always")) {
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
268 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
269 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
270 	} else if (sysfs_streq(buf, "defer+madvise")) {
271 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
274 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
275 	} else if (sysfs_streq(buf, "defer")) {
276 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
277 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
278 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
279 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
280 	} else if (sysfs_streq(buf, "madvise")) {
281 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
282 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
283 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
284 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
285 	} else if (sysfs_streq(buf, "never")) {
286 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
287 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
288 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
289 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
290 	} else
291 		return -EINVAL;
292 
293 	return count;
294 }
295 static struct kobj_attribute defrag_attr =
296 	__ATTR(defrag, 0644, defrag_show, defrag_store);
297 
298 static ssize_t use_zero_page_show(struct kobject *kobj,
299 				  struct kobj_attribute *attr, char *buf)
300 {
301 	return single_hugepage_flag_show(kobj, attr, buf,
302 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
303 }
304 static ssize_t use_zero_page_store(struct kobject *kobj,
305 		struct kobj_attribute *attr, const char *buf, size_t count)
306 {
307 	return single_hugepage_flag_store(kobj, attr, buf, count,
308 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
309 }
310 static struct kobj_attribute use_zero_page_attr =
311 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
312 
313 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
314 				   struct kobj_attribute *attr, char *buf)
315 {
316 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
317 }
318 static struct kobj_attribute hpage_pmd_size_attr =
319 	__ATTR_RO(hpage_pmd_size);
320 
321 static struct attribute *hugepage_attr[] = {
322 	&enabled_attr.attr,
323 	&defrag_attr.attr,
324 	&use_zero_page_attr.attr,
325 	&hpage_pmd_size_attr.attr,
326 #ifdef CONFIG_SHMEM
327 	&shmem_enabled_attr.attr,
328 #endif
329 	NULL,
330 };
331 
332 static const struct attribute_group hugepage_attr_group = {
333 	.attrs = hugepage_attr,
334 };
335 
336 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
337 {
338 	int err;
339 
340 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
341 	if (unlikely(!*hugepage_kobj)) {
342 		pr_err("failed to create transparent hugepage kobject\n");
343 		return -ENOMEM;
344 	}
345 
346 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
347 	if (err) {
348 		pr_err("failed to register transparent hugepage group\n");
349 		goto delete_obj;
350 	}
351 
352 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
353 	if (err) {
354 		pr_err("failed to register transparent hugepage group\n");
355 		goto remove_hp_group;
356 	}
357 
358 	return 0;
359 
360 remove_hp_group:
361 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
362 delete_obj:
363 	kobject_put(*hugepage_kobj);
364 	return err;
365 }
366 
367 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
368 {
369 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
370 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
371 	kobject_put(hugepage_kobj);
372 }
373 #else
374 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
375 {
376 	return 0;
377 }
378 
379 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
380 {
381 }
382 #endif /* CONFIG_SYSFS */
383 
384 static int __init hugepage_init(void)
385 {
386 	int err;
387 	struct kobject *hugepage_kobj;
388 
389 	if (!has_transparent_hugepage()) {
390 		/*
391 		 * Hardware doesn't support hugepages, hence disable
392 		 * DAX PMD support.
393 		 */
394 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
395 		return -EINVAL;
396 	}
397 
398 	/*
399 	 * hugepages can't be allocated by the buddy allocator
400 	 */
401 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
402 	/*
403 	 * we use page->mapping and page->index in second tail page
404 	 * as list_head: assuming THP order >= 2
405 	 */
406 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
407 
408 	err = hugepage_init_sysfs(&hugepage_kobj);
409 	if (err)
410 		goto err_sysfs;
411 
412 	err = khugepaged_init();
413 	if (err)
414 		goto err_slab;
415 
416 	err = register_shrinker(&huge_zero_page_shrinker);
417 	if (err)
418 		goto err_hzp_shrinker;
419 	err = register_shrinker(&deferred_split_shrinker);
420 	if (err)
421 		goto err_split_shrinker;
422 
423 	/*
424 	 * By default disable transparent hugepages on smaller systems,
425 	 * where the extra memory used could hurt more than TLB overhead
426 	 * is likely to save.  The admin can still enable it through /sys.
427 	 */
428 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
429 		transparent_hugepage_flags = 0;
430 		return 0;
431 	}
432 
433 	err = start_stop_khugepaged();
434 	if (err)
435 		goto err_khugepaged;
436 
437 	return 0;
438 err_khugepaged:
439 	unregister_shrinker(&deferred_split_shrinker);
440 err_split_shrinker:
441 	unregister_shrinker(&huge_zero_page_shrinker);
442 err_hzp_shrinker:
443 	khugepaged_destroy();
444 err_slab:
445 	hugepage_exit_sysfs(hugepage_kobj);
446 err_sysfs:
447 	return err;
448 }
449 subsys_initcall(hugepage_init);
450 
451 static int __init setup_transparent_hugepage(char *str)
452 {
453 	int ret = 0;
454 	if (!str)
455 		goto out;
456 	if (!strcmp(str, "always")) {
457 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
458 			&transparent_hugepage_flags);
459 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
460 			  &transparent_hugepage_flags);
461 		ret = 1;
462 	} else if (!strcmp(str, "madvise")) {
463 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
464 			  &transparent_hugepage_flags);
465 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
466 			&transparent_hugepage_flags);
467 		ret = 1;
468 	} else if (!strcmp(str, "never")) {
469 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
470 			  &transparent_hugepage_flags);
471 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
472 			  &transparent_hugepage_flags);
473 		ret = 1;
474 	}
475 out:
476 	if (!ret)
477 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
478 	return ret;
479 }
480 __setup("transparent_hugepage=", setup_transparent_hugepage);
481 
482 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
483 {
484 	if (likely(vma->vm_flags & VM_WRITE))
485 		pmd = pmd_mkwrite(pmd);
486 	return pmd;
487 }
488 
489 #ifdef CONFIG_MEMCG
490 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
491 {
492 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
493 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
494 
495 	if (memcg)
496 		return &memcg->deferred_split_queue;
497 	else
498 		return &pgdat->deferred_split_queue;
499 }
500 #else
501 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
502 {
503 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
504 
505 	return &pgdat->deferred_split_queue;
506 }
507 #endif
508 
509 void prep_transhuge_page(struct page *page)
510 {
511 	/*
512 	 * we use page->mapping and page->indexlru in second tail page
513 	 * as list_head: assuming THP order >= 2
514 	 */
515 
516 	INIT_LIST_HEAD(page_deferred_list(page));
517 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
518 }
519 
520 bool is_transparent_hugepage(struct page *page)
521 {
522 	if (!PageCompound(page))
523 		return false;
524 
525 	page = compound_head(page);
526 	return is_huge_zero_page(page) ||
527 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
528 }
529 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
530 
531 static unsigned long __thp_get_unmapped_area(struct file *filp,
532 		unsigned long addr, unsigned long len,
533 		loff_t off, unsigned long flags, unsigned long size)
534 {
535 	loff_t off_end = off + len;
536 	loff_t off_align = round_up(off, size);
537 	unsigned long len_pad, ret;
538 
539 	if (off_end <= off_align || (off_end - off_align) < size)
540 		return 0;
541 
542 	len_pad = len + size;
543 	if (len_pad < len || (off + len_pad) < off)
544 		return 0;
545 
546 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
547 					      off >> PAGE_SHIFT, flags);
548 
549 	/*
550 	 * The failure might be due to length padding. The caller will retry
551 	 * without the padding.
552 	 */
553 	if (IS_ERR_VALUE(ret))
554 		return 0;
555 
556 	/*
557 	 * Do not try to align to THP boundary if allocation at the address
558 	 * hint succeeds.
559 	 */
560 	if (ret == addr)
561 		return addr;
562 
563 	ret += (off - ret) & (size - 1);
564 	return ret;
565 }
566 
567 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
568 		unsigned long len, unsigned long pgoff, unsigned long flags)
569 {
570 	unsigned long ret;
571 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
572 
573 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
574 		goto out;
575 
576 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
577 	if (ret)
578 		return ret;
579 out:
580 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
581 }
582 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
583 
584 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
585 			struct page *page, gfp_t gfp)
586 {
587 	struct vm_area_struct *vma = vmf->vma;
588 	pgtable_t pgtable;
589 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
590 	vm_fault_t ret = 0;
591 
592 	VM_BUG_ON_PAGE(!PageCompound(page), page);
593 
594 	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
595 		put_page(page);
596 		count_vm_event(THP_FAULT_FALLBACK);
597 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
598 		return VM_FAULT_FALLBACK;
599 	}
600 	cgroup_throttle_swaprate(page, gfp);
601 
602 	pgtable = pte_alloc_one(vma->vm_mm);
603 	if (unlikely(!pgtable)) {
604 		ret = VM_FAULT_OOM;
605 		goto release;
606 	}
607 
608 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
609 	/*
610 	 * The memory barrier inside __SetPageUptodate makes sure that
611 	 * clear_huge_page writes become visible before the set_pmd_at()
612 	 * write.
613 	 */
614 	__SetPageUptodate(page);
615 
616 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
617 	if (unlikely(!pmd_none(*vmf->pmd))) {
618 		goto unlock_release;
619 	} else {
620 		pmd_t entry;
621 
622 		ret = check_stable_address_space(vma->vm_mm);
623 		if (ret)
624 			goto unlock_release;
625 
626 		/* Deliver the page fault to userland */
627 		if (userfaultfd_missing(vma)) {
628 			spin_unlock(vmf->ptl);
629 			put_page(page);
630 			pte_free(vma->vm_mm, pgtable);
631 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
632 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
633 			return ret;
634 		}
635 
636 		entry = mk_huge_pmd(page, vma->vm_page_prot);
637 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
638 		page_add_new_anon_rmap(page, vma, haddr, true);
639 		lru_cache_add_inactive_or_unevictable(page, vma);
640 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
641 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
642 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
643 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
644 		mm_inc_nr_ptes(vma->vm_mm);
645 		spin_unlock(vmf->ptl);
646 		count_vm_event(THP_FAULT_ALLOC);
647 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
648 	}
649 
650 	return 0;
651 unlock_release:
652 	spin_unlock(vmf->ptl);
653 release:
654 	if (pgtable)
655 		pte_free(vma->vm_mm, pgtable);
656 	put_page(page);
657 	return ret;
658 
659 }
660 
661 /*
662  * always: directly stall for all thp allocations
663  * defer: wake kswapd and fail if not immediately available
664  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
665  *		  fail if not immediately available
666  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
667  *	    available
668  * never: never stall for any thp allocation
669  */
670 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
671 {
672 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
673 
674 	/* Always do synchronous compaction */
675 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
676 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
677 
678 	/* Kick kcompactd and fail quickly */
679 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
680 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
681 
682 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
683 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
684 		return GFP_TRANSHUGE_LIGHT |
685 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
686 					__GFP_KSWAPD_RECLAIM);
687 
688 	/* Only do synchronous compaction if madvised */
689 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
690 		return GFP_TRANSHUGE_LIGHT |
691 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
692 
693 	return GFP_TRANSHUGE_LIGHT;
694 }
695 
696 /* Caller must hold page table lock. */
697 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
698 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
699 		struct page *zero_page)
700 {
701 	pmd_t entry;
702 	if (!pmd_none(*pmd))
703 		return;
704 	entry = mk_pmd(zero_page, vma->vm_page_prot);
705 	entry = pmd_mkhuge(entry);
706 	if (pgtable)
707 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
708 	set_pmd_at(mm, haddr, pmd, entry);
709 	mm_inc_nr_ptes(mm);
710 }
711 
712 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
713 {
714 	struct vm_area_struct *vma = vmf->vma;
715 	gfp_t gfp;
716 	struct page *page;
717 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
718 
719 	if (!transhuge_vma_suitable(vma, haddr))
720 		return VM_FAULT_FALLBACK;
721 	if (unlikely(anon_vma_prepare(vma)))
722 		return VM_FAULT_OOM;
723 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
724 		return VM_FAULT_OOM;
725 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
726 			!mm_forbids_zeropage(vma->vm_mm) &&
727 			transparent_hugepage_use_zero_page()) {
728 		pgtable_t pgtable;
729 		struct page *zero_page;
730 		vm_fault_t ret;
731 		pgtable = pte_alloc_one(vma->vm_mm);
732 		if (unlikely(!pgtable))
733 			return VM_FAULT_OOM;
734 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
735 		if (unlikely(!zero_page)) {
736 			pte_free(vma->vm_mm, pgtable);
737 			count_vm_event(THP_FAULT_FALLBACK);
738 			return VM_FAULT_FALLBACK;
739 		}
740 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
741 		ret = 0;
742 		if (pmd_none(*vmf->pmd)) {
743 			ret = check_stable_address_space(vma->vm_mm);
744 			if (ret) {
745 				spin_unlock(vmf->ptl);
746 				pte_free(vma->vm_mm, pgtable);
747 			} else if (userfaultfd_missing(vma)) {
748 				spin_unlock(vmf->ptl);
749 				pte_free(vma->vm_mm, pgtable);
750 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
751 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
752 			} else {
753 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
754 						   haddr, vmf->pmd, zero_page);
755 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
756 				spin_unlock(vmf->ptl);
757 			}
758 		} else {
759 			spin_unlock(vmf->ptl);
760 			pte_free(vma->vm_mm, pgtable);
761 		}
762 		return ret;
763 	}
764 	gfp = vma_thp_gfp_mask(vma);
765 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
766 	if (unlikely(!page)) {
767 		count_vm_event(THP_FAULT_FALLBACK);
768 		return VM_FAULT_FALLBACK;
769 	}
770 	prep_transhuge_page(page);
771 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
772 }
773 
774 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
775 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
776 		pgtable_t pgtable)
777 {
778 	struct mm_struct *mm = vma->vm_mm;
779 	pmd_t entry;
780 	spinlock_t *ptl;
781 
782 	ptl = pmd_lock(mm, pmd);
783 	if (!pmd_none(*pmd)) {
784 		if (write) {
785 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
786 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
787 				goto out_unlock;
788 			}
789 			entry = pmd_mkyoung(*pmd);
790 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
791 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
792 				update_mmu_cache_pmd(vma, addr, pmd);
793 		}
794 
795 		goto out_unlock;
796 	}
797 
798 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
799 	if (pfn_t_devmap(pfn))
800 		entry = pmd_mkdevmap(entry);
801 	if (write) {
802 		entry = pmd_mkyoung(pmd_mkdirty(entry));
803 		entry = maybe_pmd_mkwrite(entry, vma);
804 	}
805 
806 	if (pgtable) {
807 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
808 		mm_inc_nr_ptes(mm);
809 		pgtable = NULL;
810 	}
811 
812 	set_pmd_at(mm, addr, pmd, entry);
813 	update_mmu_cache_pmd(vma, addr, pmd);
814 
815 out_unlock:
816 	spin_unlock(ptl);
817 	if (pgtable)
818 		pte_free(mm, pgtable);
819 }
820 
821 /**
822  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
823  * @vmf: Structure describing the fault
824  * @pfn: pfn to insert
825  * @pgprot: page protection to use
826  * @write: whether it's a write fault
827  *
828  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
829  * also consult the vmf_insert_mixed_prot() documentation when
830  * @pgprot != @vmf->vma->vm_page_prot.
831  *
832  * Return: vm_fault_t value.
833  */
834 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
835 				   pgprot_t pgprot, bool write)
836 {
837 	unsigned long addr = vmf->address & PMD_MASK;
838 	struct vm_area_struct *vma = vmf->vma;
839 	pgtable_t pgtable = NULL;
840 
841 	/*
842 	 * If we had pmd_special, we could avoid all these restrictions,
843 	 * but we need to be consistent with PTEs and architectures that
844 	 * can't support a 'special' bit.
845 	 */
846 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
847 			!pfn_t_devmap(pfn));
848 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
849 						(VM_PFNMAP|VM_MIXEDMAP));
850 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
851 
852 	if (addr < vma->vm_start || addr >= vma->vm_end)
853 		return VM_FAULT_SIGBUS;
854 
855 	if (arch_needs_pgtable_deposit()) {
856 		pgtable = pte_alloc_one(vma->vm_mm);
857 		if (!pgtable)
858 			return VM_FAULT_OOM;
859 	}
860 
861 	track_pfn_insert(vma, &pgprot, pfn);
862 
863 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
864 	return VM_FAULT_NOPAGE;
865 }
866 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
867 
868 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
869 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
870 {
871 	if (likely(vma->vm_flags & VM_WRITE))
872 		pud = pud_mkwrite(pud);
873 	return pud;
874 }
875 
876 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
877 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
878 {
879 	struct mm_struct *mm = vma->vm_mm;
880 	pud_t entry;
881 	spinlock_t *ptl;
882 
883 	ptl = pud_lock(mm, pud);
884 	if (!pud_none(*pud)) {
885 		if (write) {
886 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
887 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
888 				goto out_unlock;
889 			}
890 			entry = pud_mkyoung(*pud);
891 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
892 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
893 				update_mmu_cache_pud(vma, addr, pud);
894 		}
895 		goto out_unlock;
896 	}
897 
898 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
899 	if (pfn_t_devmap(pfn))
900 		entry = pud_mkdevmap(entry);
901 	if (write) {
902 		entry = pud_mkyoung(pud_mkdirty(entry));
903 		entry = maybe_pud_mkwrite(entry, vma);
904 	}
905 	set_pud_at(mm, addr, pud, entry);
906 	update_mmu_cache_pud(vma, addr, pud);
907 
908 out_unlock:
909 	spin_unlock(ptl);
910 }
911 
912 /**
913  * vmf_insert_pfn_pud_prot - insert a pud size pfn
914  * @vmf: Structure describing the fault
915  * @pfn: pfn to insert
916  * @pgprot: page protection to use
917  * @write: whether it's a write fault
918  *
919  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
920  * also consult the vmf_insert_mixed_prot() documentation when
921  * @pgprot != @vmf->vma->vm_page_prot.
922  *
923  * Return: vm_fault_t value.
924  */
925 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
926 				   pgprot_t pgprot, bool write)
927 {
928 	unsigned long addr = vmf->address & PUD_MASK;
929 	struct vm_area_struct *vma = vmf->vma;
930 
931 	/*
932 	 * If we had pud_special, we could avoid all these restrictions,
933 	 * but we need to be consistent with PTEs and architectures that
934 	 * can't support a 'special' bit.
935 	 */
936 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
937 			!pfn_t_devmap(pfn));
938 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
939 						(VM_PFNMAP|VM_MIXEDMAP));
940 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
941 
942 	if (addr < vma->vm_start || addr >= vma->vm_end)
943 		return VM_FAULT_SIGBUS;
944 
945 	track_pfn_insert(vma, &pgprot, pfn);
946 
947 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
948 	return VM_FAULT_NOPAGE;
949 }
950 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
951 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
952 
953 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
954 		pmd_t *pmd, int flags)
955 {
956 	pmd_t _pmd;
957 
958 	_pmd = pmd_mkyoung(*pmd);
959 	if (flags & FOLL_WRITE)
960 		_pmd = pmd_mkdirty(_pmd);
961 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
962 				pmd, _pmd, flags & FOLL_WRITE))
963 		update_mmu_cache_pmd(vma, addr, pmd);
964 }
965 
966 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
967 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
968 {
969 	unsigned long pfn = pmd_pfn(*pmd);
970 	struct mm_struct *mm = vma->vm_mm;
971 	struct page *page;
972 
973 	assert_spin_locked(pmd_lockptr(mm, pmd));
974 
975 	/*
976 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
977 	 * not be in this function with `flags & FOLL_COW` set.
978 	 */
979 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
980 
981 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
982 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
983 			 (FOLL_PIN | FOLL_GET)))
984 		return NULL;
985 
986 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
987 		return NULL;
988 
989 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
990 		/* pass */;
991 	else
992 		return NULL;
993 
994 	if (flags & FOLL_TOUCH)
995 		touch_pmd(vma, addr, pmd, flags);
996 
997 	/*
998 	 * device mapped pages can only be returned if the
999 	 * caller will manage the page reference count.
1000 	 */
1001 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1002 		return ERR_PTR(-EEXIST);
1003 
1004 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1005 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1006 	if (!*pgmap)
1007 		return ERR_PTR(-EFAULT);
1008 	page = pfn_to_page(pfn);
1009 	if (!try_grab_page(page, flags))
1010 		page = ERR_PTR(-ENOMEM);
1011 
1012 	return page;
1013 }
1014 
1015 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1016 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1017 		  struct vm_area_struct *vma)
1018 {
1019 	spinlock_t *dst_ptl, *src_ptl;
1020 	struct page *src_page;
1021 	pmd_t pmd;
1022 	pgtable_t pgtable = NULL;
1023 	int ret = -ENOMEM;
1024 
1025 	/* Skip if can be re-fill on fault */
1026 	if (!vma_is_anonymous(vma))
1027 		return 0;
1028 
1029 	pgtable = pte_alloc_one(dst_mm);
1030 	if (unlikely(!pgtable))
1031 		goto out;
1032 
1033 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1034 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1035 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1036 
1037 	ret = -EAGAIN;
1038 	pmd = *src_pmd;
1039 
1040 	/*
1041 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1042 	 * does not have the VM_UFFD_WP, which means that the uffd
1043 	 * fork event is not enabled.
1044 	 */
1045 	if (!(vma->vm_flags & VM_UFFD_WP))
1046 		pmd = pmd_clear_uffd_wp(pmd);
1047 
1048 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1049 	if (unlikely(is_swap_pmd(pmd))) {
1050 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1051 
1052 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1053 		if (is_write_migration_entry(entry)) {
1054 			make_migration_entry_read(&entry);
1055 			pmd = swp_entry_to_pmd(entry);
1056 			if (pmd_swp_soft_dirty(*src_pmd))
1057 				pmd = pmd_swp_mksoft_dirty(pmd);
1058 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1059 		}
1060 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1061 		mm_inc_nr_ptes(dst_mm);
1062 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1063 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1064 		ret = 0;
1065 		goto out_unlock;
1066 	}
1067 #endif
1068 
1069 	if (unlikely(!pmd_trans_huge(pmd))) {
1070 		pte_free(dst_mm, pgtable);
1071 		goto out_unlock;
1072 	}
1073 	/*
1074 	 * When page table lock is held, the huge zero pmd should not be
1075 	 * under splitting since we don't split the page itself, only pmd to
1076 	 * a page table.
1077 	 */
1078 	if (is_huge_zero_pmd(pmd)) {
1079 		struct page *zero_page;
1080 		/*
1081 		 * get_huge_zero_page() will never allocate a new page here,
1082 		 * since we already have a zero page to copy. It just takes a
1083 		 * reference.
1084 		 */
1085 		zero_page = mm_get_huge_zero_page(dst_mm);
1086 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1087 				zero_page);
1088 		ret = 0;
1089 		goto out_unlock;
1090 	}
1091 
1092 	src_page = pmd_page(pmd);
1093 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1094 
1095 	/*
1096 	 * If this page is a potentially pinned page, split and retry the fault
1097 	 * with smaller page size.  Normally this should not happen because the
1098 	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1099 	 * best effort that the pinned pages won't be replaced by another
1100 	 * random page during the coming copy-on-write.
1101 	 */
1102 	if (unlikely(page_needs_cow_for_dma(vma, src_page))) {
1103 		pte_free(dst_mm, pgtable);
1104 		spin_unlock(src_ptl);
1105 		spin_unlock(dst_ptl);
1106 		__split_huge_pmd(vma, src_pmd, addr, false, NULL);
1107 		return -EAGAIN;
1108 	}
1109 
1110 	get_page(src_page);
1111 	page_dup_rmap(src_page, true);
1112 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1113 	mm_inc_nr_ptes(dst_mm);
1114 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1115 
1116 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1117 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1118 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1119 
1120 	ret = 0;
1121 out_unlock:
1122 	spin_unlock(src_ptl);
1123 	spin_unlock(dst_ptl);
1124 out:
1125 	return ret;
1126 }
1127 
1128 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1129 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1130 		pud_t *pud, int flags)
1131 {
1132 	pud_t _pud;
1133 
1134 	_pud = pud_mkyoung(*pud);
1135 	if (flags & FOLL_WRITE)
1136 		_pud = pud_mkdirty(_pud);
1137 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1138 				pud, _pud, flags & FOLL_WRITE))
1139 		update_mmu_cache_pud(vma, addr, pud);
1140 }
1141 
1142 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1143 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1144 {
1145 	unsigned long pfn = pud_pfn(*pud);
1146 	struct mm_struct *mm = vma->vm_mm;
1147 	struct page *page;
1148 
1149 	assert_spin_locked(pud_lockptr(mm, pud));
1150 
1151 	if (flags & FOLL_WRITE && !pud_write(*pud))
1152 		return NULL;
1153 
1154 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1155 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1156 			 (FOLL_PIN | FOLL_GET)))
1157 		return NULL;
1158 
1159 	if (pud_present(*pud) && pud_devmap(*pud))
1160 		/* pass */;
1161 	else
1162 		return NULL;
1163 
1164 	if (flags & FOLL_TOUCH)
1165 		touch_pud(vma, addr, pud, flags);
1166 
1167 	/*
1168 	 * device mapped pages can only be returned if the
1169 	 * caller will manage the page reference count.
1170 	 *
1171 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1172 	 */
1173 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1174 		return ERR_PTR(-EEXIST);
1175 
1176 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1177 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1178 	if (!*pgmap)
1179 		return ERR_PTR(-EFAULT);
1180 	page = pfn_to_page(pfn);
1181 	if (!try_grab_page(page, flags))
1182 		page = ERR_PTR(-ENOMEM);
1183 
1184 	return page;
1185 }
1186 
1187 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1188 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1189 		  struct vm_area_struct *vma)
1190 {
1191 	spinlock_t *dst_ptl, *src_ptl;
1192 	pud_t pud;
1193 	int ret;
1194 
1195 	dst_ptl = pud_lock(dst_mm, dst_pud);
1196 	src_ptl = pud_lockptr(src_mm, src_pud);
1197 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1198 
1199 	ret = -EAGAIN;
1200 	pud = *src_pud;
1201 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1202 		goto out_unlock;
1203 
1204 	/*
1205 	 * When page table lock is held, the huge zero pud should not be
1206 	 * under splitting since we don't split the page itself, only pud to
1207 	 * a page table.
1208 	 */
1209 	if (is_huge_zero_pud(pud)) {
1210 		/* No huge zero pud yet */
1211 	}
1212 
1213 	/* Please refer to comments in copy_huge_pmd() */
1214 	if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1215 		spin_unlock(src_ptl);
1216 		spin_unlock(dst_ptl);
1217 		__split_huge_pud(vma, src_pud, addr);
1218 		return -EAGAIN;
1219 	}
1220 
1221 	pudp_set_wrprotect(src_mm, addr, src_pud);
1222 	pud = pud_mkold(pud_wrprotect(pud));
1223 	set_pud_at(dst_mm, addr, dst_pud, pud);
1224 
1225 	ret = 0;
1226 out_unlock:
1227 	spin_unlock(src_ptl);
1228 	spin_unlock(dst_ptl);
1229 	return ret;
1230 }
1231 
1232 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1233 {
1234 	pud_t entry;
1235 	unsigned long haddr;
1236 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1237 
1238 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1239 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1240 		goto unlock;
1241 
1242 	entry = pud_mkyoung(orig_pud);
1243 	if (write)
1244 		entry = pud_mkdirty(entry);
1245 	haddr = vmf->address & HPAGE_PUD_MASK;
1246 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1247 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1248 
1249 unlock:
1250 	spin_unlock(vmf->ptl);
1251 }
1252 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1253 
1254 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1255 {
1256 	pmd_t entry;
1257 	unsigned long haddr;
1258 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1259 
1260 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1261 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1262 		goto unlock;
1263 
1264 	entry = pmd_mkyoung(orig_pmd);
1265 	if (write)
1266 		entry = pmd_mkdirty(entry);
1267 	haddr = vmf->address & HPAGE_PMD_MASK;
1268 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1269 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1270 
1271 unlock:
1272 	spin_unlock(vmf->ptl);
1273 }
1274 
1275 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1276 {
1277 	struct vm_area_struct *vma = vmf->vma;
1278 	struct page *page;
1279 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1280 
1281 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1282 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1283 
1284 	if (is_huge_zero_pmd(orig_pmd))
1285 		goto fallback;
1286 
1287 	spin_lock(vmf->ptl);
1288 
1289 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1290 		spin_unlock(vmf->ptl);
1291 		return 0;
1292 	}
1293 
1294 	page = pmd_page(orig_pmd);
1295 	VM_BUG_ON_PAGE(!PageHead(page), page);
1296 
1297 	/* Lock page for reuse_swap_page() */
1298 	if (!trylock_page(page)) {
1299 		get_page(page);
1300 		spin_unlock(vmf->ptl);
1301 		lock_page(page);
1302 		spin_lock(vmf->ptl);
1303 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1304 			spin_unlock(vmf->ptl);
1305 			unlock_page(page);
1306 			put_page(page);
1307 			return 0;
1308 		}
1309 		put_page(page);
1310 	}
1311 
1312 	/*
1313 	 * We can only reuse the page if nobody else maps the huge page or it's
1314 	 * part.
1315 	 */
1316 	if (reuse_swap_page(page, NULL)) {
1317 		pmd_t entry;
1318 		entry = pmd_mkyoung(orig_pmd);
1319 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1320 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1321 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1322 		unlock_page(page);
1323 		spin_unlock(vmf->ptl);
1324 		return VM_FAULT_WRITE;
1325 	}
1326 
1327 	unlock_page(page);
1328 	spin_unlock(vmf->ptl);
1329 fallback:
1330 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1331 	return VM_FAULT_FALLBACK;
1332 }
1333 
1334 /*
1335  * FOLL_FORCE can write to even unwritable pmd's, but only
1336  * after we've gone through a COW cycle and they are dirty.
1337  */
1338 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1339 {
1340 	return pmd_write(pmd) ||
1341 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1342 }
1343 
1344 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1345 				   unsigned long addr,
1346 				   pmd_t *pmd,
1347 				   unsigned int flags)
1348 {
1349 	struct mm_struct *mm = vma->vm_mm;
1350 	struct page *page = NULL;
1351 
1352 	assert_spin_locked(pmd_lockptr(mm, pmd));
1353 
1354 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1355 		goto out;
1356 
1357 	/* Avoid dumping huge zero page */
1358 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1359 		return ERR_PTR(-EFAULT);
1360 
1361 	/* Full NUMA hinting faults to serialise migration in fault paths */
1362 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1363 		goto out;
1364 
1365 	page = pmd_page(*pmd);
1366 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1367 
1368 	if (!try_grab_page(page, flags))
1369 		return ERR_PTR(-ENOMEM);
1370 
1371 	if (flags & FOLL_TOUCH)
1372 		touch_pmd(vma, addr, pmd, flags);
1373 
1374 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1375 		/*
1376 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1377 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1378 		 *
1379 		 * For anon THP:
1380 		 *
1381 		 * In most cases the pmd is the only mapping of the page as we
1382 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1383 		 * writable private mappings in populate_vma_page_range().
1384 		 *
1385 		 * The only scenario when we have the page shared here is if we
1386 		 * mlocking read-only mapping shared over fork(). We skip
1387 		 * mlocking such pages.
1388 		 *
1389 		 * For file THP:
1390 		 *
1391 		 * We can expect PageDoubleMap() to be stable under page lock:
1392 		 * for file pages we set it in page_add_file_rmap(), which
1393 		 * requires page to be locked.
1394 		 */
1395 
1396 		if (PageAnon(page) && compound_mapcount(page) != 1)
1397 			goto skip_mlock;
1398 		if (PageDoubleMap(page) || !page->mapping)
1399 			goto skip_mlock;
1400 		if (!trylock_page(page))
1401 			goto skip_mlock;
1402 		if (page->mapping && !PageDoubleMap(page))
1403 			mlock_vma_page(page);
1404 		unlock_page(page);
1405 	}
1406 skip_mlock:
1407 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1408 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1409 
1410 out:
1411 	return page;
1412 }
1413 
1414 /* NUMA hinting page fault entry point for trans huge pmds */
1415 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1416 {
1417 	struct vm_area_struct *vma = vmf->vma;
1418 	struct anon_vma *anon_vma = NULL;
1419 	struct page *page;
1420 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1421 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1422 	int target_nid, last_cpupid = -1;
1423 	bool page_locked;
1424 	bool migrated = false;
1425 	bool was_writable;
1426 	int flags = 0;
1427 
1428 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1429 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1430 		goto out_unlock;
1431 
1432 	/*
1433 	 * If there are potential migrations, wait for completion and retry
1434 	 * without disrupting NUMA hinting information. Do not relock and
1435 	 * check_same as the page may no longer be mapped.
1436 	 */
1437 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1438 		page = pmd_page(*vmf->pmd);
1439 		if (!get_page_unless_zero(page))
1440 			goto out_unlock;
1441 		spin_unlock(vmf->ptl);
1442 		put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1443 		goto out;
1444 	}
1445 
1446 	page = pmd_page(pmd);
1447 	BUG_ON(is_huge_zero_page(page));
1448 	page_nid = page_to_nid(page);
1449 	last_cpupid = page_cpupid_last(page);
1450 	count_vm_numa_event(NUMA_HINT_FAULTS);
1451 	if (page_nid == this_nid) {
1452 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1453 		flags |= TNF_FAULT_LOCAL;
1454 	}
1455 
1456 	/* See similar comment in do_numa_page for explanation */
1457 	if (!pmd_savedwrite(pmd))
1458 		flags |= TNF_NO_GROUP;
1459 
1460 	/*
1461 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1462 	 * page_table_lock if at all possible
1463 	 */
1464 	page_locked = trylock_page(page);
1465 	target_nid = mpol_misplaced(page, vma, haddr);
1466 	/* Migration could have started since the pmd_trans_migrating check */
1467 	if (!page_locked) {
1468 		page_nid = NUMA_NO_NODE;
1469 		if (!get_page_unless_zero(page))
1470 			goto out_unlock;
1471 		spin_unlock(vmf->ptl);
1472 		put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
1473 		goto out;
1474 	} else if (target_nid == NUMA_NO_NODE) {
1475 		/* There are no parallel migrations and page is in the right
1476 		 * node. Clear the numa hinting info in this pmd.
1477 		 */
1478 		goto clear_pmdnuma;
1479 	}
1480 
1481 	/*
1482 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1483 	 * to serialises splits
1484 	 */
1485 	get_page(page);
1486 	spin_unlock(vmf->ptl);
1487 	anon_vma = page_lock_anon_vma_read(page);
1488 
1489 	/* Confirm the PMD did not change while page_table_lock was released */
1490 	spin_lock(vmf->ptl);
1491 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1492 		unlock_page(page);
1493 		put_page(page);
1494 		page_nid = NUMA_NO_NODE;
1495 		goto out_unlock;
1496 	}
1497 
1498 	/* Bail if we fail to protect against THP splits for any reason */
1499 	if (unlikely(!anon_vma)) {
1500 		put_page(page);
1501 		page_nid = NUMA_NO_NODE;
1502 		goto clear_pmdnuma;
1503 	}
1504 
1505 	/*
1506 	 * Since we took the NUMA fault, we must have observed the !accessible
1507 	 * bit. Make sure all other CPUs agree with that, to avoid them
1508 	 * modifying the page we're about to migrate.
1509 	 *
1510 	 * Must be done under PTL such that we'll observe the relevant
1511 	 * inc_tlb_flush_pending().
1512 	 *
1513 	 * We are not sure a pending tlb flush here is for a huge page
1514 	 * mapping or not. Hence use the tlb range variant
1515 	 */
1516 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1517 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1518 		/*
1519 		 * change_huge_pmd() released the pmd lock before
1520 		 * invalidating the secondary MMUs sharing the primary
1521 		 * MMU pagetables (with ->invalidate_range()). The
1522 		 * mmu_notifier_invalidate_range_end() (which
1523 		 * internally calls ->invalidate_range()) in
1524 		 * change_pmd_range() will run after us, so we can't
1525 		 * rely on it here and we need an explicit invalidate.
1526 		 */
1527 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1528 					      haddr + HPAGE_PMD_SIZE);
1529 	}
1530 
1531 	/*
1532 	 * Migrate the THP to the requested node, returns with page unlocked
1533 	 * and access rights restored.
1534 	 */
1535 	spin_unlock(vmf->ptl);
1536 
1537 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1538 				vmf->pmd, pmd, vmf->address, page, target_nid);
1539 	if (migrated) {
1540 		flags |= TNF_MIGRATED;
1541 		page_nid = target_nid;
1542 	} else
1543 		flags |= TNF_MIGRATE_FAIL;
1544 
1545 	goto out;
1546 clear_pmdnuma:
1547 	BUG_ON(!PageLocked(page));
1548 	was_writable = pmd_savedwrite(pmd);
1549 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1550 	pmd = pmd_mkyoung(pmd);
1551 	if (was_writable)
1552 		pmd = pmd_mkwrite(pmd);
1553 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1554 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1555 	unlock_page(page);
1556 out_unlock:
1557 	spin_unlock(vmf->ptl);
1558 
1559 out:
1560 	if (anon_vma)
1561 		page_unlock_anon_vma_read(anon_vma);
1562 
1563 	if (page_nid != NUMA_NO_NODE)
1564 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1565 				flags);
1566 
1567 	return 0;
1568 }
1569 
1570 /*
1571  * Return true if we do MADV_FREE successfully on entire pmd page.
1572  * Otherwise, return false.
1573  */
1574 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1575 		pmd_t *pmd, unsigned long addr, unsigned long next)
1576 {
1577 	spinlock_t *ptl;
1578 	pmd_t orig_pmd;
1579 	struct page *page;
1580 	struct mm_struct *mm = tlb->mm;
1581 	bool ret = false;
1582 
1583 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1584 
1585 	ptl = pmd_trans_huge_lock(pmd, vma);
1586 	if (!ptl)
1587 		goto out_unlocked;
1588 
1589 	orig_pmd = *pmd;
1590 	if (is_huge_zero_pmd(orig_pmd))
1591 		goto out;
1592 
1593 	if (unlikely(!pmd_present(orig_pmd))) {
1594 		VM_BUG_ON(thp_migration_supported() &&
1595 				  !is_pmd_migration_entry(orig_pmd));
1596 		goto out;
1597 	}
1598 
1599 	page = pmd_page(orig_pmd);
1600 	/*
1601 	 * If other processes are mapping this page, we couldn't discard
1602 	 * the page unless they all do MADV_FREE so let's skip the page.
1603 	 */
1604 	if (page_mapcount(page) != 1)
1605 		goto out;
1606 
1607 	if (!trylock_page(page))
1608 		goto out;
1609 
1610 	/*
1611 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1612 	 * will deactivate only them.
1613 	 */
1614 	if (next - addr != HPAGE_PMD_SIZE) {
1615 		get_page(page);
1616 		spin_unlock(ptl);
1617 		split_huge_page(page);
1618 		unlock_page(page);
1619 		put_page(page);
1620 		goto out_unlocked;
1621 	}
1622 
1623 	if (PageDirty(page))
1624 		ClearPageDirty(page);
1625 	unlock_page(page);
1626 
1627 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1628 		pmdp_invalidate(vma, addr, pmd);
1629 		orig_pmd = pmd_mkold(orig_pmd);
1630 		orig_pmd = pmd_mkclean(orig_pmd);
1631 
1632 		set_pmd_at(mm, addr, pmd, orig_pmd);
1633 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1634 	}
1635 
1636 	mark_page_lazyfree(page);
1637 	ret = true;
1638 out:
1639 	spin_unlock(ptl);
1640 out_unlocked:
1641 	return ret;
1642 }
1643 
1644 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1645 {
1646 	pgtable_t pgtable;
1647 
1648 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1649 	pte_free(mm, pgtable);
1650 	mm_dec_nr_ptes(mm);
1651 }
1652 
1653 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1654 		 pmd_t *pmd, unsigned long addr)
1655 {
1656 	pmd_t orig_pmd;
1657 	spinlock_t *ptl;
1658 
1659 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1660 
1661 	ptl = __pmd_trans_huge_lock(pmd, vma);
1662 	if (!ptl)
1663 		return 0;
1664 	/*
1665 	 * For architectures like ppc64 we look at deposited pgtable
1666 	 * when calling pmdp_huge_get_and_clear. So do the
1667 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1668 	 * operations.
1669 	 */
1670 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1671 						tlb->fullmm);
1672 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1673 	if (vma_is_special_huge(vma)) {
1674 		if (arch_needs_pgtable_deposit())
1675 			zap_deposited_table(tlb->mm, pmd);
1676 		spin_unlock(ptl);
1677 		if (is_huge_zero_pmd(orig_pmd))
1678 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1679 	} else if (is_huge_zero_pmd(orig_pmd)) {
1680 		zap_deposited_table(tlb->mm, pmd);
1681 		spin_unlock(ptl);
1682 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1683 	} else {
1684 		struct page *page = NULL;
1685 		int flush_needed = 1;
1686 
1687 		if (pmd_present(orig_pmd)) {
1688 			page = pmd_page(orig_pmd);
1689 			page_remove_rmap(page, true);
1690 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1691 			VM_BUG_ON_PAGE(!PageHead(page), page);
1692 		} else if (thp_migration_supported()) {
1693 			swp_entry_t entry;
1694 
1695 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1696 			entry = pmd_to_swp_entry(orig_pmd);
1697 			page = migration_entry_to_page(entry);
1698 			flush_needed = 0;
1699 		} else
1700 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1701 
1702 		if (PageAnon(page)) {
1703 			zap_deposited_table(tlb->mm, pmd);
1704 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1705 		} else {
1706 			if (arch_needs_pgtable_deposit())
1707 				zap_deposited_table(tlb->mm, pmd);
1708 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1709 		}
1710 
1711 		spin_unlock(ptl);
1712 		if (flush_needed)
1713 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1714 	}
1715 	return 1;
1716 }
1717 
1718 #ifndef pmd_move_must_withdraw
1719 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1720 					 spinlock_t *old_pmd_ptl,
1721 					 struct vm_area_struct *vma)
1722 {
1723 	/*
1724 	 * With split pmd lock we also need to move preallocated
1725 	 * PTE page table if new_pmd is on different PMD page table.
1726 	 *
1727 	 * We also don't deposit and withdraw tables for file pages.
1728 	 */
1729 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1730 }
1731 #endif
1732 
1733 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1734 {
1735 #ifdef CONFIG_MEM_SOFT_DIRTY
1736 	if (unlikely(is_pmd_migration_entry(pmd)))
1737 		pmd = pmd_swp_mksoft_dirty(pmd);
1738 	else if (pmd_present(pmd))
1739 		pmd = pmd_mksoft_dirty(pmd);
1740 #endif
1741 	return pmd;
1742 }
1743 
1744 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1745 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1746 {
1747 	spinlock_t *old_ptl, *new_ptl;
1748 	pmd_t pmd;
1749 	struct mm_struct *mm = vma->vm_mm;
1750 	bool force_flush = false;
1751 
1752 	/*
1753 	 * The destination pmd shouldn't be established, free_pgtables()
1754 	 * should have release it.
1755 	 */
1756 	if (WARN_ON(!pmd_none(*new_pmd))) {
1757 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1758 		return false;
1759 	}
1760 
1761 	/*
1762 	 * We don't have to worry about the ordering of src and dst
1763 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1764 	 */
1765 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1766 	if (old_ptl) {
1767 		new_ptl = pmd_lockptr(mm, new_pmd);
1768 		if (new_ptl != old_ptl)
1769 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1770 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1771 		if (pmd_present(pmd))
1772 			force_flush = true;
1773 		VM_BUG_ON(!pmd_none(*new_pmd));
1774 
1775 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1776 			pgtable_t pgtable;
1777 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1778 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1779 		}
1780 		pmd = move_soft_dirty_pmd(pmd);
1781 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1782 		if (force_flush)
1783 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1784 		if (new_ptl != old_ptl)
1785 			spin_unlock(new_ptl);
1786 		spin_unlock(old_ptl);
1787 		return true;
1788 	}
1789 	return false;
1790 }
1791 
1792 /*
1793  * Returns
1794  *  - 0 if PMD could not be locked
1795  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1796  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1797  */
1798 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1799 		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1800 {
1801 	struct mm_struct *mm = vma->vm_mm;
1802 	spinlock_t *ptl;
1803 	pmd_t entry;
1804 	bool preserve_write;
1805 	int ret;
1806 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1807 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1808 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1809 
1810 	ptl = __pmd_trans_huge_lock(pmd, vma);
1811 	if (!ptl)
1812 		return 0;
1813 
1814 	preserve_write = prot_numa && pmd_write(*pmd);
1815 	ret = 1;
1816 
1817 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1818 	if (is_swap_pmd(*pmd)) {
1819 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1820 
1821 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1822 		if (is_write_migration_entry(entry)) {
1823 			pmd_t newpmd;
1824 			/*
1825 			 * A protection check is difficult so
1826 			 * just be safe and disable write
1827 			 */
1828 			make_migration_entry_read(&entry);
1829 			newpmd = swp_entry_to_pmd(entry);
1830 			if (pmd_swp_soft_dirty(*pmd))
1831 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1832 			set_pmd_at(mm, addr, pmd, newpmd);
1833 		}
1834 		goto unlock;
1835 	}
1836 #endif
1837 
1838 	/*
1839 	 * Avoid trapping faults against the zero page. The read-only
1840 	 * data is likely to be read-cached on the local CPU and
1841 	 * local/remote hits to the zero page are not interesting.
1842 	 */
1843 	if (prot_numa && is_huge_zero_pmd(*pmd))
1844 		goto unlock;
1845 
1846 	if (prot_numa && pmd_protnone(*pmd))
1847 		goto unlock;
1848 
1849 	/*
1850 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1851 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1852 	 * which is also under mmap_read_lock(mm):
1853 	 *
1854 	 *	CPU0:				CPU1:
1855 	 *				change_huge_pmd(prot_numa=1)
1856 	 *				 pmdp_huge_get_and_clear_notify()
1857 	 * madvise_dontneed()
1858 	 *  zap_pmd_range()
1859 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1860 	 *   // skip the pmd
1861 	 *				 set_pmd_at();
1862 	 *				 // pmd is re-established
1863 	 *
1864 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1865 	 * which may break userspace.
1866 	 *
1867 	 * pmdp_invalidate() is required to make sure we don't miss
1868 	 * dirty/young flags set by hardware.
1869 	 */
1870 	entry = pmdp_invalidate(vma, addr, pmd);
1871 
1872 	entry = pmd_modify(entry, newprot);
1873 	if (preserve_write)
1874 		entry = pmd_mk_savedwrite(entry);
1875 	if (uffd_wp) {
1876 		entry = pmd_wrprotect(entry);
1877 		entry = pmd_mkuffd_wp(entry);
1878 	} else if (uffd_wp_resolve) {
1879 		/*
1880 		 * Leave the write bit to be handled by PF interrupt
1881 		 * handler, then things like COW could be properly
1882 		 * handled.
1883 		 */
1884 		entry = pmd_clear_uffd_wp(entry);
1885 	}
1886 	ret = HPAGE_PMD_NR;
1887 	set_pmd_at(mm, addr, pmd, entry);
1888 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1889 unlock:
1890 	spin_unlock(ptl);
1891 	return ret;
1892 }
1893 
1894 /*
1895  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1896  *
1897  * Note that if it returns page table lock pointer, this routine returns without
1898  * unlocking page table lock. So callers must unlock it.
1899  */
1900 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1901 {
1902 	spinlock_t *ptl;
1903 	ptl = pmd_lock(vma->vm_mm, pmd);
1904 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1905 			pmd_devmap(*pmd)))
1906 		return ptl;
1907 	spin_unlock(ptl);
1908 	return NULL;
1909 }
1910 
1911 /*
1912  * Returns true if a given pud maps a thp, false otherwise.
1913  *
1914  * Note that if it returns true, this routine returns without unlocking page
1915  * table lock. So callers must unlock it.
1916  */
1917 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1918 {
1919 	spinlock_t *ptl;
1920 
1921 	ptl = pud_lock(vma->vm_mm, pud);
1922 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1923 		return ptl;
1924 	spin_unlock(ptl);
1925 	return NULL;
1926 }
1927 
1928 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1929 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1930 		 pud_t *pud, unsigned long addr)
1931 {
1932 	spinlock_t *ptl;
1933 
1934 	ptl = __pud_trans_huge_lock(pud, vma);
1935 	if (!ptl)
1936 		return 0;
1937 	/*
1938 	 * For architectures like ppc64 we look at deposited pgtable
1939 	 * when calling pudp_huge_get_and_clear. So do the
1940 	 * pgtable_trans_huge_withdraw after finishing pudp related
1941 	 * operations.
1942 	 */
1943 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1944 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1945 	if (vma_is_special_huge(vma)) {
1946 		spin_unlock(ptl);
1947 		/* No zero page support yet */
1948 	} else {
1949 		/* No support for anonymous PUD pages yet */
1950 		BUG();
1951 	}
1952 	return 1;
1953 }
1954 
1955 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1956 		unsigned long haddr)
1957 {
1958 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1959 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1960 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1961 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1962 
1963 	count_vm_event(THP_SPLIT_PUD);
1964 
1965 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1966 }
1967 
1968 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1969 		unsigned long address)
1970 {
1971 	spinlock_t *ptl;
1972 	struct mmu_notifier_range range;
1973 
1974 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1975 				address & HPAGE_PUD_MASK,
1976 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1977 	mmu_notifier_invalidate_range_start(&range);
1978 	ptl = pud_lock(vma->vm_mm, pud);
1979 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1980 		goto out;
1981 	__split_huge_pud_locked(vma, pud, range.start);
1982 
1983 out:
1984 	spin_unlock(ptl);
1985 	/*
1986 	 * No need to double call mmu_notifier->invalidate_range() callback as
1987 	 * the above pudp_huge_clear_flush_notify() did already call it.
1988 	 */
1989 	mmu_notifier_invalidate_range_only_end(&range);
1990 }
1991 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1992 
1993 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1994 		unsigned long haddr, pmd_t *pmd)
1995 {
1996 	struct mm_struct *mm = vma->vm_mm;
1997 	pgtable_t pgtable;
1998 	pmd_t _pmd;
1999 	int i;
2000 
2001 	/*
2002 	 * Leave pmd empty until pte is filled note that it is fine to delay
2003 	 * notification until mmu_notifier_invalidate_range_end() as we are
2004 	 * replacing a zero pmd write protected page with a zero pte write
2005 	 * protected page.
2006 	 *
2007 	 * See Documentation/vm/mmu_notifier.rst
2008 	 */
2009 	pmdp_huge_clear_flush(vma, haddr, pmd);
2010 
2011 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2012 	pmd_populate(mm, &_pmd, pgtable);
2013 
2014 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2015 		pte_t *pte, entry;
2016 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2017 		entry = pte_mkspecial(entry);
2018 		pte = pte_offset_map(&_pmd, haddr);
2019 		VM_BUG_ON(!pte_none(*pte));
2020 		set_pte_at(mm, haddr, pte, entry);
2021 		pte_unmap(pte);
2022 	}
2023 	smp_wmb(); /* make pte visible before pmd */
2024 	pmd_populate(mm, pmd, pgtable);
2025 }
2026 
2027 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2028 		unsigned long haddr, bool freeze)
2029 {
2030 	struct mm_struct *mm = vma->vm_mm;
2031 	struct page *page;
2032 	pgtable_t pgtable;
2033 	pmd_t old_pmd, _pmd;
2034 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2035 	unsigned long addr;
2036 	int i;
2037 
2038 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2039 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2040 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2041 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2042 				&& !pmd_devmap(*pmd));
2043 
2044 	count_vm_event(THP_SPLIT_PMD);
2045 
2046 	if (!vma_is_anonymous(vma)) {
2047 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2048 		/*
2049 		 * We are going to unmap this huge page. So
2050 		 * just go ahead and zap it
2051 		 */
2052 		if (arch_needs_pgtable_deposit())
2053 			zap_deposited_table(mm, pmd);
2054 		if (vma_is_special_huge(vma))
2055 			return;
2056 		page = pmd_page(_pmd);
2057 		if (!PageDirty(page) && pmd_dirty(_pmd))
2058 			set_page_dirty(page);
2059 		if (!PageReferenced(page) && pmd_young(_pmd))
2060 			SetPageReferenced(page);
2061 		page_remove_rmap(page, true);
2062 		put_page(page);
2063 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2064 		return;
2065 	} else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2066 		/*
2067 		 * FIXME: Do we want to invalidate secondary mmu by calling
2068 		 * mmu_notifier_invalidate_range() see comments below inside
2069 		 * __split_huge_pmd() ?
2070 		 *
2071 		 * We are going from a zero huge page write protected to zero
2072 		 * small page also write protected so it does not seems useful
2073 		 * to invalidate secondary mmu at this time.
2074 		 */
2075 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2076 	}
2077 
2078 	/*
2079 	 * Up to this point the pmd is present and huge and userland has the
2080 	 * whole access to the hugepage during the split (which happens in
2081 	 * place). If we overwrite the pmd with the not-huge version pointing
2082 	 * to the pte here (which of course we could if all CPUs were bug
2083 	 * free), userland could trigger a small page size TLB miss on the
2084 	 * small sized TLB while the hugepage TLB entry is still established in
2085 	 * the huge TLB. Some CPU doesn't like that.
2086 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2087 	 * 383 on page 105. Intel should be safe but is also warns that it's
2088 	 * only safe if the permission and cache attributes of the two entries
2089 	 * loaded in the two TLB is identical (which should be the case here).
2090 	 * But it is generally safer to never allow small and huge TLB entries
2091 	 * for the same virtual address to be loaded simultaneously. So instead
2092 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2093 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2094 	 * must remain set at all times on the pmd until the split is complete
2095 	 * for this pmd), then we flush the SMP TLB and finally we write the
2096 	 * non-huge version of the pmd entry with pmd_populate.
2097 	 */
2098 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2099 
2100 	pmd_migration = is_pmd_migration_entry(old_pmd);
2101 	if (unlikely(pmd_migration)) {
2102 		swp_entry_t entry;
2103 
2104 		entry = pmd_to_swp_entry(old_pmd);
2105 		page = migration_entry_to_page(entry);
2106 		write = is_write_migration_entry(entry);
2107 		young = false;
2108 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2109 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2110 	} else {
2111 		page = pmd_page(old_pmd);
2112 		if (pmd_dirty(old_pmd))
2113 			SetPageDirty(page);
2114 		write = pmd_write(old_pmd);
2115 		young = pmd_young(old_pmd);
2116 		soft_dirty = pmd_soft_dirty(old_pmd);
2117 		uffd_wp = pmd_uffd_wp(old_pmd);
2118 	}
2119 	VM_BUG_ON_PAGE(!page_count(page), page);
2120 	page_ref_add(page, HPAGE_PMD_NR - 1);
2121 
2122 	/*
2123 	 * Withdraw the table only after we mark the pmd entry invalid.
2124 	 * This's critical for some architectures (Power).
2125 	 */
2126 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2127 	pmd_populate(mm, &_pmd, pgtable);
2128 
2129 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2130 		pte_t entry, *pte;
2131 		/*
2132 		 * Note that NUMA hinting access restrictions are not
2133 		 * transferred to avoid any possibility of altering
2134 		 * permissions across VMAs.
2135 		 */
2136 		if (freeze || pmd_migration) {
2137 			swp_entry_t swp_entry;
2138 			swp_entry = make_migration_entry(page + i, write);
2139 			entry = swp_entry_to_pte(swp_entry);
2140 			if (soft_dirty)
2141 				entry = pte_swp_mksoft_dirty(entry);
2142 			if (uffd_wp)
2143 				entry = pte_swp_mkuffd_wp(entry);
2144 		} else {
2145 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2146 			entry = maybe_mkwrite(entry, vma);
2147 			if (!write)
2148 				entry = pte_wrprotect(entry);
2149 			if (!young)
2150 				entry = pte_mkold(entry);
2151 			if (soft_dirty)
2152 				entry = pte_mksoft_dirty(entry);
2153 			if (uffd_wp)
2154 				entry = pte_mkuffd_wp(entry);
2155 		}
2156 		pte = pte_offset_map(&_pmd, addr);
2157 		BUG_ON(!pte_none(*pte));
2158 		set_pte_at(mm, addr, pte, entry);
2159 		if (!pmd_migration)
2160 			atomic_inc(&page[i]._mapcount);
2161 		pte_unmap(pte);
2162 	}
2163 
2164 	if (!pmd_migration) {
2165 		/*
2166 		 * Set PG_double_map before dropping compound_mapcount to avoid
2167 		 * false-negative page_mapped().
2168 		 */
2169 		if (compound_mapcount(page) > 1 &&
2170 		    !TestSetPageDoubleMap(page)) {
2171 			for (i = 0; i < HPAGE_PMD_NR; i++)
2172 				atomic_inc(&page[i]._mapcount);
2173 		}
2174 
2175 		lock_page_memcg(page);
2176 		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2177 			/* Last compound_mapcount is gone. */
2178 			__mod_lruvec_page_state(page, NR_ANON_THPS,
2179 						-HPAGE_PMD_NR);
2180 			if (TestClearPageDoubleMap(page)) {
2181 				/* No need in mapcount reference anymore */
2182 				for (i = 0; i < HPAGE_PMD_NR; i++)
2183 					atomic_dec(&page[i]._mapcount);
2184 			}
2185 		}
2186 		unlock_page_memcg(page);
2187 	}
2188 
2189 	smp_wmb(); /* make pte visible before pmd */
2190 	pmd_populate(mm, pmd, pgtable);
2191 
2192 	if (freeze) {
2193 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2194 			page_remove_rmap(page + i, false);
2195 			put_page(page + i);
2196 		}
2197 	}
2198 }
2199 
2200 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2201 		unsigned long address, bool freeze, struct page *page)
2202 {
2203 	spinlock_t *ptl;
2204 	struct mmu_notifier_range range;
2205 	bool do_unlock_page = false;
2206 	pmd_t _pmd;
2207 
2208 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2209 				address & HPAGE_PMD_MASK,
2210 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2211 	mmu_notifier_invalidate_range_start(&range);
2212 	ptl = pmd_lock(vma->vm_mm, pmd);
2213 
2214 	/*
2215 	 * If caller asks to setup a migration entries, we need a page to check
2216 	 * pmd against. Otherwise we can end up replacing wrong page.
2217 	 */
2218 	VM_BUG_ON(freeze && !page);
2219 	if (page) {
2220 		VM_WARN_ON_ONCE(!PageLocked(page));
2221 		if (page != pmd_page(*pmd))
2222 			goto out;
2223 	}
2224 
2225 repeat:
2226 	if (pmd_trans_huge(*pmd)) {
2227 		if (!page) {
2228 			page = pmd_page(*pmd);
2229 			/*
2230 			 * An anonymous page must be locked, to ensure that a
2231 			 * concurrent reuse_swap_page() sees stable mapcount;
2232 			 * but reuse_swap_page() is not used on shmem or file,
2233 			 * and page lock must not be taken when zap_pmd_range()
2234 			 * calls __split_huge_pmd() while i_mmap_lock is held.
2235 			 */
2236 			if (PageAnon(page)) {
2237 				if (unlikely(!trylock_page(page))) {
2238 					get_page(page);
2239 					_pmd = *pmd;
2240 					spin_unlock(ptl);
2241 					lock_page(page);
2242 					spin_lock(ptl);
2243 					if (unlikely(!pmd_same(*pmd, _pmd))) {
2244 						unlock_page(page);
2245 						put_page(page);
2246 						page = NULL;
2247 						goto repeat;
2248 					}
2249 					put_page(page);
2250 				}
2251 				do_unlock_page = true;
2252 			}
2253 		}
2254 		if (PageMlocked(page))
2255 			clear_page_mlock(page);
2256 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2257 		goto out;
2258 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2259 out:
2260 	spin_unlock(ptl);
2261 	if (do_unlock_page)
2262 		unlock_page(page);
2263 	/*
2264 	 * No need to double call mmu_notifier->invalidate_range() callback.
2265 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2266 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2267 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2268 	 *    fault will trigger a flush_notify before pointing to a new page
2269 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2270 	 *    page in the meantime)
2271 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2272 	 *     to invalidate secondary tlb entry they are all still valid.
2273 	 *     any further changes to individual pte will notify. So no need
2274 	 *     to call mmu_notifier->invalidate_range()
2275 	 */
2276 	mmu_notifier_invalidate_range_only_end(&range);
2277 }
2278 
2279 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2280 		bool freeze, struct page *page)
2281 {
2282 	pgd_t *pgd;
2283 	p4d_t *p4d;
2284 	pud_t *pud;
2285 	pmd_t *pmd;
2286 
2287 	pgd = pgd_offset(vma->vm_mm, address);
2288 	if (!pgd_present(*pgd))
2289 		return;
2290 
2291 	p4d = p4d_offset(pgd, address);
2292 	if (!p4d_present(*p4d))
2293 		return;
2294 
2295 	pud = pud_offset(p4d, address);
2296 	if (!pud_present(*pud))
2297 		return;
2298 
2299 	pmd = pmd_offset(pud, address);
2300 
2301 	__split_huge_pmd(vma, pmd, address, freeze, page);
2302 }
2303 
2304 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2305 {
2306 	/*
2307 	 * If the new address isn't hpage aligned and it could previously
2308 	 * contain an hugepage: check if we need to split an huge pmd.
2309 	 */
2310 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2311 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2312 			 ALIGN(address, HPAGE_PMD_SIZE)))
2313 		split_huge_pmd_address(vma, address, false, NULL);
2314 }
2315 
2316 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2317 			     unsigned long start,
2318 			     unsigned long end,
2319 			     long adjust_next)
2320 {
2321 	/* Check if we need to split start first. */
2322 	split_huge_pmd_if_needed(vma, start);
2323 
2324 	/* Check if we need to split end next. */
2325 	split_huge_pmd_if_needed(vma, end);
2326 
2327 	/*
2328 	 * If we're also updating the vma->vm_next->vm_start,
2329 	 * check if we need to split it.
2330 	 */
2331 	if (adjust_next > 0) {
2332 		struct vm_area_struct *next = vma->vm_next;
2333 		unsigned long nstart = next->vm_start;
2334 		nstart += adjust_next;
2335 		split_huge_pmd_if_needed(next, nstart);
2336 	}
2337 }
2338 
2339 static void unmap_page(struct page *page)
2340 {
2341 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
2342 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2343 	bool unmap_success;
2344 
2345 	VM_BUG_ON_PAGE(!PageHead(page), page);
2346 
2347 	if (PageAnon(page))
2348 		ttu_flags |= TTU_SPLIT_FREEZE;
2349 
2350 	unmap_success = try_to_unmap(page, ttu_flags);
2351 	VM_BUG_ON_PAGE(!unmap_success, page);
2352 }
2353 
2354 static void remap_page(struct page *page, unsigned int nr)
2355 {
2356 	int i;
2357 	if (PageTransHuge(page)) {
2358 		remove_migration_ptes(page, page, true);
2359 	} else {
2360 		for (i = 0; i < nr; i++)
2361 			remove_migration_ptes(page + i, page + i, true);
2362 	}
2363 }
2364 
2365 static void lru_add_page_tail(struct page *head, struct page *tail,
2366 		struct lruvec *lruvec, struct list_head *list)
2367 {
2368 	VM_BUG_ON_PAGE(!PageHead(head), head);
2369 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2370 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2371 	lockdep_assert_held(&lruvec->lru_lock);
2372 
2373 	if (list) {
2374 		/* page reclaim is reclaiming a huge page */
2375 		VM_WARN_ON(PageLRU(head));
2376 		get_page(tail);
2377 		list_add_tail(&tail->lru, list);
2378 	} else {
2379 		/* head is still on lru (and we have it frozen) */
2380 		VM_WARN_ON(!PageLRU(head));
2381 		SetPageLRU(tail);
2382 		list_add_tail(&tail->lru, &head->lru);
2383 	}
2384 }
2385 
2386 static void __split_huge_page_tail(struct page *head, int tail,
2387 		struct lruvec *lruvec, struct list_head *list)
2388 {
2389 	struct page *page_tail = head + tail;
2390 
2391 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2392 
2393 	/*
2394 	 * Clone page flags before unfreezing refcount.
2395 	 *
2396 	 * After successful get_page_unless_zero() might follow flags change,
2397 	 * for example lock_page() which set PG_waiters.
2398 	 */
2399 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2400 	page_tail->flags |= (head->flags &
2401 			((1L << PG_referenced) |
2402 			 (1L << PG_swapbacked) |
2403 			 (1L << PG_swapcache) |
2404 			 (1L << PG_mlocked) |
2405 			 (1L << PG_uptodate) |
2406 			 (1L << PG_active) |
2407 			 (1L << PG_workingset) |
2408 			 (1L << PG_locked) |
2409 			 (1L << PG_unevictable) |
2410 #ifdef CONFIG_64BIT
2411 			 (1L << PG_arch_2) |
2412 #endif
2413 			 (1L << PG_dirty)));
2414 
2415 	/* ->mapping in first tail page is compound_mapcount */
2416 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2417 			page_tail);
2418 	page_tail->mapping = head->mapping;
2419 	page_tail->index = head->index + tail;
2420 
2421 	/* Page flags must be visible before we make the page non-compound. */
2422 	smp_wmb();
2423 
2424 	/*
2425 	 * Clear PageTail before unfreezing page refcount.
2426 	 *
2427 	 * After successful get_page_unless_zero() might follow put_page()
2428 	 * which needs correct compound_head().
2429 	 */
2430 	clear_compound_head(page_tail);
2431 
2432 	/* Finally unfreeze refcount. Additional reference from page cache. */
2433 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2434 					  PageSwapCache(head)));
2435 
2436 	if (page_is_young(head))
2437 		set_page_young(page_tail);
2438 	if (page_is_idle(head))
2439 		set_page_idle(page_tail);
2440 
2441 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2442 
2443 	/*
2444 	 * always add to the tail because some iterators expect new
2445 	 * pages to show after the currently processed elements - e.g.
2446 	 * migrate_pages
2447 	 */
2448 	lru_add_page_tail(head, page_tail, lruvec, list);
2449 }
2450 
2451 static void __split_huge_page(struct page *page, struct list_head *list,
2452 		pgoff_t end)
2453 {
2454 	struct page *head = compound_head(page);
2455 	struct lruvec *lruvec;
2456 	struct address_space *swap_cache = NULL;
2457 	unsigned long offset = 0;
2458 	unsigned int nr = thp_nr_pages(head);
2459 	int i;
2460 
2461 	/* complete memcg works before add pages to LRU */
2462 	split_page_memcg(head, nr);
2463 
2464 	if (PageAnon(head) && PageSwapCache(head)) {
2465 		swp_entry_t entry = { .val = page_private(head) };
2466 
2467 		offset = swp_offset(entry);
2468 		swap_cache = swap_address_space(entry);
2469 		xa_lock(&swap_cache->i_pages);
2470 	}
2471 
2472 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2473 	lruvec = lock_page_lruvec(head);
2474 
2475 	for (i = nr - 1; i >= 1; i--) {
2476 		__split_huge_page_tail(head, i, lruvec, list);
2477 		/* Some pages can be beyond i_size: drop them from page cache */
2478 		if (head[i].index >= end) {
2479 			ClearPageDirty(head + i);
2480 			__delete_from_page_cache(head + i, NULL);
2481 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2482 				shmem_uncharge(head->mapping->host, 1);
2483 			put_page(head + i);
2484 		} else if (!PageAnon(page)) {
2485 			__xa_store(&head->mapping->i_pages, head[i].index,
2486 					head + i, 0);
2487 		} else if (swap_cache) {
2488 			__xa_store(&swap_cache->i_pages, offset + i,
2489 					head + i, 0);
2490 		}
2491 	}
2492 
2493 	ClearPageCompound(head);
2494 	unlock_page_lruvec(lruvec);
2495 	/* Caller disabled irqs, so they are still disabled here */
2496 
2497 	split_page_owner(head, nr);
2498 
2499 	/* See comment in __split_huge_page_tail() */
2500 	if (PageAnon(head)) {
2501 		/* Additional pin to swap cache */
2502 		if (PageSwapCache(head)) {
2503 			page_ref_add(head, 2);
2504 			xa_unlock(&swap_cache->i_pages);
2505 		} else {
2506 			page_ref_inc(head);
2507 		}
2508 	} else {
2509 		/* Additional pin to page cache */
2510 		page_ref_add(head, 2);
2511 		xa_unlock(&head->mapping->i_pages);
2512 	}
2513 	local_irq_enable();
2514 
2515 	remap_page(head, nr);
2516 
2517 	if (PageSwapCache(head)) {
2518 		swp_entry_t entry = { .val = page_private(head) };
2519 
2520 		split_swap_cluster(entry);
2521 	}
2522 
2523 	for (i = 0; i < nr; i++) {
2524 		struct page *subpage = head + i;
2525 		if (subpage == page)
2526 			continue;
2527 		unlock_page(subpage);
2528 
2529 		/*
2530 		 * Subpages may be freed if there wasn't any mapping
2531 		 * like if add_to_swap() is running on a lru page that
2532 		 * had its mapping zapped. And freeing these pages
2533 		 * requires taking the lru_lock so we do the put_page
2534 		 * of the tail pages after the split is complete.
2535 		 */
2536 		put_page(subpage);
2537 	}
2538 }
2539 
2540 int total_mapcount(struct page *page)
2541 {
2542 	int i, compound, nr, ret;
2543 
2544 	VM_BUG_ON_PAGE(PageTail(page), page);
2545 
2546 	if (likely(!PageCompound(page)))
2547 		return atomic_read(&page->_mapcount) + 1;
2548 
2549 	compound = compound_mapcount(page);
2550 	nr = compound_nr(page);
2551 	if (PageHuge(page))
2552 		return compound;
2553 	ret = compound;
2554 	for (i = 0; i < nr; i++)
2555 		ret += atomic_read(&page[i]._mapcount) + 1;
2556 	/* File pages has compound_mapcount included in _mapcount */
2557 	if (!PageAnon(page))
2558 		return ret - compound * nr;
2559 	if (PageDoubleMap(page))
2560 		ret -= nr;
2561 	return ret;
2562 }
2563 
2564 /*
2565  * This calculates accurately how many mappings a transparent hugepage
2566  * has (unlike page_mapcount() which isn't fully accurate). This full
2567  * accuracy is primarily needed to know if copy-on-write faults can
2568  * reuse the page and change the mapping to read-write instead of
2569  * copying them. At the same time this returns the total_mapcount too.
2570  *
2571  * The function returns the highest mapcount any one of the subpages
2572  * has. If the return value is one, even if different processes are
2573  * mapping different subpages of the transparent hugepage, they can
2574  * all reuse it, because each process is reusing a different subpage.
2575  *
2576  * The total_mapcount is instead counting all virtual mappings of the
2577  * subpages. If the total_mapcount is equal to "one", it tells the
2578  * caller all mappings belong to the same "mm" and in turn the
2579  * anon_vma of the transparent hugepage can become the vma->anon_vma
2580  * local one as no other process may be mapping any of the subpages.
2581  *
2582  * It would be more accurate to replace page_mapcount() with
2583  * page_trans_huge_mapcount(), however we only use
2584  * page_trans_huge_mapcount() in the copy-on-write faults where we
2585  * need full accuracy to avoid breaking page pinning, because
2586  * page_trans_huge_mapcount() is slower than page_mapcount().
2587  */
2588 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2589 {
2590 	int i, ret, _total_mapcount, mapcount;
2591 
2592 	/* hugetlbfs shouldn't call it */
2593 	VM_BUG_ON_PAGE(PageHuge(page), page);
2594 
2595 	if (likely(!PageTransCompound(page))) {
2596 		mapcount = atomic_read(&page->_mapcount) + 1;
2597 		if (total_mapcount)
2598 			*total_mapcount = mapcount;
2599 		return mapcount;
2600 	}
2601 
2602 	page = compound_head(page);
2603 
2604 	_total_mapcount = ret = 0;
2605 	for (i = 0; i < thp_nr_pages(page); i++) {
2606 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2607 		ret = max(ret, mapcount);
2608 		_total_mapcount += mapcount;
2609 	}
2610 	if (PageDoubleMap(page)) {
2611 		ret -= 1;
2612 		_total_mapcount -= thp_nr_pages(page);
2613 	}
2614 	mapcount = compound_mapcount(page);
2615 	ret += mapcount;
2616 	_total_mapcount += mapcount;
2617 	if (total_mapcount)
2618 		*total_mapcount = _total_mapcount;
2619 	return ret;
2620 }
2621 
2622 /* Racy check whether the huge page can be split */
2623 bool can_split_huge_page(struct page *page, int *pextra_pins)
2624 {
2625 	int extra_pins;
2626 
2627 	/* Additional pins from page cache */
2628 	if (PageAnon(page))
2629 		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2630 	else
2631 		extra_pins = thp_nr_pages(page);
2632 	if (pextra_pins)
2633 		*pextra_pins = extra_pins;
2634 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2635 }
2636 
2637 /*
2638  * This function splits huge page into normal pages. @page can point to any
2639  * subpage of huge page to split. Split doesn't change the position of @page.
2640  *
2641  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2642  * The huge page must be locked.
2643  *
2644  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2645  *
2646  * Both head page and tail pages will inherit mapping, flags, and so on from
2647  * the hugepage.
2648  *
2649  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2650  * they are not mapped.
2651  *
2652  * Returns 0 if the hugepage is split successfully.
2653  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2654  * us.
2655  */
2656 int split_huge_page_to_list(struct page *page, struct list_head *list)
2657 {
2658 	struct page *head = compound_head(page);
2659 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2660 	struct anon_vma *anon_vma = NULL;
2661 	struct address_space *mapping = NULL;
2662 	int count, mapcount, extra_pins, ret;
2663 	pgoff_t end;
2664 
2665 	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2666 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2667 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2668 
2669 	if (PageWriteback(head))
2670 		return -EBUSY;
2671 
2672 	if (PageAnon(head)) {
2673 		/*
2674 		 * The caller does not necessarily hold an mmap_lock that would
2675 		 * prevent the anon_vma disappearing so we first we take a
2676 		 * reference to it and then lock the anon_vma for write. This
2677 		 * is similar to page_lock_anon_vma_read except the write lock
2678 		 * is taken to serialise against parallel split or collapse
2679 		 * operations.
2680 		 */
2681 		anon_vma = page_get_anon_vma(head);
2682 		if (!anon_vma) {
2683 			ret = -EBUSY;
2684 			goto out;
2685 		}
2686 		end = -1;
2687 		mapping = NULL;
2688 		anon_vma_lock_write(anon_vma);
2689 	} else {
2690 		mapping = head->mapping;
2691 
2692 		/* Truncated ? */
2693 		if (!mapping) {
2694 			ret = -EBUSY;
2695 			goto out;
2696 		}
2697 
2698 		anon_vma = NULL;
2699 		i_mmap_lock_read(mapping);
2700 
2701 		/*
2702 		 *__split_huge_page() may need to trim off pages beyond EOF:
2703 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2704 		 * which cannot be nested inside the page tree lock. So note
2705 		 * end now: i_size itself may be changed at any moment, but
2706 		 * head page lock is good enough to serialize the trimming.
2707 		 */
2708 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2709 	}
2710 
2711 	/*
2712 	 * Racy check if we can split the page, before unmap_page() will
2713 	 * split PMDs
2714 	 */
2715 	if (!can_split_huge_page(head, &extra_pins)) {
2716 		ret = -EBUSY;
2717 		goto out_unlock;
2718 	}
2719 
2720 	unmap_page(head);
2721 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2722 
2723 	/* block interrupt reentry in xa_lock and spinlock */
2724 	local_irq_disable();
2725 	if (mapping) {
2726 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2727 
2728 		/*
2729 		 * Check if the head page is present in page cache.
2730 		 * We assume all tail are present too, if head is there.
2731 		 */
2732 		xa_lock(&mapping->i_pages);
2733 		if (xas_load(&xas) != head)
2734 			goto fail;
2735 	}
2736 
2737 	/* Prevent deferred_split_scan() touching ->_refcount */
2738 	spin_lock(&ds_queue->split_queue_lock);
2739 	count = page_count(head);
2740 	mapcount = total_mapcount(head);
2741 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2742 		if (!list_empty(page_deferred_list(head))) {
2743 			ds_queue->split_queue_len--;
2744 			list_del(page_deferred_list(head));
2745 		}
2746 		spin_unlock(&ds_queue->split_queue_lock);
2747 		if (mapping) {
2748 			int nr = thp_nr_pages(head);
2749 
2750 			if (PageSwapBacked(head))
2751 				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
2752 							-nr);
2753 			else
2754 				__mod_lruvec_page_state(head, NR_FILE_THPS,
2755 							-nr);
2756 		}
2757 
2758 		__split_huge_page(page, list, end);
2759 		ret = 0;
2760 	} else {
2761 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2762 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2763 					mapcount, count);
2764 			if (PageTail(page))
2765 				dump_page(head, NULL);
2766 			dump_page(page, "total_mapcount(head) > 0");
2767 			BUG();
2768 		}
2769 		spin_unlock(&ds_queue->split_queue_lock);
2770 fail:		if (mapping)
2771 			xa_unlock(&mapping->i_pages);
2772 		local_irq_enable();
2773 		remap_page(head, thp_nr_pages(head));
2774 		ret = -EBUSY;
2775 	}
2776 
2777 out_unlock:
2778 	if (anon_vma) {
2779 		anon_vma_unlock_write(anon_vma);
2780 		put_anon_vma(anon_vma);
2781 	}
2782 	if (mapping)
2783 		i_mmap_unlock_read(mapping);
2784 out:
2785 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2786 	return ret;
2787 }
2788 
2789 void free_transhuge_page(struct page *page)
2790 {
2791 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2792 	unsigned long flags;
2793 
2794 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2795 	if (!list_empty(page_deferred_list(page))) {
2796 		ds_queue->split_queue_len--;
2797 		list_del(page_deferred_list(page));
2798 	}
2799 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2800 	free_compound_page(page);
2801 }
2802 
2803 void deferred_split_huge_page(struct page *page)
2804 {
2805 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2806 #ifdef CONFIG_MEMCG
2807 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2808 #endif
2809 	unsigned long flags;
2810 
2811 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2812 
2813 	/*
2814 	 * The try_to_unmap() in page reclaim path might reach here too,
2815 	 * this may cause a race condition to corrupt deferred split queue.
2816 	 * And, if page reclaim is already handling the same page, it is
2817 	 * unnecessary to handle it again in shrinker.
2818 	 *
2819 	 * Check PageSwapCache to determine if the page is being
2820 	 * handled by page reclaim since THP swap would add the page into
2821 	 * swap cache before calling try_to_unmap().
2822 	 */
2823 	if (PageSwapCache(page))
2824 		return;
2825 
2826 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2827 	if (list_empty(page_deferred_list(page))) {
2828 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2829 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2830 		ds_queue->split_queue_len++;
2831 #ifdef CONFIG_MEMCG
2832 		if (memcg)
2833 			set_shrinker_bit(memcg, page_to_nid(page),
2834 					 deferred_split_shrinker.id);
2835 #endif
2836 	}
2837 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2838 }
2839 
2840 static unsigned long deferred_split_count(struct shrinker *shrink,
2841 		struct shrink_control *sc)
2842 {
2843 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2844 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2845 
2846 #ifdef CONFIG_MEMCG
2847 	if (sc->memcg)
2848 		ds_queue = &sc->memcg->deferred_split_queue;
2849 #endif
2850 	return READ_ONCE(ds_queue->split_queue_len);
2851 }
2852 
2853 static unsigned long deferred_split_scan(struct shrinker *shrink,
2854 		struct shrink_control *sc)
2855 {
2856 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2857 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2858 	unsigned long flags;
2859 	LIST_HEAD(list), *pos, *next;
2860 	struct page *page;
2861 	int split = 0;
2862 
2863 #ifdef CONFIG_MEMCG
2864 	if (sc->memcg)
2865 		ds_queue = &sc->memcg->deferred_split_queue;
2866 #endif
2867 
2868 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2869 	/* Take pin on all head pages to avoid freeing them under us */
2870 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2871 		page = list_entry((void *)pos, struct page, mapping);
2872 		page = compound_head(page);
2873 		if (get_page_unless_zero(page)) {
2874 			list_move(page_deferred_list(page), &list);
2875 		} else {
2876 			/* We lost race with put_compound_page() */
2877 			list_del_init(page_deferred_list(page));
2878 			ds_queue->split_queue_len--;
2879 		}
2880 		if (!--sc->nr_to_scan)
2881 			break;
2882 	}
2883 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2884 
2885 	list_for_each_safe(pos, next, &list) {
2886 		page = list_entry((void *)pos, struct page, mapping);
2887 		if (!trylock_page(page))
2888 			goto next;
2889 		/* split_huge_page() removes page from list on success */
2890 		if (!split_huge_page(page))
2891 			split++;
2892 		unlock_page(page);
2893 next:
2894 		put_page(page);
2895 	}
2896 
2897 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2898 	list_splice_tail(&list, &ds_queue->split_queue);
2899 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2900 
2901 	/*
2902 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2903 	 * This can happen if pages were freed under us.
2904 	 */
2905 	if (!split && list_empty(&ds_queue->split_queue))
2906 		return SHRINK_STOP;
2907 	return split;
2908 }
2909 
2910 static struct shrinker deferred_split_shrinker = {
2911 	.count_objects = deferred_split_count,
2912 	.scan_objects = deferred_split_scan,
2913 	.seeks = DEFAULT_SEEKS,
2914 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2915 		 SHRINKER_NONSLAB,
2916 };
2917 
2918 #ifdef CONFIG_DEBUG_FS
2919 static void split_huge_pages_all(void)
2920 {
2921 	struct zone *zone;
2922 	struct page *page;
2923 	unsigned long pfn, max_zone_pfn;
2924 	unsigned long total = 0, split = 0;
2925 
2926 	pr_debug("Split all THPs\n");
2927 	for_each_populated_zone(zone) {
2928 		max_zone_pfn = zone_end_pfn(zone);
2929 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2930 			if (!pfn_valid(pfn))
2931 				continue;
2932 
2933 			page = pfn_to_page(pfn);
2934 			if (!get_page_unless_zero(page))
2935 				continue;
2936 
2937 			if (zone != page_zone(page))
2938 				goto next;
2939 
2940 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2941 				goto next;
2942 
2943 			total++;
2944 			lock_page(page);
2945 			if (!split_huge_page(page))
2946 				split++;
2947 			unlock_page(page);
2948 next:
2949 			put_page(page);
2950 			cond_resched();
2951 		}
2952 	}
2953 
2954 	pr_debug("%lu of %lu THP split\n", split, total);
2955 }
2956 
2957 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2958 {
2959 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2960 		    is_vm_hugetlb_page(vma);
2961 }
2962 
2963 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2964 				unsigned long vaddr_end)
2965 {
2966 	int ret = 0;
2967 	struct task_struct *task;
2968 	struct mm_struct *mm;
2969 	unsigned long total = 0, split = 0;
2970 	unsigned long addr;
2971 
2972 	vaddr_start &= PAGE_MASK;
2973 	vaddr_end &= PAGE_MASK;
2974 
2975 	/* Find the task_struct from pid */
2976 	rcu_read_lock();
2977 	task = find_task_by_vpid(pid);
2978 	if (!task) {
2979 		rcu_read_unlock();
2980 		ret = -ESRCH;
2981 		goto out;
2982 	}
2983 	get_task_struct(task);
2984 	rcu_read_unlock();
2985 
2986 	/* Find the mm_struct */
2987 	mm = get_task_mm(task);
2988 	put_task_struct(task);
2989 
2990 	if (!mm) {
2991 		ret = -EINVAL;
2992 		goto out;
2993 	}
2994 
2995 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2996 		 pid, vaddr_start, vaddr_end);
2997 
2998 	mmap_read_lock(mm);
2999 	/*
3000 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3001 	 * table filled with PTE-mapped THPs, each of which is distinct.
3002 	 */
3003 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3004 		struct vm_area_struct *vma = find_vma(mm, addr);
3005 		unsigned int follflags;
3006 		struct page *page;
3007 
3008 		if (!vma || addr < vma->vm_start)
3009 			break;
3010 
3011 		/* skip special VMA and hugetlb VMA */
3012 		if (vma_not_suitable_for_thp_split(vma)) {
3013 			addr = vma->vm_end;
3014 			continue;
3015 		}
3016 
3017 		/* FOLL_DUMP to ignore special (like zero) pages */
3018 		follflags = FOLL_GET | FOLL_DUMP;
3019 		page = follow_page(vma, addr, follflags);
3020 
3021 		if (IS_ERR(page))
3022 			continue;
3023 		if (!page)
3024 			continue;
3025 
3026 		if (!is_transparent_hugepage(page))
3027 			goto next;
3028 
3029 		total++;
3030 		if (!can_split_huge_page(compound_head(page), NULL))
3031 			goto next;
3032 
3033 		if (!trylock_page(page))
3034 			goto next;
3035 
3036 		if (!split_huge_page(page))
3037 			split++;
3038 
3039 		unlock_page(page);
3040 next:
3041 		put_page(page);
3042 		cond_resched();
3043 	}
3044 	mmap_read_unlock(mm);
3045 	mmput(mm);
3046 
3047 	pr_debug("%lu of %lu THP split\n", split, total);
3048 
3049 out:
3050 	return ret;
3051 }
3052 
3053 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3054 				pgoff_t off_end)
3055 {
3056 	struct filename *file;
3057 	struct file *candidate;
3058 	struct address_space *mapping;
3059 	int ret = -EINVAL;
3060 	pgoff_t index;
3061 	int nr_pages = 1;
3062 	unsigned long total = 0, split = 0;
3063 
3064 	file = getname_kernel(file_path);
3065 	if (IS_ERR(file))
3066 		return ret;
3067 
3068 	candidate = file_open_name(file, O_RDONLY, 0);
3069 	if (IS_ERR(candidate))
3070 		goto out;
3071 
3072 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3073 		 file_path, off_start, off_end);
3074 
3075 	mapping = candidate->f_mapping;
3076 
3077 	for (index = off_start; index < off_end; index += nr_pages) {
3078 		struct page *fpage = pagecache_get_page(mapping, index,
3079 						FGP_ENTRY | FGP_HEAD, 0);
3080 
3081 		nr_pages = 1;
3082 		if (xa_is_value(fpage) || !fpage)
3083 			continue;
3084 
3085 		if (!is_transparent_hugepage(fpage))
3086 			goto next;
3087 
3088 		total++;
3089 		nr_pages = thp_nr_pages(fpage);
3090 
3091 		if (!trylock_page(fpage))
3092 			goto next;
3093 
3094 		if (!split_huge_page(fpage))
3095 			split++;
3096 
3097 		unlock_page(fpage);
3098 next:
3099 		put_page(fpage);
3100 		cond_resched();
3101 	}
3102 
3103 	filp_close(candidate, NULL);
3104 	ret = 0;
3105 
3106 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3107 out:
3108 	putname(file);
3109 	return ret;
3110 }
3111 
3112 #define MAX_INPUT_BUF_SZ 255
3113 
3114 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3115 				size_t count, loff_t *ppops)
3116 {
3117 	static DEFINE_MUTEX(split_debug_mutex);
3118 	ssize_t ret;
3119 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3120 	char input_buf[MAX_INPUT_BUF_SZ];
3121 	int pid;
3122 	unsigned long vaddr_start, vaddr_end;
3123 
3124 	ret = mutex_lock_interruptible(&split_debug_mutex);
3125 	if (ret)
3126 		return ret;
3127 
3128 	ret = -EFAULT;
3129 
3130 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3131 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3132 		goto out;
3133 
3134 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3135 
3136 	if (input_buf[0] == '/') {
3137 		char *tok;
3138 		char *buf = input_buf;
3139 		char file_path[MAX_INPUT_BUF_SZ];
3140 		pgoff_t off_start = 0, off_end = 0;
3141 		size_t input_len = strlen(input_buf);
3142 
3143 		tok = strsep(&buf, ",");
3144 		if (tok) {
3145 			strncpy(file_path, tok, MAX_INPUT_BUF_SZ);
3146 		} else {
3147 			ret = -EINVAL;
3148 			goto out;
3149 		}
3150 
3151 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3152 		if (ret != 2) {
3153 			ret = -EINVAL;
3154 			goto out;
3155 		}
3156 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3157 		if (!ret)
3158 			ret = input_len;
3159 
3160 		goto out;
3161 	}
3162 
3163 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3164 	if (ret == 1 && pid == 1) {
3165 		split_huge_pages_all();
3166 		ret = strlen(input_buf);
3167 		goto out;
3168 	} else if (ret != 3) {
3169 		ret = -EINVAL;
3170 		goto out;
3171 	}
3172 
3173 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3174 	if (!ret)
3175 		ret = strlen(input_buf);
3176 out:
3177 	mutex_unlock(&split_debug_mutex);
3178 	return ret;
3179 
3180 }
3181 
3182 static const struct file_operations split_huge_pages_fops = {
3183 	.owner	 = THIS_MODULE,
3184 	.write	 = split_huge_pages_write,
3185 	.llseek  = no_llseek,
3186 };
3187 
3188 static int __init split_huge_pages_debugfs(void)
3189 {
3190 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3191 			    &split_huge_pages_fops);
3192 	return 0;
3193 }
3194 late_initcall(split_huge_pages_debugfs);
3195 #endif
3196 
3197 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3198 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3199 		struct page *page)
3200 {
3201 	struct vm_area_struct *vma = pvmw->vma;
3202 	struct mm_struct *mm = vma->vm_mm;
3203 	unsigned long address = pvmw->address;
3204 	pmd_t pmdval;
3205 	swp_entry_t entry;
3206 	pmd_t pmdswp;
3207 
3208 	if (!(pvmw->pmd && !pvmw->pte))
3209 		return;
3210 
3211 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3212 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3213 	if (pmd_dirty(pmdval))
3214 		set_page_dirty(page);
3215 	entry = make_migration_entry(page, pmd_write(pmdval));
3216 	pmdswp = swp_entry_to_pmd(entry);
3217 	if (pmd_soft_dirty(pmdval))
3218 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3219 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3220 	page_remove_rmap(page, true);
3221 	put_page(page);
3222 }
3223 
3224 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3225 {
3226 	struct vm_area_struct *vma = pvmw->vma;
3227 	struct mm_struct *mm = vma->vm_mm;
3228 	unsigned long address = pvmw->address;
3229 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
3230 	pmd_t pmde;
3231 	swp_entry_t entry;
3232 
3233 	if (!(pvmw->pmd && !pvmw->pte))
3234 		return;
3235 
3236 	entry = pmd_to_swp_entry(*pvmw->pmd);
3237 	get_page(new);
3238 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3239 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3240 		pmde = pmd_mksoft_dirty(pmde);
3241 	if (is_write_migration_entry(entry))
3242 		pmde = maybe_pmd_mkwrite(pmde, vma);
3243 
3244 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3245 	if (PageAnon(new))
3246 		page_add_anon_rmap(new, vma, mmun_start, true);
3247 	else
3248 		page_add_file_rmap(new, true);
3249 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3250 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3251 		mlock_vma_page(new);
3252 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3253 }
3254 #endif
3255