xref: /openbmc/linux/mm/huge_memory.c (revision 97da55fc)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
24 
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28 
29 /*
30  * By default transparent hugepage support is enabled for all mappings
31  * and khugepaged scans all mappings. Defrag is only invoked by
32  * khugepaged hugepage allocations and by page faults inside
33  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
34  * allocations.
35  */
36 unsigned long transparent_hugepage_flags __read_mostly =
37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
38 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
39 #endif
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
41 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
42 #endif
43 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
44 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
45 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
46 
47 /* default scan 8*512 pte (or vmas) every 30 second */
48 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
49 static unsigned int khugepaged_pages_collapsed;
50 static unsigned int khugepaged_full_scans;
51 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
52 /* during fragmentation poll the hugepage allocator once every minute */
53 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
54 static struct task_struct *khugepaged_thread __read_mostly;
55 static DEFINE_MUTEX(khugepaged_mutex);
56 static DEFINE_SPINLOCK(khugepaged_mm_lock);
57 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
58 /*
59  * default collapse hugepages if there is at least one pte mapped like
60  * it would have happened if the vma was large enough during page
61  * fault.
62  */
63 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
64 
65 static int khugepaged(void *none);
66 static int khugepaged_slab_init(void);
67 
68 #define MM_SLOTS_HASH_BITS 10
69 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
70 
71 static struct kmem_cache *mm_slot_cache __read_mostly;
72 
73 /**
74  * struct mm_slot - hash lookup from mm to mm_slot
75  * @hash: hash collision list
76  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
77  * @mm: the mm that this information is valid for
78  */
79 struct mm_slot {
80 	struct hlist_node hash;
81 	struct list_head mm_node;
82 	struct mm_struct *mm;
83 };
84 
85 /**
86  * struct khugepaged_scan - cursor for scanning
87  * @mm_head: the head of the mm list to scan
88  * @mm_slot: the current mm_slot we are scanning
89  * @address: the next address inside that to be scanned
90  *
91  * There is only the one khugepaged_scan instance of this cursor structure.
92  */
93 struct khugepaged_scan {
94 	struct list_head mm_head;
95 	struct mm_slot *mm_slot;
96 	unsigned long address;
97 };
98 static struct khugepaged_scan khugepaged_scan = {
99 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
100 };
101 
102 
103 static int set_recommended_min_free_kbytes(void)
104 {
105 	struct zone *zone;
106 	int nr_zones = 0;
107 	unsigned long recommended_min;
108 
109 	if (!khugepaged_enabled())
110 		return 0;
111 
112 	for_each_populated_zone(zone)
113 		nr_zones++;
114 
115 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
116 	recommended_min = pageblock_nr_pages * nr_zones * 2;
117 
118 	/*
119 	 * Make sure that on average at least two pageblocks are almost free
120 	 * of another type, one for a migratetype to fall back to and a
121 	 * second to avoid subsequent fallbacks of other types There are 3
122 	 * MIGRATE_TYPES we care about.
123 	 */
124 	recommended_min += pageblock_nr_pages * nr_zones *
125 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
126 
127 	/* don't ever allow to reserve more than 5% of the lowmem */
128 	recommended_min = min(recommended_min,
129 			      (unsigned long) nr_free_buffer_pages() / 20);
130 	recommended_min <<= (PAGE_SHIFT-10);
131 
132 	if (recommended_min > min_free_kbytes)
133 		min_free_kbytes = recommended_min;
134 	setup_per_zone_wmarks();
135 	return 0;
136 }
137 late_initcall(set_recommended_min_free_kbytes);
138 
139 static int start_khugepaged(void)
140 {
141 	int err = 0;
142 	if (khugepaged_enabled()) {
143 		if (!khugepaged_thread)
144 			khugepaged_thread = kthread_run(khugepaged, NULL,
145 							"khugepaged");
146 		if (unlikely(IS_ERR(khugepaged_thread))) {
147 			printk(KERN_ERR
148 			       "khugepaged: kthread_run(khugepaged) failed\n");
149 			err = PTR_ERR(khugepaged_thread);
150 			khugepaged_thread = NULL;
151 		}
152 
153 		if (!list_empty(&khugepaged_scan.mm_head))
154 			wake_up_interruptible(&khugepaged_wait);
155 
156 		set_recommended_min_free_kbytes();
157 	} else if (khugepaged_thread) {
158 		kthread_stop(khugepaged_thread);
159 		khugepaged_thread = NULL;
160 	}
161 
162 	return err;
163 }
164 
165 static atomic_t huge_zero_refcount;
166 static unsigned long huge_zero_pfn __read_mostly;
167 
168 static inline bool is_huge_zero_pfn(unsigned long pfn)
169 {
170 	unsigned long zero_pfn = ACCESS_ONCE(huge_zero_pfn);
171 	return zero_pfn && pfn == zero_pfn;
172 }
173 
174 static inline bool is_huge_zero_pmd(pmd_t pmd)
175 {
176 	return is_huge_zero_pfn(pmd_pfn(pmd));
177 }
178 
179 static unsigned long get_huge_zero_page(void)
180 {
181 	struct page *zero_page;
182 retry:
183 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
184 		return ACCESS_ONCE(huge_zero_pfn);
185 
186 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
187 			HPAGE_PMD_ORDER);
188 	if (!zero_page) {
189 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
190 		return 0;
191 	}
192 	count_vm_event(THP_ZERO_PAGE_ALLOC);
193 	preempt_disable();
194 	if (cmpxchg(&huge_zero_pfn, 0, page_to_pfn(zero_page))) {
195 		preempt_enable();
196 		__free_page(zero_page);
197 		goto retry;
198 	}
199 
200 	/* We take additional reference here. It will be put back by shrinker */
201 	atomic_set(&huge_zero_refcount, 2);
202 	preempt_enable();
203 	return ACCESS_ONCE(huge_zero_pfn);
204 }
205 
206 static void put_huge_zero_page(void)
207 {
208 	/*
209 	 * Counter should never go to zero here. Only shrinker can put
210 	 * last reference.
211 	 */
212 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
213 }
214 
215 static int shrink_huge_zero_page(struct shrinker *shrink,
216 		struct shrink_control *sc)
217 {
218 	if (!sc->nr_to_scan)
219 		/* we can free zero page only if last reference remains */
220 		return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
221 
222 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
223 		unsigned long zero_pfn = xchg(&huge_zero_pfn, 0);
224 		BUG_ON(zero_pfn == 0);
225 		__free_page(__pfn_to_page(zero_pfn));
226 	}
227 
228 	return 0;
229 }
230 
231 static struct shrinker huge_zero_page_shrinker = {
232 	.shrink = shrink_huge_zero_page,
233 	.seeks = DEFAULT_SEEKS,
234 };
235 
236 #ifdef CONFIG_SYSFS
237 
238 static ssize_t double_flag_show(struct kobject *kobj,
239 				struct kobj_attribute *attr, char *buf,
240 				enum transparent_hugepage_flag enabled,
241 				enum transparent_hugepage_flag req_madv)
242 {
243 	if (test_bit(enabled, &transparent_hugepage_flags)) {
244 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
245 		return sprintf(buf, "[always] madvise never\n");
246 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
247 		return sprintf(buf, "always [madvise] never\n");
248 	else
249 		return sprintf(buf, "always madvise [never]\n");
250 }
251 static ssize_t double_flag_store(struct kobject *kobj,
252 				 struct kobj_attribute *attr,
253 				 const char *buf, size_t count,
254 				 enum transparent_hugepage_flag enabled,
255 				 enum transparent_hugepage_flag req_madv)
256 {
257 	if (!memcmp("always", buf,
258 		    min(sizeof("always")-1, count))) {
259 		set_bit(enabled, &transparent_hugepage_flags);
260 		clear_bit(req_madv, &transparent_hugepage_flags);
261 	} else if (!memcmp("madvise", buf,
262 			   min(sizeof("madvise")-1, count))) {
263 		clear_bit(enabled, &transparent_hugepage_flags);
264 		set_bit(req_madv, &transparent_hugepage_flags);
265 	} else if (!memcmp("never", buf,
266 			   min(sizeof("never")-1, count))) {
267 		clear_bit(enabled, &transparent_hugepage_flags);
268 		clear_bit(req_madv, &transparent_hugepage_flags);
269 	} else
270 		return -EINVAL;
271 
272 	return count;
273 }
274 
275 static ssize_t enabled_show(struct kobject *kobj,
276 			    struct kobj_attribute *attr, char *buf)
277 {
278 	return double_flag_show(kobj, attr, buf,
279 				TRANSPARENT_HUGEPAGE_FLAG,
280 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
281 }
282 static ssize_t enabled_store(struct kobject *kobj,
283 			     struct kobj_attribute *attr,
284 			     const char *buf, size_t count)
285 {
286 	ssize_t ret;
287 
288 	ret = double_flag_store(kobj, attr, buf, count,
289 				TRANSPARENT_HUGEPAGE_FLAG,
290 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
291 
292 	if (ret > 0) {
293 		int err;
294 
295 		mutex_lock(&khugepaged_mutex);
296 		err = start_khugepaged();
297 		mutex_unlock(&khugepaged_mutex);
298 
299 		if (err)
300 			ret = err;
301 	}
302 
303 	return ret;
304 }
305 static struct kobj_attribute enabled_attr =
306 	__ATTR(enabled, 0644, enabled_show, enabled_store);
307 
308 static ssize_t single_flag_show(struct kobject *kobj,
309 				struct kobj_attribute *attr, char *buf,
310 				enum transparent_hugepage_flag flag)
311 {
312 	return sprintf(buf, "%d\n",
313 		       !!test_bit(flag, &transparent_hugepage_flags));
314 }
315 
316 static ssize_t single_flag_store(struct kobject *kobj,
317 				 struct kobj_attribute *attr,
318 				 const char *buf, size_t count,
319 				 enum transparent_hugepage_flag flag)
320 {
321 	unsigned long value;
322 	int ret;
323 
324 	ret = kstrtoul(buf, 10, &value);
325 	if (ret < 0)
326 		return ret;
327 	if (value > 1)
328 		return -EINVAL;
329 
330 	if (value)
331 		set_bit(flag, &transparent_hugepage_flags);
332 	else
333 		clear_bit(flag, &transparent_hugepage_flags);
334 
335 	return count;
336 }
337 
338 /*
339  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
340  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
341  * memory just to allocate one more hugepage.
342  */
343 static ssize_t defrag_show(struct kobject *kobj,
344 			   struct kobj_attribute *attr, char *buf)
345 {
346 	return double_flag_show(kobj, attr, buf,
347 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
348 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
349 }
350 static ssize_t defrag_store(struct kobject *kobj,
351 			    struct kobj_attribute *attr,
352 			    const char *buf, size_t count)
353 {
354 	return double_flag_store(kobj, attr, buf, count,
355 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
356 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
357 }
358 static struct kobj_attribute defrag_attr =
359 	__ATTR(defrag, 0644, defrag_show, defrag_store);
360 
361 static ssize_t use_zero_page_show(struct kobject *kobj,
362 		struct kobj_attribute *attr, char *buf)
363 {
364 	return single_flag_show(kobj, attr, buf,
365 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
366 }
367 static ssize_t use_zero_page_store(struct kobject *kobj,
368 		struct kobj_attribute *attr, const char *buf, size_t count)
369 {
370 	return single_flag_store(kobj, attr, buf, count,
371 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
372 }
373 static struct kobj_attribute use_zero_page_attr =
374 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
375 #ifdef CONFIG_DEBUG_VM
376 static ssize_t debug_cow_show(struct kobject *kobj,
377 				struct kobj_attribute *attr, char *buf)
378 {
379 	return single_flag_show(kobj, attr, buf,
380 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
381 }
382 static ssize_t debug_cow_store(struct kobject *kobj,
383 			       struct kobj_attribute *attr,
384 			       const char *buf, size_t count)
385 {
386 	return single_flag_store(kobj, attr, buf, count,
387 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
388 }
389 static struct kobj_attribute debug_cow_attr =
390 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
391 #endif /* CONFIG_DEBUG_VM */
392 
393 static struct attribute *hugepage_attr[] = {
394 	&enabled_attr.attr,
395 	&defrag_attr.attr,
396 	&use_zero_page_attr.attr,
397 #ifdef CONFIG_DEBUG_VM
398 	&debug_cow_attr.attr,
399 #endif
400 	NULL,
401 };
402 
403 static struct attribute_group hugepage_attr_group = {
404 	.attrs = hugepage_attr,
405 };
406 
407 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
408 					 struct kobj_attribute *attr,
409 					 char *buf)
410 {
411 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
412 }
413 
414 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
415 					  struct kobj_attribute *attr,
416 					  const char *buf, size_t count)
417 {
418 	unsigned long msecs;
419 	int err;
420 
421 	err = strict_strtoul(buf, 10, &msecs);
422 	if (err || msecs > UINT_MAX)
423 		return -EINVAL;
424 
425 	khugepaged_scan_sleep_millisecs = msecs;
426 	wake_up_interruptible(&khugepaged_wait);
427 
428 	return count;
429 }
430 static struct kobj_attribute scan_sleep_millisecs_attr =
431 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
432 	       scan_sleep_millisecs_store);
433 
434 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
435 					  struct kobj_attribute *attr,
436 					  char *buf)
437 {
438 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
439 }
440 
441 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
442 					   struct kobj_attribute *attr,
443 					   const char *buf, size_t count)
444 {
445 	unsigned long msecs;
446 	int err;
447 
448 	err = strict_strtoul(buf, 10, &msecs);
449 	if (err || msecs > UINT_MAX)
450 		return -EINVAL;
451 
452 	khugepaged_alloc_sleep_millisecs = msecs;
453 	wake_up_interruptible(&khugepaged_wait);
454 
455 	return count;
456 }
457 static struct kobj_attribute alloc_sleep_millisecs_attr =
458 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
459 	       alloc_sleep_millisecs_store);
460 
461 static ssize_t pages_to_scan_show(struct kobject *kobj,
462 				  struct kobj_attribute *attr,
463 				  char *buf)
464 {
465 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
466 }
467 static ssize_t pages_to_scan_store(struct kobject *kobj,
468 				   struct kobj_attribute *attr,
469 				   const char *buf, size_t count)
470 {
471 	int err;
472 	unsigned long pages;
473 
474 	err = strict_strtoul(buf, 10, &pages);
475 	if (err || !pages || pages > UINT_MAX)
476 		return -EINVAL;
477 
478 	khugepaged_pages_to_scan = pages;
479 
480 	return count;
481 }
482 static struct kobj_attribute pages_to_scan_attr =
483 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
484 	       pages_to_scan_store);
485 
486 static ssize_t pages_collapsed_show(struct kobject *kobj,
487 				    struct kobj_attribute *attr,
488 				    char *buf)
489 {
490 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
491 }
492 static struct kobj_attribute pages_collapsed_attr =
493 	__ATTR_RO(pages_collapsed);
494 
495 static ssize_t full_scans_show(struct kobject *kobj,
496 			       struct kobj_attribute *attr,
497 			       char *buf)
498 {
499 	return sprintf(buf, "%u\n", khugepaged_full_scans);
500 }
501 static struct kobj_attribute full_scans_attr =
502 	__ATTR_RO(full_scans);
503 
504 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
505 				      struct kobj_attribute *attr, char *buf)
506 {
507 	return single_flag_show(kobj, attr, buf,
508 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
509 }
510 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
511 				       struct kobj_attribute *attr,
512 				       const char *buf, size_t count)
513 {
514 	return single_flag_store(kobj, attr, buf, count,
515 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
516 }
517 static struct kobj_attribute khugepaged_defrag_attr =
518 	__ATTR(defrag, 0644, khugepaged_defrag_show,
519 	       khugepaged_defrag_store);
520 
521 /*
522  * max_ptes_none controls if khugepaged should collapse hugepages over
523  * any unmapped ptes in turn potentially increasing the memory
524  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
525  * reduce the available free memory in the system as it
526  * runs. Increasing max_ptes_none will instead potentially reduce the
527  * free memory in the system during the khugepaged scan.
528  */
529 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
530 					     struct kobj_attribute *attr,
531 					     char *buf)
532 {
533 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
534 }
535 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
536 					      struct kobj_attribute *attr,
537 					      const char *buf, size_t count)
538 {
539 	int err;
540 	unsigned long max_ptes_none;
541 
542 	err = strict_strtoul(buf, 10, &max_ptes_none);
543 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
544 		return -EINVAL;
545 
546 	khugepaged_max_ptes_none = max_ptes_none;
547 
548 	return count;
549 }
550 static struct kobj_attribute khugepaged_max_ptes_none_attr =
551 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
552 	       khugepaged_max_ptes_none_store);
553 
554 static struct attribute *khugepaged_attr[] = {
555 	&khugepaged_defrag_attr.attr,
556 	&khugepaged_max_ptes_none_attr.attr,
557 	&pages_to_scan_attr.attr,
558 	&pages_collapsed_attr.attr,
559 	&full_scans_attr.attr,
560 	&scan_sleep_millisecs_attr.attr,
561 	&alloc_sleep_millisecs_attr.attr,
562 	NULL,
563 };
564 
565 static struct attribute_group khugepaged_attr_group = {
566 	.attrs = khugepaged_attr,
567 	.name = "khugepaged",
568 };
569 
570 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
571 {
572 	int err;
573 
574 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
575 	if (unlikely(!*hugepage_kobj)) {
576 		printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
577 		return -ENOMEM;
578 	}
579 
580 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
581 	if (err) {
582 		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
583 		goto delete_obj;
584 	}
585 
586 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
587 	if (err) {
588 		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
589 		goto remove_hp_group;
590 	}
591 
592 	return 0;
593 
594 remove_hp_group:
595 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
596 delete_obj:
597 	kobject_put(*hugepage_kobj);
598 	return err;
599 }
600 
601 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
602 {
603 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
604 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
605 	kobject_put(hugepage_kobj);
606 }
607 #else
608 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
609 {
610 	return 0;
611 }
612 
613 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
614 {
615 }
616 #endif /* CONFIG_SYSFS */
617 
618 static int __init hugepage_init(void)
619 {
620 	int err;
621 	struct kobject *hugepage_kobj;
622 
623 	if (!has_transparent_hugepage()) {
624 		transparent_hugepage_flags = 0;
625 		return -EINVAL;
626 	}
627 
628 	err = hugepage_init_sysfs(&hugepage_kobj);
629 	if (err)
630 		return err;
631 
632 	err = khugepaged_slab_init();
633 	if (err)
634 		goto out;
635 
636 	register_shrinker(&huge_zero_page_shrinker);
637 
638 	/*
639 	 * By default disable transparent hugepages on smaller systems,
640 	 * where the extra memory used could hurt more than TLB overhead
641 	 * is likely to save.  The admin can still enable it through /sys.
642 	 */
643 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
644 		transparent_hugepage_flags = 0;
645 
646 	start_khugepaged();
647 
648 	return 0;
649 out:
650 	hugepage_exit_sysfs(hugepage_kobj);
651 	return err;
652 }
653 module_init(hugepage_init)
654 
655 static int __init setup_transparent_hugepage(char *str)
656 {
657 	int ret = 0;
658 	if (!str)
659 		goto out;
660 	if (!strcmp(str, "always")) {
661 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
662 			&transparent_hugepage_flags);
663 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
664 			  &transparent_hugepage_flags);
665 		ret = 1;
666 	} else if (!strcmp(str, "madvise")) {
667 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
668 			  &transparent_hugepage_flags);
669 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
670 			&transparent_hugepage_flags);
671 		ret = 1;
672 	} else if (!strcmp(str, "never")) {
673 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
674 			  &transparent_hugepage_flags);
675 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
676 			  &transparent_hugepage_flags);
677 		ret = 1;
678 	}
679 out:
680 	if (!ret)
681 		printk(KERN_WARNING
682 		       "transparent_hugepage= cannot parse, ignored\n");
683 	return ret;
684 }
685 __setup("transparent_hugepage=", setup_transparent_hugepage);
686 
687 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
688 {
689 	if (likely(vma->vm_flags & VM_WRITE))
690 		pmd = pmd_mkwrite(pmd);
691 	return pmd;
692 }
693 
694 static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
695 {
696 	pmd_t entry;
697 	entry = mk_pmd(page, vma->vm_page_prot);
698 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
699 	entry = pmd_mkhuge(entry);
700 	return entry;
701 }
702 
703 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
704 					struct vm_area_struct *vma,
705 					unsigned long haddr, pmd_t *pmd,
706 					struct page *page)
707 {
708 	pgtable_t pgtable;
709 
710 	VM_BUG_ON(!PageCompound(page));
711 	pgtable = pte_alloc_one(mm, haddr);
712 	if (unlikely(!pgtable))
713 		return VM_FAULT_OOM;
714 
715 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
716 	__SetPageUptodate(page);
717 
718 	spin_lock(&mm->page_table_lock);
719 	if (unlikely(!pmd_none(*pmd))) {
720 		spin_unlock(&mm->page_table_lock);
721 		mem_cgroup_uncharge_page(page);
722 		put_page(page);
723 		pte_free(mm, pgtable);
724 	} else {
725 		pmd_t entry;
726 		entry = mk_huge_pmd(page, vma);
727 		/*
728 		 * The spinlocking to take the lru_lock inside
729 		 * page_add_new_anon_rmap() acts as a full memory
730 		 * barrier to be sure clear_huge_page writes become
731 		 * visible after the set_pmd_at() write.
732 		 */
733 		page_add_new_anon_rmap(page, vma, haddr);
734 		set_pmd_at(mm, haddr, pmd, entry);
735 		pgtable_trans_huge_deposit(mm, pgtable);
736 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
737 		mm->nr_ptes++;
738 		spin_unlock(&mm->page_table_lock);
739 	}
740 
741 	return 0;
742 }
743 
744 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
745 {
746 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
747 }
748 
749 static inline struct page *alloc_hugepage_vma(int defrag,
750 					      struct vm_area_struct *vma,
751 					      unsigned long haddr, int nd,
752 					      gfp_t extra_gfp)
753 {
754 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
755 			       HPAGE_PMD_ORDER, vma, haddr, nd);
756 }
757 
758 #ifndef CONFIG_NUMA
759 static inline struct page *alloc_hugepage(int defrag)
760 {
761 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
762 			   HPAGE_PMD_ORDER);
763 }
764 #endif
765 
766 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
767 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
768 		unsigned long zero_pfn)
769 {
770 	pmd_t entry;
771 	if (!pmd_none(*pmd))
772 		return false;
773 	entry = pfn_pmd(zero_pfn, vma->vm_page_prot);
774 	entry = pmd_wrprotect(entry);
775 	entry = pmd_mkhuge(entry);
776 	set_pmd_at(mm, haddr, pmd, entry);
777 	pgtable_trans_huge_deposit(mm, pgtable);
778 	mm->nr_ptes++;
779 	return true;
780 }
781 
782 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
783 			       unsigned long address, pmd_t *pmd,
784 			       unsigned int flags)
785 {
786 	struct page *page;
787 	unsigned long haddr = address & HPAGE_PMD_MASK;
788 	pte_t *pte;
789 
790 	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
791 		if (unlikely(anon_vma_prepare(vma)))
792 			return VM_FAULT_OOM;
793 		if (unlikely(khugepaged_enter(vma)))
794 			return VM_FAULT_OOM;
795 		if (!(flags & FAULT_FLAG_WRITE) &&
796 				transparent_hugepage_use_zero_page()) {
797 			pgtable_t pgtable;
798 			unsigned long zero_pfn;
799 			bool set;
800 			pgtable = pte_alloc_one(mm, haddr);
801 			if (unlikely(!pgtable))
802 				return VM_FAULT_OOM;
803 			zero_pfn = get_huge_zero_page();
804 			if (unlikely(!zero_pfn)) {
805 				pte_free(mm, pgtable);
806 				count_vm_event(THP_FAULT_FALLBACK);
807 				goto out;
808 			}
809 			spin_lock(&mm->page_table_lock);
810 			set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
811 					zero_pfn);
812 			spin_unlock(&mm->page_table_lock);
813 			if (!set) {
814 				pte_free(mm, pgtable);
815 				put_huge_zero_page();
816 			}
817 			return 0;
818 		}
819 		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
820 					  vma, haddr, numa_node_id(), 0);
821 		if (unlikely(!page)) {
822 			count_vm_event(THP_FAULT_FALLBACK);
823 			goto out;
824 		}
825 		count_vm_event(THP_FAULT_ALLOC);
826 		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
827 			put_page(page);
828 			goto out;
829 		}
830 		if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
831 							  page))) {
832 			mem_cgroup_uncharge_page(page);
833 			put_page(page);
834 			goto out;
835 		}
836 
837 		return 0;
838 	}
839 out:
840 	/*
841 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
842 	 * run pte_offset_map on the pmd, if an huge pmd could
843 	 * materialize from under us from a different thread.
844 	 */
845 	if (unlikely(pmd_none(*pmd)) &&
846 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
847 		return VM_FAULT_OOM;
848 	/* if an huge pmd materialized from under us just retry later */
849 	if (unlikely(pmd_trans_huge(*pmd)))
850 		return 0;
851 	/*
852 	 * A regular pmd is established and it can't morph into a huge pmd
853 	 * from under us anymore at this point because we hold the mmap_sem
854 	 * read mode and khugepaged takes it in write mode. So now it's
855 	 * safe to run pte_offset_map().
856 	 */
857 	pte = pte_offset_map(pmd, address);
858 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
859 }
860 
861 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
862 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
863 		  struct vm_area_struct *vma)
864 {
865 	struct page *src_page;
866 	pmd_t pmd;
867 	pgtable_t pgtable;
868 	int ret;
869 
870 	ret = -ENOMEM;
871 	pgtable = pte_alloc_one(dst_mm, addr);
872 	if (unlikely(!pgtable))
873 		goto out;
874 
875 	spin_lock(&dst_mm->page_table_lock);
876 	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
877 
878 	ret = -EAGAIN;
879 	pmd = *src_pmd;
880 	if (unlikely(!pmd_trans_huge(pmd))) {
881 		pte_free(dst_mm, pgtable);
882 		goto out_unlock;
883 	}
884 	/*
885 	 * mm->page_table_lock is enough to be sure that huge zero pmd is not
886 	 * under splitting since we don't split the page itself, only pmd to
887 	 * a page table.
888 	 */
889 	if (is_huge_zero_pmd(pmd)) {
890 		unsigned long zero_pfn;
891 		bool set;
892 		/*
893 		 * get_huge_zero_page() will never allocate a new page here,
894 		 * since we already have a zero page to copy. It just takes a
895 		 * reference.
896 		 */
897 		zero_pfn = get_huge_zero_page();
898 		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
899 				zero_pfn);
900 		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
901 		ret = 0;
902 		goto out_unlock;
903 	}
904 	if (unlikely(pmd_trans_splitting(pmd))) {
905 		/* split huge page running from under us */
906 		spin_unlock(&src_mm->page_table_lock);
907 		spin_unlock(&dst_mm->page_table_lock);
908 		pte_free(dst_mm, pgtable);
909 
910 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
911 		goto out;
912 	}
913 	src_page = pmd_page(pmd);
914 	VM_BUG_ON(!PageHead(src_page));
915 	get_page(src_page);
916 	page_dup_rmap(src_page);
917 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
918 
919 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
920 	pmd = pmd_mkold(pmd_wrprotect(pmd));
921 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
922 	pgtable_trans_huge_deposit(dst_mm, pgtable);
923 	dst_mm->nr_ptes++;
924 
925 	ret = 0;
926 out_unlock:
927 	spin_unlock(&src_mm->page_table_lock);
928 	spin_unlock(&dst_mm->page_table_lock);
929 out:
930 	return ret;
931 }
932 
933 void huge_pmd_set_accessed(struct mm_struct *mm,
934 			   struct vm_area_struct *vma,
935 			   unsigned long address,
936 			   pmd_t *pmd, pmd_t orig_pmd,
937 			   int dirty)
938 {
939 	pmd_t entry;
940 	unsigned long haddr;
941 
942 	spin_lock(&mm->page_table_lock);
943 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
944 		goto unlock;
945 
946 	entry = pmd_mkyoung(orig_pmd);
947 	haddr = address & HPAGE_PMD_MASK;
948 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
949 		update_mmu_cache_pmd(vma, address, pmd);
950 
951 unlock:
952 	spin_unlock(&mm->page_table_lock);
953 }
954 
955 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
956 		struct vm_area_struct *vma, unsigned long address,
957 		pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
958 {
959 	pgtable_t pgtable;
960 	pmd_t _pmd;
961 	struct page *page;
962 	int i, ret = 0;
963 	unsigned long mmun_start;	/* For mmu_notifiers */
964 	unsigned long mmun_end;		/* For mmu_notifiers */
965 
966 	page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
967 	if (!page) {
968 		ret |= VM_FAULT_OOM;
969 		goto out;
970 	}
971 
972 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
973 		put_page(page);
974 		ret |= VM_FAULT_OOM;
975 		goto out;
976 	}
977 
978 	clear_user_highpage(page, address);
979 	__SetPageUptodate(page);
980 
981 	mmun_start = haddr;
982 	mmun_end   = haddr + HPAGE_PMD_SIZE;
983 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
984 
985 	spin_lock(&mm->page_table_lock);
986 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
987 		goto out_free_page;
988 
989 	pmdp_clear_flush(vma, haddr, pmd);
990 	/* leave pmd empty until pte is filled */
991 
992 	pgtable = pgtable_trans_huge_withdraw(mm);
993 	pmd_populate(mm, &_pmd, pgtable);
994 
995 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
996 		pte_t *pte, entry;
997 		if (haddr == (address & PAGE_MASK)) {
998 			entry = mk_pte(page, vma->vm_page_prot);
999 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1000 			page_add_new_anon_rmap(page, vma, haddr);
1001 		} else {
1002 			entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1003 			entry = pte_mkspecial(entry);
1004 		}
1005 		pte = pte_offset_map(&_pmd, haddr);
1006 		VM_BUG_ON(!pte_none(*pte));
1007 		set_pte_at(mm, haddr, pte, entry);
1008 		pte_unmap(pte);
1009 	}
1010 	smp_wmb(); /* make pte visible before pmd */
1011 	pmd_populate(mm, pmd, pgtable);
1012 	spin_unlock(&mm->page_table_lock);
1013 	put_huge_zero_page();
1014 	inc_mm_counter(mm, MM_ANONPAGES);
1015 
1016 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1017 
1018 	ret |= VM_FAULT_WRITE;
1019 out:
1020 	return ret;
1021 out_free_page:
1022 	spin_unlock(&mm->page_table_lock);
1023 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1024 	mem_cgroup_uncharge_page(page);
1025 	put_page(page);
1026 	goto out;
1027 }
1028 
1029 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1030 					struct vm_area_struct *vma,
1031 					unsigned long address,
1032 					pmd_t *pmd, pmd_t orig_pmd,
1033 					struct page *page,
1034 					unsigned long haddr)
1035 {
1036 	pgtable_t pgtable;
1037 	pmd_t _pmd;
1038 	int ret = 0, i;
1039 	struct page **pages;
1040 	unsigned long mmun_start;	/* For mmu_notifiers */
1041 	unsigned long mmun_end;		/* For mmu_notifiers */
1042 
1043 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1044 			GFP_KERNEL);
1045 	if (unlikely(!pages)) {
1046 		ret |= VM_FAULT_OOM;
1047 		goto out;
1048 	}
1049 
1050 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1051 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1052 					       __GFP_OTHER_NODE,
1053 					       vma, address, page_to_nid(page));
1054 		if (unlikely(!pages[i] ||
1055 			     mem_cgroup_newpage_charge(pages[i], mm,
1056 						       GFP_KERNEL))) {
1057 			if (pages[i])
1058 				put_page(pages[i]);
1059 			mem_cgroup_uncharge_start();
1060 			while (--i >= 0) {
1061 				mem_cgroup_uncharge_page(pages[i]);
1062 				put_page(pages[i]);
1063 			}
1064 			mem_cgroup_uncharge_end();
1065 			kfree(pages);
1066 			ret |= VM_FAULT_OOM;
1067 			goto out;
1068 		}
1069 	}
1070 
1071 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1072 		copy_user_highpage(pages[i], page + i,
1073 				   haddr + PAGE_SIZE * i, vma);
1074 		__SetPageUptodate(pages[i]);
1075 		cond_resched();
1076 	}
1077 
1078 	mmun_start = haddr;
1079 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1080 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1081 
1082 	spin_lock(&mm->page_table_lock);
1083 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1084 		goto out_free_pages;
1085 	VM_BUG_ON(!PageHead(page));
1086 
1087 	pmdp_clear_flush(vma, haddr, pmd);
1088 	/* leave pmd empty until pte is filled */
1089 
1090 	pgtable = pgtable_trans_huge_withdraw(mm);
1091 	pmd_populate(mm, &_pmd, pgtable);
1092 
1093 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1094 		pte_t *pte, entry;
1095 		entry = mk_pte(pages[i], vma->vm_page_prot);
1096 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1097 		page_add_new_anon_rmap(pages[i], vma, haddr);
1098 		pte = pte_offset_map(&_pmd, haddr);
1099 		VM_BUG_ON(!pte_none(*pte));
1100 		set_pte_at(mm, haddr, pte, entry);
1101 		pte_unmap(pte);
1102 	}
1103 	kfree(pages);
1104 
1105 	smp_wmb(); /* make pte visible before pmd */
1106 	pmd_populate(mm, pmd, pgtable);
1107 	page_remove_rmap(page);
1108 	spin_unlock(&mm->page_table_lock);
1109 
1110 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1111 
1112 	ret |= VM_FAULT_WRITE;
1113 	put_page(page);
1114 
1115 out:
1116 	return ret;
1117 
1118 out_free_pages:
1119 	spin_unlock(&mm->page_table_lock);
1120 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1121 	mem_cgroup_uncharge_start();
1122 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1123 		mem_cgroup_uncharge_page(pages[i]);
1124 		put_page(pages[i]);
1125 	}
1126 	mem_cgroup_uncharge_end();
1127 	kfree(pages);
1128 	goto out;
1129 }
1130 
1131 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1132 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1133 {
1134 	int ret = 0;
1135 	struct page *page = NULL, *new_page;
1136 	unsigned long haddr;
1137 	unsigned long mmun_start;	/* For mmu_notifiers */
1138 	unsigned long mmun_end;		/* For mmu_notifiers */
1139 
1140 	VM_BUG_ON(!vma->anon_vma);
1141 	haddr = address & HPAGE_PMD_MASK;
1142 	if (is_huge_zero_pmd(orig_pmd))
1143 		goto alloc;
1144 	spin_lock(&mm->page_table_lock);
1145 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1146 		goto out_unlock;
1147 
1148 	page = pmd_page(orig_pmd);
1149 	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1150 	if (page_mapcount(page) == 1) {
1151 		pmd_t entry;
1152 		entry = pmd_mkyoung(orig_pmd);
1153 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1154 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1155 			update_mmu_cache_pmd(vma, address, pmd);
1156 		ret |= VM_FAULT_WRITE;
1157 		goto out_unlock;
1158 	}
1159 	get_page(page);
1160 	spin_unlock(&mm->page_table_lock);
1161 alloc:
1162 	if (transparent_hugepage_enabled(vma) &&
1163 	    !transparent_hugepage_debug_cow())
1164 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1165 					      vma, haddr, numa_node_id(), 0);
1166 	else
1167 		new_page = NULL;
1168 
1169 	if (unlikely(!new_page)) {
1170 		count_vm_event(THP_FAULT_FALLBACK);
1171 		if (is_huge_zero_pmd(orig_pmd)) {
1172 			ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1173 					address, pmd, orig_pmd, haddr);
1174 		} else {
1175 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1176 					pmd, orig_pmd, page, haddr);
1177 			if (ret & VM_FAULT_OOM)
1178 				split_huge_page(page);
1179 			put_page(page);
1180 		}
1181 		goto out;
1182 	}
1183 	count_vm_event(THP_FAULT_ALLOC);
1184 
1185 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1186 		put_page(new_page);
1187 		if (page) {
1188 			split_huge_page(page);
1189 			put_page(page);
1190 		}
1191 		ret |= VM_FAULT_OOM;
1192 		goto out;
1193 	}
1194 
1195 	if (is_huge_zero_pmd(orig_pmd))
1196 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1197 	else
1198 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1199 	__SetPageUptodate(new_page);
1200 
1201 	mmun_start = haddr;
1202 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1203 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1204 
1205 	spin_lock(&mm->page_table_lock);
1206 	if (page)
1207 		put_page(page);
1208 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1209 		spin_unlock(&mm->page_table_lock);
1210 		mem_cgroup_uncharge_page(new_page);
1211 		put_page(new_page);
1212 		goto out_mn;
1213 	} else {
1214 		pmd_t entry;
1215 		entry = mk_huge_pmd(new_page, vma);
1216 		pmdp_clear_flush(vma, haddr, pmd);
1217 		page_add_new_anon_rmap(new_page, vma, haddr);
1218 		set_pmd_at(mm, haddr, pmd, entry);
1219 		update_mmu_cache_pmd(vma, address, pmd);
1220 		if (is_huge_zero_pmd(orig_pmd)) {
1221 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1222 			put_huge_zero_page();
1223 		} else {
1224 			VM_BUG_ON(!PageHead(page));
1225 			page_remove_rmap(page);
1226 			put_page(page);
1227 		}
1228 		ret |= VM_FAULT_WRITE;
1229 	}
1230 	spin_unlock(&mm->page_table_lock);
1231 out_mn:
1232 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1233 out:
1234 	return ret;
1235 out_unlock:
1236 	spin_unlock(&mm->page_table_lock);
1237 	return ret;
1238 }
1239 
1240 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1241 				   unsigned long addr,
1242 				   pmd_t *pmd,
1243 				   unsigned int flags)
1244 {
1245 	struct mm_struct *mm = vma->vm_mm;
1246 	struct page *page = NULL;
1247 
1248 	assert_spin_locked(&mm->page_table_lock);
1249 
1250 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1251 		goto out;
1252 
1253 	/* Avoid dumping huge zero page */
1254 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1255 		return ERR_PTR(-EFAULT);
1256 
1257 	page = pmd_page(*pmd);
1258 	VM_BUG_ON(!PageHead(page));
1259 	if (flags & FOLL_TOUCH) {
1260 		pmd_t _pmd;
1261 		/*
1262 		 * We should set the dirty bit only for FOLL_WRITE but
1263 		 * for now the dirty bit in the pmd is meaningless.
1264 		 * And if the dirty bit will become meaningful and
1265 		 * we'll only set it with FOLL_WRITE, an atomic
1266 		 * set_bit will be required on the pmd to set the
1267 		 * young bit, instead of the current set_pmd_at.
1268 		 */
1269 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1270 		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1271 	}
1272 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1273 		if (page->mapping && trylock_page(page)) {
1274 			lru_add_drain();
1275 			if (page->mapping)
1276 				mlock_vma_page(page);
1277 			unlock_page(page);
1278 		}
1279 	}
1280 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1281 	VM_BUG_ON(!PageCompound(page));
1282 	if (flags & FOLL_GET)
1283 		get_page_foll(page);
1284 
1285 out:
1286 	return page;
1287 }
1288 
1289 /* NUMA hinting page fault entry point for trans huge pmds */
1290 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1291 				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1292 {
1293 	struct page *page;
1294 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1295 	int target_nid;
1296 	int current_nid = -1;
1297 	bool migrated;
1298 
1299 	spin_lock(&mm->page_table_lock);
1300 	if (unlikely(!pmd_same(pmd, *pmdp)))
1301 		goto out_unlock;
1302 
1303 	page = pmd_page(pmd);
1304 	get_page(page);
1305 	current_nid = page_to_nid(page);
1306 	count_vm_numa_event(NUMA_HINT_FAULTS);
1307 	if (current_nid == numa_node_id())
1308 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1309 
1310 	target_nid = mpol_misplaced(page, vma, haddr);
1311 	if (target_nid == -1) {
1312 		put_page(page);
1313 		goto clear_pmdnuma;
1314 	}
1315 
1316 	/* Acquire the page lock to serialise THP migrations */
1317 	spin_unlock(&mm->page_table_lock);
1318 	lock_page(page);
1319 
1320 	/* Confirm the PTE did not while locked */
1321 	spin_lock(&mm->page_table_lock);
1322 	if (unlikely(!pmd_same(pmd, *pmdp))) {
1323 		unlock_page(page);
1324 		put_page(page);
1325 		goto out_unlock;
1326 	}
1327 	spin_unlock(&mm->page_table_lock);
1328 
1329 	/* Migrate the THP to the requested node */
1330 	migrated = migrate_misplaced_transhuge_page(mm, vma,
1331 				pmdp, pmd, addr, page, target_nid);
1332 	if (!migrated)
1333 		goto check_same;
1334 
1335 	task_numa_fault(target_nid, HPAGE_PMD_NR, true);
1336 	return 0;
1337 
1338 check_same:
1339 	spin_lock(&mm->page_table_lock);
1340 	if (unlikely(!pmd_same(pmd, *pmdp)))
1341 		goto out_unlock;
1342 clear_pmdnuma:
1343 	pmd = pmd_mknonnuma(pmd);
1344 	set_pmd_at(mm, haddr, pmdp, pmd);
1345 	VM_BUG_ON(pmd_numa(*pmdp));
1346 	update_mmu_cache_pmd(vma, addr, pmdp);
1347 out_unlock:
1348 	spin_unlock(&mm->page_table_lock);
1349 	if (current_nid != -1)
1350 		task_numa_fault(current_nid, HPAGE_PMD_NR, false);
1351 	return 0;
1352 }
1353 
1354 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1355 		 pmd_t *pmd, unsigned long addr)
1356 {
1357 	int ret = 0;
1358 
1359 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1360 		struct page *page;
1361 		pgtable_t pgtable;
1362 		pmd_t orig_pmd;
1363 		pgtable = pgtable_trans_huge_withdraw(tlb->mm);
1364 		orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1365 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1366 		if (is_huge_zero_pmd(orig_pmd)) {
1367 			tlb->mm->nr_ptes--;
1368 			spin_unlock(&tlb->mm->page_table_lock);
1369 			put_huge_zero_page();
1370 		} else {
1371 			page = pmd_page(orig_pmd);
1372 			page_remove_rmap(page);
1373 			VM_BUG_ON(page_mapcount(page) < 0);
1374 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1375 			VM_BUG_ON(!PageHead(page));
1376 			tlb->mm->nr_ptes--;
1377 			spin_unlock(&tlb->mm->page_table_lock);
1378 			tlb_remove_page(tlb, page);
1379 		}
1380 		pte_free(tlb->mm, pgtable);
1381 		ret = 1;
1382 	}
1383 	return ret;
1384 }
1385 
1386 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1387 		unsigned long addr, unsigned long end,
1388 		unsigned char *vec)
1389 {
1390 	int ret = 0;
1391 
1392 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1393 		/*
1394 		 * All logical pages in the range are present
1395 		 * if backed by a huge page.
1396 		 */
1397 		spin_unlock(&vma->vm_mm->page_table_lock);
1398 		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1399 		ret = 1;
1400 	}
1401 
1402 	return ret;
1403 }
1404 
1405 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1406 		  unsigned long old_addr,
1407 		  unsigned long new_addr, unsigned long old_end,
1408 		  pmd_t *old_pmd, pmd_t *new_pmd)
1409 {
1410 	int ret = 0;
1411 	pmd_t pmd;
1412 
1413 	struct mm_struct *mm = vma->vm_mm;
1414 
1415 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1416 	    (new_addr & ~HPAGE_PMD_MASK) ||
1417 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1418 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1419 		goto out;
1420 
1421 	/*
1422 	 * The destination pmd shouldn't be established, free_pgtables()
1423 	 * should have release it.
1424 	 */
1425 	if (WARN_ON(!pmd_none(*new_pmd))) {
1426 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1427 		goto out;
1428 	}
1429 
1430 	ret = __pmd_trans_huge_lock(old_pmd, vma);
1431 	if (ret == 1) {
1432 		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1433 		VM_BUG_ON(!pmd_none(*new_pmd));
1434 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1435 		spin_unlock(&mm->page_table_lock);
1436 	}
1437 out:
1438 	return ret;
1439 }
1440 
1441 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1442 		unsigned long addr, pgprot_t newprot, int prot_numa)
1443 {
1444 	struct mm_struct *mm = vma->vm_mm;
1445 	int ret = 0;
1446 
1447 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1448 		pmd_t entry;
1449 		entry = pmdp_get_and_clear(mm, addr, pmd);
1450 		if (!prot_numa) {
1451 			entry = pmd_modify(entry, newprot);
1452 			BUG_ON(pmd_write(entry));
1453 		} else {
1454 			struct page *page = pmd_page(*pmd);
1455 
1456 			/* only check non-shared pages */
1457 			if (page_mapcount(page) == 1 &&
1458 			    !pmd_numa(*pmd)) {
1459 				entry = pmd_mknuma(entry);
1460 			}
1461 		}
1462 		set_pmd_at(mm, addr, pmd, entry);
1463 		spin_unlock(&vma->vm_mm->page_table_lock);
1464 		ret = 1;
1465 	}
1466 
1467 	return ret;
1468 }
1469 
1470 /*
1471  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1472  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1473  *
1474  * Note that if it returns 1, this routine returns without unlocking page
1475  * table locks. So callers must unlock them.
1476  */
1477 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1478 {
1479 	spin_lock(&vma->vm_mm->page_table_lock);
1480 	if (likely(pmd_trans_huge(*pmd))) {
1481 		if (unlikely(pmd_trans_splitting(*pmd))) {
1482 			spin_unlock(&vma->vm_mm->page_table_lock);
1483 			wait_split_huge_page(vma->anon_vma, pmd);
1484 			return -1;
1485 		} else {
1486 			/* Thp mapped by 'pmd' is stable, so we can
1487 			 * handle it as it is. */
1488 			return 1;
1489 		}
1490 	}
1491 	spin_unlock(&vma->vm_mm->page_table_lock);
1492 	return 0;
1493 }
1494 
1495 pmd_t *page_check_address_pmd(struct page *page,
1496 			      struct mm_struct *mm,
1497 			      unsigned long address,
1498 			      enum page_check_address_pmd_flag flag)
1499 {
1500 	pmd_t *pmd, *ret = NULL;
1501 
1502 	if (address & ~HPAGE_PMD_MASK)
1503 		goto out;
1504 
1505 	pmd = mm_find_pmd(mm, address);
1506 	if (!pmd)
1507 		goto out;
1508 	if (pmd_none(*pmd))
1509 		goto out;
1510 	if (pmd_page(*pmd) != page)
1511 		goto out;
1512 	/*
1513 	 * split_vma() may create temporary aliased mappings. There is
1514 	 * no risk as long as all huge pmd are found and have their
1515 	 * splitting bit set before __split_huge_page_refcount
1516 	 * runs. Finding the same huge pmd more than once during the
1517 	 * same rmap walk is not a problem.
1518 	 */
1519 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1520 	    pmd_trans_splitting(*pmd))
1521 		goto out;
1522 	if (pmd_trans_huge(*pmd)) {
1523 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1524 			  !pmd_trans_splitting(*pmd));
1525 		ret = pmd;
1526 	}
1527 out:
1528 	return ret;
1529 }
1530 
1531 static int __split_huge_page_splitting(struct page *page,
1532 				       struct vm_area_struct *vma,
1533 				       unsigned long address)
1534 {
1535 	struct mm_struct *mm = vma->vm_mm;
1536 	pmd_t *pmd;
1537 	int ret = 0;
1538 	/* For mmu_notifiers */
1539 	const unsigned long mmun_start = address;
1540 	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1541 
1542 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1543 	spin_lock(&mm->page_table_lock);
1544 	pmd = page_check_address_pmd(page, mm, address,
1545 				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1546 	if (pmd) {
1547 		/*
1548 		 * We can't temporarily set the pmd to null in order
1549 		 * to split it, the pmd must remain marked huge at all
1550 		 * times or the VM won't take the pmd_trans_huge paths
1551 		 * and it won't wait on the anon_vma->root->rwsem to
1552 		 * serialize against split_huge_page*.
1553 		 */
1554 		pmdp_splitting_flush(vma, address, pmd);
1555 		ret = 1;
1556 	}
1557 	spin_unlock(&mm->page_table_lock);
1558 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1559 
1560 	return ret;
1561 }
1562 
1563 static void __split_huge_page_refcount(struct page *page)
1564 {
1565 	int i;
1566 	struct zone *zone = page_zone(page);
1567 	struct lruvec *lruvec;
1568 	int tail_count = 0;
1569 
1570 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1571 	spin_lock_irq(&zone->lru_lock);
1572 	lruvec = mem_cgroup_page_lruvec(page, zone);
1573 
1574 	compound_lock(page);
1575 	/* complete memcg works before add pages to LRU */
1576 	mem_cgroup_split_huge_fixup(page);
1577 
1578 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1579 		struct page *page_tail = page + i;
1580 
1581 		/* tail_page->_mapcount cannot change */
1582 		BUG_ON(page_mapcount(page_tail) < 0);
1583 		tail_count += page_mapcount(page_tail);
1584 		/* check for overflow */
1585 		BUG_ON(tail_count < 0);
1586 		BUG_ON(atomic_read(&page_tail->_count) != 0);
1587 		/*
1588 		 * tail_page->_count is zero and not changing from
1589 		 * under us. But get_page_unless_zero() may be running
1590 		 * from under us on the tail_page. If we used
1591 		 * atomic_set() below instead of atomic_add(), we
1592 		 * would then run atomic_set() concurrently with
1593 		 * get_page_unless_zero(), and atomic_set() is
1594 		 * implemented in C not using locked ops. spin_unlock
1595 		 * on x86 sometime uses locked ops because of PPro
1596 		 * errata 66, 92, so unless somebody can guarantee
1597 		 * atomic_set() here would be safe on all archs (and
1598 		 * not only on x86), it's safer to use atomic_add().
1599 		 */
1600 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1601 			   &page_tail->_count);
1602 
1603 		/* after clearing PageTail the gup refcount can be released */
1604 		smp_mb();
1605 
1606 		/*
1607 		 * retain hwpoison flag of the poisoned tail page:
1608 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1609 		 *   by the memory-failure.
1610 		 */
1611 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1612 		page_tail->flags |= (page->flags &
1613 				     ((1L << PG_referenced) |
1614 				      (1L << PG_swapbacked) |
1615 				      (1L << PG_mlocked) |
1616 				      (1L << PG_uptodate)));
1617 		page_tail->flags |= (1L << PG_dirty);
1618 
1619 		/* clear PageTail before overwriting first_page */
1620 		smp_wmb();
1621 
1622 		/*
1623 		 * __split_huge_page_splitting() already set the
1624 		 * splitting bit in all pmd that could map this
1625 		 * hugepage, that will ensure no CPU can alter the
1626 		 * mapcount on the head page. The mapcount is only
1627 		 * accounted in the head page and it has to be
1628 		 * transferred to all tail pages in the below code. So
1629 		 * for this code to be safe, the split the mapcount
1630 		 * can't change. But that doesn't mean userland can't
1631 		 * keep changing and reading the page contents while
1632 		 * we transfer the mapcount, so the pmd splitting
1633 		 * status is achieved setting a reserved bit in the
1634 		 * pmd, not by clearing the present bit.
1635 		*/
1636 		page_tail->_mapcount = page->_mapcount;
1637 
1638 		BUG_ON(page_tail->mapping);
1639 		page_tail->mapping = page->mapping;
1640 
1641 		page_tail->index = page->index + i;
1642 		page_nid_xchg_last(page_tail, page_nid_last(page));
1643 
1644 		BUG_ON(!PageAnon(page_tail));
1645 		BUG_ON(!PageUptodate(page_tail));
1646 		BUG_ON(!PageDirty(page_tail));
1647 		BUG_ON(!PageSwapBacked(page_tail));
1648 
1649 		lru_add_page_tail(page, page_tail, lruvec);
1650 	}
1651 	atomic_sub(tail_count, &page->_count);
1652 	BUG_ON(atomic_read(&page->_count) <= 0);
1653 
1654 	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1655 	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1656 
1657 	ClearPageCompound(page);
1658 	compound_unlock(page);
1659 	spin_unlock_irq(&zone->lru_lock);
1660 
1661 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1662 		struct page *page_tail = page + i;
1663 		BUG_ON(page_count(page_tail) <= 0);
1664 		/*
1665 		 * Tail pages may be freed if there wasn't any mapping
1666 		 * like if add_to_swap() is running on a lru page that
1667 		 * had its mapping zapped. And freeing these pages
1668 		 * requires taking the lru_lock so we do the put_page
1669 		 * of the tail pages after the split is complete.
1670 		 */
1671 		put_page(page_tail);
1672 	}
1673 
1674 	/*
1675 	 * Only the head page (now become a regular page) is required
1676 	 * to be pinned by the caller.
1677 	 */
1678 	BUG_ON(page_count(page) <= 0);
1679 }
1680 
1681 static int __split_huge_page_map(struct page *page,
1682 				 struct vm_area_struct *vma,
1683 				 unsigned long address)
1684 {
1685 	struct mm_struct *mm = vma->vm_mm;
1686 	pmd_t *pmd, _pmd;
1687 	int ret = 0, i;
1688 	pgtable_t pgtable;
1689 	unsigned long haddr;
1690 
1691 	spin_lock(&mm->page_table_lock);
1692 	pmd = page_check_address_pmd(page, mm, address,
1693 				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1694 	if (pmd) {
1695 		pgtable = pgtable_trans_huge_withdraw(mm);
1696 		pmd_populate(mm, &_pmd, pgtable);
1697 
1698 		haddr = address;
1699 		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1700 			pte_t *pte, entry;
1701 			BUG_ON(PageCompound(page+i));
1702 			entry = mk_pte(page + i, vma->vm_page_prot);
1703 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1704 			if (!pmd_write(*pmd))
1705 				entry = pte_wrprotect(entry);
1706 			else
1707 				BUG_ON(page_mapcount(page) != 1);
1708 			if (!pmd_young(*pmd))
1709 				entry = pte_mkold(entry);
1710 			if (pmd_numa(*pmd))
1711 				entry = pte_mknuma(entry);
1712 			pte = pte_offset_map(&_pmd, haddr);
1713 			BUG_ON(!pte_none(*pte));
1714 			set_pte_at(mm, haddr, pte, entry);
1715 			pte_unmap(pte);
1716 		}
1717 
1718 		smp_wmb(); /* make pte visible before pmd */
1719 		/*
1720 		 * Up to this point the pmd is present and huge and
1721 		 * userland has the whole access to the hugepage
1722 		 * during the split (which happens in place). If we
1723 		 * overwrite the pmd with the not-huge version
1724 		 * pointing to the pte here (which of course we could
1725 		 * if all CPUs were bug free), userland could trigger
1726 		 * a small page size TLB miss on the small sized TLB
1727 		 * while the hugepage TLB entry is still established
1728 		 * in the huge TLB. Some CPU doesn't like that. See
1729 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1730 		 * Erratum 383 on page 93. Intel should be safe but is
1731 		 * also warns that it's only safe if the permission
1732 		 * and cache attributes of the two entries loaded in
1733 		 * the two TLB is identical (which should be the case
1734 		 * here). But it is generally safer to never allow
1735 		 * small and huge TLB entries for the same virtual
1736 		 * address to be loaded simultaneously. So instead of
1737 		 * doing "pmd_populate(); flush_tlb_range();" we first
1738 		 * mark the current pmd notpresent (atomically because
1739 		 * here the pmd_trans_huge and pmd_trans_splitting
1740 		 * must remain set at all times on the pmd until the
1741 		 * split is complete for this pmd), then we flush the
1742 		 * SMP TLB and finally we write the non-huge version
1743 		 * of the pmd entry with pmd_populate.
1744 		 */
1745 		pmdp_invalidate(vma, address, pmd);
1746 		pmd_populate(mm, pmd, pgtable);
1747 		ret = 1;
1748 	}
1749 	spin_unlock(&mm->page_table_lock);
1750 
1751 	return ret;
1752 }
1753 
1754 /* must be called with anon_vma->root->rwsem held */
1755 static void __split_huge_page(struct page *page,
1756 			      struct anon_vma *anon_vma)
1757 {
1758 	int mapcount, mapcount2;
1759 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1760 	struct anon_vma_chain *avc;
1761 
1762 	BUG_ON(!PageHead(page));
1763 	BUG_ON(PageTail(page));
1764 
1765 	mapcount = 0;
1766 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1767 		struct vm_area_struct *vma = avc->vma;
1768 		unsigned long addr = vma_address(page, vma);
1769 		BUG_ON(is_vma_temporary_stack(vma));
1770 		mapcount += __split_huge_page_splitting(page, vma, addr);
1771 	}
1772 	/*
1773 	 * It is critical that new vmas are added to the tail of the
1774 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1775 	 * and establishes a child pmd before
1776 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1777 	 * we fail to prevent copy_huge_pmd() from running until the
1778 	 * whole __split_huge_page() is complete), we will still see
1779 	 * the newly established pmd of the child later during the
1780 	 * walk, to be able to set it as pmd_trans_splitting too.
1781 	 */
1782 	if (mapcount != page_mapcount(page))
1783 		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1784 		       mapcount, page_mapcount(page));
1785 	BUG_ON(mapcount != page_mapcount(page));
1786 
1787 	__split_huge_page_refcount(page);
1788 
1789 	mapcount2 = 0;
1790 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1791 		struct vm_area_struct *vma = avc->vma;
1792 		unsigned long addr = vma_address(page, vma);
1793 		BUG_ON(is_vma_temporary_stack(vma));
1794 		mapcount2 += __split_huge_page_map(page, vma, addr);
1795 	}
1796 	if (mapcount != mapcount2)
1797 		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1798 		       mapcount, mapcount2, page_mapcount(page));
1799 	BUG_ON(mapcount != mapcount2);
1800 }
1801 
1802 int split_huge_page(struct page *page)
1803 {
1804 	struct anon_vma *anon_vma;
1805 	int ret = 1;
1806 
1807 	BUG_ON(is_huge_zero_pfn(page_to_pfn(page)));
1808 	BUG_ON(!PageAnon(page));
1809 
1810 	/*
1811 	 * The caller does not necessarily hold an mmap_sem that would prevent
1812 	 * the anon_vma disappearing so we first we take a reference to it
1813 	 * and then lock the anon_vma for write. This is similar to
1814 	 * page_lock_anon_vma_read except the write lock is taken to serialise
1815 	 * against parallel split or collapse operations.
1816 	 */
1817 	anon_vma = page_get_anon_vma(page);
1818 	if (!anon_vma)
1819 		goto out;
1820 	anon_vma_lock_write(anon_vma);
1821 
1822 	ret = 0;
1823 	if (!PageCompound(page))
1824 		goto out_unlock;
1825 
1826 	BUG_ON(!PageSwapBacked(page));
1827 	__split_huge_page(page, anon_vma);
1828 	count_vm_event(THP_SPLIT);
1829 
1830 	BUG_ON(PageCompound(page));
1831 out_unlock:
1832 	anon_vma_unlock_write(anon_vma);
1833 	put_anon_vma(anon_vma);
1834 out:
1835 	return ret;
1836 }
1837 
1838 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1839 
1840 int hugepage_madvise(struct vm_area_struct *vma,
1841 		     unsigned long *vm_flags, int advice)
1842 {
1843 	struct mm_struct *mm = vma->vm_mm;
1844 
1845 	switch (advice) {
1846 	case MADV_HUGEPAGE:
1847 		/*
1848 		 * Be somewhat over-protective like KSM for now!
1849 		 */
1850 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1851 			return -EINVAL;
1852 		if (mm->def_flags & VM_NOHUGEPAGE)
1853 			return -EINVAL;
1854 		*vm_flags &= ~VM_NOHUGEPAGE;
1855 		*vm_flags |= VM_HUGEPAGE;
1856 		/*
1857 		 * If the vma become good for khugepaged to scan,
1858 		 * register it here without waiting a page fault that
1859 		 * may not happen any time soon.
1860 		 */
1861 		if (unlikely(khugepaged_enter_vma_merge(vma)))
1862 			return -ENOMEM;
1863 		break;
1864 	case MADV_NOHUGEPAGE:
1865 		/*
1866 		 * Be somewhat over-protective like KSM for now!
1867 		 */
1868 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1869 			return -EINVAL;
1870 		*vm_flags &= ~VM_HUGEPAGE;
1871 		*vm_flags |= VM_NOHUGEPAGE;
1872 		/*
1873 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1874 		 * this vma even if we leave the mm registered in khugepaged if
1875 		 * it got registered before VM_NOHUGEPAGE was set.
1876 		 */
1877 		break;
1878 	}
1879 
1880 	return 0;
1881 }
1882 
1883 static int __init khugepaged_slab_init(void)
1884 {
1885 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1886 					  sizeof(struct mm_slot),
1887 					  __alignof__(struct mm_slot), 0, NULL);
1888 	if (!mm_slot_cache)
1889 		return -ENOMEM;
1890 
1891 	return 0;
1892 }
1893 
1894 static inline struct mm_slot *alloc_mm_slot(void)
1895 {
1896 	if (!mm_slot_cache)	/* initialization failed */
1897 		return NULL;
1898 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1899 }
1900 
1901 static inline void free_mm_slot(struct mm_slot *mm_slot)
1902 {
1903 	kmem_cache_free(mm_slot_cache, mm_slot);
1904 }
1905 
1906 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1907 {
1908 	struct mm_slot *mm_slot;
1909 
1910 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1911 		if (mm == mm_slot->mm)
1912 			return mm_slot;
1913 
1914 	return NULL;
1915 }
1916 
1917 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1918 				    struct mm_slot *mm_slot)
1919 {
1920 	mm_slot->mm = mm;
1921 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1922 }
1923 
1924 static inline int khugepaged_test_exit(struct mm_struct *mm)
1925 {
1926 	return atomic_read(&mm->mm_users) == 0;
1927 }
1928 
1929 int __khugepaged_enter(struct mm_struct *mm)
1930 {
1931 	struct mm_slot *mm_slot;
1932 	int wakeup;
1933 
1934 	mm_slot = alloc_mm_slot();
1935 	if (!mm_slot)
1936 		return -ENOMEM;
1937 
1938 	/* __khugepaged_exit() must not run from under us */
1939 	VM_BUG_ON(khugepaged_test_exit(mm));
1940 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1941 		free_mm_slot(mm_slot);
1942 		return 0;
1943 	}
1944 
1945 	spin_lock(&khugepaged_mm_lock);
1946 	insert_to_mm_slots_hash(mm, mm_slot);
1947 	/*
1948 	 * Insert just behind the scanning cursor, to let the area settle
1949 	 * down a little.
1950 	 */
1951 	wakeup = list_empty(&khugepaged_scan.mm_head);
1952 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1953 	spin_unlock(&khugepaged_mm_lock);
1954 
1955 	atomic_inc(&mm->mm_count);
1956 	if (wakeup)
1957 		wake_up_interruptible(&khugepaged_wait);
1958 
1959 	return 0;
1960 }
1961 
1962 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1963 {
1964 	unsigned long hstart, hend;
1965 	if (!vma->anon_vma)
1966 		/*
1967 		 * Not yet faulted in so we will register later in the
1968 		 * page fault if needed.
1969 		 */
1970 		return 0;
1971 	if (vma->vm_ops)
1972 		/* khugepaged not yet working on file or special mappings */
1973 		return 0;
1974 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1975 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1976 	hend = vma->vm_end & HPAGE_PMD_MASK;
1977 	if (hstart < hend)
1978 		return khugepaged_enter(vma);
1979 	return 0;
1980 }
1981 
1982 void __khugepaged_exit(struct mm_struct *mm)
1983 {
1984 	struct mm_slot *mm_slot;
1985 	int free = 0;
1986 
1987 	spin_lock(&khugepaged_mm_lock);
1988 	mm_slot = get_mm_slot(mm);
1989 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1990 		hash_del(&mm_slot->hash);
1991 		list_del(&mm_slot->mm_node);
1992 		free = 1;
1993 	}
1994 	spin_unlock(&khugepaged_mm_lock);
1995 
1996 	if (free) {
1997 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1998 		free_mm_slot(mm_slot);
1999 		mmdrop(mm);
2000 	} else if (mm_slot) {
2001 		/*
2002 		 * This is required to serialize against
2003 		 * khugepaged_test_exit() (which is guaranteed to run
2004 		 * under mmap sem read mode). Stop here (after we
2005 		 * return all pagetables will be destroyed) until
2006 		 * khugepaged has finished working on the pagetables
2007 		 * under the mmap_sem.
2008 		 */
2009 		down_write(&mm->mmap_sem);
2010 		up_write(&mm->mmap_sem);
2011 	}
2012 }
2013 
2014 static void release_pte_page(struct page *page)
2015 {
2016 	/* 0 stands for page_is_file_cache(page) == false */
2017 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2018 	unlock_page(page);
2019 	putback_lru_page(page);
2020 }
2021 
2022 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2023 {
2024 	while (--_pte >= pte) {
2025 		pte_t pteval = *_pte;
2026 		if (!pte_none(pteval))
2027 			release_pte_page(pte_page(pteval));
2028 	}
2029 }
2030 
2031 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2032 					unsigned long address,
2033 					pte_t *pte)
2034 {
2035 	struct page *page;
2036 	pte_t *_pte;
2037 	int referenced = 0, none = 0;
2038 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2039 	     _pte++, address += PAGE_SIZE) {
2040 		pte_t pteval = *_pte;
2041 		if (pte_none(pteval)) {
2042 			if (++none <= khugepaged_max_ptes_none)
2043 				continue;
2044 			else
2045 				goto out;
2046 		}
2047 		if (!pte_present(pteval) || !pte_write(pteval))
2048 			goto out;
2049 		page = vm_normal_page(vma, address, pteval);
2050 		if (unlikely(!page))
2051 			goto out;
2052 
2053 		VM_BUG_ON(PageCompound(page));
2054 		BUG_ON(!PageAnon(page));
2055 		VM_BUG_ON(!PageSwapBacked(page));
2056 
2057 		/* cannot use mapcount: can't collapse if there's a gup pin */
2058 		if (page_count(page) != 1)
2059 			goto out;
2060 		/*
2061 		 * We can do it before isolate_lru_page because the
2062 		 * page can't be freed from under us. NOTE: PG_lock
2063 		 * is needed to serialize against split_huge_page
2064 		 * when invoked from the VM.
2065 		 */
2066 		if (!trylock_page(page))
2067 			goto out;
2068 		/*
2069 		 * Isolate the page to avoid collapsing an hugepage
2070 		 * currently in use by the VM.
2071 		 */
2072 		if (isolate_lru_page(page)) {
2073 			unlock_page(page);
2074 			goto out;
2075 		}
2076 		/* 0 stands for page_is_file_cache(page) == false */
2077 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2078 		VM_BUG_ON(!PageLocked(page));
2079 		VM_BUG_ON(PageLRU(page));
2080 
2081 		/* If there is no mapped pte young don't collapse the page */
2082 		if (pte_young(pteval) || PageReferenced(page) ||
2083 		    mmu_notifier_test_young(vma->vm_mm, address))
2084 			referenced = 1;
2085 	}
2086 	if (likely(referenced))
2087 		return 1;
2088 out:
2089 	release_pte_pages(pte, _pte);
2090 	return 0;
2091 }
2092 
2093 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2094 				      struct vm_area_struct *vma,
2095 				      unsigned long address,
2096 				      spinlock_t *ptl)
2097 {
2098 	pte_t *_pte;
2099 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2100 		pte_t pteval = *_pte;
2101 		struct page *src_page;
2102 
2103 		if (pte_none(pteval)) {
2104 			clear_user_highpage(page, address);
2105 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2106 		} else {
2107 			src_page = pte_page(pteval);
2108 			copy_user_highpage(page, src_page, address, vma);
2109 			VM_BUG_ON(page_mapcount(src_page) != 1);
2110 			release_pte_page(src_page);
2111 			/*
2112 			 * ptl mostly unnecessary, but preempt has to
2113 			 * be disabled to update the per-cpu stats
2114 			 * inside page_remove_rmap().
2115 			 */
2116 			spin_lock(ptl);
2117 			/*
2118 			 * paravirt calls inside pte_clear here are
2119 			 * superfluous.
2120 			 */
2121 			pte_clear(vma->vm_mm, address, _pte);
2122 			page_remove_rmap(src_page);
2123 			spin_unlock(ptl);
2124 			free_page_and_swap_cache(src_page);
2125 		}
2126 
2127 		address += PAGE_SIZE;
2128 		page++;
2129 	}
2130 }
2131 
2132 static void khugepaged_alloc_sleep(void)
2133 {
2134 	wait_event_freezable_timeout(khugepaged_wait, false,
2135 			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2136 }
2137 
2138 #ifdef CONFIG_NUMA
2139 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2140 {
2141 	if (IS_ERR(*hpage)) {
2142 		if (!*wait)
2143 			return false;
2144 
2145 		*wait = false;
2146 		*hpage = NULL;
2147 		khugepaged_alloc_sleep();
2148 	} else if (*hpage) {
2149 		put_page(*hpage);
2150 		*hpage = NULL;
2151 	}
2152 
2153 	return true;
2154 }
2155 
2156 static struct page
2157 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2158 		       struct vm_area_struct *vma, unsigned long address,
2159 		       int node)
2160 {
2161 	VM_BUG_ON(*hpage);
2162 	/*
2163 	 * Allocate the page while the vma is still valid and under
2164 	 * the mmap_sem read mode so there is no memory allocation
2165 	 * later when we take the mmap_sem in write mode. This is more
2166 	 * friendly behavior (OTOH it may actually hide bugs) to
2167 	 * filesystems in userland with daemons allocating memory in
2168 	 * the userland I/O paths.  Allocating memory with the
2169 	 * mmap_sem in read mode is good idea also to allow greater
2170 	 * scalability.
2171 	 */
2172 	*hpage  = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
2173 				      node, __GFP_OTHER_NODE);
2174 
2175 	/*
2176 	 * After allocating the hugepage, release the mmap_sem read lock in
2177 	 * preparation for taking it in write mode.
2178 	 */
2179 	up_read(&mm->mmap_sem);
2180 	if (unlikely(!*hpage)) {
2181 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2182 		*hpage = ERR_PTR(-ENOMEM);
2183 		return NULL;
2184 	}
2185 
2186 	count_vm_event(THP_COLLAPSE_ALLOC);
2187 	return *hpage;
2188 }
2189 #else
2190 static struct page *khugepaged_alloc_hugepage(bool *wait)
2191 {
2192 	struct page *hpage;
2193 
2194 	do {
2195 		hpage = alloc_hugepage(khugepaged_defrag());
2196 		if (!hpage) {
2197 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2198 			if (!*wait)
2199 				return NULL;
2200 
2201 			*wait = false;
2202 			khugepaged_alloc_sleep();
2203 		} else
2204 			count_vm_event(THP_COLLAPSE_ALLOC);
2205 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2206 
2207 	return hpage;
2208 }
2209 
2210 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2211 {
2212 	if (!*hpage)
2213 		*hpage = khugepaged_alloc_hugepage(wait);
2214 
2215 	if (unlikely(!*hpage))
2216 		return false;
2217 
2218 	return true;
2219 }
2220 
2221 static struct page
2222 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2223 		       struct vm_area_struct *vma, unsigned long address,
2224 		       int node)
2225 {
2226 	up_read(&mm->mmap_sem);
2227 	VM_BUG_ON(!*hpage);
2228 	return  *hpage;
2229 }
2230 #endif
2231 
2232 static bool hugepage_vma_check(struct vm_area_struct *vma)
2233 {
2234 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2235 	    (vma->vm_flags & VM_NOHUGEPAGE))
2236 		return false;
2237 
2238 	if (!vma->anon_vma || vma->vm_ops)
2239 		return false;
2240 	if (is_vma_temporary_stack(vma))
2241 		return false;
2242 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2243 	return true;
2244 }
2245 
2246 static void collapse_huge_page(struct mm_struct *mm,
2247 				   unsigned long address,
2248 				   struct page **hpage,
2249 				   struct vm_area_struct *vma,
2250 				   int node)
2251 {
2252 	pmd_t *pmd, _pmd;
2253 	pte_t *pte;
2254 	pgtable_t pgtable;
2255 	struct page *new_page;
2256 	spinlock_t *ptl;
2257 	int isolated;
2258 	unsigned long hstart, hend;
2259 	unsigned long mmun_start;	/* For mmu_notifiers */
2260 	unsigned long mmun_end;		/* For mmu_notifiers */
2261 
2262 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2263 
2264 	/* release the mmap_sem read lock. */
2265 	new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2266 	if (!new_page)
2267 		return;
2268 
2269 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2270 		return;
2271 
2272 	/*
2273 	 * Prevent all access to pagetables with the exception of
2274 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2275 	 * handled by the anon_vma lock + PG_lock.
2276 	 */
2277 	down_write(&mm->mmap_sem);
2278 	if (unlikely(khugepaged_test_exit(mm)))
2279 		goto out;
2280 
2281 	vma = find_vma(mm, address);
2282 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2283 	hend = vma->vm_end & HPAGE_PMD_MASK;
2284 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2285 		goto out;
2286 	if (!hugepage_vma_check(vma))
2287 		goto out;
2288 	pmd = mm_find_pmd(mm, address);
2289 	if (!pmd)
2290 		goto out;
2291 	if (pmd_trans_huge(*pmd))
2292 		goto out;
2293 
2294 	anon_vma_lock_write(vma->anon_vma);
2295 
2296 	pte = pte_offset_map(pmd, address);
2297 	ptl = pte_lockptr(mm, pmd);
2298 
2299 	mmun_start = address;
2300 	mmun_end   = address + HPAGE_PMD_SIZE;
2301 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2302 	spin_lock(&mm->page_table_lock); /* probably unnecessary */
2303 	/*
2304 	 * After this gup_fast can't run anymore. This also removes
2305 	 * any huge TLB entry from the CPU so we won't allow
2306 	 * huge and small TLB entries for the same virtual address
2307 	 * to avoid the risk of CPU bugs in that area.
2308 	 */
2309 	_pmd = pmdp_clear_flush(vma, address, pmd);
2310 	spin_unlock(&mm->page_table_lock);
2311 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2312 
2313 	spin_lock(ptl);
2314 	isolated = __collapse_huge_page_isolate(vma, address, pte);
2315 	spin_unlock(ptl);
2316 
2317 	if (unlikely(!isolated)) {
2318 		pte_unmap(pte);
2319 		spin_lock(&mm->page_table_lock);
2320 		BUG_ON(!pmd_none(*pmd));
2321 		set_pmd_at(mm, address, pmd, _pmd);
2322 		spin_unlock(&mm->page_table_lock);
2323 		anon_vma_unlock_write(vma->anon_vma);
2324 		goto out;
2325 	}
2326 
2327 	/*
2328 	 * All pages are isolated and locked so anon_vma rmap
2329 	 * can't run anymore.
2330 	 */
2331 	anon_vma_unlock_write(vma->anon_vma);
2332 
2333 	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2334 	pte_unmap(pte);
2335 	__SetPageUptodate(new_page);
2336 	pgtable = pmd_pgtable(_pmd);
2337 
2338 	_pmd = mk_huge_pmd(new_page, vma);
2339 
2340 	/*
2341 	 * spin_lock() below is not the equivalent of smp_wmb(), so
2342 	 * this is needed to avoid the copy_huge_page writes to become
2343 	 * visible after the set_pmd_at() write.
2344 	 */
2345 	smp_wmb();
2346 
2347 	spin_lock(&mm->page_table_lock);
2348 	BUG_ON(!pmd_none(*pmd));
2349 	page_add_new_anon_rmap(new_page, vma, address);
2350 	set_pmd_at(mm, address, pmd, _pmd);
2351 	update_mmu_cache_pmd(vma, address, pmd);
2352 	pgtable_trans_huge_deposit(mm, pgtable);
2353 	spin_unlock(&mm->page_table_lock);
2354 
2355 	*hpage = NULL;
2356 
2357 	khugepaged_pages_collapsed++;
2358 out_up_write:
2359 	up_write(&mm->mmap_sem);
2360 	return;
2361 
2362 out:
2363 	mem_cgroup_uncharge_page(new_page);
2364 	goto out_up_write;
2365 }
2366 
2367 static int khugepaged_scan_pmd(struct mm_struct *mm,
2368 			       struct vm_area_struct *vma,
2369 			       unsigned long address,
2370 			       struct page **hpage)
2371 {
2372 	pmd_t *pmd;
2373 	pte_t *pte, *_pte;
2374 	int ret = 0, referenced = 0, none = 0;
2375 	struct page *page;
2376 	unsigned long _address;
2377 	spinlock_t *ptl;
2378 	int node = NUMA_NO_NODE;
2379 
2380 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2381 
2382 	pmd = mm_find_pmd(mm, address);
2383 	if (!pmd)
2384 		goto out;
2385 	if (pmd_trans_huge(*pmd))
2386 		goto out;
2387 
2388 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2389 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2390 	     _pte++, _address += PAGE_SIZE) {
2391 		pte_t pteval = *_pte;
2392 		if (pte_none(pteval)) {
2393 			if (++none <= khugepaged_max_ptes_none)
2394 				continue;
2395 			else
2396 				goto out_unmap;
2397 		}
2398 		if (!pte_present(pteval) || !pte_write(pteval))
2399 			goto out_unmap;
2400 		page = vm_normal_page(vma, _address, pteval);
2401 		if (unlikely(!page))
2402 			goto out_unmap;
2403 		/*
2404 		 * Chose the node of the first page. This could
2405 		 * be more sophisticated and look at more pages,
2406 		 * but isn't for now.
2407 		 */
2408 		if (node == NUMA_NO_NODE)
2409 			node = page_to_nid(page);
2410 		VM_BUG_ON(PageCompound(page));
2411 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2412 			goto out_unmap;
2413 		/* cannot use mapcount: can't collapse if there's a gup pin */
2414 		if (page_count(page) != 1)
2415 			goto out_unmap;
2416 		if (pte_young(pteval) || PageReferenced(page) ||
2417 		    mmu_notifier_test_young(vma->vm_mm, address))
2418 			referenced = 1;
2419 	}
2420 	if (referenced)
2421 		ret = 1;
2422 out_unmap:
2423 	pte_unmap_unlock(pte, ptl);
2424 	if (ret)
2425 		/* collapse_huge_page will return with the mmap_sem released */
2426 		collapse_huge_page(mm, address, hpage, vma, node);
2427 out:
2428 	return ret;
2429 }
2430 
2431 static void collect_mm_slot(struct mm_slot *mm_slot)
2432 {
2433 	struct mm_struct *mm = mm_slot->mm;
2434 
2435 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2436 
2437 	if (khugepaged_test_exit(mm)) {
2438 		/* free mm_slot */
2439 		hash_del(&mm_slot->hash);
2440 		list_del(&mm_slot->mm_node);
2441 
2442 		/*
2443 		 * Not strictly needed because the mm exited already.
2444 		 *
2445 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2446 		 */
2447 
2448 		/* khugepaged_mm_lock actually not necessary for the below */
2449 		free_mm_slot(mm_slot);
2450 		mmdrop(mm);
2451 	}
2452 }
2453 
2454 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2455 					    struct page **hpage)
2456 	__releases(&khugepaged_mm_lock)
2457 	__acquires(&khugepaged_mm_lock)
2458 {
2459 	struct mm_slot *mm_slot;
2460 	struct mm_struct *mm;
2461 	struct vm_area_struct *vma;
2462 	int progress = 0;
2463 
2464 	VM_BUG_ON(!pages);
2465 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2466 
2467 	if (khugepaged_scan.mm_slot)
2468 		mm_slot = khugepaged_scan.mm_slot;
2469 	else {
2470 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2471 				     struct mm_slot, mm_node);
2472 		khugepaged_scan.address = 0;
2473 		khugepaged_scan.mm_slot = mm_slot;
2474 	}
2475 	spin_unlock(&khugepaged_mm_lock);
2476 
2477 	mm = mm_slot->mm;
2478 	down_read(&mm->mmap_sem);
2479 	if (unlikely(khugepaged_test_exit(mm)))
2480 		vma = NULL;
2481 	else
2482 		vma = find_vma(mm, khugepaged_scan.address);
2483 
2484 	progress++;
2485 	for (; vma; vma = vma->vm_next) {
2486 		unsigned long hstart, hend;
2487 
2488 		cond_resched();
2489 		if (unlikely(khugepaged_test_exit(mm))) {
2490 			progress++;
2491 			break;
2492 		}
2493 		if (!hugepage_vma_check(vma)) {
2494 skip:
2495 			progress++;
2496 			continue;
2497 		}
2498 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2499 		hend = vma->vm_end & HPAGE_PMD_MASK;
2500 		if (hstart >= hend)
2501 			goto skip;
2502 		if (khugepaged_scan.address > hend)
2503 			goto skip;
2504 		if (khugepaged_scan.address < hstart)
2505 			khugepaged_scan.address = hstart;
2506 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2507 
2508 		while (khugepaged_scan.address < hend) {
2509 			int ret;
2510 			cond_resched();
2511 			if (unlikely(khugepaged_test_exit(mm)))
2512 				goto breakouterloop;
2513 
2514 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2515 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2516 				  hend);
2517 			ret = khugepaged_scan_pmd(mm, vma,
2518 						  khugepaged_scan.address,
2519 						  hpage);
2520 			/* move to next address */
2521 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2522 			progress += HPAGE_PMD_NR;
2523 			if (ret)
2524 				/* we released mmap_sem so break loop */
2525 				goto breakouterloop_mmap_sem;
2526 			if (progress >= pages)
2527 				goto breakouterloop;
2528 		}
2529 	}
2530 breakouterloop:
2531 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2532 breakouterloop_mmap_sem:
2533 
2534 	spin_lock(&khugepaged_mm_lock);
2535 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2536 	/*
2537 	 * Release the current mm_slot if this mm is about to die, or
2538 	 * if we scanned all vmas of this mm.
2539 	 */
2540 	if (khugepaged_test_exit(mm) || !vma) {
2541 		/*
2542 		 * Make sure that if mm_users is reaching zero while
2543 		 * khugepaged runs here, khugepaged_exit will find
2544 		 * mm_slot not pointing to the exiting mm.
2545 		 */
2546 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2547 			khugepaged_scan.mm_slot = list_entry(
2548 				mm_slot->mm_node.next,
2549 				struct mm_slot, mm_node);
2550 			khugepaged_scan.address = 0;
2551 		} else {
2552 			khugepaged_scan.mm_slot = NULL;
2553 			khugepaged_full_scans++;
2554 		}
2555 
2556 		collect_mm_slot(mm_slot);
2557 	}
2558 
2559 	return progress;
2560 }
2561 
2562 static int khugepaged_has_work(void)
2563 {
2564 	return !list_empty(&khugepaged_scan.mm_head) &&
2565 		khugepaged_enabled();
2566 }
2567 
2568 static int khugepaged_wait_event(void)
2569 {
2570 	return !list_empty(&khugepaged_scan.mm_head) ||
2571 		kthread_should_stop();
2572 }
2573 
2574 static void khugepaged_do_scan(void)
2575 {
2576 	struct page *hpage = NULL;
2577 	unsigned int progress = 0, pass_through_head = 0;
2578 	unsigned int pages = khugepaged_pages_to_scan;
2579 	bool wait = true;
2580 
2581 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2582 
2583 	while (progress < pages) {
2584 		if (!khugepaged_prealloc_page(&hpage, &wait))
2585 			break;
2586 
2587 		cond_resched();
2588 
2589 		if (unlikely(kthread_should_stop() || freezing(current)))
2590 			break;
2591 
2592 		spin_lock(&khugepaged_mm_lock);
2593 		if (!khugepaged_scan.mm_slot)
2594 			pass_through_head++;
2595 		if (khugepaged_has_work() &&
2596 		    pass_through_head < 2)
2597 			progress += khugepaged_scan_mm_slot(pages - progress,
2598 							    &hpage);
2599 		else
2600 			progress = pages;
2601 		spin_unlock(&khugepaged_mm_lock);
2602 	}
2603 
2604 	if (!IS_ERR_OR_NULL(hpage))
2605 		put_page(hpage);
2606 }
2607 
2608 static void khugepaged_wait_work(void)
2609 {
2610 	try_to_freeze();
2611 
2612 	if (khugepaged_has_work()) {
2613 		if (!khugepaged_scan_sleep_millisecs)
2614 			return;
2615 
2616 		wait_event_freezable_timeout(khugepaged_wait,
2617 					     kthread_should_stop(),
2618 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2619 		return;
2620 	}
2621 
2622 	if (khugepaged_enabled())
2623 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2624 }
2625 
2626 static int khugepaged(void *none)
2627 {
2628 	struct mm_slot *mm_slot;
2629 
2630 	set_freezable();
2631 	set_user_nice(current, 19);
2632 
2633 	while (!kthread_should_stop()) {
2634 		khugepaged_do_scan();
2635 		khugepaged_wait_work();
2636 	}
2637 
2638 	spin_lock(&khugepaged_mm_lock);
2639 	mm_slot = khugepaged_scan.mm_slot;
2640 	khugepaged_scan.mm_slot = NULL;
2641 	if (mm_slot)
2642 		collect_mm_slot(mm_slot);
2643 	spin_unlock(&khugepaged_mm_lock);
2644 	return 0;
2645 }
2646 
2647 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2648 		unsigned long haddr, pmd_t *pmd)
2649 {
2650 	struct mm_struct *mm = vma->vm_mm;
2651 	pgtable_t pgtable;
2652 	pmd_t _pmd;
2653 	int i;
2654 
2655 	pmdp_clear_flush(vma, haddr, pmd);
2656 	/* leave pmd empty until pte is filled */
2657 
2658 	pgtable = pgtable_trans_huge_withdraw(mm);
2659 	pmd_populate(mm, &_pmd, pgtable);
2660 
2661 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2662 		pte_t *pte, entry;
2663 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2664 		entry = pte_mkspecial(entry);
2665 		pte = pte_offset_map(&_pmd, haddr);
2666 		VM_BUG_ON(!pte_none(*pte));
2667 		set_pte_at(mm, haddr, pte, entry);
2668 		pte_unmap(pte);
2669 	}
2670 	smp_wmb(); /* make pte visible before pmd */
2671 	pmd_populate(mm, pmd, pgtable);
2672 	put_huge_zero_page();
2673 }
2674 
2675 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2676 		pmd_t *pmd)
2677 {
2678 	struct page *page;
2679 	struct mm_struct *mm = vma->vm_mm;
2680 	unsigned long haddr = address & HPAGE_PMD_MASK;
2681 	unsigned long mmun_start;	/* For mmu_notifiers */
2682 	unsigned long mmun_end;		/* For mmu_notifiers */
2683 
2684 	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2685 
2686 	mmun_start = haddr;
2687 	mmun_end   = haddr + HPAGE_PMD_SIZE;
2688 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2689 	spin_lock(&mm->page_table_lock);
2690 	if (unlikely(!pmd_trans_huge(*pmd))) {
2691 		spin_unlock(&mm->page_table_lock);
2692 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2693 		return;
2694 	}
2695 	if (is_huge_zero_pmd(*pmd)) {
2696 		__split_huge_zero_page_pmd(vma, haddr, pmd);
2697 		spin_unlock(&mm->page_table_lock);
2698 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2699 		return;
2700 	}
2701 	page = pmd_page(*pmd);
2702 	VM_BUG_ON(!page_count(page));
2703 	get_page(page);
2704 	spin_unlock(&mm->page_table_lock);
2705 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2706 
2707 	split_huge_page(page);
2708 
2709 	put_page(page);
2710 	BUG_ON(pmd_trans_huge(*pmd));
2711 }
2712 
2713 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2714 		pmd_t *pmd)
2715 {
2716 	struct vm_area_struct *vma;
2717 
2718 	vma = find_vma(mm, address);
2719 	BUG_ON(vma == NULL);
2720 	split_huge_page_pmd(vma, address, pmd);
2721 }
2722 
2723 static void split_huge_page_address(struct mm_struct *mm,
2724 				    unsigned long address)
2725 {
2726 	pmd_t *pmd;
2727 
2728 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2729 
2730 	pmd = mm_find_pmd(mm, address);
2731 	if (!pmd)
2732 		return;
2733 	/*
2734 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2735 	 * materialize from under us.
2736 	 */
2737 	split_huge_page_pmd_mm(mm, address, pmd);
2738 }
2739 
2740 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2741 			     unsigned long start,
2742 			     unsigned long end,
2743 			     long adjust_next)
2744 {
2745 	/*
2746 	 * If the new start address isn't hpage aligned and it could
2747 	 * previously contain an hugepage: check if we need to split
2748 	 * an huge pmd.
2749 	 */
2750 	if (start & ~HPAGE_PMD_MASK &&
2751 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2752 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2753 		split_huge_page_address(vma->vm_mm, start);
2754 
2755 	/*
2756 	 * If the new end address isn't hpage aligned and it could
2757 	 * previously contain an hugepage: check if we need to split
2758 	 * an huge pmd.
2759 	 */
2760 	if (end & ~HPAGE_PMD_MASK &&
2761 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2762 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2763 		split_huge_page_address(vma->vm_mm, end);
2764 
2765 	/*
2766 	 * If we're also updating the vma->vm_next->vm_start, if the new
2767 	 * vm_next->vm_start isn't page aligned and it could previously
2768 	 * contain an hugepage: check if we need to split an huge pmd.
2769 	 */
2770 	if (adjust_next > 0) {
2771 		struct vm_area_struct *next = vma->vm_next;
2772 		unsigned long nstart = next->vm_start;
2773 		nstart += adjust_next << PAGE_SHIFT;
2774 		if (nstart & ~HPAGE_PMD_MASK &&
2775 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2776 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2777 			split_huge_page_address(next->vm_mm, nstart);
2778 	}
2779 }
2780