1 /* 2 * Copyright (C) 2009 Red Hat, Inc. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/mm.h> 11 #include <linux/sched.h> 12 #include <linux/highmem.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mmu_notifier.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/shrinker.h> 18 #include <linux/mm_inline.h> 19 #include <linux/kthread.h> 20 #include <linux/khugepaged.h> 21 #include <linux/freezer.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/migrate.h> 25 #include <linux/hashtable.h> 26 27 #include <asm/tlb.h> 28 #include <asm/pgalloc.h> 29 #include "internal.h" 30 31 /* 32 * By default transparent hugepage support is disabled in order that avoid 33 * to risk increase the memory footprint of applications without a guaranteed 34 * benefit. When transparent hugepage support is enabled, is for all mappings, 35 * and khugepaged scans all mappings. 36 * Defrag is invoked by khugepaged hugepage allocations and by page faults 37 * for all hugepage allocations. 38 */ 39 unsigned long transparent_hugepage_flags __read_mostly = 40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 41 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 42 #endif 43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 44 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 45 #endif 46 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)| 47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 48 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 49 50 /* default scan 8*512 pte (or vmas) every 30 second */ 51 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8; 52 static unsigned int khugepaged_pages_collapsed; 53 static unsigned int khugepaged_full_scans; 54 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 55 /* during fragmentation poll the hugepage allocator once every minute */ 56 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 57 static struct task_struct *khugepaged_thread __read_mostly; 58 static DEFINE_MUTEX(khugepaged_mutex); 59 static DEFINE_SPINLOCK(khugepaged_mm_lock); 60 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 61 /* 62 * default collapse hugepages if there is at least one pte mapped like 63 * it would have happened if the vma was large enough during page 64 * fault. 65 */ 66 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1; 67 68 static int khugepaged(void *none); 69 static int khugepaged_slab_init(void); 70 71 #define MM_SLOTS_HASH_BITS 10 72 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 73 74 static struct kmem_cache *mm_slot_cache __read_mostly; 75 76 /** 77 * struct mm_slot - hash lookup from mm to mm_slot 78 * @hash: hash collision list 79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head 80 * @mm: the mm that this information is valid for 81 */ 82 struct mm_slot { 83 struct hlist_node hash; 84 struct list_head mm_node; 85 struct mm_struct *mm; 86 }; 87 88 /** 89 * struct khugepaged_scan - cursor for scanning 90 * @mm_head: the head of the mm list to scan 91 * @mm_slot: the current mm_slot we are scanning 92 * @address: the next address inside that to be scanned 93 * 94 * There is only the one khugepaged_scan instance of this cursor structure. 95 */ 96 struct khugepaged_scan { 97 struct list_head mm_head; 98 struct mm_slot *mm_slot; 99 unsigned long address; 100 }; 101 static struct khugepaged_scan khugepaged_scan = { 102 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 103 }; 104 105 106 static int set_recommended_min_free_kbytes(void) 107 { 108 struct zone *zone; 109 int nr_zones = 0; 110 unsigned long recommended_min; 111 112 if (!khugepaged_enabled()) 113 return 0; 114 115 for_each_populated_zone(zone) 116 nr_zones++; 117 118 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */ 119 recommended_min = pageblock_nr_pages * nr_zones * 2; 120 121 /* 122 * Make sure that on average at least two pageblocks are almost free 123 * of another type, one for a migratetype to fall back to and a 124 * second to avoid subsequent fallbacks of other types There are 3 125 * MIGRATE_TYPES we care about. 126 */ 127 recommended_min += pageblock_nr_pages * nr_zones * 128 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 129 130 /* don't ever allow to reserve more than 5% of the lowmem */ 131 recommended_min = min(recommended_min, 132 (unsigned long) nr_free_buffer_pages() / 20); 133 recommended_min <<= (PAGE_SHIFT-10); 134 135 if (recommended_min > min_free_kbytes) { 136 if (user_min_free_kbytes >= 0) 137 pr_info("raising min_free_kbytes from %d to %lu " 138 "to help transparent hugepage allocations\n", 139 min_free_kbytes, recommended_min); 140 141 min_free_kbytes = recommended_min; 142 } 143 setup_per_zone_wmarks(); 144 return 0; 145 } 146 late_initcall(set_recommended_min_free_kbytes); 147 148 static int start_khugepaged(void) 149 { 150 int err = 0; 151 if (khugepaged_enabled()) { 152 if (!khugepaged_thread) 153 khugepaged_thread = kthread_run(khugepaged, NULL, 154 "khugepaged"); 155 if (unlikely(IS_ERR(khugepaged_thread))) { 156 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 157 err = PTR_ERR(khugepaged_thread); 158 khugepaged_thread = NULL; 159 } 160 161 if (!list_empty(&khugepaged_scan.mm_head)) 162 wake_up_interruptible(&khugepaged_wait); 163 164 set_recommended_min_free_kbytes(); 165 } else if (khugepaged_thread) { 166 kthread_stop(khugepaged_thread); 167 khugepaged_thread = NULL; 168 } 169 170 return err; 171 } 172 173 static atomic_t huge_zero_refcount; 174 struct page *huge_zero_page __read_mostly; 175 176 static inline bool is_huge_zero_pmd(pmd_t pmd) 177 { 178 return is_huge_zero_page(pmd_page(pmd)); 179 } 180 181 static struct page *get_huge_zero_page(void) 182 { 183 struct page *zero_page; 184 retry: 185 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 186 return ACCESS_ONCE(huge_zero_page); 187 188 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 189 HPAGE_PMD_ORDER); 190 if (!zero_page) { 191 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 192 return NULL; 193 } 194 count_vm_event(THP_ZERO_PAGE_ALLOC); 195 preempt_disable(); 196 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 197 preempt_enable(); 198 __free_pages(zero_page, compound_order(zero_page)); 199 goto retry; 200 } 201 202 /* We take additional reference here. It will be put back by shrinker */ 203 atomic_set(&huge_zero_refcount, 2); 204 preempt_enable(); 205 return ACCESS_ONCE(huge_zero_page); 206 } 207 208 static void put_huge_zero_page(void) 209 { 210 /* 211 * Counter should never go to zero here. Only shrinker can put 212 * last reference. 213 */ 214 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 215 } 216 217 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 218 struct shrink_control *sc) 219 { 220 /* we can free zero page only if last reference remains */ 221 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 222 } 223 224 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 225 struct shrink_control *sc) 226 { 227 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 228 struct page *zero_page = xchg(&huge_zero_page, NULL); 229 BUG_ON(zero_page == NULL); 230 __free_pages(zero_page, compound_order(zero_page)); 231 return HPAGE_PMD_NR; 232 } 233 234 return 0; 235 } 236 237 static struct shrinker huge_zero_page_shrinker = { 238 .count_objects = shrink_huge_zero_page_count, 239 .scan_objects = shrink_huge_zero_page_scan, 240 .seeks = DEFAULT_SEEKS, 241 }; 242 243 #ifdef CONFIG_SYSFS 244 245 static ssize_t double_flag_show(struct kobject *kobj, 246 struct kobj_attribute *attr, char *buf, 247 enum transparent_hugepage_flag enabled, 248 enum transparent_hugepage_flag req_madv) 249 { 250 if (test_bit(enabled, &transparent_hugepage_flags)) { 251 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags)); 252 return sprintf(buf, "[always] madvise never\n"); 253 } else if (test_bit(req_madv, &transparent_hugepage_flags)) 254 return sprintf(buf, "always [madvise] never\n"); 255 else 256 return sprintf(buf, "always madvise [never]\n"); 257 } 258 static ssize_t double_flag_store(struct kobject *kobj, 259 struct kobj_attribute *attr, 260 const char *buf, size_t count, 261 enum transparent_hugepage_flag enabled, 262 enum transparent_hugepage_flag req_madv) 263 { 264 if (!memcmp("always", buf, 265 min(sizeof("always")-1, count))) { 266 set_bit(enabled, &transparent_hugepage_flags); 267 clear_bit(req_madv, &transparent_hugepage_flags); 268 } else if (!memcmp("madvise", buf, 269 min(sizeof("madvise")-1, count))) { 270 clear_bit(enabled, &transparent_hugepage_flags); 271 set_bit(req_madv, &transparent_hugepage_flags); 272 } else if (!memcmp("never", buf, 273 min(sizeof("never")-1, count))) { 274 clear_bit(enabled, &transparent_hugepage_flags); 275 clear_bit(req_madv, &transparent_hugepage_flags); 276 } else 277 return -EINVAL; 278 279 return count; 280 } 281 282 static ssize_t enabled_show(struct kobject *kobj, 283 struct kobj_attribute *attr, char *buf) 284 { 285 return double_flag_show(kobj, attr, buf, 286 TRANSPARENT_HUGEPAGE_FLAG, 287 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); 288 } 289 static ssize_t enabled_store(struct kobject *kobj, 290 struct kobj_attribute *attr, 291 const char *buf, size_t count) 292 { 293 ssize_t ret; 294 295 ret = double_flag_store(kobj, attr, buf, count, 296 TRANSPARENT_HUGEPAGE_FLAG, 297 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); 298 299 if (ret > 0) { 300 int err; 301 302 mutex_lock(&khugepaged_mutex); 303 err = start_khugepaged(); 304 mutex_unlock(&khugepaged_mutex); 305 306 if (err) 307 ret = err; 308 } 309 310 return ret; 311 } 312 static struct kobj_attribute enabled_attr = 313 __ATTR(enabled, 0644, enabled_show, enabled_store); 314 315 static ssize_t single_flag_show(struct kobject *kobj, 316 struct kobj_attribute *attr, char *buf, 317 enum transparent_hugepage_flag flag) 318 { 319 return sprintf(buf, "%d\n", 320 !!test_bit(flag, &transparent_hugepage_flags)); 321 } 322 323 static ssize_t single_flag_store(struct kobject *kobj, 324 struct kobj_attribute *attr, 325 const char *buf, size_t count, 326 enum transparent_hugepage_flag flag) 327 { 328 unsigned long value; 329 int ret; 330 331 ret = kstrtoul(buf, 10, &value); 332 if (ret < 0) 333 return ret; 334 if (value > 1) 335 return -EINVAL; 336 337 if (value) 338 set_bit(flag, &transparent_hugepage_flags); 339 else 340 clear_bit(flag, &transparent_hugepage_flags); 341 342 return count; 343 } 344 345 /* 346 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind 347 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of 348 * memory just to allocate one more hugepage. 349 */ 350 static ssize_t defrag_show(struct kobject *kobj, 351 struct kobj_attribute *attr, char *buf) 352 { 353 return double_flag_show(kobj, attr, buf, 354 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, 355 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); 356 } 357 static ssize_t defrag_store(struct kobject *kobj, 358 struct kobj_attribute *attr, 359 const char *buf, size_t count) 360 { 361 return double_flag_store(kobj, attr, buf, count, 362 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, 363 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); 364 } 365 static struct kobj_attribute defrag_attr = 366 __ATTR(defrag, 0644, defrag_show, defrag_store); 367 368 static ssize_t use_zero_page_show(struct kobject *kobj, 369 struct kobj_attribute *attr, char *buf) 370 { 371 return single_flag_show(kobj, attr, buf, 372 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 373 } 374 static ssize_t use_zero_page_store(struct kobject *kobj, 375 struct kobj_attribute *attr, const char *buf, size_t count) 376 { 377 return single_flag_store(kobj, attr, buf, count, 378 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 379 } 380 static struct kobj_attribute use_zero_page_attr = 381 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 382 #ifdef CONFIG_DEBUG_VM 383 static ssize_t debug_cow_show(struct kobject *kobj, 384 struct kobj_attribute *attr, char *buf) 385 { 386 return single_flag_show(kobj, attr, buf, 387 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 388 } 389 static ssize_t debug_cow_store(struct kobject *kobj, 390 struct kobj_attribute *attr, 391 const char *buf, size_t count) 392 { 393 return single_flag_store(kobj, attr, buf, count, 394 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 395 } 396 static struct kobj_attribute debug_cow_attr = 397 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 398 #endif /* CONFIG_DEBUG_VM */ 399 400 static struct attribute *hugepage_attr[] = { 401 &enabled_attr.attr, 402 &defrag_attr.attr, 403 &use_zero_page_attr.attr, 404 #ifdef CONFIG_DEBUG_VM 405 &debug_cow_attr.attr, 406 #endif 407 NULL, 408 }; 409 410 static struct attribute_group hugepage_attr_group = { 411 .attrs = hugepage_attr, 412 }; 413 414 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 415 struct kobj_attribute *attr, 416 char *buf) 417 { 418 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs); 419 } 420 421 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 422 struct kobj_attribute *attr, 423 const char *buf, size_t count) 424 { 425 unsigned long msecs; 426 int err; 427 428 err = kstrtoul(buf, 10, &msecs); 429 if (err || msecs > UINT_MAX) 430 return -EINVAL; 431 432 khugepaged_scan_sleep_millisecs = msecs; 433 wake_up_interruptible(&khugepaged_wait); 434 435 return count; 436 } 437 static struct kobj_attribute scan_sleep_millisecs_attr = 438 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, 439 scan_sleep_millisecs_store); 440 441 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 442 struct kobj_attribute *attr, 443 char *buf) 444 { 445 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 446 } 447 448 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 449 struct kobj_attribute *attr, 450 const char *buf, size_t count) 451 { 452 unsigned long msecs; 453 int err; 454 455 err = kstrtoul(buf, 10, &msecs); 456 if (err || msecs > UINT_MAX) 457 return -EINVAL; 458 459 khugepaged_alloc_sleep_millisecs = msecs; 460 wake_up_interruptible(&khugepaged_wait); 461 462 return count; 463 } 464 static struct kobj_attribute alloc_sleep_millisecs_attr = 465 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, 466 alloc_sleep_millisecs_store); 467 468 static ssize_t pages_to_scan_show(struct kobject *kobj, 469 struct kobj_attribute *attr, 470 char *buf) 471 { 472 return sprintf(buf, "%u\n", khugepaged_pages_to_scan); 473 } 474 static ssize_t pages_to_scan_store(struct kobject *kobj, 475 struct kobj_attribute *attr, 476 const char *buf, size_t count) 477 { 478 int err; 479 unsigned long pages; 480 481 err = kstrtoul(buf, 10, &pages); 482 if (err || !pages || pages > UINT_MAX) 483 return -EINVAL; 484 485 khugepaged_pages_to_scan = pages; 486 487 return count; 488 } 489 static struct kobj_attribute pages_to_scan_attr = 490 __ATTR(pages_to_scan, 0644, pages_to_scan_show, 491 pages_to_scan_store); 492 493 static ssize_t pages_collapsed_show(struct kobject *kobj, 494 struct kobj_attribute *attr, 495 char *buf) 496 { 497 return sprintf(buf, "%u\n", khugepaged_pages_collapsed); 498 } 499 static struct kobj_attribute pages_collapsed_attr = 500 __ATTR_RO(pages_collapsed); 501 502 static ssize_t full_scans_show(struct kobject *kobj, 503 struct kobj_attribute *attr, 504 char *buf) 505 { 506 return sprintf(buf, "%u\n", khugepaged_full_scans); 507 } 508 static struct kobj_attribute full_scans_attr = 509 __ATTR_RO(full_scans); 510 511 static ssize_t khugepaged_defrag_show(struct kobject *kobj, 512 struct kobj_attribute *attr, char *buf) 513 { 514 return single_flag_show(kobj, attr, buf, 515 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 516 } 517 static ssize_t khugepaged_defrag_store(struct kobject *kobj, 518 struct kobj_attribute *attr, 519 const char *buf, size_t count) 520 { 521 return single_flag_store(kobj, attr, buf, count, 522 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 523 } 524 static struct kobj_attribute khugepaged_defrag_attr = 525 __ATTR(defrag, 0644, khugepaged_defrag_show, 526 khugepaged_defrag_store); 527 528 /* 529 * max_ptes_none controls if khugepaged should collapse hugepages over 530 * any unmapped ptes in turn potentially increasing the memory 531 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 532 * reduce the available free memory in the system as it 533 * runs. Increasing max_ptes_none will instead potentially reduce the 534 * free memory in the system during the khugepaged scan. 535 */ 536 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, 537 struct kobj_attribute *attr, 538 char *buf) 539 { 540 return sprintf(buf, "%u\n", khugepaged_max_ptes_none); 541 } 542 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, 543 struct kobj_attribute *attr, 544 const char *buf, size_t count) 545 { 546 int err; 547 unsigned long max_ptes_none; 548 549 err = kstrtoul(buf, 10, &max_ptes_none); 550 if (err || max_ptes_none > HPAGE_PMD_NR-1) 551 return -EINVAL; 552 553 khugepaged_max_ptes_none = max_ptes_none; 554 555 return count; 556 } 557 static struct kobj_attribute khugepaged_max_ptes_none_attr = 558 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, 559 khugepaged_max_ptes_none_store); 560 561 static struct attribute *khugepaged_attr[] = { 562 &khugepaged_defrag_attr.attr, 563 &khugepaged_max_ptes_none_attr.attr, 564 &pages_to_scan_attr.attr, 565 &pages_collapsed_attr.attr, 566 &full_scans_attr.attr, 567 &scan_sleep_millisecs_attr.attr, 568 &alloc_sleep_millisecs_attr.attr, 569 NULL, 570 }; 571 572 static struct attribute_group khugepaged_attr_group = { 573 .attrs = khugepaged_attr, 574 .name = "khugepaged", 575 }; 576 577 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 578 { 579 int err; 580 581 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 582 if (unlikely(!*hugepage_kobj)) { 583 pr_err("failed to create transparent hugepage kobject\n"); 584 return -ENOMEM; 585 } 586 587 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 588 if (err) { 589 pr_err("failed to register transparent hugepage group\n"); 590 goto delete_obj; 591 } 592 593 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 594 if (err) { 595 pr_err("failed to register transparent hugepage group\n"); 596 goto remove_hp_group; 597 } 598 599 return 0; 600 601 remove_hp_group: 602 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 603 delete_obj: 604 kobject_put(*hugepage_kobj); 605 return err; 606 } 607 608 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 609 { 610 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 611 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 612 kobject_put(hugepage_kobj); 613 } 614 #else 615 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 616 { 617 return 0; 618 } 619 620 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 621 { 622 } 623 #endif /* CONFIG_SYSFS */ 624 625 static int __init hugepage_init(void) 626 { 627 int err; 628 struct kobject *hugepage_kobj; 629 630 if (!has_transparent_hugepage()) { 631 transparent_hugepage_flags = 0; 632 return -EINVAL; 633 } 634 635 err = hugepage_init_sysfs(&hugepage_kobj); 636 if (err) 637 return err; 638 639 err = khugepaged_slab_init(); 640 if (err) 641 goto out; 642 643 register_shrinker(&huge_zero_page_shrinker); 644 645 /* 646 * By default disable transparent hugepages on smaller systems, 647 * where the extra memory used could hurt more than TLB overhead 648 * is likely to save. The admin can still enable it through /sys. 649 */ 650 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) 651 transparent_hugepage_flags = 0; 652 653 start_khugepaged(); 654 655 return 0; 656 out: 657 hugepage_exit_sysfs(hugepage_kobj); 658 return err; 659 } 660 subsys_initcall(hugepage_init); 661 662 static int __init setup_transparent_hugepage(char *str) 663 { 664 int ret = 0; 665 if (!str) 666 goto out; 667 if (!strcmp(str, "always")) { 668 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 669 &transparent_hugepage_flags); 670 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 671 &transparent_hugepage_flags); 672 ret = 1; 673 } else if (!strcmp(str, "madvise")) { 674 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 675 &transparent_hugepage_flags); 676 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 677 &transparent_hugepage_flags); 678 ret = 1; 679 } else if (!strcmp(str, "never")) { 680 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 681 &transparent_hugepage_flags); 682 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 683 &transparent_hugepage_flags); 684 ret = 1; 685 } 686 out: 687 if (!ret) 688 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 689 return ret; 690 } 691 __setup("transparent_hugepage=", setup_transparent_hugepage); 692 693 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 694 { 695 if (likely(vma->vm_flags & VM_WRITE)) 696 pmd = pmd_mkwrite(pmd); 697 return pmd; 698 } 699 700 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot) 701 { 702 pmd_t entry; 703 entry = mk_pmd(page, prot); 704 entry = pmd_mkhuge(entry); 705 return entry; 706 } 707 708 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, 709 struct vm_area_struct *vma, 710 unsigned long haddr, pmd_t *pmd, 711 struct page *page) 712 { 713 struct mem_cgroup *memcg; 714 pgtable_t pgtable; 715 spinlock_t *ptl; 716 717 VM_BUG_ON_PAGE(!PageCompound(page), page); 718 719 if (mem_cgroup_try_charge(page, mm, GFP_TRANSHUGE, &memcg)) 720 return VM_FAULT_OOM; 721 722 pgtable = pte_alloc_one(mm, haddr); 723 if (unlikely(!pgtable)) { 724 mem_cgroup_cancel_charge(page, memcg); 725 return VM_FAULT_OOM; 726 } 727 728 clear_huge_page(page, haddr, HPAGE_PMD_NR); 729 /* 730 * The memory barrier inside __SetPageUptodate makes sure that 731 * clear_huge_page writes become visible before the set_pmd_at() 732 * write. 733 */ 734 __SetPageUptodate(page); 735 736 ptl = pmd_lock(mm, pmd); 737 if (unlikely(!pmd_none(*pmd))) { 738 spin_unlock(ptl); 739 mem_cgroup_cancel_charge(page, memcg); 740 put_page(page); 741 pte_free(mm, pgtable); 742 } else { 743 pmd_t entry; 744 entry = mk_huge_pmd(page, vma->vm_page_prot); 745 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 746 page_add_new_anon_rmap(page, vma, haddr); 747 mem_cgroup_commit_charge(page, memcg, false); 748 lru_cache_add_active_or_unevictable(page, vma); 749 pgtable_trans_huge_deposit(mm, pmd, pgtable); 750 set_pmd_at(mm, haddr, pmd, entry); 751 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); 752 atomic_long_inc(&mm->nr_ptes); 753 spin_unlock(ptl); 754 } 755 756 return 0; 757 } 758 759 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp) 760 { 761 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp; 762 } 763 764 /* Caller must hold page table lock. */ 765 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 766 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 767 struct page *zero_page) 768 { 769 pmd_t entry; 770 if (!pmd_none(*pmd)) 771 return false; 772 entry = mk_pmd(zero_page, vma->vm_page_prot); 773 entry = pmd_mkhuge(entry); 774 pgtable_trans_huge_deposit(mm, pmd, pgtable); 775 set_pmd_at(mm, haddr, pmd, entry); 776 atomic_long_inc(&mm->nr_ptes); 777 return true; 778 } 779 780 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 781 unsigned long address, pmd_t *pmd, 782 unsigned int flags) 783 { 784 gfp_t gfp; 785 struct page *page; 786 unsigned long haddr = address & HPAGE_PMD_MASK; 787 788 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 789 return VM_FAULT_FALLBACK; 790 if (unlikely(anon_vma_prepare(vma))) 791 return VM_FAULT_OOM; 792 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 793 return VM_FAULT_OOM; 794 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) && 795 transparent_hugepage_use_zero_page()) { 796 spinlock_t *ptl; 797 pgtable_t pgtable; 798 struct page *zero_page; 799 bool set; 800 pgtable = pte_alloc_one(mm, haddr); 801 if (unlikely(!pgtable)) 802 return VM_FAULT_OOM; 803 zero_page = get_huge_zero_page(); 804 if (unlikely(!zero_page)) { 805 pte_free(mm, pgtable); 806 count_vm_event(THP_FAULT_FALLBACK); 807 return VM_FAULT_FALLBACK; 808 } 809 ptl = pmd_lock(mm, pmd); 810 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd, 811 zero_page); 812 spin_unlock(ptl); 813 if (!set) { 814 pte_free(mm, pgtable); 815 put_huge_zero_page(); 816 } 817 return 0; 818 } 819 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0); 820 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 821 if (unlikely(!page)) { 822 count_vm_event(THP_FAULT_FALLBACK); 823 return VM_FAULT_FALLBACK; 824 } 825 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) { 826 put_page(page); 827 count_vm_event(THP_FAULT_FALLBACK); 828 return VM_FAULT_FALLBACK; 829 } 830 831 count_vm_event(THP_FAULT_ALLOC); 832 return 0; 833 } 834 835 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 836 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 837 struct vm_area_struct *vma) 838 { 839 spinlock_t *dst_ptl, *src_ptl; 840 struct page *src_page; 841 pmd_t pmd; 842 pgtable_t pgtable; 843 int ret; 844 845 ret = -ENOMEM; 846 pgtable = pte_alloc_one(dst_mm, addr); 847 if (unlikely(!pgtable)) 848 goto out; 849 850 dst_ptl = pmd_lock(dst_mm, dst_pmd); 851 src_ptl = pmd_lockptr(src_mm, src_pmd); 852 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 853 854 ret = -EAGAIN; 855 pmd = *src_pmd; 856 if (unlikely(!pmd_trans_huge(pmd))) { 857 pte_free(dst_mm, pgtable); 858 goto out_unlock; 859 } 860 /* 861 * When page table lock is held, the huge zero pmd should not be 862 * under splitting since we don't split the page itself, only pmd to 863 * a page table. 864 */ 865 if (is_huge_zero_pmd(pmd)) { 866 struct page *zero_page; 867 bool set; 868 /* 869 * get_huge_zero_page() will never allocate a new page here, 870 * since we already have a zero page to copy. It just takes a 871 * reference. 872 */ 873 zero_page = get_huge_zero_page(); 874 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 875 zero_page); 876 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */ 877 ret = 0; 878 goto out_unlock; 879 } 880 881 if (unlikely(pmd_trans_splitting(pmd))) { 882 /* split huge page running from under us */ 883 spin_unlock(src_ptl); 884 spin_unlock(dst_ptl); 885 pte_free(dst_mm, pgtable); 886 887 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */ 888 goto out; 889 } 890 src_page = pmd_page(pmd); 891 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 892 get_page(src_page); 893 page_dup_rmap(src_page); 894 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 895 896 pmdp_set_wrprotect(src_mm, addr, src_pmd); 897 pmd = pmd_mkold(pmd_wrprotect(pmd)); 898 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 899 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 900 atomic_long_inc(&dst_mm->nr_ptes); 901 902 ret = 0; 903 out_unlock: 904 spin_unlock(src_ptl); 905 spin_unlock(dst_ptl); 906 out: 907 return ret; 908 } 909 910 void huge_pmd_set_accessed(struct mm_struct *mm, 911 struct vm_area_struct *vma, 912 unsigned long address, 913 pmd_t *pmd, pmd_t orig_pmd, 914 int dirty) 915 { 916 spinlock_t *ptl; 917 pmd_t entry; 918 unsigned long haddr; 919 920 ptl = pmd_lock(mm, pmd); 921 if (unlikely(!pmd_same(*pmd, orig_pmd))) 922 goto unlock; 923 924 entry = pmd_mkyoung(orig_pmd); 925 haddr = address & HPAGE_PMD_MASK; 926 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty)) 927 update_mmu_cache_pmd(vma, address, pmd); 928 929 unlock: 930 spin_unlock(ptl); 931 } 932 933 /* 934 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages 935 * during copy_user_huge_page()'s copy_page_rep(): in the case when 936 * the source page gets split and a tail freed before copy completes. 937 * Called under pmd_lock of checked pmd, so safe from splitting itself. 938 */ 939 static void get_user_huge_page(struct page *page) 940 { 941 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) { 942 struct page *endpage = page + HPAGE_PMD_NR; 943 944 atomic_add(HPAGE_PMD_NR, &page->_count); 945 while (++page < endpage) 946 get_huge_page_tail(page); 947 } else { 948 get_page(page); 949 } 950 } 951 952 static void put_user_huge_page(struct page *page) 953 { 954 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) { 955 struct page *endpage = page + HPAGE_PMD_NR; 956 957 while (page < endpage) 958 put_page(page++); 959 } else { 960 put_page(page); 961 } 962 } 963 964 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm, 965 struct vm_area_struct *vma, 966 unsigned long address, 967 pmd_t *pmd, pmd_t orig_pmd, 968 struct page *page, 969 unsigned long haddr) 970 { 971 struct mem_cgroup *memcg; 972 spinlock_t *ptl; 973 pgtable_t pgtable; 974 pmd_t _pmd; 975 int ret = 0, i; 976 struct page **pages; 977 unsigned long mmun_start; /* For mmu_notifiers */ 978 unsigned long mmun_end; /* For mmu_notifiers */ 979 980 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, 981 GFP_KERNEL); 982 if (unlikely(!pages)) { 983 ret |= VM_FAULT_OOM; 984 goto out; 985 } 986 987 for (i = 0; i < HPAGE_PMD_NR; i++) { 988 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | 989 __GFP_OTHER_NODE, 990 vma, address, page_to_nid(page)); 991 if (unlikely(!pages[i] || 992 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL, 993 &memcg))) { 994 if (pages[i]) 995 put_page(pages[i]); 996 while (--i >= 0) { 997 memcg = (void *)page_private(pages[i]); 998 set_page_private(pages[i], 0); 999 mem_cgroup_cancel_charge(pages[i], memcg); 1000 put_page(pages[i]); 1001 } 1002 kfree(pages); 1003 ret |= VM_FAULT_OOM; 1004 goto out; 1005 } 1006 set_page_private(pages[i], (unsigned long)memcg); 1007 } 1008 1009 for (i = 0; i < HPAGE_PMD_NR; i++) { 1010 copy_user_highpage(pages[i], page + i, 1011 haddr + PAGE_SIZE * i, vma); 1012 __SetPageUptodate(pages[i]); 1013 cond_resched(); 1014 } 1015 1016 mmun_start = haddr; 1017 mmun_end = haddr + HPAGE_PMD_SIZE; 1018 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1019 1020 ptl = pmd_lock(mm, pmd); 1021 if (unlikely(!pmd_same(*pmd, orig_pmd))) 1022 goto out_free_pages; 1023 VM_BUG_ON_PAGE(!PageHead(page), page); 1024 1025 pmdp_clear_flush_notify(vma, haddr, pmd); 1026 /* leave pmd empty until pte is filled */ 1027 1028 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1029 pmd_populate(mm, &_pmd, pgtable); 1030 1031 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1032 pte_t *pte, entry; 1033 entry = mk_pte(pages[i], vma->vm_page_prot); 1034 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1035 memcg = (void *)page_private(pages[i]); 1036 set_page_private(pages[i], 0); 1037 page_add_new_anon_rmap(pages[i], vma, haddr); 1038 mem_cgroup_commit_charge(pages[i], memcg, false); 1039 lru_cache_add_active_or_unevictable(pages[i], vma); 1040 pte = pte_offset_map(&_pmd, haddr); 1041 VM_BUG_ON(!pte_none(*pte)); 1042 set_pte_at(mm, haddr, pte, entry); 1043 pte_unmap(pte); 1044 } 1045 kfree(pages); 1046 1047 smp_wmb(); /* make pte visible before pmd */ 1048 pmd_populate(mm, pmd, pgtable); 1049 page_remove_rmap(page); 1050 spin_unlock(ptl); 1051 1052 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1053 1054 ret |= VM_FAULT_WRITE; 1055 put_page(page); 1056 1057 out: 1058 return ret; 1059 1060 out_free_pages: 1061 spin_unlock(ptl); 1062 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1063 for (i = 0; i < HPAGE_PMD_NR; i++) { 1064 memcg = (void *)page_private(pages[i]); 1065 set_page_private(pages[i], 0); 1066 mem_cgroup_cancel_charge(pages[i], memcg); 1067 put_page(pages[i]); 1068 } 1069 kfree(pages); 1070 goto out; 1071 } 1072 1073 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1074 unsigned long address, pmd_t *pmd, pmd_t orig_pmd) 1075 { 1076 spinlock_t *ptl; 1077 int ret = 0; 1078 struct page *page = NULL, *new_page; 1079 struct mem_cgroup *memcg; 1080 unsigned long haddr; 1081 unsigned long mmun_start; /* For mmu_notifiers */ 1082 unsigned long mmun_end; /* For mmu_notifiers */ 1083 1084 ptl = pmd_lockptr(mm, pmd); 1085 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1086 haddr = address & HPAGE_PMD_MASK; 1087 if (is_huge_zero_pmd(orig_pmd)) 1088 goto alloc; 1089 spin_lock(ptl); 1090 if (unlikely(!pmd_same(*pmd, orig_pmd))) 1091 goto out_unlock; 1092 1093 page = pmd_page(orig_pmd); 1094 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 1095 if (page_mapcount(page) == 1) { 1096 pmd_t entry; 1097 entry = pmd_mkyoung(orig_pmd); 1098 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1099 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1)) 1100 update_mmu_cache_pmd(vma, address, pmd); 1101 ret |= VM_FAULT_WRITE; 1102 goto out_unlock; 1103 } 1104 get_user_huge_page(page); 1105 spin_unlock(ptl); 1106 alloc: 1107 if (transparent_hugepage_enabled(vma) && 1108 !transparent_hugepage_debug_cow()) { 1109 gfp_t gfp; 1110 1111 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0); 1112 new_page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 1113 } else 1114 new_page = NULL; 1115 1116 if (unlikely(!new_page)) { 1117 if (!page) { 1118 split_huge_page_pmd(vma, address, pmd); 1119 ret |= VM_FAULT_FALLBACK; 1120 } else { 1121 ret = do_huge_pmd_wp_page_fallback(mm, vma, address, 1122 pmd, orig_pmd, page, haddr); 1123 if (ret & VM_FAULT_OOM) { 1124 split_huge_page(page); 1125 ret |= VM_FAULT_FALLBACK; 1126 } 1127 put_user_huge_page(page); 1128 } 1129 count_vm_event(THP_FAULT_FALLBACK); 1130 goto out; 1131 } 1132 1133 if (unlikely(mem_cgroup_try_charge(new_page, mm, 1134 GFP_TRANSHUGE, &memcg))) { 1135 put_page(new_page); 1136 if (page) { 1137 split_huge_page(page); 1138 put_user_huge_page(page); 1139 } else 1140 split_huge_page_pmd(vma, address, pmd); 1141 ret |= VM_FAULT_FALLBACK; 1142 count_vm_event(THP_FAULT_FALLBACK); 1143 goto out; 1144 } 1145 1146 count_vm_event(THP_FAULT_ALLOC); 1147 1148 if (!page) 1149 clear_huge_page(new_page, haddr, HPAGE_PMD_NR); 1150 else 1151 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); 1152 __SetPageUptodate(new_page); 1153 1154 mmun_start = haddr; 1155 mmun_end = haddr + HPAGE_PMD_SIZE; 1156 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1157 1158 spin_lock(ptl); 1159 if (page) 1160 put_user_huge_page(page); 1161 if (unlikely(!pmd_same(*pmd, orig_pmd))) { 1162 spin_unlock(ptl); 1163 mem_cgroup_cancel_charge(new_page, memcg); 1164 put_page(new_page); 1165 goto out_mn; 1166 } else { 1167 pmd_t entry; 1168 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1169 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1170 pmdp_clear_flush_notify(vma, haddr, pmd); 1171 page_add_new_anon_rmap(new_page, vma, haddr); 1172 mem_cgroup_commit_charge(new_page, memcg, false); 1173 lru_cache_add_active_or_unevictable(new_page, vma); 1174 set_pmd_at(mm, haddr, pmd, entry); 1175 update_mmu_cache_pmd(vma, address, pmd); 1176 if (!page) { 1177 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); 1178 put_huge_zero_page(); 1179 } else { 1180 VM_BUG_ON_PAGE(!PageHead(page), page); 1181 page_remove_rmap(page); 1182 put_page(page); 1183 } 1184 ret |= VM_FAULT_WRITE; 1185 } 1186 spin_unlock(ptl); 1187 out_mn: 1188 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1189 out: 1190 return ret; 1191 out_unlock: 1192 spin_unlock(ptl); 1193 return ret; 1194 } 1195 1196 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1197 unsigned long addr, 1198 pmd_t *pmd, 1199 unsigned int flags) 1200 { 1201 struct mm_struct *mm = vma->vm_mm; 1202 struct page *page = NULL; 1203 1204 assert_spin_locked(pmd_lockptr(mm, pmd)); 1205 1206 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1207 goto out; 1208 1209 /* Avoid dumping huge zero page */ 1210 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1211 return ERR_PTR(-EFAULT); 1212 1213 /* Full NUMA hinting faults to serialise migration in fault paths */ 1214 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1215 goto out; 1216 1217 page = pmd_page(*pmd); 1218 VM_BUG_ON_PAGE(!PageHead(page), page); 1219 if (flags & FOLL_TOUCH) { 1220 pmd_t _pmd; 1221 /* 1222 * We should set the dirty bit only for FOLL_WRITE but 1223 * for now the dirty bit in the pmd is meaningless. 1224 * And if the dirty bit will become meaningful and 1225 * we'll only set it with FOLL_WRITE, an atomic 1226 * set_bit will be required on the pmd to set the 1227 * young bit, instead of the current set_pmd_at. 1228 */ 1229 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); 1230 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1231 pmd, _pmd, 1)) 1232 update_mmu_cache_pmd(vma, addr, pmd); 1233 } 1234 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1235 if (page->mapping && trylock_page(page)) { 1236 lru_add_drain(); 1237 if (page->mapping) 1238 mlock_vma_page(page); 1239 unlock_page(page); 1240 } 1241 } 1242 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1243 VM_BUG_ON_PAGE(!PageCompound(page), page); 1244 if (flags & FOLL_GET) 1245 get_page_foll(page); 1246 1247 out: 1248 return page; 1249 } 1250 1251 /* NUMA hinting page fault entry point for trans huge pmds */ 1252 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 1253 unsigned long addr, pmd_t pmd, pmd_t *pmdp) 1254 { 1255 spinlock_t *ptl; 1256 struct anon_vma *anon_vma = NULL; 1257 struct page *page; 1258 unsigned long haddr = addr & HPAGE_PMD_MASK; 1259 int page_nid = -1, this_nid = numa_node_id(); 1260 int target_nid, last_cpupid = -1; 1261 bool page_locked; 1262 bool migrated = false; 1263 int flags = 0; 1264 1265 /* A PROT_NONE fault should not end up here */ 1266 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))); 1267 1268 ptl = pmd_lock(mm, pmdp); 1269 if (unlikely(!pmd_same(pmd, *pmdp))) 1270 goto out_unlock; 1271 1272 /* 1273 * If there are potential migrations, wait for completion and retry 1274 * without disrupting NUMA hinting information. Do not relock and 1275 * check_same as the page may no longer be mapped. 1276 */ 1277 if (unlikely(pmd_trans_migrating(*pmdp))) { 1278 page = pmd_page(*pmdp); 1279 spin_unlock(ptl); 1280 wait_on_page_locked(page); 1281 goto out; 1282 } 1283 1284 page = pmd_page(pmd); 1285 BUG_ON(is_huge_zero_page(page)); 1286 page_nid = page_to_nid(page); 1287 last_cpupid = page_cpupid_last(page); 1288 count_vm_numa_event(NUMA_HINT_FAULTS); 1289 if (page_nid == this_nid) { 1290 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1291 flags |= TNF_FAULT_LOCAL; 1292 } 1293 1294 /* 1295 * Avoid grouping on DSO/COW pages in specific and RO pages 1296 * in general, RO pages shouldn't hurt as much anyway since 1297 * they can be in shared cache state. 1298 */ 1299 if (!pmd_write(pmd)) 1300 flags |= TNF_NO_GROUP; 1301 1302 /* 1303 * Acquire the page lock to serialise THP migrations but avoid dropping 1304 * page_table_lock if at all possible 1305 */ 1306 page_locked = trylock_page(page); 1307 target_nid = mpol_misplaced(page, vma, haddr); 1308 if (target_nid == -1) { 1309 /* If the page was locked, there are no parallel migrations */ 1310 if (page_locked) 1311 goto clear_pmdnuma; 1312 } 1313 1314 /* Migration could have started since the pmd_trans_migrating check */ 1315 if (!page_locked) { 1316 spin_unlock(ptl); 1317 wait_on_page_locked(page); 1318 page_nid = -1; 1319 goto out; 1320 } 1321 1322 /* 1323 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1324 * to serialises splits 1325 */ 1326 get_page(page); 1327 spin_unlock(ptl); 1328 anon_vma = page_lock_anon_vma_read(page); 1329 1330 /* Confirm the PMD did not change while page_table_lock was released */ 1331 spin_lock(ptl); 1332 if (unlikely(!pmd_same(pmd, *pmdp))) { 1333 unlock_page(page); 1334 put_page(page); 1335 page_nid = -1; 1336 goto out_unlock; 1337 } 1338 1339 /* Bail if we fail to protect against THP splits for any reason */ 1340 if (unlikely(!anon_vma)) { 1341 put_page(page); 1342 page_nid = -1; 1343 goto clear_pmdnuma; 1344 } 1345 1346 /* 1347 * Migrate the THP to the requested node, returns with page unlocked 1348 * and access rights restored. 1349 */ 1350 spin_unlock(ptl); 1351 migrated = migrate_misplaced_transhuge_page(mm, vma, 1352 pmdp, pmd, addr, page, target_nid); 1353 if (migrated) { 1354 flags |= TNF_MIGRATED; 1355 page_nid = target_nid; 1356 } 1357 1358 goto out; 1359 clear_pmdnuma: 1360 BUG_ON(!PageLocked(page)); 1361 pmd = pmd_modify(pmd, vma->vm_page_prot); 1362 set_pmd_at(mm, haddr, pmdp, pmd); 1363 update_mmu_cache_pmd(vma, addr, pmdp); 1364 unlock_page(page); 1365 out_unlock: 1366 spin_unlock(ptl); 1367 1368 out: 1369 if (anon_vma) 1370 page_unlock_anon_vma_read(anon_vma); 1371 1372 if (page_nid != -1) 1373 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags); 1374 1375 return 0; 1376 } 1377 1378 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1379 pmd_t *pmd, unsigned long addr) 1380 { 1381 spinlock_t *ptl; 1382 int ret = 0; 1383 1384 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 1385 struct page *page; 1386 pgtable_t pgtable; 1387 pmd_t orig_pmd; 1388 /* 1389 * For architectures like ppc64 we look at deposited pgtable 1390 * when calling pmdp_get_and_clear. So do the 1391 * pgtable_trans_huge_withdraw after finishing pmdp related 1392 * operations. 1393 */ 1394 orig_pmd = pmdp_get_and_clear_full(tlb->mm, addr, pmd, 1395 tlb->fullmm); 1396 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1397 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd); 1398 if (is_huge_zero_pmd(orig_pmd)) { 1399 atomic_long_dec(&tlb->mm->nr_ptes); 1400 spin_unlock(ptl); 1401 put_huge_zero_page(); 1402 } else { 1403 page = pmd_page(orig_pmd); 1404 page_remove_rmap(page); 1405 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1406 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1407 VM_BUG_ON_PAGE(!PageHead(page), page); 1408 atomic_long_dec(&tlb->mm->nr_ptes); 1409 spin_unlock(ptl); 1410 tlb_remove_page(tlb, page); 1411 } 1412 pte_free(tlb->mm, pgtable); 1413 ret = 1; 1414 } 1415 return ret; 1416 } 1417 1418 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma, 1419 unsigned long old_addr, 1420 unsigned long new_addr, unsigned long old_end, 1421 pmd_t *old_pmd, pmd_t *new_pmd) 1422 { 1423 spinlock_t *old_ptl, *new_ptl; 1424 int ret = 0; 1425 pmd_t pmd; 1426 1427 struct mm_struct *mm = vma->vm_mm; 1428 1429 if ((old_addr & ~HPAGE_PMD_MASK) || 1430 (new_addr & ~HPAGE_PMD_MASK) || 1431 old_end - old_addr < HPAGE_PMD_SIZE || 1432 (new_vma->vm_flags & VM_NOHUGEPAGE)) 1433 goto out; 1434 1435 /* 1436 * The destination pmd shouldn't be established, free_pgtables() 1437 * should have release it. 1438 */ 1439 if (WARN_ON(!pmd_none(*new_pmd))) { 1440 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1441 goto out; 1442 } 1443 1444 /* 1445 * We don't have to worry about the ordering of src and dst 1446 * ptlocks because exclusive mmap_sem prevents deadlock. 1447 */ 1448 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl); 1449 if (ret == 1) { 1450 new_ptl = pmd_lockptr(mm, new_pmd); 1451 if (new_ptl != old_ptl) 1452 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1453 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd); 1454 VM_BUG_ON(!pmd_none(*new_pmd)); 1455 1456 if (pmd_move_must_withdraw(new_ptl, old_ptl)) { 1457 pgtable_t pgtable; 1458 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1459 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1460 } 1461 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); 1462 if (new_ptl != old_ptl) 1463 spin_unlock(new_ptl); 1464 spin_unlock(old_ptl); 1465 } 1466 out: 1467 return ret; 1468 } 1469 1470 /* 1471 * Returns 1472 * - 0 if PMD could not be locked 1473 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1474 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1475 */ 1476 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1477 unsigned long addr, pgprot_t newprot, int prot_numa) 1478 { 1479 struct mm_struct *mm = vma->vm_mm; 1480 spinlock_t *ptl; 1481 int ret = 0; 1482 1483 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 1484 pmd_t entry; 1485 1486 /* 1487 * Avoid trapping faults against the zero page. The read-only 1488 * data is likely to be read-cached on the local CPU and 1489 * local/remote hits to the zero page are not interesting. 1490 */ 1491 if (prot_numa && is_huge_zero_pmd(*pmd)) { 1492 spin_unlock(ptl); 1493 return 0; 1494 } 1495 1496 if (!prot_numa || !pmd_protnone(*pmd)) { 1497 ret = 1; 1498 entry = pmdp_get_and_clear_notify(mm, addr, pmd); 1499 entry = pmd_modify(entry, newprot); 1500 ret = HPAGE_PMD_NR; 1501 set_pmd_at(mm, addr, pmd, entry); 1502 BUG_ON(pmd_write(entry)); 1503 } 1504 spin_unlock(ptl); 1505 } 1506 1507 return ret; 1508 } 1509 1510 /* 1511 * Returns 1 if a given pmd maps a stable (not under splitting) thp. 1512 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise. 1513 * 1514 * Note that if it returns 1, this routine returns without unlocking page 1515 * table locks. So callers must unlock them. 1516 */ 1517 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma, 1518 spinlock_t **ptl) 1519 { 1520 *ptl = pmd_lock(vma->vm_mm, pmd); 1521 if (likely(pmd_trans_huge(*pmd))) { 1522 if (unlikely(pmd_trans_splitting(*pmd))) { 1523 spin_unlock(*ptl); 1524 wait_split_huge_page(vma->anon_vma, pmd); 1525 return -1; 1526 } else { 1527 /* Thp mapped by 'pmd' is stable, so we can 1528 * handle it as it is. */ 1529 return 1; 1530 } 1531 } 1532 spin_unlock(*ptl); 1533 return 0; 1534 } 1535 1536 /* 1537 * This function returns whether a given @page is mapped onto the @address 1538 * in the virtual space of @mm. 1539 * 1540 * When it's true, this function returns *pmd with holding the page table lock 1541 * and passing it back to the caller via @ptl. 1542 * If it's false, returns NULL without holding the page table lock. 1543 */ 1544 pmd_t *page_check_address_pmd(struct page *page, 1545 struct mm_struct *mm, 1546 unsigned long address, 1547 enum page_check_address_pmd_flag flag, 1548 spinlock_t **ptl) 1549 { 1550 pgd_t *pgd; 1551 pud_t *pud; 1552 pmd_t *pmd; 1553 1554 if (address & ~HPAGE_PMD_MASK) 1555 return NULL; 1556 1557 pgd = pgd_offset(mm, address); 1558 if (!pgd_present(*pgd)) 1559 return NULL; 1560 pud = pud_offset(pgd, address); 1561 if (!pud_present(*pud)) 1562 return NULL; 1563 pmd = pmd_offset(pud, address); 1564 1565 *ptl = pmd_lock(mm, pmd); 1566 if (!pmd_present(*pmd)) 1567 goto unlock; 1568 if (pmd_page(*pmd) != page) 1569 goto unlock; 1570 /* 1571 * split_vma() may create temporary aliased mappings. There is 1572 * no risk as long as all huge pmd are found and have their 1573 * splitting bit set before __split_huge_page_refcount 1574 * runs. Finding the same huge pmd more than once during the 1575 * same rmap walk is not a problem. 1576 */ 1577 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG && 1578 pmd_trans_splitting(*pmd)) 1579 goto unlock; 1580 if (pmd_trans_huge(*pmd)) { 1581 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG && 1582 !pmd_trans_splitting(*pmd)); 1583 return pmd; 1584 } 1585 unlock: 1586 spin_unlock(*ptl); 1587 return NULL; 1588 } 1589 1590 static int __split_huge_page_splitting(struct page *page, 1591 struct vm_area_struct *vma, 1592 unsigned long address) 1593 { 1594 struct mm_struct *mm = vma->vm_mm; 1595 spinlock_t *ptl; 1596 pmd_t *pmd; 1597 int ret = 0; 1598 /* For mmu_notifiers */ 1599 const unsigned long mmun_start = address; 1600 const unsigned long mmun_end = address + HPAGE_PMD_SIZE; 1601 1602 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1603 pmd = page_check_address_pmd(page, mm, address, 1604 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl); 1605 if (pmd) { 1606 /* 1607 * We can't temporarily set the pmd to null in order 1608 * to split it, the pmd must remain marked huge at all 1609 * times or the VM won't take the pmd_trans_huge paths 1610 * and it won't wait on the anon_vma->root->rwsem to 1611 * serialize against split_huge_page*. 1612 */ 1613 pmdp_splitting_flush(vma, address, pmd); 1614 1615 ret = 1; 1616 spin_unlock(ptl); 1617 } 1618 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1619 1620 return ret; 1621 } 1622 1623 static void __split_huge_page_refcount(struct page *page, 1624 struct list_head *list) 1625 { 1626 int i; 1627 struct zone *zone = page_zone(page); 1628 struct lruvec *lruvec; 1629 int tail_count = 0; 1630 1631 /* prevent PageLRU to go away from under us, and freeze lru stats */ 1632 spin_lock_irq(&zone->lru_lock); 1633 lruvec = mem_cgroup_page_lruvec(page, zone); 1634 1635 compound_lock(page); 1636 /* complete memcg works before add pages to LRU */ 1637 mem_cgroup_split_huge_fixup(page); 1638 1639 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 1640 struct page *page_tail = page + i; 1641 1642 /* tail_page->_mapcount cannot change */ 1643 BUG_ON(page_mapcount(page_tail) < 0); 1644 tail_count += page_mapcount(page_tail); 1645 /* check for overflow */ 1646 BUG_ON(tail_count < 0); 1647 BUG_ON(atomic_read(&page_tail->_count) != 0); 1648 /* 1649 * tail_page->_count is zero and not changing from 1650 * under us. But get_page_unless_zero() may be running 1651 * from under us on the tail_page. If we used 1652 * atomic_set() below instead of atomic_add(), we 1653 * would then run atomic_set() concurrently with 1654 * get_page_unless_zero(), and atomic_set() is 1655 * implemented in C not using locked ops. spin_unlock 1656 * on x86 sometime uses locked ops because of PPro 1657 * errata 66, 92, so unless somebody can guarantee 1658 * atomic_set() here would be safe on all archs (and 1659 * not only on x86), it's safer to use atomic_add(). 1660 */ 1661 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1, 1662 &page_tail->_count); 1663 1664 /* after clearing PageTail the gup refcount can be released */ 1665 smp_mb__after_atomic(); 1666 1667 /* 1668 * retain hwpoison flag of the poisoned tail page: 1669 * fix for the unsuitable process killed on Guest Machine(KVM) 1670 * by the memory-failure. 1671 */ 1672 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON; 1673 page_tail->flags |= (page->flags & 1674 ((1L << PG_referenced) | 1675 (1L << PG_swapbacked) | 1676 (1L << PG_mlocked) | 1677 (1L << PG_uptodate) | 1678 (1L << PG_active) | 1679 (1L << PG_unevictable))); 1680 page_tail->flags |= (1L << PG_dirty); 1681 1682 /* clear PageTail before overwriting first_page */ 1683 smp_wmb(); 1684 1685 /* 1686 * __split_huge_page_splitting() already set the 1687 * splitting bit in all pmd that could map this 1688 * hugepage, that will ensure no CPU can alter the 1689 * mapcount on the head page. The mapcount is only 1690 * accounted in the head page and it has to be 1691 * transferred to all tail pages in the below code. So 1692 * for this code to be safe, the split the mapcount 1693 * can't change. But that doesn't mean userland can't 1694 * keep changing and reading the page contents while 1695 * we transfer the mapcount, so the pmd splitting 1696 * status is achieved setting a reserved bit in the 1697 * pmd, not by clearing the present bit. 1698 */ 1699 page_tail->_mapcount = page->_mapcount; 1700 1701 BUG_ON(page_tail->mapping); 1702 page_tail->mapping = page->mapping; 1703 1704 page_tail->index = page->index + i; 1705 page_cpupid_xchg_last(page_tail, page_cpupid_last(page)); 1706 1707 BUG_ON(!PageAnon(page_tail)); 1708 BUG_ON(!PageUptodate(page_tail)); 1709 BUG_ON(!PageDirty(page_tail)); 1710 BUG_ON(!PageSwapBacked(page_tail)); 1711 1712 lru_add_page_tail(page, page_tail, lruvec, list); 1713 } 1714 atomic_sub(tail_count, &page->_count); 1715 BUG_ON(atomic_read(&page->_count) <= 0); 1716 1717 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1); 1718 1719 ClearPageCompound(page); 1720 compound_unlock(page); 1721 spin_unlock_irq(&zone->lru_lock); 1722 1723 for (i = 1; i < HPAGE_PMD_NR; i++) { 1724 struct page *page_tail = page + i; 1725 BUG_ON(page_count(page_tail) <= 0); 1726 /* 1727 * Tail pages may be freed if there wasn't any mapping 1728 * like if add_to_swap() is running on a lru page that 1729 * had its mapping zapped. And freeing these pages 1730 * requires taking the lru_lock so we do the put_page 1731 * of the tail pages after the split is complete. 1732 */ 1733 put_page(page_tail); 1734 } 1735 1736 /* 1737 * Only the head page (now become a regular page) is required 1738 * to be pinned by the caller. 1739 */ 1740 BUG_ON(page_count(page) <= 0); 1741 } 1742 1743 static int __split_huge_page_map(struct page *page, 1744 struct vm_area_struct *vma, 1745 unsigned long address) 1746 { 1747 struct mm_struct *mm = vma->vm_mm; 1748 spinlock_t *ptl; 1749 pmd_t *pmd, _pmd; 1750 int ret = 0, i; 1751 pgtable_t pgtable; 1752 unsigned long haddr; 1753 1754 pmd = page_check_address_pmd(page, mm, address, 1755 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl); 1756 if (pmd) { 1757 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1758 pmd_populate(mm, &_pmd, pgtable); 1759 if (pmd_write(*pmd)) 1760 BUG_ON(page_mapcount(page) != 1); 1761 1762 haddr = address; 1763 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1764 pte_t *pte, entry; 1765 BUG_ON(PageCompound(page+i)); 1766 /* 1767 * Note that NUMA hinting access restrictions are not 1768 * transferred to avoid any possibility of altering 1769 * permissions across VMAs. 1770 */ 1771 entry = mk_pte(page + i, vma->vm_page_prot); 1772 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1773 if (!pmd_write(*pmd)) 1774 entry = pte_wrprotect(entry); 1775 if (!pmd_young(*pmd)) 1776 entry = pte_mkold(entry); 1777 pte = pte_offset_map(&_pmd, haddr); 1778 BUG_ON(!pte_none(*pte)); 1779 set_pte_at(mm, haddr, pte, entry); 1780 pte_unmap(pte); 1781 } 1782 1783 smp_wmb(); /* make pte visible before pmd */ 1784 /* 1785 * Up to this point the pmd is present and huge and 1786 * userland has the whole access to the hugepage 1787 * during the split (which happens in place). If we 1788 * overwrite the pmd with the not-huge version 1789 * pointing to the pte here (which of course we could 1790 * if all CPUs were bug free), userland could trigger 1791 * a small page size TLB miss on the small sized TLB 1792 * while the hugepage TLB entry is still established 1793 * in the huge TLB. Some CPU doesn't like that. See 1794 * http://support.amd.com/us/Processor_TechDocs/41322.pdf, 1795 * Erratum 383 on page 93. Intel should be safe but is 1796 * also warns that it's only safe if the permission 1797 * and cache attributes of the two entries loaded in 1798 * the two TLB is identical (which should be the case 1799 * here). But it is generally safer to never allow 1800 * small and huge TLB entries for the same virtual 1801 * address to be loaded simultaneously. So instead of 1802 * doing "pmd_populate(); flush_tlb_range();" we first 1803 * mark the current pmd notpresent (atomically because 1804 * here the pmd_trans_huge and pmd_trans_splitting 1805 * must remain set at all times on the pmd until the 1806 * split is complete for this pmd), then we flush the 1807 * SMP TLB and finally we write the non-huge version 1808 * of the pmd entry with pmd_populate. 1809 */ 1810 pmdp_invalidate(vma, address, pmd); 1811 pmd_populate(mm, pmd, pgtable); 1812 ret = 1; 1813 spin_unlock(ptl); 1814 } 1815 1816 return ret; 1817 } 1818 1819 /* must be called with anon_vma->root->rwsem held */ 1820 static void __split_huge_page(struct page *page, 1821 struct anon_vma *anon_vma, 1822 struct list_head *list) 1823 { 1824 int mapcount, mapcount2; 1825 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1826 struct anon_vma_chain *avc; 1827 1828 BUG_ON(!PageHead(page)); 1829 BUG_ON(PageTail(page)); 1830 1831 mapcount = 0; 1832 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1833 struct vm_area_struct *vma = avc->vma; 1834 unsigned long addr = vma_address(page, vma); 1835 BUG_ON(is_vma_temporary_stack(vma)); 1836 mapcount += __split_huge_page_splitting(page, vma, addr); 1837 } 1838 /* 1839 * It is critical that new vmas are added to the tail of the 1840 * anon_vma list. This guarantes that if copy_huge_pmd() runs 1841 * and establishes a child pmd before 1842 * __split_huge_page_splitting() freezes the parent pmd (so if 1843 * we fail to prevent copy_huge_pmd() from running until the 1844 * whole __split_huge_page() is complete), we will still see 1845 * the newly established pmd of the child later during the 1846 * walk, to be able to set it as pmd_trans_splitting too. 1847 */ 1848 if (mapcount != page_mapcount(page)) { 1849 pr_err("mapcount %d page_mapcount %d\n", 1850 mapcount, page_mapcount(page)); 1851 BUG(); 1852 } 1853 1854 __split_huge_page_refcount(page, list); 1855 1856 mapcount2 = 0; 1857 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1858 struct vm_area_struct *vma = avc->vma; 1859 unsigned long addr = vma_address(page, vma); 1860 BUG_ON(is_vma_temporary_stack(vma)); 1861 mapcount2 += __split_huge_page_map(page, vma, addr); 1862 } 1863 if (mapcount != mapcount2) { 1864 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n", 1865 mapcount, mapcount2, page_mapcount(page)); 1866 BUG(); 1867 } 1868 } 1869 1870 /* 1871 * Split a hugepage into normal pages. This doesn't change the position of head 1872 * page. If @list is null, tail pages will be added to LRU list, otherwise, to 1873 * @list. Both head page and tail pages will inherit mapping, flags, and so on 1874 * from the hugepage. 1875 * Return 0 if the hugepage is split successfully otherwise return 1. 1876 */ 1877 int split_huge_page_to_list(struct page *page, struct list_head *list) 1878 { 1879 struct anon_vma *anon_vma; 1880 int ret = 1; 1881 1882 BUG_ON(is_huge_zero_page(page)); 1883 BUG_ON(!PageAnon(page)); 1884 1885 /* 1886 * The caller does not necessarily hold an mmap_sem that would prevent 1887 * the anon_vma disappearing so we first we take a reference to it 1888 * and then lock the anon_vma for write. This is similar to 1889 * page_lock_anon_vma_read except the write lock is taken to serialise 1890 * against parallel split or collapse operations. 1891 */ 1892 anon_vma = page_get_anon_vma(page); 1893 if (!anon_vma) 1894 goto out; 1895 anon_vma_lock_write(anon_vma); 1896 1897 ret = 0; 1898 if (!PageCompound(page)) 1899 goto out_unlock; 1900 1901 BUG_ON(!PageSwapBacked(page)); 1902 __split_huge_page(page, anon_vma, list); 1903 count_vm_event(THP_SPLIT); 1904 1905 BUG_ON(PageCompound(page)); 1906 out_unlock: 1907 anon_vma_unlock_write(anon_vma); 1908 put_anon_vma(anon_vma); 1909 out: 1910 return ret; 1911 } 1912 1913 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE) 1914 1915 int hugepage_madvise(struct vm_area_struct *vma, 1916 unsigned long *vm_flags, int advice) 1917 { 1918 switch (advice) { 1919 case MADV_HUGEPAGE: 1920 #ifdef CONFIG_S390 1921 /* 1922 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 1923 * can't handle this properly after s390_enable_sie, so we simply 1924 * ignore the madvise to prevent qemu from causing a SIGSEGV. 1925 */ 1926 if (mm_has_pgste(vma->vm_mm)) 1927 return 0; 1928 #endif 1929 /* 1930 * Be somewhat over-protective like KSM for now! 1931 */ 1932 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP)) 1933 return -EINVAL; 1934 *vm_flags &= ~VM_NOHUGEPAGE; 1935 *vm_flags |= VM_HUGEPAGE; 1936 /* 1937 * If the vma become good for khugepaged to scan, 1938 * register it here without waiting a page fault that 1939 * may not happen any time soon. 1940 */ 1941 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags))) 1942 return -ENOMEM; 1943 break; 1944 case MADV_NOHUGEPAGE: 1945 /* 1946 * Be somewhat over-protective like KSM for now! 1947 */ 1948 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP)) 1949 return -EINVAL; 1950 *vm_flags &= ~VM_HUGEPAGE; 1951 *vm_flags |= VM_NOHUGEPAGE; 1952 /* 1953 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 1954 * this vma even if we leave the mm registered in khugepaged if 1955 * it got registered before VM_NOHUGEPAGE was set. 1956 */ 1957 break; 1958 } 1959 1960 return 0; 1961 } 1962 1963 static int __init khugepaged_slab_init(void) 1964 { 1965 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 1966 sizeof(struct mm_slot), 1967 __alignof__(struct mm_slot), 0, NULL); 1968 if (!mm_slot_cache) 1969 return -ENOMEM; 1970 1971 return 0; 1972 } 1973 1974 static inline struct mm_slot *alloc_mm_slot(void) 1975 { 1976 if (!mm_slot_cache) /* initialization failed */ 1977 return NULL; 1978 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 1979 } 1980 1981 static inline void free_mm_slot(struct mm_slot *mm_slot) 1982 { 1983 kmem_cache_free(mm_slot_cache, mm_slot); 1984 } 1985 1986 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 1987 { 1988 struct mm_slot *mm_slot; 1989 1990 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) 1991 if (mm == mm_slot->mm) 1992 return mm_slot; 1993 1994 return NULL; 1995 } 1996 1997 static void insert_to_mm_slots_hash(struct mm_struct *mm, 1998 struct mm_slot *mm_slot) 1999 { 2000 mm_slot->mm = mm; 2001 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); 2002 } 2003 2004 static inline int khugepaged_test_exit(struct mm_struct *mm) 2005 { 2006 return atomic_read(&mm->mm_users) == 0; 2007 } 2008 2009 int __khugepaged_enter(struct mm_struct *mm) 2010 { 2011 struct mm_slot *mm_slot; 2012 int wakeup; 2013 2014 mm_slot = alloc_mm_slot(); 2015 if (!mm_slot) 2016 return -ENOMEM; 2017 2018 /* __khugepaged_exit() must not run from under us */ 2019 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm); 2020 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 2021 free_mm_slot(mm_slot); 2022 return 0; 2023 } 2024 2025 spin_lock(&khugepaged_mm_lock); 2026 insert_to_mm_slots_hash(mm, mm_slot); 2027 /* 2028 * Insert just behind the scanning cursor, to let the area settle 2029 * down a little. 2030 */ 2031 wakeup = list_empty(&khugepaged_scan.mm_head); 2032 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); 2033 spin_unlock(&khugepaged_mm_lock); 2034 2035 atomic_inc(&mm->mm_count); 2036 if (wakeup) 2037 wake_up_interruptible(&khugepaged_wait); 2038 2039 return 0; 2040 } 2041 2042 int khugepaged_enter_vma_merge(struct vm_area_struct *vma, 2043 unsigned long vm_flags) 2044 { 2045 unsigned long hstart, hend; 2046 if (!vma->anon_vma) 2047 /* 2048 * Not yet faulted in so we will register later in the 2049 * page fault if needed. 2050 */ 2051 return 0; 2052 if (vma->vm_ops) 2053 /* khugepaged not yet working on file or special mappings */ 2054 return 0; 2055 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma); 2056 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2057 hend = vma->vm_end & HPAGE_PMD_MASK; 2058 if (hstart < hend) 2059 return khugepaged_enter(vma, vm_flags); 2060 return 0; 2061 } 2062 2063 void __khugepaged_exit(struct mm_struct *mm) 2064 { 2065 struct mm_slot *mm_slot; 2066 int free = 0; 2067 2068 spin_lock(&khugepaged_mm_lock); 2069 mm_slot = get_mm_slot(mm); 2070 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 2071 hash_del(&mm_slot->hash); 2072 list_del(&mm_slot->mm_node); 2073 free = 1; 2074 } 2075 spin_unlock(&khugepaged_mm_lock); 2076 2077 if (free) { 2078 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 2079 free_mm_slot(mm_slot); 2080 mmdrop(mm); 2081 } else if (mm_slot) { 2082 /* 2083 * This is required to serialize against 2084 * khugepaged_test_exit() (which is guaranteed to run 2085 * under mmap sem read mode). Stop here (after we 2086 * return all pagetables will be destroyed) until 2087 * khugepaged has finished working on the pagetables 2088 * under the mmap_sem. 2089 */ 2090 down_write(&mm->mmap_sem); 2091 up_write(&mm->mmap_sem); 2092 } 2093 } 2094 2095 static void release_pte_page(struct page *page) 2096 { 2097 /* 0 stands for page_is_file_cache(page) == false */ 2098 dec_zone_page_state(page, NR_ISOLATED_ANON + 0); 2099 unlock_page(page); 2100 putback_lru_page(page); 2101 } 2102 2103 static void release_pte_pages(pte_t *pte, pte_t *_pte) 2104 { 2105 while (--_pte >= pte) { 2106 pte_t pteval = *_pte; 2107 if (!pte_none(pteval)) 2108 release_pte_page(pte_page(pteval)); 2109 } 2110 } 2111 2112 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 2113 unsigned long address, 2114 pte_t *pte) 2115 { 2116 struct page *page; 2117 pte_t *_pte; 2118 int none = 0; 2119 bool referenced = false, writable = false; 2120 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; 2121 _pte++, address += PAGE_SIZE) { 2122 pte_t pteval = *_pte; 2123 if (pte_none(pteval)) { 2124 if (++none <= khugepaged_max_ptes_none) 2125 continue; 2126 else 2127 goto out; 2128 } 2129 if (!pte_present(pteval)) 2130 goto out; 2131 page = vm_normal_page(vma, address, pteval); 2132 if (unlikely(!page)) 2133 goto out; 2134 2135 VM_BUG_ON_PAGE(PageCompound(page), page); 2136 VM_BUG_ON_PAGE(!PageAnon(page), page); 2137 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 2138 2139 /* 2140 * We can do it before isolate_lru_page because the 2141 * page can't be freed from under us. NOTE: PG_lock 2142 * is needed to serialize against split_huge_page 2143 * when invoked from the VM. 2144 */ 2145 if (!trylock_page(page)) 2146 goto out; 2147 2148 /* 2149 * cannot use mapcount: can't collapse if there's a gup pin. 2150 * The page must only be referenced by the scanned process 2151 * and page swap cache. 2152 */ 2153 if (page_count(page) != 1 + !!PageSwapCache(page)) { 2154 unlock_page(page); 2155 goto out; 2156 } 2157 if (pte_write(pteval)) { 2158 writable = true; 2159 } else { 2160 if (PageSwapCache(page) && !reuse_swap_page(page)) { 2161 unlock_page(page); 2162 goto out; 2163 } 2164 /* 2165 * Page is not in the swap cache. It can be collapsed 2166 * into a THP. 2167 */ 2168 } 2169 2170 /* 2171 * Isolate the page to avoid collapsing an hugepage 2172 * currently in use by the VM. 2173 */ 2174 if (isolate_lru_page(page)) { 2175 unlock_page(page); 2176 goto out; 2177 } 2178 /* 0 stands for page_is_file_cache(page) == false */ 2179 inc_zone_page_state(page, NR_ISOLATED_ANON + 0); 2180 VM_BUG_ON_PAGE(!PageLocked(page), page); 2181 VM_BUG_ON_PAGE(PageLRU(page), page); 2182 2183 /* If there is no mapped pte young don't collapse the page */ 2184 if (pte_young(pteval) || PageReferenced(page) || 2185 mmu_notifier_test_young(vma->vm_mm, address)) 2186 referenced = true; 2187 } 2188 if (likely(referenced && writable)) 2189 return 1; 2190 out: 2191 release_pte_pages(pte, _pte); 2192 return 0; 2193 } 2194 2195 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 2196 struct vm_area_struct *vma, 2197 unsigned long address, 2198 spinlock_t *ptl) 2199 { 2200 pte_t *_pte; 2201 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) { 2202 pte_t pteval = *_pte; 2203 struct page *src_page; 2204 2205 if (pte_none(pteval)) { 2206 clear_user_highpage(page, address); 2207 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 2208 } else { 2209 src_page = pte_page(pteval); 2210 copy_user_highpage(page, src_page, address, vma); 2211 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page); 2212 release_pte_page(src_page); 2213 /* 2214 * ptl mostly unnecessary, but preempt has to 2215 * be disabled to update the per-cpu stats 2216 * inside page_remove_rmap(). 2217 */ 2218 spin_lock(ptl); 2219 /* 2220 * paravirt calls inside pte_clear here are 2221 * superfluous. 2222 */ 2223 pte_clear(vma->vm_mm, address, _pte); 2224 page_remove_rmap(src_page); 2225 spin_unlock(ptl); 2226 free_page_and_swap_cache(src_page); 2227 } 2228 2229 address += PAGE_SIZE; 2230 page++; 2231 } 2232 } 2233 2234 static void khugepaged_alloc_sleep(void) 2235 { 2236 wait_event_freezable_timeout(khugepaged_wait, false, 2237 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 2238 } 2239 2240 static int khugepaged_node_load[MAX_NUMNODES]; 2241 2242 static bool khugepaged_scan_abort(int nid) 2243 { 2244 int i; 2245 2246 /* 2247 * If zone_reclaim_mode is disabled, then no extra effort is made to 2248 * allocate memory locally. 2249 */ 2250 if (!zone_reclaim_mode) 2251 return false; 2252 2253 /* If there is a count for this node already, it must be acceptable */ 2254 if (khugepaged_node_load[nid]) 2255 return false; 2256 2257 for (i = 0; i < MAX_NUMNODES; i++) { 2258 if (!khugepaged_node_load[i]) 2259 continue; 2260 if (node_distance(nid, i) > RECLAIM_DISTANCE) 2261 return true; 2262 } 2263 return false; 2264 } 2265 2266 #ifdef CONFIG_NUMA 2267 static int khugepaged_find_target_node(void) 2268 { 2269 static int last_khugepaged_target_node = NUMA_NO_NODE; 2270 int nid, target_node = 0, max_value = 0; 2271 2272 /* find first node with max normal pages hit */ 2273 for (nid = 0; nid < MAX_NUMNODES; nid++) 2274 if (khugepaged_node_load[nid] > max_value) { 2275 max_value = khugepaged_node_load[nid]; 2276 target_node = nid; 2277 } 2278 2279 /* do some balance if several nodes have the same hit record */ 2280 if (target_node <= last_khugepaged_target_node) 2281 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; 2282 nid++) 2283 if (max_value == khugepaged_node_load[nid]) { 2284 target_node = nid; 2285 break; 2286 } 2287 2288 last_khugepaged_target_node = target_node; 2289 return target_node; 2290 } 2291 2292 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 2293 { 2294 if (IS_ERR(*hpage)) { 2295 if (!*wait) 2296 return false; 2297 2298 *wait = false; 2299 *hpage = NULL; 2300 khugepaged_alloc_sleep(); 2301 } else if (*hpage) { 2302 put_page(*hpage); 2303 *hpage = NULL; 2304 } 2305 2306 return true; 2307 } 2308 2309 static struct page 2310 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm, 2311 struct vm_area_struct *vma, unsigned long address, 2312 int node) 2313 { 2314 VM_BUG_ON_PAGE(*hpage, *hpage); 2315 2316 /* 2317 * Before allocating the hugepage, release the mmap_sem read lock. 2318 * The allocation can take potentially a long time if it involves 2319 * sync compaction, and we do not need to hold the mmap_sem during 2320 * that. We will recheck the vma after taking it again in write mode. 2321 */ 2322 up_read(&mm->mmap_sem); 2323 2324 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask( 2325 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER); 2326 if (unlikely(!*hpage)) { 2327 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 2328 *hpage = ERR_PTR(-ENOMEM); 2329 return NULL; 2330 } 2331 2332 count_vm_event(THP_COLLAPSE_ALLOC); 2333 return *hpage; 2334 } 2335 #else 2336 static int khugepaged_find_target_node(void) 2337 { 2338 return 0; 2339 } 2340 2341 static inline struct page *alloc_hugepage(int defrag) 2342 { 2343 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0), 2344 HPAGE_PMD_ORDER); 2345 } 2346 2347 static struct page *khugepaged_alloc_hugepage(bool *wait) 2348 { 2349 struct page *hpage; 2350 2351 do { 2352 hpage = alloc_hugepage(khugepaged_defrag()); 2353 if (!hpage) { 2354 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 2355 if (!*wait) 2356 return NULL; 2357 2358 *wait = false; 2359 khugepaged_alloc_sleep(); 2360 } else 2361 count_vm_event(THP_COLLAPSE_ALLOC); 2362 } while (unlikely(!hpage) && likely(khugepaged_enabled())); 2363 2364 return hpage; 2365 } 2366 2367 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 2368 { 2369 if (!*hpage) 2370 *hpage = khugepaged_alloc_hugepage(wait); 2371 2372 if (unlikely(!*hpage)) 2373 return false; 2374 2375 return true; 2376 } 2377 2378 static struct page 2379 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm, 2380 struct vm_area_struct *vma, unsigned long address, 2381 int node) 2382 { 2383 up_read(&mm->mmap_sem); 2384 VM_BUG_ON(!*hpage); 2385 return *hpage; 2386 } 2387 #endif 2388 2389 static bool hugepage_vma_check(struct vm_area_struct *vma) 2390 { 2391 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || 2392 (vma->vm_flags & VM_NOHUGEPAGE)) 2393 return false; 2394 2395 if (!vma->anon_vma || vma->vm_ops) 2396 return false; 2397 if (is_vma_temporary_stack(vma)) 2398 return false; 2399 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma); 2400 return true; 2401 } 2402 2403 static void collapse_huge_page(struct mm_struct *mm, 2404 unsigned long address, 2405 struct page **hpage, 2406 struct vm_area_struct *vma, 2407 int node) 2408 { 2409 pmd_t *pmd, _pmd; 2410 pte_t *pte; 2411 pgtable_t pgtable; 2412 struct page *new_page; 2413 spinlock_t *pmd_ptl, *pte_ptl; 2414 int isolated; 2415 unsigned long hstart, hend; 2416 struct mem_cgroup *memcg; 2417 unsigned long mmun_start; /* For mmu_notifiers */ 2418 unsigned long mmun_end; /* For mmu_notifiers */ 2419 2420 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 2421 2422 /* release the mmap_sem read lock. */ 2423 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node); 2424 if (!new_page) 2425 return; 2426 2427 if (unlikely(mem_cgroup_try_charge(new_page, mm, 2428 GFP_TRANSHUGE, &memcg))) 2429 return; 2430 2431 /* 2432 * Prevent all access to pagetables with the exception of 2433 * gup_fast later hanlded by the ptep_clear_flush and the VM 2434 * handled by the anon_vma lock + PG_lock. 2435 */ 2436 down_write(&mm->mmap_sem); 2437 if (unlikely(khugepaged_test_exit(mm))) 2438 goto out; 2439 2440 vma = find_vma(mm, address); 2441 if (!vma) 2442 goto out; 2443 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2444 hend = vma->vm_end & HPAGE_PMD_MASK; 2445 if (address < hstart || address + HPAGE_PMD_SIZE > hend) 2446 goto out; 2447 if (!hugepage_vma_check(vma)) 2448 goto out; 2449 pmd = mm_find_pmd(mm, address); 2450 if (!pmd) 2451 goto out; 2452 2453 anon_vma_lock_write(vma->anon_vma); 2454 2455 pte = pte_offset_map(pmd, address); 2456 pte_ptl = pte_lockptr(mm, pmd); 2457 2458 mmun_start = address; 2459 mmun_end = address + HPAGE_PMD_SIZE; 2460 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2461 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 2462 /* 2463 * After this gup_fast can't run anymore. This also removes 2464 * any huge TLB entry from the CPU so we won't allow 2465 * huge and small TLB entries for the same virtual address 2466 * to avoid the risk of CPU bugs in that area. 2467 */ 2468 _pmd = pmdp_clear_flush(vma, address, pmd); 2469 spin_unlock(pmd_ptl); 2470 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2471 2472 spin_lock(pte_ptl); 2473 isolated = __collapse_huge_page_isolate(vma, address, pte); 2474 spin_unlock(pte_ptl); 2475 2476 if (unlikely(!isolated)) { 2477 pte_unmap(pte); 2478 spin_lock(pmd_ptl); 2479 BUG_ON(!pmd_none(*pmd)); 2480 /* 2481 * We can only use set_pmd_at when establishing 2482 * hugepmds and never for establishing regular pmds that 2483 * points to regular pagetables. Use pmd_populate for that 2484 */ 2485 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 2486 spin_unlock(pmd_ptl); 2487 anon_vma_unlock_write(vma->anon_vma); 2488 goto out; 2489 } 2490 2491 /* 2492 * All pages are isolated and locked so anon_vma rmap 2493 * can't run anymore. 2494 */ 2495 anon_vma_unlock_write(vma->anon_vma); 2496 2497 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl); 2498 pte_unmap(pte); 2499 __SetPageUptodate(new_page); 2500 pgtable = pmd_pgtable(_pmd); 2501 2502 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot); 2503 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 2504 2505 /* 2506 * spin_lock() below is not the equivalent of smp_wmb(), so 2507 * this is needed to avoid the copy_huge_page writes to become 2508 * visible after the set_pmd_at() write. 2509 */ 2510 smp_wmb(); 2511 2512 spin_lock(pmd_ptl); 2513 BUG_ON(!pmd_none(*pmd)); 2514 page_add_new_anon_rmap(new_page, vma, address); 2515 mem_cgroup_commit_charge(new_page, memcg, false); 2516 lru_cache_add_active_or_unevictable(new_page, vma); 2517 pgtable_trans_huge_deposit(mm, pmd, pgtable); 2518 set_pmd_at(mm, address, pmd, _pmd); 2519 update_mmu_cache_pmd(vma, address, pmd); 2520 spin_unlock(pmd_ptl); 2521 2522 *hpage = NULL; 2523 2524 khugepaged_pages_collapsed++; 2525 out_up_write: 2526 up_write(&mm->mmap_sem); 2527 return; 2528 2529 out: 2530 mem_cgroup_cancel_charge(new_page, memcg); 2531 goto out_up_write; 2532 } 2533 2534 static int khugepaged_scan_pmd(struct mm_struct *mm, 2535 struct vm_area_struct *vma, 2536 unsigned long address, 2537 struct page **hpage) 2538 { 2539 pmd_t *pmd; 2540 pte_t *pte, *_pte; 2541 int ret = 0, none = 0; 2542 struct page *page; 2543 unsigned long _address; 2544 spinlock_t *ptl; 2545 int node = NUMA_NO_NODE; 2546 bool writable = false, referenced = false; 2547 2548 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 2549 2550 pmd = mm_find_pmd(mm, address); 2551 if (!pmd) 2552 goto out; 2553 2554 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 2555 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2556 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; 2557 _pte++, _address += PAGE_SIZE) { 2558 pte_t pteval = *_pte; 2559 if (pte_none(pteval)) { 2560 if (++none <= khugepaged_max_ptes_none) 2561 continue; 2562 else 2563 goto out_unmap; 2564 } 2565 if (!pte_present(pteval)) 2566 goto out_unmap; 2567 if (pte_write(pteval)) 2568 writable = true; 2569 2570 page = vm_normal_page(vma, _address, pteval); 2571 if (unlikely(!page)) 2572 goto out_unmap; 2573 /* 2574 * Record which node the original page is from and save this 2575 * information to khugepaged_node_load[]. 2576 * Khupaged will allocate hugepage from the node has the max 2577 * hit record. 2578 */ 2579 node = page_to_nid(page); 2580 if (khugepaged_scan_abort(node)) 2581 goto out_unmap; 2582 khugepaged_node_load[node]++; 2583 VM_BUG_ON_PAGE(PageCompound(page), page); 2584 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page)) 2585 goto out_unmap; 2586 /* 2587 * cannot use mapcount: can't collapse if there's a gup pin. 2588 * The page must only be referenced by the scanned process 2589 * and page swap cache. 2590 */ 2591 if (page_count(page) != 1 + !!PageSwapCache(page)) 2592 goto out_unmap; 2593 if (pte_young(pteval) || PageReferenced(page) || 2594 mmu_notifier_test_young(vma->vm_mm, address)) 2595 referenced = true; 2596 } 2597 if (referenced && writable) 2598 ret = 1; 2599 out_unmap: 2600 pte_unmap_unlock(pte, ptl); 2601 if (ret) { 2602 node = khugepaged_find_target_node(); 2603 /* collapse_huge_page will return with the mmap_sem released */ 2604 collapse_huge_page(mm, address, hpage, vma, node); 2605 } 2606 out: 2607 return ret; 2608 } 2609 2610 static void collect_mm_slot(struct mm_slot *mm_slot) 2611 { 2612 struct mm_struct *mm = mm_slot->mm; 2613 2614 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); 2615 2616 if (khugepaged_test_exit(mm)) { 2617 /* free mm_slot */ 2618 hash_del(&mm_slot->hash); 2619 list_del(&mm_slot->mm_node); 2620 2621 /* 2622 * Not strictly needed because the mm exited already. 2623 * 2624 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 2625 */ 2626 2627 /* khugepaged_mm_lock actually not necessary for the below */ 2628 free_mm_slot(mm_slot); 2629 mmdrop(mm); 2630 } 2631 } 2632 2633 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, 2634 struct page **hpage) 2635 __releases(&khugepaged_mm_lock) 2636 __acquires(&khugepaged_mm_lock) 2637 { 2638 struct mm_slot *mm_slot; 2639 struct mm_struct *mm; 2640 struct vm_area_struct *vma; 2641 int progress = 0; 2642 2643 VM_BUG_ON(!pages); 2644 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); 2645 2646 if (khugepaged_scan.mm_slot) 2647 mm_slot = khugepaged_scan.mm_slot; 2648 else { 2649 mm_slot = list_entry(khugepaged_scan.mm_head.next, 2650 struct mm_slot, mm_node); 2651 khugepaged_scan.address = 0; 2652 khugepaged_scan.mm_slot = mm_slot; 2653 } 2654 spin_unlock(&khugepaged_mm_lock); 2655 2656 mm = mm_slot->mm; 2657 down_read(&mm->mmap_sem); 2658 if (unlikely(khugepaged_test_exit(mm))) 2659 vma = NULL; 2660 else 2661 vma = find_vma(mm, khugepaged_scan.address); 2662 2663 progress++; 2664 for (; vma; vma = vma->vm_next) { 2665 unsigned long hstart, hend; 2666 2667 cond_resched(); 2668 if (unlikely(khugepaged_test_exit(mm))) { 2669 progress++; 2670 break; 2671 } 2672 if (!hugepage_vma_check(vma)) { 2673 skip: 2674 progress++; 2675 continue; 2676 } 2677 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2678 hend = vma->vm_end & HPAGE_PMD_MASK; 2679 if (hstart >= hend) 2680 goto skip; 2681 if (khugepaged_scan.address > hend) 2682 goto skip; 2683 if (khugepaged_scan.address < hstart) 2684 khugepaged_scan.address = hstart; 2685 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2686 2687 while (khugepaged_scan.address < hend) { 2688 int ret; 2689 cond_resched(); 2690 if (unlikely(khugepaged_test_exit(mm))) 2691 goto breakouterloop; 2692 2693 VM_BUG_ON(khugepaged_scan.address < hstart || 2694 khugepaged_scan.address + HPAGE_PMD_SIZE > 2695 hend); 2696 ret = khugepaged_scan_pmd(mm, vma, 2697 khugepaged_scan.address, 2698 hpage); 2699 /* move to next address */ 2700 khugepaged_scan.address += HPAGE_PMD_SIZE; 2701 progress += HPAGE_PMD_NR; 2702 if (ret) 2703 /* we released mmap_sem so break loop */ 2704 goto breakouterloop_mmap_sem; 2705 if (progress >= pages) 2706 goto breakouterloop; 2707 } 2708 } 2709 breakouterloop: 2710 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */ 2711 breakouterloop_mmap_sem: 2712 2713 spin_lock(&khugepaged_mm_lock); 2714 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2715 /* 2716 * Release the current mm_slot if this mm is about to die, or 2717 * if we scanned all vmas of this mm. 2718 */ 2719 if (khugepaged_test_exit(mm) || !vma) { 2720 /* 2721 * Make sure that if mm_users is reaching zero while 2722 * khugepaged runs here, khugepaged_exit will find 2723 * mm_slot not pointing to the exiting mm. 2724 */ 2725 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { 2726 khugepaged_scan.mm_slot = list_entry( 2727 mm_slot->mm_node.next, 2728 struct mm_slot, mm_node); 2729 khugepaged_scan.address = 0; 2730 } else { 2731 khugepaged_scan.mm_slot = NULL; 2732 khugepaged_full_scans++; 2733 } 2734 2735 collect_mm_slot(mm_slot); 2736 } 2737 2738 return progress; 2739 } 2740 2741 static int khugepaged_has_work(void) 2742 { 2743 return !list_empty(&khugepaged_scan.mm_head) && 2744 khugepaged_enabled(); 2745 } 2746 2747 static int khugepaged_wait_event(void) 2748 { 2749 return !list_empty(&khugepaged_scan.mm_head) || 2750 kthread_should_stop(); 2751 } 2752 2753 static void khugepaged_do_scan(void) 2754 { 2755 struct page *hpage = NULL; 2756 unsigned int progress = 0, pass_through_head = 0; 2757 unsigned int pages = khugepaged_pages_to_scan; 2758 bool wait = true; 2759 2760 barrier(); /* write khugepaged_pages_to_scan to local stack */ 2761 2762 while (progress < pages) { 2763 if (!khugepaged_prealloc_page(&hpage, &wait)) 2764 break; 2765 2766 cond_resched(); 2767 2768 if (unlikely(kthread_should_stop() || freezing(current))) 2769 break; 2770 2771 spin_lock(&khugepaged_mm_lock); 2772 if (!khugepaged_scan.mm_slot) 2773 pass_through_head++; 2774 if (khugepaged_has_work() && 2775 pass_through_head < 2) 2776 progress += khugepaged_scan_mm_slot(pages - progress, 2777 &hpage); 2778 else 2779 progress = pages; 2780 spin_unlock(&khugepaged_mm_lock); 2781 } 2782 2783 if (!IS_ERR_OR_NULL(hpage)) 2784 put_page(hpage); 2785 } 2786 2787 static void khugepaged_wait_work(void) 2788 { 2789 try_to_freeze(); 2790 2791 if (khugepaged_has_work()) { 2792 if (!khugepaged_scan_sleep_millisecs) 2793 return; 2794 2795 wait_event_freezable_timeout(khugepaged_wait, 2796 kthread_should_stop(), 2797 msecs_to_jiffies(khugepaged_scan_sleep_millisecs)); 2798 return; 2799 } 2800 2801 if (khugepaged_enabled()) 2802 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2803 } 2804 2805 static int khugepaged(void *none) 2806 { 2807 struct mm_slot *mm_slot; 2808 2809 set_freezable(); 2810 set_user_nice(current, MAX_NICE); 2811 2812 while (!kthread_should_stop()) { 2813 khugepaged_do_scan(); 2814 khugepaged_wait_work(); 2815 } 2816 2817 spin_lock(&khugepaged_mm_lock); 2818 mm_slot = khugepaged_scan.mm_slot; 2819 khugepaged_scan.mm_slot = NULL; 2820 if (mm_slot) 2821 collect_mm_slot(mm_slot); 2822 spin_unlock(&khugepaged_mm_lock); 2823 return 0; 2824 } 2825 2826 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2827 unsigned long haddr, pmd_t *pmd) 2828 { 2829 struct mm_struct *mm = vma->vm_mm; 2830 pgtable_t pgtable; 2831 pmd_t _pmd; 2832 int i; 2833 2834 pmdp_clear_flush_notify(vma, haddr, pmd); 2835 /* leave pmd empty until pte is filled */ 2836 2837 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2838 pmd_populate(mm, &_pmd, pgtable); 2839 2840 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 2841 pte_t *pte, entry; 2842 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 2843 entry = pte_mkspecial(entry); 2844 pte = pte_offset_map(&_pmd, haddr); 2845 VM_BUG_ON(!pte_none(*pte)); 2846 set_pte_at(mm, haddr, pte, entry); 2847 pte_unmap(pte); 2848 } 2849 smp_wmb(); /* make pte visible before pmd */ 2850 pmd_populate(mm, pmd, pgtable); 2851 put_huge_zero_page(); 2852 } 2853 2854 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address, 2855 pmd_t *pmd) 2856 { 2857 spinlock_t *ptl; 2858 struct page *page; 2859 struct mm_struct *mm = vma->vm_mm; 2860 unsigned long haddr = address & HPAGE_PMD_MASK; 2861 unsigned long mmun_start; /* For mmu_notifiers */ 2862 unsigned long mmun_end; /* For mmu_notifiers */ 2863 2864 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE); 2865 2866 mmun_start = haddr; 2867 mmun_end = haddr + HPAGE_PMD_SIZE; 2868 again: 2869 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2870 ptl = pmd_lock(mm, pmd); 2871 if (unlikely(!pmd_trans_huge(*pmd))) { 2872 spin_unlock(ptl); 2873 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2874 return; 2875 } 2876 if (is_huge_zero_pmd(*pmd)) { 2877 __split_huge_zero_page_pmd(vma, haddr, pmd); 2878 spin_unlock(ptl); 2879 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2880 return; 2881 } 2882 page = pmd_page(*pmd); 2883 VM_BUG_ON_PAGE(!page_count(page), page); 2884 get_page(page); 2885 spin_unlock(ptl); 2886 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2887 2888 split_huge_page(page); 2889 2890 put_page(page); 2891 2892 /* 2893 * We don't always have down_write of mmap_sem here: a racing 2894 * do_huge_pmd_wp_page() might have copied-on-write to another 2895 * huge page before our split_huge_page() got the anon_vma lock. 2896 */ 2897 if (unlikely(pmd_trans_huge(*pmd))) 2898 goto again; 2899 } 2900 2901 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address, 2902 pmd_t *pmd) 2903 { 2904 struct vm_area_struct *vma; 2905 2906 vma = find_vma(mm, address); 2907 BUG_ON(vma == NULL); 2908 split_huge_page_pmd(vma, address, pmd); 2909 } 2910 2911 static void split_huge_page_address(struct mm_struct *mm, 2912 unsigned long address) 2913 { 2914 pgd_t *pgd; 2915 pud_t *pud; 2916 pmd_t *pmd; 2917 2918 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK)); 2919 2920 pgd = pgd_offset(mm, address); 2921 if (!pgd_present(*pgd)) 2922 return; 2923 2924 pud = pud_offset(pgd, address); 2925 if (!pud_present(*pud)) 2926 return; 2927 2928 pmd = pmd_offset(pud, address); 2929 if (!pmd_present(*pmd)) 2930 return; 2931 /* 2932 * Caller holds the mmap_sem write mode, so a huge pmd cannot 2933 * materialize from under us. 2934 */ 2935 split_huge_page_pmd_mm(mm, address, pmd); 2936 } 2937 2938 void __vma_adjust_trans_huge(struct vm_area_struct *vma, 2939 unsigned long start, 2940 unsigned long end, 2941 long adjust_next) 2942 { 2943 /* 2944 * If the new start address isn't hpage aligned and it could 2945 * previously contain an hugepage: check if we need to split 2946 * an huge pmd. 2947 */ 2948 if (start & ~HPAGE_PMD_MASK && 2949 (start & HPAGE_PMD_MASK) >= vma->vm_start && 2950 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2951 split_huge_page_address(vma->vm_mm, start); 2952 2953 /* 2954 * If the new end address isn't hpage aligned and it could 2955 * previously contain an hugepage: check if we need to split 2956 * an huge pmd. 2957 */ 2958 if (end & ~HPAGE_PMD_MASK && 2959 (end & HPAGE_PMD_MASK) >= vma->vm_start && 2960 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2961 split_huge_page_address(vma->vm_mm, end); 2962 2963 /* 2964 * If we're also updating the vma->vm_next->vm_start, if the new 2965 * vm_next->vm_start isn't page aligned and it could previously 2966 * contain an hugepage: check if we need to split an huge pmd. 2967 */ 2968 if (adjust_next > 0) { 2969 struct vm_area_struct *next = vma->vm_next; 2970 unsigned long nstart = next->vm_start; 2971 nstart += adjust_next << PAGE_SHIFT; 2972 if (nstart & ~HPAGE_PMD_MASK && 2973 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 2974 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 2975 split_huge_page_address(next->vm_mm, nstart); 2976 } 2977 } 2978