xref: /openbmc/linux/mm/huge_memory.c (revision 83268fa6)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 static struct page *get_huge_zero_page(void)
66 {
67 	struct page *zero_page;
68 retry:
69 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70 		return READ_ONCE(huge_zero_page);
71 
72 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73 			HPAGE_PMD_ORDER);
74 	if (!zero_page) {
75 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76 		return NULL;
77 	}
78 	count_vm_event(THP_ZERO_PAGE_ALLOC);
79 	preempt_disable();
80 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81 		preempt_enable();
82 		__free_pages(zero_page, compound_order(zero_page));
83 		goto retry;
84 	}
85 
86 	/* We take additional reference here. It will be put back by shrinker */
87 	atomic_set(&huge_zero_refcount, 2);
88 	preempt_enable();
89 	return READ_ONCE(huge_zero_page);
90 }
91 
92 static void put_huge_zero_page(void)
93 {
94 	/*
95 	 * Counter should never go to zero here. Only shrinker can put
96 	 * last reference.
97 	 */
98 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
99 }
100 
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102 {
103 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 		return READ_ONCE(huge_zero_page);
105 
106 	if (!get_huge_zero_page())
107 		return NULL;
108 
109 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 		put_huge_zero_page();
111 
112 	return READ_ONCE(huge_zero_page);
113 }
114 
115 void mm_put_huge_zero_page(struct mm_struct *mm)
116 {
117 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 		put_huge_zero_page();
119 }
120 
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 					struct shrink_control *sc)
123 {
124 	/* we can free zero page only if last reference remains */
125 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126 }
127 
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 				       struct shrink_control *sc)
130 {
131 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 		struct page *zero_page = xchg(&huge_zero_page, NULL);
133 		BUG_ON(zero_page == NULL);
134 		__free_pages(zero_page, compound_order(zero_page));
135 		return HPAGE_PMD_NR;
136 	}
137 
138 	return 0;
139 }
140 
141 static struct shrinker huge_zero_page_shrinker = {
142 	.count_objects = shrink_huge_zero_page_count,
143 	.scan_objects = shrink_huge_zero_page_scan,
144 	.seeks = DEFAULT_SEEKS,
145 };
146 
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149 			    struct kobj_attribute *attr, char *buf)
150 {
151 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 		return sprintf(buf, "[always] madvise never\n");
153 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 		return sprintf(buf, "always [madvise] never\n");
155 	else
156 		return sprintf(buf, "always madvise [never]\n");
157 }
158 
159 static ssize_t enabled_store(struct kobject *kobj,
160 			     struct kobj_attribute *attr,
161 			     const char *buf, size_t count)
162 {
163 	ssize_t ret = count;
164 
165 	if (!memcmp("always", buf,
166 		    min(sizeof("always")-1, count))) {
167 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 	} else if (!memcmp("madvise", buf,
170 			   min(sizeof("madvise")-1, count))) {
171 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 	} else if (!memcmp("never", buf,
174 			   min(sizeof("never")-1, count))) {
175 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 	} else
178 		ret = -EINVAL;
179 
180 	if (ret > 0) {
181 		int err = start_stop_khugepaged();
182 		if (err)
183 			ret = err;
184 	}
185 	return ret;
186 }
187 static struct kobj_attribute enabled_attr =
188 	__ATTR(enabled, 0644, enabled_show, enabled_store);
189 
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 				struct kobj_attribute *attr, char *buf,
192 				enum transparent_hugepage_flag flag)
193 {
194 	return sprintf(buf, "%d\n",
195 		       !!test_bit(flag, &transparent_hugepage_flags));
196 }
197 
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 				 struct kobj_attribute *attr,
200 				 const char *buf, size_t count,
201 				 enum transparent_hugepage_flag flag)
202 {
203 	unsigned long value;
204 	int ret;
205 
206 	ret = kstrtoul(buf, 10, &value);
207 	if (ret < 0)
208 		return ret;
209 	if (value > 1)
210 		return -EINVAL;
211 
212 	if (value)
213 		set_bit(flag, &transparent_hugepage_flags);
214 	else
215 		clear_bit(flag, &transparent_hugepage_flags);
216 
217 	return count;
218 }
219 
220 static ssize_t defrag_show(struct kobject *kobj,
221 			   struct kobj_attribute *attr, char *buf)
222 {
223 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
232 }
233 
234 static ssize_t defrag_store(struct kobject *kobj,
235 			    struct kobj_attribute *attr,
236 			    const char *buf, size_t count)
237 {
238 	if (!memcmp("always", buf,
239 		    min(sizeof("always")-1, count))) {
240 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 	} else if (!memcmp("defer+madvise", buf,
245 		    min(sizeof("defer+madvise")-1, count))) {
246 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 	} else if (!memcmp("defer", buf,
251 		    min(sizeof("defer")-1, count))) {
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 	} else if (!memcmp("madvise", buf,
257 			   min(sizeof("madvise")-1, count))) {
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 	} else if (!memcmp("never", buf,
263 			   min(sizeof("never")-1, count))) {
264 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 	} else
269 		return -EINVAL;
270 
271 	return count;
272 }
273 static struct kobj_attribute defrag_attr =
274 	__ATTR(defrag, 0644, defrag_show, defrag_store);
275 
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277 		struct kobj_attribute *attr, char *buf)
278 {
279 	return single_hugepage_flag_show(kobj, attr, buf,
280 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281 }
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283 		struct kobj_attribute *attr, const char *buf, size_t count)
284 {
285 	return single_hugepage_flag_store(kobj, attr, buf, count,
286 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287 }
288 static struct kobj_attribute use_zero_page_attr =
289 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
290 
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 		struct kobj_attribute *attr, char *buf)
293 {
294 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295 }
296 static struct kobj_attribute hpage_pmd_size_attr =
297 	__ATTR_RO(hpage_pmd_size);
298 
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301 				struct kobj_attribute *attr, char *buf)
302 {
303 	return single_hugepage_flag_show(kobj, attr, buf,
304 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305 }
306 static ssize_t debug_cow_store(struct kobject *kobj,
307 			       struct kobj_attribute *attr,
308 			       const char *buf, size_t count)
309 {
310 	return single_hugepage_flag_store(kobj, attr, buf, count,
311 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 }
313 static struct kobj_attribute debug_cow_attr =
314 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
316 
317 static struct attribute *hugepage_attr[] = {
318 	&enabled_attr.attr,
319 	&defrag_attr.attr,
320 	&use_zero_page_attr.attr,
321 	&hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 	&shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326 	&debug_cow_attr.attr,
327 #endif
328 	NULL,
329 };
330 
331 static const struct attribute_group hugepage_attr_group = {
332 	.attrs = hugepage_attr,
333 };
334 
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 {
337 	int err;
338 
339 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 	if (unlikely(!*hugepage_kobj)) {
341 		pr_err("failed to create transparent hugepage kobject\n");
342 		return -ENOMEM;
343 	}
344 
345 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 	if (err) {
347 		pr_err("failed to register transparent hugepage group\n");
348 		goto delete_obj;
349 	}
350 
351 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 	if (err) {
353 		pr_err("failed to register transparent hugepage group\n");
354 		goto remove_hp_group;
355 	}
356 
357 	return 0;
358 
359 remove_hp_group:
360 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 	kobject_put(*hugepage_kobj);
363 	return err;
364 }
365 
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 	kobject_put(hugepage_kobj);
371 }
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374 {
375 	return 0;
376 }
377 
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 }
381 #endif /* CONFIG_SYSFS */
382 
383 static int __init hugepage_init(void)
384 {
385 	int err;
386 	struct kobject *hugepage_kobj;
387 
388 	if (!has_transparent_hugepage()) {
389 		transparent_hugepage_flags = 0;
390 		return -EINVAL;
391 	}
392 
393 	/*
394 	 * hugepages can't be allocated by the buddy allocator
395 	 */
396 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 	/*
398 	 * we use page->mapping and page->index in second tail page
399 	 * as list_head: assuming THP order >= 2
400 	 */
401 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402 
403 	err = hugepage_init_sysfs(&hugepage_kobj);
404 	if (err)
405 		goto err_sysfs;
406 
407 	err = khugepaged_init();
408 	if (err)
409 		goto err_slab;
410 
411 	err = register_shrinker(&huge_zero_page_shrinker);
412 	if (err)
413 		goto err_hzp_shrinker;
414 	err = register_shrinker(&deferred_split_shrinker);
415 	if (err)
416 		goto err_split_shrinker;
417 
418 	/*
419 	 * By default disable transparent hugepages on smaller systems,
420 	 * where the extra memory used could hurt more than TLB overhead
421 	 * is likely to save.  The admin can still enable it through /sys.
422 	 */
423 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424 		transparent_hugepage_flags = 0;
425 		return 0;
426 	}
427 
428 	err = start_stop_khugepaged();
429 	if (err)
430 		goto err_khugepaged;
431 
432 	return 0;
433 err_khugepaged:
434 	unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436 	unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438 	khugepaged_destroy();
439 err_slab:
440 	hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442 	return err;
443 }
444 subsys_initcall(hugepage_init);
445 
446 static int __init setup_transparent_hugepage(char *str)
447 {
448 	int ret = 0;
449 	if (!str)
450 		goto out;
451 	if (!strcmp(str, "always")) {
452 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 			&transparent_hugepage_flags);
454 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 			  &transparent_hugepage_flags);
456 		ret = 1;
457 	} else if (!strcmp(str, "madvise")) {
458 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 			  &transparent_hugepage_flags);
460 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 			&transparent_hugepage_flags);
462 		ret = 1;
463 	} else if (!strcmp(str, "never")) {
464 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 			  &transparent_hugepage_flags);
466 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 			  &transparent_hugepage_flags);
468 		ret = 1;
469 	}
470 out:
471 	if (!ret)
472 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 	return ret;
474 }
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
476 
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478 {
479 	if (likely(vma->vm_flags & VM_WRITE))
480 		pmd = pmd_mkwrite(pmd);
481 	return pmd;
482 }
483 
484 static inline struct list_head *page_deferred_list(struct page *page)
485 {
486 	/* ->lru in the tail pages is occupied by compound_head. */
487 	return &page[2].deferred_list;
488 }
489 
490 void prep_transhuge_page(struct page *page)
491 {
492 	/*
493 	 * we use page->mapping and page->indexlru in second tail page
494 	 * as list_head: assuming THP order >= 2
495 	 */
496 
497 	INIT_LIST_HEAD(page_deferred_list(page));
498 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499 }
500 
501 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
502 		loff_t off, unsigned long flags, unsigned long size)
503 {
504 	unsigned long addr;
505 	loff_t off_end = off + len;
506 	loff_t off_align = round_up(off, size);
507 	unsigned long len_pad;
508 
509 	if (off_end <= off_align || (off_end - off_align) < size)
510 		return 0;
511 
512 	len_pad = len + size;
513 	if (len_pad < len || (off + len_pad) < off)
514 		return 0;
515 
516 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
517 					      off >> PAGE_SHIFT, flags);
518 	if (IS_ERR_VALUE(addr))
519 		return 0;
520 
521 	addr += (off - addr) & (size - 1);
522 	return addr;
523 }
524 
525 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
526 		unsigned long len, unsigned long pgoff, unsigned long flags)
527 {
528 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
529 
530 	if (addr)
531 		goto out;
532 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
533 		goto out;
534 
535 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
536 	if (addr)
537 		return addr;
538 
539  out:
540 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
541 }
542 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
543 
544 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
545 			struct page *page, gfp_t gfp)
546 {
547 	struct vm_area_struct *vma = vmf->vma;
548 	struct mem_cgroup *memcg;
549 	pgtable_t pgtable;
550 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
551 	vm_fault_t ret = 0;
552 
553 	VM_BUG_ON_PAGE(!PageCompound(page), page);
554 
555 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
556 		put_page(page);
557 		count_vm_event(THP_FAULT_FALLBACK);
558 		return VM_FAULT_FALLBACK;
559 	}
560 
561 	pgtable = pte_alloc_one(vma->vm_mm, haddr);
562 	if (unlikely(!pgtable)) {
563 		ret = VM_FAULT_OOM;
564 		goto release;
565 	}
566 
567 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
568 	/*
569 	 * The memory barrier inside __SetPageUptodate makes sure that
570 	 * clear_huge_page writes become visible before the set_pmd_at()
571 	 * write.
572 	 */
573 	__SetPageUptodate(page);
574 
575 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
576 	if (unlikely(!pmd_none(*vmf->pmd))) {
577 		goto unlock_release;
578 	} else {
579 		pmd_t entry;
580 
581 		ret = check_stable_address_space(vma->vm_mm);
582 		if (ret)
583 			goto unlock_release;
584 
585 		/* Deliver the page fault to userland */
586 		if (userfaultfd_missing(vma)) {
587 			vm_fault_t ret2;
588 
589 			spin_unlock(vmf->ptl);
590 			mem_cgroup_cancel_charge(page, memcg, true);
591 			put_page(page);
592 			pte_free(vma->vm_mm, pgtable);
593 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
594 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
595 			return ret2;
596 		}
597 
598 		entry = mk_huge_pmd(page, vma->vm_page_prot);
599 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
600 		page_add_new_anon_rmap(page, vma, haddr, true);
601 		mem_cgroup_commit_charge(page, memcg, false, true);
602 		lru_cache_add_active_or_unevictable(page, vma);
603 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
604 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
605 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
606 		mm_inc_nr_ptes(vma->vm_mm);
607 		spin_unlock(vmf->ptl);
608 		count_vm_event(THP_FAULT_ALLOC);
609 	}
610 
611 	return 0;
612 unlock_release:
613 	spin_unlock(vmf->ptl);
614 release:
615 	if (pgtable)
616 		pte_free(vma->vm_mm, pgtable);
617 	mem_cgroup_cancel_charge(page, memcg, true);
618 	put_page(page);
619 	return ret;
620 
621 }
622 
623 /*
624  * always: directly stall for all thp allocations
625  * defer: wake kswapd and fail if not immediately available
626  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
627  *		  fail if not immediately available
628  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
629  *	    available
630  * never: never stall for any thp allocation
631  */
632 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma, unsigned long addr)
633 {
634 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
635 	gfp_t this_node = 0;
636 
637 #ifdef CONFIG_NUMA
638 	struct mempolicy *pol;
639 	/*
640 	 * __GFP_THISNODE is used only when __GFP_DIRECT_RECLAIM is not
641 	 * specified, to express a general desire to stay on the current
642 	 * node for optimistic allocation attempts. If the defrag mode
643 	 * and/or madvise hint requires the direct reclaim then we prefer
644 	 * to fallback to other node rather than node reclaim because that
645 	 * can lead to excessive reclaim even though there is free memory
646 	 * on other nodes. We expect that NUMA preferences are specified
647 	 * by memory policies.
648 	 */
649 	pol = get_vma_policy(vma, addr);
650 	if (pol->mode != MPOL_BIND)
651 		this_node = __GFP_THISNODE;
652 	mpol_cond_put(pol);
653 #endif
654 
655 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
656 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
657 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
658 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM | this_node;
659 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
660 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
661 							     __GFP_KSWAPD_RECLAIM | this_node);
662 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
663 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
664 							     this_node);
665 	return GFP_TRANSHUGE_LIGHT | this_node;
666 }
667 
668 /* Caller must hold page table lock. */
669 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
670 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
671 		struct page *zero_page)
672 {
673 	pmd_t entry;
674 	if (!pmd_none(*pmd))
675 		return false;
676 	entry = mk_pmd(zero_page, vma->vm_page_prot);
677 	entry = pmd_mkhuge(entry);
678 	if (pgtable)
679 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
680 	set_pmd_at(mm, haddr, pmd, entry);
681 	mm_inc_nr_ptes(mm);
682 	return true;
683 }
684 
685 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
686 {
687 	struct vm_area_struct *vma = vmf->vma;
688 	gfp_t gfp;
689 	struct page *page;
690 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
691 
692 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
693 		return VM_FAULT_FALLBACK;
694 	if (unlikely(anon_vma_prepare(vma)))
695 		return VM_FAULT_OOM;
696 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
697 		return VM_FAULT_OOM;
698 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
699 			!mm_forbids_zeropage(vma->vm_mm) &&
700 			transparent_hugepage_use_zero_page()) {
701 		pgtable_t pgtable;
702 		struct page *zero_page;
703 		bool set;
704 		vm_fault_t ret;
705 		pgtable = pte_alloc_one(vma->vm_mm, haddr);
706 		if (unlikely(!pgtable))
707 			return VM_FAULT_OOM;
708 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
709 		if (unlikely(!zero_page)) {
710 			pte_free(vma->vm_mm, pgtable);
711 			count_vm_event(THP_FAULT_FALLBACK);
712 			return VM_FAULT_FALLBACK;
713 		}
714 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
715 		ret = 0;
716 		set = false;
717 		if (pmd_none(*vmf->pmd)) {
718 			ret = check_stable_address_space(vma->vm_mm);
719 			if (ret) {
720 				spin_unlock(vmf->ptl);
721 			} else if (userfaultfd_missing(vma)) {
722 				spin_unlock(vmf->ptl);
723 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
724 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
725 			} else {
726 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
727 						   haddr, vmf->pmd, zero_page);
728 				spin_unlock(vmf->ptl);
729 				set = true;
730 			}
731 		} else
732 			spin_unlock(vmf->ptl);
733 		if (!set)
734 			pte_free(vma->vm_mm, pgtable);
735 		return ret;
736 	}
737 	gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
738 	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, vma, haddr, numa_node_id());
739 	if (unlikely(!page)) {
740 		count_vm_event(THP_FAULT_FALLBACK);
741 		return VM_FAULT_FALLBACK;
742 	}
743 	prep_transhuge_page(page);
744 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
745 }
746 
747 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
748 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
749 		pgtable_t pgtable)
750 {
751 	struct mm_struct *mm = vma->vm_mm;
752 	pmd_t entry;
753 	spinlock_t *ptl;
754 
755 	ptl = pmd_lock(mm, pmd);
756 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
757 	if (pfn_t_devmap(pfn))
758 		entry = pmd_mkdevmap(entry);
759 	if (write) {
760 		entry = pmd_mkyoung(pmd_mkdirty(entry));
761 		entry = maybe_pmd_mkwrite(entry, vma);
762 	}
763 
764 	if (pgtable) {
765 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
766 		mm_inc_nr_ptes(mm);
767 	}
768 
769 	set_pmd_at(mm, addr, pmd, entry);
770 	update_mmu_cache_pmd(vma, addr, pmd);
771 	spin_unlock(ptl);
772 }
773 
774 vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
775 			pmd_t *pmd, pfn_t pfn, bool write)
776 {
777 	pgprot_t pgprot = vma->vm_page_prot;
778 	pgtable_t pgtable = NULL;
779 	/*
780 	 * If we had pmd_special, we could avoid all these restrictions,
781 	 * but we need to be consistent with PTEs and architectures that
782 	 * can't support a 'special' bit.
783 	 */
784 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
785 			!pfn_t_devmap(pfn));
786 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
787 						(VM_PFNMAP|VM_MIXEDMAP));
788 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
789 
790 	if (addr < vma->vm_start || addr >= vma->vm_end)
791 		return VM_FAULT_SIGBUS;
792 
793 	if (arch_needs_pgtable_deposit()) {
794 		pgtable = pte_alloc_one(vma->vm_mm, addr);
795 		if (!pgtable)
796 			return VM_FAULT_OOM;
797 	}
798 
799 	track_pfn_insert(vma, &pgprot, pfn);
800 
801 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
802 	return VM_FAULT_NOPAGE;
803 }
804 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
805 
806 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
807 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
808 {
809 	if (likely(vma->vm_flags & VM_WRITE))
810 		pud = pud_mkwrite(pud);
811 	return pud;
812 }
813 
814 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
815 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
816 {
817 	struct mm_struct *mm = vma->vm_mm;
818 	pud_t entry;
819 	spinlock_t *ptl;
820 
821 	ptl = pud_lock(mm, pud);
822 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
823 	if (pfn_t_devmap(pfn))
824 		entry = pud_mkdevmap(entry);
825 	if (write) {
826 		entry = pud_mkyoung(pud_mkdirty(entry));
827 		entry = maybe_pud_mkwrite(entry, vma);
828 	}
829 	set_pud_at(mm, addr, pud, entry);
830 	update_mmu_cache_pud(vma, addr, pud);
831 	spin_unlock(ptl);
832 }
833 
834 vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
835 			pud_t *pud, pfn_t pfn, bool write)
836 {
837 	pgprot_t pgprot = vma->vm_page_prot;
838 	/*
839 	 * If we had pud_special, we could avoid all these restrictions,
840 	 * but we need to be consistent with PTEs and architectures that
841 	 * can't support a 'special' bit.
842 	 */
843 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
844 			!pfn_t_devmap(pfn));
845 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
846 						(VM_PFNMAP|VM_MIXEDMAP));
847 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
848 
849 	if (addr < vma->vm_start || addr >= vma->vm_end)
850 		return VM_FAULT_SIGBUS;
851 
852 	track_pfn_insert(vma, &pgprot, pfn);
853 
854 	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
855 	return VM_FAULT_NOPAGE;
856 }
857 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
858 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
859 
860 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
861 		pmd_t *pmd, int flags)
862 {
863 	pmd_t _pmd;
864 
865 	_pmd = pmd_mkyoung(*pmd);
866 	if (flags & FOLL_WRITE)
867 		_pmd = pmd_mkdirty(_pmd);
868 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
869 				pmd, _pmd, flags & FOLL_WRITE))
870 		update_mmu_cache_pmd(vma, addr, pmd);
871 }
872 
873 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
874 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
875 {
876 	unsigned long pfn = pmd_pfn(*pmd);
877 	struct mm_struct *mm = vma->vm_mm;
878 	struct page *page;
879 
880 	assert_spin_locked(pmd_lockptr(mm, pmd));
881 
882 	/*
883 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
884 	 * not be in this function with `flags & FOLL_COW` set.
885 	 */
886 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
887 
888 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
889 		return NULL;
890 
891 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
892 		/* pass */;
893 	else
894 		return NULL;
895 
896 	if (flags & FOLL_TOUCH)
897 		touch_pmd(vma, addr, pmd, flags);
898 
899 	/*
900 	 * device mapped pages can only be returned if the
901 	 * caller will manage the page reference count.
902 	 */
903 	if (!(flags & FOLL_GET))
904 		return ERR_PTR(-EEXIST);
905 
906 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
907 	*pgmap = get_dev_pagemap(pfn, *pgmap);
908 	if (!*pgmap)
909 		return ERR_PTR(-EFAULT);
910 	page = pfn_to_page(pfn);
911 	get_page(page);
912 
913 	return page;
914 }
915 
916 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
917 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
918 		  struct vm_area_struct *vma)
919 {
920 	spinlock_t *dst_ptl, *src_ptl;
921 	struct page *src_page;
922 	pmd_t pmd;
923 	pgtable_t pgtable = NULL;
924 	int ret = -ENOMEM;
925 
926 	/* Skip if can be re-fill on fault */
927 	if (!vma_is_anonymous(vma))
928 		return 0;
929 
930 	pgtable = pte_alloc_one(dst_mm, addr);
931 	if (unlikely(!pgtable))
932 		goto out;
933 
934 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
935 	src_ptl = pmd_lockptr(src_mm, src_pmd);
936 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
937 
938 	ret = -EAGAIN;
939 	pmd = *src_pmd;
940 
941 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
942 	if (unlikely(is_swap_pmd(pmd))) {
943 		swp_entry_t entry = pmd_to_swp_entry(pmd);
944 
945 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
946 		if (is_write_migration_entry(entry)) {
947 			make_migration_entry_read(&entry);
948 			pmd = swp_entry_to_pmd(entry);
949 			if (pmd_swp_soft_dirty(*src_pmd))
950 				pmd = pmd_swp_mksoft_dirty(pmd);
951 			set_pmd_at(src_mm, addr, src_pmd, pmd);
952 		}
953 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
954 		mm_inc_nr_ptes(dst_mm);
955 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
956 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
957 		ret = 0;
958 		goto out_unlock;
959 	}
960 #endif
961 
962 	if (unlikely(!pmd_trans_huge(pmd))) {
963 		pte_free(dst_mm, pgtable);
964 		goto out_unlock;
965 	}
966 	/*
967 	 * When page table lock is held, the huge zero pmd should not be
968 	 * under splitting since we don't split the page itself, only pmd to
969 	 * a page table.
970 	 */
971 	if (is_huge_zero_pmd(pmd)) {
972 		struct page *zero_page;
973 		/*
974 		 * get_huge_zero_page() will never allocate a new page here,
975 		 * since we already have a zero page to copy. It just takes a
976 		 * reference.
977 		 */
978 		zero_page = mm_get_huge_zero_page(dst_mm);
979 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
980 				zero_page);
981 		ret = 0;
982 		goto out_unlock;
983 	}
984 
985 	src_page = pmd_page(pmd);
986 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
987 	get_page(src_page);
988 	page_dup_rmap(src_page, true);
989 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
990 	mm_inc_nr_ptes(dst_mm);
991 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
992 
993 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
994 	pmd = pmd_mkold(pmd_wrprotect(pmd));
995 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
996 
997 	ret = 0;
998 out_unlock:
999 	spin_unlock(src_ptl);
1000 	spin_unlock(dst_ptl);
1001 out:
1002 	return ret;
1003 }
1004 
1005 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1006 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1007 		pud_t *pud, int flags)
1008 {
1009 	pud_t _pud;
1010 
1011 	_pud = pud_mkyoung(*pud);
1012 	if (flags & FOLL_WRITE)
1013 		_pud = pud_mkdirty(_pud);
1014 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1015 				pud, _pud, flags & FOLL_WRITE))
1016 		update_mmu_cache_pud(vma, addr, pud);
1017 }
1018 
1019 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1020 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1021 {
1022 	unsigned long pfn = pud_pfn(*pud);
1023 	struct mm_struct *mm = vma->vm_mm;
1024 	struct page *page;
1025 
1026 	assert_spin_locked(pud_lockptr(mm, pud));
1027 
1028 	if (flags & FOLL_WRITE && !pud_write(*pud))
1029 		return NULL;
1030 
1031 	if (pud_present(*pud) && pud_devmap(*pud))
1032 		/* pass */;
1033 	else
1034 		return NULL;
1035 
1036 	if (flags & FOLL_TOUCH)
1037 		touch_pud(vma, addr, pud, flags);
1038 
1039 	/*
1040 	 * device mapped pages can only be returned if the
1041 	 * caller will manage the page reference count.
1042 	 */
1043 	if (!(flags & FOLL_GET))
1044 		return ERR_PTR(-EEXIST);
1045 
1046 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1047 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1048 	if (!*pgmap)
1049 		return ERR_PTR(-EFAULT);
1050 	page = pfn_to_page(pfn);
1051 	get_page(page);
1052 
1053 	return page;
1054 }
1055 
1056 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1057 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1058 		  struct vm_area_struct *vma)
1059 {
1060 	spinlock_t *dst_ptl, *src_ptl;
1061 	pud_t pud;
1062 	int ret;
1063 
1064 	dst_ptl = pud_lock(dst_mm, dst_pud);
1065 	src_ptl = pud_lockptr(src_mm, src_pud);
1066 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1067 
1068 	ret = -EAGAIN;
1069 	pud = *src_pud;
1070 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1071 		goto out_unlock;
1072 
1073 	/*
1074 	 * When page table lock is held, the huge zero pud should not be
1075 	 * under splitting since we don't split the page itself, only pud to
1076 	 * a page table.
1077 	 */
1078 	if (is_huge_zero_pud(pud)) {
1079 		/* No huge zero pud yet */
1080 	}
1081 
1082 	pudp_set_wrprotect(src_mm, addr, src_pud);
1083 	pud = pud_mkold(pud_wrprotect(pud));
1084 	set_pud_at(dst_mm, addr, dst_pud, pud);
1085 
1086 	ret = 0;
1087 out_unlock:
1088 	spin_unlock(src_ptl);
1089 	spin_unlock(dst_ptl);
1090 	return ret;
1091 }
1092 
1093 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1094 {
1095 	pud_t entry;
1096 	unsigned long haddr;
1097 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1098 
1099 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1100 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1101 		goto unlock;
1102 
1103 	entry = pud_mkyoung(orig_pud);
1104 	if (write)
1105 		entry = pud_mkdirty(entry);
1106 	haddr = vmf->address & HPAGE_PUD_MASK;
1107 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1108 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1109 
1110 unlock:
1111 	spin_unlock(vmf->ptl);
1112 }
1113 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1114 
1115 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1116 {
1117 	pmd_t entry;
1118 	unsigned long haddr;
1119 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1120 
1121 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1122 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1123 		goto unlock;
1124 
1125 	entry = pmd_mkyoung(orig_pmd);
1126 	if (write)
1127 		entry = pmd_mkdirty(entry);
1128 	haddr = vmf->address & HPAGE_PMD_MASK;
1129 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1130 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1131 
1132 unlock:
1133 	spin_unlock(vmf->ptl);
1134 }
1135 
1136 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1137 			pmd_t orig_pmd, struct page *page)
1138 {
1139 	struct vm_area_struct *vma = vmf->vma;
1140 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1141 	struct mem_cgroup *memcg;
1142 	pgtable_t pgtable;
1143 	pmd_t _pmd;
1144 	int i;
1145 	vm_fault_t ret = 0;
1146 	struct page **pages;
1147 	unsigned long mmun_start;	/* For mmu_notifiers */
1148 	unsigned long mmun_end;		/* For mmu_notifiers */
1149 
1150 	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1151 			      GFP_KERNEL);
1152 	if (unlikely(!pages)) {
1153 		ret |= VM_FAULT_OOM;
1154 		goto out;
1155 	}
1156 
1157 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1158 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1159 					       vmf->address, page_to_nid(page));
1160 		if (unlikely(!pages[i] ||
1161 			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1162 				     GFP_KERNEL, &memcg, false))) {
1163 			if (pages[i])
1164 				put_page(pages[i]);
1165 			while (--i >= 0) {
1166 				memcg = (void *)page_private(pages[i]);
1167 				set_page_private(pages[i], 0);
1168 				mem_cgroup_cancel_charge(pages[i], memcg,
1169 						false);
1170 				put_page(pages[i]);
1171 			}
1172 			kfree(pages);
1173 			ret |= VM_FAULT_OOM;
1174 			goto out;
1175 		}
1176 		set_page_private(pages[i], (unsigned long)memcg);
1177 	}
1178 
1179 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1180 		copy_user_highpage(pages[i], page + i,
1181 				   haddr + PAGE_SIZE * i, vma);
1182 		__SetPageUptodate(pages[i]);
1183 		cond_resched();
1184 	}
1185 
1186 	mmun_start = haddr;
1187 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1188 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1189 
1190 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1191 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1192 		goto out_free_pages;
1193 	VM_BUG_ON_PAGE(!PageHead(page), page);
1194 
1195 	/*
1196 	 * Leave pmd empty until pte is filled note we must notify here as
1197 	 * concurrent CPU thread might write to new page before the call to
1198 	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1199 	 * device seeing memory write in different order than CPU.
1200 	 *
1201 	 * See Documentation/vm/mmu_notifier.rst
1202 	 */
1203 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1204 
1205 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1206 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1207 
1208 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1209 		pte_t entry;
1210 		entry = mk_pte(pages[i], vma->vm_page_prot);
1211 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1212 		memcg = (void *)page_private(pages[i]);
1213 		set_page_private(pages[i], 0);
1214 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1215 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1216 		lru_cache_add_active_or_unevictable(pages[i], vma);
1217 		vmf->pte = pte_offset_map(&_pmd, haddr);
1218 		VM_BUG_ON(!pte_none(*vmf->pte));
1219 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1220 		pte_unmap(vmf->pte);
1221 	}
1222 	kfree(pages);
1223 
1224 	smp_wmb(); /* make pte visible before pmd */
1225 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1226 	page_remove_rmap(page, true);
1227 	spin_unlock(vmf->ptl);
1228 
1229 	/*
1230 	 * No need to double call mmu_notifier->invalidate_range() callback as
1231 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1232 	 */
1233 	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1234 						mmun_end);
1235 
1236 	ret |= VM_FAULT_WRITE;
1237 	put_page(page);
1238 
1239 out:
1240 	return ret;
1241 
1242 out_free_pages:
1243 	spin_unlock(vmf->ptl);
1244 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1245 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1246 		memcg = (void *)page_private(pages[i]);
1247 		set_page_private(pages[i], 0);
1248 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1249 		put_page(pages[i]);
1250 	}
1251 	kfree(pages);
1252 	goto out;
1253 }
1254 
1255 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1256 {
1257 	struct vm_area_struct *vma = vmf->vma;
1258 	struct page *page = NULL, *new_page;
1259 	struct mem_cgroup *memcg;
1260 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1261 	unsigned long mmun_start;	/* For mmu_notifiers */
1262 	unsigned long mmun_end;		/* For mmu_notifiers */
1263 	gfp_t huge_gfp;			/* for allocation and charge */
1264 	vm_fault_t ret = 0;
1265 
1266 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1267 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1268 	if (is_huge_zero_pmd(orig_pmd))
1269 		goto alloc;
1270 	spin_lock(vmf->ptl);
1271 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1272 		goto out_unlock;
1273 
1274 	page = pmd_page(orig_pmd);
1275 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1276 	/*
1277 	 * We can only reuse the page if nobody else maps the huge page or it's
1278 	 * part.
1279 	 */
1280 	if (!trylock_page(page)) {
1281 		get_page(page);
1282 		spin_unlock(vmf->ptl);
1283 		lock_page(page);
1284 		spin_lock(vmf->ptl);
1285 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1286 			unlock_page(page);
1287 			put_page(page);
1288 			goto out_unlock;
1289 		}
1290 		put_page(page);
1291 	}
1292 	if (reuse_swap_page(page, NULL)) {
1293 		pmd_t entry;
1294 		entry = pmd_mkyoung(orig_pmd);
1295 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1296 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1297 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1298 		ret |= VM_FAULT_WRITE;
1299 		unlock_page(page);
1300 		goto out_unlock;
1301 	}
1302 	unlock_page(page);
1303 	get_page(page);
1304 	spin_unlock(vmf->ptl);
1305 alloc:
1306 	if (transparent_hugepage_enabled(vma) &&
1307 	    !transparent_hugepage_debug_cow()) {
1308 		huge_gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
1309 		new_page = alloc_pages_vma(huge_gfp, HPAGE_PMD_ORDER, vma,
1310 				haddr, numa_node_id());
1311 	} else
1312 		new_page = NULL;
1313 
1314 	if (likely(new_page)) {
1315 		prep_transhuge_page(new_page);
1316 	} else {
1317 		if (!page) {
1318 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1319 			ret |= VM_FAULT_FALLBACK;
1320 		} else {
1321 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1322 			if (ret & VM_FAULT_OOM) {
1323 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1324 				ret |= VM_FAULT_FALLBACK;
1325 			}
1326 			put_page(page);
1327 		}
1328 		count_vm_event(THP_FAULT_FALLBACK);
1329 		goto out;
1330 	}
1331 
1332 	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1333 					huge_gfp, &memcg, true))) {
1334 		put_page(new_page);
1335 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1336 		if (page)
1337 			put_page(page);
1338 		ret |= VM_FAULT_FALLBACK;
1339 		count_vm_event(THP_FAULT_FALLBACK);
1340 		goto out;
1341 	}
1342 
1343 	count_vm_event(THP_FAULT_ALLOC);
1344 
1345 	if (!page)
1346 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1347 	else
1348 		copy_user_huge_page(new_page, page, vmf->address,
1349 				    vma, HPAGE_PMD_NR);
1350 	__SetPageUptodate(new_page);
1351 
1352 	mmun_start = haddr;
1353 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1354 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1355 
1356 	spin_lock(vmf->ptl);
1357 	if (page)
1358 		put_page(page);
1359 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1360 		spin_unlock(vmf->ptl);
1361 		mem_cgroup_cancel_charge(new_page, memcg, true);
1362 		put_page(new_page);
1363 		goto out_mn;
1364 	} else {
1365 		pmd_t entry;
1366 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1367 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1368 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1369 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1370 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1371 		lru_cache_add_active_or_unevictable(new_page, vma);
1372 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1373 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1374 		if (!page) {
1375 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1376 		} else {
1377 			VM_BUG_ON_PAGE(!PageHead(page), page);
1378 			page_remove_rmap(page, true);
1379 			put_page(page);
1380 		}
1381 		ret |= VM_FAULT_WRITE;
1382 	}
1383 	spin_unlock(vmf->ptl);
1384 out_mn:
1385 	/*
1386 	 * No need to double call mmu_notifier->invalidate_range() callback as
1387 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1388 	 */
1389 	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1390 					       mmun_end);
1391 out:
1392 	return ret;
1393 out_unlock:
1394 	spin_unlock(vmf->ptl);
1395 	return ret;
1396 }
1397 
1398 /*
1399  * FOLL_FORCE can write to even unwritable pmd's, but only
1400  * after we've gone through a COW cycle and they are dirty.
1401  */
1402 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1403 {
1404 	return pmd_write(pmd) ||
1405 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1406 }
1407 
1408 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1409 				   unsigned long addr,
1410 				   pmd_t *pmd,
1411 				   unsigned int flags)
1412 {
1413 	struct mm_struct *mm = vma->vm_mm;
1414 	struct page *page = NULL;
1415 
1416 	assert_spin_locked(pmd_lockptr(mm, pmd));
1417 
1418 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1419 		goto out;
1420 
1421 	/* Avoid dumping huge zero page */
1422 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1423 		return ERR_PTR(-EFAULT);
1424 
1425 	/* Full NUMA hinting faults to serialise migration in fault paths */
1426 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1427 		goto out;
1428 
1429 	page = pmd_page(*pmd);
1430 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1431 	if (flags & FOLL_TOUCH)
1432 		touch_pmd(vma, addr, pmd, flags);
1433 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1434 		/*
1435 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1436 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1437 		 *
1438 		 * For anon THP:
1439 		 *
1440 		 * In most cases the pmd is the only mapping of the page as we
1441 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1442 		 * writable private mappings in populate_vma_page_range().
1443 		 *
1444 		 * The only scenario when we have the page shared here is if we
1445 		 * mlocking read-only mapping shared over fork(). We skip
1446 		 * mlocking such pages.
1447 		 *
1448 		 * For file THP:
1449 		 *
1450 		 * We can expect PageDoubleMap() to be stable under page lock:
1451 		 * for file pages we set it in page_add_file_rmap(), which
1452 		 * requires page to be locked.
1453 		 */
1454 
1455 		if (PageAnon(page) && compound_mapcount(page) != 1)
1456 			goto skip_mlock;
1457 		if (PageDoubleMap(page) || !page->mapping)
1458 			goto skip_mlock;
1459 		if (!trylock_page(page))
1460 			goto skip_mlock;
1461 		lru_add_drain();
1462 		if (page->mapping && !PageDoubleMap(page))
1463 			mlock_vma_page(page);
1464 		unlock_page(page);
1465 	}
1466 skip_mlock:
1467 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1468 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1469 	if (flags & FOLL_GET)
1470 		get_page(page);
1471 
1472 out:
1473 	return page;
1474 }
1475 
1476 /* NUMA hinting page fault entry point for trans huge pmds */
1477 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1478 {
1479 	struct vm_area_struct *vma = vmf->vma;
1480 	struct anon_vma *anon_vma = NULL;
1481 	struct page *page;
1482 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1483 	int page_nid = -1, this_nid = numa_node_id();
1484 	int target_nid, last_cpupid = -1;
1485 	bool page_locked;
1486 	bool migrated = false;
1487 	bool was_writable;
1488 	int flags = 0;
1489 
1490 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1491 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1492 		goto out_unlock;
1493 
1494 	/*
1495 	 * If there are potential migrations, wait for completion and retry
1496 	 * without disrupting NUMA hinting information. Do not relock and
1497 	 * check_same as the page may no longer be mapped.
1498 	 */
1499 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1500 		page = pmd_page(*vmf->pmd);
1501 		if (!get_page_unless_zero(page))
1502 			goto out_unlock;
1503 		spin_unlock(vmf->ptl);
1504 		wait_on_page_locked(page);
1505 		put_page(page);
1506 		goto out;
1507 	}
1508 
1509 	page = pmd_page(pmd);
1510 	BUG_ON(is_huge_zero_page(page));
1511 	page_nid = page_to_nid(page);
1512 	last_cpupid = page_cpupid_last(page);
1513 	count_vm_numa_event(NUMA_HINT_FAULTS);
1514 	if (page_nid == this_nid) {
1515 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1516 		flags |= TNF_FAULT_LOCAL;
1517 	}
1518 
1519 	/* See similar comment in do_numa_page for explanation */
1520 	if (!pmd_savedwrite(pmd))
1521 		flags |= TNF_NO_GROUP;
1522 
1523 	/*
1524 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1525 	 * page_table_lock if at all possible
1526 	 */
1527 	page_locked = trylock_page(page);
1528 	target_nid = mpol_misplaced(page, vma, haddr);
1529 	if (target_nid == -1) {
1530 		/* If the page was locked, there are no parallel migrations */
1531 		if (page_locked)
1532 			goto clear_pmdnuma;
1533 	}
1534 
1535 	/* Migration could have started since the pmd_trans_migrating check */
1536 	if (!page_locked) {
1537 		page_nid = -1;
1538 		if (!get_page_unless_zero(page))
1539 			goto out_unlock;
1540 		spin_unlock(vmf->ptl);
1541 		wait_on_page_locked(page);
1542 		put_page(page);
1543 		goto out;
1544 	}
1545 
1546 	/*
1547 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1548 	 * to serialises splits
1549 	 */
1550 	get_page(page);
1551 	spin_unlock(vmf->ptl);
1552 	anon_vma = page_lock_anon_vma_read(page);
1553 
1554 	/* Confirm the PMD did not change while page_table_lock was released */
1555 	spin_lock(vmf->ptl);
1556 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1557 		unlock_page(page);
1558 		put_page(page);
1559 		page_nid = -1;
1560 		goto out_unlock;
1561 	}
1562 
1563 	/* Bail if we fail to protect against THP splits for any reason */
1564 	if (unlikely(!anon_vma)) {
1565 		put_page(page);
1566 		page_nid = -1;
1567 		goto clear_pmdnuma;
1568 	}
1569 
1570 	/*
1571 	 * Since we took the NUMA fault, we must have observed the !accessible
1572 	 * bit. Make sure all other CPUs agree with that, to avoid them
1573 	 * modifying the page we're about to migrate.
1574 	 *
1575 	 * Must be done under PTL such that we'll observe the relevant
1576 	 * inc_tlb_flush_pending().
1577 	 *
1578 	 * We are not sure a pending tlb flush here is for a huge page
1579 	 * mapping or not. Hence use the tlb range variant
1580 	 */
1581 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1582 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1583 		/*
1584 		 * change_huge_pmd() released the pmd lock before
1585 		 * invalidating the secondary MMUs sharing the primary
1586 		 * MMU pagetables (with ->invalidate_range()). The
1587 		 * mmu_notifier_invalidate_range_end() (which
1588 		 * internally calls ->invalidate_range()) in
1589 		 * change_pmd_range() will run after us, so we can't
1590 		 * rely on it here and we need an explicit invalidate.
1591 		 */
1592 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1593 					      haddr + HPAGE_PMD_SIZE);
1594 	}
1595 
1596 	/*
1597 	 * Migrate the THP to the requested node, returns with page unlocked
1598 	 * and access rights restored.
1599 	 */
1600 	spin_unlock(vmf->ptl);
1601 
1602 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1603 				vmf->pmd, pmd, vmf->address, page, target_nid);
1604 	if (migrated) {
1605 		flags |= TNF_MIGRATED;
1606 		page_nid = target_nid;
1607 	} else
1608 		flags |= TNF_MIGRATE_FAIL;
1609 
1610 	goto out;
1611 clear_pmdnuma:
1612 	BUG_ON(!PageLocked(page));
1613 	was_writable = pmd_savedwrite(pmd);
1614 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1615 	pmd = pmd_mkyoung(pmd);
1616 	if (was_writable)
1617 		pmd = pmd_mkwrite(pmd);
1618 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1619 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1620 	unlock_page(page);
1621 out_unlock:
1622 	spin_unlock(vmf->ptl);
1623 
1624 out:
1625 	if (anon_vma)
1626 		page_unlock_anon_vma_read(anon_vma);
1627 
1628 	if (page_nid != -1)
1629 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1630 				flags);
1631 
1632 	return 0;
1633 }
1634 
1635 /*
1636  * Return true if we do MADV_FREE successfully on entire pmd page.
1637  * Otherwise, return false.
1638  */
1639 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1640 		pmd_t *pmd, unsigned long addr, unsigned long next)
1641 {
1642 	spinlock_t *ptl;
1643 	pmd_t orig_pmd;
1644 	struct page *page;
1645 	struct mm_struct *mm = tlb->mm;
1646 	bool ret = false;
1647 
1648 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1649 
1650 	ptl = pmd_trans_huge_lock(pmd, vma);
1651 	if (!ptl)
1652 		goto out_unlocked;
1653 
1654 	orig_pmd = *pmd;
1655 	if (is_huge_zero_pmd(orig_pmd))
1656 		goto out;
1657 
1658 	if (unlikely(!pmd_present(orig_pmd))) {
1659 		VM_BUG_ON(thp_migration_supported() &&
1660 				  !is_pmd_migration_entry(orig_pmd));
1661 		goto out;
1662 	}
1663 
1664 	page = pmd_page(orig_pmd);
1665 	/*
1666 	 * If other processes are mapping this page, we couldn't discard
1667 	 * the page unless they all do MADV_FREE so let's skip the page.
1668 	 */
1669 	if (page_mapcount(page) != 1)
1670 		goto out;
1671 
1672 	if (!trylock_page(page))
1673 		goto out;
1674 
1675 	/*
1676 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1677 	 * will deactivate only them.
1678 	 */
1679 	if (next - addr != HPAGE_PMD_SIZE) {
1680 		get_page(page);
1681 		spin_unlock(ptl);
1682 		split_huge_page(page);
1683 		unlock_page(page);
1684 		put_page(page);
1685 		goto out_unlocked;
1686 	}
1687 
1688 	if (PageDirty(page))
1689 		ClearPageDirty(page);
1690 	unlock_page(page);
1691 
1692 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1693 		pmdp_invalidate(vma, addr, pmd);
1694 		orig_pmd = pmd_mkold(orig_pmd);
1695 		orig_pmd = pmd_mkclean(orig_pmd);
1696 
1697 		set_pmd_at(mm, addr, pmd, orig_pmd);
1698 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1699 	}
1700 
1701 	mark_page_lazyfree(page);
1702 	ret = true;
1703 out:
1704 	spin_unlock(ptl);
1705 out_unlocked:
1706 	return ret;
1707 }
1708 
1709 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1710 {
1711 	pgtable_t pgtable;
1712 
1713 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1714 	pte_free(mm, pgtable);
1715 	mm_dec_nr_ptes(mm);
1716 }
1717 
1718 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1719 		 pmd_t *pmd, unsigned long addr)
1720 {
1721 	pmd_t orig_pmd;
1722 	spinlock_t *ptl;
1723 
1724 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1725 
1726 	ptl = __pmd_trans_huge_lock(pmd, vma);
1727 	if (!ptl)
1728 		return 0;
1729 	/*
1730 	 * For architectures like ppc64 we look at deposited pgtable
1731 	 * when calling pmdp_huge_get_and_clear. So do the
1732 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1733 	 * operations.
1734 	 */
1735 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1736 			tlb->fullmm);
1737 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1738 	if (vma_is_dax(vma)) {
1739 		if (arch_needs_pgtable_deposit())
1740 			zap_deposited_table(tlb->mm, pmd);
1741 		spin_unlock(ptl);
1742 		if (is_huge_zero_pmd(orig_pmd))
1743 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1744 	} else if (is_huge_zero_pmd(orig_pmd)) {
1745 		zap_deposited_table(tlb->mm, pmd);
1746 		spin_unlock(ptl);
1747 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1748 	} else {
1749 		struct page *page = NULL;
1750 		int flush_needed = 1;
1751 
1752 		if (pmd_present(orig_pmd)) {
1753 			page = pmd_page(orig_pmd);
1754 			page_remove_rmap(page, true);
1755 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1756 			VM_BUG_ON_PAGE(!PageHead(page), page);
1757 		} else if (thp_migration_supported()) {
1758 			swp_entry_t entry;
1759 
1760 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1761 			entry = pmd_to_swp_entry(orig_pmd);
1762 			page = pfn_to_page(swp_offset(entry));
1763 			flush_needed = 0;
1764 		} else
1765 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1766 
1767 		if (PageAnon(page)) {
1768 			zap_deposited_table(tlb->mm, pmd);
1769 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1770 		} else {
1771 			if (arch_needs_pgtable_deposit())
1772 				zap_deposited_table(tlb->mm, pmd);
1773 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1774 		}
1775 
1776 		spin_unlock(ptl);
1777 		if (flush_needed)
1778 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1779 	}
1780 	return 1;
1781 }
1782 
1783 #ifndef pmd_move_must_withdraw
1784 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1785 					 spinlock_t *old_pmd_ptl,
1786 					 struct vm_area_struct *vma)
1787 {
1788 	/*
1789 	 * With split pmd lock we also need to move preallocated
1790 	 * PTE page table if new_pmd is on different PMD page table.
1791 	 *
1792 	 * We also don't deposit and withdraw tables for file pages.
1793 	 */
1794 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1795 }
1796 #endif
1797 
1798 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1799 {
1800 #ifdef CONFIG_MEM_SOFT_DIRTY
1801 	if (unlikely(is_pmd_migration_entry(pmd)))
1802 		pmd = pmd_swp_mksoft_dirty(pmd);
1803 	else if (pmd_present(pmd))
1804 		pmd = pmd_mksoft_dirty(pmd);
1805 #endif
1806 	return pmd;
1807 }
1808 
1809 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1810 		  unsigned long new_addr, unsigned long old_end,
1811 		  pmd_t *old_pmd, pmd_t *new_pmd)
1812 {
1813 	spinlock_t *old_ptl, *new_ptl;
1814 	pmd_t pmd;
1815 	struct mm_struct *mm = vma->vm_mm;
1816 	bool force_flush = false;
1817 
1818 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1819 	    (new_addr & ~HPAGE_PMD_MASK) ||
1820 	    old_end - old_addr < HPAGE_PMD_SIZE)
1821 		return false;
1822 
1823 	/*
1824 	 * The destination pmd shouldn't be established, free_pgtables()
1825 	 * should have release it.
1826 	 */
1827 	if (WARN_ON(!pmd_none(*new_pmd))) {
1828 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1829 		return false;
1830 	}
1831 
1832 	/*
1833 	 * We don't have to worry about the ordering of src and dst
1834 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1835 	 */
1836 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1837 	if (old_ptl) {
1838 		new_ptl = pmd_lockptr(mm, new_pmd);
1839 		if (new_ptl != old_ptl)
1840 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1841 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1842 		if (pmd_present(pmd))
1843 			force_flush = true;
1844 		VM_BUG_ON(!pmd_none(*new_pmd));
1845 
1846 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1847 			pgtable_t pgtable;
1848 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1849 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1850 		}
1851 		pmd = move_soft_dirty_pmd(pmd);
1852 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1853 		if (force_flush)
1854 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1855 		if (new_ptl != old_ptl)
1856 			spin_unlock(new_ptl);
1857 		spin_unlock(old_ptl);
1858 		return true;
1859 	}
1860 	return false;
1861 }
1862 
1863 /*
1864  * Returns
1865  *  - 0 if PMD could not be locked
1866  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1867  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1868  */
1869 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1870 		unsigned long addr, pgprot_t newprot, int prot_numa)
1871 {
1872 	struct mm_struct *mm = vma->vm_mm;
1873 	spinlock_t *ptl;
1874 	pmd_t entry;
1875 	bool preserve_write;
1876 	int ret;
1877 
1878 	ptl = __pmd_trans_huge_lock(pmd, vma);
1879 	if (!ptl)
1880 		return 0;
1881 
1882 	preserve_write = prot_numa && pmd_write(*pmd);
1883 	ret = 1;
1884 
1885 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1886 	if (is_swap_pmd(*pmd)) {
1887 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1888 
1889 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1890 		if (is_write_migration_entry(entry)) {
1891 			pmd_t newpmd;
1892 			/*
1893 			 * A protection check is difficult so
1894 			 * just be safe and disable write
1895 			 */
1896 			make_migration_entry_read(&entry);
1897 			newpmd = swp_entry_to_pmd(entry);
1898 			if (pmd_swp_soft_dirty(*pmd))
1899 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1900 			set_pmd_at(mm, addr, pmd, newpmd);
1901 		}
1902 		goto unlock;
1903 	}
1904 #endif
1905 
1906 	/*
1907 	 * Avoid trapping faults against the zero page. The read-only
1908 	 * data is likely to be read-cached on the local CPU and
1909 	 * local/remote hits to the zero page are not interesting.
1910 	 */
1911 	if (prot_numa && is_huge_zero_pmd(*pmd))
1912 		goto unlock;
1913 
1914 	if (prot_numa && pmd_protnone(*pmd))
1915 		goto unlock;
1916 
1917 	/*
1918 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1919 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1920 	 * which is also under down_read(mmap_sem):
1921 	 *
1922 	 *	CPU0:				CPU1:
1923 	 *				change_huge_pmd(prot_numa=1)
1924 	 *				 pmdp_huge_get_and_clear_notify()
1925 	 * madvise_dontneed()
1926 	 *  zap_pmd_range()
1927 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1928 	 *   // skip the pmd
1929 	 *				 set_pmd_at();
1930 	 *				 // pmd is re-established
1931 	 *
1932 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1933 	 * which may break userspace.
1934 	 *
1935 	 * pmdp_invalidate() is required to make sure we don't miss
1936 	 * dirty/young flags set by hardware.
1937 	 */
1938 	entry = pmdp_invalidate(vma, addr, pmd);
1939 
1940 	entry = pmd_modify(entry, newprot);
1941 	if (preserve_write)
1942 		entry = pmd_mk_savedwrite(entry);
1943 	ret = HPAGE_PMD_NR;
1944 	set_pmd_at(mm, addr, pmd, entry);
1945 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1946 unlock:
1947 	spin_unlock(ptl);
1948 	return ret;
1949 }
1950 
1951 /*
1952  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1953  *
1954  * Note that if it returns page table lock pointer, this routine returns without
1955  * unlocking page table lock. So callers must unlock it.
1956  */
1957 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1958 {
1959 	spinlock_t *ptl;
1960 	ptl = pmd_lock(vma->vm_mm, pmd);
1961 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1962 			pmd_devmap(*pmd)))
1963 		return ptl;
1964 	spin_unlock(ptl);
1965 	return NULL;
1966 }
1967 
1968 /*
1969  * Returns true if a given pud maps a thp, false otherwise.
1970  *
1971  * Note that if it returns true, this routine returns without unlocking page
1972  * table lock. So callers must unlock it.
1973  */
1974 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1975 {
1976 	spinlock_t *ptl;
1977 
1978 	ptl = pud_lock(vma->vm_mm, pud);
1979 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1980 		return ptl;
1981 	spin_unlock(ptl);
1982 	return NULL;
1983 }
1984 
1985 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1986 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1987 		 pud_t *pud, unsigned long addr)
1988 {
1989 	pud_t orig_pud;
1990 	spinlock_t *ptl;
1991 
1992 	ptl = __pud_trans_huge_lock(pud, vma);
1993 	if (!ptl)
1994 		return 0;
1995 	/*
1996 	 * For architectures like ppc64 we look at deposited pgtable
1997 	 * when calling pudp_huge_get_and_clear. So do the
1998 	 * pgtable_trans_huge_withdraw after finishing pudp related
1999 	 * operations.
2000 	 */
2001 	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
2002 			tlb->fullmm);
2003 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2004 	if (vma_is_dax(vma)) {
2005 		spin_unlock(ptl);
2006 		/* No zero page support yet */
2007 	} else {
2008 		/* No support for anonymous PUD pages yet */
2009 		BUG();
2010 	}
2011 	return 1;
2012 }
2013 
2014 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2015 		unsigned long haddr)
2016 {
2017 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2018 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2019 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2020 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2021 
2022 	count_vm_event(THP_SPLIT_PUD);
2023 
2024 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2025 }
2026 
2027 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2028 		unsigned long address)
2029 {
2030 	spinlock_t *ptl;
2031 	struct mm_struct *mm = vma->vm_mm;
2032 	unsigned long haddr = address & HPAGE_PUD_MASK;
2033 
2034 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2035 	ptl = pud_lock(mm, pud);
2036 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2037 		goto out;
2038 	__split_huge_pud_locked(vma, pud, haddr);
2039 
2040 out:
2041 	spin_unlock(ptl);
2042 	/*
2043 	 * No need to double call mmu_notifier->invalidate_range() callback as
2044 	 * the above pudp_huge_clear_flush_notify() did already call it.
2045 	 */
2046 	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2047 					       HPAGE_PUD_SIZE);
2048 }
2049 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2050 
2051 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2052 		unsigned long haddr, pmd_t *pmd)
2053 {
2054 	struct mm_struct *mm = vma->vm_mm;
2055 	pgtable_t pgtable;
2056 	pmd_t _pmd;
2057 	int i;
2058 
2059 	/*
2060 	 * Leave pmd empty until pte is filled note that it is fine to delay
2061 	 * notification until mmu_notifier_invalidate_range_end() as we are
2062 	 * replacing a zero pmd write protected page with a zero pte write
2063 	 * protected page.
2064 	 *
2065 	 * See Documentation/vm/mmu_notifier.rst
2066 	 */
2067 	pmdp_huge_clear_flush(vma, haddr, pmd);
2068 
2069 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2070 	pmd_populate(mm, &_pmd, pgtable);
2071 
2072 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2073 		pte_t *pte, entry;
2074 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2075 		entry = pte_mkspecial(entry);
2076 		pte = pte_offset_map(&_pmd, haddr);
2077 		VM_BUG_ON(!pte_none(*pte));
2078 		set_pte_at(mm, haddr, pte, entry);
2079 		pte_unmap(pte);
2080 	}
2081 	smp_wmb(); /* make pte visible before pmd */
2082 	pmd_populate(mm, pmd, pgtable);
2083 }
2084 
2085 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2086 		unsigned long haddr, bool freeze)
2087 {
2088 	struct mm_struct *mm = vma->vm_mm;
2089 	struct page *page;
2090 	pgtable_t pgtable;
2091 	pmd_t old_pmd, _pmd;
2092 	bool young, write, soft_dirty, pmd_migration = false;
2093 	unsigned long addr;
2094 	int i;
2095 
2096 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2097 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2098 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2099 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2100 				&& !pmd_devmap(*pmd));
2101 
2102 	count_vm_event(THP_SPLIT_PMD);
2103 
2104 	if (!vma_is_anonymous(vma)) {
2105 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2106 		/*
2107 		 * We are going to unmap this huge page. So
2108 		 * just go ahead and zap it
2109 		 */
2110 		if (arch_needs_pgtable_deposit())
2111 			zap_deposited_table(mm, pmd);
2112 		if (vma_is_dax(vma))
2113 			return;
2114 		page = pmd_page(_pmd);
2115 		if (!PageDirty(page) && pmd_dirty(_pmd))
2116 			set_page_dirty(page);
2117 		if (!PageReferenced(page) && pmd_young(_pmd))
2118 			SetPageReferenced(page);
2119 		page_remove_rmap(page, true);
2120 		put_page(page);
2121 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2122 		return;
2123 	} else if (is_huge_zero_pmd(*pmd)) {
2124 		/*
2125 		 * FIXME: Do we want to invalidate secondary mmu by calling
2126 		 * mmu_notifier_invalidate_range() see comments below inside
2127 		 * __split_huge_pmd() ?
2128 		 *
2129 		 * We are going from a zero huge page write protected to zero
2130 		 * small page also write protected so it does not seems useful
2131 		 * to invalidate secondary mmu at this time.
2132 		 */
2133 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2134 	}
2135 
2136 	/*
2137 	 * Up to this point the pmd is present and huge and userland has the
2138 	 * whole access to the hugepage during the split (which happens in
2139 	 * place). If we overwrite the pmd with the not-huge version pointing
2140 	 * to the pte here (which of course we could if all CPUs were bug
2141 	 * free), userland could trigger a small page size TLB miss on the
2142 	 * small sized TLB while the hugepage TLB entry is still established in
2143 	 * the huge TLB. Some CPU doesn't like that.
2144 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2145 	 * 383 on page 93. Intel should be safe but is also warns that it's
2146 	 * only safe if the permission and cache attributes of the two entries
2147 	 * loaded in the two TLB is identical (which should be the case here).
2148 	 * But it is generally safer to never allow small and huge TLB entries
2149 	 * for the same virtual address to be loaded simultaneously. So instead
2150 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2151 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2152 	 * must remain set at all times on the pmd until the split is complete
2153 	 * for this pmd), then we flush the SMP TLB and finally we write the
2154 	 * non-huge version of the pmd entry with pmd_populate.
2155 	 */
2156 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2157 
2158 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2159 	pmd_migration = is_pmd_migration_entry(old_pmd);
2160 	if (pmd_migration) {
2161 		swp_entry_t entry;
2162 
2163 		entry = pmd_to_swp_entry(old_pmd);
2164 		page = pfn_to_page(swp_offset(entry));
2165 	} else
2166 #endif
2167 		page = pmd_page(old_pmd);
2168 	VM_BUG_ON_PAGE(!page_count(page), page);
2169 	page_ref_add(page, HPAGE_PMD_NR - 1);
2170 	if (pmd_dirty(old_pmd))
2171 		SetPageDirty(page);
2172 	write = pmd_write(old_pmd);
2173 	young = pmd_young(old_pmd);
2174 	soft_dirty = pmd_soft_dirty(old_pmd);
2175 
2176 	/*
2177 	 * Withdraw the table only after we mark the pmd entry invalid.
2178 	 * This's critical for some architectures (Power).
2179 	 */
2180 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2181 	pmd_populate(mm, &_pmd, pgtable);
2182 
2183 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2184 		pte_t entry, *pte;
2185 		/*
2186 		 * Note that NUMA hinting access restrictions are not
2187 		 * transferred to avoid any possibility of altering
2188 		 * permissions across VMAs.
2189 		 */
2190 		if (freeze || pmd_migration) {
2191 			swp_entry_t swp_entry;
2192 			swp_entry = make_migration_entry(page + i, write);
2193 			entry = swp_entry_to_pte(swp_entry);
2194 			if (soft_dirty)
2195 				entry = pte_swp_mksoft_dirty(entry);
2196 		} else {
2197 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2198 			entry = maybe_mkwrite(entry, vma);
2199 			if (!write)
2200 				entry = pte_wrprotect(entry);
2201 			if (!young)
2202 				entry = pte_mkold(entry);
2203 			if (soft_dirty)
2204 				entry = pte_mksoft_dirty(entry);
2205 		}
2206 		pte = pte_offset_map(&_pmd, addr);
2207 		BUG_ON(!pte_none(*pte));
2208 		set_pte_at(mm, addr, pte, entry);
2209 		atomic_inc(&page[i]._mapcount);
2210 		pte_unmap(pte);
2211 	}
2212 
2213 	/*
2214 	 * Set PG_double_map before dropping compound_mapcount to avoid
2215 	 * false-negative page_mapped().
2216 	 */
2217 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2218 		for (i = 0; i < HPAGE_PMD_NR; i++)
2219 			atomic_inc(&page[i]._mapcount);
2220 	}
2221 
2222 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2223 		/* Last compound_mapcount is gone. */
2224 		__dec_node_page_state(page, NR_ANON_THPS);
2225 		if (TestClearPageDoubleMap(page)) {
2226 			/* No need in mapcount reference anymore */
2227 			for (i = 0; i < HPAGE_PMD_NR; i++)
2228 				atomic_dec(&page[i]._mapcount);
2229 		}
2230 	}
2231 
2232 	smp_wmb(); /* make pte visible before pmd */
2233 	pmd_populate(mm, pmd, pgtable);
2234 
2235 	if (freeze) {
2236 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2237 			page_remove_rmap(page + i, false);
2238 			put_page(page + i);
2239 		}
2240 	}
2241 }
2242 
2243 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2244 		unsigned long address, bool freeze, struct page *page)
2245 {
2246 	spinlock_t *ptl;
2247 	struct mm_struct *mm = vma->vm_mm;
2248 	unsigned long haddr = address & HPAGE_PMD_MASK;
2249 
2250 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2251 	ptl = pmd_lock(mm, pmd);
2252 
2253 	/*
2254 	 * If caller asks to setup a migration entries, we need a page to check
2255 	 * pmd against. Otherwise we can end up replacing wrong page.
2256 	 */
2257 	VM_BUG_ON(freeze && !page);
2258 	if (page && page != pmd_page(*pmd))
2259 	        goto out;
2260 
2261 	if (pmd_trans_huge(*pmd)) {
2262 		page = pmd_page(*pmd);
2263 		if (PageMlocked(page))
2264 			clear_page_mlock(page);
2265 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2266 		goto out;
2267 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2268 out:
2269 	spin_unlock(ptl);
2270 	/*
2271 	 * No need to double call mmu_notifier->invalidate_range() callback.
2272 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2273 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2274 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2275 	 *    fault will trigger a flush_notify before pointing to a new page
2276 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2277 	 *    page in the meantime)
2278 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2279 	 *     to invalidate secondary tlb entry they are all still valid.
2280 	 *     any further changes to individual pte will notify. So no need
2281 	 *     to call mmu_notifier->invalidate_range()
2282 	 */
2283 	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2284 					       HPAGE_PMD_SIZE);
2285 }
2286 
2287 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2288 		bool freeze, struct page *page)
2289 {
2290 	pgd_t *pgd;
2291 	p4d_t *p4d;
2292 	pud_t *pud;
2293 	pmd_t *pmd;
2294 
2295 	pgd = pgd_offset(vma->vm_mm, address);
2296 	if (!pgd_present(*pgd))
2297 		return;
2298 
2299 	p4d = p4d_offset(pgd, address);
2300 	if (!p4d_present(*p4d))
2301 		return;
2302 
2303 	pud = pud_offset(p4d, address);
2304 	if (!pud_present(*pud))
2305 		return;
2306 
2307 	pmd = pmd_offset(pud, address);
2308 
2309 	__split_huge_pmd(vma, pmd, address, freeze, page);
2310 }
2311 
2312 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2313 			     unsigned long start,
2314 			     unsigned long end,
2315 			     long adjust_next)
2316 {
2317 	/*
2318 	 * If the new start address isn't hpage aligned and it could
2319 	 * previously contain an hugepage: check if we need to split
2320 	 * an huge pmd.
2321 	 */
2322 	if (start & ~HPAGE_PMD_MASK &&
2323 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2324 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2325 		split_huge_pmd_address(vma, start, false, NULL);
2326 
2327 	/*
2328 	 * If the new end address isn't hpage aligned and it could
2329 	 * previously contain an hugepage: check if we need to split
2330 	 * an huge pmd.
2331 	 */
2332 	if (end & ~HPAGE_PMD_MASK &&
2333 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2334 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2335 		split_huge_pmd_address(vma, end, false, NULL);
2336 
2337 	/*
2338 	 * If we're also updating the vma->vm_next->vm_start, if the new
2339 	 * vm_next->vm_start isn't page aligned and it could previously
2340 	 * contain an hugepage: check if we need to split an huge pmd.
2341 	 */
2342 	if (adjust_next > 0) {
2343 		struct vm_area_struct *next = vma->vm_next;
2344 		unsigned long nstart = next->vm_start;
2345 		nstart += adjust_next << PAGE_SHIFT;
2346 		if (nstart & ~HPAGE_PMD_MASK &&
2347 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2348 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2349 			split_huge_pmd_address(next, nstart, false, NULL);
2350 	}
2351 }
2352 
2353 static void freeze_page(struct page *page)
2354 {
2355 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2356 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2357 	bool unmap_success;
2358 
2359 	VM_BUG_ON_PAGE(!PageHead(page), page);
2360 
2361 	if (PageAnon(page))
2362 		ttu_flags |= TTU_SPLIT_FREEZE;
2363 
2364 	unmap_success = try_to_unmap(page, ttu_flags);
2365 	VM_BUG_ON_PAGE(!unmap_success, page);
2366 }
2367 
2368 static void unfreeze_page(struct page *page)
2369 {
2370 	int i;
2371 	if (PageTransHuge(page)) {
2372 		remove_migration_ptes(page, page, true);
2373 	} else {
2374 		for (i = 0; i < HPAGE_PMD_NR; i++)
2375 			remove_migration_ptes(page + i, page + i, true);
2376 	}
2377 }
2378 
2379 static void __split_huge_page_tail(struct page *head, int tail,
2380 		struct lruvec *lruvec, struct list_head *list)
2381 {
2382 	struct page *page_tail = head + tail;
2383 
2384 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2385 
2386 	/*
2387 	 * Clone page flags before unfreezing refcount.
2388 	 *
2389 	 * After successful get_page_unless_zero() might follow flags change,
2390 	 * for exmaple lock_page() which set PG_waiters.
2391 	 */
2392 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2393 	page_tail->flags |= (head->flags &
2394 			((1L << PG_referenced) |
2395 			 (1L << PG_swapbacked) |
2396 			 (1L << PG_swapcache) |
2397 			 (1L << PG_mlocked) |
2398 			 (1L << PG_uptodate) |
2399 			 (1L << PG_active) |
2400 			 (1L << PG_workingset) |
2401 			 (1L << PG_locked) |
2402 			 (1L << PG_unevictable) |
2403 			 (1L << PG_dirty)));
2404 
2405 	/* Page flags must be visible before we make the page non-compound. */
2406 	smp_wmb();
2407 
2408 	/*
2409 	 * Clear PageTail before unfreezing page refcount.
2410 	 *
2411 	 * After successful get_page_unless_zero() might follow put_page()
2412 	 * which needs correct compound_head().
2413 	 */
2414 	clear_compound_head(page_tail);
2415 
2416 	/* Finally unfreeze refcount. Additional reference from page cache. */
2417 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2418 					  PageSwapCache(head)));
2419 
2420 	if (page_is_young(head))
2421 		set_page_young(page_tail);
2422 	if (page_is_idle(head))
2423 		set_page_idle(page_tail);
2424 
2425 	/* ->mapping in first tail page is compound_mapcount */
2426 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2427 			page_tail);
2428 	page_tail->mapping = head->mapping;
2429 
2430 	page_tail->index = head->index + tail;
2431 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2432 
2433 	/*
2434 	 * always add to the tail because some iterators expect new
2435 	 * pages to show after the currently processed elements - e.g.
2436 	 * migrate_pages
2437 	 */
2438 	lru_add_page_tail(head, page_tail, lruvec, list);
2439 }
2440 
2441 static void __split_huge_page(struct page *page, struct list_head *list,
2442 		unsigned long flags)
2443 {
2444 	struct page *head = compound_head(page);
2445 	struct zone *zone = page_zone(head);
2446 	struct lruvec *lruvec;
2447 	pgoff_t end = -1;
2448 	int i;
2449 
2450 	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2451 
2452 	/* complete memcg works before add pages to LRU */
2453 	mem_cgroup_split_huge_fixup(head);
2454 
2455 	if (!PageAnon(page))
2456 		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2457 
2458 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2459 		__split_huge_page_tail(head, i, lruvec, list);
2460 		/* Some pages can be beyond i_size: drop them from page cache */
2461 		if (head[i].index >= end) {
2462 			ClearPageDirty(head + i);
2463 			__delete_from_page_cache(head + i, NULL);
2464 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2465 				shmem_uncharge(head->mapping->host, 1);
2466 			put_page(head + i);
2467 		}
2468 	}
2469 
2470 	ClearPageCompound(head);
2471 	/* See comment in __split_huge_page_tail() */
2472 	if (PageAnon(head)) {
2473 		/* Additional pin to swap cache */
2474 		if (PageSwapCache(head))
2475 			page_ref_add(head, 2);
2476 		else
2477 			page_ref_inc(head);
2478 	} else {
2479 		/* Additional pin to page cache */
2480 		page_ref_add(head, 2);
2481 		xa_unlock(&head->mapping->i_pages);
2482 	}
2483 
2484 	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2485 
2486 	unfreeze_page(head);
2487 
2488 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2489 		struct page *subpage = head + i;
2490 		if (subpage == page)
2491 			continue;
2492 		unlock_page(subpage);
2493 
2494 		/*
2495 		 * Subpages may be freed if there wasn't any mapping
2496 		 * like if add_to_swap() is running on a lru page that
2497 		 * had its mapping zapped. And freeing these pages
2498 		 * requires taking the lru_lock so we do the put_page
2499 		 * of the tail pages after the split is complete.
2500 		 */
2501 		put_page(subpage);
2502 	}
2503 }
2504 
2505 int total_mapcount(struct page *page)
2506 {
2507 	int i, compound, ret;
2508 
2509 	VM_BUG_ON_PAGE(PageTail(page), page);
2510 
2511 	if (likely(!PageCompound(page)))
2512 		return atomic_read(&page->_mapcount) + 1;
2513 
2514 	compound = compound_mapcount(page);
2515 	if (PageHuge(page))
2516 		return compound;
2517 	ret = compound;
2518 	for (i = 0; i < HPAGE_PMD_NR; i++)
2519 		ret += atomic_read(&page[i]._mapcount) + 1;
2520 	/* File pages has compound_mapcount included in _mapcount */
2521 	if (!PageAnon(page))
2522 		return ret - compound * HPAGE_PMD_NR;
2523 	if (PageDoubleMap(page))
2524 		ret -= HPAGE_PMD_NR;
2525 	return ret;
2526 }
2527 
2528 /*
2529  * This calculates accurately how many mappings a transparent hugepage
2530  * has (unlike page_mapcount() which isn't fully accurate). This full
2531  * accuracy is primarily needed to know if copy-on-write faults can
2532  * reuse the page and change the mapping to read-write instead of
2533  * copying them. At the same time this returns the total_mapcount too.
2534  *
2535  * The function returns the highest mapcount any one of the subpages
2536  * has. If the return value is one, even if different processes are
2537  * mapping different subpages of the transparent hugepage, they can
2538  * all reuse it, because each process is reusing a different subpage.
2539  *
2540  * The total_mapcount is instead counting all virtual mappings of the
2541  * subpages. If the total_mapcount is equal to "one", it tells the
2542  * caller all mappings belong to the same "mm" and in turn the
2543  * anon_vma of the transparent hugepage can become the vma->anon_vma
2544  * local one as no other process may be mapping any of the subpages.
2545  *
2546  * It would be more accurate to replace page_mapcount() with
2547  * page_trans_huge_mapcount(), however we only use
2548  * page_trans_huge_mapcount() in the copy-on-write faults where we
2549  * need full accuracy to avoid breaking page pinning, because
2550  * page_trans_huge_mapcount() is slower than page_mapcount().
2551  */
2552 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2553 {
2554 	int i, ret, _total_mapcount, mapcount;
2555 
2556 	/* hugetlbfs shouldn't call it */
2557 	VM_BUG_ON_PAGE(PageHuge(page), page);
2558 
2559 	if (likely(!PageTransCompound(page))) {
2560 		mapcount = atomic_read(&page->_mapcount) + 1;
2561 		if (total_mapcount)
2562 			*total_mapcount = mapcount;
2563 		return mapcount;
2564 	}
2565 
2566 	page = compound_head(page);
2567 
2568 	_total_mapcount = ret = 0;
2569 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2570 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2571 		ret = max(ret, mapcount);
2572 		_total_mapcount += mapcount;
2573 	}
2574 	if (PageDoubleMap(page)) {
2575 		ret -= 1;
2576 		_total_mapcount -= HPAGE_PMD_NR;
2577 	}
2578 	mapcount = compound_mapcount(page);
2579 	ret += mapcount;
2580 	_total_mapcount += mapcount;
2581 	if (total_mapcount)
2582 		*total_mapcount = _total_mapcount;
2583 	return ret;
2584 }
2585 
2586 /* Racy check whether the huge page can be split */
2587 bool can_split_huge_page(struct page *page, int *pextra_pins)
2588 {
2589 	int extra_pins;
2590 
2591 	/* Additional pins from page cache */
2592 	if (PageAnon(page))
2593 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2594 	else
2595 		extra_pins = HPAGE_PMD_NR;
2596 	if (pextra_pins)
2597 		*pextra_pins = extra_pins;
2598 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2599 }
2600 
2601 /*
2602  * This function splits huge page into normal pages. @page can point to any
2603  * subpage of huge page to split. Split doesn't change the position of @page.
2604  *
2605  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2606  * The huge page must be locked.
2607  *
2608  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2609  *
2610  * Both head page and tail pages will inherit mapping, flags, and so on from
2611  * the hugepage.
2612  *
2613  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2614  * they are not mapped.
2615  *
2616  * Returns 0 if the hugepage is split successfully.
2617  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2618  * us.
2619  */
2620 int split_huge_page_to_list(struct page *page, struct list_head *list)
2621 {
2622 	struct page *head = compound_head(page);
2623 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2624 	struct anon_vma *anon_vma = NULL;
2625 	struct address_space *mapping = NULL;
2626 	int count, mapcount, extra_pins, ret;
2627 	bool mlocked;
2628 	unsigned long flags;
2629 
2630 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2631 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2632 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2633 
2634 	if (PageWriteback(page))
2635 		return -EBUSY;
2636 
2637 	if (PageAnon(head)) {
2638 		/*
2639 		 * The caller does not necessarily hold an mmap_sem that would
2640 		 * prevent the anon_vma disappearing so we first we take a
2641 		 * reference to it and then lock the anon_vma for write. This
2642 		 * is similar to page_lock_anon_vma_read except the write lock
2643 		 * is taken to serialise against parallel split or collapse
2644 		 * operations.
2645 		 */
2646 		anon_vma = page_get_anon_vma(head);
2647 		if (!anon_vma) {
2648 			ret = -EBUSY;
2649 			goto out;
2650 		}
2651 		mapping = NULL;
2652 		anon_vma_lock_write(anon_vma);
2653 	} else {
2654 		mapping = head->mapping;
2655 
2656 		/* Truncated ? */
2657 		if (!mapping) {
2658 			ret = -EBUSY;
2659 			goto out;
2660 		}
2661 
2662 		anon_vma = NULL;
2663 		i_mmap_lock_read(mapping);
2664 	}
2665 
2666 	/*
2667 	 * Racy check if we can split the page, before freeze_page() will
2668 	 * split PMDs
2669 	 */
2670 	if (!can_split_huge_page(head, &extra_pins)) {
2671 		ret = -EBUSY;
2672 		goto out_unlock;
2673 	}
2674 
2675 	mlocked = PageMlocked(page);
2676 	freeze_page(head);
2677 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2678 
2679 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2680 	if (mlocked)
2681 		lru_add_drain();
2682 
2683 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2684 	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2685 
2686 	if (mapping) {
2687 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2688 
2689 		/*
2690 		 * Check if the head page is present in page cache.
2691 		 * We assume all tail are present too, if head is there.
2692 		 */
2693 		xa_lock(&mapping->i_pages);
2694 		if (xas_load(&xas) != head)
2695 			goto fail;
2696 	}
2697 
2698 	/* Prevent deferred_split_scan() touching ->_refcount */
2699 	spin_lock(&pgdata->split_queue_lock);
2700 	count = page_count(head);
2701 	mapcount = total_mapcount(head);
2702 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2703 		if (!list_empty(page_deferred_list(head))) {
2704 			pgdata->split_queue_len--;
2705 			list_del(page_deferred_list(head));
2706 		}
2707 		if (mapping)
2708 			__dec_node_page_state(page, NR_SHMEM_THPS);
2709 		spin_unlock(&pgdata->split_queue_lock);
2710 		__split_huge_page(page, list, flags);
2711 		if (PageSwapCache(head)) {
2712 			swp_entry_t entry = { .val = page_private(head) };
2713 
2714 			ret = split_swap_cluster(entry);
2715 		} else
2716 			ret = 0;
2717 	} else {
2718 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2719 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2720 					mapcount, count);
2721 			if (PageTail(page))
2722 				dump_page(head, NULL);
2723 			dump_page(page, "total_mapcount(head) > 0");
2724 			BUG();
2725 		}
2726 		spin_unlock(&pgdata->split_queue_lock);
2727 fail:		if (mapping)
2728 			xa_unlock(&mapping->i_pages);
2729 		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2730 		unfreeze_page(head);
2731 		ret = -EBUSY;
2732 	}
2733 
2734 out_unlock:
2735 	if (anon_vma) {
2736 		anon_vma_unlock_write(anon_vma);
2737 		put_anon_vma(anon_vma);
2738 	}
2739 	if (mapping)
2740 		i_mmap_unlock_read(mapping);
2741 out:
2742 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2743 	return ret;
2744 }
2745 
2746 void free_transhuge_page(struct page *page)
2747 {
2748 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2749 	unsigned long flags;
2750 
2751 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2752 	if (!list_empty(page_deferred_list(page))) {
2753 		pgdata->split_queue_len--;
2754 		list_del(page_deferred_list(page));
2755 	}
2756 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2757 	free_compound_page(page);
2758 }
2759 
2760 void deferred_split_huge_page(struct page *page)
2761 {
2762 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2763 	unsigned long flags;
2764 
2765 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2766 
2767 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2768 	if (list_empty(page_deferred_list(page))) {
2769 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2770 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2771 		pgdata->split_queue_len++;
2772 	}
2773 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2774 }
2775 
2776 static unsigned long deferred_split_count(struct shrinker *shrink,
2777 		struct shrink_control *sc)
2778 {
2779 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2780 	return READ_ONCE(pgdata->split_queue_len);
2781 }
2782 
2783 static unsigned long deferred_split_scan(struct shrinker *shrink,
2784 		struct shrink_control *sc)
2785 {
2786 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2787 	unsigned long flags;
2788 	LIST_HEAD(list), *pos, *next;
2789 	struct page *page;
2790 	int split = 0;
2791 
2792 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2793 	/* Take pin on all head pages to avoid freeing them under us */
2794 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2795 		page = list_entry((void *)pos, struct page, mapping);
2796 		page = compound_head(page);
2797 		if (get_page_unless_zero(page)) {
2798 			list_move(page_deferred_list(page), &list);
2799 		} else {
2800 			/* We lost race with put_compound_page() */
2801 			list_del_init(page_deferred_list(page));
2802 			pgdata->split_queue_len--;
2803 		}
2804 		if (!--sc->nr_to_scan)
2805 			break;
2806 	}
2807 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2808 
2809 	list_for_each_safe(pos, next, &list) {
2810 		page = list_entry((void *)pos, struct page, mapping);
2811 		if (!trylock_page(page))
2812 			goto next;
2813 		/* split_huge_page() removes page from list on success */
2814 		if (!split_huge_page(page))
2815 			split++;
2816 		unlock_page(page);
2817 next:
2818 		put_page(page);
2819 	}
2820 
2821 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2822 	list_splice_tail(&list, &pgdata->split_queue);
2823 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2824 
2825 	/*
2826 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2827 	 * This can happen if pages were freed under us.
2828 	 */
2829 	if (!split && list_empty(&pgdata->split_queue))
2830 		return SHRINK_STOP;
2831 	return split;
2832 }
2833 
2834 static struct shrinker deferred_split_shrinker = {
2835 	.count_objects = deferred_split_count,
2836 	.scan_objects = deferred_split_scan,
2837 	.seeks = DEFAULT_SEEKS,
2838 	.flags = SHRINKER_NUMA_AWARE,
2839 };
2840 
2841 #ifdef CONFIG_DEBUG_FS
2842 static int split_huge_pages_set(void *data, u64 val)
2843 {
2844 	struct zone *zone;
2845 	struct page *page;
2846 	unsigned long pfn, max_zone_pfn;
2847 	unsigned long total = 0, split = 0;
2848 
2849 	if (val != 1)
2850 		return -EINVAL;
2851 
2852 	for_each_populated_zone(zone) {
2853 		max_zone_pfn = zone_end_pfn(zone);
2854 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2855 			if (!pfn_valid(pfn))
2856 				continue;
2857 
2858 			page = pfn_to_page(pfn);
2859 			if (!get_page_unless_zero(page))
2860 				continue;
2861 
2862 			if (zone != page_zone(page))
2863 				goto next;
2864 
2865 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2866 				goto next;
2867 
2868 			total++;
2869 			lock_page(page);
2870 			if (!split_huge_page(page))
2871 				split++;
2872 			unlock_page(page);
2873 next:
2874 			put_page(page);
2875 		}
2876 	}
2877 
2878 	pr_info("%lu of %lu THP split\n", split, total);
2879 
2880 	return 0;
2881 }
2882 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2883 		"%llu\n");
2884 
2885 static int __init split_huge_pages_debugfs(void)
2886 {
2887 	void *ret;
2888 
2889 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2890 			&split_huge_pages_fops);
2891 	if (!ret)
2892 		pr_warn("Failed to create split_huge_pages in debugfs");
2893 	return 0;
2894 }
2895 late_initcall(split_huge_pages_debugfs);
2896 #endif
2897 
2898 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2899 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2900 		struct page *page)
2901 {
2902 	struct vm_area_struct *vma = pvmw->vma;
2903 	struct mm_struct *mm = vma->vm_mm;
2904 	unsigned long address = pvmw->address;
2905 	pmd_t pmdval;
2906 	swp_entry_t entry;
2907 	pmd_t pmdswp;
2908 
2909 	if (!(pvmw->pmd && !pvmw->pte))
2910 		return;
2911 
2912 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2913 	pmdval = *pvmw->pmd;
2914 	pmdp_invalidate(vma, address, pvmw->pmd);
2915 	if (pmd_dirty(pmdval))
2916 		set_page_dirty(page);
2917 	entry = make_migration_entry(page, pmd_write(pmdval));
2918 	pmdswp = swp_entry_to_pmd(entry);
2919 	if (pmd_soft_dirty(pmdval))
2920 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2921 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2922 	page_remove_rmap(page, true);
2923 	put_page(page);
2924 }
2925 
2926 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2927 {
2928 	struct vm_area_struct *vma = pvmw->vma;
2929 	struct mm_struct *mm = vma->vm_mm;
2930 	unsigned long address = pvmw->address;
2931 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2932 	pmd_t pmde;
2933 	swp_entry_t entry;
2934 
2935 	if (!(pvmw->pmd && !pvmw->pte))
2936 		return;
2937 
2938 	entry = pmd_to_swp_entry(*pvmw->pmd);
2939 	get_page(new);
2940 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2941 	if (pmd_swp_soft_dirty(*pvmw->pmd))
2942 		pmde = pmd_mksoft_dirty(pmde);
2943 	if (is_write_migration_entry(entry))
2944 		pmde = maybe_pmd_mkwrite(pmde, vma);
2945 
2946 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2947 	if (PageAnon(new))
2948 		page_add_anon_rmap(new, vma, mmun_start, true);
2949 	else
2950 		page_add_file_rmap(new, true);
2951 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2952 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2953 		mlock_vma_page(new);
2954 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2955 }
2956 #endif
2957