xref: /openbmc/linux/mm/huge_memory.c (revision 7cc39531)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 
40 #include <asm/tlb.h>
41 #include <asm/pgalloc.h>
42 #include "internal.h"
43 #include "swap.h"
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/thp.h>
47 
48 /*
49  * By default, transparent hugepage support is disabled in order to avoid
50  * risking an increased memory footprint for applications that are not
51  * guaranteed to benefit from it. When transparent hugepage support is
52  * enabled, it is for all mappings, and khugepaged scans all mappings.
53  * Defrag is invoked by khugepaged hugepage allocations and by page faults
54  * for all hugepage allocations.
55  */
56 unsigned long transparent_hugepage_flags __read_mostly =
57 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
58 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
59 #endif
60 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
61 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
62 #endif
63 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
64 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
65 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
66 
67 static struct shrinker deferred_split_shrinker;
68 
69 static atomic_t huge_zero_refcount;
70 struct page *huge_zero_page __read_mostly;
71 unsigned long huge_zero_pfn __read_mostly = ~0UL;
72 
73 bool hugepage_vma_check(struct vm_area_struct *vma,
74 			unsigned long vm_flags,
75 			bool smaps, bool in_pf)
76 {
77 	if (!vma->vm_mm)		/* vdso */
78 		return false;
79 
80 	/*
81 	 * Explicitly disabled through madvise or prctl, or some
82 	 * architectures may disable THP for some mappings, for
83 	 * example, s390 kvm.
84 	 * */
85 	if ((vm_flags & VM_NOHUGEPAGE) ||
86 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
87 		return false;
88 	/*
89 	 * If the hardware/firmware marked hugepage support disabled.
90 	 */
91 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX))
92 		return false;
93 
94 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
95 	if (vma_is_dax(vma))
96 		return in_pf;
97 
98 	/*
99 	 * Special VMA and hugetlb VMA.
100 	 * Must be checked after dax since some dax mappings may have
101 	 * VM_MIXEDMAP set.
102 	 */
103 	if (vm_flags & VM_NO_KHUGEPAGED)
104 		return false;
105 
106 	/*
107 	 * Check alignment for file vma and size for both file and anon vma.
108 	 *
109 	 * Skip the check for page fault. Huge fault does the check in fault
110 	 * handlers. And this check is not suitable for huge PUD fault.
111 	 */
112 	if (!in_pf &&
113 	    !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
114 		return false;
115 
116 	/*
117 	 * Enabled via shmem mount options or sysfs settings.
118 	 * Must be done before hugepage flags check since shmem has its
119 	 * own flags.
120 	 */
121 	if (!in_pf && shmem_file(vma->vm_file))
122 		return shmem_huge_enabled(vma);
123 
124 	if (!hugepage_flags_enabled())
125 		return false;
126 
127 	/* THP settings require madvise. */
128 	if (!(vm_flags & VM_HUGEPAGE) && !hugepage_flags_always())
129 		return false;
130 
131 	/* Only regular file is valid */
132 	if (!in_pf && file_thp_enabled(vma))
133 		return true;
134 
135 	if (!vma_is_anonymous(vma))
136 		return false;
137 
138 	if (vma_is_temporary_stack(vma))
139 		return false;
140 
141 	/*
142 	 * THPeligible bit of smaps should show 1 for proper VMAs even
143 	 * though anon_vma is not initialized yet.
144 	 *
145 	 * Allow page fault since anon_vma may be not initialized until
146 	 * the first page fault.
147 	 */
148 	if (!vma->anon_vma)
149 		return (smaps || in_pf);
150 
151 	return true;
152 }
153 
154 static bool get_huge_zero_page(void)
155 {
156 	struct page *zero_page;
157 retry:
158 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
159 		return true;
160 
161 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
162 			HPAGE_PMD_ORDER);
163 	if (!zero_page) {
164 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
165 		return false;
166 	}
167 	count_vm_event(THP_ZERO_PAGE_ALLOC);
168 	preempt_disable();
169 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
170 		preempt_enable();
171 		__free_pages(zero_page, compound_order(zero_page));
172 		goto retry;
173 	}
174 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
175 
176 	/* We take additional reference here. It will be put back by shrinker */
177 	atomic_set(&huge_zero_refcount, 2);
178 	preempt_enable();
179 	return true;
180 }
181 
182 static void put_huge_zero_page(void)
183 {
184 	/*
185 	 * Counter should never go to zero here. Only shrinker can put
186 	 * last reference.
187 	 */
188 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
189 }
190 
191 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
192 {
193 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
194 		return READ_ONCE(huge_zero_page);
195 
196 	if (!get_huge_zero_page())
197 		return NULL;
198 
199 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
200 		put_huge_zero_page();
201 
202 	return READ_ONCE(huge_zero_page);
203 }
204 
205 void mm_put_huge_zero_page(struct mm_struct *mm)
206 {
207 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
208 		put_huge_zero_page();
209 }
210 
211 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
212 					struct shrink_control *sc)
213 {
214 	/* we can free zero page only if last reference remains */
215 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
216 }
217 
218 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
219 				       struct shrink_control *sc)
220 {
221 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
222 		struct page *zero_page = xchg(&huge_zero_page, NULL);
223 		BUG_ON(zero_page == NULL);
224 		WRITE_ONCE(huge_zero_pfn, ~0UL);
225 		__free_pages(zero_page, compound_order(zero_page));
226 		return HPAGE_PMD_NR;
227 	}
228 
229 	return 0;
230 }
231 
232 static struct shrinker huge_zero_page_shrinker = {
233 	.count_objects = shrink_huge_zero_page_count,
234 	.scan_objects = shrink_huge_zero_page_scan,
235 	.seeks = DEFAULT_SEEKS,
236 };
237 
238 #ifdef CONFIG_SYSFS
239 static ssize_t enabled_show(struct kobject *kobj,
240 			    struct kobj_attribute *attr, char *buf)
241 {
242 	const char *output;
243 
244 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
245 		output = "[always] madvise never";
246 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
247 			  &transparent_hugepage_flags))
248 		output = "always [madvise] never";
249 	else
250 		output = "always madvise [never]";
251 
252 	return sysfs_emit(buf, "%s\n", output);
253 }
254 
255 static ssize_t enabled_store(struct kobject *kobj,
256 			     struct kobj_attribute *attr,
257 			     const char *buf, size_t count)
258 {
259 	ssize_t ret = count;
260 
261 	if (sysfs_streq(buf, "always")) {
262 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
264 	} else if (sysfs_streq(buf, "madvise")) {
265 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
266 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
267 	} else if (sysfs_streq(buf, "never")) {
268 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
269 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 	} else
271 		ret = -EINVAL;
272 
273 	if (ret > 0) {
274 		int err = start_stop_khugepaged();
275 		if (err)
276 			ret = err;
277 	}
278 	return ret;
279 }
280 
281 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
282 
283 ssize_t single_hugepage_flag_show(struct kobject *kobj,
284 				  struct kobj_attribute *attr, char *buf,
285 				  enum transparent_hugepage_flag flag)
286 {
287 	return sysfs_emit(buf, "%d\n",
288 			  !!test_bit(flag, &transparent_hugepage_flags));
289 }
290 
291 ssize_t single_hugepage_flag_store(struct kobject *kobj,
292 				 struct kobj_attribute *attr,
293 				 const char *buf, size_t count,
294 				 enum transparent_hugepage_flag flag)
295 {
296 	unsigned long value;
297 	int ret;
298 
299 	ret = kstrtoul(buf, 10, &value);
300 	if (ret < 0)
301 		return ret;
302 	if (value > 1)
303 		return -EINVAL;
304 
305 	if (value)
306 		set_bit(flag, &transparent_hugepage_flags);
307 	else
308 		clear_bit(flag, &transparent_hugepage_flags);
309 
310 	return count;
311 }
312 
313 static ssize_t defrag_show(struct kobject *kobj,
314 			   struct kobj_attribute *attr, char *buf)
315 {
316 	const char *output;
317 
318 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
319 		     &transparent_hugepage_flags))
320 		output = "[always] defer defer+madvise madvise never";
321 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
322 			  &transparent_hugepage_flags))
323 		output = "always [defer] defer+madvise madvise never";
324 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
325 			  &transparent_hugepage_flags))
326 		output = "always defer [defer+madvise] madvise never";
327 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
328 			  &transparent_hugepage_flags))
329 		output = "always defer defer+madvise [madvise] never";
330 	else
331 		output = "always defer defer+madvise madvise [never]";
332 
333 	return sysfs_emit(buf, "%s\n", output);
334 }
335 
336 static ssize_t defrag_store(struct kobject *kobj,
337 			    struct kobj_attribute *attr,
338 			    const char *buf, size_t count)
339 {
340 	if (sysfs_streq(buf, "always")) {
341 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
342 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
343 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
344 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
345 	} else if (sysfs_streq(buf, "defer+madvise")) {
346 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
347 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
348 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
349 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
350 	} else if (sysfs_streq(buf, "defer")) {
351 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
352 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
353 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
354 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
355 	} else if (sysfs_streq(buf, "madvise")) {
356 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
357 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
358 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
359 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
360 	} else if (sysfs_streq(buf, "never")) {
361 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
362 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
363 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
364 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
365 	} else
366 		return -EINVAL;
367 
368 	return count;
369 }
370 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
371 
372 static ssize_t use_zero_page_show(struct kobject *kobj,
373 				  struct kobj_attribute *attr, char *buf)
374 {
375 	return single_hugepage_flag_show(kobj, attr, buf,
376 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static ssize_t use_zero_page_store(struct kobject *kobj,
379 		struct kobj_attribute *attr, const char *buf, size_t count)
380 {
381 	return single_hugepage_flag_store(kobj, attr, buf, count,
382 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383 }
384 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
385 
386 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
387 				   struct kobj_attribute *attr, char *buf)
388 {
389 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
390 }
391 static struct kobj_attribute hpage_pmd_size_attr =
392 	__ATTR_RO(hpage_pmd_size);
393 
394 static struct attribute *hugepage_attr[] = {
395 	&enabled_attr.attr,
396 	&defrag_attr.attr,
397 	&use_zero_page_attr.attr,
398 	&hpage_pmd_size_attr.attr,
399 #ifdef CONFIG_SHMEM
400 	&shmem_enabled_attr.attr,
401 #endif
402 	NULL,
403 };
404 
405 static const struct attribute_group hugepage_attr_group = {
406 	.attrs = hugepage_attr,
407 };
408 
409 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
410 {
411 	int err;
412 
413 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
414 	if (unlikely(!*hugepage_kobj)) {
415 		pr_err("failed to create transparent hugepage kobject\n");
416 		return -ENOMEM;
417 	}
418 
419 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
420 	if (err) {
421 		pr_err("failed to register transparent hugepage group\n");
422 		goto delete_obj;
423 	}
424 
425 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
426 	if (err) {
427 		pr_err("failed to register transparent hugepage group\n");
428 		goto remove_hp_group;
429 	}
430 
431 	return 0;
432 
433 remove_hp_group:
434 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
435 delete_obj:
436 	kobject_put(*hugepage_kobj);
437 	return err;
438 }
439 
440 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
441 {
442 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
443 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
444 	kobject_put(hugepage_kobj);
445 }
446 #else
447 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
448 {
449 	return 0;
450 }
451 
452 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
453 {
454 }
455 #endif /* CONFIG_SYSFS */
456 
457 static int __init hugepage_init(void)
458 {
459 	int err;
460 	struct kobject *hugepage_kobj;
461 
462 	if (!has_transparent_hugepage()) {
463 		/*
464 		 * Hardware doesn't support hugepages, hence disable
465 		 * DAX PMD support.
466 		 */
467 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
468 		return -EINVAL;
469 	}
470 
471 	/*
472 	 * hugepages can't be allocated by the buddy allocator
473 	 */
474 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
475 	/*
476 	 * we use page->mapping and page->index in second tail page
477 	 * as list_head: assuming THP order >= 2
478 	 */
479 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
480 
481 	err = hugepage_init_sysfs(&hugepage_kobj);
482 	if (err)
483 		goto err_sysfs;
484 
485 	err = khugepaged_init();
486 	if (err)
487 		goto err_slab;
488 
489 	err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
490 	if (err)
491 		goto err_hzp_shrinker;
492 	err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
493 	if (err)
494 		goto err_split_shrinker;
495 
496 	/*
497 	 * By default disable transparent hugepages on smaller systems,
498 	 * where the extra memory used could hurt more than TLB overhead
499 	 * is likely to save.  The admin can still enable it through /sys.
500 	 */
501 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
502 		transparent_hugepage_flags = 0;
503 		return 0;
504 	}
505 
506 	err = start_stop_khugepaged();
507 	if (err)
508 		goto err_khugepaged;
509 
510 	return 0;
511 err_khugepaged:
512 	unregister_shrinker(&deferred_split_shrinker);
513 err_split_shrinker:
514 	unregister_shrinker(&huge_zero_page_shrinker);
515 err_hzp_shrinker:
516 	khugepaged_destroy();
517 err_slab:
518 	hugepage_exit_sysfs(hugepage_kobj);
519 err_sysfs:
520 	return err;
521 }
522 subsys_initcall(hugepage_init);
523 
524 static int __init setup_transparent_hugepage(char *str)
525 {
526 	int ret = 0;
527 	if (!str)
528 		goto out;
529 	if (!strcmp(str, "always")) {
530 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
531 			&transparent_hugepage_flags);
532 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
533 			  &transparent_hugepage_flags);
534 		ret = 1;
535 	} else if (!strcmp(str, "madvise")) {
536 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
537 			  &transparent_hugepage_flags);
538 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
539 			&transparent_hugepage_flags);
540 		ret = 1;
541 	} else if (!strcmp(str, "never")) {
542 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
543 			  &transparent_hugepage_flags);
544 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
545 			  &transparent_hugepage_flags);
546 		ret = 1;
547 	}
548 out:
549 	if (!ret)
550 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
551 	return ret;
552 }
553 __setup("transparent_hugepage=", setup_transparent_hugepage);
554 
555 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
556 {
557 	if (likely(vma->vm_flags & VM_WRITE))
558 		pmd = pmd_mkwrite(pmd);
559 	return pmd;
560 }
561 
562 #ifdef CONFIG_MEMCG
563 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
564 {
565 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
566 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
567 
568 	if (memcg)
569 		return &memcg->deferred_split_queue;
570 	else
571 		return &pgdat->deferred_split_queue;
572 }
573 #else
574 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
575 {
576 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
577 
578 	return &pgdat->deferred_split_queue;
579 }
580 #endif
581 
582 void prep_transhuge_page(struct page *page)
583 {
584 	/*
585 	 * we use page->mapping and page->index in second tail page
586 	 * as list_head: assuming THP order >= 2
587 	 */
588 
589 	INIT_LIST_HEAD(page_deferred_list(page));
590 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
591 }
592 
593 static inline bool is_transparent_hugepage(struct page *page)
594 {
595 	if (!PageCompound(page))
596 		return false;
597 
598 	page = compound_head(page);
599 	return is_huge_zero_page(page) ||
600 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
601 }
602 
603 static unsigned long __thp_get_unmapped_area(struct file *filp,
604 		unsigned long addr, unsigned long len,
605 		loff_t off, unsigned long flags, unsigned long size)
606 {
607 	loff_t off_end = off + len;
608 	loff_t off_align = round_up(off, size);
609 	unsigned long len_pad, ret;
610 
611 	if (off_end <= off_align || (off_end - off_align) < size)
612 		return 0;
613 
614 	len_pad = len + size;
615 	if (len_pad < len || (off + len_pad) < off)
616 		return 0;
617 
618 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
619 					      off >> PAGE_SHIFT, flags);
620 
621 	/*
622 	 * The failure might be due to length padding. The caller will retry
623 	 * without the padding.
624 	 */
625 	if (IS_ERR_VALUE(ret))
626 		return 0;
627 
628 	/*
629 	 * Do not try to align to THP boundary if allocation at the address
630 	 * hint succeeds.
631 	 */
632 	if (ret == addr)
633 		return addr;
634 
635 	ret += (off - ret) & (size - 1);
636 	return ret;
637 }
638 
639 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
640 		unsigned long len, unsigned long pgoff, unsigned long flags)
641 {
642 	unsigned long ret;
643 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
644 
645 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
646 	if (ret)
647 		return ret;
648 
649 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
650 }
651 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
652 
653 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
654 			struct page *page, gfp_t gfp)
655 {
656 	struct vm_area_struct *vma = vmf->vma;
657 	pgtable_t pgtable;
658 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
659 	vm_fault_t ret = 0;
660 
661 	VM_BUG_ON_PAGE(!PageCompound(page), page);
662 
663 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
664 		put_page(page);
665 		count_vm_event(THP_FAULT_FALLBACK);
666 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
667 		return VM_FAULT_FALLBACK;
668 	}
669 	cgroup_throttle_swaprate(page, gfp);
670 
671 	pgtable = pte_alloc_one(vma->vm_mm);
672 	if (unlikely(!pgtable)) {
673 		ret = VM_FAULT_OOM;
674 		goto release;
675 	}
676 
677 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
678 	/*
679 	 * The memory barrier inside __SetPageUptodate makes sure that
680 	 * clear_huge_page writes become visible before the set_pmd_at()
681 	 * write.
682 	 */
683 	__SetPageUptodate(page);
684 
685 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
686 	if (unlikely(!pmd_none(*vmf->pmd))) {
687 		goto unlock_release;
688 	} else {
689 		pmd_t entry;
690 
691 		ret = check_stable_address_space(vma->vm_mm);
692 		if (ret)
693 			goto unlock_release;
694 
695 		/* Deliver the page fault to userland */
696 		if (userfaultfd_missing(vma)) {
697 			spin_unlock(vmf->ptl);
698 			put_page(page);
699 			pte_free(vma->vm_mm, pgtable);
700 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
701 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
702 			return ret;
703 		}
704 
705 		entry = mk_huge_pmd(page, vma->vm_page_prot);
706 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
707 		page_add_new_anon_rmap(page, vma, haddr);
708 		lru_cache_add_inactive_or_unevictable(page, vma);
709 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
710 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
711 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
712 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
713 		mm_inc_nr_ptes(vma->vm_mm);
714 		spin_unlock(vmf->ptl);
715 		count_vm_event(THP_FAULT_ALLOC);
716 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
717 	}
718 
719 	return 0;
720 unlock_release:
721 	spin_unlock(vmf->ptl);
722 release:
723 	if (pgtable)
724 		pte_free(vma->vm_mm, pgtable);
725 	put_page(page);
726 	return ret;
727 
728 }
729 
730 /*
731  * always: directly stall for all thp allocations
732  * defer: wake kswapd and fail if not immediately available
733  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
734  *		  fail if not immediately available
735  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
736  *	    available
737  * never: never stall for any thp allocation
738  */
739 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
740 {
741 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
742 
743 	/* Always do synchronous compaction */
744 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
745 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
746 
747 	/* Kick kcompactd and fail quickly */
748 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
749 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
750 
751 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
752 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
753 		return GFP_TRANSHUGE_LIGHT |
754 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
755 					__GFP_KSWAPD_RECLAIM);
756 
757 	/* Only do synchronous compaction if madvised */
758 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
759 		return GFP_TRANSHUGE_LIGHT |
760 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
761 
762 	return GFP_TRANSHUGE_LIGHT;
763 }
764 
765 /* Caller must hold page table lock. */
766 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
767 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
768 		struct page *zero_page)
769 {
770 	pmd_t entry;
771 	if (!pmd_none(*pmd))
772 		return;
773 	entry = mk_pmd(zero_page, vma->vm_page_prot);
774 	entry = pmd_mkhuge(entry);
775 	if (pgtable)
776 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
777 	set_pmd_at(mm, haddr, pmd, entry);
778 	mm_inc_nr_ptes(mm);
779 }
780 
781 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
782 {
783 	struct vm_area_struct *vma = vmf->vma;
784 	gfp_t gfp;
785 	struct folio *folio;
786 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
787 
788 	if (!transhuge_vma_suitable(vma, haddr))
789 		return VM_FAULT_FALLBACK;
790 	if (unlikely(anon_vma_prepare(vma)))
791 		return VM_FAULT_OOM;
792 	khugepaged_enter_vma(vma, vma->vm_flags);
793 
794 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
795 			!mm_forbids_zeropage(vma->vm_mm) &&
796 			transparent_hugepage_use_zero_page()) {
797 		pgtable_t pgtable;
798 		struct page *zero_page;
799 		vm_fault_t ret;
800 		pgtable = pte_alloc_one(vma->vm_mm);
801 		if (unlikely(!pgtable))
802 			return VM_FAULT_OOM;
803 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
804 		if (unlikely(!zero_page)) {
805 			pte_free(vma->vm_mm, pgtable);
806 			count_vm_event(THP_FAULT_FALLBACK);
807 			return VM_FAULT_FALLBACK;
808 		}
809 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
810 		ret = 0;
811 		if (pmd_none(*vmf->pmd)) {
812 			ret = check_stable_address_space(vma->vm_mm);
813 			if (ret) {
814 				spin_unlock(vmf->ptl);
815 				pte_free(vma->vm_mm, pgtable);
816 			} else if (userfaultfd_missing(vma)) {
817 				spin_unlock(vmf->ptl);
818 				pte_free(vma->vm_mm, pgtable);
819 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
820 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
821 			} else {
822 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
823 						   haddr, vmf->pmd, zero_page);
824 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
825 				spin_unlock(vmf->ptl);
826 			}
827 		} else {
828 			spin_unlock(vmf->ptl);
829 			pte_free(vma->vm_mm, pgtable);
830 		}
831 		return ret;
832 	}
833 	gfp = vma_thp_gfp_mask(vma);
834 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
835 	if (unlikely(!folio)) {
836 		count_vm_event(THP_FAULT_FALLBACK);
837 		return VM_FAULT_FALLBACK;
838 	}
839 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
840 }
841 
842 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
843 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
844 		pgtable_t pgtable)
845 {
846 	struct mm_struct *mm = vma->vm_mm;
847 	pmd_t entry;
848 	spinlock_t *ptl;
849 
850 	ptl = pmd_lock(mm, pmd);
851 	if (!pmd_none(*pmd)) {
852 		if (write) {
853 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
854 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
855 				goto out_unlock;
856 			}
857 			entry = pmd_mkyoung(*pmd);
858 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
859 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
860 				update_mmu_cache_pmd(vma, addr, pmd);
861 		}
862 
863 		goto out_unlock;
864 	}
865 
866 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
867 	if (pfn_t_devmap(pfn))
868 		entry = pmd_mkdevmap(entry);
869 	if (write) {
870 		entry = pmd_mkyoung(pmd_mkdirty(entry));
871 		entry = maybe_pmd_mkwrite(entry, vma);
872 	}
873 
874 	if (pgtable) {
875 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
876 		mm_inc_nr_ptes(mm);
877 		pgtable = NULL;
878 	}
879 
880 	set_pmd_at(mm, addr, pmd, entry);
881 	update_mmu_cache_pmd(vma, addr, pmd);
882 
883 out_unlock:
884 	spin_unlock(ptl);
885 	if (pgtable)
886 		pte_free(mm, pgtable);
887 }
888 
889 /**
890  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
891  * @vmf: Structure describing the fault
892  * @pfn: pfn to insert
893  * @pgprot: page protection to use
894  * @write: whether it's a write fault
895  *
896  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
897  * also consult the vmf_insert_mixed_prot() documentation when
898  * @pgprot != @vmf->vma->vm_page_prot.
899  *
900  * Return: vm_fault_t value.
901  */
902 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
903 				   pgprot_t pgprot, bool write)
904 {
905 	unsigned long addr = vmf->address & PMD_MASK;
906 	struct vm_area_struct *vma = vmf->vma;
907 	pgtable_t pgtable = NULL;
908 
909 	/*
910 	 * If we had pmd_special, we could avoid all these restrictions,
911 	 * but we need to be consistent with PTEs and architectures that
912 	 * can't support a 'special' bit.
913 	 */
914 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
915 			!pfn_t_devmap(pfn));
916 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
917 						(VM_PFNMAP|VM_MIXEDMAP));
918 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
919 
920 	if (addr < vma->vm_start || addr >= vma->vm_end)
921 		return VM_FAULT_SIGBUS;
922 
923 	if (arch_needs_pgtable_deposit()) {
924 		pgtable = pte_alloc_one(vma->vm_mm);
925 		if (!pgtable)
926 			return VM_FAULT_OOM;
927 	}
928 
929 	track_pfn_insert(vma, &pgprot, pfn);
930 
931 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
932 	return VM_FAULT_NOPAGE;
933 }
934 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
935 
936 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
937 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
938 {
939 	if (likely(vma->vm_flags & VM_WRITE))
940 		pud = pud_mkwrite(pud);
941 	return pud;
942 }
943 
944 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
945 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
946 {
947 	struct mm_struct *mm = vma->vm_mm;
948 	pud_t entry;
949 	spinlock_t *ptl;
950 
951 	ptl = pud_lock(mm, pud);
952 	if (!pud_none(*pud)) {
953 		if (write) {
954 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
955 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
956 				goto out_unlock;
957 			}
958 			entry = pud_mkyoung(*pud);
959 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
960 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
961 				update_mmu_cache_pud(vma, addr, pud);
962 		}
963 		goto out_unlock;
964 	}
965 
966 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
967 	if (pfn_t_devmap(pfn))
968 		entry = pud_mkdevmap(entry);
969 	if (write) {
970 		entry = pud_mkyoung(pud_mkdirty(entry));
971 		entry = maybe_pud_mkwrite(entry, vma);
972 	}
973 	set_pud_at(mm, addr, pud, entry);
974 	update_mmu_cache_pud(vma, addr, pud);
975 
976 out_unlock:
977 	spin_unlock(ptl);
978 }
979 
980 /**
981  * vmf_insert_pfn_pud_prot - insert a pud size pfn
982  * @vmf: Structure describing the fault
983  * @pfn: pfn to insert
984  * @pgprot: page protection to use
985  * @write: whether it's a write fault
986  *
987  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
988  * also consult the vmf_insert_mixed_prot() documentation when
989  * @pgprot != @vmf->vma->vm_page_prot.
990  *
991  * Return: vm_fault_t value.
992  */
993 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
994 				   pgprot_t pgprot, bool write)
995 {
996 	unsigned long addr = vmf->address & PUD_MASK;
997 	struct vm_area_struct *vma = vmf->vma;
998 
999 	/*
1000 	 * If we had pud_special, we could avoid all these restrictions,
1001 	 * but we need to be consistent with PTEs and architectures that
1002 	 * can't support a 'special' bit.
1003 	 */
1004 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1005 			!pfn_t_devmap(pfn));
1006 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1007 						(VM_PFNMAP|VM_MIXEDMAP));
1008 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1009 
1010 	if (addr < vma->vm_start || addr >= vma->vm_end)
1011 		return VM_FAULT_SIGBUS;
1012 
1013 	track_pfn_insert(vma, &pgprot, pfn);
1014 
1015 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
1016 	return VM_FAULT_NOPAGE;
1017 }
1018 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
1019 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1020 
1021 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1022 		      pmd_t *pmd, bool write)
1023 {
1024 	pmd_t _pmd;
1025 
1026 	_pmd = pmd_mkyoung(*pmd);
1027 	if (write)
1028 		_pmd = pmd_mkdirty(_pmd);
1029 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1030 				  pmd, _pmd, write))
1031 		update_mmu_cache_pmd(vma, addr, pmd);
1032 }
1033 
1034 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1035 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1036 {
1037 	unsigned long pfn = pmd_pfn(*pmd);
1038 	struct mm_struct *mm = vma->vm_mm;
1039 	struct page *page;
1040 
1041 	assert_spin_locked(pmd_lockptr(mm, pmd));
1042 
1043 	/*
1044 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
1045 	 * not be in this function with `flags & FOLL_COW` set.
1046 	 */
1047 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
1048 
1049 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1050 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1051 			 (FOLL_PIN | FOLL_GET)))
1052 		return NULL;
1053 
1054 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1055 		return NULL;
1056 
1057 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1058 		/* pass */;
1059 	else
1060 		return NULL;
1061 
1062 	if (flags & FOLL_TOUCH)
1063 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1064 
1065 	/*
1066 	 * device mapped pages can only be returned if the
1067 	 * caller will manage the page reference count.
1068 	 */
1069 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1070 		return ERR_PTR(-EEXIST);
1071 
1072 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1073 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1074 	if (!*pgmap)
1075 		return ERR_PTR(-EFAULT);
1076 	page = pfn_to_page(pfn);
1077 	if (!try_grab_page(page, flags))
1078 		page = ERR_PTR(-ENOMEM);
1079 
1080 	return page;
1081 }
1082 
1083 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1084 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1085 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1086 {
1087 	spinlock_t *dst_ptl, *src_ptl;
1088 	struct page *src_page;
1089 	pmd_t pmd;
1090 	pgtable_t pgtable = NULL;
1091 	int ret = -ENOMEM;
1092 
1093 	/* Skip if can be re-fill on fault */
1094 	if (!vma_is_anonymous(dst_vma))
1095 		return 0;
1096 
1097 	pgtable = pte_alloc_one(dst_mm);
1098 	if (unlikely(!pgtable))
1099 		goto out;
1100 
1101 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1102 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1103 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1104 
1105 	ret = -EAGAIN;
1106 	pmd = *src_pmd;
1107 
1108 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1109 	if (unlikely(is_swap_pmd(pmd))) {
1110 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1111 
1112 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1113 		if (!is_readable_migration_entry(entry)) {
1114 			entry = make_readable_migration_entry(
1115 							swp_offset(entry));
1116 			pmd = swp_entry_to_pmd(entry);
1117 			if (pmd_swp_soft_dirty(*src_pmd))
1118 				pmd = pmd_swp_mksoft_dirty(pmd);
1119 			if (pmd_swp_uffd_wp(*src_pmd))
1120 				pmd = pmd_swp_mkuffd_wp(pmd);
1121 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1122 		}
1123 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1124 		mm_inc_nr_ptes(dst_mm);
1125 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1126 		if (!userfaultfd_wp(dst_vma))
1127 			pmd = pmd_swp_clear_uffd_wp(pmd);
1128 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1129 		ret = 0;
1130 		goto out_unlock;
1131 	}
1132 #endif
1133 
1134 	if (unlikely(!pmd_trans_huge(pmd))) {
1135 		pte_free(dst_mm, pgtable);
1136 		goto out_unlock;
1137 	}
1138 	/*
1139 	 * When page table lock is held, the huge zero pmd should not be
1140 	 * under splitting since we don't split the page itself, only pmd to
1141 	 * a page table.
1142 	 */
1143 	if (is_huge_zero_pmd(pmd)) {
1144 		/*
1145 		 * get_huge_zero_page() will never allocate a new page here,
1146 		 * since we already have a zero page to copy. It just takes a
1147 		 * reference.
1148 		 */
1149 		mm_get_huge_zero_page(dst_mm);
1150 		goto out_zero_page;
1151 	}
1152 
1153 	src_page = pmd_page(pmd);
1154 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1155 
1156 	get_page(src_page);
1157 	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1158 		/* Page maybe pinned: split and retry the fault on PTEs. */
1159 		put_page(src_page);
1160 		pte_free(dst_mm, pgtable);
1161 		spin_unlock(src_ptl);
1162 		spin_unlock(dst_ptl);
1163 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1164 		return -EAGAIN;
1165 	}
1166 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1167 out_zero_page:
1168 	mm_inc_nr_ptes(dst_mm);
1169 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1170 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1171 	if (!userfaultfd_wp(dst_vma))
1172 		pmd = pmd_clear_uffd_wp(pmd);
1173 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1174 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1175 
1176 	ret = 0;
1177 out_unlock:
1178 	spin_unlock(src_ptl);
1179 	spin_unlock(dst_ptl);
1180 out:
1181 	return ret;
1182 }
1183 
1184 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1185 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1186 		      pud_t *pud, bool write)
1187 {
1188 	pud_t _pud;
1189 
1190 	_pud = pud_mkyoung(*pud);
1191 	if (write)
1192 		_pud = pud_mkdirty(_pud);
1193 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1194 				  pud, _pud, write))
1195 		update_mmu_cache_pud(vma, addr, pud);
1196 }
1197 
1198 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1199 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1200 {
1201 	unsigned long pfn = pud_pfn(*pud);
1202 	struct mm_struct *mm = vma->vm_mm;
1203 	struct page *page;
1204 
1205 	assert_spin_locked(pud_lockptr(mm, pud));
1206 
1207 	if (flags & FOLL_WRITE && !pud_write(*pud))
1208 		return NULL;
1209 
1210 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1211 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1212 			 (FOLL_PIN | FOLL_GET)))
1213 		return NULL;
1214 
1215 	if (pud_present(*pud) && pud_devmap(*pud))
1216 		/* pass */;
1217 	else
1218 		return NULL;
1219 
1220 	if (flags & FOLL_TOUCH)
1221 		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1222 
1223 	/*
1224 	 * device mapped pages can only be returned if the
1225 	 * caller will manage the page reference count.
1226 	 *
1227 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1228 	 */
1229 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1230 		return ERR_PTR(-EEXIST);
1231 
1232 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1233 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1234 	if (!*pgmap)
1235 		return ERR_PTR(-EFAULT);
1236 	page = pfn_to_page(pfn);
1237 	if (!try_grab_page(page, flags))
1238 		page = ERR_PTR(-ENOMEM);
1239 
1240 	return page;
1241 }
1242 
1243 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1244 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1245 		  struct vm_area_struct *vma)
1246 {
1247 	spinlock_t *dst_ptl, *src_ptl;
1248 	pud_t pud;
1249 	int ret;
1250 
1251 	dst_ptl = pud_lock(dst_mm, dst_pud);
1252 	src_ptl = pud_lockptr(src_mm, src_pud);
1253 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1254 
1255 	ret = -EAGAIN;
1256 	pud = *src_pud;
1257 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1258 		goto out_unlock;
1259 
1260 	/*
1261 	 * When page table lock is held, the huge zero pud should not be
1262 	 * under splitting since we don't split the page itself, only pud to
1263 	 * a page table.
1264 	 */
1265 	if (is_huge_zero_pud(pud)) {
1266 		/* No huge zero pud yet */
1267 	}
1268 
1269 	/*
1270 	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1271 	 * and split if duplicating fails.
1272 	 */
1273 	pudp_set_wrprotect(src_mm, addr, src_pud);
1274 	pud = pud_mkold(pud_wrprotect(pud));
1275 	set_pud_at(dst_mm, addr, dst_pud, pud);
1276 
1277 	ret = 0;
1278 out_unlock:
1279 	spin_unlock(src_ptl);
1280 	spin_unlock(dst_ptl);
1281 	return ret;
1282 }
1283 
1284 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1285 {
1286 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1287 
1288 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1289 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1290 		goto unlock;
1291 
1292 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1293 unlock:
1294 	spin_unlock(vmf->ptl);
1295 }
1296 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1297 
1298 void huge_pmd_set_accessed(struct vm_fault *vmf)
1299 {
1300 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1301 
1302 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1303 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1304 		goto unlock;
1305 
1306 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1307 
1308 unlock:
1309 	spin_unlock(vmf->ptl);
1310 }
1311 
1312 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1313 {
1314 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1315 	struct vm_area_struct *vma = vmf->vma;
1316 	struct page *page;
1317 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1318 	pmd_t orig_pmd = vmf->orig_pmd;
1319 
1320 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1321 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1322 
1323 	VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
1324 	VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
1325 
1326 	if (is_huge_zero_pmd(orig_pmd))
1327 		goto fallback;
1328 
1329 	spin_lock(vmf->ptl);
1330 
1331 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1332 		spin_unlock(vmf->ptl);
1333 		return 0;
1334 	}
1335 
1336 	page = pmd_page(orig_pmd);
1337 	VM_BUG_ON_PAGE(!PageHead(page), page);
1338 
1339 	/* Early check when only holding the PT lock. */
1340 	if (PageAnonExclusive(page))
1341 		goto reuse;
1342 
1343 	if (!trylock_page(page)) {
1344 		get_page(page);
1345 		spin_unlock(vmf->ptl);
1346 		lock_page(page);
1347 		spin_lock(vmf->ptl);
1348 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1349 			spin_unlock(vmf->ptl);
1350 			unlock_page(page);
1351 			put_page(page);
1352 			return 0;
1353 		}
1354 		put_page(page);
1355 	}
1356 
1357 	/* Recheck after temporarily dropping the PT lock. */
1358 	if (PageAnonExclusive(page)) {
1359 		unlock_page(page);
1360 		goto reuse;
1361 	}
1362 
1363 	/*
1364 	 * See do_wp_page(): we can only reuse the page exclusively if there are
1365 	 * no additional references. Note that we always drain the LRU
1366 	 * pagevecs immediately after adding a THP.
1367 	 */
1368 	if (page_count(page) > 1 + PageSwapCache(page) * thp_nr_pages(page))
1369 		goto unlock_fallback;
1370 	if (PageSwapCache(page))
1371 		try_to_free_swap(page);
1372 	if (page_count(page) == 1) {
1373 		pmd_t entry;
1374 
1375 		page_move_anon_rmap(page, vma);
1376 		unlock_page(page);
1377 reuse:
1378 		if (unlikely(unshare)) {
1379 			spin_unlock(vmf->ptl);
1380 			return 0;
1381 		}
1382 		entry = pmd_mkyoung(orig_pmd);
1383 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1384 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1385 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1386 		spin_unlock(vmf->ptl);
1387 		return VM_FAULT_WRITE;
1388 	}
1389 
1390 unlock_fallback:
1391 	unlock_page(page);
1392 	spin_unlock(vmf->ptl);
1393 fallback:
1394 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1395 	return VM_FAULT_FALLBACK;
1396 }
1397 
1398 /*
1399  * FOLL_FORCE can write to even unwritable pmd's, but only
1400  * after we've gone through a COW cycle and they are dirty.
1401  */
1402 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1403 {
1404 	return pmd_write(pmd) ||
1405 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1406 }
1407 
1408 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1409 				   unsigned long addr,
1410 				   pmd_t *pmd,
1411 				   unsigned int flags)
1412 {
1413 	struct mm_struct *mm = vma->vm_mm;
1414 	struct page *page = NULL;
1415 
1416 	assert_spin_locked(pmd_lockptr(mm, pmd));
1417 
1418 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1419 		goto out;
1420 
1421 	/* Avoid dumping huge zero page */
1422 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1423 		return ERR_PTR(-EFAULT);
1424 
1425 	/* Full NUMA hinting faults to serialise migration in fault paths */
1426 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1427 		goto out;
1428 
1429 	page = pmd_page(*pmd);
1430 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1431 
1432 	if (!pmd_write(*pmd) && gup_must_unshare(flags, page))
1433 		return ERR_PTR(-EMLINK);
1434 
1435 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1436 			!PageAnonExclusive(page), page);
1437 
1438 	if (!try_grab_page(page, flags))
1439 		return ERR_PTR(-ENOMEM);
1440 
1441 	if (flags & FOLL_TOUCH)
1442 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1443 
1444 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1445 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1446 
1447 out:
1448 	return page;
1449 }
1450 
1451 /* NUMA hinting page fault entry point for trans huge pmds */
1452 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1453 {
1454 	struct vm_area_struct *vma = vmf->vma;
1455 	pmd_t oldpmd = vmf->orig_pmd;
1456 	pmd_t pmd;
1457 	struct page *page;
1458 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1459 	int page_nid = NUMA_NO_NODE;
1460 	int target_nid, last_cpupid = -1;
1461 	bool migrated = false;
1462 	bool was_writable = pmd_savedwrite(oldpmd);
1463 	int flags = 0;
1464 
1465 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1466 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1467 		spin_unlock(vmf->ptl);
1468 		goto out;
1469 	}
1470 
1471 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1472 	page = vm_normal_page_pmd(vma, haddr, pmd);
1473 	if (!page)
1474 		goto out_map;
1475 
1476 	/* See similar comment in do_numa_page for explanation */
1477 	if (!was_writable)
1478 		flags |= TNF_NO_GROUP;
1479 
1480 	page_nid = page_to_nid(page);
1481 	last_cpupid = page_cpupid_last(page);
1482 	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1483 				       &flags);
1484 
1485 	if (target_nid == NUMA_NO_NODE) {
1486 		put_page(page);
1487 		goto out_map;
1488 	}
1489 
1490 	spin_unlock(vmf->ptl);
1491 
1492 	migrated = migrate_misplaced_page(page, vma, target_nid);
1493 	if (migrated) {
1494 		flags |= TNF_MIGRATED;
1495 		page_nid = target_nid;
1496 	} else {
1497 		flags |= TNF_MIGRATE_FAIL;
1498 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1499 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1500 			spin_unlock(vmf->ptl);
1501 			goto out;
1502 		}
1503 		goto out_map;
1504 	}
1505 
1506 out:
1507 	if (page_nid != NUMA_NO_NODE)
1508 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1509 				flags);
1510 
1511 	return 0;
1512 
1513 out_map:
1514 	/* Restore the PMD */
1515 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1516 	pmd = pmd_mkyoung(pmd);
1517 	if (was_writable)
1518 		pmd = pmd_mkwrite(pmd);
1519 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1520 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1521 	spin_unlock(vmf->ptl);
1522 	goto out;
1523 }
1524 
1525 /*
1526  * Return true if we do MADV_FREE successfully on entire pmd page.
1527  * Otherwise, return false.
1528  */
1529 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1530 		pmd_t *pmd, unsigned long addr, unsigned long next)
1531 {
1532 	spinlock_t *ptl;
1533 	pmd_t orig_pmd;
1534 	struct page *page;
1535 	struct mm_struct *mm = tlb->mm;
1536 	bool ret = false;
1537 
1538 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1539 
1540 	ptl = pmd_trans_huge_lock(pmd, vma);
1541 	if (!ptl)
1542 		goto out_unlocked;
1543 
1544 	orig_pmd = *pmd;
1545 	if (is_huge_zero_pmd(orig_pmd))
1546 		goto out;
1547 
1548 	if (unlikely(!pmd_present(orig_pmd))) {
1549 		VM_BUG_ON(thp_migration_supported() &&
1550 				  !is_pmd_migration_entry(orig_pmd));
1551 		goto out;
1552 	}
1553 
1554 	page = pmd_page(orig_pmd);
1555 	/*
1556 	 * If other processes are mapping this page, we couldn't discard
1557 	 * the page unless they all do MADV_FREE so let's skip the page.
1558 	 */
1559 	if (total_mapcount(page) != 1)
1560 		goto out;
1561 
1562 	if (!trylock_page(page))
1563 		goto out;
1564 
1565 	/*
1566 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1567 	 * will deactivate only them.
1568 	 */
1569 	if (next - addr != HPAGE_PMD_SIZE) {
1570 		get_page(page);
1571 		spin_unlock(ptl);
1572 		split_huge_page(page);
1573 		unlock_page(page);
1574 		put_page(page);
1575 		goto out_unlocked;
1576 	}
1577 
1578 	if (PageDirty(page))
1579 		ClearPageDirty(page);
1580 	unlock_page(page);
1581 
1582 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1583 		pmdp_invalidate(vma, addr, pmd);
1584 		orig_pmd = pmd_mkold(orig_pmd);
1585 		orig_pmd = pmd_mkclean(orig_pmd);
1586 
1587 		set_pmd_at(mm, addr, pmd, orig_pmd);
1588 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1589 	}
1590 
1591 	mark_page_lazyfree(page);
1592 	ret = true;
1593 out:
1594 	spin_unlock(ptl);
1595 out_unlocked:
1596 	return ret;
1597 }
1598 
1599 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1600 {
1601 	pgtable_t pgtable;
1602 
1603 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1604 	pte_free(mm, pgtable);
1605 	mm_dec_nr_ptes(mm);
1606 }
1607 
1608 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1609 		 pmd_t *pmd, unsigned long addr)
1610 {
1611 	pmd_t orig_pmd;
1612 	spinlock_t *ptl;
1613 
1614 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1615 
1616 	ptl = __pmd_trans_huge_lock(pmd, vma);
1617 	if (!ptl)
1618 		return 0;
1619 	/*
1620 	 * For architectures like ppc64 we look at deposited pgtable
1621 	 * when calling pmdp_huge_get_and_clear. So do the
1622 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1623 	 * operations.
1624 	 */
1625 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1626 						tlb->fullmm);
1627 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1628 	if (vma_is_special_huge(vma)) {
1629 		if (arch_needs_pgtable_deposit())
1630 			zap_deposited_table(tlb->mm, pmd);
1631 		spin_unlock(ptl);
1632 	} else if (is_huge_zero_pmd(orig_pmd)) {
1633 		zap_deposited_table(tlb->mm, pmd);
1634 		spin_unlock(ptl);
1635 	} else {
1636 		struct page *page = NULL;
1637 		int flush_needed = 1;
1638 
1639 		if (pmd_present(orig_pmd)) {
1640 			page = pmd_page(orig_pmd);
1641 			page_remove_rmap(page, vma, true);
1642 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1643 			VM_BUG_ON_PAGE(!PageHead(page), page);
1644 		} else if (thp_migration_supported()) {
1645 			swp_entry_t entry;
1646 
1647 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1648 			entry = pmd_to_swp_entry(orig_pmd);
1649 			page = pfn_swap_entry_to_page(entry);
1650 			flush_needed = 0;
1651 		} else
1652 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1653 
1654 		if (PageAnon(page)) {
1655 			zap_deposited_table(tlb->mm, pmd);
1656 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1657 		} else {
1658 			if (arch_needs_pgtable_deposit())
1659 				zap_deposited_table(tlb->mm, pmd);
1660 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1661 		}
1662 
1663 		spin_unlock(ptl);
1664 		if (flush_needed)
1665 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1666 	}
1667 	return 1;
1668 }
1669 
1670 #ifndef pmd_move_must_withdraw
1671 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1672 					 spinlock_t *old_pmd_ptl,
1673 					 struct vm_area_struct *vma)
1674 {
1675 	/*
1676 	 * With split pmd lock we also need to move preallocated
1677 	 * PTE page table if new_pmd is on different PMD page table.
1678 	 *
1679 	 * We also don't deposit and withdraw tables for file pages.
1680 	 */
1681 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1682 }
1683 #endif
1684 
1685 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1686 {
1687 #ifdef CONFIG_MEM_SOFT_DIRTY
1688 	if (unlikely(is_pmd_migration_entry(pmd)))
1689 		pmd = pmd_swp_mksoft_dirty(pmd);
1690 	else if (pmd_present(pmd))
1691 		pmd = pmd_mksoft_dirty(pmd);
1692 #endif
1693 	return pmd;
1694 }
1695 
1696 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1697 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1698 {
1699 	spinlock_t *old_ptl, *new_ptl;
1700 	pmd_t pmd;
1701 	struct mm_struct *mm = vma->vm_mm;
1702 	bool force_flush = false;
1703 
1704 	/*
1705 	 * The destination pmd shouldn't be established, free_pgtables()
1706 	 * should have release it.
1707 	 */
1708 	if (WARN_ON(!pmd_none(*new_pmd))) {
1709 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1710 		return false;
1711 	}
1712 
1713 	/*
1714 	 * We don't have to worry about the ordering of src and dst
1715 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1716 	 */
1717 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1718 	if (old_ptl) {
1719 		new_ptl = pmd_lockptr(mm, new_pmd);
1720 		if (new_ptl != old_ptl)
1721 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1722 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1723 		if (pmd_present(pmd))
1724 			force_flush = true;
1725 		VM_BUG_ON(!pmd_none(*new_pmd));
1726 
1727 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1728 			pgtable_t pgtable;
1729 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1730 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1731 		}
1732 		pmd = move_soft_dirty_pmd(pmd);
1733 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1734 		if (force_flush)
1735 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1736 		if (new_ptl != old_ptl)
1737 			spin_unlock(new_ptl);
1738 		spin_unlock(old_ptl);
1739 		return true;
1740 	}
1741 	return false;
1742 }
1743 
1744 /*
1745  * Returns
1746  *  - 0 if PMD could not be locked
1747  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1748  *      or if prot_numa but THP migration is not supported
1749  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1750  */
1751 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1752 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1753 		    unsigned long cp_flags)
1754 {
1755 	struct mm_struct *mm = vma->vm_mm;
1756 	spinlock_t *ptl;
1757 	pmd_t oldpmd, entry;
1758 	bool preserve_write;
1759 	int ret;
1760 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1761 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1762 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1763 
1764 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1765 
1766 	if (prot_numa && !thp_migration_supported())
1767 		return 1;
1768 
1769 	ptl = __pmd_trans_huge_lock(pmd, vma);
1770 	if (!ptl)
1771 		return 0;
1772 
1773 	preserve_write = prot_numa && pmd_write(*pmd);
1774 	ret = 1;
1775 
1776 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1777 	if (is_swap_pmd(*pmd)) {
1778 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1779 		struct page *page = pfn_swap_entry_to_page(entry);
1780 
1781 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1782 		if (is_writable_migration_entry(entry)) {
1783 			pmd_t newpmd;
1784 			/*
1785 			 * A protection check is difficult so
1786 			 * just be safe and disable write
1787 			 */
1788 			if (PageAnon(page))
1789 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1790 			else
1791 				entry = make_readable_migration_entry(swp_offset(entry));
1792 			newpmd = swp_entry_to_pmd(entry);
1793 			if (pmd_swp_soft_dirty(*pmd))
1794 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1795 			if (pmd_swp_uffd_wp(*pmd))
1796 				newpmd = pmd_swp_mkuffd_wp(newpmd);
1797 			set_pmd_at(mm, addr, pmd, newpmd);
1798 		}
1799 		goto unlock;
1800 	}
1801 #endif
1802 
1803 	if (prot_numa) {
1804 		struct page *page;
1805 		/*
1806 		 * Avoid trapping faults against the zero page. The read-only
1807 		 * data is likely to be read-cached on the local CPU and
1808 		 * local/remote hits to the zero page are not interesting.
1809 		 */
1810 		if (is_huge_zero_pmd(*pmd))
1811 			goto unlock;
1812 
1813 		if (pmd_protnone(*pmd))
1814 			goto unlock;
1815 
1816 		page = pmd_page(*pmd);
1817 		/*
1818 		 * Skip scanning top tier node if normal numa
1819 		 * balancing is disabled
1820 		 */
1821 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1822 		    node_is_toptier(page_to_nid(page)))
1823 			goto unlock;
1824 	}
1825 	/*
1826 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1827 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1828 	 * which is also under mmap_read_lock(mm):
1829 	 *
1830 	 *	CPU0:				CPU1:
1831 	 *				change_huge_pmd(prot_numa=1)
1832 	 *				 pmdp_huge_get_and_clear_notify()
1833 	 * madvise_dontneed()
1834 	 *  zap_pmd_range()
1835 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1836 	 *   // skip the pmd
1837 	 *				 set_pmd_at();
1838 	 *				 // pmd is re-established
1839 	 *
1840 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1841 	 * which may break userspace.
1842 	 *
1843 	 * pmdp_invalidate_ad() is required to make sure we don't miss
1844 	 * dirty/young flags set by hardware.
1845 	 */
1846 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1847 
1848 	entry = pmd_modify(oldpmd, newprot);
1849 	if (preserve_write)
1850 		entry = pmd_mk_savedwrite(entry);
1851 	if (uffd_wp) {
1852 		entry = pmd_wrprotect(entry);
1853 		entry = pmd_mkuffd_wp(entry);
1854 	} else if (uffd_wp_resolve) {
1855 		/*
1856 		 * Leave the write bit to be handled by PF interrupt
1857 		 * handler, then things like COW could be properly
1858 		 * handled.
1859 		 */
1860 		entry = pmd_clear_uffd_wp(entry);
1861 	}
1862 	ret = HPAGE_PMD_NR;
1863 	set_pmd_at(mm, addr, pmd, entry);
1864 
1865 	if (huge_pmd_needs_flush(oldpmd, entry))
1866 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1867 
1868 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1869 unlock:
1870 	spin_unlock(ptl);
1871 	return ret;
1872 }
1873 
1874 /*
1875  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1876  *
1877  * Note that if it returns page table lock pointer, this routine returns without
1878  * unlocking page table lock. So callers must unlock it.
1879  */
1880 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1881 {
1882 	spinlock_t *ptl;
1883 	ptl = pmd_lock(vma->vm_mm, pmd);
1884 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1885 			pmd_devmap(*pmd)))
1886 		return ptl;
1887 	spin_unlock(ptl);
1888 	return NULL;
1889 }
1890 
1891 /*
1892  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1893  *
1894  * Note that if it returns page table lock pointer, this routine returns without
1895  * unlocking page table lock. So callers must unlock it.
1896  */
1897 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1898 {
1899 	spinlock_t *ptl;
1900 
1901 	ptl = pud_lock(vma->vm_mm, pud);
1902 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1903 		return ptl;
1904 	spin_unlock(ptl);
1905 	return NULL;
1906 }
1907 
1908 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1909 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1910 		 pud_t *pud, unsigned long addr)
1911 {
1912 	spinlock_t *ptl;
1913 
1914 	ptl = __pud_trans_huge_lock(pud, vma);
1915 	if (!ptl)
1916 		return 0;
1917 
1918 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1919 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1920 	if (vma_is_special_huge(vma)) {
1921 		spin_unlock(ptl);
1922 		/* No zero page support yet */
1923 	} else {
1924 		/* No support for anonymous PUD pages yet */
1925 		BUG();
1926 	}
1927 	return 1;
1928 }
1929 
1930 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1931 		unsigned long haddr)
1932 {
1933 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1934 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1935 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1936 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1937 
1938 	count_vm_event(THP_SPLIT_PUD);
1939 
1940 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1941 }
1942 
1943 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1944 		unsigned long address)
1945 {
1946 	spinlock_t *ptl;
1947 	struct mmu_notifier_range range;
1948 
1949 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1950 				address & HPAGE_PUD_MASK,
1951 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1952 	mmu_notifier_invalidate_range_start(&range);
1953 	ptl = pud_lock(vma->vm_mm, pud);
1954 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1955 		goto out;
1956 	__split_huge_pud_locked(vma, pud, range.start);
1957 
1958 out:
1959 	spin_unlock(ptl);
1960 	/*
1961 	 * No need to double call mmu_notifier->invalidate_range() callback as
1962 	 * the above pudp_huge_clear_flush_notify() did already call it.
1963 	 */
1964 	mmu_notifier_invalidate_range_only_end(&range);
1965 }
1966 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1967 
1968 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1969 		unsigned long haddr, pmd_t *pmd)
1970 {
1971 	struct mm_struct *mm = vma->vm_mm;
1972 	pgtable_t pgtable;
1973 	pmd_t _pmd;
1974 	int i;
1975 
1976 	/*
1977 	 * Leave pmd empty until pte is filled note that it is fine to delay
1978 	 * notification until mmu_notifier_invalidate_range_end() as we are
1979 	 * replacing a zero pmd write protected page with a zero pte write
1980 	 * protected page.
1981 	 *
1982 	 * See Documentation/mm/mmu_notifier.rst
1983 	 */
1984 	pmdp_huge_clear_flush(vma, haddr, pmd);
1985 
1986 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1987 	pmd_populate(mm, &_pmd, pgtable);
1988 
1989 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1990 		pte_t *pte, entry;
1991 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1992 		entry = pte_mkspecial(entry);
1993 		pte = pte_offset_map(&_pmd, haddr);
1994 		VM_BUG_ON(!pte_none(*pte));
1995 		set_pte_at(mm, haddr, pte, entry);
1996 		pte_unmap(pte);
1997 	}
1998 	smp_wmb(); /* make pte visible before pmd */
1999 	pmd_populate(mm, pmd, pgtable);
2000 }
2001 
2002 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2003 		unsigned long haddr, bool freeze)
2004 {
2005 	struct mm_struct *mm = vma->vm_mm;
2006 	struct page *page;
2007 	pgtable_t pgtable;
2008 	pmd_t old_pmd, _pmd;
2009 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2010 	bool anon_exclusive = false;
2011 	unsigned long addr;
2012 	int i;
2013 
2014 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2015 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2016 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2017 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2018 				&& !pmd_devmap(*pmd));
2019 
2020 	count_vm_event(THP_SPLIT_PMD);
2021 
2022 	if (!vma_is_anonymous(vma)) {
2023 		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2024 		/*
2025 		 * We are going to unmap this huge page. So
2026 		 * just go ahead and zap it
2027 		 */
2028 		if (arch_needs_pgtable_deposit())
2029 			zap_deposited_table(mm, pmd);
2030 		if (vma_is_special_huge(vma))
2031 			return;
2032 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2033 			swp_entry_t entry;
2034 
2035 			entry = pmd_to_swp_entry(old_pmd);
2036 			page = pfn_swap_entry_to_page(entry);
2037 		} else {
2038 			page = pmd_page(old_pmd);
2039 			if (!PageDirty(page) && pmd_dirty(old_pmd))
2040 				set_page_dirty(page);
2041 			if (!PageReferenced(page) && pmd_young(old_pmd))
2042 				SetPageReferenced(page);
2043 			page_remove_rmap(page, vma, true);
2044 			put_page(page);
2045 		}
2046 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2047 		return;
2048 	}
2049 
2050 	if (is_huge_zero_pmd(*pmd)) {
2051 		/*
2052 		 * FIXME: Do we want to invalidate secondary mmu by calling
2053 		 * mmu_notifier_invalidate_range() see comments below inside
2054 		 * __split_huge_pmd() ?
2055 		 *
2056 		 * We are going from a zero huge page write protected to zero
2057 		 * small page also write protected so it does not seems useful
2058 		 * to invalidate secondary mmu at this time.
2059 		 */
2060 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2061 	}
2062 
2063 	/*
2064 	 * Up to this point the pmd is present and huge and userland has the
2065 	 * whole access to the hugepage during the split (which happens in
2066 	 * place). If we overwrite the pmd with the not-huge version pointing
2067 	 * to the pte here (which of course we could if all CPUs were bug
2068 	 * free), userland could trigger a small page size TLB miss on the
2069 	 * small sized TLB while the hugepage TLB entry is still established in
2070 	 * the huge TLB. Some CPU doesn't like that.
2071 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2072 	 * 383 on page 105. Intel should be safe but is also warns that it's
2073 	 * only safe if the permission and cache attributes of the two entries
2074 	 * loaded in the two TLB is identical (which should be the case here).
2075 	 * But it is generally safer to never allow small and huge TLB entries
2076 	 * for the same virtual address to be loaded simultaneously. So instead
2077 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2078 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2079 	 * must remain set at all times on the pmd until the split is complete
2080 	 * for this pmd), then we flush the SMP TLB and finally we write the
2081 	 * non-huge version of the pmd entry with pmd_populate.
2082 	 */
2083 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2084 
2085 	pmd_migration = is_pmd_migration_entry(old_pmd);
2086 	if (unlikely(pmd_migration)) {
2087 		swp_entry_t entry;
2088 
2089 		entry = pmd_to_swp_entry(old_pmd);
2090 		page = pfn_swap_entry_to_page(entry);
2091 		write = is_writable_migration_entry(entry);
2092 		if (PageAnon(page))
2093 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2094 		young = false;
2095 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2096 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2097 	} else {
2098 		page = pmd_page(old_pmd);
2099 		if (pmd_dirty(old_pmd))
2100 			SetPageDirty(page);
2101 		write = pmd_write(old_pmd);
2102 		young = pmd_young(old_pmd);
2103 		soft_dirty = pmd_soft_dirty(old_pmd);
2104 		uffd_wp = pmd_uffd_wp(old_pmd);
2105 
2106 		VM_BUG_ON_PAGE(!page_count(page), page);
2107 		page_ref_add(page, HPAGE_PMD_NR - 1);
2108 
2109 		/*
2110 		 * Without "freeze", we'll simply split the PMD, propagating the
2111 		 * PageAnonExclusive() flag for each PTE by setting it for
2112 		 * each subpage -- no need to (temporarily) clear.
2113 		 *
2114 		 * With "freeze" we want to replace mapped pages by
2115 		 * migration entries right away. This is only possible if we
2116 		 * managed to clear PageAnonExclusive() -- see
2117 		 * set_pmd_migration_entry().
2118 		 *
2119 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2120 		 * only and let try_to_migrate_one() fail later.
2121 		 */
2122 		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2123 		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2124 			freeze = false;
2125 	}
2126 
2127 	/*
2128 	 * Withdraw the table only after we mark the pmd entry invalid.
2129 	 * This's critical for some architectures (Power).
2130 	 */
2131 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2132 	pmd_populate(mm, &_pmd, pgtable);
2133 
2134 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2135 		pte_t entry, *pte;
2136 		/*
2137 		 * Note that NUMA hinting access restrictions are not
2138 		 * transferred to avoid any possibility of altering
2139 		 * permissions across VMAs.
2140 		 */
2141 		if (freeze || pmd_migration) {
2142 			swp_entry_t swp_entry;
2143 			if (write)
2144 				swp_entry = make_writable_migration_entry(
2145 							page_to_pfn(page + i));
2146 			else if (anon_exclusive)
2147 				swp_entry = make_readable_exclusive_migration_entry(
2148 							page_to_pfn(page + i));
2149 			else
2150 				swp_entry = make_readable_migration_entry(
2151 							page_to_pfn(page + i));
2152 			entry = swp_entry_to_pte(swp_entry);
2153 			if (soft_dirty)
2154 				entry = pte_swp_mksoft_dirty(entry);
2155 			if (uffd_wp)
2156 				entry = pte_swp_mkuffd_wp(entry);
2157 		} else {
2158 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2159 			entry = maybe_mkwrite(entry, vma);
2160 			if (anon_exclusive)
2161 				SetPageAnonExclusive(page + i);
2162 			if (!write)
2163 				entry = pte_wrprotect(entry);
2164 			if (!young)
2165 				entry = pte_mkold(entry);
2166 			if (soft_dirty)
2167 				entry = pte_mksoft_dirty(entry);
2168 			if (uffd_wp)
2169 				entry = pte_mkuffd_wp(entry);
2170 		}
2171 		pte = pte_offset_map(&_pmd, addr);
2172 		BUG_ON(!pte_none(*pte));
2173 		set_pte_at(mm, addr, pte, entry);
2174 		if (!pmd_migration)
2175 			atomic_inc(&page[i]._mapcount);
2176 		pte_unmap(pte);
2177 	}
2178 
2179 	if (!pmd_migration) {
2180 		/*
2181 		 * Set PG_double_map before dropping compound_mapcount to avoid
2182 		 * false-negative page_mapped().
2183 		 */
2184 		if (compound_mapcount(page) > 1 &&
2185 		    !TestSetPageDoubleMap(page)) {
2186 			for (i = 0; i < HPAGE_PMD_NR; i++)
2187 				atomic_inc(&page[i]._mapcount);
2188 		}
2189 
2190 		lock_page_memcg(page);
2191 		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2192 			/* Last compound_mapcount is gone. */
2193 			__mod_lruvec_page_state(page, NR_ANON_THPS,
2194 						-HPAGE_PMD_NR);
2195 			if (TestClearPageDoubleMap(page)) {
2196 				/* No need in mapcount reference anymore */
2197 				for (i = 0; i < HPAGE_PMD_NR; i++)
2198 					atomic_dec(&page[i]._mapcount);
2199 			}
2200 		}
2201 		unlock_page_memcg(page);
2202 
2203 		/* Above is effectively page_remove_rmap(page, vma, true) */
2204 		munlock_vma_page(page, vma, true);
2205 	}
2206 
2207 	smp_wmb(); /* make pte visible before pmd */
2208 	pmd_populate(mm, pmd, pgtable);
2209 
2210 	if (freeze) {
2211 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2212 			page_remove_rmap(page + i, vma, false);
2213 			put_page(page + i);
2214 		}
2215 	}
2216 }
2217 
2218 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2219 		unsigned long address, bool freeze, struct folio *folio)
2220 {
2221 	spinlock_t *ptl;
2222 	struct mmu_notifier_range range;
2223 
2224 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2225 				address & HPAGE_PMD_MASK,
2226 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2227 	mmu_notifier_invalidate_range_start(&range);
2228 	ptl = pmd_lock(vma->vm_mm, pmd);
2229 
2230 	/*
2231 	 * If caller asks to setup a migration entry, we need a folio to check
2232 	 * pmd against. Otherwise we can end up replacing wrong folio.
2233 	 */
2234 	VM_BUG_ON(freeze && !folio);
2235 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2236 
2237 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2238 	    is_pmd_migration_entry(*pmd)) {
2239 		/*
2240 		 * It's safe to call pmd_page when folio is set because it's
2241 		 * guaranteed that pmd is present.
2242 		 */
2243 		if (folio && folio != page_folio(pmd_page(*pmd)))
2244 			goto out;
2245 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2246 	}
2247 
2248 out:
2249 	spin_unlock(ptl);
2250 	/*
2251 	 * No need to double call mmu_notifier->invalidate_range() callback.
2252 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2253 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2254 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2255 	 *    fault will trigger a flush_notify before pointing to a new page
2256 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2257 	 *    page in the meantime)
2258 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2259 	 *     to invalidate secondary tlb entry they are all still valid.
2260 	 *     any further changes to individual pte will notify. So no need
2261 	 *     to call mmu_notifier->invalidate_range()
2262 	 */
2263 	mmu_notifier_invalidate_range_only_end(&range);
2264 }
2265 
2266 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2267 		bool freeze, struct folio *folio)
2268 {
2269 	pgd_t *pgd;
2270 	p4d_t *p4d;
2271 	pud_t *pud;
2272 	pmd_t *pmd;
2273 
2274 	pgd = pgd_offset(vma->vm_mm, address);
2275 	if (!pgd_present(*pgd))
2276 		return;
2277 
2278 	p4d = p4d_offset(pgd, address);
2279 	if (!p4d_present(*p4d))
2280 		return;
2281 
2282 	pud = pud_offset(p4d, address);
2283 	if (!pud_present(*pud))
2284 		return;
2285 
2286 	pmd = pmd_offset(pud, address);
2287 
2288 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2289 }
2290 
2291 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2292 {
2293 	/*
2294 	 * If the new address isn't hpage aligned and it could previously
2295 	 * contain an hugepage: check if we need to split an huge pmd.
2296 	 */
2297 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2298 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2299 			 ALIGN(address, HPAGE_PMD_SIZE)))
2300 		split_huge_pmd_address(vma, address, false, NULL);
2301 }
2302 
2303 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2304 			     unsigned long start,
2305 			     unsigned long end,
2306 			     long adjust_next)
2307 {
2308 	/* Check if we need to split start first. */
2309 	split_huge_pmd_if_needed(vma, start);
2310 
2311 	/* Check if we need to split end next. */
2312 	split_huge_pmd_if_needed(vma, end);
2313 
2314 	/*
2315 	 * If we're also updating the vma->vm_next->vm_start,
2316 	 * check if we need to split it.
2317 	 */
2318 	if (adjust_next > 0) {
2319 		struct vm_area_struct *next = vma->vm_next;
2320 		unsigned long nstart = next->vm_start;
2321 		nstart += adjust_next;
2322 		split_huge_pmd_if_needed(next, nstart);
2323 	}
2324 }
2325 
2326 static void unmap_page(struct page *page)
2327 {
2328 	struct folio *folio = page_folio(page);
2329 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2330 		TTU_SYNC;
2331 
2332 	VM_BUG_ON_PAGE(!PageHead(page), page);
2333 
2334 	/*
2335 	 * Anon pages need migration entries to preserve them, but file
2336 	 * pages can simply be left unmapped, then faulted back on demand.
2337 	 * If that is ever changed (perhaps for mlock), update remap_page().
2338 	 */
2339 	if (folio_test_anon(folio))
2340 		try_to_migrate(folio, ttu_flags);
2341 	else
2342 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2343 }
2344 
2345 static void remap_page(struct folio *folio, unsigned long nr)
2346 {
2347 	int i = 0;
2348 
2349 	/* If unmap_page() uses try_to_migrate() on file, remove this check */
2350 	if (!folio_test_anon(folio))
2351 		return;
2352 	for (;;) {
2353 		remove_migration_ptes(folio, folio, true);
2354 		i += folio_nr_pages(folio);
2355 		if (i >= nr)
2356 			break;
2357 		folio = folio_next(folio);
2358 	}
2359 }
2360 
2361 static void lru_add_page_tail(struct page *head, struct page *tail,
2362 		struct lruvec *lruvec, struct list_head *list)
2363 {
2364 	VM_BUG_ON_PAGE(!PageHead(head), head);
2365 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2366 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2367 	lockdep_assert_held(&lruvec->lru_lock);
2368 
2369 	if (list) {
2370 		/* page reclaim is reclaiming a huge page */
2371 		VM_WARN_ON(PageLRU(head));
2372 		get_page(tail);
2373 		list_add_tail(&tail->lru, list);
2374 	} else {
2375 		/* head is still on lru (and we have it frozen) */
2376 		VM_WARN_ON(!PageLRU(head));
2377 		if (PageUnevictable(tail))
2378 			tail->mlock_count = 0;
2379 		else
2380 			list_add_tail(&tail->lru, &head->lru);
2381 		SetPageLRU(tail);
2382 	}
2383 }
2384 
2385 static void __split_huge_page_tail(struct page *head, int tail,
2386 		struct lruvec *lruvec, struct list_head *list)
2387 {
2388 	struct page *page_tail = head + tail;
2389 
2390 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2391 
2392 	/*
2393 	 * Clone page flags before unfreezing refcount.
2394 	 *
2395 	 * After successful get_page_unless_zero() might follow flags change,
2396 	 * for example lock_page() which set PG_waiters.
2397 	 *
2398 	 * Note that for mapped sub-pages of an anonymous THP,
2399 	 * PG_anon_exclusive has been cleared in unmap_page() and is stored in
2400 	 * the migration entry instead from where remap_page() will restore it.
2401 	 * We can still have PG_anon_exclusive set on effectively unmapped and
2402 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2403 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2404 	 */
2405 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2406 	page_tail->flags |= (head->flags &
2407 			((1L << PG_referenced) |
2408 			 (1L << PG_swapbacked) |
2409 			 (1L << PG_swapcache) |
2410 			 (1L << PG_mlocked) |
2411 			 (1L << PG_uptodate) |
2412 			 (1L << PG_active) |
2413 			 (1L << PG_workingset) |
2414 			 (1L << PG_locked) |
2415 			 (1L << PG_unevictable) |
2416 #ifdef CONFIG_64BIT
2417 			 (1L << PG_arch_2) |
2418 #endif
2419 			 (1L << PG_dirty)));
2420 
2421 	/* ->mapping in first tail page is compound_mapcount */
2422 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2423 			page_tail);
2424 	page_tail->mapping = head->mapping;
2425 	page_tail->index = head->index + tail;
2426 	page_tail->private = 0;
2427 
2428 	/* Page flags must be visible before we make the page non-compound. */
2429 	smp_wmb();
2430 
2431 	/*
2432 	 * Clear PageTail before unfreezing page refcount.
2433 	 *
2434 	 * After successful get_page_unless_zero() might follow put_page()
2435 	 * which needs correct compound_head().
2436 	 */
2437 	clear_compound_head(page_tail);
2438 
2439 	/* Finally unfreeze refcount. Additional reference from page cache. */
2440 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2441 					  PageSwapCache(head)));
2442 
2443 	if (page_is_young(head))
2444 		set_page_young(page_tail);
2445 	if (page_is_idle(head))
2446 		set_page_idle(page_tail);
2447 
2448 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2449 
2450 	/*
2451 	 * always add to the tail because some iterators expect new
2452 	 * pages to show after the currently processed elements - e.g.
2453 	 * migrate_pages
2454 	 */
2455 	lru_add_page_tail(head, page_tail, lruvec, list);
2456 }
2457 
2458 static void __split_huge_page(struct page *page, struct list_head *list,
2459 		pgoff_t end)
2460 {
2461 	struct folio *folio = page_folio(page);
2462 	struct page *head = &folio->page;
2463 	struct lruvec *lruvec;
2464 	struct address_space *swap_cache = NULL;
2465 	unsigned long offset = 0;
2466 	unsigned int nr = thp_nr_pages(head);
2467 	int i;
2468 
2469 	/* complete memcg works before add pages to LRU */
2470 	split_page_memcg(head, nr);
2471 
2472 	if (PageAnon(head) && PageSwapCache(head)) {
2473 		swp_entry_t entry = { .val = page_private(head) };
2474 
2475 		offset = swp_offset(entry);
2476 		swap_cache = swap_address_space(entry);
2477 		xa_lock(&swap_cache->i_pages);
2478 	}
2479 
2480 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2481 	lruvec = folio_lruvec_lock(folio);
2482 
2483 	ClearPageHasHWPoisoned(head);
2484 
2485 	for (i = nr - 1; i >= 1; i--) {
2486 		__split_huge_page_tail(head, i, lruvec, list);
2487 		/* Some pages can be beyond EOF: drop them from page cache */
2488 		if (head[i].index >= end) {
2489 			struct folio *tail = page_folio(head + i);
2490 
2491 			if (shmem_mapping(head->mapping))
2492 				shmem_uncharge(head->mapping->host, 1);
2493 			else if (folio_test_clear_dirty(tail))
2494 				folio_account_cleaned(tail,
2495 					inode_to_wb(folio->mapping->host));
2496 			__filemap_remove_folio(tail, NULL);
2497 			folio_put(tail);
2498 		} else if (!PageAnon(page)) {
2499 			__xa_store(&head->mapping->i_pages, head[i].index,
2500 					head + i, 0);
2501 		} else if (swap_cache) {
2502 			__xa_store(&swap_cache->i_pages, offset + i,
2503 					head + i, 0);
2504 		}
2505 	}
2506 
2507 	ClearPageCompound(head);
2508 	unlock_page_lruvec(lruvec);
2509 	/* Caller disabled irqs, so they are still disabled here */
2510 
2511 	split_page_owner(head, nr);
2512 
2513 	/* See comment in __split_huge_page_tail() */
2514 	if (PageAnon(head)) {
2515 		/* Additional pin to swap cache */
2516 		if (PageSwapCache(head)) {
2517 			page_ref_add(head, 2);
2518 			xa_unlock(&swap_cache->i_pages);
2519 		} else {
2520 			page_ref_inc(head);
2521 		}
2522 	} else {
2523 		/* Additional pin to page cache */
2524 		page_ref_add(head, 2);
2525 		xa_unlock(&head->mapping->i_pages);
2526 	}
2527 	local_irq_enable();
2528 
2529 	remap_page(folio, nr);
2530 
2531 	if (PageSwapCache(head)) {
2532 		swp_entry_t entry = { .val = page_private(head) };
2533 
2534 		split_swap_cluster(entry);
2535 	}
2536 
2537 	for (i = 0; i < nr; i++) {
2538 		struct page *subpage = head + i;
2539 		if (subpage == page)
2540 			continue;
2541 		unlock_page(subpage);
2542 
2543 		/*
2544 		 * Subpages may be freed if there wasn't any mapping
2545 		 * like if add_to_swap() is running on a lru page that
2546 		 * had its mapping zapped. And freeing these pages
2547 		 * requires taking the lru_lock so we do the put_page
2548 		 * of the tail pages after the split is complete.
2549 		 */
2550 		free_page_and_swap_cache(subpage);
2551 	}
2552 }
2553 
2554 /* Racy check whether the huge page can be split */
2555 bool can_split_folio(struct folio *folio, int *pextra_pins)
2556 {
2557 	int extra_pins;
2558 
2559 	/* Additional pins from page cache */
2560 	if (folio_test_anon(folio))
2561 		extra_pins = folio_test_swapcache(folio) ?
2562 				folio_nr_pages(folio) : 0;
2563 	else
2564 		extra_pins = folio_nr_pages(folio);
2565 	if (pextra_pins)
2566 		*pextra_pins = extra_pins;
2567 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2568 }
2569 
2570 /*
2571  * This function splits huge page into normal pages. @page can point to any
2572  * subpage of huge page to split. Split doesn't change the position of @page.
2573  *
2574  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2575  * The huge page must be locked.
2576  *
2577  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2578  *
2579  * Both head page and tail pages will inherit mapping, flags, and so on from
2580  * the hugepage.
2581  *
2582  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2583  * they are not mapped.
2584  *
2585  * Returns 0 if the hugepage is split successfully.
2586  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2587  * us.
2588  */
2589 int split_huge_page_to_list(struct page *page, struct list_head *list)
2590 {
2591 	struct folio *folio = page_folio(page);
2592 	struct page *head = &folio->page;
2593 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2594 	XA_STATE(xas, &head->mapping->i_pages, head->index);
2595 	struct anon_vma *anon_vma = NULL;
2596 	struct address_space *mapping = NULL;
2597 	int extra_pins, ret;
2598 	pgoff_t end;
2599 	bool is_hzp;
2600 
2601 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2602 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2603 
2604 	is_hzp = is_huge_zero_page(head);
2605 	VM_WARN_ON_ONCE_PAGE(is_hzp, head);
2606 	if (is_hzp)
2607 		return -EBUSY;
2608 
2609 	if (PageWriteback(head))
2610 		return -EBUSY;
2611 
2612 	if (PageAnon(head)) {
2613 		/*
2614 		 * The caller does not necessarily hold an mmap_lock that would
2615 		 * prevent the anon_vma disappearing so we first we take a
2616 		 * reference to it and then lock the anon_vma for write. This
2617 		 * is similar to folio_lock_anon_vma_read except the write lock
2618 		 * is taken to serialise against parallel split or collapse
2619 		 * operations.
2620 		 */
2621 		anon_vma = page_get_anon_vma(head);
2622 		if (!anon_vma) {
2623 			ret = -EBUSY;
2624 			goto out;
2625 		}
2626 		end = -1;
2627 		mapping = NULL;
2628 		anon_vma_lock_write(anon_vma);
2629 	} else {
2630 		mapping = head->mapping;
2631 
2632 		/* Truncated ? */
2633 		if (!mapping) {
2634 			ret = -EBUSY;
2635 			goto out;
2636 		}
2637 
2638 		xas_split_alloc(&xas, head, compound_order(head),
2639 				mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK);
2640 		if (xas_error(&xas)) {
2641 			ret = xas_error(&xas);
2642 			goto out;
2643 		}
2644 
2645 		anon_vma = NULL;
2646 		i_mmap_lock_read(mapping);
2647 
2648 		/*
2649 		 *__split_huge_page() may need to trim off pages beyond EOF:
2650 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2651 		 * which cannot be nested inside the page tree lock. So note
2652 		 * end now: i_size itself may be changed at any moment, but
2653 		 * head page lock is good enough to serialize the trimming.
2654 		 */
2655 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2656 		if (shmem_mapping(mapping))
2657 			end = shmem_fallocend(mapping->host, end);
2658 	}
2659 
2660 	/*
2661 	 * Racy check if we can split the page, before unmap_page() will
2662 	 * split PMDs
2663 	 */
2664 	if (!can_split_folio(folio, &extra_pins)) {
2665 		ret = -EBUSY;
2666 		goto out_unlock;
2667 	}
2668 
2669 	unmap_page(head);
2670 
2671 	/* block interrupt reentry in xa_lock and spinlock */
2672 	local_irq_disable();
2673 	if (mapping) {
2674 		/*
2675 		 * Check if the head page is present in page cache.
2676 		 * We assume all tail are present too, if head is there.
2677 		 */
2678 		xas_lock(&xas);
2679 		xas_reset(&xas);
2680 		if (xas_load(&xas) != head)
2681 			goto fail;
2682 	}
2683 
2684 	/* Prevent deferred_split_scan() touching ->_refcount */
2685 	spin_lock(&ds_queue->split_queue_lock);
2686 	if (page_ref_freeze(head, 1 + extra_pins)) {
2687 		if (!list_empty(page_deferred_list(head))) {
2688 			ds_queue->split_queue_len--;
2689 			list_del(page_deferred_list(head));
2690 		}
2691 		spin_unlock(&ds_queue->split_queue_lock);
2692 		if (mapping) {
2693 			int nr = thp_nr_pages(head);
2694 
2695 			xas_split(&xas, head, thp_order(head));
2696 			if (PageSwapBacked(head)) {
2697 				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
2698 							-nr);
2699 			} else {
2700 				__mod_lruvec_page_state(head, NR_FILE_THPS,
2701 							-nr);
2702 				filemap_nr_thps_dec(mapping);
2703 			}
2704 		}
2705 
2706 		__split_huge_page(page, list, end);
2707 		ret = 0;
2708 	} else {
2709 		spin_unlock(&ds_queue->split_queue_lock);
2710 fail:
2711 		if (mapping)
2712 			xas_unlock(&xas);
2713 		local_irq_enable();
2714 		remap_page(folio, folio_nr_pages(folio));
2715 		ret = -EBUSY;
2716 	}
2717 
2718 out_unlock:
2719 	if (anon_vma) {
2720 		anon_vma_unlock_write(anon_vma);
2721 		put_anon_vma(anon_vma);
2722 	}
2723 	if (mapping)
2724 		i_mmap_unlock_read(mapping);
2725 out:
2726 	xas_destroy(&xas);
2727 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2728 	return ret;
2729 }
2730 
2731 void free_transhuge_page(struct page *page)
2732 {
2733 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2734 	unsigned long flags;
2735 
2736 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2737 	if (!list_empty(page_deferred_list(page))) {
2738 		ds_queue->split_queue_len--;
2739 		list_del(page_deferred_list(page));
2740 	}
2741 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2742 	free_compound_page(page);
2743 }
2744 
2745 void deferred_split_huge_page(struct page *page)
2746 {
2747 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2748 #ifdef CONFIG_MEMCG
2749 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2750 #endif
2751 	unsigned long flags;
2752 
2753 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2754 
2755 	/*
2756 	 * The try_to_unmap() in page reclaim path might reach here too,
2757 	 * this may cause a race condition to corrupt deferred split queue.
2758 	 * And, if page reclaim is already handling the same page, it is
2759 	 * unnecessary to handle it again in shrinker.
2760 	 *
2761 	 * Check PageSwapCache to determine if the page is being
2762 	 * handled by page reclaim since THP swap would add the page into
2763 	 * swap cache before calling try_to_unmap().
2764 	 */
2765 	if (PageSwapCache(page))
2766 		return;
2767 
2768 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2769 	if (list_empty(page_deferred_list(page))) {
2770 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2771 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2772 		ds_queue->split_queue_len++;
2773 #ifdef CONFIG_MEMCG
2774 		if (memcg)
2775 			set_shrinker_bit(memcg, page_to_nid(page),
2776 					 deferred_split_shrinker.id);
2777 #endif
2778 	}
2779 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2780 }
2781 
2782 static unsigned long deferred_split_count(struct shrinker *shrink,
2783 		struct shrink_control *sc)
2784 {
2785 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2786 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2787 
2788 #ifdef CONFIG_MEMCG
2789 	if (sc->memcg)
2790 		ds_queue = &sc->memcg->deferred_split_queue;
2791 #endif
2792 	return READ_ONCE(ds_queue->split_queue_len);
2793 }
2794 
2795 static unsigned long deferred_split_scan(struct shrinker *shrink,
2796 		struct shrink_control *sc)
2797 {
2798 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2799 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2800 	unsigned long flags;
2801 	LIST_HEAD(list), *pos, *next;
2802 	struct page *page;
2803 	int split = 0;
2804 
2805 #ifdef CONFIG_MEMCG
2806 	if (sc->memcg)
2807 		ds_queue = &sc->memcg->deferred_split_queue;
2808 #endif
2809 
2810 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2811 	/* Take pin on all head pages to avoid freeing them under us */
2812 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2813 		page = list_entry((void *)pos, struct page, deferred_list);
2814 		page = compound_head(page);
2815 		if (get_page_unless_zero(page)) {
2816 			list_move(page_deferred_list(page), &list);
2817 		} else {
2818 			/* We lost race with put_compound_page() */
2819 			list_del_init(page_deferred_list(page));
2820 			ds_queue->split_queue_len--;
2821 		}
2822 		if (!--sc->nr_to_scan)
2823 			break;
2824 	}
2825 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2826 
2827 	list_for_each_safe(pos, next, &list) {
2828 		page = list_entry((void *)pos, struct page, deferred_list);
2829 		if (!trylock_page(page))
2830 			goto next;
2831 		/* split_huge_page() removes page from list on success */
2832 		if (!split_huge_page(page))
2833 			split++;
2834 		unlock_page(page);
2835 next:
2836 		put_page(page);
2837 	}
2838 
2839 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2840 	list_splice_tail(&list, &ds_queue->split_queue);
2841 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2842 
2843 	/*
2844 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2845 	 * This can happen if pages were freed under us.
2846 	 */
2847 	if (!split && list_empty(&ds_queue->split_queue))
2848 		return SHRINK_STOP;
2849 	return split;
2850 }
2851 
2852 static struct shrinker deferred_split_shrinker = {
2853 	.count_objects = deferred_split_count,
2854 	.scan_objects = deferred_split_scan,
2855 	.seeks = DEFAULT_SEEKS,
2856 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2857 		 SHRINKER_NONSLAB,
2858 };
2859 
2860 #ifdef CONFIG_DEBUG_FS
2861 static void split_huge_pages_all(void)
2862 {
2863 	struct zone *zone;
2864 	struct page *page;
2865 	unsigned long pfn, max_zone_pfn;
2866 	unsigned long total = 0, split = 0;
2867 
2868 	pr_debug("Split all THPs\n");
2869 	for_each_zone(zone) {
2870 		if (!managed_zone(zone))
2871 			continue;
2872 		max_zone_pfn = zone_end_pfn(zone);
2873 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2874 			int nr_pages;
2875 			if (!pfn_valid(pfn))
2876 				continue;
2877 
2878 			page = pfn_to_page(pfn);
2879 			if (!get_page_unless_zero(page))
2880 				continue;
2881 
2882 			if (zone != page_zone(page))
2883 				goto next;
2884 
2885 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2886 				goto next;
2887 
2888 			total++;
2889 			lock_page(page);
2890 			nr_pages = thp_nr_pages(page);
2891 			if (!split_huge_page(page))
2892 				split++;
2893 			pfn += nr_pages - 1;
2894 			unlock_page(page);
2895 next:
2896 			put_page(page);
2897 			cond_resched();
2898 		}
2899 	}
2900 
2901 	pr_debug("%lu of %lu THP split\n", split, total);
2902 }
2903 
2904 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2905 {
2906 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2907 		    is_vm_hugetlb_page(vma);
2908 }
2909 
2910 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2911 				unsigned long vaddr_end)
2912 {
2913 	int ret = 0;
2914 	struct task_struct *task;
2915 	struct mm_struct *mm;
2916 	unsigned long total = 0, split = 0;
2917 	unsigned long addr;
2918 
2919 	vaddr_start &= PAGE_MASK;
2920 	vaddr_end &= PAGE_MASK;
2921 
2922 	/* Find the task_struct from pid */
2923 	rcu_read_lock();
2924 	task = find_task_by_vpid(pid);
2925 	if (!task) {
2926 		rcu_read_unlock();
2927 		ret = -ESRCH;
2928 		goto out;
2929 	}
2930 	get_task_struct(task);
2931 	rcu_read_unlock();
2932 
2933 	/* Find the mm_struct */
2934 	mm = get_task_mm(task);
2935 	put_task_struct(task);
2936 
2937 	if (!mm) {
2938 		ret = -EINVAL;
2939 		goto out;
2940 	}
2941 
2942 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2943 		 pid, vaddr_start, vaddr_end);
2944 
2945 	mmap_read_lock(mm);
2946 	/*
2947 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
2948 	 * table filled with PTE-mapped THPs, each of which is distinct.
2949 	 */
2950 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2951 		struct vm_area_struct *vma = vma_lookup(mm, addr);
2952 		struct page *page;
2953 
2954 		if (!vma)
2955 			break;
2956 
2957 		/* skip special VMA and hugetlb VMA */
2958 		if (vma_not_suitable_for_thp_split(vma)) {
2959 			addr = vma->vm_end;
2960 			continue;
2961 		}
2962 
2963 		/* FOLL_DUMP to ignore special (like zero) pages */
2964 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2965 
2966 		if (IS_ERR_OR_NULL(page) || is_zone_device_page(page))
2967 			continue;
2968 
2969 		if (!is_transparent_hugepage(page))
2970 			goto next;
2971 
2972 		total++;
2973 		if (!can_split_folio(page_folio(page), NULL))
2974 			goto next;
2975 
2976 		if (!trylock_page(page))
2977 			goto next;
2978 
2979 		if (!split_huge_page(page))
2980 			split++;
2981 
2982 		unlock_page(page);
2983 next:
2984 		put_page(page);
2985 		cond_resched();
2986 	}
2987 	mmap_read_unlock(mm);
2988 	mmput(mm);
2989 
2990 	pr_debug("%lu of %lu THP split\n", split, total);
2991 
2992 out:
2993 	return ret;
2994 }
2995 
2996 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
2997 				pgoff_t off_end)
2998 {
2999 	struct filename *file;
3000 	struct file *candidate;
3001 	struct address_space *mapping;
3002 	int ret = -EINVAL;
3003 	pgoff_t index;
3004 	int nr_pages = 1;
3005 	unsigned long total = 0, split = 0;
3006 
3007 	file = getname_kernel(file_path);
3008 	if (IS_ERR(file))
3009 		return ret;
3010 
3011 	candidate = file_open_name(file, O_RDONLY, 0);
3012 	if (IS_ERR(candidate))
3013 		goto out;
3014 
3015 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3016 		 file_path, off_start, off_end);
3017 
3018 	mapping = candidate->f_mapping;
3019 
3020 	for (index = off_start; index < off_end; index += nr_pages) {
3021 		struct page *fpage = pagecache_get_page(mapping, index,
3022 						FGP_ENTRY | FGP_HEAD, 0);
3023 
3024 		nr_pages = 1;
3025 		if (xa_is_value(fpage) || !fpage)
3026 			continue;
3027 
3028 		if (!is_transparent_hugepage(fpage))
3029 			goto next;
3030 
3031 		total++;
3032 		nr_pages = thp_nr_pages(fpage);
3033 
3034 		if (!trylock_page(fpage))
3035 			goto next;
3036 
3037 		if (!split_huge_page(fpage))
3038 			split++;
3039 
3040 		unlock_page(fpage);
3041 next:
3042 		put_page(fpage);
3043 		cond_resched();
3044 	}
3045 
3046 	filp_close(candidate, NULL);
3047 	ret = 0;
3048 
3049 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3050 out:
3051 	putname(file);
3052 	return ret;
3053 }
3054 
3055 #define MAX_INPUT_BUF_SZ 255
3056 
3057 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3058 				size_t count, loff_t *ppops)
3059 {
3060 	static DEFINE_MUTEX(split_debug_mutex);
3061 	ssize_t ret;
3062 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3063 	char input_buf[MAX_INPUT_BUF_SZ];
3064 	int pid;
3065 	unsigned long vaddr_start, vaddr_end;
3066 
3067 	ret = mutex_lock_interruptible(&split_debug_mutex);
3068 	if (ret)
3069 		return ret;
3070 
3071 	ret = -EFAULT;
3072 
3073 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3074 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3075 		goto out;
3076 
3077 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3078 
3079 	if (input_buf[0] == '/') {
3080 		char *tok;
3081 		char *buf = input_buf;
3082 		char file_path[MAX_INPUT_BUF_SZ];
3083 		pgoff_t off_start = 0, off_end = 0;
3084 		size_t input_len = strlen(input_buf);
3085 
3086 		tok = strsep(&buf, ",");
3087 		if (tok) {
3088 			strcpy(file_path, tok);
3089 		} else {
3090 			ret = -EINVAL;
3091 			goto out;
3092 		}
3093 
3094 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3095 		if (ret != 2) {
3096 			ret = -EINVAL;
3097 			goto out;
3098 		}
3099 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3100 		if (!ret)
3101 			ret = input_len;
3102 
3103 		goto out;
3104 	}
3105 
3106 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3107 	if (ret == 1 && pid == 1) {
3108 		split_huge_pages_all();
3109 		ret = strlen(input_buf);
3110 		goto out;
3111 	} else if (ret != 3) {
3112 		ret = -EINVAL;
3113 		goto out;
3114 	}
3115 
3116 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3117 	if (!ret)
3118 		ret = strlen(input_buf);
3119 out:
3120 	mutex_unlock(&split_debug_mutex);
3121 	return ret;
3122 
3123 }
3124 
3125 static const struct file_operations split_huge_pages_fops = {
3126 	.owner	 = THIS_MODULE,
3127 	.write	 = split_huge_pages_write,
3128 	.llseek  = no_llseek,
3129 };
3130 
3131 static int __init split_huge_pages_debugfs(void)
3132 {
3133 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3134 			    &split_huge_pages_fops);
3135 	return 0;
3136 }
3137 late_initcall(split_huge_pages_debugfs);
3138 #endif
3139 
3140 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3141 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3142 		struct page *page)
3143 {
3144 	struct vm_area_struct *vma = pvmw->vma;
3145 	struct mm_struct *mm = vma->vm_mm;
3146 	unsigned long address = pvmw->address;
3147 	bool anon_exclusive;
3148 	pmd_t pmdval;
3149 	swp_entry_t entry;
3150 	pmd_t pmdswp;
3151 
3152 	if (!(pvmw->pmd && !pvmw->pte))
3153 		return 0;
3154 
3155 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3156 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3157 
3158 	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3159 	if (anon_exclusive && page_try_share_anon_rmap(page)) {
3160 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3161 		return -EBUSY;
3162 	}
3163 
3164 	if (pmd_dirty(pmdval))
3165 		set_page_dirty(page);
3166 	if (pmd_write(pmdval))
3167 		entry = make_writable_migration_entry(page_to_pfn(page));
3168 	else if (anon_exclusive)
3169 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3170 	else
3171 		entry = make_readable_migration_entry(page_to_pfn(page));
3172 	pmdswp = swp_entry_to_pmd(entry);
3173 	if (pmd_soft_dirty(pmdval))
3174 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3175 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3176 	page_remove_rmap(page, vma, true);
3177 	put_page(page);
3178 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3179 
3180 	return 0;
3181 }
3182 
3183 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3184 {
3185 	struct vm_area_struct *vma = pvmw->vma;
3186 	struct mm_struct *mm = vma->vm_mm;
3187 	unsigned long address = pvmw->address;
3188 	unsigned long haddr = address & HPAGE_PMD_MASK;
3189 	pmd_t pmde;
3190 	swp_entry_t entry;
3191 
3192 	if (!(pvmw->pmd && !pvmw->pte))
3193 		return;
3194 
3195 	entry = pmd_to_swp_entry(*pvmw->pmd);
3196 	get_page(new);
3197 	pmde = pmd_mkold(mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)));
3198 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3199 		pmde = pmd_mksoft_dirty(pmde);
3200 	if (is_writable_migration_entry(entry))
3201 		pmde = maybe_pmd_mkwrite(pmde, vma);
3202 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3203 		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3204 
3205 	if (PageAnon(new)) {
3206 		rmap_t rmap_flags = RMAP_COMPOUND;
3207 
3208 		if (!is_readable_migration_entry(entry))
3209 			rmap_flags |= RMAP_EXCLUSIVE;
3210 
3211 		page_add_anon_rmap(new, vma, haddr, rmap_flags);
3212 	} else {
3213 		page_add_file_rmap(new, vma, true);
3214 	}
3215 	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3216 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3217 
3218 	/* No need to invalidate - it was non-present before */
3219 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3220 	trace_remove_migration_pmd(address, pmd_val(pmde));
3221 }
3222 #endif
3223