1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/coredump.h> 12 #include <linux/sched/numa_balancing.h> 13 #include <linux/highmem.h> 14 #include <linux/hugetlb.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/rmap.h> 17 #include <linux/swap.h> 18 #include <linux/shrinker.h> 19 #include <linux/mm_inline.h> 20 #include <linux/swapops.h> 21 #include <linux/backing-dev.h> 22 #include <linux/dax.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/oom.h> 36 #include <linux/numa.h> 37 #include <linux/page_owner.h> 38 #include <linux/sched/sysctl.h> 39 40 #include <asm/tlb.h> 41 #include <asm/pgalloc.h> 42 #include "internal.h" 43 #include "swap.h" 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/thp.h> 47 48 /* 49 * By default, transparent hugepage support is disabled in order to avoid 50 * risking an increased memory footprint for applications that are not 51 * guaranteed to benefit from it. When transparent hugepage support is 52 * enabled, it is for all mappings, and khugepaged scans all mappings. 53 * Defrag is invoked by khugepaged hugepage allocations and by page faults 54 * for all hugepage allocations. 55 */ 56 unsigned long transparent_hugepage_flags __read_mostly = 57 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 58 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 59 #endif 60 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 61 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 62 #endif 63 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 64 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 65 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 66 67 static struct shrinker deferred_split_shrinker; 68 69 static atomic_t huge_zero_refcount; 70 struct page *huge_zero_page __read_mostly; 71 unsigned long huge_zero_pfn __read_mostly = ~0UL; 72 73 bool hugepage_vma_check(struct vm_area_struct *vma, 74 unsigned long vm_flags, 75 bool smaps, bool in_pf) 76 { 77 if (!vma->vm_mm) /* vdso */ 78 return false; 79 80 /* 81 * Explicitly disabled through madvise or prctl, or some 82 * architectures may disable THP for some mappings, for 83 * example, s390 kvm. 84 * */ 85 if ((vm_flags & VM_NOHUGEPAGE) || 86 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 87 return false; 88 /* 89 * If the hardware/firmware marked hugepage support disabled. 90 */ 91 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX)) 92 return false; 93 94 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ 95 if (vma_is_dax(vma)) 96 return in_pf; 97 98 /* 99 * Special VMA and hugetlb VMA. 100 * Must be checked after dax since some dax mappings may have 101 * VM_MIXEDMAP set. 102 */ 103 if (vm_flags & VM_NO_KHUGEPAGED) 104 return false; 105 106 /* 107 * Check alignment for file vma and size for both file and anon vma. 108 * 109 * Skip the check for page fault. Huge fault does the check in fault 110 * handlers. And this check is not suitable for huge PUD fault. 111 */ 112 if (!in_pf && 113 !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE))) 114 return false; 115 116 /* 117 * Enabled via shmem mount options or sysfs settings. 118 * Must be done before hugepage flags check since shmem has its 119 * own flags. 120 */ 121 if (!in_pf && shmem_file(vma->vm_file)) 122 return shmem_huge_enabled(vma); 123 124 if (!hugepage_flags_enabled()) 125 return false; 126 127 /* THP settings require madvise. */ 128 if (!(vm_flags & VM_HUGEPAGE) && !hugepage_flags_always()) 129 return false; 130 131 /* Only regular file is valid */ 132 if (!in_pf && file_thp_enabled(vma)) 133 return true; 134 135 if (!vma_is_anonymous(vma)) 136 return false; 137 138 if (vma_is_temporary_stack(vma)) 139 return false; 140 141 /* 142 * THPeligible bit of smaps should show 1 for proper VMAs even 143 * though anon_vma is not initialized yet. 144 * 145 * Allow page fault since anon_vma may be not initialized until 146 * the first page fault. 147 */ 148 if (!vma->anon_vma) 149 return (smaps || in_pf); 150 151 return true; 152 } 153 154 static bool get_huge_zero_page(void) 155 { 156 struct page *zero_page; 157 retry: 158 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 159 return true; 160 161 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 162 HPAGE_PMD_ORDER); 163 if (!zero_page) { 164 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 165 return false; 166 } 167 count_vm_event(THP_ZERO_PAGE_ALLOC); 168 preempt_disable(); 169 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 170 preempt_enable(); 171 __free_pages(zero_page, compound_order(zero_page)); 172 goto retry; 173 } 174 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page)); 175 176 /* We take additional reference here. It will be put back by shrinker */ 177 atomic_set(&huge_zero_refcount, 2); 178 preempt_enable(); 179 return true; 180 } 181 182 static void put_huge_zero_page(void) 183 { 184 /* 185 * Counter should never go to zero here. Only shrinker can put 186 * last reference. 187 */ 188 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 189 } 190 191 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 192 { 193 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 194 return READ_ONCE(huge_zero_page); 195 196 if (!get_huge_zero_page()) 197 return NULL; 198 199 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 200 put_huge_zero_page(); 201 202 return READ_ONCE(huge_zero_page); 203 } 204 205 void mm_put_huge_zero_page(struct mm_struct *mm) 206 { 207 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 208 put_huge_zero_page(); 209 } 210 211 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 212 struct shrink_control *sc) 213 { 214 /* we can free zero page only if last reference remains */ 215 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 216 } 217 218 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 219 struct shrink_control *sc) 220 { 221 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 222 struct page *zero_page = xchg(&huge_zero_page, NULL); 223 BUG_ON(zero_page == NULL); 224 WRITE_ONCE(huge_zero_pfn, ~0UL); 225 __free_pages(zero_page, compound_order(zero_page)); 226 return HPAGE_PMD_NR; 227 } 228 229 return 0; 230 } 231 232 static struct shrinker huge_zero_page_shrinker = { 233 .count_objects = shrink_huge_zero_page_count, 234 .scan_objects = shrink_huge_zero_page_scan, 235 .seeks = DEFAULT_SEEKS, 236 }; 237 238 #ifdef CONFIG_SYSFS 239 static ssize_t enabled_show(struct kobject *kobj, 240 struct kobj_attribute *attr, char *buf) 241 { 242 const char *output; 243 244 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 245 output = "[always] madvise never"; 246 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 247 &transparent_hugepage_flags)) 248 output = "always [madvise] never"; 249 else 250 output = "always madvise [never]"; 251 252 return sysfs_emit(buf, "%s\n", output); 253 } 254 255 static ssize_t enabled_store(struct kobject *kobj, 256 struct kobj_attribute *attr, 257 const char *buf, size_t count) 258 { 259 ssize_t ret = count; 260 261 if (sysfs_streq(buf, "always")) { 262 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 263 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 264 } else if (sysfs_streq(buf, "madvise")) { 265 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 266 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 267 } else if (sysfs_streq(buf, "never")) { 268 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 269 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 270 } else 271 ret = -EINVAL; 272 273 if (ret > 0) { 274 int err = start_stop_khugepaged(); 275 if (err) 276 ret = err; 277 } 278 return ret; 279 } 280 281 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); 282 283 ssize_t single_hugepage_flag_show(struct kobject *kobj, 284 struct kobj_attribute *attr, char *buf, 285 enum transparent_hugepage_flag flag) 286 { 287 return sysfs_emit(buf, "%d\n", 288 !!test_bit(flag, &transparent_hugepage_flags)); 289 } 290 291 ssize_t single_hugepage_flag_store(struct kobject *kobj, 292 struct kobj_attribute *attr, 293 const char *buf, size_t count, 294 enum transparent_hugepage_flag flag) 295 { 296 unsigned long value; 297 int ret; 298 299 ret = kstrtoul(buf, 10, &value); 300 if (ret < 0) 301 return ret; 302 if (value > 1) 303 return -EINVAL; 304 305 if (value) 306 set_bit(flag, &transparent_hugepage_flags); 307 else 308 clear_bit(flag, &transparent_hugepage_flags); 309 310 return count; 311 } 312 313 static ssize_t defrag_show(struct kobject *kobj, 314 struct kobj_attribute *attr, char *buf) 315 { 316 const char *output; 317 318 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 319 &transparent_hugepage_flags)) 320 output = "[always] defer defer+madvise madvise never"; 321 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 322 &transparent_hugepage_flags)) 323 output = "always [defer] defer+madvise madvise never"; 324 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 325 &transparent_hugepage_flags)) 326 output = "always defer [defer+madvise] madvise never"; 327 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 328 &transparent_hugepage_flags)) 329 output = "always defer defer+madvise [madvise] never"; 330 else 331 output = "always defer defer+madvise madvise [never]"; 332 333 return sysfs_emit(buf, "%s\n", output); 334 } 335 336 static ssize_t defrag_store(struct kobject *kobj, 337 struct kobj_attribute *attr, 338 const char *buf, size_t count) 339 { 340 if (sysfs_streq(buf, "always")) { 341 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 342 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 343 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 344 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 345 } else if (sysfs_streq(buf, "defer+madvise")) { 346 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 347 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 348 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 349 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 350 } else if (sysfs_streq(buf, "defer")) { 351 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 352 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 353 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 354 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 355 } else if (sysfs_streq(buf, "madvise")) { 356 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 357 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 358 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 359 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 360 } else if (sysfs_streq(buf, "never")) { 361 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 362 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 363 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 364 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 365 } else 366 return -EINVAL; 367 368 return count; 369 } 370 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); 371 372 static ssize_t use_zero_page_show(struct kobject *kobj, 373 struct kobj_attribute *attr, char *buf) 374 { 375 return single_hugepage_flag_show(kobj, attr, buf, 376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 377 } 378 static ssize_t use_zero_page_store(struct kobject *kobj, 379 struct kobj_attribute *attr, const char *buf, size_t count) 380 { 381 return single_hugepage_flag_store(kobj, attr, buf, count, 382 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 383 } 384 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); 385 386 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 387 struct kobj_attribute *attr, char *buf) 388 { 389 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 390 } 391 static struct kobj_attribute hpage_pmd_size_attr = 392 __ATTR_RO(hpage_pmd_size); 393 394 static struct attribute *hugepage_attr[] = { 395 &enabled_attr.attr, 396 &defrag_attr.attr, 397 &use_zero_page_attr.attr, 398 &hpage_pmd_size_attr.attr, 399 #ifdef CONFIG_SHMEM 400 &shmem_enabled_attr.attr, 401 #endif 402 NULL, 403 }; 404 405 static const struct attribute_group hugepage_attr_group = { 406 .attrs = hugepage_attr, 407 }; 408 409 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 410 { 411 int err; 412 413 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 414 if (unlikely(!*hugepage_kobj)) { 415 pr_err("failed to create transparent hugepage kobject\n"); 416 return -ENOMEM; 417 } 418 419 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 420 if (err) { 421 pr_err("failed to register transparent hugepage group\n"); 422 goto delete_obj; 423 } 424 425 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 426 if (err) { 427 pr_err("failed to register transparent hugepage group\n"); 428 goto remove_hp_group; 429 } 430 431 return 0; 432 433 remove_hp_group: 434 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 435 delete_obj: 436 kobject_put(*hugepage_kobj); 437 return err; 438 } 439 440 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 441 { 442 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 443 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 444 kobject_put(hugepage_kobj); 445 } 446 #else 447 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 448 { 449 return 0; 450 } 451 452 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 453 { 454 } 455 #endif /* CONFIG_SYSFS */ 456 457 static int __init hugepage_init(void) 458 { 459 int err; 460 struct kobject *hugepage_kobj; 461 462 if (!has_transparent_hugepage()) { 463 /* 464 * Hardware doesn't support hugepages, hence disable 465 * DAX PMD support. 466 */ 467 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX; 468 return -EINVAL; 469 } 470 471 /* 472 * hugepages can't be allocated by the buddy allocator 473 */ 474 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 475 /* 476 * we use page->mapping and page->index in second tail page 477 * as list_head: assuming THP order >= 2 478 */ 479 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 480 481 err = hugepage_init_sysfs(&hugepage_kobj); 482 if (err) 483 goto err_sysfs; 484 485 err = khugepaged_init(); 486 if (err) 487 goto err_slab; 488 489 err = register_shrinker(&huge_zero_page_shrinker, "thp-zero"); 490 if (err) 491 goto err_hzp_shrinker; 492 err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split"); 493 if (err) 494 goto err_split_shrinker; 495 496 /* 497 * By default disable transparent hugepages on smaller systems, 498 * where the extra memory used could hurt more than TLB overhead 499 * is likely to save. The admin can still enable it through /sys. 500 */ 501 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 502 transparent_hugepage_flags = 0; 503 return 0; 504 } 505 506 err = start_stop_khugepaged(); 507 if (err) 508 goto err_khugepaged; 509 510 return 0; 511 err_khugepaged: 512 unregister_shrinker(&deferred_split_shrinker); 513 err_split_shrinker: 514 unregister_shrinker(&huge_zero_page_shrinker); 515 err_hzp_shrinker: 516 khugepaged_destroy(); 517 err_slab: 518 hugepage_exit_sysfs(hugepage_kobj); 519 err_sysfs: 520 return err; 521 } 522 subsys_initcall(hugepage_init); 523 524 static int __init setup_transparent_hugepage(char *str) 525 { 526 int ret = 0; 527 if (!str) 528 goto out; 529 if (!strcmp(str, "always")) { 530 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 531 &transparent_hugepage_flags); 532 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 533 &transparent_hugepage_flags); 534 ret = 1; 535 } else if (!strcmp(str, "madvise")) { 536 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 537 &transparent_hugepage_flags); 538 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 539 &transparent_hugepage_flags); 540 ret = 1; 541 } else if (!strcmp(str, "never")) { 542 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 543 &transparent_hugepage_flags); 544 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 545 &transparent_hugepage_flags); 546 ret = 1; 547 } 548 out: 549 if (!ret) 550 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 551 return ret; 552 } 553 __setup("transparent_hugepage=", setup_transparent_hugepage); 554 555 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 556 { 557 if (likely(vma->vm_flags & VM_WRITE)) 558 pmd = pmd_mkwrite(pmd); 559 return pmd; 560 } 561 562 #ifdef CONFIG_MEMCG 563 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 564 { 565 struct mem_cgroup *memcg = page_memcg(compound_head(page)); 566 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 567 568 if (memcg) 569 return &memcg->deferred_split_queue; 570 else 571 return &pgdat->deferred_split_queue; 572 } 573 #else 574 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 575 { 576 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 577 578 return &pgdat->deferred_split_queue; 579 } 580 #endif 581 582 void prep_transhuge_page(struct page *page) 583 { 584 /* 585 * we use page->mapping and page->index in second tail page 586 * as list_head: assuming THP order >= 2 587 */ 588 589 INIT_LIST_HEAD(page_deferred_list(page)); 590 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 591 } 592 593 static inline bool is_transparent_hugepage(struct page *page) 594 { 595 if (!PageCompound(page)) 596 return false; 597 598 page = compound_head(page); 599 return is_huge_zero_page(page) || 600 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR; 601 } 602 603 static unsigned long __thp_get_unmapped_area(struct file *filp, 604 unsigned long addr, unsigned long len, 605 loff_t off, unsigned long flags, unsigned long size) 606 { 607 loff_t off_end = off + len; 608 loff_t off_align = round_up(off, size); 609 unsigned long len_pad, ret; 610 611 if (off_end <= off_align || (off_end - off_align) < size) 612 return 0; 613 614 len_pad = len + size; 615 if (len_pad < len || (off + len_pad) < off) 616 return 0; 617 618 ret = current->mm->get_unmapped_area(filp, addr, len_pad, 619 off >> PAGE_SHIFT, flags); 620 621 /* 622 * The failure might be due to length padding. The caller will retry 623 * without the padding. 624 */ 625 if (IS_ERR_VALUE(ret)) 626 return 0; 627 628 /* 629 * Do not try to align to THP boundary if allocation at the address 630 * hint succeeds. 631 */ 632 if (ret == addr) 633 return addr; 634 635 ret += (off - ret) & (size - 1); 636 return ret; 637 } 638 639 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 640 unsigned long len, unsigned long pgoff, unsigned long flags) 641 { 642 unsigned long ret; 643 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 644 645 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); 646 if (ret) 647 return ret; 648 649 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 650 } 651 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 652 653 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 654 struct page *page, gfp_t gfp) 655 { 656 struct vm_area_struct *vma = vmf->vma; 657 pgtable_t pgtable; 658 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 659 vm_fault_t ret = 0; 660 661 VM_BUG_ON_PAGE(!PageCompound(page), page); 662 663 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) { 664 put_page(page); 665 count_vm_event(THP_FAULT_FALLBACK); 666 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 667 return VM_FAULT_FALLBACK; 668 } 669 cgroup_throttle_swaprate(page, gfp); 670 671 pgtable = pte_alloc_one(vma->vm_mm); 672 if (unlikely(!pgtable)) { 673 ret = VM_FAULT_OOM; 674 goto release; 675 } 676 677 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 678 /* 679 * The memory barrier inside __SetPageUptodate makes sure that 680 * clear_huge_page writes become visible before the set_pmd_at() 681 * write. 682 */ 683 __SetPageUptodate(page); 684 685 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 686 if (unlikely(!pmd_none(*vmf->pmd))) { 687 goto unlock_release; 688 } else { 689 pmd_t entry; 690 691 ret = check_stable_address_space(vma->vm_mm); 692 if (ret) 693 goto unlock_release; 694 695 /* Deliver the page fault to userland */ 696 if (userfaultfd_missing(vma)) { 697 spin_unlock(vmf->ptl); 698 put_page(page); 699 pte_free(vma->vm_mm, pgtable); 700 ret = handle_userfault(vmf, VM_UFFD_MISSING); 701 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 702 return ret; 703 } 704 705 entry = mk_huge_pmd(page, vma->vm_page_prot); 706 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 707 page_add_new_anon_rmap(page, vma, haddr); 708 lru_cache_add_inactive_or_unevictable(page, vma); 709 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 710 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 711 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 712 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 713 mm_inc_nr_ptes(vma->vm_mm); 714 spin_unlock(vmf->ptl); 715 count_vm_event(THP_FAULT_ALLOC); 716 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 717 } 718 719 return 0; 720 unlock_release: 721 spin_unlock(vmf->ptl); 722 release: 723 if (pgtable) 724 pte_free(vma->vm_mm, pgtable); 725 put_page(page); 726 return ret; 727 728 } 729 730 /* 731 * always: directly stall for all thp allocations 732 * defer: wake kswapd and fail if not immediately available 733 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 734 * fail if not immediately available 735 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 736 * available 737 * never: never stall for any thp allocation 738 */ 739 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 740 { 741 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 742 743 /* Always do synchronous compaction */ 744 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 745 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 746 747 /* Kick kcompactd and fail quickly */ 748 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 749 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 750 751 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 752 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 753 return GFP_TRANSHUGE_LIGHT | 754 (vma_madvised ? __GFP_DIRECT_RECLAIM : 755 __GFP_KSWAPD_RECLAIM); 756 757 /* Only do synchronous compaction if madvised */ 758 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 759 return GFP_TRANSHUGE_LIGHT | 760 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 761 762 return GFP_TRANSHUGE_LIGHT; 763 } 764 765 /* Caller must hold page table lock. */ 766 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 767 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 768 struct page *zero_page) 769 { 770 pmd_t entry; 771 if (!pmd_none(*pmd)) 772 return; 773 entry = mk_pmd(zero_page, vma->vm_page_prot); 774 entry = pmd_mkhuge(entry); 775 if (pgtable) 776 pgtable_trans_huge_deposit(mm, pmd, pgtable); 777 set_pmd_at(mm, haddr, pmd, entry); 778 mm_inc_nr_ptes(mm); 779 } 780 781 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 782 { 783 struct vm_area_struct *vma = vmf->vma; 784 gfp_t gfp; 785 struct folio *folio; 786 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 787 788 if (!transhuge_vma_suitable(vma, haddr)) 789 return VM_FAULT_FALLBACK; 790 if (unlikely(anon_vma_prepare(vma))) 791 return VM_FAULT_OOM; 792 khugepaged_enter_vma(vma, vma->vm_flags); 793 794 if (!(vmf->flags & FAULT_FLAG_WRITE) && 795 !mm_forbids_zeropage(vma->vm_mm) && 796 transparent_hugepage_use_zero_page()) { 797 pgtable_t pgtable; 798 struct page *zero_page; 799 vm_fault_t ret; 800 pgtable = pte_alloc_one(vma->vm_mm); 801 if (unlikely(!pgtable)) 802 return VM_FAULT_OOM; 803 zero_page = mm_get_huge_zero_page(vma->vm_mm); 804 if (unlikely(!zero_page)) { 805 pte_free(vma->vm_mm, pgtable); 806 count_vm_event(THP_FAULT_FALLBACK); 807 return VM_FAULT_FALLBACK; 808 } 809 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 810 ret = 0; 811 if (pmd_none(*vmf->pmd)) { 812 ret = check_stable_address_space(vma->vm_mm); 813 if (ret) { 814 spin_unlock(vmf->ptl); 815 pte_free(vma->vm_mm, pgtable); 816 } else if (userfaultfd_missing(vma)) { 817 spin_unlock(vmf->ptl); 818 pte_free(vma->vm_mm, pgtable); 819 ret = handle_userfault(vmf, VM_UFFD_MISSING); 820 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 821 } else { 822 set_huge_zero_page(pgtable, vma->vm_mm, vma, 823 haddr, vmf->pmd, zero_page); 824 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 825 spin_unlock(vmf->ptl); 826 } 827 } else { 828 spin_unlock(vmf->ptl); 829 pte_free(vma->vm_mm, pgtable); 830 } 831 return ret; 832 } 833 gfp = vma_thp_gfp_mask(vma); 834 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true); 835 if (unlikely(!folio)) { 836 count_vm_event(THP_FAULT_FALLBACK); 837 return VM_FAULT_FALLBACK; 838 } 839 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp); 840 } 841 842 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 843 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 844 pgtable_t pgtable) 845 { 846 struct mm_struct *mm = vma->vm_mm; 847 pmd_t entry; 848 spinlock_t *ptl; 849 850 ptl = pmd_lock(mm, pmd); 851 if (!pmd_none(*pmd)) { 852 if (write) { 853 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 854 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 855 goto out_unlock; 856 } 857 entry = pmd_mkyoung(*pmd); 858 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 859 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 860 update_mmu_cache_pmd(vma, addr, pmd); 861 } 862 863 goto out_unlock; 864 } 865 866 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 867 if (pfn_t_devmap(pfn)) 868 entry = pmd_mkdevmap(entry); 869 if (write) { 870 entry = pmd_mkyoung(pmd_mkdirty(entry)); 871 entry = maybe_pmd_mkwrite(entry, vma); 872 } 873 874 if (pgtable) { 875 pgtable_trans_huge_deposit(mm, pmd, pgtable); 876 mm_inc_nr_ptes(mm); 877 pgtable = NULL; 878 } 879 880 set_pmd_at(mm, addr, pmd, entry); 881 update_mmu_cache_pmd(vma, addr, pmd); 882 883 out_unlock: 884 spin_unlock(ptl); 885 if (pgtable) 886 pte_free(mm, pgtable); 887 } 888 889 /** 890 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn 891 * @vmf: Structure describing the fault 892 * @pfn: pfn to insert 893 * @pgprot: page protection to use 894 * @write: whether it's a write fault 895 * 896 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and 897 * also consult the vmf_insert_mixed_prot() documentation when 898 * @pgprot != @vmf->vma->vm_page_prot. 899 * 900 * Return: vm_fault_t value. 901 */ 902 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn, 903 pgprot_t pgprot, bool write) 904 { 905 unsigned long addr = vmf->address & PMD_MASK; 906 struct vm_area_struct *vma = vmf->vma; 907 pgtable_t pgtable = NULL; 908 909 /* 910 * If we had pmd_special, we could avoid all these restrictions, 911 * but we need to be consistent with PTEs and architectures that 912 * can't support a 'special' bit. 913 */ 914 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 915 !pfn_t_devmap(pfn)); 916 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 917 (VM_PFNMAP|VM_MIXEDMAP)); 918 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 919 920 if (addr < vma->vm_start || addr >= vma->vm_end) 921 return VM_FAULT_SIGBUS; 922 923 if (arch_needs_pgtable_deposit()) { 924 pgtable = pte_alloc_one(vma->vm_mm); 925 if (!pgtable) 926 return VM_FAULT_OOM; 927 } 928 929 track_pfn_insert(vma, &pgprot, pfn); 930 931 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 932 return VM_FAULT_NOPAGE; 933 } 934 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot); 935 936 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 937 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 938 { 939 if (likely(vma->vm_flags & VM_WRITE)) 940 pud = pud_mkwrite(pud); 941 return pud; 942 } 943 944 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 945 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 946 { 947 struct mm_struct *mm = vma->vm_mm; 948 pud_t entry; 949 spinlock_t *ptl; 950 951 ptl = pud_lock(mm, pud); 952 if (!pud_none(*pud)) { 953 if (write) { 954 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 955 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 956 goto out_unlock; 957 } 958 entry = pud_mkyoung(*pud); 959 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 960 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 961 update_mmu_cache_pud(vma, addr, pud); 962 } 963 goto out_unlock; 964 } 965 966 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 967 if (pfn_t_devmap(pfn)) 968 entry = pud_mkdevmap(entry); 969 if (write) { 970 entry = pud_mkyoung(pud_mkdirty(entry)); 971 entry = maybe_pud_mkwrite(entry, vma); 972 } 973 set_pud_at(mm, addr, pud, entry); 974 update_mmu_cache_pud(vma, addr, pud); 975 976 out_unlock: 977 spin_unlock(ptl); 978 } 979 980 /** 981 * vmf_insert_pfn_pud_prot - insert a pud size pfn 982 * @vmf: Structure describing the fault 983 * @pfn: pfn to insert 984 * @pgprot: page protection to use 985 * @write: whether it's a write fault 986 * 987 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and 988 * also consult the vmf_insert_mixed_prot() documentation when 989 * @pgprot != @vmf->vma->vm_page_prot. 990 * 991 * Return: vm_fault_t value. 992 */ 993 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn, 994 pgprot_t pgprot, bool write) 995 { 996 unsigned long addr = vmf->address & PUD_MASK; 997 struct vm_area_struct *vma = vmf->vma; 998 999 /* 1000 * If we had pud_special, we could avoid all these restrictions, 1001 * but we need to be consistent with PTEs and architectures that 1002 * can't support a 'special' bit. 1003 */ 1004 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1005 !pfn_t_devmap(pfn)); 1006 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1007 (VM_PFNMAP|VM_MIXEDMAP)); 1008 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1009 1010 if (addr < vma->vm_start || addr >= vma->vm_end) 1011 return VM_FAULT_SIGBUS; 1012 1013 track_pfn_insert(vma, &pgprot, pfn); 1014 1015 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write); 1016 return VM_FAULT_NOPAGE; 1017 } 1018 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot); 1019 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1020 1021 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1022 pmd_t *pmd, bool write) 1023 { 1024 pmd_t _pmd; 1025 1026 _pmd = pmd_mkyoung(*pmd); 1027 if (write) 1028 _pmd = pmd_mkdirty(_pmd); 1029 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1030 pmd, _pmd, write)) 1031 update_mmu_cache_pmd(vma, addr, pmd); 1032 } 1033 1034 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 1035 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 1036 { 1037 unsigned long pfn = pmd_pfn(*pmd); 1038 struct mm_struct *mm = vma->vm_mm; 1039 struct page *page; 1040 1041 assert_spin_locked(pmd_lockptr(mm, pmd)); 1042 1043 /* 1044 * When we COW a devmap PMD entry, we split it into PTEs, so we should 1045 * not be in this function with `flags & FOLL_COW` set. 1046 */ 1047 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); 1048 1049 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 1050 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 1051 (FOLL_PIN | FOLL_GET))) 1052 return NULL; 1053 1054 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1055 return NULL; 1056 1057 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1058 /* pass */; 1059 else 1060 return NULL; 1061 1062 if (flags & FOLL_TOUCH) 1063 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1064 1065 /* 1066 * device mapped pages can only be returned if the 1067 * caller will manage the page reference count. 1068 */ 1069 if (!(flags & (FOLL_GET | FOLL_PIN))) 1070 return ERR_PTR(-EEXIST); 1071 1072 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1073 *pgmap = get_dev_pagemap(pfn, *pgmap); 1074 if (!*pgmap) 1075 return ERR_PTR(-EFAULT); 1076 page = pfn_to_page(pfn); 1077 if (!try_grab_page(page, flags)) 1078 page = ERR_PTR(-ENOMEM); 1079 1080 return page; 1081 } 1082 1083 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1084 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1085 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1086 { 1087 spinlock_t *dst_ptl, *src_ptl; 1088 struct page *src_page; 1089 pmd_t pmd; 1090 pgtable_t pgtable = NULL; 1091 int ret = -ENOMEM; 1092 1093 /* Skip if can be re-fill on fault */ 1094 if (!vma_is_anonymous(dst_vma)) 1095 return 0; 1096 1097 pgtable = pte_alloc_one(dst_mm); 1098 if (unlikely(!pgtable)) 1099 goto out; 1100 1101 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1102 src_ptl = pmd_lockptr(src_mm, src_pmd); 1103 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1104 1105 ret = -EAGAIN; 1106 pmd = *src_pmd; 1107 1108 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1109 if (unlikely(is_swap_pmd(pmd))) { 1110 swp_entry_t entry = pmd_to_swp_entry(pmd); 1111 1112 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1113 if (!is_readable_migration_entry(entry)) { 1114 entry = make_readable_migration_entry( 1115 swp_offset(entry)); 1116 pmd = swp_entry_to_pmd(entry); 1117 if (pmd_swp_soft_dirty(*src_pmd)) 1118 pmd = pmd_swp_mksoft_dirty(pmd); 1119 if (pmd_swp_uffd_wp(*src_pmd)) 1120 pmd = pmd_swp_mkuffd_wp(pmd); 1121 set_pmd_at(src_mm, addr, src_pmd, pmd); 1122 } 1123 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1124 mm_inc_nr_ptes(dst_mm); 1125 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1126 if (!userfaultfd_wp(dst_vma)) 1127 pmd = pmd_swp_clear_uffd_wp(pmd); 1128 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1129 ret = 0; 1130 goto out_unlock; 1131 } 1132 #endif 1133 1134 if (unlikely(!pmd_trans_huge(pmd))) { 1135 pte_free(dst_mm, pgtable); 1136 goto out_unlock; 1137 } 1138 /* 1139 * When page table lock is held, the huge zero pmd should not be 1140 * under splitting since we don't split the page itself, only pmd to 1141 * a page table. 1142 */ 1143 if (is_huge_zero_pmd(pmd)) { 1144 /* 1145 * get_huge_zero_page() will never allocate a new page here, 1146 * since we already have a zero page to copy. It just takes a 1147 * reference. 1148 */ 1149 mm_get_huge_zero_page(dst_mm); 1150 goto out_zero_page; 1151 } 1152 1153 src_page = pmd_page(pmd); 1154 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1155 1156 get_page(src_page); 1157 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) { 1158 /* Page maybe pinned: split and retry the fault on PTEs. */ 1159 put_page(src_page); 1160 pte_free(dst_mm, pgtable); 1161 spin_unlock(src_ptl); 1162 spin_unlock(dst_ptl); 1163 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1164 return -EAGAIN; 1165 } 1166 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1167 out_zero_page: 1168 mm_inc_nr_ptes(dst_mm); 1169 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1170 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1171 if (!userfaultfd_wp(dst_vma)) 1172 pmd = pmd_clear_uffd_wp(pmd); 1173 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1174 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1175 1176 ret = 0; 1177 out_unlock: 1178 spin_unlock(src_ptl); 1179 spin_unlock(dst_ptl); 1180 out: 1181 return ret; 1182 } 1183 1184 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1185 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1186 pud_t *pud, bool write) 1187 { 1188 pud_t _pud; 1189 1190 _pud = pud_mkyoung(*pud); 1191 if (write) 1192 _pud = pud_mkdirty(_pud); 1193 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1194 pud, _pud, write)) 1195 update_mmu_cache_pud(vma, addr, pud); 1196 } 1197 1198 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1199 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1200 { 1201 unsigned long pfn = pud_pfn(*pud); 1202 struct mm_struct *mm = vma->vm_mm; 1203 struct page *page; 1204 1205 assert_spin_locked(pud_lockptr(mm, pud)); 1206 1207 if (flags & FOLL_WRITE && !pud_write(*pud)) 1208 return NULL; 1209 1210 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 1211 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 1212 (FOLL_PIN | FOLL_GET))) 1213 return NULL; 1214 1215 if (pud_present(*pud) && pud_devmap(*pud)) 1216 /* pass */; 1217 else 1218 return NULL; 1219 1220 if (flags & FOLL_TOUCH) 1221 touch_pud(vma, addr, pud, flags & FOLL_WRITE); 1222 1223 /* 1224 * device mapped pages can only be returned if the 1225 * caller will manage the page reference count. 1226 * 1227 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: 1228 */ 1229 if (!(flags & (FOLL_GET | FOLL_PIN))) 1230 return ERR_PTR(-EEXIST); 1231 1232 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1233 *pgmap = get_dev_pagemap(pfn, *pgmap); 1234 if (!*pgmap) 1235 return ERR_PTR(-EFAULT); 1236 page = pfn_to_page(pfn); 1237 if (!try_grab_page(page, flags)) 1238 page = ERR_PTR(-ENOMEM); 1239 1240 return page; 1241 } 1242 1243 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1244 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1245 struct vm_area_struct *vma) 1246 { 1247 spinlock_t *dst_ptl, *src_ptl; 1248 pud_t pud; 1249 int ret; 1250 1251 dst_ptl = pud_lock(dst_mm, dst_pud); 1252 src_ptl = pud_lockptr(src_mm, src_pud); 1253 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1254 1255 ret = -EAGAIN; 1256 pud = *src_pud; 1257 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1258 goto out_unlock; 1259 1260 /* 1261 * When page table lock is held, the huge zero pud should not be 1262 * under splitting since we don't split the page itself, only pud to 1263 * a page table. 1264 */ 1265 if (is_huge_zero_pud(pud)) { 1266 /* No huge zero pud yet */ 1267 } 1268 1269 /* 1270 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap() 1271 * and split if duplicating fails. 1272 */ 1273 pudp_set_wrprotect(src_mm, addr, src_pud); 1274 pud = pud_mkold(pud_wrprotect(pud)); 1275 set_pud_at(dst_mm, addr, dst_pud, pud); 1276 1277 ret = 0; 1278 out_unlock: 1279 spin_unlock(src_ptl); 1280 spin_unlock(dst_ptl); 1281 return ret; 1282 } 1283 1284 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1285 { 1286 bool write = vmf->flags & FAULT_FLAG_WRITE; 1287 1288 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1289 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1290 goto unlock; 1291 1292 touch_pud(vmf->vma, vmf->address, vmf->pud, write); 1293 unlock: 1294 spin_unlock(vmf->ptl); 1295 } 1296 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1297 1298 void huge_pmd_set_accessed(struct vm_fault *vmf) 1299 { 1300 bool write = vmf->flags & FAULT_FLAG_WRITE; 1301 1302 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1303 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) 1304 goto unlock; 1305 1306 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); 1307 1308 unlock: 1309 spin_unlock(vmf->ptl); 1310 } 1311 1312 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1313 { 1314 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 1315 struct vm_area_struct *vma = vmf->vma; 1316 struct page *page; 1317 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1318 pmd_t orig_pmd = vmf->orig_pmd; 1319 1320 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1321 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1322 1323 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE)); 1324 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE)); 1325 1326 if (is_huge_zero_pmd(orig_pmd)) 1327 goto fallback; 1328 1329 spin_lock(vmf->ptl); 1330 1331 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1332 spin_unlock(vmf->ptl); 1333 return 0; 1334 } 1335 1336 page = pmd_page(orig_pmd); 1337 VM_BUG_ON_PAGE(!PageHead(page), page); 1338 1339 /* Early check when only holding the PT lock. */ 1340 if (PageAnonExclusive(page)) 1341 goto reuse; 1342 1343 if (!trylock_page(page)) { 1344 get_page(page); 1345 spin_unlock(vmf->ptl); 1346 lock_page(page); 1347 spin_lock(vmf->ptl); 1348 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1349 spin_unlock(vmf->ptl); 1350 unlock_page(page); 1351 put_page(page); 1352 return 0; 1353 } 1354 put_page(page); 1355 } 1356 1357 /* Recheck after temporarily dropping the PT lock. */ 1358 if (PageAnonExclusive(page)) { 1359 unlock_page(page); 1360 goto reuse; 1361 } 1362 1363 /* 1364 * See do_wp_page(): we can only reuse the page exclusively if there are 1365 * no additional references. Note that we always drain the LRU 1366 * pagevecs immediately after adding a THP. 1367 */ 1368 if (page_count(page) > 1 + PageSwapCache(page) * thp_nr_pages(page)) 1369 goto unlock_fallback; 1370 if (PageSwapCache(page)) 1371 try_to_free_swap(page); 1372 if (page_count(page) == 1) { 1373 pmd_t entry; 1374 1375 page_move_anon_rmap(page, vma); 1376 unlock_page(page); 1377 reuse: 1378 if (unlikely(unshare)) { 1379 spin_unlock(vmf->ptl); 1380 return 0; 1381 } 1382 entry = pmd_mkyoung(orig_pmd); 1383 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1384 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1385 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1386 spin_unlock(vmf->ptl); 1387 return VM_FAULT_WRITE; 1388 } 1389 1390 unlock_fallback: 1391 unlock_page(page); 1392 spin_unlock(vmf->ptl); 1393 fallback: 1394 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1395 return VM_FAULT_FALLBACK; 1396 } 1397 1398 /* 1399 * FOLL_FORCE can write to even unwritable pmd's, but only 1400 * after we've gone through a COW cycle and they are dirty. 1401 */ 1402 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) 1403 { 1404 return pmd_write(pmd) || 1405 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); 1406 } 1407 1408 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1409 unsigned long addr, 1410 pmd_t *pmd, 1411 unsigned int flags) 1412 { 1413 struct mm_struct *mm = vma->vm_mm; 1414 struct page *page = NULL; 1415 1416 assert_spin_locked(pmd_lockptr(mm, pmd)); 1417 1418 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) 1419 goto out; 1420 1421 /* Avoid dumping huge zero page */ 1422 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1423 return ERR_PTR(-EFAULT); 1424 1425 /* Full NUMA hinting faults to serialise migration in fault paths */ 1426 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1427 goto out; 1428 1429 page = pmd_page(*pmd); 1430 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1431 1432 if (!pmd_write(*pmd) && gup_must_unshare(flags, page)) 1433 return ERR_PTR(-EMLINK); 1434 1435 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 1436 !PageAnonExclusive(page), page); 1437 1438 if (!try_grab_page(page, flags)) 1439 return ERR_PTR(-ENOMEM); 1440 1441 if (flags & FOLL_TOUCH) 1442 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1443 1444 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1445 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1446 1447 out: 1448 return page; 1449 } 1450 1451 /* NUMA hinting page fault entry point for trans huge pmds */ 1452 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1453 { 1454 struct vm_area_struct *vma = vmf->vma; 1455 pmd_t oldpmd = vmf->orig_pmd; 1456 pmd_t pmd; 1457 struct page *page; 1458 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1459 int page_nid = NUMA_NO_NODE; 1460 int target_nid, last_cpupid = -1; 1461 bool migrated = false; 1462 bool was_writable = pmd_savedwrite(oldpmd); 1463 int flags = 0; 1464 1465 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1466 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1467 spin_unlock(vmf->ptl); 1468 goto out; 1469 } 1470 1471 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1472 page = vm_normal_page_pmd(vma, haddr, pmd); 1473 if (!page) 1474 goto out_map; 1475 1476 /* See similar comment in do_numa_page for explanation */ 1477 if (!was_writable) 1478 flags |= TNF_NO_GROUP; 1479 1480 page_nid = page_to_nid(page); 1481 last_cpupid = page_cpupid_last(page); 1482 target_nid = numa_migrate_prep(page, vma, haddr, page_nid, 1483 &flags); 1484 1485 if (target_nid == NUMA_NO_NODE) { 1486 put_page(page); 1487 goto out_map; 1488 } 1489 1490 spin_unlock(vmf->ptl); 1491 1492 migrated = migrate_misplaced_page(page, vma, target_nid); 1493 if (migrated) { 1494 flags |= TNF_MIGRATED; 1495 page_nid = target_nid; 1496 } else { 1497 flags |= TNF_MIGRATE_FAIL; 1498 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1499 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1500 spin_unlock(vmf->ptl); 1501 goto out; 1502 } 1503 goto out_map; 1504 } 1505 1506 out: 1507 if (page_nid != NUMA_NO_NODE) 1508 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1509 flags); 1510 1511 return 0; 1512 1513 out_map: 1514 /* Restore the PMD */ 1515 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1516 pmd = pmd_mkyoung(pmd); 1517 if (was_writable) 1518 pmd = pmd_mkwrite(pmd); 1519 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1520 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1521 spin_unlock(vmf->ptl); 1522 goto out; 1523 } 1524 1525 /* 1526 * Return true if we do MADV_FREE successfully on entire pmd page. 1527 * Otherwise, return false. 1528 */ 1529 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1530 pmd_t *pmd, unsigned long addr, unsigned long next) 1531 { 1532 spinlock_t *ptl; 1533 pmd_t orig_pmd; 1534 struct page *page; 1535 struct mm_struct *mm = tlb->mm; 1536 bool ret = false; 1537 1538 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1539 1540 ptl = pmd_trans_huge_lock(pmd, vma); 1541 if (!ptl) 1542 goto out_unlocked; 1543 1544 orig_pmd = *pmd; 1545 if (is_huge_zero_pmd(orig_pmd)) 1546 goto out; 1547 1548 if (unlikely(!pmd_present(orig_pmd))) { 1549 VM_BUG_ON(thp_migration_supported() && 1550 !is_pmd_migration_entry(orig_pmd)); 1551 goto out; 1552 } 1553 1554 page = pmd_page(orig_pmd); 1555 /* 1556 * If other processes are mapping this page, we couldn't discard 1557 * the page unless they all do MADV_FREE so let's skip the page. 1558 */ 1559 if (total_mapcount(page) != 1) 1560 goto out; 1561 1562 if (!trylock_page(page)) 1563 goto out; 1564 1565 /* 1566 * If user want to discard part-pages of THP, split it so MADV_FREE 1567 * will deactivate only them. 1568 */ 1569 if (next - addr != HPAGE_PMD_SIZE) { 1570 get_page(page); 1571 spin_unlock(ptl); 1572 split_huge_page(page); 1573 unlock_page(page); 1574 put_page(page); 1575 goto out_unlocked; 1576 } 1577 1578 if (PageDirty(page)) 1579 ClearPageDirty(page); 1580 unlock_page(page); 1581 1582 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1583 pmdp_invalidate(vma, addr, pmd); 1584 orig_pmd = pmd_mkold(orig_pmd); 1585 orig_pmd = pmd_mkclean(orig_pmd); 1586 1587 set_pmd_at(mm, addr, pmd, orig_pmd); 1588 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1589 } 1590 1591 mark_page_lazyfree(page); 1592 ret = true; 1593 out: 1594 spin_unlock(ptl); 1595 out_unlocked: 1596 return ret; 1597 } 1598 1599 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1600 { 1601 pgtable_t pgtable; 1602 1603 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1604 pte_free(mm, pgtable); 1605 mm_dec_nr_ptes(mm); 1606 } 1607 1608 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1609 pmd_t *pmd, unsigned long addr) 1610 { 1611 pmd_t orig_pmd; 1612 spinlock_t *ptl; 1613 1614 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1615 1616 ptl = __pmd_trans_huge_lock(pmd, vma); 1617 if (!ptl) 1618 return 0; 1619 /* 1620 * For architectures like ppc64 we look at deposited pgtable 1621 * when calling pmdp_huge_get_and_clear. So do the 1622 * pgtable_trans_huge_withdraw after finishing pmdp related 1623 * operations. 1624 */ 1625 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1626 tlb->fullmm); 1627 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1628 if (vma_is_special_huge(vma)) { 1629 if (arch_needs_pgtable_deposit()) 1630 zap_deposited_table(tlb->mm, pmd); 1631 spin_unlock(ptl); 1632 } else if (is_huge_zero_pmd(orig_pmd)) { 1633 zap_deposited_table(tlb->mm, pmd); 1634 spin_unlock(ptl); 1635 } else { 1636 struct page *page = NULL; 1637 int flush_needed = 1; 1638 1639 if (pmd_present(orig_pmd)) { 1640 page = pmd_page(orig_pmd); 1641 page_remove_rmap(page, vma, true); 1642 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1643 VM_BUG_ON_PAGE(!PageHead(page), page); 1644 } else if (thp_migration_supported()) { 1645 swp_entry_t entry; 1646 1647 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1648 entry = pmd_to_swp_entry(orig_pmd); 1649 page = pfn_swap_entry_to_page(entry); 1650 flush_needed = 0; 1651 } else 1652 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1653 1654 if (PageAnon(page)) { 1655 zap_deposited_table(tlb->mm, pmd); 1656 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1657 } else { 1658 if (arch_needs_pgtable_deposit()) 1659 zap_deposited_table(tlb->mm, pmd); 1660 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR); 1661 } 1662 1663 spin_unlock(ptl); 1664 if (flush_needed) 1665 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1666 } 1667 return 1; 1668 } 1669 1670 #ifndef pmd_move_must_withdraw 1671 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1672 spinlock_t *old_pmd_ptl, 1673 struct vm_area_struct *vma) 1674 { 1675 /* 1676 * With split pmd lock we also need to move preallocated 1677 * PTE page table if new_pmd is on different PMD page table. 1678 * 1679 * We also don't deposit and withdraw tables for file pages. 1680 */ 1681 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1682 } 1683 #endif 1684 1685 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1686 { 1687 #ifdef CONFIG_MEM_SOFT_DIRTY 1688 if (unlikely(is_pmd_migration_entry(pmd))) 1689 pmd = pmd_swp_mksoft_dirty(pmd); 1690 else if (pmd_present(pmd)) 1691 pmd = pmd_mksoft_dirty(pmd); 1692 #endif 1693 return pmd; 1694 } 1695 1696 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1697 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1698 { 1699 spinlock_t *old_ptl, *new_ptl; 1700 pmd_t pmd; 1701 struct mm_struct *mm = vma->vm_mm; 1702 bool force_flush = false; 1703 1704 /* 1705 * The destination pmd shouldn't be established, free_pgtables() 1706 * should have release it. 1707 */ 1708 if (WARN_ON(!pmd_none(*new_pmd))) { 1709 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1710 return false; 1711 } 1712 1713 /* 1714 * We don't have to worry about the ordering of src and dst 1715 * ptlocks because exclusive mmap_lock prevents deadlock. 1716 */ 1717 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1718 if (old_ptl) { 1719 new_ptl = pmd_lockptr(mm, new_pmd); 1720 if (new_ptl != old_ptl) 1721 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1722 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1723 if (pmd_present(pmd)) 1724 force_flush = true; 1725 VM_BUG_ON(!pmd_none(*new_pmd)); 1726 1727 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1728 pgtable_t pgtable; 1729 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1730 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1731 } 1732 pmd = move_soft_dirty_pmd(pmd); 1733 set_pmd_at(mm, new_addr, new_pmd, pmd); 1734 if (force_flush) 1735 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1736 if (new_ptl != old_ptl) 1737 spin_unlock(new_ptl); 1738 spin_unlock(old_ptl); 1739 return true; 1740 } 1741 return false; 1742 } 1743 1744 /* 1745 * Returns 1746 * - 0 if PMD could not be locked 1747 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 1748 * or if prot_numa but THP migration is not supported 1749 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 1750 */ 1751 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1752 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 1753 unsigned long cp_flags) 1754 { 1755 struct mm_struct *mm = vma->vm_mm; 1756 spinlock_t *ptl; 1757 pmd_t oldpmd, entry; 1758 bool preserve_write; 1759 int ret; 1760 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 1761 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 1762 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 1763 1764 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1765 1766 if (prot_numa && !thp_migration_supported()) 1767 return 1; 1768 1769 ptl = __pmd_trans_huge_lock(pmd, vma); 1770 if (!ptl) 1771 return 0; 1772 1773 preserve_write = prot_numa && pmd_write(*pmd); 1774 ret = 1; 1775 1776 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1777 if (is_swap_pmd(*pmd)) { 1778 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1779 struct page *page = pfn_swap_entry_to_page(entry); 1780 1781 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 1782 if (is_writable_migration_entry(entry)) { 1783 pmd_t newpmd; 1784 /* 1785 * A protection check is difficult so 1786 * just be safe and disable write 1787 */ 1788 if (PageAnon(page)) 1789 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 1790 else 1791 entry = make_readable_migration_entry(swp_offset(entry)); 1792 newpmd = swp_entry_to_pmd(entry); 1793 if (pmd_swp_soft_dirty(*pmd)) 1794 newpmd = pmd_swp_mksoft_dirty(newpmd); 1795 if (pmd_swp_uffd_wp(*pmd)) 1796 newpmd = pmd_swp_mkuffd_wp(newpmd); 1797 set_pmd_at(mm, addr, pmd, newpmd); 1798 } 1799 goto unlock; 1800 } 1801 #endif 1802 1803 if (prot_numa) { 1804 struct page *page; 1805 /* 1806 * Avoid trapping faults against the zero page. The read-only 1807 * data is likely to be read-cached on the local CPU and 1808 * local/remote hits to the zero page are not interesting. 1809 */ 1810 if (is_huge_zero_pmd(*pmd)) 1811 goto unlock; 1812 1813 if (pmd_protnone(*pmd)) 1814 goto unlock; 1815 1816 page = pmd_page(*pmd); 1817 /* 1818 * Skip scanning top tier node if normal numa 1819 * balancing is disabled 1820 */ 1821 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 1822 node_is_toptier(page_to_nid(page))) 1823 goto unlock; 1824 } 1825 /* 1826 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 1827 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 1828 * which is also under mmap_read_lock(mm): 1829 * 1830 * CPU0: CPU1: 1831 * change_huge_pmd(prot_numa=1) 1832 * pmdp_huge_get_and_clear_notify() 1833 * madvise_dontneed() 1834 * zap_pmd_range() 1835 * pmd_trans_huge(*pmd) == 0 (without ptl) 1836 * // skip the pmd 1837 * set_pmd_at(); 1838 * // pmd is re-established 1839 * 1840 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 1841 * which may break userspace. 1842 * 1843 * pmdp_invalidate_ad() is required to make sure we don't miss 1844 * dirty/young flags set by hardware. 1845 */ 1846 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 1847 1848 entry = pmd_modify(oldpmd, newprot); 1849 if (preserve_write) 1850 entry = pmd_mk_savedwrite(entry); 1851 if (uffd_wp) { 1852 entry = pmd_wrprotect(entry); 1853 entry = pmd_mkuffd_wp(entry); 1854 } else if (uffd_wp_resolve) { 1855 /* 1856 * Leave the write bit to be handled by PF interrupt 1857 * handler, then things like COW could be properly 1858 * handled. 1859 */ 1860 entry = pmd_clear_uffd_wp(entry); 1861 } 1862 ret = HPAGE_PMD_NR; 1863 set_pmd_at(mm, addr, pmd, entry); 1864 1865 if (huge_pmd_needs_flush(oldpmd, entry)) 1866 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 1867 1868 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry)); 1869 unlock: 1870 spin_unlock(ptl); 1871 return ret; 1872 } 1873 1874 /* 1875 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1876 * 1877 * Note that if it returns page table lock pointer, this routine returns without 1878 * unlocking page table lock. So callers must unlock it. 1879 */ 1880 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1881 { 1882 spinlock_t *ptl; 1883 ptl = pmd_lock(vma->vm_mm, pmd); 1884 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 1885 pmd_devmap(*pmd))) 1886 return ptl; 1887 spin_unlock(ptl); 1888 return NULL; 1889 } 1890 1891 /* 1892 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. 1893 * 1894 * Note that if it returns page table lock pointer, this routine returns without 1895 * unlocking page table lock. So callers must unlock it. 1896 */ 1897 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1898 { 1899 spinlock_t *ptl; 1900 1901 ptl = pud_lock(vma->vm_mm, pud); 1902 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1903 return ptl; 1904 spin_unlock(ptl); 1905 return NULL; 1906 } 1907 1908 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1909 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1910 pud_t *pud, unsigned long addr) 1911 { 1912 spinlock_t *ptl; 1913 1914 ptl = __pud_trans_huge_lock(pud, vma); 1915 if (!ptl) 1916 return 0; 1917 1918 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm); 1919 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1920 if (vma_is_special_huge(vma)) { 1921 spin_unlock(ptl); 1922 /* No zero page support yet */ 1923 } else { 1924 /* No support for anonymous PUD pages yet */ 1925 BUG(); 1926 } 1927 return 1; 1928 } 1929 1930 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 1931 unsigned long haddr) 1932 { 1933 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 1934 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1935 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 1936 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 1937 1938 count_vm_event(THP_SPLIT_PUD); 1939 1940 pudp_huge_clear_flush_notify(vma, haddr, pud); 1941 } 1942 1943 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 1944 unsigned long address) 1945 { 1946 spinlock_t *ptl; 1947 struct mmu_notifier_range range; 1948 1949 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1950 address & HPAGE_PUD_MASK, 1951 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 1952 mmu_notifier_invalidate_range_start(&range); 1953 ptl = pud_lock(vma->vm_mm, pud); 1954 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 1955 goto out; 1956 __split_huge_pud_locked(vma, pud, range.start); 1957 1958 out: 1959 spin_unlock(ptl); 1960 /* 1961 * No need to double call mmu_notifier->invalidate_range() callback as 1962 * the above pudp_huge_clear_flush_notify() did already call it. 1963 */ 1964 mmu_notifier_invalidate_range_only_end(&range); 1965 } 1966 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1967 1968 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1969 unsigned long haddr, pmd_t *pmd) 1970 { 1971 struct mm_struct *mm = vma->vm_mm; 1972 pgtable_t pgtable; 1973 pmd_t _pmd; 1974 int i; 1975 1976 /* 1977 * Leave pmd empty until pte is filled note that it is fine to delay 1978 * notification until mmu_notifier_invalidate_range_end() as we are 1979 * replacing a zero pmd write protected page with a zero pte write 1980 * protected page. 1981 * 1982 * See Documentation/mm/mmu_notifier.rst 1983 */ 1984 pmdp_huge_clear_flush(vma, haddr, pmd); 1985 1986 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1987 pmd_populate(mm, &_pmd, pgtable); 1988 1989 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1990 pte_t *pte, entry; 1991 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 1992 entry = pte_mkspecial(entry); 1993 pte = pte_offset_map(&_pmd, haddr); 1994 VM_BUG_ON(!pte_none(*pte)); 1995 set_pte_at(mm, haddr, pte, entry); 1996 pte_unmap(pte); 1997 } 1998 smp_wmb(); /* make pte visible before pmd */ 1999 pmd_populate(mm, pmd, pgtable); 2000 } 2001 2002 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2003 unsigned long haddr, bool freeze) 2004 { 2005 struct mm_struct *mm = vma->vm_mm; 2006 struct page *page; 2007 pgtable_t pgtable; 2008 pmd_t old_pmd, _pmd; 2009 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2010 bool anon_exclusive = false; 2011 unsigned long addr; 2012 int i; 2013 2014 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2015 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2016 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2017 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2018 && !pmd_devmap(*pmd)); 2019 2020 count_vm_event(THP_SPLIT_PMD); 2021 2022 if (!vma_is_anonymous(vma)) { 2023 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 2024 /* 2025 * We are going to unmap this huge page. So 2026 * just go ahead and zap it 2027 */ 2028 if (arch_needs_pgtable_deposit()) 2029 zap_deposited_table(mm, pmd); 2030 if (vma_is_special_huge(vma)) 2031 return; 2032 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2033 swp_entry_t entry; 2034 2035 entry = pmd_to_swp_entry(old_pmd); 2036 page = pfn_swap_entry_to_page(entry); 2037 } else { 2038 page = pmd_page(old_pmd); 2039 if (!PageDirty(page) && pmd_dirty(old_pmd)) 2040 set_page_dirty(page); 2041 if (!PageReferenced(page) && pmd_young(old_pmd)) 2042 SetPageReferenced(page); 2043 page_remove_rmap(page, vma, true); 2044 put_page(page); 2045 } 2046 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR); 2047 return; 2048 } 2049 2050 if (is_huge_zero_pmd(*pmd)) { 2051 /* 2052 * FIXME: Do we want to invalidate secondary mmu by calling 2053 * mmu_notifier_invalidate_range() see comments below inside 2054 * __split_huge_pmd() ? 2055 * 2056 * We are going from a zero huge page write protected to zero 2057 * small page also write protected so it does not seems useful 2058 * to invalidate secondary mmu at this time. 2059 */ 2060 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2061 } 2062 2063 /* 2064 * Up to this point the pmd is present and huge and userland has the 2065 * whole access to the hugepage during the split (which happens in 2066 * place). If we overwrite the pmd with the not-huge version pointing 2067 * to the pte here (which of course we could if all CPUs were bug 2068 * free), userland could trigger a small page size TLB miss on the 2069 * small sized TLB while the hugepage TLB entry is still established in 2070 * the huge TLB. Some CPU doesn't like that. 2071 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2072 * 383 on page 105. Intel should be safe but is also warns that it's 2073 * only safe if the permission and cache attributes of the two entries 2074 * loaded in the two TLB is identical (which should be the case here). 2075 * But it is generally safer to never allow small and huge TLB entries 2076 * for the same virtual address to be loaded simultaneously. So instead 2077 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2078 * current pmd notpresent (atomically because here the pmd_trans_huge 2079 * must remain set at all times on the pmd until the split is complete 2080 * for this pmd), then we flush the SMP TLB and finally we write the 2081 * non-huge version of the pmd entry with pmd_populate. 2082 */ 2083 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2084 2085 pmd_migration = is_pmd_migration_entry(old_pmd); 2086 if (unlikely(pmd_migration)) { 2087 swp_entry_t entry; 2088 2089 entry = pmd_to_swp_entry(old_pmd); 2090 page = pfn_swap_entry_to_page(entry); 2091 write = is_writable_migration_entry(entry); 2092 if (PageAnon(page)) 2093 anon_exclusive = is_readable_exclusive_migration_entry(entry); 2094 young = false; 2095 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2096 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2097 } else { 2098 page = pmd_page(old_pmd); 2099 if (pmd_dirty(old_pmd)) 2100 SetPageDirty(page); 2101 write = pmd_write(old_pmd); 2102 young = pmd_young(old_pmd); 2103 soft_dirty = pmd_soft_dirty(old_pmd); 2104 uffd_wp = pmd_uffd_wp(old_pmd); 2105 2106 VM_BUG_ON_PAGE(!page_count(page), page); 2107 page_ref_add(page, HPAGE_PMD_NR - 1); 2108 2109 /* 2110 * Without "freeze", we'll simply split the PMD, propagating the 2111 * PageAnonExclusive() flag for each PTE by setting it for 2112 * each subpage -- no need to (temporarily) clear. 2113 * 2114 * With "freeze" we want to replace mapped pages by 2115 * migration entries right away. This is only possible if we 2116 * managed to clear PageAnonExclusive() -- see 2117 * set_pmd_migration_entry(). 2118 * 2119 * In case we cannot clear PageAnonExclusive(), split the PMD 2120 * only and let try_to_migrate_one() fail later. 2121 */ 2122 anon_exclusive = PageAnon(page) && PageAnonExclusive(page); 2123 if (freeze && anon_exclusive && page_try_share_anon_rmap(page)) 2124 freeze = false; 2125 } 2126 2127 /* 2128 * Withdraw the table only after we mark the pmd entry invalid. 2129 * This's critical for some architectures (Power). 2130 */ 2131 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2132 pmd_populate(mm, &_pmd, pgtable); 2133 2134 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2135 pte_t entry, *pte; 2136 /* 2137 * Note that NUMA hinting access restrictions are not 2138 * transferred to avoid any possibility of altering 2139 * permissions across VMAs. 2140 */ 2141 if (freeze || pmd_migration) { 2142 swp_entry_t swp_entry; 2143 if (write) 2144 swp_entry = make_writable_migration_entry( 2145 page_to_pfn(page + i)); 2146 else if (anon_exclusive) 2147 swp_entry = make_readable_exclusive_migration_entry( 2148 page_to_pfn(page + i)); 2149 else 2150 swp_entry = make_readable_migration_entry( 2151 page_to_pfn(page + i)); 2152 entry = swp_entry_to_pte(swp_entry); 2153 if (soft_dirty) 2154 entry = pte_swp_mksoft_dirty(entry); 2155 if (uffd_wp) 2156 entry = pte_swp_mkuffd_wp(entry); 2157 } else { 2158 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2159 entry = maybe_mkwrite(entry, vma); 2160 if (anon_exclusive) 2161 SetPageAnonExclusive(page + i); 2162 if (!write) 2163 entry = pte_wrprotect(entry); 2164 if (!young) 2165 entry = pte_mkold(entry); 2166 if (soft_dirty) 2167 entry = pte_mksoft_dirty(entry); 2168 if (uffd_wp) 2169 entry = pte_mkuffd_wp(entry); 2170 } 2171 pte = pte_offset_map(&_pmd, addr); 2172 BUG_ON(!pte_none(*pte)); 2173 set_pte_at(mm, addr, pte, entry); 2174 if (!pmd_migration) 2175 atomic_inc(&page[i]._mapcount); 2176 pte_unmap(pte); 2177 } 2178 2179 if (!pmd_migration) { 2180 /* 2181 * Set PG_double_map before dropping compound_mapcount to avoid 2182 * false-negative page_mapped(). 2183 */ 2184 if (compound_mapcount(page) > 1 && 2185 !TestSetPageDoubleMap(page)) { 2186 for (i = 0; i < HPAGE_PMD_NR; i++) 2187 atomic_inc(&page[i]._mapcount); 2188 } 2189 2190 lock_page_memcg(page); 2191 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 2192 /* Last compound_mapcount is gone. */ 2193 __mod_lruvec_page_state(page, NR_ANON_THPS, 2194 -HPAGE_PMD_NR); 2195 if (TestClearPageDoubleMap(page)) { 2196 /* No need in mapcount reference anymore */ 2197 for (i = 0; i < HPAGE_PMD_NR; i++) 2198 atomic_dec(&page[i]._mapcount); 2199 } 2200 } 2201 unlock_page_memcg(page); 2202 2203 /* Above is effectively page_remove_rmap(page, vma, true) */ 2204 munlock_vma_page(page, vma, true); 2205 } 2206 2207 smp_wmb(); /* make pte visible before pmd */ 2208 pmd_populate(mm, pmd, pgtable); 2209 2210 if (freeze) { 2211 for (i = 0; i < HPAGE_PMD_NR; i++) { 2212 page_remove_rmap(page + i, vma, false); 2213 put_page(page + i); 2214 } 2215 } 2216 } 2217 2218 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2219 unsigned long address, bool freeze, struct folio *folio) 2220 { 2221 spinlock_t *ptl; 2222 struct mmu_notifier_range range; 2223 2224 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 2225 address & HPAGE_PMD_MASK, 2226 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2227 mmu_notifier_invalidate_range_start(&range); 2228 ptl = pmd_lock(vma->vm_mm, pmd); 2229 2230 /* 2231 * If caller asks to setup a migration entry, we need a folio to check 2232 * pmd against. Otherwise we can end up replacing wrong folio. 2233 */ 2234 VM_BUG_ON(freeze && !folio); 2235 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio)); 2236 2237 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || 2238 is_pmd_migration_entry(*pmd)) { 2239 /* 2240 * It's safe to call pmd_page when folio is set because it's 2241 * guaranteed that pmd is present. 2242 */ 2243 if (folio && folio != page_folio(pmd_page(*pmd))) 2244 goto out; 2245 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2246 } 2247 2248 out: 2249 spin_unlock(ptl); 2250 /* 2251 * No need to double call mmu_notifier->invalidate_range() callback. 2252 * They are 3 cases to consider inside __split_huge_pmd_locked(): 2253 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious 2254 * 2) __split_huge_zero_page_pmd() read only zero page and any write 2255 * fault will trigger a flush_notify before pointing to a new page 2256 * (it is fine if the secondary mmu keeps pointing to the old zero 2257 * page in the meantime) 2258 * 3) Split a huge pmd into pte pointing to the same page. No need 2259 * to invalidate secondary tlb entry they are all still valid. 2260 * any further changes to individual pte will notify. So no need 2261 * to call mmu_notifier->invalidate_range() 2262 */ 2263 mmu_notifier_invalidate_range_only_end(&range); 2264 } 2265 2266 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2267 bool freeze, struct folio *folio) 2268 { 2269 pgd_t *pgd; 2270 p4d_t *p4d; 2271 pud_t *pud; 2272 pmd_t *pmd; 2273 2274 pgd = pgd_offset(vma->vm_mm, address); 2275 if (!pgd_present(*pgd)) 2276 return; 2277 2278 p4d = p4d_offset(pgd, address); 2279 if (!p4d_present(*p4d)) 2280 return; 2281 2282 pud = pud_offset(p4d, address); 2283 if (!pud_present(*pud)) 2284 return; 2285 2286 pmd = pmd_offset(pud, address); 2287 2288 __split_huge_pmd(vma, pmd, address, freeze, folio); 2289 } 2290 2291 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2292 { 2293 /* 2294 * If the new address isn't hpage aligned and it could previously 2295 * contain an hugepage: check if we need to split an huge pmd. 2296 */ 2297 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2298 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2299 ALIGN(address, HPAGE_PMD_SIZE))) 2300 split_huge_pmd_address(vma, address, false, NULL); 2301 } 2302 2303 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2304 unsigned long start, 2305 unsigned long end, 2306 long adjust_next) 2307 { 2308 /* Check if we need to split start first. */ 2309 split_huge_pmd_if_needed(vma, start); 2310 2311 /* Check if we need to split end next. */ 2312 split_huge_pmd_if_needed(vma, end); 2313 2314 /* 2315 * If we're also updating the vma->vm_next->vm_start, 2316 * check if we need to split it. 2317 */ 2318 if (adjust_next > 0) { 2319 struct vm_area_struct *next = vma->vm_next; 2320 unsigned long nstart = next->vm_start; 2321 nstart += adjust_next; 2322 split_huge_pmd_if_needed(next, nstart); 2323 } 2324 } 2325 2326 static void unmap_page(struct page *page) 2327 { 2328 struct folio *folio = page_folio(page); 2329 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2330 TTU_SYNC; 2331 2332 VM_BUG_ON_PAGE(!PageHead(page), page); 2333 2334 /* 2335 * Anon pages need migration entries to preserve them, but file 2336 * pages can simply be left unmapped, then faulted back on demand. 2337 * If that is ever changed (perhaps for mlock), update remap_page(). 2338 */ 2339 if (folio_test_anon(folio)) 2340 try_to_migrate(folio, ttu_flags); 2341 else 2342 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 2343 } 2344 2345 static void remap_page(struct folio *folio, unsigned long nr) 2346 { 2347 int i = 0; 2348 2349 /* If unmap_page() uses try_to_migrate() on file, remove this check */ 2350 if (!folio_test_anon(folio)) 2351 return; 2352 for (;;) { 2353 remove_migration_ptes(folio, folio, true); 2354 i += folio_nr_pages(folio); 2355 if (i >= nr) 2356 break; 2357 folio = folio_next(folio); 2358 } 2359 } 2360 2361 static void lru_add_page_tail(struct page *head, struct page *tail, 2362 struct lruvec *lruvec, struct list_head *list) 2363 { 2364 VM_BUG_ON_PAGE(!PageHead(head), head); 2365 VM_BUG_ON_PAGE(PageCompound(tail), head); 2366 VM_BUG_ON_PAGE(PageLRU(tail), head); 2367 lockdep_assert_held(&lruvec->lru_lock); 2368 2369 if (list) { 2370 /* page reclaim is reclaiming a huge page */ 2371 VM_WARN_ON(PageLRU(head)); 2372 get_page(tail); 2373 list_add_tail(&tail->lru, list); 2374 } else { 2375 /* head is still on lru (and we have it frozen) */ 2376 VM_WARN_ON(!PageLRU(head)); 2377 if (PageUnevictable(tail)) 2378 tail->mlock_count = 0; 2379 else 2380 list_add_tail(&tail->lru, &head->lru); 2381 SetPageLRU(tail); 2382 } 2383 } 2384 2385 static void __split_huge_page_tail(struct page *head, int tail, 2386 struct lruvec *lruvec, struct list_head *list) 2387 { 2388 struct page *page_tail = head + tail; 2389 2390 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2391 2392 /* 2393 * Clone page flags before unfreezing refcount. 2394 * 2395 * After successful get_page_unless_zero() might follow flags change, 2396 * for example lock_page() which set PG_waiters. 2397 * 2398 * Note that for mapped sub-pages of an anonymous THP, 2399 * PG_anon_exclusive has been cleared in unmap_page() and is stored in 2400 * the migration entry instead from where remap_page() will restore it. 2401 * We can still have PG_anon_exclusive set on effectively unmapped and 2402 * unreferenced sub-pages of an anonymous THP: we can simply drop 2403 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 2404 */ 2405 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2406 page_tail->flags |= (head->flags & 2407 ((1L << PG_referenced) | 2408 (1L << PG_swapbacked) | 2409 (1L << PG_swapcache) | 2410 (1L << PG_mlocked) | 2411 (1L << PG_uptodate) | 2412 (1L << PG_active) | 2413 (1L << PG_workingset) | 2414 (1L << PG_locked) | 2415 (1L << PG_unevictable) | 2416 #ifdef CONFIG_64BIT 2417 (1L << PG_arch_2) | 2418 #endif 2419 (1L << PG_dirty))); 2420 2421 /* ->mapping in first tail page is compound_mapcount */ 2422 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2423 page_tail); 2424 page_tail->mapping = head->mapping; 2425 page_tail->index = head->index + tail; 2426 page_tail->private = 0; 2427 2428 /* Page flags must be visible before we make the page non-compound. */ 2429 smp_wmb(); 2430 2431 /* 2432 * Clear PageTail before unfreezing page refcount. 2433 * 2434 * After successful get_page_unless_zero() might follow put_page() 2435 * which needs correct compound_head(). 2436 */ 2437 clear_compound_head(page_tail); 2438 2439 /* Finally unfreeze refcount. Additional reference from page cache. */ 2440 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || 2441 PageSwapCache(head))); 2442 2443 if (page_is_young(head)) 2444 set_page_young(page_tail); 2445 if (page_is_idle(head)) 2446 set_page_idle(page_tail); 2447 2448 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2449 2450 /* 2451 * always add to the tail because some iterators expect new 2452 * pages to show after the currently processed elements - e.g. 2453 * migrate_pages 2454 */ 2455 lru_add_page_tail(head, page_tail, lruvec, list); 2456 } 2457 2458 static void __split_huge_page(struct page *page, struct list_head *list, 2459 pgoff_t end) 2460 { 2461 struct folio *folio = page_folio(page); 2462 struct page *head = &folio->page; 2463 struct lruvec *lruvec; 2464 struct address_space *swap_cache = NULL; 2465 unsigned long offset = 0; 2466 unsigned int nr = thp_nr_pages(head); 2467 int i; 2468 2469 /* complete memcg works before add pages to LRU */ 2470 split_page_memcg(head, nr); 2471 2472 if (PageAnon(head) && PageSwapCache(head)) { 2473 swp_entry_t entry = { .val = page_private(head) }; 2474 2475 offset = swp_offset(entry); 2476 swap_cache = swap_address_space(entry); 2477 xa_lock(&swap_cache->i_pages); 2478 } 2479 2480 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 2481 lruvec = folio_lruvec_lock(folio); 2482 2483 ClearPageHasHWPoisoned(head); 2484 2485 for (i = nr - 1; i >= 1; i--) { 2486 __split_huge_page_tail(head, i, lruvec, list); 2487 /* Some pages can be beyond EOF: drop them from page cache */ 2488 if (head[i].index >= end) { 2489 struct folio *tail = page_folio(head + i); 2490 2491 if (shmem_mapping(head->mapping)) 2492 shmem_uncharge(head->mapping->host, 1); 2493 else if (folio_test_clear_dirty(tail)) 2494 folio_account_cleaned(tail, 2495 inode_to_wb(folio->mapping->host)); 2496 __filemap_remove_folio(tail, NULL); 2497 folio_put(tail); 2498 } else if (!PageAnon(page)) { 2499 __xa_store(&head->mapping->i_pages, head[i].index, 2500 head + i, 0); 2501 } else if (swap_cache) { 2502 __xa_store(&swap_cache->i_pages, offset + i, 2503 head + i, 0); 2504 } 2505 } 2506 2507 ClearPageCompound(head); 2508 unlock_page_lruvec(lruvec); 2509 /* Caller disabled irqs, so they are still disabled here */ 2510 2511 split_page_owner(head, nr); 2512 2513 /* See comment in __split_huge_page_tail() */ 2514 if (PageAnon(head)) { 2515 /* Additional pin to swap cache */ 2516 if (PageSwapCache(head)) { 2517 page_ref_add(head, 2); 2518 xa_unlock(&swap_cache->i_pages); 2519 } else { 2520 page_ref_inc(head); 2521 } 2522 } else { 2523 /* Additional pin to page cache */ 2524 page_ref_add(head, 2); 2525 xa_unlock(&head->mapping->i_pages); 2526 } 2527 local_irq_enable(); 2528 2529 remap_page(folio, nr); 2530 2531 if (PageSwapCache(head)) { 2532 swp_entry_t entry = { .val = page_private(head) }; 2533 2534 split_swap_cluster(entry); 2535 } 2536 2537 for (i = 0; i < nr; i++) { 2538 struct page *subpage = head + i; 2539 if (subpage == page) 2540 continue; 2541 unlock_page(subpage); 2542 2543 /* 2544 * Subpages may be freed if there wasn't any mapping 2545 * like if add_to_swap() is running on a lru page that 2546 * had its mapping zapped. And freeing these pages 2547 * requires taking the lru_lock so we do the put_page 2548 * of the tail pages after the split is complete. 2549 */ 2550 free_page_and_swap_cache(subpage); 2551 } 2552 } 2553 2554 /* Racy check whether the huge page can be split */ 2555 bool can_split_folio(struct folio *folio, int *pextra_pins) 2556 { 2557 int extra_pins; 2558 2559 /* Additional pins from page cache */ 2560 if (folio_test_anon(folio)) 2561 extra_pins = folio_test_swapcache(folio) ? 2562 folio_nr_pages(folio) : 0; 2563 else 2564 extra_pins = folio_nr_pages(folio); 2565 if (pextra_pins) 2566 *pextra_pins = extra_pins; 2567 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1; 2568 } 2569 2570 /* 2571 * This function splits huge page into normal pages. @page can point to any 2572 * subpage of huge page to split. Split doesn't change the position of @page. 2573 * 2574 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2575 * The huge page must be locked. 2576 * 2577 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2578 * 2579 * Both head page and tail pages will inherit mapping, flags, and so on from 2580 * the hugepage. 2581 * 2582 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2583 * they are not mapped. 2584 * 2585 * Returns 0 if the hugepage is split successfully. 2586 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2587 * us. 2588 */ 2589 int split_huge_page_to_list(struct page *page, struct list_head *list) 2590 { 2591 struct folio *folio = page_folio(page); 2592 struct page *head = &folio->page; 2593 struct deferred_split *ds_queue = get_deferred_split_queue(head); 2594 XA_STATE(xas, &head->mapping->i_pages, head->index); 2595 struct anon_vma *anon_vma = NULL; 2596 struct address_space *mapping = NULL; 2597 int extra_pins, ret; 2598 pgoff_t end; 2599 bool is_hzp; 2600 2601 VM_BUG_ON_PAGE(!PageLocked(head), head); 2602 VM_BUG_ON_PAGE(!PageCompound(head), head); 2603 2604 is_hzp = is_huge_zero_page(head); 2605 VM_WARN_ON_ONCE_PAGE(is_hzp, head); 2606 if (is_hzp) 2607 return -EBUSY; 2608 2609 if (PageWriteback(head)) 2610 return -EBUSY; 2611 2612 if (PageAnon(head)) { 2613 /* 2614 * The caller does not necessarily hold an mmap_lock that would 2615 * prevent the anon_vma disappearing so we first we take a 2616 * reference to it and then lock the anon_vma for write. This 2617 * is similar to folio_lock_anon_vma_read except the write lock 2618 * is taken to serialise against parallel split or collapse 2619 * operations. 2620 */ 2621 anon_vma = page_get_anon_vma(head); 2622 if (!anon_vma) { 2623 ret = -EBUSY; 2624 goto out; 2625 } 2626 end = -1; 2627 mapping = NULL; 2628 anon_vma_lock_write(anon_vma); 2629 } else { 2630 mapping = head->mapping; 2631 2632 /* Truncated ? */ 2633 if (!mapping) { 2634 ret = -EBUSY; 2635 goto out; 2636 } 2637 2638 xas_split_alloc(&xas, head, compound_order(head), 2639 mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK); 2640 if (xas_error(&xas)) { 2641 ret = xas_error(&xas); 2642 goto out; 2643 } 2644 2645 anon_vma = NULL; 2646 i_mmap_lock_read(mapping); 2647 2648 /* 2649 *__split_huge_page() may need to trim off pages beyond EOF: 2650 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 2651 * which cannot be nested inside the page tree lock. So note 2652 * end now: i_size itself may be changed at any moment, but 2653 * head page lock is good enough to serialize the trimming. 2654 */ 2655 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2656 if (shmem_mapping(mapping)) 2657 end = shmem_fallocend(mapping->host, end); 2658 } 2659 2660 /* 2661 * Racy check if we can split the page, before unmap_page() will 2662 * split PMDs 2663 */ 2664 if (!can_split_folio(folio, &extra_pins)) { 2665 ret = -EBUSY; 2666 goto out_unlock; 2667 } 2668 2669 unmap_page(head); 2670 2671 /* block interrupt reentry in xa_lock and spinlock */ 2672 local_irq_disable(); 2673 if (mapping) { 2674 /* 2675 * Check if the head page is present in page cache. 2676 * We assume all tail are present too, if head is there. 2677 */ 2678 xas_lock(&xas); 2679 xas_reset(&xas); 2680 if (xas_load(&xas) != head) 2681 goto fail; 2682 } 2683 2684 /* Prevent deferred_split_scan() touching ->_refcount */ 2685 spin_lock(&ds_queue->split_queue_lock); 2686 if (page_ref_freeze(head, 1 + extra_pins)) { 2687 if (!list_empty(page_deferred_list(head))) { 2688 ds_queue->split_queue_len--; 2689 list_del(page_deferred_list(head)); 2690 } 2691 spin_unlock(&ds_queue->split_queue_lock); 2692 if (mapping) { 2693 int nr = thp_nr_pages(head); 2694 2695 xas_split(&xas, head, thp_order(head)); 2696 if (PageSwapBacked(head)) { 2697 __mod_lruvec_page_state(head, NR_SHMEM_THPS, 2698 -nr); 2699 } else { 2700 __mod_lruvec_page_state(head, NR_FILE_THPS, 2701 -nr); 2702 filemap_nr_thps_dec(mapping); 2703 } 2704 } 2705 2706 __split_huge_page(page, list, end); 2707 ret = 0; 2708 } else { 2709 spin_unlock(&ds_queue->split_queue_lock); 2710 fail: 2711 if (mapping) 2712 xas_unlock(&xas); 2713 local_irq_enable(); 2714 remap_page(folio, folio_nr_pages(folio)); 2715 ret = -EBUSY; 2716 } 2717 2718 out_unlock: 2719 if (anon_vma) { 2720 anon_vma_unlock_write(anon_vma); 2721 put_anon_vma(anon_vma); 2722 } 2723 if (mapping) 2724 i_mmap_unlock_read(mapping); 2725 out: 2726 xas_destroy(&xas); 2727 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2728 return ret; 2729 } 2730 2731 void free_transhuge_page(struct page *page) 2732 { 2733 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2734 unsigned long flags; 2735 2736 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2737 if (!list_empty(page_deferred_list(page))) { 2738 ds_queue->split_queue_len--; 2739 list_del(page_deferred_list(page)); 2740 } 2741 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2742 free_compound_page(page); 2743 } 2744 2745 void deferred_split_huge_page(struct page *page) 2746 { 2747 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2748 #ifdef CONFIG_MEMCG 2749 struct mem_cgroup *memcg = page_memcg(compound_head(page)); 2750 #endif 2751 unsigned long flags; 2752 2753 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2754 2755 /* 2756 * The try_to_unmap() in page reclaim path might reach here too, 2757 * this may cause a race condition to corrupt deferred split queue. 2758 * And, if page reclaim is already handling the same page, it is 2759 * unnecessary to handle it again in shrinker. 2760 * 2761 * Check PageSwapCache to determine if the page is being 2762 * handled by page reclaim since THP swap would add the page into 2763 * swap cache before calling try_to_unmap(). 2764 */ 2765 if (PageSwapCache(page)) 2766 return; 2767 2768 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2769 if (list_empty(page_deferred_list(page))) { 2770 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2771 list_add_tail(page_deferred_list(page), &ds_queue->split_queue); 2772 ds_queue->split_queue_len++; 2773 #ifdef CONFIG_MEMCG 2774 if (memcg) 2775 set_shrinker_bit(memcg, page_to_nid(page), 2776 deferred_split_shrinker.id); 2777 #endif 2778 } 2779 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2780 } 2781 2782 static unsigned long deferred_split_count(struct shrinker *shrink, 2783 struct shrink_control *sc) 2784 { 2785 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2786 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2787 2788 #ifdef CONFIG_MEMCG 2789 if (sc->memcg) 2790 ds_queue = &sc->memcg->deferred_split_queue; 2791 #endif 2792 return READ_ONCE(ds_queue->split_queue_len); 2793 } 2794 2795 static unsigned long deferred_split_scan(struct shrinker *shrink, 2796 struct shrink_control *sc) 2797 { 2798 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2799 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2800 unsigned long flags; 2801 LIST_HEAD(list), *pos, *next; 2802 struct page *page; 2803 int split = 0; 2804 2805 #ifdef CONFIG_MEMCG 2806 if (sc->memcg) 2807 ds_queue = &sc->memcg->deferred_split_queue; 2808 #endif 2809 2810 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2811 /* Take pin on all head pages to avoid freeing them under us */ 2812 list_for_each_safe(pos, next, &ds_queue->split_queue) { 2813 page = list_entry((void *)pos, struct page, deferred_list); 2814 page = compound_head(page); 2815 if (get_page_unless_zero(page)) { 2816 list_move(page_deferred_list(page), &list); 2817 } else { 2818 /* We lost race with put_compound_page() */ 2819 list_del_init(page_deferred_list(page)); 2820 ds_queue->split_queue_len--; 2821 } 2822 if (!--sc->nr_to_scan) 2823 break; 2824 } 2825 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2826 2827 list_for_each_safe(pos, next, &list) { 2828 page = list_entry((void *)pos, struct page, deferred_list); 2829 if (!trylock_page(page)) 2830 goto next; 2831 /* split_huge_page() removes page from list on success */ 2832 if (!split_huge_page(page)) 2833 split++; 2834 unlock_page(page); 2835 next: 2836 put_page(page); 2837 } 2838 2839 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2840 list_splice_tail(&list, &ds_queue->split_queue); 2841 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2842 2843 /* 2844 * Stop shrinker if we didn't split any page, but the queue is empty. 2845 * This can happen if pages were freed under us. 2846 */ 2847 if (!split && list_empty(&ds_queue->split_queue)) 2848 return SHRINK_STOP; 2849 return split; 2850 } 2851 2852 static struct shrinker deferred_split_shrinker = { 2853 .count_objects = deferred_split_count, 2854 .scan_objects = deferred_split_scan, 2855 .seeks = DEFAULT_SEEKS, 2856 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE | 2857 SHRINKER_NONSLAB, 2858 }; 2859 2860 #ifdef CONFIG_DEBUG_FS 2861 static void split_huge_pages_all(void) 2862 { 2863 struct zone *zone; 2864 struct page *page; 2865 unsigned long pfn, max_zone_pfn; 2866 unsigned long total = 0, split = 0; 2867 2868 pr_debug("Split all THPs\n"); 2869 for_each_zone(zone) { 2870 if (!managed_zone(zone)) 2871 continue; 2872 max_zone_pfn = zone_end_pfn(zone); 2873 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2874 int nr_pages; 2875 if (!pfn_valid(pfn)) 2876 continue; 2877 2878 page = pfn_to_page(pfn); 2879 if (!get_page_unless_zero(page)) 2880 continue; 2881 2882 if (zone != page_zone(page)) 2883 goto next; 2884 2885 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2886 goto next; 2887 2888 total++; 2889 lock_page(page); 2890 nr_pages = thp_nr_pages(page); 2891 if (!split_huge_page(page)) 2892 split++; 2893 pfn += nr_pages - 1; 2894 unlock_page(page); 2895 next: 2896 put_page(page); 2897 cond_resched(); 2898 } 2899 } 2900 2901 pr_debug("%lu of %lu THP split\n", split, total); 2902 } 2903 2904 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 2905 { 2906 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 2907 is_vm_hugetlb_page(vma); 2908 } 2909 2910 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 2911 unsigned long vaddr_end) 2912 { 2913 int ret = 0; 2914 struct task_struct *task; 2915 struct mm_struct *mm; 2916 unsigned long total = 0, split = 0; 2917 unsigned long addr; 2918 2919 vaddr_start &= PAGE_MASK; 2920 vaddr_end &= PAGE_MASK; 2921 2922 /* Find the task_struct from pid */ 2923 rcu_read_lock(); 2924 task = find_task_by_vpid(pid); 2925 if (!task) { 2926 rcu_read_unlock(); 2927 ret = -ESRCH; 2928 goto out; 2929 } 2930 get_task_struct(task); 2931 rcu_read_unlock(); 2932 2933 /* Find the mm_struct */ 2934 mm = get_task_mm(task); 2935 put_task_struct(task); 2936 2937 if (!mm) { 2938 ret = -EINVAL; 2939 goto out; 2940 } 2941 2942 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 2943 pid, vaddr_start, vaddr_end); 2944 2945 mmap_read_lock(mm); 2946 /* 2947 * always increase addr by PAGE_SIZE, since we could have a PTE page 2948 * table filled with PTE-mapped THPs, each of which is distinct. 2949 */ 2950 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 2951 struct vm_area_struct *vma = vma_lookup(mm, addr); 2952 struct page *page; 2953 2954 if (!vma) 2955 break; 2956 2957 /* skip special VMA and hugetlb VMA */ 2958 if (vma_not_suitable_for_thp_split(vma)) { 2959 addr = vma->vm_end; 2960 continue; 2961 } 2962 2963 /* FOLL_DUMP to ignore special (like zero) pages */ 2964 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2965 2966 if (IS_ERR_OR_NULL(page) || is_zone_device_page(page)) 2967 continue; 2968 2969 if (!is_transparent_hugepage(page)) 2970 goto next; 2971 2972 total++; 2973 if (!can_split_folio(page_folio(page), NULL)) 2974 goto next; 2975 2976 if (!trylock_page(page)) 2977 goto next; 2978 2979 if (!split_huge_page(page)) 2980 split++; 2981 2982 unlock_page(page); 2983 next: 2984 put_page(page); 2985 cond_resched(); 2986 } 2987 mmap_read_unlock(mm); 2988 mmput(mm); 2989 2990 pr_debug("%lu of %lu THP split\n", split, total); 2991 2992 out: 2993 return ret; 2994 } 2995 2996 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 2997 pgoff_t off_end) 2998 { 2999 struct filename *file; 3000 struct file *candidate; 3001 struct address_space *mapping; 3002 int ret = -EINVAL; 3003 pgoff_t index; 3004 int nr_pages = 1; 3005 unsigned long total = 0, split = 0; 3006 3007 file = getname_kernel(file_path); 3008 if (IS_ERR(file)) 3009 return ret; 3010 3011 candidate = file_open_name(file, O_RDONLY, 0); 3012 if (IS_ERR(candidate)) 3013 goto out; 3014 3015 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 3016 file_path, off_start, off_end); 3017 3018 mapping = candidate->f_mapping; 3019 3020 for (index = off_start; index < off_end; index += nr_pages) { 3021 struct page *fpage = pagecache_get_page(mapping, index, 3022 FGP_ENTRY | FGP_HEAD, 0); 3023 3024 nr_pages = 1; 3025 if (xa_is_value(fpage) || !fpage) 3026 continue; 3027 3028 if (!is_transparent_hugepage(fpage)) 3029 goto next; 3030 3031 total++; 3032 nr_pages = thp_nr_pages(fpage); 3033 3034 if (!trylock_page(fpage)) 3035 goto next; 3036 3037 if (!split_huge_page(fpage)) 3038 split++; 3039 3040 unlock_page(fpage); 3041 next: 3042 put_page(fpage); 3043 cond_resched(); 3044 } 3045 3046 filp_close(candidate, NULL); 3047 ret = 0; 3048 3049 pr_debug("%lu of %lu file-backed THP split\n", split, total); 3050 out: 3051 putname(file); 3052 return ret; 3053 } 3054 3055 #define MAX_INPUT_BUF_SZ 255 3056 3057 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 3058 size_t count, loff_t *ppops) 3059 { 3060 static DEFINE_MUTEX(split_debug_mutex); 3061 ssize_t ret; 3062 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */ 3063 char input_buf[MAX_INPUT_BUF_SZ]; 3064 int pid; 3065 unsigned long vaddr_start, vaddr_end; 3066 3067 ret = mutex_lock_interruptible(&split_debug_mutex); 3068 if (ret) 3069 return ret; 3070 3071 ret = -EFAULT; 3072 3073 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 3074 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 3075 goto out; 3076 3077 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 3078 3079 if (input_buf[0] == '/') { 3080 char *tok; 3081 char *buf = input_buf; 3082 char file_path[MAX_INPUT_BUF_SZ]; 3083 pgoff_t off_start = 0, off_end = 0; 3084 size_t input_len = strlen(input_buf); 3085 3086 tok = strsep(&buf, ","); 3087 if (tok) { 3088 strcpy(file_path, tok); 3089 } else { 3090 ret = -EINVAL; 3091 goto out; 3092 } 3093 3094 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end); 3095 if (ret != 2) { 3096 ret = -EINVAL; 3097 goto out; 3098 } 3099 ret = split_huge_pages_in_file(file_path, off_start, off_end); 3100 if (!ret) 3101 ret = input_len; 3102 3103 goto out; 3104 } 3105 3106 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end); 3107 if (ret == 1 && pid == 1) { 3108 split_huge_pages_all(); 3109 ret = strlen(input_buf); 3110 goto out; 3111 } else if (ret != 3) { 3112 ret = -EINVAL; 3113 goto out; 3114 } 3115 3116 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end); 3117 if (!ret) 3118 ret = strlen(input_buf); 3119 out: 3120 mutex_unlock(&split_debug_mutex); 3121 return ret; 3122 3123 } 3124 3125 static const struct file_operations split_huge_pages_fops = { 3126 .owner = THIS_MODULE, 3127 .write = split_huge_pages_write, 3128 .llseek = no_llseek, 3129 }; 3130 3131 static int __init split_huge_pages_debugfs(void) 3132 { 3133 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3134 &split_huge_pages_fops); 3135 return 0; 3136 } 3137 late_initcall(split_huge_pages_debugfs); 3138 #endif 3139 3140 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3141 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3142 struct page *page) 3143 { 3144 struct vm_area_struct *vma = pvmw->vma; 3145 struct mm_struct *mm = vma->vm_mm; 3146 unsigned long address = pvmw->address; 3147 bool anon_exclusive; 3148 pmd_t pmdval; 3149 swp_entry_t entry; 3150 pmd_t pmdswp; 3151 3152 if (!(pvmw->pmd && !pvmw->pte)) 3153 return 0; 3154 3155 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3156 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3157 3158 anon_exclusive = PageAnon(page) && PageAnonExclusive(page); 3159 if (anon_exclusive && page_try_share_anon_rmap(page)) { 3160 set_pmd_at(mm, address, pvmw->pmd, pmdval); 3161 return -EBUSY; 3162 } 3163 3164 if (pmd_dirty(pmdval)) 3165 set_page_dirty(page); 3166 if (pmd_write(pmdval)) 3167 entry = make_writable_migration_entry(page_to_pfn(page)); 3168 else if (anon_exclusive) 3169 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 3170 else 3171 entry = make_readable_migration_entry(page_to_pfn(page)); 3172 pmdswp = swp_entry_to_pmd(entry); 3173 if (pmd_soft_dirty(pmdval)) 3174 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3175 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3176 page_remove_rmap(page, vma, true); 3177 put_page(page); 3178 trace_set_migration_pmd(address, pmd_val(pmdswp)); 3179 3180 return 0; 3181 } 3182 3183 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3184 { 3185 struct vm_area_struct *vma = pvmw->vma; 3186 struct mm_struct *mm = vma->vm_mm; 3187 unsigned long address = pvmw->address; 3188 unsigned long haddr = address & HPAGE_PMD_MASK; 3189 pmd_t pmde; 3190 swp_entry_t entry; 3191 3192 if (!(pvmw->pmd && !pvmw->pte)) 3193 return; 3194 3195 entry = pmd_to_swp_entry(*pvmw->pmd); 3196 get_page(new); 3197 pmde = pmd_mkold(mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot))); 3198 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3199 pmde = pmd_mksoft_dirty(pmde); 3200 if (is_writable_migration_entry(entry)) 3201 pmde = maybe_pmd_mkwrite(pmde, vma); 3202 if (pmd_swp_uffd_wp(*pvmw->pmd)) 3203 pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde)); 3204 3205 if (PageAnon(new)) { 3206 rmap_t rmap_flags = RMAP_COMPOUND; 3207 3208 if (!is_readable_migration_entry(entry)) 3209 rmap_flags |= RMAP_EXCLUSIVE; 3210 3211 page_add_anon_rmap(new, vma, haddr, rmap_flags); 3212 } else { 3213 page_add_file_rmap(new, vma, true); 3214 } 3215 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new)); 3216 set_pmd_at(mm, haddr, pvmw->pmd, pmde); 3217 3218 /* No need to invalidate - it was non-present before */ 3219 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3220 trace_remove_migration_pmd(address, pmd_val(pmde)); 3221 } 3222 #endif 3223