xref: /openbmc/linux/mm/huge_memory.c (revision 7bcae826)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37 
38 /*
39  * By default transparent hugepage support is disabled in order that avoid
40  * to risk increase the memory footprint of applications without a guaranteed
41  * benefit. When transparent hugepage support is enabled, is for all mappings,
42  * and khugepaged scans all mappings.
43  * Defrag is invoked by khugepaged hugepage allocations and by page faults
44  * for all hugepage allocations.
45  */
46 unsigned long transparent_hugepage_flags __read_mostly =
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 #endif
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52 #endif
53 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
56 
57 static struct shrinker deferred_split_shrinker;
58 
59 static atomic_t huge_zero_refcount;
60 struct page *huge_zero_page __read_mostly;
61 
62 static struct page *get_huge_zero_page(void)
63 {
64 	struct page *zero_page;
65 retry:
66 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67 		return READ_ONCE(huge_zero_page);
68 
69 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70 			HPAGE_PMD_ORDER);
71 	if (!zero_page) {
72 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73 		return NULL;
74 	}
75 	count_vm_event(THP_ZERO_PAGE_ALLOC);
76 	preempt_disable();
77 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78 		preempt_enable();
79 		__free_pages(zero_page, compound_order(zero_page));
80 		goto retry;
81 	}
82 
83 	/* We take additional reference here. It will be put back by shrinker */
84 	atomic_set(&huge_zero_refcount, 2);
85 	preempt_enable();
86 	return READ_ONCE(huge_zero_page);
87 }
88 
89 static void put_huge_zero_page(void)
90 {
91 	/*
92 	 * Counter should never go to zero here. Only shrinker can put
93 	 * last reference.
94 	 */
95 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 }
97 
98 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
99 {
100 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
101 		return READ_ONCE(huge_zero_page);
102 
103 	if (!get_huge_zero_page())
104 		return NULL;
105 
106 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
107 		put_huge_zero_page();
108 
109 	return READ_ONCE(huge_zero_page);
110 }
111 
112 void mm_put_huge_zero_page(struct mm_struct *mm)
113 {
114 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 		put_huge_zero_page();
116 }
117 
118 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
119 					struct shrink_control *sc)
120 {
121 	/* we can free zero page only if last reference remains */
122 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
123 }
124 
125 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
126 				       struct shrink_control *sc)
127 {
128 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
129 		struct page *zero_page = xchg(&huge_zero_page, NULL);
130 		BUG_ON(zero_page == NULL);
131 		__free_pages(zero_page, compound_order(zero_page));
132 		return HPAGE_PMD_NR;
133 	}
134 
135 	return 0;
136 }
137 
138 static struct shrinker huge_zero_page_shrinker = {
139 	.count_objects = shrink_huge_zero_page_count,
140 	.scan_objects = shrink_huge_zero_page_scan,
141 	.seeks = DEFAULT_SEEKS,
142 };
143 
144 #ifdef CONFIG_SYSFS
145 static ssize_t enabled_show(struct kobject *kobj,
146 			    struct kobj_attribute *attr, char *buf)
147 {
148 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
149 		return sprintf(buf, "[always] madvise never\n");
150 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
151 		return sprintf(buf, "always [madvise] never\n");
152 	else
153 		return sprintf(buf, "always madvise [never]\n");
154 }
155 
156 static ssize_t enabled_store(struct kobject *kobj,
157 			     struct kobj_attribute *attr,
158 			     const char *buf, size_t count)
159 {
160 	ssize_t ret = count;
161 
162 	if (!memcmp("always", buf,
163 		    min(sizeof("always")-1, count))) {
164 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
165 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
166 	} else if (!memcmp("madvise", buf,
167 			   min(sizeof("madvise")-1, count))) {
168 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
170 	} else if (!memcmp("never", buf,
171 			   min(sizeof("never")-1, count))) {
172 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
173 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
174 	} else
175 		ret = -EINVAL;
176 
177 	if (ret > 0) {
178 		int err = start_stop_khugepaged();
179 		if (err)
180 			ret = err;
181 	}
182 	return ret;
183 }
184 static struct kobj_attribute enabled_attr =
185 	__ATTR(enabled, 0644, enabled_show, enabled_store);
186 
187 ssize_t single_hugepage_flag_show(struct kobject *kobj,
188 				struct kobj_attribute *attr, char *buf,
189 				enum transparent_hugepage_flag flag)
190 {
191 	return sprintf(buf, "%d\n",
192 		       !!test_bit(flag, &transparent_hugepage_flags));
193 }
194 
195 ssize_t single_hugepage_flag_store(struct kobject *kobj,
196 				 struct kobj_attribute *attr,
197 				 const char *buf, size_t count,
198 				 enum transparent_hugepage_flag flag)
199 {
200 	unsigned long value;
201 	int ret;
202 
203 	ret = kstrtoul(buf, 10, &value);
204 	if (ret < 0)
205 		return ret;
206 	if (value > 1)
207 		return -EINVAL;
208 
209 	if (value)
210 		set_bit(flag, &transparent_hugepage_flags);
211 	else
212 		clear_bit(flag, &transparent_hugepage_flags);
213 
214 	return count;
215 }
216 
217 static ssize_t defrag_show(struct kobject *kobj,
218 			   struct kobj_attribute *attr, char *buf)
219 {
220 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
221 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
222 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
223 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
224 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
225 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
226 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
227 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
228 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
229 }
230 
231 static ssize_t defrag_store(struct kobject *kobj,
232 			    struct kobj_attribute *attr,
233 			    const char *buf, size_t count)
234 {
235 	if (!memcmp("always", buf,
236 		    min(sizeof("always")-1, count))) {
237 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
238 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
239 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
240 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
241 	} else if (!memcmp("defer", buf,
242 		    min(sizeof("defer")-1, count))) {
243 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
245 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
246 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
247 	} else if (!memcmp("defer+madvise", buf,
248 		    min(sizeof("defer+madvise")-1, count))) {
249 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
250 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
251 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
252 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 	} else if (!memcmp("madvise", buf,
254 			   min(sizeof("madvise")-1, count))) {
255 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
256 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
257 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
258 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 	} else if (!memcmp("never", buf,
260 			   min(sizeof("never")-1, count))) {
261 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
263 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
264 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
265 	} else
266 		return -EINVAL;
267 
268 	return count;
269 }
270 static struct kobj_attribute defrag_attr =
271 	__ATTR(defrag, 0644, defrag_show, defrag_store);
272 
273 static ssize_t use_zero_page_show(struct kobject *kobj,
274 		struct kobj_attribute *attr, char *buf)
275 {
276 	return single_hugepage_flag_show(kobj, attr, buf,
277 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
278 }
279 static ssize_t use_zero_page_store(struct kobject *kobj,
280 		struct kobj_attribute *attr, const char *buf, size_t count)
281 {
282 	return single_hugepage_flag_store(kobj, attr, buf, count,
283 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
284 }
285 static struct kobj_attribute use_zero_page_attr =
286 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
287 
288 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
289 		struct kobj_attribute *attr, char *buf)
290 {
291 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
292 }
293 static struct kobj_attribute hpage_pmd_size_attr =
294 	__ATTR_RO(hpage_pmd_size);
295 
296 #ifdef CONFIG_DEBUG_VM
297 static ssize_t debug_cow_show(struct kobject *kobj,
298 				struct kobj_attribute *attr, char *buf)
299 {
300 	return single_hugepage_flag_show(kobj, attr, buf,
301 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
302 }
303 static ssize_t debug_cow_store(struct kobject *kobj,
304 			       struct kobj_attribute *attr,
305 			       const char *buf, size_t count)
306 {
307 	return single_hugepage_flag_store(kobj, attr, buf, count,
308 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
309 }
310 static struct kobj_attribute debug_cow_attr =
311 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
312 #endif /* CONFIG_DEBUG_VM */
313 
314 static struct attribute *hugepage_attr[] = {
315 	&enabled_attr.attr,
316 	&defrag_attr.attr,
317 	&use_zero_page_attr.attr,
318 	&hpage_pmd_size_attr.attr,
319 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
320 	&shmem_enabled_attr.attr,
321 #endif
322 #ifdef CONFIG_DEBUG_VM
323 	&debug_cow_attr.attr,
324 #endif
325 	NULL,
326 };
327 
328 static struct attribute_group hugepage_attr_group = {
329 	.attrs = hugepage_attr,
330 };
331 
332 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
333 {
334 	int err;
335 
336 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
337 	if (unlikely(!*hugepage_kobj)) {
338 		pr_err("failed to create transparent hugepage kobject\n");
339 		return -ENOMEM;
340 	}
341 
342 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
343 	if (err) {
344 		pr_err("failed to register transparent hugepage group\n");
345 		goto delete_obj;
346 	}
347 
348 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
349 	if (err) {
350 		pr_err("failed to register transparent hugepage group\n");
351 		goto remove_hp_group;
352 	}
353 
354 	return 0;
355 
356 remove_hp_group:
357 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
358 delete_obj:
359 	kobject_put(*hugepage_kobj);
360 	return err;
361 }
362 
363 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
364 {
365 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
366 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
367 	kobject_put(hugepage_kobj);
368 }
369 #else
370 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
371 {
372 	return 0;
373 }
374 
375 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
376 {
377 }
378 #endif /* CONFIG_SYSFS */
379 
380 static int __init hugepage_init(void)
381 {
382 	int err;
383 	struct kobject *hugepage_kobj;
384 
385 	if (!has_transparent_hugepage()) {
386 		transparent_hugepage_flags = 0;
387 		return -EINVAL;
388 	}
389 
390 	/*
391 	 * hugepages can't be allocated by the buddy allocator
392 	 */
393 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
394 	/*
395 	 * we use page->mapping and page->index in second tail page
396 	 * as list_head: assuming THP order >= 2
397 	 */
398 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
399 
400 	err = hugepage_init_sysfs(&hugepage_kobj);
401 	if (err)
402 		goto err_sysfs;
403 
404 	err = khugepaged_init();
405 	if (err)
406 		goto err_slab;
407 
408 	err = register_shrinker(&huge_zero_page_shrinker);
409 	if (err)
410 		goto err_hzp_shrinker;
411 	err = register_shrinker(&deferred_split_shrinker);
412 	if (err)
413 		goto err_split_shrinker;
414 
415 	/*
416 	 * By default disable transparent hugepages on smaller systems,
417 	 * where the extra memory used could hurt more than TLB overhead
418 	 * is likely to save.  The admin can still enable it through /sys.
419 	 */
420 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
421 		transparent_hugepage_flags = 0;
422 		return 0;
423 	}
424 
425 	err = start_stop_khugepaged();
426 	if (err)
427 		goto err_khugepaged;
428 
429 	return 0;
430 err_khugepaged:
431 	unregister_shrinker(&deferred_split_shrinker);
432 err_split_shrinker:
433 	unregister_shrinker(&huge_zero_page_shrinker);
434 err_hzp_shrinker:
435 	khugepaged_destroy();
436 err_slab:
437 	hugepage_exit_sysfs(hugepage_kobj);
438 err_sysfs:
439 	return err;
440 }
441 subsys_initcall(hugepage_init);
442 
443 static int __init setup_transparent_hugepage(char *str)
444 {
445 	int ret = 0;
446 	if (!str)
447 		goto out;
448 	if (!strcmp(str, "always")) {
449 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
450 			&transparent_hugepage_flags);
451 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
452 			  &transparent_hugepage_flags);
453 		ret = 1;
454 	} else if (!strcmp(str, "madvise")) {
455 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
456 			  &transparent_hugepage_flags);
457 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
458 			&transparent_hugepage_flags);
459 		ret = 1;
460 	} else if (!strcmp(str, "never")) {
461 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
462 			  &transparent_hugepage_flags);
463 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
464 			  &transparent_hugepage_flags);
465 		ret = 1;
466 	}
467 out:
468 	if (!ret)
469 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
470 	return ret;
471 }
472 __setup("transparent_hugepage=", setup_transparent_hugepage);
473 
474 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
475 {
476 	if (likely(vma->vm_flags & VM_WRITE))
477 		pmd = pmd_mkwrite(pmd);
478 	return pmd;
479 }
480 
481 static inline struct list_head *page_deferred_list(struct page *page)
482 {
483 	/*
484 	 * ->lru in the tail pages is occupied by compound_head.
485 	 * Let's use ->mapping + ->index in the second tail page as list_head.
486 	 */
487 	return (struct list_head *)&page[2].mapping;
488 }
489 
490 void prep_transhuge_page(struct page *page)
491 {
492 	/*
493 	 * we use page->mapping and page->indexlru in second tail page
494 	 * as list_head: assuming THP order >= 2
495 	 */
496 
497 	INIT_LIST_HEAD(page_deferred_list(page));
498 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
499 }
500 
501 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
502 		loff_t off, unsigned long flags, unsigned long size)
503 {
504 	unsigned long addr;
505 	loff_t off_end = off + len;
506 	loff_t off_align = round_up(off, size);
507 	unsigned long len_pad;
508 
509 	if (off_end <= off_align || (off_end - off_align) < size)
510 		return 0;
511 
512 	len_pad = len + size;
513 	if (len_pad < len || (off + len_pad) < off)
514 		return 0;
515 
516 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
517 					      off >> PAGE_SHIFT, flags);
518 	if (IS_ERR_VALUE(addr))
519 		return 0;
520 
521 	addr += (off - addr) & (size - 1);
522 	return addr;
523 }
524 
525 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
526 		unsigned long len, unsigned long pgoff, unsigned long flags)
527 {
528 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
529 
530 	if (addr)
531 		goto out;
532 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
533 		goto out;
534 
535 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
536 	if (addr)
537 		return addr;
538 
539  out:
540 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
541 }
542 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
543 
544 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
545 		gfp_t gfp)
546 {
547 	struct vm_area_struct *vma = vmf->vma;
548 	struct mem_cgroup *memcg;
549 	pgtable_t pgtable;
550 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
551 
552 	VM_BUG_ON_PAGE(!PageCompound(page), page);
553 
554 	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
555 		put_page(page);
556 		count_vm_event(THP_FAULT_FALLBACK);
557 		return VM_FAULT_FALLBACK;
558 	}
559 
560 	pgtable = pte_alloc_one(vma->vm_mm, haddr);
561 	if (unlikely(!pgtable)) {
562 		mem_cgroup_cancel_charge(page, memcg, true);
563 		put_page(page);
564 		return VM_FAULT_OOM;
565 	}
566 
567 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
568 	/*
569 	 * The memory barrier inside __SetPageUptodate makes sure that
570 	 * clear_huge_page writes become visible before the set_pmd_at()
571 	 * write.
572 	 */
573 	__SetPageUptodate(page);
574 
575 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
576 	if (unlikely(!pmd_none(*vmf->pmd))) {
577 		spin_unlock(vmf->ptl);
578 		mem_cgroup_cancel_charge(page, memcg, true);
579 		put_page(page);
580 		pte_free(vma->vm_mm, pgtable);
581 	} else {
582 		pmd_t entry;
583 
584 		/* Deliver the page fault to userland */
585 		if (userfaultfd_missing(vma)) {
586 			int ret;
587 
588 			spin_unlock(vmf->ptl);
589 			mem_cgroup_cancel_charge(page, memcg, true);
590 			put_page(page);
591 			pte_free(vma->vm_mm, pgtable);
592 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
593 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
594 			return ret;
595 		}
596 
597 		entry = mk_huge_pmd(page, vma->vm_page_prot);
598 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
599 		page_add_new_anon_rmap(page, vma, haddr, true);
600 		mem_cgroup_commit_charge(page, memcg, false, true);
601 		lru_cache_add_active_or_unevictable(page, vma);
602 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
603 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
604 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
605 		atomic_long_inc(&vma->vm_mm->nr_ptes);
606 		spin_unlock(vmf->ptl);
607 		count_vm_event(THP_FAULT_ALLOC);
608 	}
609 
610 	return 0;
611 }
612 
613 /*
614  * always: directly stall for all thp allocations
615  * defer: wake kswapd and fail if not immediately available
616  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
617  *		  fail if not immediately available
618  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
619  *	    available
620  * never: never stall for any thp allocation
621  */
622 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
623 {
624 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
625 
626 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
627 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
628 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
629 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
630 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
631 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
632 							     __GFP_KSWAPD_RECLAIM);
633 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
634 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
635 							     0);
636 	return GFP_TRANSHUGE_LIGHT;
637 }
638 
639 /* Caller must hold page table lock. */
640 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
641 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
642 		struct page *zero_page)
643 {
644 	pmd_t entry;
645 	if (!pmd_none(*pmd))
646 		return false;
647 	entry = mk_pmd(zero_page, vma->vm_page_prot);
648 	entry = pmd_mkhuge(entry);
649 	if (pgtable)
650 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
651 	set_pmd_at(mm, haddr, pmd, entry);
652 	atomic_long_inc(&mm->nr_ptes);
653 	return true;
654 }
655 
656 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
657 {
658 	struct vm_area_struct *vma = vmf->vma;
659 	gfp_t gfp;
660 	struct page *page;
661 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
662 
663 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
664 		return VM_FAULT_FALLBACK;
665 	if (unlikely(anon_vma_prepare(vma)))
666 		return VM_FAULT_OOM;
667 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
668 		return VM_FAULT_OOM;
669 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
670 			!mm_forbids_zeropage(vma->vm_mm) &&
671 			transparent_hugepage_use_zero_page()) {
672 		pgtable_t pgtable;
673 		struct page *zero_page;
674 		bool set;
675 		int ret;
676 		pgtable = pte_alloc_one(vma->vm_mm, haddr);
677 		if (unlikely(!pgtable))
678 			return VM_FAULT_OOM;
679 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
680 		if (unlikely(!zero_page)) {
681 			pte_free(vma->vm_mm, pgtable);
682 			count_vm_event(THP_FAULT_FALLBACK);
683 			return VM_FAULT_FALLBACK;
684 		}
685 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
686 		ret = 0;
687 		set = false;
688 		if (pmd_none(*vmf->pmd)) {
689 			if (userfaultfd_missing(vma)) {
690 				spin_unlock(vmf->ptl);
691 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
692 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
693 			} else {
694 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
695 						   haddr, vmf->pmd, zero_page);
696 				spin_unlock(vmf->ptl);
697 				set = true;
698 			}
699 		} else
700 			spin_unlock(vmf->ptl);
701 		if (!set)
702 			pte_free(vma->vm_mm, pgtable);
703 		return ret;
704 	}
705 	gfp = alloc_hugepage_direct_gfpmask(vma);
706 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
707 	if (unlikely(!page)) {
708 		count_vm_event(THP_FAULT_FALLBACK);
709 		return VM_FAULT_FALLBACK;
710 	}
711 	prep_transhuge_page(page);
712 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
713 }
714 
715 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
716 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
717 {
718 	struct mm_struct *mm = vma->vm_mm;
719 	pmd_t entry;
720 	spinlock_t *ptl;
721 
722 	ptl = pmd_lock(mm, pmd);
723 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
724 	if (pfn_t_devmap(pfn))
725 		entry = pmd_mkdevmap(entry);
726 	if (write) {
727 		entry = pmd_mkyoung(pmd_mkdirty(entry));
728 		entry = maybe_pmd_mkwrite(entry, vma);
729 	}
730 	set_pmd_at(mm, addr, pmd, entry);
731 	update_mmu_cache_pmd(vma, addr, pmd);
732 	spin_unlock(ptl);
733 }
734 
735 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
736 			pmd_t *pmd, pfn_t pfn, bool write)
737 {
738 	pgprot_t pgprot = vma->vm_page_prot;
739 	/*
740 	 * If we had pmd_special, we could avoid all these restrictions,
741 	 * but we need to be consistent with PTEs and architectures that
742 	 * can't support a 'special' bit.
743 	 */
744 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
745 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
746 						(VM_PFNMAP|VM_MIXEDMAP));
747 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
748 	BUG_ON(!pfn_t_devmap(pfn));
749 
750 	if (addr < vma->vm_start || addr >= vma->vm_end)
751 		return VM_FAULT_SIGBUS;
752 
753 	track_pfn_insert(vma, &pgprot, pfn);
754 
755 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
756 	return VM_FAULT_NOPAGE;
757 }
758 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
759 
760 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
761 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
762 {
763 	if (likely(vma->vm_flags & VM_WRITE))
764 		pud = pud_mkwrite(pud);
765 	return pud;
766 }
767 
768 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
769 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
770 {
771 	struct mm_struct *mm = vma->vm_mm;
772 	pud_t entry;
773 	spinlock_t *ptl;
774 
775 	ptl = pud_lock(mm, pud);
776 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
777 	if (pfn_t_devmap(pfn))
778 		entry = pud_mkdevmap(entry);
779 	if (write) {
780 		entry = pud_mkyoung(pud_mkdirty(entry));
781 		entry = maybe_pud_mkwrite(entry, vma);
782 	}
783 	set_pud_at(mm, addr, pud, entry);
784 	update_mmu_cache_pud(vma, addr, pud);
785 	spin_unlock(ptl);
786 }
787 
788 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
789 			pud_t *pud, pfn_t pfn, bool write)
790 {
791 	pgprot_t pgprot = vma->vm_page_prot;
792 	/*
793 	 * If we had pud_special, we could avoid all these restrictions,
794 	 * but we need to be consistent with PTEs and architectures that
795 	 * can't support a 'special' bit.
796 	 */
797 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
798 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
799 						(VM_PFNMAP|VM_MIXEDMAP));
800 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
801 	BUG_ON(!pfn_t_devmap(pfn));
802 
803 	if (addr < vma->vm_start || addr >= vma->vm_end)
804 		return VM_FAULT_SIGBUS;
805 
806 	track_pfn_insert(vma, &pgprot, pfn);
807 
808 	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
809 	return VM_FAULT_NOPAGE;
810 }
811 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
812 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
813 
814 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
815 		pmd_t *pmd)
816 {
817 	pmd_t _pmd;
818 
819 	/*
820 	 * We should set the dirty bit only for FOLL_WRITE but for now
821 	 * the dirty bit in the pmd is meaningless.  And if the dirty
822 	 * bit will become meaningful and we'll only set it with
823 	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
824 	 * set the young bit, instead of the current set_pmd_at.
825 	 */
826 	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
827 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
828 				pmd, _pmd,  1))
829 		update_mmu_cache_pmd(vma, addr, pmd);
830 }
831 
832 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
833 		pmd_t *pmd, int flags)
834 {
835 	unsigned long pfn = pmd_pfn(*pmd);
836 	struct mm_struct *mm = vma->vm_mm;
837 	struct dev_pagemap *pgmap;
838 	struct page *page;
839 
840 	assert_spin_locked(pmd_lockptr(mm, pmd));
841 
842 	/*
843 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
844 	 * not be in this function with `flags & FOLL_COW` set.
845 	 */
846 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
847 
848 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
849 		return NULL;
850 
851 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
852 		/* pass */;
853 	else
854 		return NULL;
855 
856 	if (flags & FOLL_TOUCH)
857 		touch_pmd(vma, addr, pmd);
858 
859 	/*
860 	 * device mapped pages can only be returned if the
861 	 * caller will manage the page reference count.
862 	 */
863 	if (!(flags & FOLL_GET))
864 		return ERR_PTR(-EEXIST);
865 
866 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
867 	pgmap = get_dev_pagemap(pfn, NULL);
868 	if (!pgmap)
869 		return ERR_PTR(-EFAULT);
870 	page = pfn_to_page(pfn);
871 	get_page(page);
872 	put_dev_pagemap(pgmap);
873 
874 	return page;
875 }
876 
877 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
878 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
879 		  struct vm_area_struct *vma)
880 {
881 	spinlock_t *dst_ptl, *src_ptl;
882 	struct page *src_page;
883 	pmd_t pmd;
884 	pgtable_t pgtable = NULL;
885 	int ret = -ENOMEM;
886 
887 	/* Skip if can be re-fill on fault */
888 	if (!vma_is_anonymous(vma))
889 		return 0;
890 
891 	pgtable = pte_alloc_one(dst_mm, addr);
892 	if (unlikely(!pgtable))
893 		goto out;
894 
895 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
896 	src_ptl = pmd_lockptr(src_mm, src_pmd);
897 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
898 
899 	ret = -EAGAIN;
900 	pmd = *src_pmd;
901 	if (unlikely(!pmd_trans_huge(pmd))) {
902 		pte_free(dst_mm, pgtable);
903 		goto out_unlock;
904 	}
905 	/*
906 	 * When page table lock is held, the huge zero pmd should not be
907 	 * under splitting since we don't split the page itself, only pmd to
908 	 * a page table.
909 	 */
910 	if (is_huge_zero_pmd(pmd)) {
911 		struct page *zero_page;
912 		/*
913 		 * get_huge_zero_page() will never allocate a new page here,
914 		 * since we already have a zero page to copy. It just takes a
915 		 * reference.
916 		 */
917 		zero_page = mm_get_huge_zero_page(dst_mm);
918 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
919 				zero_page);
920 		ret = 0;
921 		goto out_unlock;
922 	}
923 
924 	src_page = pmd_page(pmd);
925 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
926 	get_page(src_page);
927 	page_dup_rmap(src_page, true);
928 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
929 	atomic_long_inc(&dst_mm->nr_ptes);
930 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
931 
932 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
933 	pmd = pmd_mkold(pmd_wrprotect(pmd));
934 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
935 
936 	ret = 0;
937 out_unlock:
938 	spin_unlock(src_ptl);
939 	spin_unlock(dst_ptl);
940 out:
941 	return ret;
942 }
943 
944 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
945 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
946 		pud_t *pud)
947 {
948 	pud_t _pud;
949 
950 	/*
951 	 * We should set the dirty bit only for FOLL_WRITE but for now
952 	 * the dirty bit in the pud is meaningless.  And if the dirty
953 	 * bit will become meaningful and we'll only set it with
954 	 * FOLL_WRITE, an atomic set_bit will be required on the pud to
955 	 * set the young bit, instead of the current set_pud_at.
956 	 */
957 	_pud = pud_mkyoung(pud_mkdirty(*pud));
958 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
959 				pud, _pud,  1))
960 		update_mmu_cache_pud(vma, addr, pud);
961 }
962 
963 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
964 		pud_t *pud, int flags)
965 {
966 	unsigned long pfn = pud_pfn(*pud);
967 	struct mm_struct *mm = vma->vm_mm;
968 	struct dev_pagemap *pgmap;
969 	struct page *page;
970 
971 	assert_spin_locked(pud_lockptr(mm, pud));
972 
973 	if (flags & FOLL_WRITE && !pud_write(*pud))
974 		return NULL;
975 
976 	if (pud_present(*pud) && pud_devmap(*pud))
977 		/* pass */;
978 	else
979 		return NULL;
980 
981 	if (flags & FOLL_TOUCH)
982 		touch_pud(vma, addr, pud);
983 
984 	/*
985 	 * device mapped pages can only be returned if the
986 	 * caller will manage the page reference count.
987 	 */
988 	if (!(flags & FOLL_GET))
989 		return ERR_PTR(-EEXIST);
990 
991 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
992 	pgmap = get_dev_pagemap(pfn, NULL);
993 	if (!pgmap)
994 		return ERR_PTR(-EFAULT);
995 	page = pfn_to_page(pfn);
996 	get_page(page);
997 	put_dev_pagemap(pgmap);
998 
999 	return page;
1000 }
1001 
1002 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1003 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1004 		  struct vm_area_struct *vma)
1005 {
1006 	spinlock_t *dst_ptl, *src_ptl;
1007 	pud_t pud;
1008 	int ret;
1009 
1010 	dst_ptl = pud_lock(dst_mm, dst_pud);
1011 	src_ptl = pud_lockptr(src_mm, src_pud);
1012 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1013 
1014 	ret = -EAGAIN;
1015 	pud = *src_pud;
1016 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1017 		goto out_unlock;
1018 
1019 	/*
1020 	 * When page table lock is held, the huge zero pud should not be
1021 	 * under splitting since we don't split the page itself, only pud to
1022 	 * a page table.
1023 	 */
1024 	if (is_huge_zero_pud(pud)) {
1025 		/* No huge zero pud yet */
1026 	}
1027 
1028 	pudp_set_wrprotect(src_mm, addr, src_pud);
1029 	pud = pud_mkold(pud_wrprotect(pud));
1030 	set_pud_at(dst_mm, addr, dst_pud, pud);
1031 
1032 	ret = 0;
1033 out_unlock:
1034 	spin_unlock(src_ptl);
1035 	spin_unlock(dst_ptl);
1036 	return ret;
1037 }
1038 
1039 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1040 {
1041 	pud_t entry;
1042 	unsigned long haddr;
1043 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1044 
1045 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1046 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1047 		goto unlock;
1048 
1049 	entry = pud_mkyoung(orig_pud);
1050 	if (write)
1051 		entry = pud_mkdirty(entry);
1052 	haddr = vmf->address & HPAGE_PUD_MASK;
1053 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1054 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1055 
1056 unlock:
1057 	spin_unlock(vmf->ptl);
1058 }
1059 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1060 
1061 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1062 {
1063 	pmd_t entry;
1064 	unsigned long haddr;
1065 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1066 
1067 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1068 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1069 		goto unlock;
1070 
1071 	entry = pmd_mkyoung(orig_pmd);
1072 	if (write)
1073 		entry = pmd_mkdirty(entry);
1074 	haddr = vmf->address & HPAGE_PMD_MASK;
1075 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1076 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1077 
1078 unlock:
1079 	spin_unlock(vmf->ptl);
1080 }
1081 
1082 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1083 		struct page *page)
1084 {
1085 	struct vm_area_struct *vma = vmf->vma;
1086 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1087 	struct mem_cgroup *memcg;
1088 	pgtable_t pgtable;
1089 	pmd_t _pmd;
1090 	int ret = 0, i;
1091 	struct page **pages;
1092 	unsigned long mmun_start;	/* For mmu_notifiers */
1093 	unsigned long mmun_end;		/* For mmu_notifiers */
1094 
1095 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1096 			GFP_KERNEL);
1097 	if (unlikely(!pages)) {
1098 		ret |= VM_FAULT_OOM;
1099 		goto out;
1100 	}
1101 
1102 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1103 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1104 					       vmf->address, page_to_nid(page));
1105 		if (unlikely(!pages[i] ||
1106 			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
1107 				     GFP_KERNEL, &memcg, false))) {
1108 			if (pages[i])
1109 				put_page(pages[i]);
1110 			while (--i >= 0) {
1111 				memcg = (void *)page_private(pages[i]);
1112 				set_page_private(pages[i], 0);
1113 				mem_cgroup_cancel_charge(pages[i], memcg,
1114 						false);
1115 				put_page(pages[i]);
1116 			}
1117 			kfree(pages);
1118 			ret |= VM_FAULT_OOM;
1119 			goto out;
1120 		}
1121 		set_page_private(pages[i], (unsigned long)memcg);
1122 	}
1123 
1124 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1125 		copy_user_highpage(pages[i], page + i,
1126 				   haddr + PAGE_SIZE * i, vma);
1127 		__SetPageUptodate(pages[i]);
1128 		cond_resched();
1129 	}
1130 
1131 	mmun_start = haddr;
1132 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1133 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1134 
1135 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1136 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1137 		goto out_free_pages;
1138 	VM_BUG_ON_PAGE(!PageHead(page), page);
1139 
1140 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1141 	/* leave pmd empty until pte is filled */
1142 
1143 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1144 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1145 
1146 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1147 		pte_t entry;
1148 		entry = mk_pte(pages[i], vma->vm_page_prot);
1149 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1150 		memcg = (void *)page_private(pages[i]);
1151 		set_page_private(pages[i], 0);
1152 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1153 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1154 		lru_cache_add_active_or_unevictable(pages[i], vma);
1155 		vmf->pte = pte_offset_map(&_pmd, haddr);
1156 		VM_BUG_ON(!pte_none(*vmf->pte));
1157 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1158 		pte_unmap(vmf->pte);
1159 	}
1160 	kfree(pages);
1161 
1162 	smp_wmb(); /* make pte visible before pmd */
1163 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1164 	page_remove_rmap(page, true);
1165 	spin_unlock(vmf->ptl);
1166 
1167 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1168 
1169 	ret |= VM_FAULT_WRITE;
1170 	put_page(page);
1171 
1172 out:
1173 	return ret;
1174 
1175 out_free_pages:
1176 	spin_unlock(vmf->ptl);
1177 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1178 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1179 		memcg = (void *)page_private(pages[i]);
1180 		set_page_private(pages[i], 0);
1181 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1182 		put_page(pages[i]);
1183 	}
1184 	kfree(pages);
1185 	goto out;
1186 }
1187 
1188 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1189 {
1190 	struct vm_area_struct *vma = vmf->vma;
1191 	struct page *page = NULL, *new_page;
1192 	struct mem_cgroup *memcg;
1193 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1194 	unsigned long mmun_start;	/* For mmu_notifiers */
1195 	unsigned long mmun_end;		/* For mmu_notifiers */
1196 	gfp_t huge_gfp;			/* for allocation and charge */
1197 	int ret = 0;
1198 
1199 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1200 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1201 	if (is_huge_zero_pmd(orig_pmd))
1202 		goto alloc;
1203 	spin_lock(vmf->ptl);
1204 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1205 		goto out_unlock;
1206 
1207 	page = pmd_page(orig_pmd);
1208 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1209 	/*
1210 	 * We can only reuse the page if nobody else maps the huge page or it's
1211 	 * part.
1212 	 */
1213 	if (page_trans_huge_mapcount(page, NULL) == 1) {
1214 		pmd_t entry;
1215 		entry = pmd_mkyoung(orig_pmd);
1216 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1217 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1218 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1219 		ret |= VM_FAULT_WRITE;
1220 		goto out_unlock;
1221 	}
1222 	get_page(page);
1223 	spin_unlock(vmf->ptl);
1224 alloc:
1225 	if (transparent_hugepage_enabled(vma) &&
1226 	    !transparent_hugepage_debug_cow()) {
1227 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1228 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1229 	} else
1230 		new_page = NULL;
1231 
1232 	if (likely(new_page)) {
1233 		prep_transhuge_page(new_page);
1234 	} else {
1235 		if (!page) {
1236 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1237 			ret |= VM_FAULT_FALLBACK;
1238 		} else {
1239 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1240 			if (ret & VM_FAULT_OOM) {
1241 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1242 				ret |= VM_FAULT_FALLBACK;
1243 			}
1244 			put_page(page);
1245 		}
1246 		count_vm_event(THP_FAULT_FALLBACK);
1247 		goto out;
1248 	}
1249 
1250 	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1251 					huge_gfp, &memcg, true))) {
1252 		put_page(new_page);
1253 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1254 		if (page)
1255 			put_page(page);
1256 		ret |= VM_FAULT_FALLBACK;
1257 		count_vm_event(THP_FAULT_FALLBACK);
1258 		goto out;
1259 	}
1260 
1261 	count_vm_event(THP_FAULT_ALLOC);
1262 
1263 	if (!page)
1264 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1265 	else
1266 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1267 	__SetPageUptodate(new_page);
1268 
1269 	mmun_start = haddr;
1270 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1271 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1272 
1273 	spin_lock(vmf->ptl);
1274 	if (page)
1275 		put_page(page);
1276 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1277 		spin_unlock(vmf->ptl);
1278 		mem_cgroup_cancel_charge(new_page, memcg, true);
1279 		put_page(new_page);
1280 		goto out_mn;
1281 	} else {
1282 		pmd_t entry;
1283 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1284 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1285 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1286 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1287 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1288 		lru_cache_add_active_or_unevictable(new_page, vma);
1289 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1290 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1291 		if (!page) {
1292 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1293 		} else {
1294 			VM_BUG_ON_PAGE(!PageHead(page), page);
1295 			page_remove_rmap(page, true);
1296 			put_page(page);
1297 		}
1298 		ret |= VM_FAULT_WRITE;
1299 	}
1300 	spin_unlock(vmf->ptl);
1301 out_mn:
1302 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1303 out:
1304 	return ret;
1305 out_unlock:
1306 	spin_unlock(vmf->ptl);
1307 	return ret;
1308 }
1309 
1310 /*
1311  * FOLL_FORCE can write to even unwritable pmd's, but only
1312  * after we've gone through a COW cycle and they are dirty.
1313  */
1314 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1315 {
1316 	return pmd_write(pmd) ||
1317 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1318 }
1319 
1320 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1321 				   unsigned long addr,
1322 				   pmd_t *pmd,
1323 				   unsigned int flags)
1324 {
1325 	struct mm_struct *mm = vma->vm_mm;
1326 	struct page *page = NULL;
1327 
1328 	assert_spin_locked(pmd_lockptr(mm, pmd));
1329 
1330 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1331 		goto out;
1332 
1333 	/* Avoid dumping huge zero page */
1334 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1335 		return ERR_PTR(-EFAULT);
1336 
1337 	/* Full NUMA hinting faults to serialise migration in fault paths */
1338 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1339 		goto out;
1340 
1341 	page = pmd_page(*pmd);
1342 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1343 	if (flags & FOLL_TOUCH)
1344 		touch_pmd(vma, addr, pmd);
1345 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1346 		/*
1347 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1348 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1349 		 *
1350 		 * For anon THP:
1351 		 *
1352 		 * In most cases the pmd is the only mapping of the page as we
1353 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1354 		 * writable private mappings in populate_vma_page_range().
1355 		 *
1356 		 * The only scenario when we have the page shared here is if we
1357 		 * mlocking read-only mapping shared over fork(). We skip
1358 		 * mlocking such pages.
1359 		 *
1360 		 * For file THP:
1361 		 *
1362 		 * We can expect PageDoubleMap() to be stable under page lock:
1363 		 * for file pages we set it in page_add_file_rmap(), which
1364 		 * requires page to be locked.
1365 		 */
1366 
1367 		if (PageAnon(page) && compound_mapcount(page) != 1)
1368 			goto skip_mlock;
1369 		if (PageDoubleMap(page) || !page->mapping)
1370 			goto skip_mlock;
1371 		if (!trylock_page(page))
1372 			goto skip_mlock;
1373 		lru_add_drain();
1374 		if (page->mapping && !PageDoubleMap(page))
1375 			mlock_vma_page(page);
1376 		unlock_page(page);
1377 	}
1378 skip_mlock:
1379 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1380 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1381 	if (flags & FOLL_GET)
1382 		get_page(page);
1383 
1384 out:
1385 	return page;
1386 }
1387 
1388 /* NUMA hinting page fault entry point for trans huge pmds */
1389 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1390 {
1391 	struct vm_area_struct *vma = vmf->vma;
1392 	struct anon_vma *anon_vma = NULL;
1393 	struct page *page;
1394 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1395 	int page_nid = -1, this_nid = numa_node_id();
1396 	int target_nid, last_cpupid = -1;
1397 	bool page_locked;
1398 	bool migrated = false;
1399 	bool was_writable;
1400 	int flags = 0;
1401 
1402 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1403 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1404 		goto out_unlock;
1405 
1406 	/*
1407 	 * If there are potential migrations, wait for completion and retry
1408 	 * without disrupting NUMA hinting information. Do not relock and
1409 	 * check_same as the page may no longer be mapped.
1410 	 */
1411 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1412 		page = pmd_page(*vmf->pmd);
1413 		spin_unlock(vmf->ptl);
1414 		wait_on_page_locked(page);
1415 		goto out;
1416 	}
1417 
1418 	page = pmd_page(pmd);
1419 	BUG_ON(is_huge_zero_page(page));
1420 	page_nid = page_to_nid(page);
1421 	last_cpupid = page_cpupid_last(page);
1422 	count_vm_numa_event(NUMA_HINT_FAULTS);
1423 	if (page_nid == this_nid) {
1424 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1425 		flags |= TNF_FAULT_LOCAL;
1426 	}
1427 
1428 	/* See similar comment in do_numa_page for explanation */
1429 	if (!pmd_savedwrite(pmd))
1430 		flags |= TNF_NO_GROUP;
1431 
1432 	/*
1433 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1434 	 * page_table_lock if at all possible
1435 	 */
1436 	page_locked = trylock_page(page);
1437 	target_nid = mpol_misplaced(page, vma, haddr);
1438 	if (target_nid == -1) {
1439 		/* If the page was locked, there are no parallel migrations */
1440 		if (page_locked)
1441 			goto clear_pmdnuma;
1442 	}
1443 
1444 	/* Migration could have started since the pmd_trans_migrating check */
1445 	if (!page_locked) {
1446 		spin_unlock(vmf->ptl);
1447 		wait_on_page_locked(page);
1448 		page_nid = -1;
1449 		goto out;
1450 	}
1451 
1452 	/*
1453 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1454 	 * to serialises splits
1455 	 */
1456 	get_page(page);
1457 	spin_unlock(vmf->ptl);
1458 	anon_vma = page_lock_anon_vma_read(page);
1459 
1460 	/* Confirm the PMD did not change while page_table_lock was released */
1461 	spin_lock(vmf->ptl);
1462 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1463 		unlock_page(page);
1464 		put_page(page);
1465 		page_nid = -1;
1466 		goto out_unlock;
1467 	}
1468 
1469 	/* Bail if we fail to protect against THP splits for any reason */
1470 	if (unlikely(!anon_vma)) {
1471 		put_page(page);
1472 		page_nid = -1;
1473 		goto clear_pmdnuma;
1474 	}
1475 
1476 	/*
1477 	 * Migrate the THP to the requested node, returns with page unlocked
1478 	 * and access rights restored.
1479 	 */
1480 	spin_unlock(vmf->ptl);
1481 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1482 				vmf->pmd, pmd, vmf->address, page, target_nid);
1483 	if (migrated) {
1484 		flags |= TNF_MIGRATED;
1485 		page_nid = target_nid;
1486 	} else
1487 		flags |= TNF_MIGRATE_FAIL;
1488 
1489 	goto out;
1490 clear_pmdnuma:
1491 	BUG_ON(!PageLocked(page));
1492 	was_writable = pmd_savedwrite(pmd);
1493 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1494 	pmd = pmd_mkyoung(pmd);
1495 	if (was_writable)
1496 		pmd = pmd_mkwrite(pmd);
1497 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1498 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1499 	unlock_page(page);
1500 out_unlock:
1501 	spin_unlock(vmf->ptl);
1502 
1503 out:
1504 	if (anon_vma)
1505 		page_unlock_anon_vma_read(anon_vma);
1506 
1507 	if (page_nid != -1)
1508 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1509 				flags);
1510 
1511 	return 0;
1512 }
1513 
1514 /*
1515  * Return true if we do MADV_FREE successfully on entire pmd page.
1516  * Otherwise, return false.
1517  */
1518 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1519 		pmd_t *pmd, unsigned long addr, unsigned long next)
1520 {
1521 	spinlock_t *ptl;
1522 	pmd_t orig_pmd;
1523 	struct page *page;
1524 	struct mm_struct *mm = tlb->mm;
1525 	bool ret = false;
1526 
1527 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1528 
1529 	ptl = pmd_trans_huge_lock(pmd, vma);
1530 	if (!ptl)
1531 		goto out_unlocked;
1532 
1533 	orig_pmd = *pmd;
1534 	if (is_huge_zero_pmd(orig_pmd))
1535 		goto out;
1536 
1537 	page = pmd_page(orig_pmd);
1538 	/*
1539 	 * If other processes are mapping this page, we couldn't discard
1540 	 * the page unless they all do MADV_FREE so let's skip the page.
1541 	 */
1542 	if (page_mapcount(page) != 1)
1543 		goto out;
1544 
1545 	if (!trylock_page(page))
1546 		goto out;
1547 
1548 	/*
1549 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1550 	 * will deactivate only them.
1551 	 */
1552 	if (next - addr != HPAGE_PMD_SIZE) {
1553 		get_page(page);
1554 		spin_unlock(ptl);
1555 		split_huge_page(page);
1556 		put_page(page);
1557 		unlock_page(page);
1558 		goto out_unlocked;
1559 	}
1560 
1561 	if (PageDirty(page))
1562 		ClearPageDirty(page);
1563 	unlock_page(page);
1564 
1565 	if (PageActive(page))
1566 		deactivate_page(page);
1567 
1568 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1569 		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1570 			tlb->fullmm);
1571 		orig_pmd = pmd_mkold(orig_pmd);
1572 		orig_pmd = pmd_mkclean(orig_pmd);
1573 
1574 		set_pmd_at(mm, addr, pmd, orig_pmd);
1575 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1576 	}
1577 	ret = true;
1578 out:
1579 	spin_unlock(ptl);
1580 out_unlocked:
1581 	return ret;
1582 }
1583 
1584 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1585 {
1586 	pgtable_t pgtable;
1587 
1588 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1589 	pte_free(mm, pgtable);
1590 	atomic_long_dec(&mm->nr_ptes);
1591 }
1592 
1593 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1594 		 pmd_t *pmd, unsigned long addr)
1595 {
1596 	pmd_t orig_pmd;
1597 	spinlock_t *ptl;
1598 
1599 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1600 
1601 	ptl = __pmd_trans_huge_lock(pmd, vma);
1602 	if (!ptl)
1603 		return 0;
1604 	/*
1605 	 * For architectures like ppc64 we look at deposited pgtable
1606 	 * when calling pmdp_huge_get_and_clear. So do the
1607 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1608 	 * operations.
1609 	 */
1610 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1611 			tlb->fullmm);
1612 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1613 	if (vma_is_dax(vma)) {
1614 		spin_unlock(ptl);
1615 		if (is_huge_zero_pmd(orig_pmd))
1616 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1617 	} else if (is_huge_zero_pmd(orig_pmd)) {
1618 		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1619 		atomic_long_dec(&tlb->mm->nr_ptes);
1620 		spin_unlock(ptl);
1621 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1622 	} else {
1623 		struct page *page = pmd_page(orig_pmd);
1624 		page_remove_rmap(page, true);
1625 		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1626 		VM_BUG_ON_PAGE(!PageHead(page), page);
1627 		if (PageAnon(page)) {
1628 			pgtable_t pgtable;
1629 			pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1630 			pte_free(tlb->mm, pgtable);
1631 			atomic_long_dec(&tlb->mm->nr_ptes);
1632 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1633 		} else {
1634 			if (arch_needs_pgtable_deposit())
1635 				zap_deposited_table(tlb->mm, pmd);
1636 			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1637 		}
1638 		spin_unlock(ptl);
1639 		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1640 	}
1641 	return 1;
1642 }
1643 
1644 #ifndef pmd_move_must_withdraw
1645 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1646 					 spinlock_t *old_pmd_ptl,
1647 					 struct vm_area_struct *vma)
1648 {
1649 	/*
1650 	 * With split pmd lock we also need to move preallocated
1651 	 * PTE page table if new_pmd is on different PMD page table.
1652 	 *
1653 	 * We also don't deposit and withdraw tables for file pages.
1654 	 */
1655 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1656 }
1657 #endif
1658 
1659 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1660 		  unsigned long new_addr, unsigned long old_end,
1661 		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1662 {
1663 	spinlock_t *old_ptl, *new_ptl;
1664 	pmd_t pmd;
1665 	struct mm_struct *mm = vma->vm_mm;
1666 	bool force_flush = false;
1667 
1668 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1669 	    (new_addr & ~HPAGE_PMD_MASK) ||
1670 	    old_end - old_addr < HPAGE_PMD_SIZE)
1671 		return false;
1672 
1673 	/*
1674 	 * The destination pmd shouldn't be established, free_pgtables()
1675 	 * should have release it.
1676 	 */
1677 	if (WARN_ON(!pmd_none(*new_pmd))) {
1678 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1679 		return false;
1680 	}
1681 
1682 	/*
1683 	 * We don't have to worry about the ordering of src and dst
1684 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1685 	 */
1686 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1687 	if (old_ptl) {
1688 		new_ptl = pmd_lockptr(mm, new_pmd);
1689 		if (new_ptl != old_ptl)
1690 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1691 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1692 		if (pmd_present(pmd) && pmd_dirty(pmd))
1693 			force_flush = true;
1694 		VM_BUG_ON(!pmd_none(*new_pmd));
1695 
1696 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1697 			pgtable_t pgtable;
1698 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1699 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1700 		}
1701 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1702 		if (new_ptl != old_ptl)
1703 			spin_unlock(new_ptl);
1704 		if (force_flush)
1705 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1706 		else
1707 			*need_flush = true;
1708 		spin_unlock(old_ptl);
1709 		return true;
1710 	}
1711 	return false;
1712 }
1713 
1714 /*
1715  * Returns
1716  *  - 0 if PMD could not be locked
1717  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1718  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1719  */
1720 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1721 		unsigned long addr, pgprot_t newprot, int prot_numa)
1722 {
1723 	struct mm_struct *mm = vma->vm_mm;
1724 	spinlock_t *ptl;
1725 	int ret = 0;
1726 
1727 	ptl = __pmd_trans_huge_lock(pmd, vma);
1728 	if (ptl) {
1729 		pmd_t entry;
1730 		bool preserve_write = prot_numa && pmd_write(*pmd);
1731 		ret = 1;
1732 
1733 		/*
1734 		 * Avoid trapping faults against the zero page. The read-only
1735 		 * data is likely to be read-cached on the local CPU and
1736 		 * local/remote hits to the zero page are not interesting.
1737 		 */
1738 		if (prot_numa && is_huge_zero_pmd(*pmd)) {
1739 			spin_unlock(ptl);
1740 			return ret;
1741 		}
1742 
1743 		if (!prot_numa || !pmd_protnone(*pmd)) {
1744 			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1745 			entry = pmd_modify(entry, newprot);
1746 			if (preserve_write)
1747 				entry = pmd_mk_savedwrite(entry);
1748 			ret = HPAGE_PMD_NR;
1749 			set_pmd_at(mm, addr, pmd, entry);
1750 			BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1751 					pmd_write(entry));
1752 		}
1753 		spin_unlock(ptl);
1754 	}
1755 
1756 	return ret;
1757 }
1758 
1759 /*
1760  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1761  *
1762  * Note that if it returns page table lock pointer, this routine returns without
1763  * unlocking page table lock. So callers must unlock it.
1764  */
1765 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1766 {
1767 	spinlock_t *ptl;
1768 	ptl = pmd_lock(vma->vm_mm, pmd);
1769 	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1770 		return ptl;
1771 	spin_unlock(ptl);
1772 	return NULL;
1773 }
1774 
1775 /*
1776  * Returns true if a given pud maps a thp, false otherwise.
1777  *
1778  * Note that if it returns true, this routine returns without unlocking page
1779  * table lock. So callers must unlock it.
1780  */
1781 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1782 {
1783 	spinlock_t *ptl;
1784 
1785 	ptl = pud_lock(vma->vm_mm, pud);
1786 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1787 		return ptl;
1788 	spin_unlock(ptl);
1789 	return NULL;
1790 }
1791 
1792 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1793 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1794 		 pud_t *pud, unsigned long addr)
1795 {
1796 	pud_t orig_pud;
1797 	spinlock_t *ptl;
1798 
1799 	ptl = __pud_trans_huge_lock(pud, vma);
1800 	if (!ptl)
1801 		return 0;
1802 	/*
1803 	 * For architectures like ppc64 we look at deposited pgtable
1804 	 * when calling pudp_huge_get_and_clear. So do the
1805 	 * pgtable_trans_huge_withdraw after finishing pudp related
1806 	 * operations.
1807 	 */
1808 	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1809 			tlb->fullmm);
1810 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1811 	if (vma_is_dax(vma)) {
1812 		spin_unlock(ptl);
1813 		/* No zero page support yet */
1814 	} else {
1815 		/* No support for anonymous PUD pages yet */
1816 		BUG();
1817 	}
1818 	return 1;
1819 }
1820 
1821 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1822 		unsigned long haddr)
1823 {
1824 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1825 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1826 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1827 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1828 
1829 	count_vm_event(THP_SPLIT_PMD);
1830 
1831 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1832 }
1833 
1834 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1835 		unsigned long address)
1836 {
1837 	spinlock_t *ptl;
1838 	struct mm_struct *mm = vma->vm_mm;
1839 	unsigned long haddr = address & HPAGE_PUD_MASK;
1840 
1841 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
1842 	ptl = pud_lock(mm, pud);
1843 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1844 		goto out;
1845 	__split_huge_pud_locked(vma, pud, haddr);
1846 
1847 out:
1848 	spin_unlock(ptl);
1849 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
1850 }
1851 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1852 
1853 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1854 		unsigned long haddr, pmd_t *pmd)
1855 {
1856 	struct mm_struct *mm = vma->vm_mm;
1857 	pgtable_t pgtable;
1858 	pmd_t _pmd;
1859 	int i;
1860 
1861 	/* leave pmd empty until pte is filled */
1862 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1863 
1864 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1865 	pmd_populate(mm, &_pmd, pgtable);
1866 
1867 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1868 		pte_t *pte, entry;
1869 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1870 		entry = pte_mkspecial(entry);
1871 		pte = pte_offset_map(&_pmd, haddr);
1872 		VM_BUG_ON(!pte_none(*pte));
1873 		set_pte_at(mm, haddr, pte, entry);
1874 		pte_unmap(pte);
1875 	}
1876 	smp_wmb(); /* make pte visible before pmd */
1877 	pmd_populate(mm, pmd, pgtable);
1878 }
1879 
1880 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1881 		unsigned long haddr, bool freeze)
1882 {
1883 	struct mm_struct *mm = vma->vm_mm;
1884 	struct page *page;
1885 	pgtable_t pgtable;
1886 	pmd_t _pmd;
1887 	bool young, write, dirty, soft_dirty;
1888 	unsigned long addr;
1889 	int i;
1890 
1891 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1892 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1893 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1894 	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1895 
1896 	count_vm_event(THP_SPLIT_PMD);
1897 
1898 	if (!vma_is_anonymous(vma)) {
1899 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1900 		/*
1901 		 * We are going to unmap this huge page. So
1902 		 * just go ahead and zap it
1903 		 */
1904 		if (arch_needs_pgtable_deposit())
1905 			zap_deposited_table(mm, pmd);
1906 		if (vma_is_dax(vma))
1907 			return;
1908 		page = pmd_page(_pmd);
1909 		if (!PageReferenced(page) && pmd_young(_pmd))
1910 			SetPageReferenced(page);
1911 		page_remove_rmap(page, true);
1912 		put_page(page);
1913 		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1914 		return;
1915 	} else if (is_huge_zero_pmd(*pmd)) {
1916 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
1917 	}
1918 
1919 	page = pmd_page(*pmd);
1920 	VM_BUG_ON_PAGE(!page_count(page), page);
1921 	page_ref_add(page, HPAGE_PMD_NR - 1);
1922 	write = pmd_write(*pmd);
1923 	young = pmd_young(*pmd);
1924 	dirty = pmd_dirty(*pmd);
1925 	soft_dirty = pmd_soft_dirty(*pmd);
1926 
1927 	pmdp_huge_split_prepare(vma, haddr, pmd);
1928 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1929 	pmd_populate(mm, &_pmd, pgtable);
1930 
1931 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1932 		pte_t entry, *pte;
1933 		/*
1934 		 * Note that NUMA hinting access restrictions are not
1935 		 * transferred to avoid any possibility of altering
1936 		 * permissions across VMAs.
1937 		 */
1938 		if (freeze) {
1939 			swp_entry_t swp_entry;
1940 			swp_entry = make_migration_entry(page + i, write);
1941 			entry = swp_entry_to_pte(swp_entry);
1942 			if (soft_dirty)
1943 				entry = pte_swp_mksoft_dirty(entry);
1944 		} else {
1945 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1946 			entry = maybe_mkwrite(entry, vma);
1947 			if (!write)
1948 				entry = pte_wrprotect(entry);
1949 			if (!young)
1950 				entry = pte_mkold(entry);
1951 			if (soft_dirty)
1952 				entry = pte_mksoft_dirty(entry);
1953 		}
1954 		if (dirty)
1955 			SetPageDirty(page + i);
1956 		pte = pte_offset_map(&_pmd, addr);
1957 		BUG_ON(!pte_none(*pte));
1958 		set_pte_at(mm, addr, pte, entry);
1959 		atomic_inc(&page[i]._mapcount);
1960 		pte_unmap(pte);
1961 	}
1962 
1963 	/*
1964 	 * Set PG_double_map before dropping compound_mapcount to avoid
1965 	 * false-negative page_mapped().
1966 	 */
1967 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1968 		for (i = 0; i < HPAGE_PMD_NR; i++)
1969 			atomic_inc(&page[i]._mapcount);
1970 	}
1971 
1972 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1973 		/* Last compound_mapcount is gone. */
1974 		__dec_node_page_state(page, NR_ANON_THPS);
1975 		if (TestClearPageDoubleMap(page)) {
1976 			/* No need in mapcount reference anymore */
1977 			for (i = 0; i < HPAGE_PMD_NR; i++)
1978 				atomic_dec(&page[i]._mapcount);
1979 		}
1980 	}
1981 
1982 	smp_wmb(); /* make pte visible before pmd */
1983 	/*
1984 	 * Up to this point the pmd is present and huge and userland has the
1985 	 * whole access to the hugepage during the split (which happens in
1986 	 * place). If we overwrite the pmd with the not-huge version pointing
1987 	 * to the pte here (which of course we could if all CPUs were bug
1988 	 * free), userland could trigger a small page size TLB miss on the
1989 	 * small sized TLB while the hugepage TLB entry is still established in
1990 	 * the huge TLB. Some CPU doesn't like that.
1991 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1992 	 * 383 on page 93. Intel should be safe but is also warns that it's
1993 	 * only safe if the permission and cache attributes of the two entries
1994 	 * loaded in the two TLB is identical (which should be the case here).
1995 	 * But it is generally safer to never allow small and huge TLB entries
1996 	 * for the same virtual address to be loaded simultaneously. So instead
1997 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1998 	 * current pmd notpresent (atomically because here the pmd_trans_huge
1999 	 * and pmd_trans_splitting must remain set at all times on the pmd
2000 	 * until the split is complete for this pmd), then we flush the SMP TLB
2001 	 * and finally we write the non-huge version of the pmd entry with
2002 	 * pmd_populate.
2003 	 */
2004 	pmdp_invalidate(vma, haddr, pmd);
2005 	pmd_populate(mm, pmd, pgtable);
2006 
2007 	if (freeze) {
2008 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2009 			page_remove_rmap(page + i, false);
2010 			put_page(page + i);
2011 		}
2012 	}
2013 }
2014 
2015 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2016 		unsigned long address, bool freeze, struct page *page)
2017 {
2018 	spinlock_t *ptl;
2019 	struct mm_struct *mm = vma->vm_mm;
2020 	unsigned long haddr = address & HPAGE_PMD_MASK;
2021 
2022 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2023 	ptl = pmd_lock(mm, pmd);
2024 
2025 	/*
2026 	 * If caller asks to setup a migration entries, we need a page to check
2027 	 * pmd against. Otherwise we can end up replacing wrong page.
2028 	 */
2029 	VM_BUG_ON(freeze && !page);
2030 	if (page && page != pmd_page(*pmd))
2031 	        goto out;
2032 
2033 	if (pmd_trans_huge(*pmd)) {
2034 		page = pmd_page(*pmd);
2035 		if (PageMlocked(page))
2036 			clear_page_mlock(page);
2037 	} else if (!pmd_devmap(*pmd))
2038 		goto out;
2039 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2040 out:
2041 	spin_unlock(ptl);
2042 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2043 }
2044 
2045 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2046 		bool freeze, struct page *page)
2047 {
2048 	pgd_t *pgd;
2049 	pud_t *pud;
2050 	pmd_t *pmd;
2051 
2052 	pgd = pgd_offset(vma->vm_mm, address);
2053 	if (!pgd_present(*pgd))
2054 		return;
2055 
2056 	pud = pud_offset(pgd, address);
2057 	if (!pud_present(*pud))
2058 		return;
2059 
2060 	pmd = pmd_offset(pud, address);
2061 
2062 	__split_huge_pmd(vma, pmd, address, freeze, page);
2063 }
2064 
2065 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2066 			     unsigned long start,
2067 			     unsigned long end,
2068 			     long adjust_next)
2069 {
2070 	/*
2071 	 * If the new start address isn't hpage aligned and it could
2072 	 * previously contain an hugepage: check if we need to split
2073 	 * an huge pmd.
2074 	 */
2075 	if (start & ~HPAGE_PMD_MASK &&
2076 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2077 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2078 		split_huge_pmd_address(vma, start, false, NULL);
2079 
2080 	/*
2081 	 * If the new end address isn't hpage aligned and it could
2082 	 * previously contain an hugepage: check if we need to split
2083 	 * an huge pmd.
2084 	 */
2085 	if (end & ~HPAGE_PMD_MASK &&
2086 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2087 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2088 		split_huge_pmd_address(vma, end, false, NULL);
2089 
2090 	/*
2091 	 * If we're also updating the vma->vm_next->vm_start, if the new
2092 	 * vm_next->vm_start isn't page aligned and it could previously
2093 	 * contain an hugepage: check if we need to split an huge pmd.
2094 	 */
2095 	if (adjust_next > 0) {
2096 		struct vm_area_struct *next = vma->vm_next;
2097 		unsigned long nstart = next->vm_start;
2098 		nstart += adjust_next << PAGE_SHIFT;
2099 		if (nstart & ~HPAGE_PMD_MASK &&
2100 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2101 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2102 			split_huge_pmd_address(next, nstart, false, NULL);
2103 	}
2104 }
2105 
2106 static void freeze_page(struct page *page)
2107 {
2108 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2109 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2110 	int ret;
2111 
2112 	VM_BUG_ON_PAGE(!PageHead(page), page);
2113 
2114 	if (PageAnon(page))
2115 		ttu_flags |= TTU_MIGRATION;
2116 
2117 	ret = try_to_unmap(page, ttu_flags);
2118 	VM_BUG_ON_PAGE(ret, page);
2119 }
2120 
2121 static void unfreeze_page(struct page *page)
2122 {
2123 	int i;
2124 	if (PageTransHuge(page)) {
2125 		remove_migration_ptes(page, page, true);
2126 	} else {
2127 		for (i = 0; i < HPAGE_PMD_NR; i++)
2128 			remove_migration_ptes(page + i, page + i, true);
2129 	}
2130 }
2131 
2132 static void __split_huge_page_tail(struct page *head, int tail,
2133 		struct lruvec *lruvec, struct list_head *list)
2134 {
2135 	struct page *page_tail = head + tail;
2136 
2137 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2138 	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
2139 
2140 	/*
2141 	 * tail_page->_refcount is zero and not changing from under us. But
2142 	 * get_page_unless_zero() may be running from under us on the
2143 	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2144 	 * atomic_add(), we would then run atomic_set() concurrently with
2145 	 * get_page_unless_zero(), and atomic_set() is implemented in C not
2146 	 * using locked ops. spin_unlock on x86 sometime uses locked ops
2147 	 * because of PPro errata 66, 92, so unless somebody can guarantee
2148 	 * atomic_set() here would be safe on all archs (and not only on x86),
2149 	 * it's safer to use atomic_inc()/atomic_add().
2150 	 */
2151 	if (PageAnon(head)) {
2152 		page_ref_inc(page_tail);
2153 	} else {
2154 		/* Additional pin to radix tree */
2155 		page_ref_add(page_tail, 2);
2156 	}
2157 
2158 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2159 	page_tail->flags |= (head->flags &
2160 			((1L << PG_referenced) |
2161 			 (1L << PG_swapbacked) |
2162 			 (1L << PG_mlocked) |
2163 			 (1L << PG_uptodate) |
2164 			 (1L << PG_active) |
2165 			 (1L << PG_locked) |
2166 			 (1L << PG_unevictable) |
2167 			 (1L << PG_dirty)));
2168 
2169 	/*
2170 	 * After clearing PageTail the gup refcount can be released.
2171 	 * Page flags also must be visible before we make the page non-compound.
2172 	 */
2173 	smp_wmb();
2174 
2175 	clear_compound_head(page_tail);
2176 
2177 	if (page_is_young(head))
2178 		set_page_young(page_tail);
2179 	if (page_is_idle(head))
2180 		set_page_idle(page_tail);
2181 
2182 	/* ->mapping in first tail page is compound_mapcount */
2183 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2184 			page_tail);
2185 	page_tail->mapping = head->mapping;
2186 
2187 	page_tail->index = head->index + tail;
2188 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2189 	lru_add_page_tail(head, page_tail, lruvec, list);
2190 }
2191 
2192 static void __split_huge_page(struct page *page, struct list_head *list,
2193 		unsigned long flags)
2194 {
2195 	struct page *head = compound_head(page);
2196 	struct zone *zone = page_zone(head);
2197 	struct lruvec *lruvec;
2198 	pgoff_t end = -1;
2199 	int i;
2200 
2201 	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2202 
2203 	/* complete memcg works before add pages to LRU */
2204 	mem_cgroup_split_huge_fixup(head);
2205 
2206 	if (!PageAnon(page))
2207 		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2208 
2209 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2210 		__split_huge_page_tail(head, i, lruvec, list);
2211 		/* Some pages can be beyond i_size: drop them from page cache */
2212 		if (head[i].index >= end) {
2213 			__ClearPageDirty(head + i);
2214 			__delete_from_page_cache(head + i, NULL);
2215 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2216 				shmem_uncharge(head->mapping->host, 1);
2217 			put_page(head + i);
2218 		}
2219 	}
2220 
2221 	ClearPageCompound(head);
2222 	/* See comment in __split_huge_page_tail() */
2223 	if (PageAnon(head)) {
2224 		page_ref_inc(head);
2225 	} else {
2226 		/* Additional pin to radix tree */
2227 		page_ref_add(head, 2);
2228 		spin_unlock(&head->mapping->tree_lock);
2229 	}
2230 
2231 	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2232 
2233 	unfreeze_page(head);
2234 
2235 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2236 		struct page *subpage = head + i;
2237 		if (subpage == page)
2238 			continue;
2239 		unlock_page(subpage);
2240 
2241 		/*
2242 		 * Subpages may be freed if there wasn't any mapping
2243 		 * like if add_to_swap() is running on a lru page that
2244 		 * had its mapping zapped. And freeing these pages
2245 		 * requires taking the lru_lock so we do the put_page
2246 		 * of the tail pages after the split is complete.
2247 		 */
2248 		put_page(subpage);
2249 	}
2250 }
2251 
2252 int total_mapcount(struct page *page)
2253 {
2254 	int i, compound, ret;
2255 
2256 	VM_BUG_ON_PAGE(PageTail(page), page);
2257 
2258 	if (likely(!PageCompound(page)))
2259 		return atomic_read(&page->_mapcount) + 1;
2260 
2261 	compound = compound_mapcount(page);
2262 	if (PageHuge(page))
2263 		return compound;
2264 	ret = compound;
2265 	for (i = 0; i < HPAGE_PMD_NR; i++)
2266 		ret += atomic_read(&page[i]._mapcount) + 1;
2267 	/* File pages has compound_mapcount included in _mapcount */
2268 	if (!PageAnon(page))
2269 		return ret - compound * HPAGE_PMD_NR;
2270 	if (PageDoubleMap(page))
2271 		ret -= HPAGE_PMD_NR;
2272 	return ret;
2273 }
2274 
2275 /*
2276  * This calculates accurately how many mappings a transparent hugepage
2277  * has (unlike page_mapcount() which isn't fully accurate). This full
2278  * accuracy is primarily needed to know if copy-on-write faults can
2279  * reuse the page and change the mapping to read-write instead of
2280  * copying them. At the same time this returns the total_mapcount too.
2281  *
2282  * The function returns the highest mapcount any one of the subpages
2283  * has. If the return value is one, even if different processes are
2284  * mapping different subpages of the transparent hugepage, they can
2285  * all reuse it, because each process is reusing a different subpage.
2286  *
2287  * The total_mapcount is instead counting all virtual mappings of the
2288  * subpages. If the total_mapcount is equal to "one", it tells the
2289  * caller all mappings belong to the same "mm" and in turn the
2290  * anon_vma of the transparent hugepage can become the vma->anon_vma
2291  * local one as no other process may be mapping any of the subpages.
2292  *
2293  * It would be more accurate to replace page_mapcount() with
2294  * page_trans_huge_mapcount(), however we only use
2295  * page_trans_huge_mapcount() in the copy-on-write faults where we
2296  * need full accuracy to avoid breaking page pinning, because
2297  * page_trans_huge_mapcount() is slower than page_mapcount().
2298  */
2299 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2300 {
2301 	int i, ret, _total_mapcount, mapcount;
2302 
2303 	/* hugetlbfs shouldn't call it */
2304 	VM_BUG_ON_PAGE(PageHuge(page), page);
2305 
2306 	if (likely(!PageTransCompound(page))) {
2307 		mapcount = atomic_read(&page->_mapcount) + 1;
2308 		if (total_mapcount)
2309 			*total_mapcount = mapcount;
2310 		return mapcount;
2311 	}
2312 
2313 	page = compound_head(page);
2314 
2315 	_total_mapcount = ret = 0;
2316 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2317 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2318 		ret = max(ret, mapcount);
2319 		_total_mapcount += mapcount;
2320 	}
2321 	if (PageDoubleMap(page)) {
2322 		ret -= 1;
2323 		_total_mapcount -= HPAGE_PMD_NR;
2324 	}
2325 	mapcount = compound_mapcount(page);
2326 	ret += mapcount;
2327 	_total_mapcount += mapcount;
2328 	if (total_mapcount)
2329 		*total_mapcount = _total_mapcount;
2330 	return ret;
2331 }
2332 
2333 /*
2334  * This function splits huge page into normal pages. @page can point to any
2335  * subpage of huge page to split. Split doesn't change the position of @page.
2336  *
2337  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2338  * The huge page must be locked.
2339  *
2340  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2341  *
2342  * Both head page and tail pages will inherit mapping, flags, and so on from
2343  * the hugepage.
2344  *
2345  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2346  * they are not mapped.
2347  *
2348  * Returns 0 if the hugepage is split successfully.
2349  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2350  * us.
2351  */
2352 int split_huge_page_to_list(struct page *page, struct list_head *list)
2353 {
2354 	struct page *head = compound_head(page);
2355 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2356 	struct anon_vma *anon_vma = NULL;
2357 	struct address_space *mapping = NULL;
2358 	int count, mapcount, extra_pins, ret;
2359 	bool mlocked;
2360 	unsigned long flags;
2361 
2362 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2363 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2364 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2365 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2366 
2367 	if (PageAnon(head)) {
2368 		/*
2369 		 * The caller does not necessarily hold an mmap_sem that would
2370 		 * prevent the anon_vma disappearing so we first we take a
2371 		 * reference to it and then lock the anon_vma for write. This
2372 		 * is similar to page_lock_anon_vma_read except the write lock
2373 		 * is taken to serialise against parallel split or collapse
2374 		 * operations.
2375 		 */
2376 		anon_vma = page_get_anon_vma(head);
2377 		if (!anon_vma) {
2378 			ret = -EBUSY;
2379 			goto out;
2380 		}
2381 		extra_pins = 0;
2382 		mapping = NULL;
2383 		anon_vma_lock_write(anon_vma);
2384 	} else {
2385 		mapping = head->mapping;
2386 
2387 		/* Truncated ? */
2388 		if (!mapping) {
2389 			ret = -EBUSY;
2390 			goto out;
2391 		}
2392 
2393 		/* Addidional pins from radix tree */
2394 		extra_pins = HPAGE_PMD_NR;
2395 		anon_vma = NULL;
2396 		i_mmap_lock_read(mapping);
2397 	}
2398 
2399 	/*
2400 	 * Racy check if we can split the page, before freeze_page() will
2401 	 * split PMDs
2402 	 */
2403 	if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2404 		ret = -EBUSY;
2405 		goto out_unlock;
2406 	}
2407 
2408 	mlocked = PageMlocked(page);
2409 	freeze_page(head);
2410 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2411 
2412 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2413 	if (mlocked)
2414 		lru_add_drain();
2415 
2416 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2417 	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2418 
2419 	if (mapping) {
2420 		void **pslot;
2421 
2422 		spin_lock(&mapping->tree_lock);
2423 		pslot = radix_tree_lookup_slot(&mapping->page_tree,
2424 				page_index(head));
2425 		/*
2426 		 * Check if the head page is present in radix tree.
2427 		 * We assume all tail are present too, if head is there.
2428 		 */
2429 		if (radix_tree_deref_slot_protected(pslot,
2430 					&mapping->tree_lock) != head)
2431 			goto fail;
2432 	}
2433 
2434 	/* Prevent deferred_split_scan() touching ->_refcount */
2435 	spin_lock(&pgdata->split_queue_lock);
2436 	count = page_count(head);
2437 	mapcount = total_mapcount(head);
2438 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2439 		if (!list_empty(page_deferred_list(head))) {
2440 			pgdata->split_queue_len--;
2441 			list_del(page_deferred_list(head));
2442 		}
2443 		if (mapping)
2444 			__dec_node_page_state(page, NR_SHMEM_THPS);
2445 		spin_unlock(&pgdata->split_queue_lock);
2446 		__split_huge_page(page, list, flags);
2447 		ret = 0;
2448 	} else {
2449 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2450 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2451 					mapcount, count);
2452 			if (PageTail(page))
2453 				dump_page(head, NULL);
2454 			dump_page(page, "total_mapcount(head) > 0");
2455 			BUG();
2456 		}
2457 		spin_unlock(&pgdata->split_queue_lock);
2458 fail:		if (mapping)
2459 			spin_unlock(&mapping->tree_lock);
2460 		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2461 		unfreeze_page(head);
2462 		ret = -EBUSY;
2463 	}
2464 
2465 out_unlock:
2466 	if (anon_vma) {
2467 		anon_vma_unlock_write(anon_vma);
2468 		put_anon_vma(anon_vma);
2469 	}
2470 	if (mapping)
2471 		i_mmap_unlock_read(mapping);
2472 out:
2473 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2474 	return ret;
2475 }
2476 
2477 void free_transhuge_page(struct page *page)
2478 {
2479 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2480 	unsigned long flags;
2481 
2482 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2483 	if (!list_empty(page_deferred_list(page))) {
2484 		pgdata->split_queue_len--;
2485 		list_del(page_deferred_list(page));
2486 	}
2487 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2488 	free_compound_page(page);
2489 }
2490 
2491 void deferred_split_huge_page(struct page *page)
2492 {
2493 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2494 	unsigned long flags;
2495 
2496 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2497 
2498 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2499 	if (list_empty(page_deferred_list(page))) {
2500 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2501 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2502 		pgdata->split_queue_len++;
2503 	}
2504 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2505 }
2506 
2507 static unsigned long deferred_split_count(struct shrinker *shrink,
2508 		struct shrink_control *sc)
2509 {
2510 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2511 	return ACCESS_ONCE(pgdata->split_queue_len);
2512 }
2513 
2514 static unsigned long deferred_split_scan(struct shrinker *shrink,
2515 		struct shrink_control *sc)
2516 {
2517 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2518 	unsigned long flags;
2519 	LIST_HEAD(list), *pos, *next;
2520 	struct page *page;
2521 	int split = 0;
2522 
2523 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2524 	/* Take pin on all head pages to avoid freeing them under us */
2525 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2526 		page = list_entry((void *)pos, struct page, mapping);
2527 		page = compound_head(page);
2528 		if (get_page_unless_zero(page)) {
2529 			list_move(page_deferred_list(page), &list);
2530 		} else {
2531 			/* We lost race with put_compound_page() */
2532 			list_del_init(page_deferred_list(page));
2533 			pgdata->split_queue_len--;
2534 		}
2535 		if (!--sc->nr_to_scan)
2536 			break;
2537 	}
2538 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2539 
2540 	list_for_each_safe(pos, next, &list) {
2541 		page = list_entry((void *)pos, struct page, mapping);
2542 		lock_page(page);
2543 		/* split_huge_page() removes page from list on success */
2544 		if (!split_huge_page(page))
2545 			split++;
2546 		unlock_page(page);
2547 		put_page(page);
2548 	}
2549 
2550 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2551 	list_splice_tail(&list, &pgdata->split_queue);
2552 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2553 
2554 	/*
2555 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2556 	 * This can happen if pages were freed under us.
2557 	 */
2558 	if (!split && list_empty(&pgdata->split_queue))
2559 		return SHRINK_STOP;
2560 	return split;
2561 }
2562 
2563 static struct shrinker deferred_split_shrinker = {
2564 	.count_objects = deferred_split_count,
2565 	.scan_objects = deferred_split_scan,
2566 	.seeks = DEFAULT_SEEKS,
2567 	.flags = SHRINKER_NUMA_AWARE,
2568 };
2569 
2570 #ifdef CONFIG_DEBUG_FS
2571 static int split_huge_pages_set(void *data, u64 val)
2572 {
2573 	struct zone *zone;
2574 	struct page *page;
2575 	unsigned long pfn, max_zone_pfn;
2576 	unsigned long total = 0, split = 0;
2577 
2578 	if (val != 1)
2579 		return -EINVAL;
2580 
2581 	for_each_populated_zone(zone) {
2582 		max_zone_pfn = zone_end_pfn(zone);
2583 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2584 			if (!pfn_valid(pfn))
2585 				continue;
2586 
2587 			page = pfn_to_page(pfn);
2588 			if (!get_page_unless_zero(page))
2589 				continue;
2590 
2591 			if (zone != page_zone(page))
2592 				goto next;
2593 
2594 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2595 				goto next;
2596 
2597 			total++;
2598 			lock_page(page);
2599 			if (!split_huge_page(page))
2600 				split++;
2601 			unlock_page(page);
2602 next:
2603 			put_page(page);
2604 		}
2605 	}
2606 
2607 	pr_info("%lu of %lu THP split\n", split, total);
2608 
2609 	return 0;
2610 }
2611 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2612 		"%llu\n");
2613 
2614 static int __init split_huge_pages_debugfs(void)
2615 {
2616 	void *ret;
2617 
2618 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2619 			&split_huge_pages_fops);
2620 	if (!ret)
2621 		pr_warn("Failed to create split_huge_pages in debugfs");
2622 	return 0;
2623 }
2624 late_initcall(split_huge_pages_debugfs);
2625 #endif
2626