1 /* 2 * Copyright (C) 2009 Red Hat, Inc. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/mm.h> 11 #include <linux/sched.h> 12 #include <linux/highmem.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mmu_notifier.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/shrinker.h> 18 #include <linux/mm_inline.h> 19 #include <linux/swapops.h> 20 #include <linux/dax.h> 21 #include <linux/khugepaged.h> 22 #include <linux/freezer.h> 23 #include <linux/pfn_t.h> 24 #include <linux/mman.h> 25 #include <linux/memremap.h> 26 #include <linux/pagemap.h> 27 #include <linux/debugfs.h> 28 #include <linux/migrate.h> 29 #include <linux/hashtable.h> 30 #include <linux/userfaultfd_k.h> 31 #include <linux/page_idle.h> 32 #include <linux/shmem_fs.h> 33 34 #include <asm/tlb.h> 35 #include <asm/pgalloc.h> 36 #include "internal.h" 37 38 /* 39 * By default transparent hugepage support is disabled in order that avoid 40 * to risk increase the memory footprint of applications without a guaranteed 41 * benefit. When transparent hugepage support is enabled, is for all mappings, 42 * and khugepaged scans all mappings. 43 * Defrag is invoked by khugepaged hugepage allocations and by page faults 44 * for all hugepage allocations. 45 */ 46 unsigned long transparent_hugepage_flags __read_mostly = 47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 48 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 49 #endif 50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 52 #endif 53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 56 57 static struct shrinker deferred_split_shrinker; 58 59 static atomic_t huge_zero_refcount; 60 struct page *huge_zero_page __read_mostly; 61 62 static struct page *get_huge_zero_page(void) 63 { 64 struct page *zero_page; 65 retry: 66 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 67 return READ_ONCE(huge_zero_page); 68 69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 70 HPAGE_PMD_ORDER); 71 if (!zero_page) { 72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 73 return NULL; 74 } 75 count_vm_event(THP_ZERO_PAGE_ALLOC); 76 preempt_disable(); 77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 78 preempt_enable(); 79 __free_pages(zero_page, compound_order(zero_page)); 80 goto retry; 81 } 82 83 /* We take additional reference here. It will be put back by shrinker */ 84 atomic_set(&huge_zero_refcount, 2); 85 preempt_enable(); 86 return READ_ONCE(huge_zero_page); 87 } 88 89 static void put_huge_zero_page(void) 90 { 91 /* 92 * Counter should never go to zero here. Only shrinker can put 93 * last reference. 94 */ 95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 96 } 97 98 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 99 { 100 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 101 return READ_ONCE(huge_zero_page); 102 103 if (!get_huge_zero_page()) 104 return NULL; 105 106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 107 put_huge_zero_page(); 108 109 return READ_ONCE(huge_zero_page); 110 } 111 112 void mm_put_huge_zero_page(struct mm_struct *mm) 113 { 114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 115 put_huge_zero_page(); 116 } 117 118 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 119 struct shrink_control *sc) 120 { 121 /* we can free zero page only if last reference remains */ 122 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 123 } 124 125 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 126 struct shrink_control *sc) 127 { 128 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 129 struct page *zero_page = xchg(&huge_zero_page, NULL); 130 BUG_ON(zero_page == NULL); 131 __free_pages(zero_page, compound_order(zero_page)); 132 return HPAGE_PMD_NR; 133 } 134 135 return 0; 136 } 137 138 static struct shrinker huge_zero_page_shrinker = { 139 .count_objects = shrink_huge_zero_page_count, 140 .scan_objects = shrink_huge_zero_page_scan, 141 .seeks = DEFAULT_SEEKS, 142 }; 143 144 #ifdef CONFIG_SYSFS 145 static ssize_t enabled_show(struct kobject *kobj, 146 struct kobj_attribute *attr, char *buf) 147 { 148 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 149 return sprintf(buf, "[always] madvise never\n"); 150 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) 151 return sprintf(buf, "always [madvise] never\n"); 152 else 153 return sprintf(buf, "always madvise [never]\n"); 154 } 155 156 static ssize_t enabled_store(struct kobject *kobj, 157 struct kobj_attribute *attr, 158 const char *buf, size_t count) 159 { 160 ssize_t ret = count; 161 162 if (!memcmp("always", buf, 163 min(sizeof("always")-1, count))) { 164 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 165 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 166 } else if (!memcmp("madvise", buf, 167 min(sizeof("madvise")-1, count))) { 168 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 169 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 170 } else if (!memcmp("never", buf, 171 min(sizeof("never")-1, count))) { 172 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 173 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 174 } else 175 ret = -EINVAL; 176 177 if (ret > 0) { 178 int err = start_stop_khugepaged(); 179 if (err) 180 ret = err; 181 } 182 return ret; 183 } 184 static struct kobj_attribute enabled_attr = 185 __ATTR(enabled, 0644, enabled_show, enabled_store); 186 187 ssize_t single_hugepage_flag_show(struct kobject *kobj, 188 struct kobj_attribute *attr, char *buf, 189 enum transparent_hugepage_flag flag) 190 { 191 return sprintf(buf, "%d\n", 192 !!test_bit(flag, &transparent_hugepage_flags)); 193 } 194 195 ssize_t single_hugepage_flag_store(struct kobject *kobj, 196 struct kobj_attribute *attr, 197 const char *buf, size_t count, 198 enum transparent_hugepage_flag flag) 199 { 200 unsigned long value; 201 int ret; 202 203 ret = kstrtoul(buf, 10, &value); 204 if (ret < 0) 205 return ret; 206 if (value > 1) 207 return -EINVAL; 208 209 if (value) 210 set_bit(flag, &transparent_hugepage_flags); 211 else 212 clear_bit(flag, &transparent_hugepage_flags); 213 214 return count; 215 } 216 217 static ssize_t defrag_show(struct kobject *kobj, 218 struct kobj_attribute *attr, char *buf) 219 { 220 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 221 return sprintf(buf, "[always] defer defer+madvise madvise never\n"); 222 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 223 return sprintf(buf, "always [defer] defer+madvise madvise never\n"); 224 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 225 return sprintf(buf, "always defer [defer+madvise] madvise never\n"); 226 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 227 return sprintf(buf, "always defer defer+madvise [madvise] never\n"); 228 return sprintf(buf, "always defer defer+madvise madvise [never]\n"); 229 } 230 231 static ssize_t defrag_store(struct kobject *kobj, 232 struct kobj_attribute *attr, 233 const char *buf, size_t count) 234 { 235 if (!memcmp("always", buf, 236 min(sizeof("always")-1, count))) { 237 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 238 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 239 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 240 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 241 } else if (!memcmp("defer", buf, 242 min(sizeof("defer")-1, count))) { 243 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 244 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 245 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 246 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 247 } else if (!memcmp("defer+madvise", buf, 248 min(sizeof("defer+madvise")-1, count))) { 249 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 250 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 252 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 253 } else if (!memcmp("madvise", buf, 254 min(sizeof("madvise")-1, count))) { 255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 258 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 259 } else if (!memcmp("never", buf, 260 min(sizeof("never")-1, count))) { 261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 265 } else 266 return -EINVAL; 267 268 return count; 269 } 270 static struct kobj_attribute defrag_attr = 271 __ATTR(defrag, 0644, defrag_show, defrag_store); 272 273 static ssize_t use_zero_page_show(struct kobject *kobj, 274 struct kobj_attribute *attr, char *buf) 275 { 276 return single_hugepage_flag_show(kobj, attr, buf, 277 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 278 } 279 static ssize_t use_zero_page_store(struct kobject *kobj, 280 struct kobj_attribute *attr, const char *buf, size_t count) 281 { 282 return single_hugepage_flag_store(kobj, attr, buf, count, 283 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 284 } 285 static struct kobj_attribute use_zero_page_attr = 286 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 287 288 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 289 struct kobj_attribute *attr, char *buf) 290 { 291 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE); 292 } 293 static struct kobj_attribute hpage_pmd_size_attr = 294 __ATTR_RO(hpage_pmd_size); 295 296 #ifdef CONFIG_DEBUG_VM 297 static ssize_t debug_cow_show(struct kobject *kobj, 298 struct kobj_attribute *attr, char *buf) 299 { 300 return single_hugepage_flag_show(kobj, attr, buf, 301 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 302 } 303 static ssize_t debug_cow_store(struct kobject *kobj, 304 struct kobj_attribute *attr, 305 const char *buf, size_t count) 306 { 307 return single_hugepage_flag_store(kobj, attr, buf, count, 308 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 309 } 310 static struct kobj_attribute debug_cow_attr = 311 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 312 #endif /* CONFIG_DEBUG_VM */ 313 314 static struct attribute *hugepage_attr[] = { 315 &enabled_attr.attr, 316 &defrag_attr.attr, 317 &use_zero_page_attr.attr, 318 &hpage_pmd_size_attr.attr, 319 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) 320 &shmem_enabled_attr.attr, 321 #endif 322 #ifdef CONFIG_DEBUG_VM 323 &debug_cow_attr.attr, 324 #endif 325 NULL, 326 }; 327 328 static struct attribute_group hugepage_attr_group = { 329 .attrs = hugepage_attr, 330 }; 331 332 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 333 { 334 int err; 335 336 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 337 if (unlikely(!*hugepage_kobj)) { 338 pr_err("failed to create transparent hugepage kobject\n"); 339 return -ENOMEM; 340 } 341 342 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 343 if (err) { 344 pr_err("failed to register transparent hugepage group\n"); 345 goto delete_obj; 346 } 347 348 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 349 if (err) { 350 pr_err("failed to register transparent hugepage group\n"); 351 goto remove_hp_group; 352 } 353 354 return 0; 355 356 remove_hp_group: 357 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 358 delete_obj: 359 kobject_put(*hugepage_kobj); 360 return err; 361 } 362 363 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 364 { 365 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 366 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 367 kobject_put(hugepage_kobj); 368 } 369 #else 370 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 371 { 372 return 0; 373 } 374 375 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 376 { 377 } 378 #endif /* CONFIG_SYSFS */ 379 380 static int __init hugepage_init(void) 381 { 382 int err; 383 struct kobject *hugepage_kobj; 384 385 if (!has_transparent_hugepage()) { 386 transparent_hugepage_flags = 0; 387 return -EINVAL; 388 } 389 390 /* 391 * hugepages can't be allocated by the buddy allocator 392 */ 393 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 394 /* 395 * we use page->mapping and page->index in second tail page 396 * as list_head: assuming THP order >= 2 397 */ 398 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 399 400 err = hugepage_init_sysfs(&hugepage_kobj); 401 if (err) 402 goto err_sysfs; 403 404 err = khugepaged_init(); 405 if (err) 406 goto err_slab; 407 408 err = register_shrinker(&huge_zero_page_shrinker); 409 if (err) 410 goto err_hzp_shrinker; 411 err = register_shrinker(&deferred_split_shrinker); 412 if (err) 413 goto err_split_shrinker; 414 415 /* 416 * By default disable transparent hugepages on smaller systems, 417 * where the extra memory used could hurt more than TLB overhead 418 * is likely to save. The admin can still enable it through /sys. 419 */ 420 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) { 421 transparent_hugepage_flags = 0; 422 return 0; 423 } 424 425 err = start_stop_khugepaged(); 426 if (err) 427 goto err_khugepaged; 428 429 return 0; 430 err_khugepaged: 431 unregister_shrinker(&deferred_split_shrinker); 432 err_split_shrinker: 433 unregister_shrinker(&huge_zero_page_shrinker); 434 err_hzp_shrinker: 435 khugepaged_destroy(); 436 err_slab: 437 hugepage_exit_sysfs(hugepage_kobj); 438 err_sysfs: 439 return err; 440 } 441 subsys_initcall(hugepage_init); 442 443 static int __init setup_transparent_hugepage(char *str) 444 { 445 int ret = 0; 446 if (!str) 447 goto out; 448 if (!strcmp(str, "always")) { 449 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 450 &transparent_hugepage_flags); 451 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 452 &transparent_hugepage_flags); 453 ret = 1; 454 } else if (!strcmp(str, "madvise")) { 455 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 456 &transparent_hugepage_flags); 457 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 458 &transparent_hugepage_flags); 459 ret = 1; 460 } else if (!strcmp(str, "never")) { 461 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 462 &transparent_hugepage_flags); 463 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 464 &transparent_hugepage_flags); 465 ret = 1; 466 } 467 out: 468 if (!ret) 469 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 470 return ret; 471 } 472 __setup("transparent_hugepage=", setup_transparent_hugepage); 473 474 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 475 { 476 if (likely(vma->vm_flags & VM_WRITE)) 477 pmd = pmd_mkwrite(pmd); 478 return pmd; 479 } 480 481 static inline struct list_head *page_deferred_list(struct page *page) 482 { 483 /* 484 * ->lru in the tail pages is occupied by compound_head. 485 * Let's use ->mapping + ->index in the second tail page as list_head. 486 */ 487 return (struct list_head *)&page[2].mapping; 488 } 489 490 void prep_transhuge_page(struct page *page) 491 { 492 /* 493 * we use page->mapping and page->indexlru in second tail page 494 * as list_head: assuming THP order >= 2 495 */ 496 497 INIT_LIST_HEAD(page_deferred_list(page)); 498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 499 } 500 501 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len, 502 loff_t off, unsigned long flags, unsigned long size) 503 { 504 unsigned long addr; 505 loff_t off_end = off + len; 506 loff_t off_align = round_up(off, size); 507 unsigned long len_pad; 508 509 if (off_end <= off_align || (off_end - off_align) < size) 510 return 0; 511 512 len_pad = len + size; 513 if (len_pad < len || (off + len_pad) < off) 514 return 0; 515 516 addr = current->mm->get_unmapped_area(filp, 0, len_pad, 517 off >> PAGE_SHIFT, flags); 518 if (IS_ERR_VALUE(addr)) 519 return 0; 520 521 addr += (off - addr) & (size - 1); 522 return addr; 523 } 524 525 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 526 unsigned long len, unsigned long pgoff, unsigned long flags) 527 { 528 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 529 530 if (addr) 531 goto out; 532 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) 533 goto out; 534 535 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE); 536 if (addr) 537 return addr; 538 539 out: 540 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 541 } 542 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 543 544 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page, 545 gfp_t gfp) 546 { 547 struct vm_area_struct *vma = vmf->vma; 548 struct mem_cgroup *memcg; 549 pgtable_t pgtable; 550 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 551 552 VM_BUG_ON_PAGE(!PageCompound(page), page); 553 554 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) { 555 put_page(page); 556 count_vm_event(THP_FAULT_FALLBACK); 557 return VM_FAULT_FALLBACK; 558 } 559 560 pgtable = pte_alloc_one(vma->vm_mm, haddr); 561 if (unlikely(!pgtable)) { 562 mem_cgroup_cancel_charge(page, memcg, true); 563 put_page(page); 564 return VM_FAULT_OOM; 565 } 566 567 clear_huge_page(page, haddr, HPAGE_PMD_NR); 568 /* 569 * The memory barrier inside __SetPageUptodate makes sure that 570 * clear_huge_page writes become visible before the set_pmd_at() 571 * write. 572 */ 573 __SetPageUptodate(page); 574 575 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 576 if (unlikely(!pmd_none(*vmf->pmd))) { 577 spin_unlock(vmf->ptl); 578 mem_cgroup_cancel_charge(page, memcg, true); 579 put_page(page); 580 pte_free(vma->vm_mm, pgtable); 581 } else { 582 pmd_t entry; 583 584 /* Deliver the page fault to userland */ 585 if (userfaultfd_missing(vma)) { 586 int ret; 587 588 spin_unlock(vmf->ptl); 589 mem_cgroup_cancel_charge(page, memcg, true); 590 put_page(page); 591 pte_free(vma->vm_mm, pgtable); 592 ret = handle_userfault(vmf, VM_UFFD_MISSING); 593 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 594 return ret; 595 } 596 597 entry = mk_huge_pmd(page, vma->vm_page_prot); 598 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 599 page_add_new_anon_rmap(page, vma, haddr, true); 600 mem_cgroup_commit_charge(page, memcg, false, true); 601 lru_cache_add_active_or_unevictable(page, vma); 602 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 603 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 604 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 605 atomic_long_inc(&vma->vm_mm->nr_ptes); 606 spin_unlock(vmf->ptl); 607 count_vm_event(THP_FAULT_ALLOC); 608 } 609 610 return 0; 611 } 612 613 /* 614 * always: directly stall for all thp allocations 615 * defer: wake kswapd and fail if not immediately available 616 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 617 * fail if not immediately available 618 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 619 * available 620 * never: never stall for any thp allocation 621 */ 622 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) 623 { 624 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); 625 626 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 627 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 628 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 629 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 630 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 631 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM : 632 __GFP_KSWAPD_RECLAIM); 633 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 634 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM : 635 0); 636 return GFP_TRANSHUGE_LIGHT; 637 } 638 639 /* Caller must hold page table lock. */ 640 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 641 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 642 struct page *zero_page) 643 { 644 pmd_t entry; 645 if (!pmd_none(*pmd)) 646 return false; 647 entry = mk_pmd(zero_page, vma->vm_page_prot); 648 entry = pmd_mkhuge(entry); 649 if (pgtable) 650 pgtable_trans_huge_deposit(mm, pmd, pgtable); 651 set_pmd_at(mm, haddr, pmd, entry); 652 atomic_long_inc(&mm->nr_ptes); 653 return true; 654 } 655 656 int do_huge_pmd_anonymous_page(struct vm_fault *vmf) 657 { 658 struct vm_area_struct *vma = vmf->vma; 659 gfp_t gfp; 660 struct page *page; 661 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 662 663 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 664 return VM_FAULT_FALLBACK; 665 if (unlikely(anon_vma_prepare(vma))) 666 return VM_FAULT_OOM; 667 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 668 return VM_FAULT_OOM; 669 if (!(vmf->flags & FAULT_FLAG_WRITE) && 670 !mm_forbids_zeropage(vma->vm_mm) && 671 transparent_hugepage_use_zero_page()) { 672 pgtable_t pgtable; 673 struct page *zero_page; 674 bool set; 675 int ret; 676 pgtable = pte_alloc_one(vma->vm_mm, haddr); 677 if (unlikely(!pgtable)) 678 return VM_FAULT_OOM; 679 zero_page = mm_get_huge_zero_page(vma->vm_mm); 680 if (unlikely(!zero_page)) { 681 pte_free(vma->vm_mm, pgtable); 682 count_vm_event(THP_FAULT_FALLBACK); 683 return VM_FAULT_FALLBACK; 684 } 685 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 686 ret = 0; 687 set = false; 688 if (pmd_none(*vmf->pmd)) { 689 if (userfaultfd_missing(vma)) { 690 spin_unlock(vmf->ptl); 691 ret = handle_userfault(vmf, VM_UFFD_MISSING); 692 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 693 } else { 694 set_huge_zero_page(pgtable, vma->vm_mm, vma, 695 haddr, vmf->pmd, zero_page); 696 spin_unlock(vmf->ptl); 697 set = true; 698 } 699 } else 700 spin_unlock(vmf->ptl); 701 if (!set) 702 pte_free(vma->vm_mm, pgtable); 703 return ret; 704 } 705 gfp = alloc_hugepage_direct_gfpmask(vma); 706 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 707 if (unlikely(!page)) { 708 count_vm_event(THP_FAULT_FALLBACK); 709 return VM_FAULT_FALLBACK; 710 } 711 prep_transhuge_page(page); 712 return __do_huge_pmd_anonymous_page(vmf, page, gfp); 713 } 714 715 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 716 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write) 717 { 718 struct mm_struct *mm = vma->vm_mm; 719 pmd_t entry; 720 spinlock_t *ptl; 721 722 ptl = pmd_lock(mm, pmd); 723 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 724 if (pfn_t_devmap(pfn)) 725 entry = pmd_mkdevmap(entry); 726 if (write) { 727 entry = pmd_mkyoung(pmd_mkdirty(entry)); 728 entry = maybe_pmd_mkwrite(entry, vma); 729 } 730 set_pmd_at(mm, addr, pmd, entry); 731 update_mmu_cache_pmd(vma, addr, pmd); 732 spin_unlock(ptl); 733 } 734 735 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 736 pmd_t *pmd, pfn_t pfn, bool write) 737 { 738 pgprot_t pgprot = vma->vm_page_prot; 739 /* 740 * If we had pmd_special, we could avoid all these restrictions, 741 * but we need to be consistent with PTEs and architectures that 742 * can't support a 'special' bit. 743 */ 744 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 745 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 746 (VM_PFNMAP|VM_MIXEDMAP)); 747 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 748 BUG_ON(!pfn_t_devmap(pfn)); 749 750 if (addr < vma->vm_start || addr >= vma->vm_end) 751 return VM_FAULT_SIGBUS; 752 753 track_pfn_insert(vma, &pgprot, pfn); 754 755 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write); 756 return VM_FAULT_NOPAGE; 757 } 758 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 759 760 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 761 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 762 { 763 if (likely(vma->vm_flags & VM_WRITE)) 764 pud = pud_mkwrite(pud); 765 return pud; 766 } 767 768 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 769 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 770 { 771 struct mm_struct *mm = vma->vm_mm; 772 pud_t entry; 773 spinlock_t *ptl; 774 775 ptl = pud_lock(mm, pud); 776 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 777 if (pfn_t_devmap(pfn)) 778 entry = pud_mkdevmap(entry); 779 if (write) { 780 entry = pud_mkyoung(pud_mkdirty(entry)); 781 entry = maybe_pud_mkwrite(entry, vma); 782 } 783 set_pud_at(mm, addr, pud, entry); 784 update_mmu_cache_pud(vma, addr, pud); 785 spin_unlock(ptl); 786 } 787 788 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 789 pud_t *pud, pfn_t pfn, bool write) 790 { 791 pgprot_t pgprot = vma->vm_page_prot; 792 /* 793 * If we had pud_special, we could avoid all these restrictions, 794 * but we need to be consistent with PTEs and architectures that 795 * can't support a 'special' bit. 796 */ 797 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 798 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 799 (VM_PFNMAP|VM_MIXEDMAP)); 800 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 801 BUG_ON(!pfn_t_devmap(pfn)); 802 803 if (addr < vma->vm_start || addr >= vma->vm_end) 804 return VM_FAULT_SIGBUS; 805 806 track_pfn_insert(vma, &pgprot, pfn); 807 808 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write); 809 return VM_FAULT_NOPAGE; 810 } 811 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 812 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 813 814 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 815 pmd_t *pmd) 816 { 817 pmd_t _pmd; 818 819 /* 820 * We should set the dirty bit only for FOLL_WRITE but for now 821 * the dirty bit in the pmd is meaningless. And if the dirty 822 * bit will become meaningful and we'll only set it with 823 * FOLL_WRITE, an atomic set_bit will be required on the pmd to 824 * set the young bit, instead of the current set_pmd_at. 825 */ 826 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); 827 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 828 pmd, _pmd, 1)) 829 update_mmu_cache_pmd(vma, addr, pmd); 830 } 831 832 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 833 pmd_t *pmd, int flags) 834 { 835 unsigned long pfn = pmd_pfn(*pmd); 836 struct mm_struct *mm = vma->vm_mm; 837 struct dev_pagemap *pgmap; 838 struct page *page; 839 840 assert_spin_locked(pmd_lockptr(mm, pmd)); 841 842 /* 843 * When we COW a devmap PMD entry, we split it into PTEs, so we should 844 * not be in this function with `flags & FOLL_COW` set. 845 */ 846 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); 847 848 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 849 return NULL; 850 851 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 852 /* pass */; 853 else 854 return NULL; 855 856 if (flags & FOLL_TOUCH) 857 touch_pmd(vma, addr, pmd); 858 859 /* 860 * device mapped pages can only be returned if the 861 * caller will manage the page reference count. 862 */ 863 if (!(flags & FOLL_GET)) 864 return ERR_PTR(-EEXIST); 865 866 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 867 pgmap = get_dev_pagemap(pfn, NULL); 868 if (!pgmap) 869 return ERR_PTR(-EFAULT); 870 page = pfn_to_page(pfn); 871 get_page(page); 872 put_dev_pagemap(pgmap); 873 874 return page; 875 } 876 877 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 878 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 879 struct vm_area_struct *vma) 880 { 881 spinlock_t *dst_ptl, *src_ptl; 882 struct page *src_page; 883 pmd_t pmd; 884 pgtable_t pgtable = NULL; 885 int ret = -ENOMEM; 886 887 /* Skip if can be re-fill on fault */ 888 if (!vma_is_anonymous(vma)) 889 return 0; 890 891 pgtable = pte_alloc_one(dst_mm, addr); 892 if (unlikely(!pgtable)) 893 goto out; 894 895 dst_ptl = pmd_lock(dst_mm, dst_pmd); 896 src_ptl = pmd_lockptr(src_mm, src_pmd); 897 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 898 899 ret = -EAGAIN; 900 pmd = *src_pmd; 901 if (unlikely(!pmd_trans_huge(pmd))) { 902 pte_free(dst_mm, pgtable); 903 goto out_unlock; 904 } 905 /* 906 * When page table lock is held, the huge zero pmd should not be 907 * under splitting since we don't split the page itself, only pmd to 908 * a page table. 909 */ 910 if (is_huge_zero_pmd(pmd)) { 911 struct page *zero_page; 912 /* 913 * get_huge_zero_page() will never allocate a new page here, 914 * since we already have a zero page to copy. It just takes a 915 * reference. 916 */ 917 zero_page = mm_get_huge_zero_page(dst_mm); 918 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 919 zero_page); 920 ret = 0; 921 goto out_unlock; 922 } 923 924 src_page = pmd_page(pmd); 925 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 926 get_page(src_page); 927 page_dup_rmap(src_page, true); 928 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 929 atomic_long_inc(&dst_mm->nr_ptes); 930 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 931 932 pmdp_set_wrprotect(src_mm, addr, src_pmd); 933 pmd = pmd_mkold(pmd_wrprotect(pmd)); 934 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 935 936 ret = 0; 937 out_unlock: 938 spin_unlock(src_ptl); 939 spin_unlock(dst_ptl); 940 out: 941 return ret; 942 } 943 944 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 945 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 946 pud_t *pud) 947 { 948 pud_t _pud; 949 950 /* 951 * We should set the dirty bit only for FOLL_WRITE but for now 952 * the dirty bit in the pud is meaningless. And if the dirty 953 * bit will become meaningful and we'll only set it with 954 * FOLL_WRITE, an atomic set_bit will be required on the pud to 955 * set the young bit, instead of the current set_pud_at. 956 */ 957 _pud = pud_mkyoung(pud_mkdirty(*pud)); 958 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 959 pud, _pud, 1)) 960 update_mmu_cache_pud(vma, addr, pud); 961 } 962 963 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 964 pud_t *pud, int flags) 965 { 966 unsigned long pfn = pud_pfn(*pud); 967 struct mm_struct *mm = vma->vm_mm; 968 struct dev_pagemap *pgmap; 969 struct page *page; 970 971 assert_spin_locked(pud_lockptr(mm, pud)); 972 973 if (flags & FOLL_WRITE && !pud_write(*pud)) 974 return NULL; 975 976 if (pud_present(*pud) && pud_devmap(*pud)) 977 /* pass */; 978 else 979 return NULL; 980 981 if (flags & FOLL_TOUCH) 982 touch_pud(vma, addr, pud); 983 984 /* 985 * device mapped pages can only be returned if the 986 * caller will manage the page reference count. 987 */ 988 if (!(flags & FOLL_GET)) 989 return ERR_PTR(-EEXIST); 990 991 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 992 pgmap = get_dev_pagemap(pfn, NULL); 993 if (!pgmap) 994 return ERR_PTR(-EFAULT); 995 page = pfn_to_page(pfn); 996 get_page(page); 997 put_dev_pagemap(pgmap); 998 999 return page; 1000 } 1001 1002 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1003 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1004 struct vm_area_struct *vma) 1005 { 1006 spinlock_t *dst_ptl, *src_ptl; 1007 pud_t pud; 1008 int ret; 1009 1010 dst_ptl = pud_lock(dst_mm, dst_pud); 1011 src_ptl = pud_lockptr(src_mm, src_pud); 1012 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1013 1014 ret = -EAGAIN; 1015 pud = *src_pud; 1016 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1017 goto out_unlock; 1018 1019 /* 1020 * When page table lock is held, the huge zero pud should not be 1021 * under splitting since we don't split the page itself, only pud to 1022 * a page table. 1023 */ 1024 if (is_huge_zero_pud(pud)) { 1025 /* No huge zero pud yet */ 1026 } 1027 1028 pudp_set_wrprotect(src_mm, addr, src_pud); 1029 pud = pud_mkold(pud_wrprotect(pud)); 1030 set_pud_at(dst_mm, addr, dst_pud, pud); 1031 1032 ret = 0; 1033 out_unlock: 1034 spin_unlock(src_ptl); 1035 spin_unlock(dst_ptl); 1036 return ret; 1037 } 1038 1039 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1040 { 1041 pud_t entry; 1042 unsigned long haddr; 1043 bool write = vmf->flags & FAULT_FLAG_WRITE; 1044 1045 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1046 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1047 goto unlock; 1048 1049 entry = pud_mkyoung(orig_pud); 1050 if (write) 1051 entry = pud_mkdirty(entry); 1052 haddr = vmf->address & HPAGE_PUD_MASK; 1053 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write)) 1054 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud); 1055 1056 unlock: 1057 spin_unlock(vmf->ptl); 1058 } 1059 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1060 1061 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd) 1062 { 1063 pmd_t entry; 1064 unsigned long haddr; 1065 bool write = vmf->flags & FAULT_FLAG_WRITE; 1066 1067 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1068 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1069 goto unlock; 1070 1071 entry = pmd_mkyoung(orig_pmd); 1072 if (write) 1073 entry = pmd_mkdirty(entry); 1074 haddr = vmf->address & HPAGE_PMD_MASK; 1075 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) 1076 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); 1077 1078 unlock: 1079 spin_unlock(vmf->ptl); 1080 } 1081 1082 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd, 1083 struct page *page) 1084 { 1085 struct vm_area_struct *vma = vmf->vma; 1086 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1087 struct mem_cgroup *memcg; 1088 pgtable_t pgtable; 1089 pmd_t _pmd; 1090 int ret = 0, i; 1091 struct page **pages; 1092 unsigned long mmun_start; /* For mmu_notifiers */ 1093 unsigned long mmun_end; /* For mmu_notifiers */ 1094 1095 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, 1096 GFP_KERNEL); 1097 if (unlikely(!pages)) { 1098 ret |= VM_FAULT_OOM; 1099 goto out; 1100 } 1101 1102 for (i = 0; i < HPAGE_PMD_NR; i++) { 1103 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma, 1104 vmf->address, page_to_nid(page)); 1105 if (unlikely(!pages[i] || 1106 mem_cgroup_try_charge(pages[i], vma->vm_mm, 1107 GFP_KERNEL, &memcg, false))) { 1108 if (pages[i]) 1109 put_page(pages[i]); 1110 while (--i >= 0) { 1111 memcg = (void *)page_private(pages[i]); 1112 set_page_private(pages[i], 0); 1113 mem_cgroup_cancel_charge(pages[i], memcg, 1114 false); 1115 put_page(pages[i]); 1116 } 1117 kfree(pages); 1118 ret |= VM_FAULT_OOM; 1119 goto out; 1120 } 1121 set_page_private(pages[i], (unsigned long)memcg); 1122 } 1123 1124 for (i = 0; i < HPAGE_PMD_NR; i++) { 1125 copy_user_highpage(pages[i], page + i, 1126 haddr + PAGE_SIZE * i, vma); 1127 __SetPageUptodate(pages[i]); 1128 cond_resched(); 1129 } 1130 1131 mmun_start = haddr; 1132 mmun_end = haddr + HPAGE_PMD_SIZE; 1133 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 1134 1135 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1136 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1137 goto out_free_pages; 1138 VM_BUG_ON_PAGE(!PageHead(page), page); 1139 1140 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 1141 /* leave pmd empty until pte is filled */ 1142 1143 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd); 1144 pmd_populate(vma->vm_mm, &_pmd, pgtable); 1145 1146 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1147 pte_t entry; 1148 entry = mk_pte(pages[i], vma->vm_page_prot); 1149 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1150 memcg = (void *)page_private(pages[i]); 1151 set_page_private(pages[i], 0); 1152 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false); 1153 mem_cgroup_commit_charge(pages[i], memcg, false, false); 1154 lru_cache_add_active_or_unevictable(pages[i], vma); 1155 vmf->pte = pte_offset_map(&_pmd, haddr); 1156 VM_BUG_ON(!pte_none(*vmf->pte)); 1157 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry); 1158 pte_unmap(vmf->pte); 1159 } 1160 kfree(pages); 1161 1162 smp_wmb(); /* make pte visible before pmd */ 1163 pmd_populate(vma->vm_mm, vmf->pmd, pgtable); 1164 page_remove_rmap(page, true); 1165 spin_unlock(vmf->ptl); 1166 1167 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1168 1169 ret |= VM_FAULT_WRITE; 1170 put_page(page); 1171 1172 out: 1173 return ret; 1174 1175 out_free_pages: 1176 spin_unlock(vmf->ptl); 1177 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1178 for (i = 0; i < HPAGE_PMD_NR; i++) { 1179 memcg = (void *)page_private(pages[i]); 1180 set_page_private(pages[i], 0); 1181 mem_cgroup_cancel_charge(pages[i], memcg, false); 1182 put_page(pages[i]); 1183 } 1184 kfree(pages); 1185 goto out; 1186 } 1187 1188 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd) 1189 { 1190 struct vm_area_struct *vma = vmf->vma; 1191 struct page *page = NULL, *new_page; 1192 struct mem_cgroup *memcg; 1193 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1194 unsigned long mmun_start; /* For mmu_notifiers */ 1195 unsigned long mmun_end; /* For mmu_notifiers */ 1196 gfp_t huge_gfp; /* for allocation and charge */ 1197 int ret = 0; 1198 1199 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1200 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1201 if (is_huge_zero_pmd(orig_pmd)) 1202 goto alloc; 1203 spin_lock(vmf->ptl); 1204 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1205 goto out_unlock; 1206 1207 page = pmd_page(orig_pmd); 1208 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 1209 /* 1210 * We can only reuse the page if nobody else maps the huge page or it's 1211 * part. 1212 */ 1213 if (page_trans_huge_mapcount(page, NULL) == 1) { 1214 pmd_t entry; 1215 entry = pmd_mkyoung(orig_pmd); 1216 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1217 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1218 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1219 ret |= VM_FAULT_WRITE; 1220 goto out_unlock; 1221 } 1222 get_page(page); 1223 spin_unlock(vmf->ptl); 1224 alloc: 1225 if (transparent_hugepage_enabled(vma) && 1226 !transparent_hugepage_debug_cow()) { 1227 huge_gfp = alloc_hugepage_direct_gfpmask(vma); 1228 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER); 1229 } else 1230 new_page = NULL; 1231 1232 if (likely(new_page)) { 1233 prep_transhuge_page(new_page); 1234 } else { 1235 if (!page) { 1236 split_huge_pmd(vma, vmf->pmd, vmf->address); 1237 ret |= VM_FAULT_FALLBACK; 1238 } else { 1239 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page); 1240 if (ret & VM_FAULT_OOM) { 1241 split_huge_pmd(vma, vmf->pmd, vmf->address); 1242 ret |= VM_FAULT_FALLBACK; 1243 } 1244 put_page(page); 1245 } 1246 count_vm_event(THP_FAULT_FALLBACK); 1247 goto out; 1248 } 1249 1250 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm, 1251 huge_gfp, &memcg, true))) { 1252 put_page(new_page); 1253 split_huge_pmd(vma, vmf->pmd, vmf->address); 1254 if (page) 1255 put_page(page); 1256 ret |= VM_FAULT_FALLBACK; 1257 count_vm_event(THP_FAULT_FALLBACK); 1258 goto out; 1259 } 1260 1261 count_vm_event(THP_FAULT_ALLOC); 1262 1263 if (!page) 1264 clear_huge_page(new_page, haddr, HPAGE_PMD_NR); 1265 else 1266 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); 1267 __SetPageUptodate(new_page); 1268 1269 mmun_start = haddr; 1270 mmun_end = haddr + HPAGE_PMD_SIZE; 1271 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 1272 1273 spin_lock(vmf->ptl); 1274 if (page) 1275 put_page(page); 1276 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1277 spin_unlock(vmf->ptl); 1278 mem_cgroup_cancel_charge(new_page, memcg, true); 1279 put_page(new_page); 1280 goto out_mn; 1281 } else { 1282 pmd_t entry; 1283 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1284 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1285 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 1286 page_add_new_anon_rmap(new_page, vma, haddr, true); 1287 mem_cgroup_commit_charge(new_page, memcg, false, true); 1288 lru_cache_add_active_or_unevictable(new_page, vma); 1289 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 1290 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1291 if (!page) { 1292 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1293 } else { 1294 VM_BUG_ON_PAGE(!PageHead(page), page); 1295 page_remove_rmap(page, true); 1296 put_page(page); 1297 } 1298 ret |= VM_FAULT_WRITE; 1299 } 1300 spin_unlock(vmf->ptl); 1301 out_mn: 1302 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1303 out: 1304 return ret; 1305 out_unlock: 1306 spin_unlock(vmf->ptl); 1307 return ret; 1308 } 1309 1310 /* 1311 * FOLL_FORCE can write to even unwritable pmd's, but only 1312 * after we've gone through a COW cycle and they are dirty. 1313 */ 1314 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) 1315 { 1316 return pmd_write(pmd) || 1317 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); 1318 } 1319 1320 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1321 unsigned long addr, 1322 pmd_t *pmd, 1323 unsigned int flags) 1324 { 1325 struct mm_struct *mm = vma->vm_mm; 1326 struct page *page = NULL; 1327 1328 assert_spin_locked(pmd_lockptr(mm, pmd)); 1329 1330 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) 1331 goto out; 1332 1333 /* Avoid dumping huge zero page */ 1334 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1335 return ERR_PTR(-EFAULT); 1336 1337 /* Full NUMA hinting faults to serialise migration in fault paths */ 1338 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1339 goto out; 1340 1341 page = pmd_page(*pmd); 1342 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1343 if (flags & FOLL_TOUCH) 1344 touch_pmd(vma, addr, pmd); 1345 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1346 /* 1347 * We don't mlock() pte-mapped THPs. This way we can avoid 1348 * leaking mlocked pages into non-VM_LOCKED VMAs. 1349 * 1350 * For anon THP: 1351 * 1352 * In most cases the pmd is the only mapping of the page as we 1353 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1354 * writable private mappings in populate_vma_page_range(). 1355 * 1356 * The only scenario when we have the page shared here is if we 1357 * mlocking read-only mapping shared over fork(). We skip 1358 * mlocking such pages. 1359 * 1360 * For file THP: 1361 * 1362 * We can expect PageDoubleMap() to be stable under page lock: 1363 * for file pages we set it in page_add_file_rmap(), which 1364 * requires page to be locked. 1365 */ 1366 1367 if (PageAnon(page) && compound_mapcount(page) != 1) 1368 goto skip_mlock; 1369 if (PageDoubleMap(page) || !page->mapping) 1370 goto skip_mlock; 1371 if (!trylock_page(page)) 1372 goto skip_mlock; 1373 lru_add_drain(); 1374 if (page->mapping && !PageDoubleMap(page)) 1375 mlock_vma_page(page); 1376 unlock_page(page); 1377 } 1378 skip_mlock: 1379 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1380 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1381 if (flags & FOLL_GET) 1382 get_page(page); 1383 1384 out: 1385 return page; 1386 } 1387 1388 /* NUMA hinting page fault entry point for trans huge pmds */ 1389 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd) 1390 { 1391 struct vm_area_struct *vma = vmf->vma; 1392 struct anon_vma *anon_vma = NULL; 1393 struct page *page; 1394 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1395 int page_nid = -1, this_nid = numa_node_id(); 1396 int target_nid, last_cpupid = -1; 1397 bool page_locked; 1398 bool migrated = false; 1399 bool was_writable; 1400 int flags = 0; 1401 1402 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1403 if (unlikely(!pmd_same(pmd, *vmf->pmd))) 1404 goto out_unlock; 1405 1406 /* 1407 * If there are potential migrations, wait for completion and retry 1408 * without disrupting NUMA hinting information. Do not relock and 1409 * check_same as the page may no longer be mapped. 1410 */ 1411 if (unlikely(pmd_trans_migrating(*vmf->pmd))) { 1412 page = pmd_page(*vmf->pmd); 1413 spin_unlock(vmf->ptl); 1414 wait_on_page_locked(page); 1415 goto out; 1416 } 1417 1418 page = pmd_page(pmd); 1419 BUG_ON(is_huge_zero_page(page)); 1420 page_nid = page_to_nid(page); 1421 last_cpupid = page_cpupid_last(page); 1422 count_vm_numa_event(NUMA_HINT_FAULTS); 1423 if (page_nid == this_nid) { 1424 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1425 flags |= TNF_FAULT_LOCAL; 1426 } 1427 1428 /* See similar comment in do_numa_page for explanation */ 1429 if (!pmd_savedwrite(pmd)) 1430 flags |= TNF_NO_GROUP; 1431 1432 /* 1433 * Acquire the page lock to serialise THP migrations but avoid dropping 1434 * page_table_lock if at all possible 1435 */ 1436 page_locked = trylock_page(page); 1437 target_nid = mpol_misplaced(page, vma, haddr); 1438 if (target_nid == -1) { 1439 /* If the page was locked, there are no parallel migrations */ 1440 if (page_locked) 1441 goto clear_pmdnuma; 1442 } 1443 1444 /* Migration could have started since the pmd_trans_migrating check */ 1445 if (!page_locked) { 1446 spin_unlock(vmf->ptl); 1447 wait_on_page_locked(page); 1448 page_nid = -1; 1449 goto out; 1450 } 1451 1452 /* 1453 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1454 * to serialises splits 1455 */ 1456 get_page(page); 1457 spin_unlock(vmf->ptl); 1458 anon_vma = page_lock_anon_vma_read(page); 1459 1460 /* Confirm the PMD did not change while page_table_lock was released */ 1461 spin_lock(vmf->ptl); 1462 if (unlikely(!pmd_same(pmd, *vmf->pmd))) { 1463 unlock_page(page); 1464 put_page(page); 1465 page_nid = -1; 1466 goto out_unlock; 1467 } 1468 1469 /* Bail if we fail to protect against THP splits for any reason */ 1470 if (unlikely(!anon_vma)) { 1471 put_page(page); 1472 page_nid = -1; 1473 goto clear_pmdnuma; 1474 } 1475 1476 /* 1477 * Migrate the THP to the requested node, returns with page unlocked 1478 * and access rights restored. 1479 */ 1480 spin_unlock(vmf->ptl); 1481 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, 1482 vmf->pmd, pmd, vmf->address, page, target_nid); 1483 if (migrated) { 1484 flags |= TNF_MIGRATED; 1485 page_nid = target_nid; 1486 } else 1487 flags |= TNF_MIGRATE_FAIL; 1488 1489 goto out; 1490 clear_pmdnuma: 1491 BUG_ON(!PageLocked(page)); 1492 was_writable = pmd_savedwrite(pmd); 1493 pmd = pmd_modify(pmd, vma->vm_page_prot); 1494 pmd = pmd_mkyoung(pmd); 1495 if (was_writable) 1496 pmd = pmd_mkwrite(pmd); 1497 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1498 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1499 unlock_page(page); 1500 out_unlock: 1501 spin_unlock(vmf->ptl); 1502 1503 out: 1504 if (anon_vma) 1505 page_unlock_anon_vma_read(anon_vma); 1506 1507 if (page_nid != -1) 1508 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1509 flags); 1510 1511 return 0; 1512 } 1513 1514 /* 1515 * Return true if we do MADV_FREE successfully on entire pmd page. 1516 * Otherwise, return false. 1517 */ 1518 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1519 pmd_t *pmd, unsigned long addr, unsigned long next) 1520 { 1521 spinlock_t *ptl; 1522 pmd_t orig_pmd; 1523 struct page *page; 1524 struct mm_struct *mm = tlb->mm; 1525 bool ret = false; 1526 1527 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); 1528 1529 ptl = pmd_trans_huge_lock(pmd, vma); 1530 if (!ptl) 1531 goto out_unlocked; 1532 1533 orig_pmd = *pmd; 1534 if (is_huge_zero_pmd(orig_pmd)) 1535 goto out; 1536 1537 page = pmd_page(orig_pmd); 1538 /* 1539 * If other processes are mapping this page, we couldn't discard 1540 * the page unless they all do MADV_FREE so let's skip the page. 1541 */ 1542 if (page_mapcount(page) != 1) 1543 goto out; 1544 1545 if (!trylock_page(page)) 1546 goto out; 1547 1548 /* 1549 * If user want to discard part-pages of THP, split it so MADV_FREE 1550 * will deactivate only them. 1551 */ 1552 if (next - addr != HPAGE_PMD_SIZE) { 1553 get_page(page); 1554 spin_unlock(ptl); 1555 split_huge_page(page); 1556 put_page(page); 1557 unlock_page(page); 1558 goto out_unlocked; 1559 } 1560 1561 if (PageDirty(page)) 1562 ClearPageDirty(page); 1563 unlock_page(page); 1564 1565 if (PageActive(page)) 1566 deactivate_page(page); 1567 1568 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1569 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1570 tlb->fullmm); 1571 orig_pmd = pmd_mkold(orig_pmd); 1572 orig_pmd = pmd_mkclean(orig_pmd); 1573 1574 set_pmd_at(mm, addr, pmd, orig_pmd); 1575 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1576 } 1577 ret = true; 1578 out: 1579 spin_unlock(ptl); 1580 out_unlocked: 1581 return ret; 1582 } 1583 1584 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1585 { 1586 pgtable_t pgtable; 1587 1588 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1589 pte_free(mm, pgtable); 1590 atomic_long_dec(&mm->nr_ptes); 1591 } 1592 1593 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1594 pmd_t *pmd, unsigned long addr) 1595 { 1596 pmd_t orig_pmd; 1597 spinlock_t *ptl; 1598 1599 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); 1600 1601 ptl = __pmd_trans_huge_lock(pmd, vma); 1602 if (!ptl) 1603 return 0; 1604 /* 1605 * For architectures like ppc64 we look at deposited pgtable 1606 * when calling pmdp_huge_get_and_clear. So do the 1607 * pgtable_trans_huge_withdraw after finishing pmdp related 1608 * operations. 1609 */ 1610 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1611 tlb->fullmm); 1612 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1613 if (vma_is_dax(vma)) { 1614 spin_unlock(ptl); 1615 if (is_huge_zero_pmd(orig_pmd)) 1616 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1617 } else if (is_huge_zero_pmd(orig_pmd)) { 1618 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd)); 1619 atomic_long_dec(&tlb->mm->nr_ptes); 1620 spin_unlock(ptl); 1621 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1622 } else { 1623 struct page *page = pmd_page(orig_pmd); 1624 page_remove_rmap(page, true); 1625 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1626 VM_BUG_ON_PAGE(!PageHead(page), page); 1627 if (PageAnon(page)) { 1628 pgtable_t pgtable; 1629 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd); 1630 pte_free(tlb->mm, pgtable); 1631 atomic_long_dec(&tlb->mm->nr_ptes); 1632 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1633 } else { 1634 if (arch_needs_pgtable_deposit()) 1635 zap_deposited_table(tlb->mm, pmd); 1636 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1637 } 1638 spin_unlock(ptl); 1639 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1640 } 1641 return 1; 1642 } 1643 1644 #ifndef pmd_move_must_withdraw 1645 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1646 spinlock_t *old_pmd_ptl, 1647 struct vm_area_struct *vma) 1648 { 1649 /* 1650 * With split pmd lock we also need to move preallocated 1651 * PTE page table if new_pmd is on different PMD page table. 1652 * 1653 * We also don't deposit and withdraw tables for file pages. 1654 */ 1655 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1656 } 1657 #endif 1658 1659 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1660 unsigned long new_addr, unsigned long old_end, 1661 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush) 1662 { 1663 spinlock_t *old_ptl, *new_ptl; 1664 pmd_t pmd; 1665 struct mm_struct *mm = vma->vm_mm; 1666 bool force_flush = false; 1667 1668 if ((old_addr & ~HPAGE_PMD_MASK) || 1669 (new_addr & ~HPAGE_PMD_MASK) || 1670 old_end - old_addr < HPAGE_PMD_SIZE) 1671 return false; 1672 1673 /* 1674 * The destination pmd shouldn't be established, free_pgtables() 1675 * should have release it. 1676 */ 1677 if (WARN_ON(!pmd_none(*new_pmd))) { 1678 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1679 return false; 1680 } 1681 1682 /* 1683 * We don't have to worry about the ordering of src and dst 1684 * ptlocks because exclusive mmap_sem prevents deadlock. 1685 */ 1686 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1687 if (old_ptl) { 1688 new_ptl = pmd_lockptr(mm, new_pmd); 1689 if (new_ptl != old_ptl) 1690 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1691 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1692 if (pmd_present(pmd) && pmd_dirty(pmd)) 1693 force_flush = true; 1694 VM_BUG_ON(!pmd_none(*new_pmd)); 1695 1696 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1697 pgtable_t pgtable; 1698 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1699 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1700 } 1701 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); 1702 if (new_ptl != old_ptl) 1703 spin_unlock(new_ptl); 1704 if (force_flush) 1705 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1706 else 1707 *need_flush = true; 1708 spin_unlock(old_ptl); 1709 return true; 1710 } 1711 return false; 1712 } 1713 1714 /* 1715 * Returns 1716 * - 0 if PMD could not be locked 1717 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1718 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1719 */ 1720 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1721 unsigned long addr, pgprot_t newprot, int prot_numa) 1722 { 1723 struct mm_struct *mm = vma->vm_mm; 1724 spinlock_t *ptl; 1725 int ret = 0; 1726 1727 ptl = __pmd_trans_huge_lock(pmd, vma); 1728 if (ptl) { 1729 pmd_t entry; 1730 bool preserve_write = prot_numa && pmd_write(*pmd); 1731 ret = 1; 1732 1733 /* 1734 * Avoid trapping faults against the zero page. The read-only 1735 * data is likely to be read-cached on the local CPU and 1736 * local/remote hits to the zero page are not interesting. 1737 */ 1738 if (prot_numa && is_huge_zero_pmd(*pmd)) { 1739 spin_unlock(ptl); 1740 return ret; 1741 } 1742 1743 if (!prot_numa || !pmd_protnone(*pmd)) { 1744 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd); 1745 entry = pmd_modify(entry, newprot); 1746 if (preserve_write) 1747 entry = pmd_mk_savedwrite(entry); 1748 ret = HPAGE_PMD_NR; 1749 set_pmd_at(mm, addr, pmd, entry); 1750 BUG_ON(vma_is_anonymous(vma) && !preserve_write && 1751 pmd_write(entry)); 1752 } 1753 spin_unlock(ptl); 1754 } 1755 1756 return ret; 1757 } 1758 1759 /* 1760 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1761 * 1762 * Note that if it returns page table lock pointer, this routine returns without 1763 * unlocking page table lock. So callers must unlock it. 1764 */ 1765 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1766 { 1767 spinlock_t *ptl; 1768 ptl = pmd_lock(vma->vm_mm, pmd); 1769 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd))) 1770 return ptl; 1771 spin_unlock(ptl); 1772 return NULL; 1773 } 1774 1775 /* 1776 * Returns true if a given pud maps a thp, false otherwise. 1777 * 1778 * Note that if it returns true, this routine returns without unlocking page 1779 * table lock. So callers must unlock it. 1780 */ 1781 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1782 { 1783 spinlock_t *ptl; 1784 1785 ptl = pud_lock(vma->vm_mm, pud); 1786 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1787 return ptl; 1788 spin_unlock(ptl); 1789 return NULL; 1790 } 1791 1792 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1793 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1794 pud_t *pud, unsigned long addr) 1795 { 1796 pud_t orig_pud; 1797 spinlock_t *ptl; 1798 1799 ptl = __pud_trans_huge_lock(pud, vma); 1800 if (!ptl) 1801 return 0; 1802 /* 1803 * For architectures like ppc64 we look at deposited pgtable 1804 * when calling pudp_huge_get_and_clear. So do the 1805 * pgtable_trans_huge_withdraw after finishing pudp related 1806 * operations. 1807 */ 1808 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud, 1809 tlb->fullmm); 1810 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1811 if (vma_is_dax(vma)) { 1812 spin_unlock(ptl); 1813 /* No zero page support yet */ 1814 } else { 1815 /* No support for anonymous PUD pages yet */ 1816 BUG(); 1817 } 1818 return 1; 1819 } 1820 1821 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 1822 unsigned long haddr) 1823 { 1824 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 1825 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1826 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 1827 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 1828 1829 count_vm_event(THP_SPLIT_PMD); 1830 1831 pudp_huge_clear_flush_notify(vma, haddr, pud); 1832 } 1833 1834 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 1835 unsigned long address) 1836 { 1837 spinlock_t *ptl; 1838 struct mm_struct *mm = vma->vm_mm; 1839 unsigned long haddr = address & HPAGE_PUD_MASK; 1840 1841 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE); 1842 ptl = pud_lock(mm, pud); 1843 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 1844 goto out; 1845 __split_huge_pud_locked(vma, pud, haddr); 1846 1847 out: 1848 spin_unlock(ptl); 1849 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE); 1850 } 1851 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1852 1853 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1854 unsigned long haddr, pmd_t *pmd) 1855 { 1856 struct mm_struct *mm = vma->vm_mm; 1857 pgtable_t pgtable; 1858 pmd_t _pmd; 1859 int i; 1860 1861 /* leave pmd empty until pte is filled */ 1862 pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1863 1864 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1865 pmd_populate(mm, &_pmd, pgtable); 1866 1867 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1868 pte_t *pte, entry; 1869 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 1870 entry = pte_mkspecial(entry); 1871 pte = pte_offset_map(&_pmd, haddr); 1872 VM_BUG_ON(!pte_none(*pte)); 1873 set_pte_at(mm, haddr, pte, entry); 1874 pte_unmap(pte); 1875 } 1876 smp_wmb(); /* make pte visible before pmd */ 1877 pmd_populate(mm, pmd, pgtable); 1878 } 1879 1880 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 1881 unsigned long haddr, bool freeze) 1882 { 1883 struct mm_struct *mm = vma->vm_mm; 1884 struct page *page; 1885 pgtable_t pgtable; 1886 pmd_t _pmd; 1887 bool young, write, dirty, soft_dirty; 1888 unsigned long addr; 1889 int i; 1890 1891 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 1892 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1893 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 1894 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)); 1895 1896 count_vm_event(THP_SPLIT_PMD); 1897 1898 if (!vma_is_anonymous(vma)) { 1899 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1900 /* 1901 * We are going to unmap this huge page. So 1902 * just go ahead and zap it 1903 */ 1904 if (arch_needs_pgtable_deposit()) 1905 zap_deposited_table(mm, pmd); 1906 if (vma_is_dax(vma)) 1907 return; 1908 page = pmd_page(_pmd); 1909 if (!PageReferenced(page) && pmd_young(_pmd)) 1910 SetPageReferenced(page); 1911 page_remove_rmap(page, true); 1912 put_page(page); 1913 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1914 return; 1915 } else if (is_huge_zero_pmd(*pmd)) { 1916 return __split_huge_zero_page_pmd(vma, haddr, pmd); 1917 } 1918 1919 page = pmd_page(*pmd); 1920 VM_BUG_ON_PAGE(!page_count(page), page); 1921 page_ref_add(page, HPAGE_PMD_NR - 1); 1922 write = pmd_write(*pmd); 1923 young = pmd_young(*pmd); 1924 dirty = pmd_dirty(*pmd); 1925 soft_dirty = pmd_soft_dirty(*pmd); 1926 1927 pmdp_huge_split_prepare(vma, haddr, pmd); 1928 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1929 pmd_populate(mm, &_pmd, pgtable); 1930 1931 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 1932 pte_t entry, *pte; 1933 /* 1934 * Note that NUMA hinting access restrictions are not 1935 * transferred to avoid any possibility of altering 1936 * permissions across VMAs. 1937 */ 1938 if (freeze) { 1939 swp_entry_t swp_entry; 1940 swp_entry = make_migration_entry(page + i, write); 1941 entry = swp_entry_to_pte(swp_entry); 1942 if (soft_dirty) 1943 entry = pte_swp_mksoft_dirty(entry); 1944 } else { 1945 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 1946 entry = maybe_mkwrite(entry, vma); 1947 if (!write) 1948 entry = pte_wrprotect(entry); 1949 if (!young) 1950 entry = pte_mkold(entry); 1951 if (soft_dirty) 1952 entry = pte_mksoft_dirty(entry); 1953 } 1954 if (dirty) 1955 SetPageDirty(page + i); 1956 pte = pte_offset_map(&_pmd, addr); 1957 BUG_ON(!pte_none(*pte)); 1958 set_pte_at(mm, addr, pte, entry); 1959 atomic_inc(&page[i]._mapcount); 1960 pte_unmap(pte); 1961 } 1962 1963 /* 1964 * Set PG_double_map before dropping compound_mapcount to avoid 1965 * false-negative page_mapped(). 1966 */ 1967 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) { 1968 for (i = 0; i < HPAGE_PMD_NR; i++) 1969 atomic_inc(&page[i]._mapcount); 1970 } 1971 1972 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 1973 /* Last compound_mapcount is gone. */ 1974 __dec_node_page_state(page, NR_ANON_THPS); 1975 if (TestClearPageDoubleMap(page)) { 1976 /* No need in mapcount reference anymore */ 1977 for (i = 0; i < HPAGE_PMD_NR; i++) 1978 atomic_dec(&page[i]._mapcount); 1979 } 1980 } 1981 1982 smp_wmb(); /* make pte visible before pmd */ 1983 /* 1984 * Up to this point the pmd is present and huge and userland has the 1985 * whole access to the hugepage during the split (which happens in 1986 * place). If we overwrite the pmd with the not-huge version pointing 1987 * to the pte here (which of course we could if all CPUs were bug 1988 * free), userland could trigger a small page size TLB miss on the 1989 * small sized TLB while the hugepage TLB entry is still established in 1990 * the huge TLB. Some CPU doesn't like that. 1991 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum 1992 * 383 on page 93. Intel should be safe but is also warns that it's 1993 * only safe if the permission and cache attributes of the two entries 1994 * loaded in the two TLB is identical (which should be the case here). 1995 * But it is generally safer to never allow small and huge TLB entries 1996 * for the same virtual address to be loaded simultaneously. So instead 1997 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 1998 * current pmd notpresent (atomically because here the pmd_trans_huge 1999 * and pmd_trans_splitting must remain set at all times on the pmd 2000 * until the split is complete for this pmd), then we flush the SMP TLB 2001 * and finally we write the non-huge version of the pmd entry with 2002 * pmd_populate. 2003 */ 2004 pmdp_invalidate(vma, haddr, pmd); 2005 pmd_populate(mm, pmd, pgtable); 2006 2007 if (freeze) { 2008 for (i = 0; i < HPAGE_PMD_NR; i++) { 2009 page_remove_rmap(page + i, false); 2010 put_page(page + i); 2011 } 2012 } 2013 } 2014 2015 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2016 unsigned long address, bool freeze, struct page *page) 2017 { 2018 spinlock_t *ptl; 2019 struct mm_struct *mm = vma->vm_mm; 2020 unsigned long haddr = address & HPAGE_PMD_MASK; 2021 2022 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE); 2023 ptl = pmd_lock(mm, pmd); 2024 2025 /* 2026 * If caller asks to setup a migration entries, we need a page to check 2027 * pmd against. Otherwise we can end up replacing wrong page. 2028 */ 2029 VM_BUG_ON(freeze && !page); 2030 if (page && page != pmd_page(*pmd)) 2031 goto out; 2032 2033 if (pmd_trans_huge(*pmd)) { 2034 page = pmd_page(*pmd); 2035 if (PageMlocked(page)) 2036 clear_page_mlock(page); 2037 } else if (!pmd_devmap(*pmd)) 2038 goto out; 2039 __split_huge_pmd_locked(vma, pmd, haddr, freeze); 2040 out: 2041 spin_unlock(ptl); 2042 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE); 2043 } 2044 2045 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2046 bool freeze, struct page *page) 2047 { 2048 pgd_t *pgd; 2049 pud_t *pud; 2050 pmd_t *pmd; 2051 2052 pgd = pgd_offset(vma->vm_mm, address); 2053 if (!pgd_present(*pgd)) 2054 return; 2055 2056 pud = pud_offset(pgd, address); 2057 if (!pud_present(*pud)) 2058 return; 2059 2060 pmd = pmd_offset(pud, address); 2061 2062 __split_huge_pmd(vma, pmd, address, freeze, page); 2063 } 2064 2065 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2066 unsigned long start, 2067 unsigned long end, 2068 long adjust_next) 2069 { 2070 /* 2071 * If the new start address isn't hpage aligned and it could 2072 * previously contain an hugepage: check if we need to split 2073 * an huge pmd. 2074 */ 2075 if (start & ~HPAGE_PMD_MASK && 2076 (start & HPAGE_PMD_MASK) >= vma->vm_start && 2077 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2078 split_huge_pmd_address(vma, start, false, NULL); 2079 2080 /* 2081 * If the new end address isn't hpage aligned and it could 2082 * previously contain an hugepage: check if we need to split 2083 * an huge pmd. 2084 */ 2085 if (end & ~HPAGE_PMD_MASK && 2086 (end & HPAGE_PMD_MASK) >= vma->vm_start && 2087 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2088 split_huge_pmd_address(vma, end, false, NULL); 2089 2090 /* 2091 * If we're also updating the vma->vm_next->vm_start, if the new 2092 * vm_next->vm_start isn't page aligned and it could previously 2093 * contain an hugepage: check if we need to split an huge pmd. 2094 */ 2095 if (adjust_next > 0) { 2096 struct vm_area_struct *next = vma->vm_next; 2097 unsigned long nstart = next->vm_start; 2098 nstart += adjust_next << PAGE_SHIFT; 2099 if (nstart & ~HPAGE_PMD_MASK && 2100 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 2101 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 2102 split_huge_pmd_address(next, nstart, false, NULL); 2103 } 2104 } 2105 2106 static void freeze_page(struct page *page) 2107 { 2108 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | 2109 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD; 2110 int ret; 2111 2112 VM_BUG_ON_PAGE(!PageHead(page), page); 2113 2114 if (PageAnon(page)) 2115 ttu_flags |= TTU_MIGRATION; 2116 2117 ret = try_to_unmap(page, ttu_flags); 2118 VM_BUG_ON_PAGE(ret, page); 2119 } 2120 2121 static void unfreeze_page(struct page *page) 2122 { 2123 int i; 2124 if (PageTransHuge(page)) { 2125 remove_migration_ptes(page, page, true); 2126 } else { 2127 for (i = 0; i < HPAGE_PMD_NR; i++) 2128 remove_migration_ptes(page + i, page + i, true); 2129 } 2130 } 2131 2132 static void __split_huge_page_tail(struct page *head, int tail, 2133 struct lruvec *lruvec, struct list_head *list) 2134 { 2135 struct page *page_tail = head + tail; 2136 2137 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2138 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail); 2139 2140 /* 2141 * tail_page->_refcount is zero and not changing from under us. But 2142 * get_page_unless_zero() may be running from under us on the 2143 * tail_page. If we used atomic_set() below instead of atomic_inc() or 2144 * atomic_add(), we would then run atomic_set() concurrently with 2145 * get_page_unless_zero(), and atomic_set() is implemented in C not 2146 * using locked ops. spin_unlock on x86 sometime uses locked ops 2147 * because of PPro errata 66, 92, so unless somebody can guarantee 2148 * atomic_set() here would be safe on all archs (and not only on x86), 2149 * it's safer to use atomic_inc()/atomic_add(). 2150 */ 2151 if (PageAnon(head)) { 2152 page_ref_inc(page_tail); 2153 } else { 2154 /* Additional pin to radix tree */ 2155 page_ref_add(page_tail, 2); 2156 } 2157 2158 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2159 page_tail->flags |= (head->flags & 2160 ((1L << PG_referenced) | 2161 (1L << PG_swapbacked) | 2162 (1L << PG_mlocked) | 2163 (1L << PG_uptodate) | 2164 (1L << PG_active) | 2165 (1L << PG_locked) | 2166 (1L << PG_unevictable) | 2167 (1L << PG_dirty))); 2168 2169 /* 2170 * After clearing PageTail the gup refcount can be released. 2171 * Page flags also must be visible before we make the page non-compound. 2172 */ 2173 smp_wmb(); 2174 2175 clear_compound_head(page_tail); 2176 2177 if (page_is_young(head)) 2178 set_page_young(page_tail); 2179 if (page_is_idle(head)) 2180 set_page_idle(page_tail); 2181 2182 /* ->mapping in first tail page is compound_mapcount */ 2183 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2184 page_tail); 2185 page_tail->mapping = head->mapping; 2186 2187 page_tail->index = head->index + tail; 2188 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2189 lru_add_page_tail(head, page_tail, lruvec, list); 2190 } 2191 2192 static void __split_huge_page(struct page *page, struct list_head *list, 2193 unsigned long flags) 2194 { 2195 struct page *head = compound_head(page); 2196 struct zone *zone = page_zone(head); 2197 struct lruvec *lruvec; 2198 pgoff_t end = -1; 2199 int i; 2200 2201 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat); 2202 2203 /* complete memcg works before add pages to LRU */ 2204 mem_cgroup_split_huge_fixup(head); 2205 2206 if (!PageAnon(page)) 2207 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE); 2208 2209 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 2210 __split_huge_page_tail(head, i, lruvec, list); 2211 /* Some pages can be beyond i_size: drop them from page cache */ 2212 if (head[i].index >= end) { 2213 __ClearPageDirty(head + i); 2214 __delete_from_page_cache(head + i, NULL); 2215 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) 2216 shmem_uncharge(head->mapping->host, 1); 2217 put_page(head + i); 2218 } 2219 } 2220 2221 ClearPageCompound(head); 2222 /* See comment in __split_huge_page_tail() */ 2223 if (PageAnon(head)) { 2224 page_ref_inc(head); 2225 } else { 2226 /* Additional pin to radix tree */ 2227 page_ref_add(head, 2); 2228 spin_unlock(&head->mapping->tree_lock); 2229 } 2230 2231 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 2232 2233 unfreeze_page(head); 2234 2235 for (i = 0; i < HPAGE_PMD_NR; i++) { 2236 struct page *subpage = head + i; 2237 if (subpage == page) 2238 continue; 2239 unlock_page(subpage); 2240 2241 /* 2242 * Subpages may be freed if there wasn't any mapping 2243 * like if add_to_swap() is running on a lru page that 2244 * had its mapping zapped. And freeing these pages 2245 * requires taking the lru_lock so we do the put_page 2246 * of the tail pages after the split is complete. 2247 */ 2248 put_page(subpage); 2249 } 2250 } 2251 2252 int total_mapcount(struct page *page) 2253 { 2254 int i, compound, ret; 2255 2256 VM_BUG_ON_PAGE(PageTail(page), page); 2257 2258 if (likely(!PageCompound(page))) 2259 return atomic_read(&page->_mapcount) + 1; 2260 2261 compound = compound_mapcount(page); 2262 if (PageHuge(page)) 2263 return compound; 2264 ret = compound; 2265 for (i = 0; i < HPAGE_PMD_NR; i++) 2266 ret += atomic_read(&page[i]._mapcount) + 1; 2267 /* File pages has compound_mapcount included in _mapcount */ 2268 if (!PageAnon(page)) 2269 return ret - compound * HPAGE_PMD_NR; 2270 if (PageDoubleMap(page)) 2271 ret -= HPAGE_PMD_NR; 2272 return ret; 2273 } 2274 2275 /* 2276 * This calculates accurately how many mappings a transparent hugepage 2277 * has (unlike page_mapcount() which isn't fully accurate). This full 2278 * accuracy is primarily needed to know if copy-on-write faults can 2279 * reuse the page and change the mapping to read-write instead of 2280 * copying them. At the same time this returns the total_mapcount too. 2281 * 2282 * The function returns the highest mapcount any one of the subpages 2283 * has. If the return value is one, even if different processes are 2284 * mapping different subpages of the transparent hugepage, they can 2285 * all reuse it, because each process is reusing a different subpage. 2286 * 2287 * The total_mapcount is instead counting all virtual mappings of the 2288 * subpages. If the total_mapcount is equal to "one", it tells the 2289 * caller all mappings belong to the same "mm" and in turn the 2290 * anon_vma of the transparent hugepage can become the vma->anon_vma 2291 * local one as no other process may be mapping any of the subpages. 2292 * 2293 * It would be more accurate to replace page_mapcount() with 2294 * page_trans_huge_mapcount(), however we only use 2295 * page_trans_huge_mapcount() in the copy-on-write faults where we 2296 * need full accuracy to avoid breaking page pinning, because 2297 * page_trans_huge_mapcount() is slower than page_mapcount(). 2298 */ 2299 int page_trans_huge_mapcount(struct page *page, int *total_mapcount) 2300 { 2301 int i, ret, _total_mapcount, mapcount; 2302 2303 /* hugetlbfs shouldn't call it */ 2304 VM_BUG_ON_PAGE(PageHuge(page), page); 2305 2306 if (likely(!PageTransCompound(page))) { 2307 mapcount = atomic_read(&page->_mapcount) + 1; 2308 if (total_mapcount) 2309 *total_mapcount = mapcount; 2310 return mapcount; 2311 } 2312 2313 page = compound_head(page); 2314 2315 _total_mapcount = ret = 0; 2316 for (i = 0; i < HPAGE_PMD_NR; i++) { 2317 mapcount = atomic_read(&page[i]._mapcount) + 1; 2318 ret = max(ret, mapcount); 2319 _total_mapcount += mapcount; 2320 } 2321 if (PageDoubleMap(page)) { 2322 ret -= 1; 2323 _total_mapcount -= HPAGE_PMD_NR; 2324 } 2325 mapcount = compound_mapcount(page); 2326 ret += mapcount; 2327 _total_mapcount += mapcount; 2328 if (total_mapcount) 2329 *total_mapcount = _total_mapcount; 2330 return ret; 2331 } 2332 2333 /* 2334 * This function splits huge page into normal pages. @page can point to any 2335 * subpage of huge page to split. Split doesn't change the position of @page. 2336 * 2337 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2338 * The huge page must be locked. 2339 * 2340 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2341 * 2342 * Both head page and tail pages will inherit mapping, flags, and so on from 2343 * the hugepage. 2344 * 2345 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2346 * they are not mapped. 2347 * 2348 * Returns 0 if the hugepage is split successfully. 2349 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2350 * us. 2351 */ 2352 int split_huge_page_to_list(struct page *page, struct list_head *list) 2353 { 2354 struct page *head = compound_head(page); 2355 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); 2356 struct anon_vma *anon_vma = NULL; 2357 struct address_space *mapping = NULL; 2358 int count, mapcount, extra_pins, ret; 2359 bool mlocked; 2360 unsigned long flags; 2361 2362 VM_BUG_ON_PAGE(is_huge_zero_page(page), page); 2363 VM_BUG_ON_PAGE(!PageLocked(page), page); 2364 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 2365 VM_BUG_ON_PAGE(!PageCompound(page), page); 2366 2367 if (PageAnon(head)) { 2368 /* 2369 * The caller does not necessarily hold an mmap_sem that would 2370 * prevent the anon_vma disappearing so we first we take a 2371 * reference to it and then lock the anon_vma for write. This 2372 * is similar to page_lock_anon_vma_read except the write lock 2373 * is taken to serialise against parallel split or collapse 2374 * operations. 2375 */ 2376 anon_vma = page_get_anon_vma(head); 2377 if (!anon_vma) { 2378 ret = -EBUSY; 2379 goto out; 2380 } 2381 extra_pins = 0; 2382 mapping = NULL; 2383 anon_vma_lock_write(anon_vma); 2384 } else { 2385 mapping = head->mapping; 2386 2387 /* Truncated ? */ 2388 if (!mapping) { 2389 ret = -EBUSY; 2390 goto out; 2391 } 2392 2393 /* Addidional pins from radix tree */ 2394 extra_pins = HPAGE_PMD_NR; 2395 anon_vma = NULL; 2396 i_mmap_lock_read(mapping); 2397 } 2398 2399 /* 2400 * Racy check if we can split the page, before freeze_page() will 2401 * split PMDs 2402 */ 2403 if (total_mapcount(head) != page_count(head) - extra_pins - 1) { 2404 ret = -EBUSY; 2405 goto out_unlock; 2406 } 2407 2408 mlocked = PageMlocked(page); 2409 freeze_page(head); 2410 VM_BUG_ON_PAGE(compound_mapcount(head), head); 2411 2412 /* Make sure the page is not on per-CPU pagevec as it takes pin */ 2413 if (mlocked) 2414 lru_add_drain(); 2415 2416 /* prevent PageLRU to go away from under us, and freeze lru stats */ 2417 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags); 2418 2419 if (mapping) { 2420 void **pslot; 2421 2422 spin_lock(&mapping->tree_lock); 2423 pslot = radix_tree_lookup_slot(&mapping->page_tree, 2424 page_index(head)); 2425 /* 2426 * Check if the head page is present in radix tree. 2427 * We assume all tail are present too, if head is there. 2428 */ 2429 if (radix_tree_deref_slot_protected(pslot, 2430 &mapping->tree_lock) != head) 2431 goto fail; 2432 } 2433 2434 /* Prevent deferred_split_scan() touching ->_refcount */ 2435 spin_lock(&pgdata->split_queue_lock); 2436 count = page_count(head); 2437 mapcount = total_mapcount(head); 2438 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { 2439 if (!list_empty(page_deferred_list(head))) { 2440 pgdata->split_queue_len--; 2441 list_del(page_deferred_list(head)); 2442 } 2443 if (mapping) 2444 __dec_node_page_state(page, NR_SHMEM_THPS); 2445 spin_unlock(&pgdata->split_queue_lock); 2446 __split_huge_page(page, list, flags); 2447 ret = 0; 2448 } else { 2449 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { 2450 pr_alert("total_mapcount: %u, page_count(): %u\n", 2451 mapcount, count); 2452 if (PageTail(page)) 2453 dump_page(head, NULL); 2454 dump_page(page, "total_mapcount(head) > 0"); 2455 BUG(); 2456 } 2457 spin_unlock(&pgdata->split_queue_lock); 2458 fail: if (mapping) 2459 spin_unlock(&mapping->tree_lock); 2460 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 2461 unfreeze_page(head); 2462 ret = -EBUSY; 2463 } 2464 2465 out_unlock: 2466 if (anon_vma) { 2467 anon_vma_unlock_write(anon_vma); 2468 put_anon_vma(anon_vma); 2469 } 2470 if (mapping) 2471 i_mmap_unlock_read(mapping); 2472 out: 2473 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2474 return ret; 2475 } 2476 2477 void free_transhuge_page(struct page *page) 2478 { 2479 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2480 unsigned long flags; 2481 2482 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2483 if (!list_empty(page_deferred_list(page))) { 2484 pgdata->split_queue_len--; 2485 list_del(page_deferred_list(page)); 2486 } 2487 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2488 free_compound_page(page); 2489 } 2490 2491 void deferred_split_huge_page(struct page *page) 2492 { 2493 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2494 unsigned long flags; 2495 2496 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2497 2498 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2499 if (list_empty(page_deferred_list(page))) { 2500 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2501 list_add_tail(page_deferred_list(page), &pgdata->split_queue); 2502 pgdata->split_queue_len++; 2503 } 2504 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2505 } 2506 2507 static unsigned long deferred_split_count(struct shrinker *shrink, 2508 struct shrink_control *sc) 2509 { 2510 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2511 return ACCESS_ONCE(pgdata->split_queue_len); 2512 } 2513 2514 static unsigned long deferred_split_scan(struct shrinker *shrink, 2515 struct shrink_control *sc) 2516 { 2517 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2518 unsigned long flags; 2519 LIST_HEAD(list), *pos, *next; 2520 struct page *page; 2521 int split = 0; 2522 2523 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2524 /* Take pin on all head pages to avoid freeing them under us */ 2525 list_for_each_safe(pos, next, &pgdata->split_queue) { 2526 page = list_entry((void *)pos, struct page, mapping); 2527 page = compound_head(page); 2528 if (get_page_unless_zero(page)) { 2529 list_move(page_deferred_list(page), &list); 2530 } else { 2531 /* We lost race with put_compound_page() */ 2532 list_del_init(page_deferred_list(page)); 2533 pgdata->split_queue_len--; 2534 } 2535 if (!--sc->nr_to_scan) 2536 break; 2537 } 2538 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2539 2540 list_for_each_safe(pos, next, &list) { 2541 page = list_entry((void *)pos, struct page, mapping); 2542 lock_page(page); 2543 /* split_huge_page() removes page from list on success */ 2544 if (!split_huge_page(page)) 2545 split++; 2546 unlock_page(page); 2547 put_page(page); 2548 } 2549 2550 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2551 list_splice_tail(&list, &pgdata->split_queue); 2552 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2553 2554 /* 2555 * Stop shrinker if we didn't split any page, but the queue is empty. 2556 * This can happen if pages were freed under us. 2557 */ 2558 if (!split && list_empty(&pgdata->split_queue)) 2559 return SHRINK_STOP; 2560 return split; 2561 } 2562 2563 static struct shrinker deferred_split_shrinker = { 2564 .count_objects = deferred_split_count, 2565 .scan_objects = deferred_split_scan, 2566 .seeks = DEFAULT_SEEKS, 2567 .flags = SHRINKER_NUMA_AWARE, 2568 }; 2569 2570 #ifdef CONFIG_DEBUG_FS 2571 static int split_huge_pages_set(void *data, u64 val) 2572 { 2573 struct zone *zone; 2574 struct page *page; 2575 unsigned long pfn, max_zone_pfn; 2576 unsigned long total = 0, split = 0; 2577 2578 if (val != 1) 2579 return -EINVAL; 2580 2581 for_each_populated_zone(zone) { 2582 max_zone_pfn = zone_end_pfn(zone); 2583 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2584 if (!pfn_valid(pfn)) 2585 continue; 2586 2587 page = pfn_to_page(pfn); 2588 if (!get_page_unless_zero(page)) 2589 continue; 2590 2591 if (zone != page_zone(page)) 2592 goto next; 2593 2594 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2595 goto next; 2596 2597 total++; 2598 lock_page(page); 2599 if (!split_huge_page(page)) 2600 split++; 2601 unlock_page(page); 2602 next: 2603 put_page(page); 2604 } 2605 } 2606 2607 pr_info("%lu of %lu THP split\n", split, total); 2608 2609 return 0; 2610 } 2611 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, 2612 "%llu\n"); 2613 2614 static int __init split_huge_pages_debugfs(void) 2615 { 2616 void *ret; 2617 2618 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 2619 &split_huge_pages_fops); 2620 if (!ret) 2621 pr_warn("Failed to create split_huge_pages in debugfs"); 2622 return 0; 2623 } 2624 late_initcall(split_huge_pages_debugfs); 2625 #endif 2626