xref: /openbmc/linux/mm/huge_memory.c (revision 79f08d9e)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
24 
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28 
29 /*
30  * By default transparent hugepage support is disabled in order that avoid
31  * to risk increase the memory footprint of applications without a guaranteed
32  * benefit. When transparent hugepage support is enabled, is for all mappings,
33  * and khugepaged scans all mappings.
34  * Defrag is invoked by khugepaged hugepage allocations and by page faults
35  * for all hugepage allocations.
36  */
37 unsigned long transparent_hugepage_flags __read_mostly =
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
39 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
40 #endif
41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
43 #endif
44 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
45 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
46 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
47 
48 /* default scan 8*512 pte (or vmas) every 30 second */
49 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
50 static unsigned int khugepaged_pages_collapsed;
51 static unsigned int khugepaged_full_scans;
52 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
53 /* during fragmentation poll the hugepage allocator once every minute */
54 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
55 static struct task_struct *khugepaged_thread __read_mostly;
56 static DEFINE_MUTEX(khugepaged_mutex);
57 static DEFINE_SPINLOCK(khugepaged_mm_lock);
58 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
59 /*
60  * default collapse hugepages if there is at least one pte mapped like
61  * it would have happened if the vma was large enough during page
62  * fault.
63  */
64 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
65 
66 static int khugepaged(void *none);
67 static int khugepaged_slab_init(void);
68 
69 #define MM_SLOTS_HASH_BITS 10
70 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
71 
72 static struct kmem_cache *mm_slot_cache __read_mostly;
73 
74 /**
75  * struct mm_slot - hash lookup from mm to mm_slot
76  * @hash: hash collision list
77  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78  * @mm: the mm that this information is valid for
79  */
80 struct mm_slot {
81 	struct hlist_node hash;
82 	struct list_head mm_node;
83 	struct mm_struct *mm;
84 };
85 
86 /**
87  * struct khugepaged_scan - cursor for scanning
88  * @mm_head: the head of the mm list to scan
89  * @mm_slot: the current mm_slot we are scanning
90  * @address: the next address inside that to be scanned
91  *
92  * There is only the one khugepaged_scan instance of this cursor structure.
93  */
94 struct khugepaged_scan {
95 	struct list_head mm_head;
96 	struct mm_slot *mm_slot;
97 	unsigned long address;
98 };
99 static struct khugepaged_scan khugepaged_scan = {
100 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
101 };
102 
103 
104 static int set_recommended_min_free_kbytes(void)
105 {
106 	struct zone *zone;
107 	int nr_zones = 0;
108 	unsigned long recommended_min;
109 
110 	if (!khugepaged_enabled())
111 		return 0;
112 
113 	for_each_populated_zone(zone)
114 		nr_zones++;
115 
116 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 	recommended_min = pageblock_nr_pages * nr_zones * 2;
118 
119 	/*
120 	 * Make sure that on average at least two pageblocks are almost free
121 	 * of another type, one for a migratetype to fall back to and a
122 	 * second to avoid subsequent fallbacks of other types There are 3
123 	 * MIGRATE_TYPES we care about.
124 	 */
125 	recommended_min += pageblock_nr_pages * nr_zones *
126 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
127 
128 	/* don't ever allow to reserve more than 5% of the lowmem */
129 	recommended_min = min(recommended_min,
130 			      (unsigned long) nr_free_buffer_pages() / 20);
131 	recommended_min <<= (PAGE_SHIFT-10);
132 
133 	if (recommended_min > min_free_kbytes)
134 		min_free_kbytes = recommended_min;
135 	setup_per_zone_wmarks();
136 	return 0;
137 }
138 late_initcall(set_recommended_min_free_kbytes);
139 
140 static int start_khugepaged(void)
141 {
142 	int err = 0;
143 	if (khugepaged_enabled()) {
144 		if (!khugepaged_thread)
145 			khugepaged_thread = kthread_run(khugepaged, NULL,
146 							"khugepaged");
147 		if (unlikely(IS_ERR(khugepaged_thread))) {
148 			printk(KERN_ERR
149 			       "khugepaged: kthread_run(khugepaged) failed\n");
150 			err = PTR_ERR(khugepaged_thread);
151 			khugepaged_thread = NULL;
152 		}
153 
154 		if (!list_empty(&khugepaged_scan.mm_head))
155 			wake_up_interruptible(&khugepaged_wait);
156 
157 		set_recommended_min_free_kbytes();
158 	} else if (khugepaged_thread) {
159 		kthread_stop(khugepaged_thread);
160 		khugepaged_thread = NULL;
161 	}
162 
163 	return err;
164 }
165 
166 static atomic_t huge_zero_refcount;
167 static struct page *huge_zero_page __read_mostly;
168 
169 static inline bool is_huge_zero_page(struct page *page)
170 {
171 	return ACCESS_ONCE(huge_zero_page) == page;
172 }
173 
174 static inline bool is_huge_zero_pmd(pmd_t pmd)
175 {
176 	return is_huge_zero_page(pmd_page(pmd));
177 }
178 
179 static struct page *get_huge_zero_page(void)
180 {
181 	struct page *zero_page;
182 retry:
183 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
184 		return ACCESS_ONCE(huge_zero_page);
185 
186 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
187 			HPAGE_PMD_ORDER);
188 	if (!zero_page) {
189 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
190 		return NULL;
191 	}
192 	count_vm_event(THP_ZERO_PAGE_ALLOC);
193 	preempt_disable();
194 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
195 		preempt_enable();
196 		__free_page(zero_page);
197 		goto retry;
198 	}
199 
200 	/* We take additional reference here. It will be put back by shrinker */
201 	atomic_set(&huge_zero_refcount, 2);
202 	preempt_enable();
203 	return ACCESS_ONCE(huge_zero_page);
204 }
205 
206 static void put_huge_zero_page(void)
207 {
208 	/*
209 	 * Counter should never go to zero here. Only shrinker can put
210 	 * last reference.
211 	 */
212 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
213 }
214 
215 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
216 					struct shrink_control *sc)
217 {
218 	/* we can free zero page only if last reference remains */
219 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
220 }
221 
222 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
223 				       struct shrink_control *sc)
224 {
225 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
226 		struct page *zero_page = xchg(&huge_zero_page, NULL);
227 		BUG_ON(zero_page == NULL);
228 		__free_page(zero_page);
229 		return HPAGE_PMD_NR;
230 	}
231 
232 	return 0;
233 }
234 
235 static struct shrinker huge_zero_page_shrinker = {
236 	.count_objects = shrink_huge_zero_page_count,
237 	.scan_objects = shrink_huge_zero_page_scan,
238 	.seeks = DEFAULT_SEEKS,
239 };
240 
241 #ifdef CONFIG_SYSFS
242 
243 static ssize_t double_flag_show(struct kobject *kobj,
244 				struct kobj_attribute *attr, char *buf,
245 				enum transparent_hugepage_flag enabled,
246 				enum transparent_hugepage_flag req_madv)
247 {
248 	if (test_bit(enabled, &transparent_hugepage_flags)) {
249 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
250 		return sprintf(buf, "[always] madvise never\n");
251 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
252 		return sprintf(buf, "always [madvise] never\n");
253 	else
254 		return sprintf(buf, "always madvise [never]\n");
255 }
256 static ssize_t double_flag_store(struct kobject *kobj,
257 				 struct kobj_attribute *attr,
258 				 const char *buf, size_t count,
259 				 enum transparent_hugepage_flag enabled,
260 				 enum transparent_hugepage_flag req_madv)
261 {
262 	if (!memcmp("always", buf,
263 		    min(sizeof("always")-1, count))) {
264 		set_bit(enabled, &transparent_hugepage_flags);
265 		clear_bit(req_madv, &transparent_hugepage_flags);
266 	} else if (!memcmp("madvise", buf,
267 			   min(sizeof("madvise")-1, count))) {
268 		clear_bit(enabled, &transparent_hugepage_flags);
269 		set_bit(req_madv, &transparent_hugepage_flags);
270 	} else if (!memcmp("never", buf,
271 			   min(sizeof("never")-1, count))) {
272 		clear_bit(enabled, &transparent_hugepage_flags);
273 		clear_bit(req_madv, &transparent_hugepage_flags);
274 	} else
275 		return -EINVAL;
276 
277 	return count;
278 }
279 
280 static ssize_t enabled_show(struct kobject *kobj,
281 			    struct kobj_attribute *attr, char *buf)
282 {
283 	return double_flag_show(kobj, attr, buf,
284 				TRANSPARENT_HUGEPAGE_FLAG,
285 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
286 }
287 static ssize_t enabled_store(struct kobject *kobj,
288 			     struct kobj_attribute *attr,
289 			     const char *buf, size_t count)
290 {
291 	ssize_t ret;
292 
293 	ret = double_flag_store(kobj, attr, buf, count,
294 				TRANSPARENT_HUGEPAGE_FLAG,
295 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
296 
297 	if (ret > 0) {
298 		int err;
299 
300 		mutex_lock(&khugepaged_mutex);
301 		err = start_khugepaged();
302 		mutex_unlock(&khugepaged_mutex);
303 
304 		if (err)
305 			ret = err;
306 	}
307 
308 	return ret;
309 }
310 static struct kobj_attribute enabled_attr =
311 	__ATTR(enabled, 0644, enabled_show, enabled_store);
312 
313 static ssize_t single_flag_show(struct kobject *kobj,
314 				struct kobj_attribute *attr, char *buf,
315 				enum transparent_hugepage_flag flag)
316 {
317 	return sprintf(buf, "%d\n",
318 		       !!test_bit(flag, &transparent_hugepage_flags));
319 }
320 
321 static ssize_t single_flag_store(struct kobject *kobj,
322 				 struct kobj_attribute *attr,
323 				 const char *buf, size_t count,
324 				 enum transparent_hugepage_flag flag)
325 {
326 	unsigned long value;
327 	int ret;
328 
329 	ret = kstrtoul(buf, 10, &value);
330 	if (ret < 0)
331 		return ret;
332 	if (value > 1)
333 		return -EINVAL;
334 
335 	if (value)
336 		set_bit(flag, &transparent_hugepage_flags);
337 	else
338 		clear_bit(flag, &transparent_hugepage_flags);
339 
340 	return count;
341 }
342 
343 /*
344  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
345  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
346  * memory just to allocate one more hugepage.
347  */
348 static ssize_t defrag_show(struct kobject *kobj,
349 			   struct kobj_attribute *attr, char *buf)
350 {
351 	return double_flag_show(kobj, attr, buf,
352 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
353 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
354 }
355 static ssize_t defrag_store(struct kobject *kobj,
356 			    struct kobj_attribute *attr,
357 			    const char *buf, size_t count)
358 {
359 	return double_flag_store(kobj, attr, buf, count,
360 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
361 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
362 }
363 static struct kobj_attribute defrag_attr =
364 	__ATTR(defrag, 0644, defrag_show, defrag_store);
365 
366 static ssize_t use_zero_page_show(struct kobject *kobj,
367 		struct kobj_attribute *attr, char *buf)
368 {
369 	return single_flag_show(kobj, attr, buf,
370 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
371 }
372 static ssize_t use_zero_page_store(struct kobject *kobj,
373 		struct kobj_attribute *attr, const char *buf, size_t count)
374 {
375 	return single_flag_store(kobj, attr, buf, count,
376 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static struct kobj_attribute use_zero_page_attr =
379 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
380 #ifdef CONFIG_DEBUG_VM
381 static ssize_t debug_cow_show(struct kobject *kobj,
382 				struct kobj_attribute *attr, char *buf)
383 {
384 	return single_flag_show(kobj, attr, buf,
385 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
386 }
387 static ssize_t debug_cow_store(struct kobject *kobj,
388 			       struct kobj_attribute *attr,
389 			       const char *buf, size_t count)
390 {
391 	return single_flag_store(kobj, attr, buf, count,
392 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
393 }
394 static struct kobj_attribute debug_cow_attr =
395 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
396 #endif /* CONFIG_DEBUG_VM */
397 
398 static struct attribute *hugepage_attr[] = {
399 	&enabled_attr.attr,
400 	&defrag_attr.attr,
401 	&use_zero_page_attr.attr,
402 #ifdef CONFIG_DEBUG_VM
403 	&debug_cow_attr.attr,
404 #endif
405 	NULL,
406 };
407 
408 static struct attribute_group hugepage_attr_group = {
409 	.attrs = hugepage_attr,
410 };
411 
412 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
413 					 struct kobj_attribute *attr,
414 					 char *buf)
415 {
416 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
417 }
418 
419 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
420 					  struct kobj_attribute *attr,
421 					  const char *buf, size_t count)
422 {
423 	unsigned long msecs;
424 	int err;
425 
426 	err = kstrtoul(buf, 10, &msecs);
427 	if (err || msecs > UINT_MAX)
428 		return -EINVAL;
429 
430 	khugepaged_scan_sleep_millisecs = msecs;
431 	wake_up_interruptible(&khugepaged_wait);
432 
433 	return count;
434 }
435 static struct kobj_attribute scan_sleep_millisecs_attr =
436 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
437 	       scan_sleep_millisecs_store);
438 
439 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
440 					  struct kobj_attribute *attr,
441 					  char *buf)
442 {
443 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
444 }
445 
446 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
447 					   struct kobj_attribute *attr,
448 					   const char *buf, size_t count)
449 {
450 	unsigned long msecs;
451 	int err;
452 
453 	err = kstrtoul(buf, 10, &msecs);
454 	if (err || msecs > UINT_MAX)
455 		return -EINVAL;
456 
457 	khugepaged_alloc_sleep_millisecs = msecs;
458 	wake_up_interruptible(&khugepaged_wait);
459 
460 	return count;
461 }
462 static struct kobj_attribute alloc_sleep_millisecs_attr =
463 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
464 	       alloc_sleep_millisecs_store);
465 
466 static ssize_t pages_to_scan_show(struct kobject *kobj,
467 				  struct kobj_attribute *attr,
468 				  char *buf)
469 {
470 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
471 }
472 static ssize_t pages_to_scan_store(struct kobject *kobj,
473 				   struct kobj_attribute *attr,
474 				   const char *buf, size_t count)
475 {
476 	int err;
477 	unsigned long pages;
478 
479 	err = kstrtoul(buf, 10, &pages);
480 	if (err || !pages || pages > UINT_MAX)
481 		return -EINVAL;
482 
483 	khugepaged_pages_to_scan = pages;
484 
485 	return count;
486 }
487 static struct kobj_attribute pages_to_scan_attr =
488 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
489 	       pages_to_scan_store);
490 
491 static ssize_t pages_collapsed_show(struct kobject *kobj,
492 				    struct kobj_attribute *attr,
493 				    char *buf)
494 {
495 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
496 }
497 static struct kobj_attribute pages_collapsed_attr =
498 	__ATTR_RO(pages_collapsed);
499 
500 static ssize_t full_scans_show(struct kobject *kobj,
501 			       struct kobj_attribute *attr,
502 			       char *buf)
503 {
504 	return sprintf(buf, "%u\n", khugepaged_full_scans);
505 }
506 static struct kobj_attribute full_scans_attr =
507 	__ATTR_RO(full_scans);
508 
509 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
510 				      struct kobj_attribute *attr, char *buf)
511 {
512 	return single_flag_show(kobj, attr, buf,
513 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
514 }
515 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
516 				       struct kobj_attribute *attr,
517 				       const char *buf, size_t count)
518 {
519 	return single_flag_store(kobj, attr, buf, count,
520 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
521 }
522 static struct kobj_attribute khugepaged_defrag_attr =
523 	__ATTR(defrag, 0644, khugepaged_defrag_show,
524 	       khugepaged_defrag_store);
525 
526 /*
527  * max_ptes_none controls if khugepaged should collapse hugepages over
528  * any unmapped ptes in turn potentially increasing the memory
529  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
530  * reduce the available free memory in the system as it
531  * runs. Increasing max_ptes_none will instead potentially reduce the
532  * free memory in the system during the khugepaged scan.
533  */
534 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
535 					     struct kobj_attribute *attr,
536 					     char *buf)
537 {
538 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
539 }
540 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
541 					      struct kobj_attribute *attr,
542 					      const char *buf, size_t count)
543 {
544 	int err;
545 	unsigned long max_ptes_none;
546 
547 	err = kstrtoul(buf, 10, &max_ptes_none);
548 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
549 		return -EINVAL;
550 
551 	khugepaged_max_ptes_none = max_ptes_none;
552 
553 	return count;
554 }
555 static struct kobj_attribute khugepaged_max_ptes_none_attr =
556 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
557 	       khugepaged_max_ptes_none_store);
558 
559 static struct attribute *khugepaged_attr[] = {
560 	&khugepaged_defrag_attr.attr,
561 	&khugepaged_max_ptes_none_attr.attr,
562 	&pages_to_scan_attr.attr,
563 	&pages_collapsed_attr.attr,
564 	&full_scans_attr.attr,
565 	&scan_sleep_millisecs_attr.attr,
566 	&alloc_sleep_millisecs_attr.attr,
567 	NULL,
568 };
569 
570 static struct attribute_group khugepaged_attr_group = {
571 	.attrs = khugepaged_attr,
572 	.name = "khugepaged",
573 };
574 
575 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
576 {
577 	int err;
578 
579 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
580 	if (unlikely(!*hugepage_kobj)) {
581 		printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
582 		return -ENOMEM;
583 	}
584 
585 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
586 	if (err) {
587 		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
588 		goto delete_obj;
589 	}
590 
591 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
592 	if (err) {
593 		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
594 		goto remove_hp_group;
595 	}
596 
597 	return 0;
598 
599 remove_hp_group:
600 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
601 delete_obj:
602 	kobject_put(*hugepage_kobj);
603 	return err;
604 }
605 
606 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
607 {
608 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
609 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
610 	kobject_put(hugepage_kobj);
611 }
612 #else
613 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
614 {
615 	return 0;
616 }
617 
618 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
619 {
620 }
621 #endif /* CONFIG_SYSFS */
622 
623 static int __init hugepage_init(void)
624 {
625 	int err;
626 	struct kobject *hugepage_kobj;
627 
628 	if (!has_transparent_hugepage()) {
629 		transparent_hugepage_flags = 0;
630 		return -EINVAL;
631 	}
632 
633 	err = hugepage_init_sysfs(&hugepage_kobj);
634 	if (err)
635 		return err;
636 
637 	err = khugepaged_slab_init();
638 	if (err)
639 		goto out;
640 
641 	register_shrinker(&huge_zero_page_shrinker);
642 
643 	/*
644 	 * By default disable transparent hugepages on smaller systems,
645 	 * where the extra memory used could hurt more than TLB overhead
646 	 * is likely to save.  The admin can still enable it through /sys.
647 	 */
648 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
649 		transparent_hugepage_flags = 0;
650 
651 	start_khugepaged();
652 
653 	return 0;
654 out:
655 	hugepage_exit_sysfs(hugepage_kobj);
656 	return err;
657 }
658 module_init(hugepage_init)
659 
660 static int __init setup_transparent_hugepage(char *str)
661 {
662 	int ret = 0;
663 	if (!str)
664 		goto out;
665 	if (!strcmp(str, "always")) {
666 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
667 			&transparent_hugepage_flags);
668 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
669 			  &transparent_hugepage_flags);
670 		ret = 1;
671 	} else if (!strcmp(str, "madvise")) {
672 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 			  &transparent_hugepage_flags);
674 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 			&transparent_hugepage_flags);
676 		ret = 1;
677 	} else if (!strcmp(str, "never")) {
678 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 			  &transparent_hugepage_flags);
680 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 			  &transparent_hugepage_flags);
682 		ret = 1;
683 	}
684 out:
685 	if (!ret)
686 		printk(KERN_WARNING
687 		       "transparent_hugepage= cannot parse, ignored\n");
688 	return ret;
689 }
690 __setup("transparent_hugepage=", setup_transparent_hugepage);
691 
692 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
693 {
694 	if (likely(vma->vm_flags & VM_WRITE))
695 		pmd = pmd_mkwrite(pmd);
696 	return pmd;
697 }
698 
699 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
700 {
701 	pmd_t entry;
702 	entry = mk_pmd(page, prot);
703 	entry = pmd_mkhuge(entry);
704 	return entry;
705 }
706 
707 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
708 					struct vm_area_struct *vma,
709 					unsigned long haddr, pmd_t *pmd,
710 					struct page *page)
711 {
712 	pgtable_t pgtable;
713 	spinlock_t *ptl;
714 
715 	VM_BUG_ON(!PageCompound(page));
716 	pgtable = pte_alloc_one(mm, haddr);
717 	if (unlikely(!pgtable))
718 		return VM_FAULT_OOM;
719 
720 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
721 	/*
722 	 * The memory barrier inside __SetPageUptodate makes sure that
723 	 * clear_huge_page writes become visible before the set_pmd_at()
724 	 * write.
725 	 */
726 	__SetPageUptodate(page);
727 
728 	ptl = pmd_lock(mm, pmd);
729 	if (unlikely(!pmd_none(*pmd))) {
730 		spin_unlock(ptl);
731 		mem_cgroup_uncharge_page(page);
732 		put_page(page);
733 		pte_free(mm, pgtable);
734 	} else {
735 		pmd_t entry;
736 		entry = mk_huge_pmd(page, vma->vm_page_prot);
737 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
738 		page_add_new_anon_rmap(page, vma, haddr);
739 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
740 		set_pmd_at(mm, haddr, pmd, entry);
741 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
742 		atomic_long_inc(&mm->nr_ptes);
743 		spin_unlock(ptl);
744 	}
745 
746 	return 0;
747 }
748 
749 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
750 {
751 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
752 }
753 
754 static inline struct page *alloc_hugepage_vma(int defrag,
755 					      struct vm_area_struct *vma,
756 					      unsigned long haddr, int nd,
757 					      gfp_t extra_gfp)
758 {
759 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
760 			       HPAGE_PMD_ORDER, vma, haddr, nd);
761 }
762 
763 /* Caller must hold page table lock. */
764 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
765 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
766 		struct page *zero_page)
767 {
768 	pmd_t entry;
769 	if (!pmd_none(*pmd))
770 		return false;
771 	entry = mk_pmd(zero_page, vma->vm_page_prot);
772 	entry = pmd_wrprotect(entry);
773 	entry = pmd_mkhuge(entry);
774 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 	set_pmd_at(mm, haddr, pmd, entry);
776 	atomic_long_inc(&mm->nr_ptes);
777 	return true;
778 }
779 
780 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
781 			       unsigned long address, pmd_t *pmd,
782 			       unsigned int flags)
783 {
784 	struct page *page;
785 	unsigned long haddr = address & HPAGE_PMD_MASK;
786 
787 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
788 		return VM_FAULT_FALLBACK;
789 	if (unlikely(anon_vma_prepare(vma)))
790 		return VM_FAULT_OOM;
791 	if (unlikely(khugepaged_enter(vma)))
792 		return VM_FAULT_OOM;
793 	if (!(flags & FAULT_FLAG_WRITE) &&
794 			transparent_hugepage_use_zero_page()) {
795 		spinlock_t *ptl;
796 		pgtable_t pgtable;
797 		struct page *zero_page;
798 		bool set;
799 		pgtable = pte_alloc_one(mm, haddr);
800 		if (unlikely(!pgtable))
801 			return VM_FAULT_OOM;
802 		zero_page = get_huge_zero_page();
803 		if (unlikely(!zero_page)) {
804 			pte_free(mm, pgtable);
805 			count_vm_event(THP_FAULT_FALLBACK);
806 			return VM_FAULT_FALLBACK;
807 		}
808 		ptl = pmd_lock(mm, pmd);
809 		set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
810 				zero_page);
811 		spin_unlock(ptl);
812 		if (!set) {
813 			pte_free(mm, pgtable);
814 			put_huge_zero_page();
815 		}
816 		return 0;
817 	}
818 	page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
819 			vma, haddr, numa_node_id(), 0);
820 	if (unlikely(!page)) {
821 		count_vm_event(THP_FAULT_FALLBACK);
822 		return VM_FAULT_FALLBACK;
823 	}
824 	if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
825 		put_page(page);
826 		count_vm_event(THP_FAULT_FALLBACK);
827 		return VM_FAULT_FALLBACK;
828 	}
829 	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
830 		mem_cgroup_uncharge_page(page);
831 		put_page(page);
832 		count_vm_event(THP_FAULT_FALLBACK);
833 		return VM_FAULT_FALLBACK;
834 	}
835 
836 	count_vm_event(THP_FAULT_ALLOC);
837 	return 0;
838 }
839 
840 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
841 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
842 		  struct vm_area_struct *vma)
843 {
844 	spinlock_t *dst_ptl, *src_ptl;
845 	struct page *src_page;
846 	pmd_t pmd;
847 	pgtable_t pgtable;
848 	int ret;
849 
850 	ret = -ENOMEM;
851 	pgtable = pte_alloc_one(dst_mm, addr);
852 	if (unlikely(!pgtable))
853 		goto out;
854 
855 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
856 	src_ptl = pmd_lockptr(src_mm, src_pmd);
857 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
858 
859 	ret = -EAGAIN;
860 	pmd = *src_pmd;
861 	if (unlikely(!pmd_trans_huge(pmd))) {
862 		pte_free(dst_mm, pgtable);
863 		goto out_unlock;
864 	}
865 	/*
866 	 * When page table lock is held, the huge zero pmd should not be
867 	 * under splitting since we don't split the page itself, only pmd to
868 	 * a page table.
869 	 */
870 	if (is_huge_zero_pmd(pmd)) {
871 		struct page *zero_page;
872 		bool set;
873 		/*
874 		 * get_huge_zero_page() will never allocate a new page here,
875 		 * since we already have a zero page to copy. It just takes a
876 		 * reference.
877 		 */
878 		zero_page = get_huge_zero_page();
879 		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
880 				zero_page);
881 		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
882 		ret = 0;
883 		goto out_unlock;
884 	}
885 	if (unlikely(pmd_trans_splitting(pmd))) {
886 		/* split huge page running from under us */
887 		spin_unlock(src_ptl);
888 		spin_unlock(dst_ptl);
889 		pte_free(dst_mm, pgtable);
890 
891 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
892 		goto out;
893 	}
894 	src_page = pmd_page(pmd);
895 	VM_BUG_ON(!PageHead(src_page));
896 	get_page(src_page);
897 	page_dup_rmap(src_page);
898 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
899 
900 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
901 	pmd = pmd_mkold(pmd_wrprotect(pmd));
902 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
903 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
904 	atomic_long_inc(&dst_mm->nr_ptes);
905 
906 	ret = 0;
907 out_unlock:
908 	spin_unlock(src_ptl);
909 	spin_unlock(dst_ptl);
910 out:
911 	return ret;
912 }
913 
914 void huge_pmd_set_accessed(struct mm_struct *mm,
915 			   struct vm_area_struct *vma,
916 			   unsigned long address,
917 			   pmd_t *pmd, pmd_t orig_pmd,
918 			   int dirty)
919 {
920 	spinlock_t *ptl;
921 	pmd_t entry;
922 	unsigned long haddr;
923 
924 	ptl = pmd_lock(mm, pmd);
925 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
926 		goto unlock;
927 
928 	entry = pmd_mkyoung(orig_pmd);
929 	haddr = address & HPAGE_PMD_MASK;
930 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
931 		update_mmu_cache_pmd(vma, address, pmd);
932 
933 unlock:
934 	spin_unlock(ptl);
935 }
936 
937 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
938 		struct vm_area_struct *vma, unsigned long address,
939 		pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
940 {
941 	spinlock_t *ptl;
942 	pgtable_t pgtable;
943 	pmd_t _pmd;
944 	struct page *page;
945 	int i, ret = 0;
946 	unsigned long mmun_start;	/* For mmu_notifiers */
947 	unsigned long mmun_end;		/* For mmu_notifiers */
948 
949 	page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
950 	if (!page) {
951 		ret |= VM_FAULT_OOM;
952 		goto out;
953 	}
954 
955 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
956 		put_page(page);
957 		ret |= VM_FAULT_OOM;
958 		goto out;
959 	}
960 
961 	clear_user_highpage(page, address);
962 	__SetPageUptodate(page);
963 
964 	mmun_start = haddr;
965 	mmun_end   = haddr + HPAGE_PMD_SIZE;
966 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
967 
968 	ptl = pmd_lock(mm, pmd);
969 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
970 		goto out_free_page;
971 
972 	pmdp_clear_flush(vma, haddr, pmd);
973 	/* leave pmd empty until pte is filled */
974 
975 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
976 	pmd_populate(mm, &_pmd, pgtable);
977 
978 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
979 		pte_t *pte, entry;
980 		if (haddr == (address & PAGE_MASK)) {
981 			entry = mk_pte(page, vma->vm_page_prot);
982 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
983 			page_add_new_anon_rmap(page, vma, haddr);
984 		} else {
985 			entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
986 			entry = pte_mkspecial(entry);
987 		}
988 		pte = pte_offset_map(&_pmd, haddr);
989 		VM_BUG_ON(!pte_none(*pte));
990 		set_pte_at(mm, haddr, pte, entry);
991 		pte_unmap(pte);
992 	}
993 	smp_wmb(); /* make pte visible before pmd */
994 	pmd_populate(mm, pmd, pgtable);
995 	spin_unlock(ptl);
996 	put_huge_zero_page();
997 	inc_mm_counter(mm, MM_ANONPAGES);
998 
999 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1000 
1001 	ret |= VM_FAULT_WRITE;
1002 out:
1003 	return ret;
1004 out_free_page:
1005 	spin_unlock(ptl);
1006 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1007 	mem_cgroup_uncharge_page(page);
1008 	put_page(page);
1009 	goto out;
1010 }
1011 
1012 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1013 					struct vm_area_struct *vma,
1014 					unsigned long address,
1015 					pmd_t *pmd, pmd_t orig_pmd,
1016 					struct page *page,
1017 					unsigned long haddr)
1018 {
1019 	spinlock_t *ptl;
1020 	pgtable_t pgtable;
1021 	pmd_t _pmd;
1022 	int ret = 0, i;
1023 	struct page **pages;
1024 	unsigned long mmun_start;	/* For mmu_notifiers */
1025 	unsigned long mmun_end;		/* For mmu_notifiers */
1026 
1027 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1028 			GFP_KERNEL);
1029 	if (unlikely(!pages)) {
1030 		ret |= VM_FAULT_OOM;
1031 		goto out;
1032 	}
1033 
1034 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1035 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1036 					       __GFP_OTHER_NODE,
1037 					       vma, address, page_to_nid(page));
1038 		if (unlikely(!pages[i] ||
1039 			     mem_cgroup_newpage_charge(pages[i], mm,
1040 						       GFP_KERNEL))) {
1041 			if (pages[i])
1042 				put_page(pages[i]);
1043 			mem_cgroup_uncharge_start();
1044 			while (--i >= 0) {
1045 				mem_cgroup_uncharge_page(pages[i]);
1046 				put_page(pages[i]);
1047 			}
1048 			mem_cgroup_uncharge_end();
1049 			kfree(pages);
1050 			ret |= VM_FAULT_OOM;
1051 			goto out;
1052 		}
1053 	}
1054 
1055 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1056 		copy_user_highpage(pages[i], page + i,
1057 				   haddr + PAGE_SIZE * i, vma);
1058 		__SetPageUptodate(pages[i]);
1059 		cond_resched();
1060 	}
1061 
1062 	mmun_start = haddr;
1063 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1064 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1065 
1066 	ptl = pmd_lock(mm, pmd);
1067 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1068 		goto out_free_pages;
1069 	VM_BUG_ON(!PageHead(page));
1070 
1071 	pmdp_clear_flush(vma, haddr, pmd);
1072 	/* leave pmd empty until pte is filled */
1073 
1074 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1075 	pmd_populate(mm, &_pmd, pgtable);
1076 
1077 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1078 		pte_t *pte, entry;
1079 		entry = mk_pte(pages[i], vma->vm_page_prot);
1080 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1081 		page_add_new_anon_rmap(pages[i], vma, haddr);
1082 		pte = pte_offset_map(&_pmd, haddr);
1083 		VM_BUG_ON(!pte_none(*pte));
1084 		set_pte_at(mm, haddr, pte, entry);
1085 		pte_unmap(pte);
1086 	}
1087 	kfree(pages);
1088 
1089 	smp_wmb(); /* make pte visible before pmd */
1090 	pmd_populate(mm, pmd, pgtable);
1091 	page_remove_rmap(page);
1092 	spin_unlock(ptl);
1093 
1094 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1095 
1096 	ret |= VM_FAULT_WRITE;
1097 	put_page(page);
1098 
1099 out:
1100 	return ret;
1101 
1102 out_free_pages:
1103 	spin_unlock(ptl);
1104 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1105 	mem_cgroup_uncharge_start();
1106 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1107 		mem_cgroup_uncharge_page(pages[i]);
1108 		put_page(pages[i]);
1109 	}
1110 	mem_cgroup_uncharge_end();
1111 	kfree(pages);
1112 	goto out;
1113 }
1114 
1115 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1116 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1117 {
1118 	spinlock_t *ptl;
1119 	int ret = 0;
1120 	struct page *page = NULL, *new_page;
1121 	unsigned long haddr;
1122 	unsigned long mmun_start;	/* For mmu_notifiers */
1123 	unsigned long mmun_end;		/* For mmu_notifiers */
1124 
1125 	ptl = pmd_lockptr(mm, pmd);
1126 	VM_BUG_ON(!vma->anon_vma);
1127 	haddr = address & HPAGE_PMD_MASK;
1128 	if (is_huge_zero_pmd(orig_pmd))
1129 		goto alloc;
1130 	spin_lock(ptl);
1131 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1132 		goto out_unlock;
1133 
1134 	page = pmd_page(orig_pmd);
1135 	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1136 	if (page_mapcount(page) == 1) {
1137 		pmd_t entry;
1138 		entry = pmd_mkyoung(orig_pmd);
1139 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1140 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1141 			update_mmu_cache_pmd(vma, address, pmd);
1142 		ret |= VM_FAULT_WRITE;
1143 		goto out_unlock;
1144 	}
1145 	get_page(page);
1146 	spin_unlock(ptl);
1147 alloc:
1148 	if (transparent_hugepage_enabled(vma) &&
1149 	    !transparent_hugepage_debug_cow())
1150 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1151 					      vma, haddr, numa_node_id(), 0);
1152 	else
1153 		new_page = NULL;
1154 
1155 	if (unlikely(!new_page)) {
1156 		if (is_huge_zero_pmd(orig_pmd)) {
1157 			ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1158 					address, pmd, orig_pmd, haddr);
1159 		} else {
1160 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1161 					pmd, orig_pmd, page, haddr);
1162 			if (ret & VM_FAULT_OOM)
1163 				split_huge_page(page);
1164 			put_page(page);
1165 		}
1166 		count_vm_event(THP_FAULT_FALLBACK);
1167 		goto out;
1168 	}
1169 
1170 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1171 		put_page(new_page);
1172 		if (page) {
1173 			split_huge_page(page);
1174 			put_page(page);
1175 		}
1176 		count_vm_event(THP_FAULT_FALLBACK);
1177 		ret |= VM_FAULT_OOM;
1178 		goto out;
1179 	}
1180 
1181 	count_vm_event(THP_FAULT_ALLOC);
1182 
1183 	if (is_huge_zero_pmd(orig_pmd))
1184 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1185 	else
1186 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1187 	__SetPageUptodate(new_page);
1188 
1189 	mmun_start = haddr;
1190 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1191 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1192 
1193 	spin_lock(ptl);
1194 	if (page)
1195 		put_page(page);
1196 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1197 		spin_unlock(ptl);
1198 		mem_cgroup_uncharge_page(new_page);
1199 		put_page(new_page);
1200 		goto out_mn;
1201 	} else {
1202 		pmd_t entry;
1203 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1204 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1205 		pmdp_clear_flush(vma, haddr, pmd);
1206 		page_add_new_anon_rmap(new_page, vma, haddr);
1207 		set_pmd_at(mm, haddr, pmd, entry);
1208 		update_mmu_cache_pmd(vma, address, pmd);
1209 		if (is_huge_zero_pmd(orig_pmd)) {
1210 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1211 			put_huge_zero_page();
1212 		} else {
1213 			VM_BUG_ON(!PageHead(page));
1214 			page_remove_rmap(page);
1215 			put_page(page);
1216 		}
1217 		ret |= VM_FAULT_WRITE;
1218 	}
1219 	spin_unlock(ptl);
1220 out_mn:
1221 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1222 out:
1223 	return ret;
1224 out_unlock:
1225 	spin_unlock(ptl);
1226 	return ret;
1227 }
1228 
1229 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1230 				   unsigned long addr,
1231 				   pmd_t *pmd,
1232 				   unsigned int flags)
1233 {
1234 	struct mm_struct *mm = vma->vm_mm;
1235 	struct page *page = NULL;
1236 
1237 	assert_spin_locked(pmd_lockptr(mm, pmd));
1238 
1239 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1240 		goto out;
1241 
1242 	/* Avoid dumping huge zero page */
1243 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1244 		return ERR_PTR(-EFAULT);
1245 
1246 	page = pmd_page(*pmd);
1247 	VM_BUG_ON(!PageHead(page));
1248 	if (flags & FOLL_TOUCH) {
1249 		pmd_t _pmd;
1250 		/*
1251 		 * We should set the dirty bit only for FOLL_WRITE but
1252 		 * for now the dirty bit in the pmd is meaningless.
1253 		 * And if the dirty bit will become meaningful and
1254 		 * we'll only set it with FOLL_WRITE, an atomic
1255 		 * set_bit will be required on the pmd to set the
1256 		 * young bit, instead of the current set_pmd_at.
1257 		 */
1258 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1259 		if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1260 					  pmd, _pmd,  1))
1261 			update_mmu_cache_pmd(vma, addr, pmd);
1262 	}
1263 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1264 		if (page->mapping && trylock_page(page)) {
1265 			lru_add_drain();
1266 			if (page->mapping)
1267 				mlock_vma_page(page);
1268 			unlock_page(page);
1269 		}
1270 	}
1271 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1272 	VM_BUG_ON(!PageCompound(page));
1273 	if (flags & FOLL_GET)
1274 		get_page_foll(page);
1275 
1276 out:
1277 	return page;
1278 }
1279 
1280 /* NUMA hinting page fault entry point for trans huge pmds */
1281 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1282 				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1283 {
1284 	spinlock_t *ptl;
1285 	struct anon_vma *anon_vma = NULL;
1286 	struct page *page;
1287 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1288 	int page_nid = -1, this_nid = numa_node_id();
1289 	int target_nid, last_cpupid = -1;
1290 	bool page_locked;
1291 	bool migrated = false;
1292 	int flags = 0;
1293 
1294 	ptl = pmd_lock(mm, pmdp);
1295 	if (unlikely(!pmd_same(pmd, *pmdp)))
1296 		goto out_unlock;
1297 
1298 	page = pmd_page(pmd);
1299 	BUG_ON(is_huge_zero_page(page));
1300 	page_nid = page_to_nid(page);
1301 	last_cpupid = page_cpupid_last(page);
1302 	count_vm_numa_event(NUMA_HINT_FAULTS);
1303 	if (page_nid == this_nid) {
1304 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1305 		flags |= TNF_FAULT_LOCAL;
1306 	}
1307 
1308 	/*
1309 	 * Avoid grouping on DSO/COW pages in specific and RO pages
1310 	 * in general, RO pages shouldn't hurt as much anyway since
1311 	 * they can be in shared cache state.
1312 	 */
1313 	if (!pmd_write(pmd))
1314 		flags |= TNF_NO_GROUP;
1315 
1316 	/*
1317 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1318 	 * page_table_lock if at all possible
1319 	 */
1320 	page_locked = trylock_page(page);
1321 	target_nid = mpol_misplaced(page, vma, haddr);
1322 	if (target_nid == -1) {
1323 		/* If the page was locked, there are no parallel migrations */
1324 		if (page_locked)
1325 			goto clear_pmdnuma;
1326 
1327 		/*
1328 		 * Otherwise wait for potential migrations and retry. We do
1329 		 * relock and check_same as the page may no longer be mapped.
1330 		 * As the fault is being retried, do not account for it.
1331 		 */
1332 		spin_unlock(ptl);
1333 		wait_on_page_locked(page);
1334 		page_nid = -1;
1335 		goto out;
1336 	}
1337 
1338 	/* Page is misplaced, serialise migrations and parallel THP splits */
1339 	get_page(page);
1340 	spin_unlock(ptl);
1341 	if (!page_locked)
1342 		lock_page(page);
1343 	anon_vma = page_lock_anon_vma_read(page);
1344 
1345 	/* Confirm the PMD did not change while page_table_lock was released */
1346 	spin_lock(ptl);
1347 	if (unlikely(!pmd_same(pmd, *pmdp))) {
1348 		unlock_page(page);
1349 		put_page(page);
1350 		page_nid = -1;
1351 		goto out_unlock;
1352 	}
1353 
1354 	/*
1355 	 * Migrate the THP to the requested node, returns with page unlocked
1356 	 * and pmd_numa cleared.
1357 	 */
1358 	spin_unlock(ptl);
1359 	migrated = migrate_misplaced_transhuge_page(mm, vma,
1360 				pmdp, pmd, addr, page, target_nid);
1361 	if (migrated) {
1362 		flags |= TNF_MIGRATED;
1363 		page_nid = target_nid;
1364 	}
1365 
1366 	goto out;
1367 clear_pmdnuma:
1368 	BUG_ON(!PageLocked(page));
1369 	pmd = pmd_mknonnuma(pmd);
1370 	set_pmd_at(mm, haddr, pmdp, pmd);
1371 	VM_BUG_ON(pmd_numa(*pmdp));
1372 	update_mmu_cache_pmd(vma, addr, pmdp);
1373 	unlock_page(page);
1374 out_unlock:
1375 	spin_unlock(ptl);
1376 
1377 out:
1378 	if (anon_vma)
1379 		page_unlock_anon_vma_read(anon_vma);
1380 
1381 	if (page_nid != -1)
1382 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1383 
1384 	return 0;
1385 }
1386 
1387 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1388 		 pmd_t *pmd, unsigned long addr)
1389 {
1390 	spinlock_t *ptl;
1391 	int ret = 0;
1392 
1393 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1394 		struct page *page;
1395 		pgtable_t pgtable;
1396 		pmd_t orig_pmd;
1397 		/*
1398 		 * For architectures like ppc64 we look at deposited pgtable
1399 		 * when calling pmdp_get_and_clear. So do the
1400 		 * pgtable_trans_huge_withdraw after finishing pmdp related
1401 		 * operations.
1402 		 */
1403 		orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1404 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1405 		pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1406 		if (is_huge_zero_pmd(orig_pmd)) {
1407 			atomic_long_dec(&tlb->mm->nr_ptes);
1408 			spin_unlock(ptl);
1409 			put_huge_zero_page();
1410 		} else {
1411 			page = pmd_page(orig_pmd);
1412 			page_remove_rmap(page);
1413 			VM_BUG_ON(page_mapcount(page) < 0);
1414 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1415 			VM_BUG_ON(!PageHead(page));
1416 			atomic_long_dec(&tlb->mm->nr_ptes);
1417 			spin_unlock(ptl);
1418 			tlb_remove_page(tlb, page);
1419 		}
1420 		pte_free(tlb->mm, pgtable);
1421 		ret = 1;
1422 	}
1423 	return ret;
1424 }
1425 
1426 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1427 		unsigned long addr, unsigned long end,
1428 		unsigned char *vec)
1429 {
1430 	spinlock_t *ptl;
1431 	int ret = 0;
1432 
1433 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1434 		/*
1435 		 * All logical pages in the range are present
1436 		 * if backed by a huge page.
1437 		 */
1438 		spin_unlock(ptl);
1439 		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1440 		ret = 1;
1441 	}
1442 
1443 	return ret;
1444 }
1445 
1446 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1447 		  unsigned long old_addr,
1448 		  unsigned long new_addr, unsigned long old_end,
1449 		  pmd_t *old_pmd, pmd_t *new_pmd)
1450 {
1451 	spinlock_t *old_ptl, *new_ptl;
1452 	int ret = 0;
1453 	pmd_t pmd;
1454 
1455 	struct mm_struct *mm = vma->vm_mm;
1456 
1457 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1458 	    (new_addr & ~HPAGE_PMD_MASK) ||
1459 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1460 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1461 		goto out;
1462 
1463 	/*
1464 	 * The destination pmd shouldn't be established, free_pgtables()
1465 	 * should have release it.
1466 	 */
1467 	if (WARN_ON(!pmd_none(*new_pmd))) {
1468 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1469 		goto out;
1470 	}
1471 
1472 	/*
1473 	 * We don't have to worry about the ordering of src and dst
1474 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1475 	 */
1476 	ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1477 	if (ret == 1) {
1478 		new_ptl = pmd_lockptr(mm, new_pmd);
1479 		if (new_ptl != old_ptl)
1480 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1481 		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1482 		VM_BUG_ON(!pmd_none(*new_pmd));
1483 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1484 		if (new_ptl != old_ptl)
1485 			spin_unlock(new_ptl);
1486 		spin_unlock(old_ptl);
1487 	}
1488 out:
1489 	return ret;
1490 }
1491 
1492 /*
1493  * Returns
1494  *  - 0 if PMD could not be locked
1495  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1496  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1497  */
1498 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1499 		unsigned long addr, pgprot_t newprot, int prot_numa)
1500 {
1501 	struct mm_struct *mm = vma->vm_mm;
1502 	spinlock_t *ptl;
1503 	int ret = 0;
1504 
1505 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1506 		pmd_t entry;
1507 		ret = 1;
1508 		if (!prot_numa) {
1509 			entry = pmdp_get_and_clear(mm, addr, pmd);
1510 			entry = pmd_modify(entry, newprot);
1511 			ret = HPAGE_PMD_NR;
1512 			BUG_ON(pmd_write(entry));
1513 		} else {
1514 			struct page *page = pmd_page(*pmd);
1515 
1516 			/*
1517 			 * Do not trap faults against the zero page. The
1518 			 * read-only data is likely to be read-cached on the
1519 			 * local CPU cache and it is less useful to know about
1520 			 * local vs remote hits on the zero page.
1521 			 */
1522 			if (!is_huge_zero_page(page) &&
1523 			    !pmd_numa(*pmd)) {
1524 				entry = pmdp_get_and_clear(mm, addr, pmd);
1525 				entry = pmd_mknuma(entry);
1526 				ret = HPAGE_PMD_NR;
1527 			}
1528 		}
1529 
1530 		/* Set PMD if cleared earlier */
1531 		if (ret == HPAGE_PMD_NR)
1532 			set_pmd_at(mm, addr, pmd, entry);
1533 
1534 		spin_unlock(ptl);
1535 	}
1536 
1537 	return ret;
1538 }
1539 
1540 /*
1541  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1542  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1543  *
1544  * Note that if it returns 1, this routine returns without unlocking page
1545  * table locks. So callers must unlock them.
1546  */
1547 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1548 		spinlock_t **ptl)
1549 {
1550 	*ptl = pmd_lock(vma->vm_mm, pmd);
1551 	if (likely(pmd_trans_huge(*pmd))) {
1552 		if (unlikely(pmd_trans_splitting(*pmd))) {
1553 			spin_unlock(*ptl);
1554 			wait_split_huge_page(vma->anon_vma, pmd);
1555 			return -1;
1556 		} else {
1557 			/* Thp mapped by 'pmd' is stable, so we can
1558 			 * handle it as it is. */
1559 			return 1;
1560 		}
1561 	}
1562 	spin_unlock(*ptl);
1563 	return 0;
1564 }
1565 
1566 /*
1567  * This function returns whether a given @page is mapped onto the @address
1568  * in the virtual space of @mm.
1569  *
1570  * When it's true, this function returns *pmd with holding the page table lock
1571  * and passing it back to the caller via @ptl.
1572  * If it's false, returns NULL without holding the page table lock.
1573  */
1574 pmd_t *page_check_address_pmd(struct page *page,
1575 			      struct mm_struct *mm,
1576 			      unsigned long address,
1577 			      enum page_check_address_pmd_flag flag,
1578 			      spinlock_t **ptl)
1579 {
1580 	pmd_t *pmd;
1581 
1582 	if (address & ~HPAGE_PMD_MASK)
1583 		return NULL;
1584 
1585 	pmd = mm_find_pmd(mm, address);
1586 	if (!pmd)
1587 		return NULL;
1588 	*ptl = pmd_lock(mm, pmd);
1589 	if (pmd_none(*pmd))
1590 		goto unlock;
1591 	if (pmd_page(*pmd) != page)
1592 		goto unlock;
1593 	/*
1594 	 * split_vma() may create temporary aliased mappings. There is
1595 	 * no risk as long as all huge pmd are found and have their
1596 	 * splitting bit set before __split_huge_page_refcount
1597 	 * runs. Finding the same huge pmd more than once during the
1598 	 * same rmap walk is not a problem.
1599 	 */
1600 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1601 	    pmd_trans_splitting(*pmd))
1602 		goto unlock;
1603 	if (pmd_trans_huge(*pmd)) {
1604 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1605 			  !pmd_trans_splitting(*pmd));
1606 		return pmd;
1607 	}
1608 unlock:
1609 	spin_unlock(*ptl);
1610 	return NULL;
1611 }
1612 
1613 static int __split_huge_page_splitting(struct page *page,
1614 				       struct vm_area_struct *vma,
1615 				       unsigned long address)
1616 {
1617 	struct mm_struct *mm = vma->vm_mm;
1618 	spinlock_t *ptl;
1619 	pmd_t *pmd;
1620 	int ret = 0;
1621 	/* For mmu_notifiers */
1622 	const unsigned long mmun_start = address;
1623 	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1624 
1625 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1626 	pmd = page_check_address_pmd(page, mm, address,
1627 			PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1628 	if (pmd) {
1629 		/*
1630 		 * We can't temporarily set the pmd to null in order
1631 		 * to split it, the pmd must remain marked huge at all
1632 		 * times or the VM won't take the pmd_trans_huge paths
1633 		 * and it won't wait on the anon_vma->root->rwsem to
1634 		 * serialize against split_huge_page*.
1635 		 */
1636 		pmdp_splitting_flush(vma, address, pmd);
1637 		ret = 1;
1638 		spin_unlock(ptl);
1639 	}
1640 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1641 
1642 	return ret;
1643 }
1644 
1645 static void __split_huge_page_refcount(struct page *page,
1646 				       struct list_head *list)
1647 {
1648 	int i;
1649 	struct zone *zone = page_zone(page);
1650 	struct lruvec *lruvec;
1651 	int tail_count = 0;
1652 
1653 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1654 	spin_lock_irq(&zone->lru_lock);
1655 	lruvec = mem_cgroup_page_lruvec(page, zone);
1656 
1657 	compound_lock(page);
1658 	/* complete memcg works before add pages to LRU */
1659 	mem_cgroup_split_huge_fixup(page);
1660 
1661 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1662 		struct page *page_tail = page + i;
1663 
1664 		/* tail_page->_mapcount cannot change */
1665 		BUG_ON(page_mapcount(page_tail) < 0);
1666 		tail_count += page_mapcount(page_tail);
1667 		/* check for overflow */
1668 		BUG_ON(tail_count < 0);
1669 		BUG_ON(atomic_read(&page_tail->_count) != 0);
1670 		/*
1671 		 * tail_page->_count is zero and not changing from
1672 		 * under us. But get_page_unless_zero() may be running
1673 		 * from under us on the tail_page. If we used
1674 		 * atomic_set() below instead of atomic_add(), we
1675 		 * would then run atomic_set() concurrently with
1676 		 * get_page_unless_zero(), and atomic_set() is
1677 		 * implemented in C not using locked ops. spin_unlock
1678 		 * on x86 sometime uses locked ops because of PPro
1679 		 * errata 66, 92, so unless somebody can guarantee
1680 		 * atomic_set() here would be safe on all archs (and
1681 		 * not only on x86), it's safer to use atomic_add().
1682 		 */
1683 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1684 			   &page_tail->_count);
1685 
1686 		/* after clearing PageTail the gup refcount can be released */
1687 		smp_mb();
1688 
1689 		/*
1690 		 * retain hwpoison flag of the poisoned tail page:
1691 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1692 		 *   by the memory-failure.
1693 		 */
1694 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1695 		page_tail->flags |= (page->flags &
1696 				     ((1L << PG_referenced) |
1697 				      (1L << PG_swapbacked) |
1698 				      (1L << PG_mlocked) |
1699 				      (1L << PG_uptodate) |
1700 				      (1L << PG_active) |
1701 				      (1L << PG_unevictable)));
1702 		page_tail->flags |= (1L << PG_dirty);
1703 
1704 		/* clear PageTail before overwriting first_page */
1705 		smp_wmb();
1706 
1707 		/*
1708 		 * __split_huge_page_splitting() already set the
1709 		 * splitting bit in all pmd that could map this
1710 		 * hugepage, that will ensure no CPU can alter the
1711 		 * mapcount on the head page. The mapcount is only
1712 		 * accounted in the head page and it has to be
1713 		 * transferred to all tail pages in the below code. So
1714 		 * for this code to be safe, the split the mapcount
1715 		 * can't change. But that doesn't mean userland can't
1716 		 * keep changing and reading the page contents while
1717 		 * we transfer the mapcount, so the pmd splitting
1718 		 * status is achieved setting a reserved bit in the
1719 		 * pmd, not by clearing the present bit.
1720 		*/
1721 		page_tail->_mapcount = page->_mapcount;
1722 
1723 		BUG_ON(page_tail->mapping);
1724 		page_tail->mapping = page->mapping;
1725 
1726 		page_tail->index = page->index + i;
1727 		page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1728 
1729 		BUG_ON(!PageAnon(page_tail));
1730 		BUG_ON(!PageUptodate(page_tail));
1731 		BUG_ON(!PageDirty(page_tail));
1732 		BUG_ON(!PageSwapBacked(page_tail));
1733 
1734 		lru_add_page_tail(page, page_tail, lruvec, list);
1735 	}
1736 	atomic_sub(tail_count, &page->_count);
1737 	BUG_ON(atomic_read(&page->_count) <= 0);
1738 
1739 	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1740 
1741 	ClearPageCompound(page);
1742 	compound_unlock(page);
1743 	spin_unlock_irq(&zone->lru_lock);
1744 
1745 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1746 		struct page *page_tail = page + i;
1747 		BUG_ON(page_count(page_tail) <= 0);
1748 		/*
1749 		 * Tail pages may be freed if there wasn't any mapping
1750 		 * like if add_to_swap() is running on a lru page that
1751 		 * had its mapping zapped. And freeing these pages
1752 		 * requires taking the lru_lock so we do the put_page
1753 		 * of the tail pages after the split is complete.
1754 		 */
1755 		put_page(page_tail);
1756 	}
1757 
1758 	/*
1759 	 * Only the head page (now become a regular page) is required
1760 	 * to be pinned by the caller.
1761 	 */
1762 	BUG_ON(page_count(page) <= 0);
1763 }
1764 
1765 static int __split_huge_page_map(struct page *page,
1766 				 struct vm_area_struct *vma,
1767 				 unsigned long address)
1768 {
1769 	struct mm_struct *mm = vma->vm_mm;
1770 	spinlock_t *ptl;
1771 	pmd_t *pmd, _pmd;
1772 	int ret = 0, i;
1773 	pgtable_t pgtable;
1774 	unsigned long haddr;
1775 
1776 	pmd = page_check_address_pmd(page, mm, address,
1777 			PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1778 	if (pmd) {
1779 		pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1780 		pmd_populate(mm, &_pmd, pgtable);
1781 
1782 		haddr = address;
1783 		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1784 			pte_t *pte, entry;
1785 			BUG_ON(PageCompound(page+i));
1786 			entry = mk_pte(page + i, vma->vm_page_prot);
1787 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1788 			if (!pmd_write(*pmd))
1789 				entry = pte_wrprotect(entry);
1790 			else
1791 				BUG_ON(page_mapcount(page) != 1);
1792 			if (!pmd_young(*pmd))
1793 				entry = pte_mkold(entry);
1794 			if (pmd_numa(*pmd))
1795 				entry = pte_mknuma(entry);
1796 			pte = pte_offset_map(&_pmd, haddr);
1797 			BUG_ON(!pte_none(*pte));
1798 			set_pte_at(mm, haddr, pte, entry);
1799 			pte_unmap(pte);
1800 		}
1801 
1802 		smp_wmb(); /* make pte visible before pmd */
1803 		/*
1804 		 * Up to this point the pmd is present and huge and
1805 		 * userland has the whole access to the hugepage
1806 		 * during the split (which happens in place). If we
1807 		 * overwrite the pmd with the not-huge version
1808 		 * pointing to the pte here (which of course we could
1809 		 * if all CPUs were bug free), userland could trigger
1810 		 * a small page size TLB miss on the small sized TLB
1811 		 * while the hugepage TLB entry is still established
1812 		 * in the huge TLB. Some CPU doesn't like that. See
1813 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1814 		 * Erratum 383 on page 93. Intel should be safe but is
1815 		 * also warns that it's only safe if the permission
1816 		 * and cache attributes of the two entries loaded in
1817 		 * the two TLB is identical (which should be the case
1818 		 * here). But it is generally safer to never allow
1819 		 * small and huge TLB entries for the same virtual
1820 		 * address to be loaded simultaneously. So instead of
1821 		 * doing "pmd_populate(); flush_tlb_range();" we first
1822 		 * mark the current pmd notpresent (atomically because
1823 		 * here the pmd_trans_huge and pmd_trans_splitting
1824 		 * must remain set at all times on the pmd until the
1825 		 * split is complete for this pmd), then we flush the
1826 		 * SMP TLB and finally we write the non-huge version
1827 		 * of the pmd entry with pmd_populate.
1828 		 */
1829 		pmdp_invalidate(vma, address, pmd);
1830 		pmd_populate(mm, pmd, pgtable);
1831 		ret = 1;
1832 		spin_unlock(ptl);
1833 	}
1834 
1835 	return ret;
1836 }
1837 
1838 /* must be called with anon_vma->root->rwsem held */
1839 static void __split_huge_page(struct page *page,
1840 			      struct anon_vma *anon_vma,
1841 			      struct list_head *list)
1842 {
1843 	int mapcount, mapcount2;
1844 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1845 	struct anon_vma_chain *avc;
1846 
1847 	BUG_ON(!PageHead(page));
1848 	BUG_ON(PageTail(page));
1849 
1850 	mapcount = 0;
1851 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1852 		struct vm_area_struct *vma = avc->vma;
1853 		unsigned long addr = vma_address(page, vma);
1854 		BUG_ON(is_vma_temporary_stack(vma));
1855 		mapcount += __split_huge_page_splitting(page, vma, addr);
1856 	}
1857 	/*
1858 	 * It is critical that new vmas are added to the tail of the
1859 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1860 	 * and establishes a child pmd before
1861 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1862 	 * we fail to prevent copy_huge_pmd() from running until the
1863 	 * whole __split_huge_page() is complete), we will still see
1864 	 * the newly established pmd of the child later during the
1865 	 * walk, to be able to set it as pmd_trans_splitting too.
1866 	 */
1867 	if (mapcount != page_mapcount(page))
1868 		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1869 		       mapcount, page_mapcount(page));
1870 	BUG_ON(mapcount != page_mapcount(page));
1871 
1872 	__split_huge_page_refcount(page, list);
1873 
1874 	mapcount2 = 0;
1875 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1876 		struct vm_area_struct *vma = avc->vma;
1877 		unsigned long addr = vma_address(page, vma);
1878 		BUG_ON(is_vma_temporary_stack(vma));
1879 		mapcount2 += __split_huge_page_map(page, vma, addr);
1880 	}
1881 	if (mapcount != mapcount2)
1882 		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1883 		       mapcount, mapcount2, page_mapcount(page));
1884 	BUG_ON(mapcount != mapcount2);
1885 }
1886 
1887 /*
1888  * Split a hugepage into normal pages. This doesn't change the position of head
1889  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1890  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1891  * from the hugepage.
1892  * Return 0 if the hugepage is split successfully otherwise return 1.
1893  */
1894 int split_huge_page_to_list(struct page *page, struct list_head *list)
1895 {
1896 	struct anon_vma *anon_vma;
1897 	int ret = 1;
1898 
1899 	BUG_ON(is_huge_zero_page(page));
1900 	BUG_ON(!PageAnon(page));
1901 
1902 	/*
1903 	 * The caller does not necessarily hold an mmap_sem that would prevent
1904 	 * the anon_vma disappearing so we first we take a reference to it
1905 	 * and then lock the anon_vma for write. This is similar to
1906 	 * page_lock_anon_vma_read except the write lock is taken to serialise
1907 	 * against parallel split or collapse operations.
1908 	 */
1909 	anon_vma = page_get_anon_vma(page);
1910 	if (!anon_vma)
1911 		goto out;
1912 	anon_vma_lock_write(anon_vma);
1913 
1914 	ret = 0;
1915 	if (!PageCompound(page))
1916 		goto out_unlock;
1917 
1918 	BUG_ON(!PageSwapBacked(page));
1919 	__split_huge_page(page, anon_vma, list);
1920 	count_vm_event(THP_SPLIT);
1921 
1922 	BUG_ON(PageCompound(page));
1923 out_unlock:
1924 	anon_vma_unlock_write(anon_vma);
1925 	put_anon_vma(anon_vma);
1926 out:
1927 	return ret;
1928 }
1929 
1930 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1931 
1932 int hugepage_madvise(struct vm_area_struct *vma,
1933 		     unsigned long *vm_flags, int advice)
1934 {
1935 	struct mm_struct *mm = vma->vm_mm;
1936 
1937 	switch (advice) {
1938 	case MADV_HUGEPAGE:
1939 		/*
1940 		 * Be somewhat over-protective like KSM for now!
1941 		 */
1942 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1943 			return -EINVAL;
1944 		if (mm->def_flags & VM_NOHUGEPAGE)
1945 			return -EINVAL;
1946 		*vm_flags &= ~VM_NOHUGEPAGE;
1947 		*vm_flags |= VM_HUGEPAGE;
1948 		/*
1949 		 * If the vma become good for khugepaged to scan,
1950 		 * register it here without waiting a page fault that
1951 		 * may not happen any time soon.
1952 		 */
1953 		if (unlikely(khugepaged_enter_vma_merge(vma)))
1954 			return -ENOMEM;
1955 		break;
1956 	case MADV_NOHUGEPAGE:
1957 		/*
1958 		 * Be somewhat over-protective like KSM for now!
1959 		 */
1960 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1961 			return -EINVAL;
1962 		*vm_flags &= ~VM_HUGEPAGE;
1963 		*vm_flags |= VM_NOHUGEPAGE;
1964 		/*
1965 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1966 		 * this vma even if we leave the mm registered in khugepaged if
1967 		 * it got registered before VM_NOHUGEPAGE was set.
1968 		 */
1969 		break;
1970 	}
1971 
1972 	return 0;
1973 }
1974 
1975 static int __init khugepaged_slab_init(void)
1976 {
1977 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1978 					  sizeof(struct mm_slot),
1979 					  __alignof__(struct mm_slot), 0, NULL);
1980 	if (!mm_slot_cache)
1981 		return -ENOMEM;
1982 
1983 	return 0;
1984 }
1985 
1986 static inline struct mm_slot *alloc_mm_slot(void)
1987 {
1988 	if (!mm_slot_cache)	/* initialization failed */
1989 		return NULL;
1990 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1991 }
1992 
1993 static inline void free_mm_slot(struct mm_slot *mm_slot)
1994 {
1995 	kmem_cache_free(mm_slot_cache, mm_slot);
1996 }
1997 
1998 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1999 {
2000 	struct mm_slot *mm_slot;
2001 
2002 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2003 		if (mm == mm_slot->mm)
2004 			return mm_slot;
2005 
2006 	return NULL;
2007 }
2008 
2009 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2010 				    struct mm_slot *mm_slot)
2011 {
2012 	mm_slot->mm = mm;
2013 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2014 }
2015 
2016 static inline int khugepaged_test_exit(struct mm_struct *mm)
2017 {
2018 	return atomic_read(&mm->mm_users) == 0;
2019 }
2020 
2021 int __khugepaged_enter(struct mm_struct *mm)
2022 {
2023 	struct mm_slot *mm_slot;
2024 	int wakeup;
2025 
2026 	mm_slot = alloc_mm_slot();
2027 	if (!mm_slot)
2028 		return -ENOMEM;
2029 
2030 	/* __khugepaged_exit() must not run from under us */
2031 	VM_BUG_ON(khugepaged_test_exit(mm));
2032 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2033 		free_mm_slot(mm_slot);
2034 		return 0;
2035 	}
2036 
2037 	spin_lock(&khugepaged_mm_lock);
2038 	insert_to_mm_slots_hash(mm, mm_slot);
2039 	/*
2040 	 * Insert just behind the scanning cursor, to let the area settle
2041 	 * down a little.
2042 	 */
2043 	wakeup = list_empty(&khugepaged_scan.mm_head);
2044 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2045 	spin_unlock(&khugepaged_mm_lock);
2046 
2047 	atomic_inc(&mm->mm_count);
2048 	if (wakeup)
2049 		wake_up_interruptible(&khugepaged_wait);
2050 
2051 	return 0;
2052 }
2053 
2054 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2055 {
2056 	unsigned long hstart, hend;
2057 	if (!vma->anon_vma)
2058 		/*
2059 		 * Not yet faulted in so we will register later in the
2060 		 * page fault if needed.
2061 		 */
2062 		return 0;
2063 	if (vma->vm_ops)
2064 		/* khugepaged not yet working on file or special mappings */
2065 		return 0;
2066 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2067 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2068 	hend = vma->vm_end & HPAGE_PMD_MASK;
2069 	if (hstart < hend)
2070 		return khugepaged_enter(vma);
2071 	return 0;
2072 }
2073 
2074 void __khugepaged_exit(struct mm_struct *mm)
2075 {
2076 	struct mm_slot *mm_slot;
2077 	int free = 0;
2078 
2079 	spin_lock(&khugepaged_mm_lock);
2080 	mm_slot = get_mm_slot(mm);
2081 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2082 		hash_del(&mm_slot->hash);
2083 		list_del(&mm_slot->mm_node);
2084 		free = 1;
2085 	}
2086 	spin_unlock(&khugepaged_mm_lock);
2087 
2088 	if (free) {
2089 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2090 		free_mm_slot(mm_slot);
2091 		mmdrop(mm);
2092 	} else if (mm_slot) {
2093 		/*
2094 		 * This is required to serialize against
2095 		 * khugepaged_test_exit() (which is guaranteed to run
2096 		 * under mmap sem read mode). Stop here (after we
2097 		 * return all pagetables will be destroyed) until
2098 		 * khugepaged has finished working on the pagetables
2099 		 * under the mmap_sem.
2100 		 */
2101 		down_write(&mm->mmap_sem);
2102 		up_write(&mm->mmap_sem);
2103 	}
2104 }
2105 
2106 static void release_pte_page(struct page *page)
2107 {
2108 	/* 0 stands for page_is_file_cache(page) == false */
2109 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2110 	unlock_page(page);
2111 	putback_lru_page(page);
2112 }
2113 
2114 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2115 {
2116 	while (--_pte >= pte) {
2117 		pte_t pteval = *_pte;
2118 		if (!pte_none(pteval))
2119 			release_pte_page(pte_page(pteval));
2120 	}
2121 }
2122 
2123 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2124 					unsigned long address,
2125 					pte_t *pte)
2126 {
2127 	struct page *page;
2128 	pte_t *_pte;
2129 	int referenced = 0, none = 0;
2130 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2131 	     _pte++, address += PAGE_SIZE) {
2132 		pte_t pteval = *_pte;
2133 		if (pte_none(pteval)) {
2134 			if (++none <= khugepaged_max_ptes_none)
2135 				continue;
2136 			else
2137 				goto out;
2138 		}
2139 		if (!pte_present(pteval) || !pte_write(pteval))
2140 			goto out;
2141 		page = vm_normal_page(vma, address, pteval);
2142 		if (unlikely(!page))
2143 			goto out;
2144 
2145 		VM_BUG_ON(PageCompound(page));
2146 		BUG_ON(!PageAnon(page));
2147 		VM_BUG_ON(!PageSwapBacked(page));
2148 
2149 		/* cannot use mapcount: can't collapse if there's a gup pin */
2150 		if (page_count(page) != 1)
2151 			goto out;
2152 		/*
2153 		 * We can do it before isolate_lru_page because the
2154 		 * page can't be freed from under us. NOTE: PG_lock
2155 		 * is needed to serialize against split_huge_page
2156 		 * when invoked from the VM.
2157 		 */
2158 		if (!trylock_page(page))
2159 			goto out;
2160 		/*
2161 		 * Isolate the page to avoid collapsing an hugepage
2162 		 * currently in use by the VM.
2163 		 */
2164 		if (isolate_lru_page(page)) {
2165 			unlock_page(page);
2166 			goto out;
2167 		}
2168 		/* 0 stands for page_is_file_cache(page) == false */
2169 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2170 		VM_BUG_ON(!PageLocked(page));
2171 		VM_BUG_ON(PageLRU(page));
2172 
2173 		/* If there is no mapped pte young don't collapse the page */
2174 		if (pte_young(pteval) || PageReferenced(page) ||
2175 		    mmu_notifier_test_young(vma->vm_mm, address))
2176 			referenced = 1;
2177 	}
2178 	if (likely(referenced))
2179 		return 1;
2180 out:
2181 	release_pte_pages(pte, _pte);
2182 	return 0;
2183 }
2184 
2185 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2186 				      struct vm_area_struct *vma,
2187 				      unsigned long address,
2188 				      spinlock_t *ptl)
2189 {
2190 	pte_t *_pte;
2191 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2192 		pte_t pteval = *_pte;
2193 		struct page *src_page;
2194 
2195 		if (pte_none(pteval)) {
2196 			clear_user_highpage(page, address);
2197 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2198 		} else {
2199 			src_page = pte_page(pteval);
2200 			copy_user_highpage(page, src_page, address, vma);
2201 			VM_BUG_ON(page_mapcount(src_page) != 1);
2202 			release_pte_page(src_page);
2203 			/*
2204 			 * ptl mostly unnecessary, but preempt has to
2205 			 * be disabled to update the per-cpu stats
2206 			 * inside page_remove_rmap().
2207 			 */
2208 			spin_lock(ptl);
2209 			/*
2210 			 * paravirt calls inside pte_clear here are
2211 			 * superfluous.
2212 			 */
2213 			pte_clear(vma->vm_mm, address, _pte);
2214 			page_remove_rmap(src_page);
2215 			spin_unlock(ptl);
2216 			free_page_and_swap_cache(src_page);
2217 		}
2218 
2219 		address += PAGE_SIZE;
2220 		page++;
2221 	}
2222 }
2223 
2224 static void khugepaged_alloc_sleep(void)
2225 {
2226 	wait_event_freezable_timeout(khugepaged_wait, false,
2227 			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2228 }
2229 
2230 static int khugepaged_node_load[MAX_NUMNODES];
2231 
2232 #ifdef CONFIG_NUMA
2233 static int khugepaged_find_target_node(void)
2234 {
2235 	static int last_khugepaged_target_node = NUMA_NO_NODE;
2236 	int nid, target_node = 0, max_value = 0;
2237 
2238 	/* find first node with max normal pages hit */
2239 	for (nid = 0; nid < MAX_NUMNODES; nid++)
2240 		if (khugepaged_node_load[nid] > max_value) {
2241 			max_value = khugepaged_node_load[nid];
2242 			target_node = nid;
2243 		}
2244 
2245 	/* do some balance if several nodes have the same hit record */
2246 	if (target_node <= last_khugepaged_target_node)
2247 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2248 				nid++)
2249 			if (max_value == khugepaged_node_load[nid]) {
2250 				target_node = nid;
2251 				break;
2252 			}
2253 
2254 	last_khugepaged_target_node = target_node;
2255 	return target_node;
2256 }
2257 
2258 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2259 {
2260 	if (IS_ERR(*hpage)) {
2261 		if (!*wait)
2262 			return false;
2263 
2264 		*wait = false;
2265 		*hpage = NULL;
2266 		khugepaged_alloc_sleep();
2267 	} else if (*hpage) {
2268 		put_page(*hpage);
2269 		*hpage = NULL;
2270 	}
2271 
2272 	return true;
2273 }
2274 
2275 static struct page
2276 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2277 		       struct vm_area_struct *vma, unsigned long address,
2278 		       int node)
2279 {
2280 	VM_BUG_ON(*hpage);
2281 	/*
2282 	 * Allocate the page while the vma is still valid and under
2283 	 * the mmap_sem read mode so there is no memory allocation
2284 	 * later when we take the mmap_sem in write mode. This is more
2285 	 * friendly behavior (OTOH it may actually hide bugs) to
2286 	 * filesystems in userland with daemons allocating memory in
2287 	 * the userland I/O paths.  Allocating memory with the
2288 	 * mmap_sem in read mode is good idea also to allow greater
2289 	 * scalability.
2290 	 */
2291 	*hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2292 		khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2293 	/*
2294 	 * After allocating the hugepage, release the mmap_sem read lock in
2295 	 * preparation for taking it in write mode.
2296 	 */
2297 	up_read(&mm->mmap_sem);
2298 	if (unlikely(!*hpage)) {
2299 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2300 		*hpage = ERR_PTR(-ENOMEM);
2301 		return NULL;
2302 	}
2303 
2304 	count_vm_event(THP_COLLAPSE_ALLOC);
2305 	return *hpage;
2306 }
2307 #else
2308 static int khugepaged_find_target_node(void)
2309 {
2310 	return 0;
2311 }
2312 
2313 static inline struct page *alloc_hugepage(int defrag)
2314 {
2315 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2316 			   HPAGE_PMD_ORDER);
2317 }
2318 
2319 static struct page *khugepaged_alloc_hugepage(bool *wait)
2320 {
2321 	struct page *hpage;
2322 
2323 	do {
2324 		hpage = alloc_hugepage(khugepaged_defrag());
2325 		if (!hpage) {
2326 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2327 			if (!*wait)
2328 				return NULL;
2329 
2330 			*wait = false;
2331 			khugepaged_alloc_sleep();
2332 		} else
2333 			count_vm_event(THP_COLLAPSE_ALLOC);
2334 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2335 
2336 	return hpage;
2337 }
2338 
2339 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2340 {
2341 	if (!*hpage)
2342 		*hpage = khugepaged_alloc_hugepage(wait);
2343 
2344 	if (unlikely(!*hpage))
2345 		return false;
2346 
2347 	return true;
2348 }
2349 
2350 static struct page
2351 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2352 		       struct vm_area_struct *vma, unsigned long address,
2353 		       int node)
2354 {
2355 	up_read(&mm->mmap_sem);
2356 	VM_BUG_ON(!*hpage);
2357 	return  *hpage;
2358 }
2359 #endif
2360 
2361 static bool hugepage_vma_check(struct vm_area_struct *vma)
2362 {
2363 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2364 	    (vma->vm_flags & VM_NOHUGEPAGE))
2365 		return false;
2366 
2367 	if (!vma->anon_vma || vma->vm_ops)
2368 		return false;
2369 	if (is_vma_temporary_stack(vma))
2370 		return false;
2371 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2372 	return true;
2373 }
2374 
2375 static void collapse_huge_page(struct mm_struct *mm,
2376 				   unsigned long address,
2377 				   struct page **hpage,
2378 				   struct vm_area_struct *vma,
2379 				   int node)
2380 {
2381 	pmd_t *pmd, _pmd;
2382 	pte_t *pte;
2383 	pgtable_t pgtable;
2384 	struct page *new_page;
2385 	spinlock_t *pmd_ptl, *pte_ptl;
2386 	int isolated;
2387 	unsigned long hstart, hend;
2388 	unsigned long mmun_start;	/* For mmu_notifiers */
2389 	unsigned long mmun_end;		/* For mmu_notifiers */
2390 
2391 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2392 
2393 	/* release the mmap_sem read lock. */
2394 	new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2395 	if (!new_page)
2396 		return;
2397 
2398 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2399 		return;
2400 
2401 	/*
2402 	 * Prevent all access to pagetables with the exception of
2403 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2404 	 * handled by the anon_vma lock + PG_lock.
2405 	 */
2406 	down_write(&mm->mmap_sem);
2407 	if (unlikely(khugepaged_test_exit(mm)))
2408 		goto out;
2409 
2410 	vma = find_vma(mm, address);
2411 	if (!vma)
2412 		goto out;
2413 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2414 	hend = vma->vm_end & HPAGE_PMD_MASK;
2415 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2416 		goto out;
2417 	if (!hugepage_vma_check(vma))
2418 		goto out;
2419 	pmd = mm_find_pmd(mm, address);
2420 	if (!pmd)
2421 		goto out;
2422 	if (pmd_trans_huge(*pmd))
2423 		goto out;
2424 
2425 	anon_vma_lock_write(vma->anon_vma);
2426 
2427 	pte = pte_offset_map(pmd, address);
2428 	pte_ptl = pte_lockptr(mm, pmd);
2429 
2430 	mmun_start = address;
2431 	mmun_end   = address + HPAGE_PMD_SIZE;
2432 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2433 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2434 	/*
2435 	 * After this gup_fast can't run anymore. This also removes
2436 	 * any huge TLB entry from the CPU so we won't allow
2437 	 * huge and small TLB entries for the same virtual address
2438 	 * to avoid the risk of CPU bugs in that area.
2439 	 */
2440 	_pmd = pmdp_clear_flush(vma, address, pmd);
2441 	spin_unlock(pmd_ptl);
2442 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2443 
2444 	spin_lock(pte_ptl);
2445 	isolated = __collapse_huge_page_isolate(vma, address, pte);
2446 	spin_unlock(pte_ptl);
2447 
2448 	if (unlikely(!isolated)) {
2449 		pte_unmap(pte);
2450 		spin_lock(pmd_ptl);
2451 		BUG_ON(!pmd_none(*pmd));
2452 		/*
2453 		 * We can only use set_pmd_at when establishing
2454 		 * hugepmds and never for establishing regular pmds that
2455 		 * points to regular pagetables. Use pmd_populate for that
2456 		 */
2457 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2458 		spin_unlock(pmd_ptl);
2459 		anon_vma_unlock_write(vma->anon_vma);
2460 		goto out;
2461 	}
2462 
2463 	/*
2464 	 * All pages are isolated and locked so anon_vma rmap
2465 	 * can't run anymore.
2466 	 */
2467 	anon_vma_unlock_write(vma->anon_vma);
2468 
2469 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2470 	pte_unmap(pte);
2471 	__SetPageUptodate(new_page);
2472 	pgtable = pmd_pgtable(_pmd);
2473 
2474 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2475 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2476 
2477 	/*
2478 	 * spin_lock() below is not the equivalent of smp_wmb(), so
2479 	 * this is needed to avoid the copy_huge_page writes to become
2480 	 * visible after the set_pmd_at() write.
2481 	 */
2482 	smp_wmb();
2483 
2484 	spin_lock(pmd_ptl);
2485 	BUG_ON(!pmd_none(*pmd));
2486 	page_add_new_anon_rmap(new_page, vma, address);
2487 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2488 	set_pmd_at(mm, address, pmd, _pmd);
2489 	update_mmu_cache_pmd(vma, address, pmd);
2490 	spin_unlock(pmd_ptl);
2491 
2492 	*hpage = NULL;
2493 
2494 	khugepaged_pages_collapsed++;
2495 out_up_write:
2496 	up_write(&mm->mmap_sem);
2497 	return;
2498 
2499 out:
2500 	mem_cgroup_uncharge_page(new_page);
2501 	goto out_up_write;
2502 }
2503 
2504 static int khugepaged_scan_pmd(struct mm_struct *mm,
2505 			       struct vm_area_struct *vma,
2506 			       unsigned long address,
2507 			       struct page **hpage)
2508 {
2509 	pmd_t *pmd;
2510 	pte_t *pte, *_pte;
2511 	int ret = 0, referenced = 0, none = 0;
2512 	struct page *page;
2513 	unsigned long _address;
2514 	spinlock_t *ptl;
2515 	int node = NUMA_NO_NODE;
2516 
2517 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2518 
2519 	pmd = mm_find_pmd(mm, address);
2520 	if (!pmd)
2521 		goto out;
2522 	if (pmd_trans_huge(*pmd))
2523 		goto out;
2524 
2525 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2526 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2527 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2528 	     _pte++, _address += PAGE_SIZE) {
2529 		pte_t pteval = *_pte;
2530 		if (pte_none(pteval)) {
2531 			if (++none <= khugepaged_max_ptes_none)
2532 				continue;
2533 			else
2534 				goto out_unmap;
2535 		}
2536 		if (!pte_present(pteval) || !pte_write(pteval))
2537 			goto out_unmap;
2538 		page = vm_normal_page(vma, _address, pteval);
2539 		if (unlikely(!page))
2540 			goto out_unmap;
2541 		/*
2542 		 * Record which node the original page is from and save this
2543 		 * information to khugepaged_node_load[].
2544 		 * Khupaged will allocate hugepage from the node has the max
2545 		 * hit record.
2546 		 */
2547 		node = page_to_nid(page);
2548 		khugepaged_node_load[node]++;
2549 		VM_BUG_ON(PageCompound(page));
2550 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2551 			goto out_unmap;
2552 		/* cannot use mapcount: can't collapse if there's a gup pin */
2553 		if (page_count(page) != 1)
2554 			goto out_unmap;
2555 		if (pte_young(pteval) || PageReferenced(page) ||
2556 		    mmu_notifier_test_young(vma->vm_mm, address))
2557 			referenced = 1;
2558 	}
2559 	if (referenced)
2560 		ret = 1;
2561 out_unmap:
2562 	pte_unmap_unlock(pte, ptl);
2563 	if (ret) {
2564 		node = khugepaged_find_target_node();
2565 		/* collapse_huge_page will return with the mmap_sem released */
2566 		collapse_huge_page(mm, address, hpage, vma, node);
2567 	}
2568 out:
2569 	return ret;
2570 }
2571 
2572 static void collect_mm_slot(struct mm_slot *mm_slot)
2573 {
2574 	struct mm_struct *mm = mm_slot->mm;
2575 
2576 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2577 
2578 	if (khugepaged_test_exit(mm)) {
2579 		/* free mm_slot */
2580 		hash_del(&mm_slot->hash);
2581 		list_del(&mm_slot->mm_node);
2582 
2583 		/*
2584 		 * Not strictly needed because the mm exited already.
2585 		 *
2586 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2587 		 */
2588 
2589 		/* khugepaged_mm_lock actually not necessary for the below */
2590 		free_mm_slot(mm_slot);
2591 		mmdrop(mm);
2592 	}
2593 }
2594 
2595 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2596 					    struct page **hpage)
2597 	__releases(&khugepaged_mm_lock)
2598 	__acquires(&khugepaged_mm_lock)
2599 {
2600 	struct mm_slot *mm_slot;
2601 	struct mm_struct *mm;
2602 	struct vm_area_struct *vma;
2603 	int progress = 0;
2604 
2605 	VM_BUG_ON(!pages);
2606 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2607 
2608 	if (khugepaged_scan.mm_slot)
2609 		mm_slot = khugepaged_scan.mm_slot;
2610 	else {
2611 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2612 				     struct mm_slot, mm_node);
2613 		khugepaged_scan.address = 0;
2614 		khugepaged_scan.mm_slot = mm_slot;
2615 	}
2616 	spin_unlock(&khugepaged_mm_lock);
2617 
2618 	mm = mm_slot->mm;
2619 	down_read(&mm->mmap_sem);
2620 	if (unlikely(khugepaged_test_exit(mm)))
2621 		vma = NULL;
2622 	else
2623 		vma = find_vma(mm, khugepaged_scan.address);
2624 
2625 	progress++;
2626 	for (; vma; vma = vma->vm_next) {
2627 		unsigned long hstart, hend;
2628 
2629 		cond_resched();
2630 		if (unlikely(khugepaged_test_exit(mm))) {
2631 			progress++;
2632 			break;
2633 		}
2634 		if (!hugepage_vma_check(vma)) {
2635 skip:
2636 			progress++;
2637 			continue;
2638 		}
2639 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2640 		hend = vma->vm_end & HPAGE_PMD_MASK;
2641 		if (hstart >= hend)
2642 			goto skip;
2643 		if (khugepaged_scan.address > hend)
2644 			goto skip;
2645 		if (khugepaged_scan.address < hstart)
2646 			khugepaged_scan.address = hstart;
2647 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2648 
2649 		while (khugepaged_scan.address < hend) {
2650 			int ret;
2651 			cond_resched();
2652 			if (unlikely(khugepaged_test_exit(mm)))
2653 				goto breakouterloop;
2654 
2655 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2656 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2657 				  hend);
2658 			ret = khugepaged_scan_pmd(mm, vma,
2659 						  khugepaged_scan.address,
2660 						  hpage);
2661 			/* move to next address */
2662 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2663 			progress += HPAGE_PMD_NR;
2664 			if (ret)
2665 				/* we released mmap_sem so break loop */
2666 				goto breakouterloop_mmap_sem;
2667 			if (progress >= pages)
2668 				goto breakouterloop;
2669 		}
2670 	}
2671 breakouterloop:
2672 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2673 breakouterloop_mmap_sem:
2674 
2675 	spin_lock(&khugepaged_mm_lock);
2676 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2677 	/*
2678 	 * Release the current mm_slot if this mm is about to die, or
2679 	 * if we scanned all vmas of this mm.
2680 	 */
2681 	if (khugepaged_test_exit(mm) || !vma) {
2682 		/*
2683 		 * Make sure that if mm_users is reaching zero while
2684 		 * khugepaged runs here, khugepaged_exit will find
2685 		 * mm_slot not pointing to the exiting mm.
2686 		 */
2687 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2688 			khugepaged_scan.mm_slot = list_entry(
2689 				mm_slot->mm_node.next,
2690 				struct mm_slot, mm_node);
2691 			khugepaged_scan.address = 0;
2692 		} else {
2693 			khugepaged_scan.mm_slot = NULL;
2694 			khugepaged_full_scans++;
2695 		}
2696 
2697 		collect_mm_slot(mm_slot);
2698 	}
2699 
2700 	return progress;
2701 }
2702 
2703 static int khugepaged_has_work(void)
2704 {
2705 	return !list_empty(&khugepaged_scan.mm_head) &&
2706 		khugepaged_enabled();
2707 }
2708 
2709 static int khugepaged_wait_event(void)
2710 {
2711 	return !list_empty(&khugepaged_scan.mm_head) ||
2712 		kthread_should_stop();
2713 }
2714 
2715 static void khugepaged_do_scan(void)
2716 {
2717 	struct page *hpage = NULL;
2718 	unsigned int progress = 0, pass_through_head = 0;
2719 	unsigned int pages = khugepaged_pages_to_scan;
2720 	bool wait = true;
2721 
2722 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2723 
2724 	while (progress < pages) {
2725 		if (!khugepaged_prealloc_page(&hpage, &wait))
2726 			break;
2727 
2728 		cond_resched();
2729 
2730 		if (unlikely(kthread_should_stop() || freezing(current)))
2731 			break;
2732 
2733 		spin_lock(&khugepaged_mm_lock);
2734 		if (!khugepaged_scan.mm_slot)
2735 			pass_through_head++;
2736 		if (khugepaged_has_work() &&
2737 		    pass_through_head < 2)
2738 			progress += khugepaged_scan_mm_slot(pages - progress,
2739 							    &hpage);
2740 		else
2741 			progress = pages;
2742 		spin_unlock(&khugepaged_mm_lock);
2743 	}
2744 
2745 	if (!IS_ERR_OR_NULL(hpage))
2746 		put_page(hpage);
2747 }
2748 
2749 static void khugepaged_wait_work(void)
2750 {
2751 	try_to_freeze();
2752 
2753 	if (khugepaged_has_work()) {
2754 		if (!khugepaged_scan_sleep_millisecs)
2755 			return;
2756 
2757 		wait_event_freezable_timeout(khugepaged_wait,
2758 					     kthread_should_stop(),
2759 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2760 		return;
2761 	}
2762 
2763 	if (khugepaged_enabled())
2764 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2765 }
2766 
2767 static int khugepaged(void *none)
2768 {
2769 	struct mm_slot *mm_slot;
2770 
2771 	set_freezable();
2772 	set_user_nice(current, 19);
2773 
2774 	while (!kthread_should_stop()) {
2775 		khugepaged_do_scan();
2776 		khugepaged_wait_work();
2777 	}
2778 
2779 	spin_lock(&khugepaged_mm_lock);
2780 	mm_slot = khugepaged_scan.mm_slot;
2781 	khugepaged_scan.mm_slot = NULL;
2782 	if (mm_slot)
2783 		collect_mm_slot(mm_slot);
2784 	spin_unlock(&khugepaged_mm_lock);
2785 	return 0;
2786 }
2787 
2788 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2789 		unsigned long haddr, pmd_t *pmd)
2790 {
2791 	struct mm_struct *mm = vma->vm_mm;
2792 	pgtable_t pgtable;
2793 	pmd_t _pmd;
2794 	int i;
2795 
2796 	pmdp_clear_flush(vma, haddr, pmd);
2797 	/* leave pmd empty until pte is filled */
2798 
2799 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2800 	pmd_populate(mm, &_pmd, pgtable);
2801 
2802 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2803 		pte_t *pte, entry;
2804 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2805 		entry = pte_mkspecial(entry);
2806 		pte = pte_offset_map(&_pmd, haddr);
2807 		VM_BUG_ON(!pte_none(*pte));
2808 		set_pte_at(mm, haddr, pte, entry);
2809 		pte_unmap(pte);
2810 	}
2811 	smp_wmb(); /* make pte visible before pmd */
2812 	pmd_populate(mm, pmd, pgtable);
2813 	put_huge_zero_page();
2814 }
2815 
2816 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2817 		pmd_t *pmd)
2818 {
2819 	spinlock_t *ptl;
2820 	struct page *page;
2821 	struct mm_struct *mm = vma->vm_mm;
2822 	unsigned long haddr = address & HPAGE_PMD_MASK;
2823 	unsigned long mmun_start;	/* For mmu_notifiers */
2824 	unsigned long mmun_end;		/* For mmu_notifiers */
2825 
2826 	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2827 
2828 	mmun_start = haddr;
2829 	mmun_end   = haddr + HPAGE_PMD_SIZE;
2830 again:
2831 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2832 	ptl = pmd_lock(mm, pmd);
2833 	if (unlikely(!pmd_trans_huge(*pmd))) {
2834 		spin_unlock(ptl);
2835 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2836 		return;
2837 	}
2838 	if (is_huge_zero_pmd(*pmd)) {
2839 		__split_huge_zero_page_pmd(vma, haddr, pmd);
2840 		spin_unlock(ptl);
2841 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2842 		return;
2843 	}
2844 	page = pmd_page(*pmd);
2845 	VM_BUG_ON(!page_count(page));
2846 	get_page(page);
2847 	spin_unlock(ptl);
2848 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2849 
2850 	split_huge_page(page);
2851 
2852 	put_page(page);
2853 
2854 	/*
2855 	 * We don't always have down_write of mmap_sem here: a racing
2856 	 * do_huge_pmd_wp_page() might have copied-on-write to another
2857 	 * huge page before our split_huge_page() got the anon_vma lock.
2858 	 */
2859 	if (unlikely(pmd_trans_huge(*pmd)))
2860 		goto again;
2861 }
2862 
2863 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2864 		pmd_t *pmd)
2865 {
2866 	struct vm_area_struct *vma;
2867 
2868 	vma = find_vma(mm, address);
2869 	BUG_ON(vma == NULL);
2870 	split_huge_page_pmd(vma, address, pmd);
2871 }
2872 
2873 static void split_huge_page_address(struct mm_struct *mm,
2874 				    unsigned long address)
2875 {
2876 	pmd_t *pmd;
2877 
2878 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2879 
2880 	pmd = mm_find_pmd(mm, address);
2881 	if (!pmd)
2882 		return;
2883 	/*
2884 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2885 	 * materialize from under us.
2886 	 */
2887 	split_huge_page_pmd_mm(mm, address, pmd);
2888 }
2889 
2890 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2891 			     unsigned long start,
2892 			     unsigned long end,
2893 			     long adjust_next)
2894 {
2895 	/*
2896 	 * If the new start address isn't hpage aligned and it could
2897 	 * previously contain an hugepage: check if we need to split
2898 	 * an huge pmd.
2899 	 */
2900 	if (start & ~HPAGE_PMD_MASK &&
2901 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2902 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2903 		split_huge_page_address(vma->vm_mm, start);
2904 
2905 	/*
2906 	 * If the new end address isn't hpage aligned and it could
2907 	 * previously contain an hugepage: check if we need to split
2908 	 * an huge pmd.
2909 	 */
2910 	if (end & ~HPAGE_PMD_MASK &&
2911 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2912 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2913 		split_huge_page_address(vma->vm_mm, end);
2914 
2915 	/*
2916 	 * If we're also updating the vma->vm_next->vm_start, if the new
2917 	 * vm_next->vm_start isn't page aligned and it could previously
2918 	 * contain an hugepage: check if we need to split an huge pmd.
2919 	 */
2920 	if (adjust_next > 0) {
2921 		struct vm_area_struct *next = vma->vm_next;
2922 		unsigned long nstart = next->vm_start;
2923 		nstart += adjust_next << PAGE_SHIFT;
2924 		if (nstart & ~HPAGE_PMD_MASK &&
2925 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2926 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2927 			split_huge_page_address(next->vm_mm, nstart);
2928 	}
2929 }
2930