xref: /openbmc/linux/mm/huge_memory.c (revision 7490ca1e)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <asm/tlb.h>
21 #include <asm/pgalloc.h>
22 #include "internal.h"
23 
24 /*
25  * By default transparent hugepage support is enabled for all mappings
26  * and khugepaged scans all mappings. Defrag is only invoked by
27  * khugepaged hugepage allocations and by page faults inside
28  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29  * allocations.
30  */
31 unsigned long transparent_hugepage_flags __read_mostly =
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
34 #endif
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37 #endif
38 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40 
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43 static unsigned int khugepaged_pages_collapsed;
44 static unsigned int khugepaged_full_scans;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48 static struct task_struct *khugepaged_thread __read_mostly;
49 static DEFINE_MUTEX(khugepaged_mutex);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52 /*
53  * default collapse hugepages if there is at least one pte mapped like
54  * it would have happened if the vma was large enough during page
55  * fault.
56  */
57 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58 
59 static int khugepaged(void *none);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
63 
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head *mm_slots_hash __read_mostly;
66 static struct kmem_cache *mm_slot_cache __read_mostly;
67 
68 /**
69  * struct mm_slot - hash lookup from mm to mm_slot
70  * @hash: hash collision list
71  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72  * @mm: the mm that this information is valid for
73  */
74 struct mm_slot {
75 	struct hlist_node hash;
76 	struct list_head mm_node;
77 	struct mm_struct *mm;
78 };
79 
80 /**
81  * struct khugepaged_scan - cursor for scanning
82  * @mm_head: the head of the mm list to scan
83  * @mm_slot: the current mm_slot we are scanning
84  * @address: the next address inside that to be scanned
85  *
86  * There is only the one khugepaged_scan instance of this cursor structure.
87  */
88 struct khugepaged_scan {
89 	struct list_head mm_head;
90 	struct mm_slot *mm_slot;
91 	unsigned long address;
92 };
93 static struct khugepaged_scan khugepaged_scan = {
94 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95 };
96 
97 
98 static int set_recommended_min_free_kbytes(void)
99 {
100 	struct zone *zone;
101 	int nr_zones = 0;
102 	unsigned long recommended_min;
103 	extern int min_free_kbytes;
104 
105 	if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
106 		      &transparent_hugepage_flags) &&
107 	    !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
108 		      &transparent_hugepage_flags))
109 		return 0;
110 
111 	for_each_populated_zone(zone)
112 		nr_zones++;
113 
114 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
115 	recommended_min = pageblock_nr_pages * nr_zones * 2;
116 
117 	/*
118 	 * Make sure that on average at least two pageblocks are almost free
119 	 * of another type, one for a migratetype to fall back to and a
120 	 * second to avoid subsequent fallbacks of other types There are 3
121 	 * MIGRATE_TYPES we care about.
122 	 */
123 	recommended_min += pageblock_nr_pages * nr_zones *
124 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
125 
126 	/* don't ever allow to reserve more than 5% of the lowmem */
127 	recommended_min = min(recommended_min,
128 			      (unsigned long) nr_free_buffer_pages() / 20);
129 	recommended_min <<= (PAGE_SHIFT-10);
130 
131 	if (recommended_min > min_free_kbytes)
132 		min_free_kbytes = recommended_min;
133 	setup_per_zone_wmarks();
134 	return 0;
135 }
136 late_initcall(set_recommended_min_free_kbytes);
137 
138 static int start_khugepaged(void)
139 {
140 	int err = 0;
141 	if (khugepaged_enabled()) {
142 		int wakeup;
143 		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
144 			err = -ENOMEM;
145 			goto out;
146 		}
147 		mutex_lock(&khugepaged_mutex);
148 		if (!khugepaged_thread)
149 			khugepaged_thread = kthread_run(khugepaged, NULL,
150 							"khugepaged");
151 		if (unlikely(IS_ERR(khugepaged_thread))) {
152 			printk(KERN_ERR
153 			       "khugepaged: kthread_run(khugepaged) failed\n");
154 			err = PTR_ERR(khugepaged_thread);
155 			khugepaged_thread = NULL;
156 		}
157 		wakeup = !list_empty(&khugepaged_scan.mm_head);
158 		mutex_unlock(&khugepaged_mutex);
159 		if (wakeup)
160 			wake_up_interruptible(&khugepaged_wait);
161 
162 		set_recommended_min_free_kbytes();
163 	} else
164 		/* wakeup to exit */
165 		wake_up_interruptible(&khugepaged_wait);
166 out:
167 	return err;
168 }
169 
170 #ifdef CONFIG_SYSFS
171 
172 static ssize_t double_flag_show(struct kobject *kobj,
173 				struct kobj_attribute *attr, char *buf,
174 				enum transparent_hugepage_flag enabled,
175 				enum transparent_hugepage_flag req_madv)
176 {
177 	if (test_bit(enabled, &transparent_hugepage_flags)) {
178 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
179 		return sprintf(buf, "[always] madvise never\n");
180 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
181 		return sprintf(buf, "always [madvise] never\n");
182 	else
183 		return sprintf(buf, "always madvise [never]\n");
184 }
185 static ssize_t double_flag_store(struct kobject *kobj,
186 				 struct kobj_attribute *attr,
187 				 const char *buf, size_t count,
188 				 enum transparent_hugepage_flag enabled,
189 				 enum transparent_hugepage_flag req_madv)
190 {
191 	if (!memcmp("always", buf,
192 		    min(sizeof("always")-1, count))) {
193 		set_bit(enabled, &transparent_hugepage_flags);
194 		clear_bit(req_madv, &transparent_hugepage_flags);
195 	} else if (!memcmp("madvise", buf,
196 			   min(sizeof("madvise")-1, count))) {
197 		clear_bit(enabled, &transparent_hugepage_flags);
198 		set_bit(req_madv, &transparent_hugepage_flags);
199 	} else if (!memcmp("never", buf,
200 			   min(sizeof("never")-1, count))) {
201 		clear_bit(enabled, &transparent_hugepage_flags);
202 		clear_bit(req_madv, &transparent_hugepage_flags);
203 	} else
204 		return -EINVAL;
205 
206 	return count;
207 }
208 
209 static ssize_t enabled_show(struct kobject *kobj,
210 			    struct kobj_attribute *attr, char *buf)
211 {
212 	return double_flag_show(kobj, attr, buf,
213 				TRANSPARENT_HUGEPAGE_FLAG,
214 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
215 }
216 static ssize_t enabled_store(struct kobject *kobj,
217 			     struct kobj_attribute *attr,
218 			     const char *buf, size_t count)
219 {
220 	ssize_t ret;
221 
222 	ret = double_flag_store(kobj, attr, buf, count,
223 				TRANSPARENT_HUGEPAGE_FLAG,
224 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
225 
226 	if (ret > 0) {
227 		int err = start_khugepaged();
228 		if (err)
229 			ret = err;
230 	}
231 
232 	if (ret > 0 &&
233 	    (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
234 		      &transparent_hugepage_flags) ||
235 	     test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
236 		      &transparent_hugepage_flags)))
237 		set_recommended_min_free_kbytes();
238 
239 	return ret;
240 }
241 static struct kobj_attribute enabled_attr =
242 	__ATTR(enabled, 0644, enabled_show, enabled_store);
243 
244 static ssize_t single_flag_show(struct kobject *kobj,
245 				struct kobj_attribute *attr, char *buf,
246 				enum transparent_hugepage_flag flag)
247 {
248 	return sprintf(buf, "%d\n",
249 		       !!test_bit(flag, &transparent_hugepage_flags));
250 }
251 
252 static ssize_t single_flag_store(struct kobject *kobj,
253 				 struct kobj_attribute *attr,
254 				 const char *buf, size_t count,
255 				 enum transparent_hugepage_flag flag)
256 {
257 	unsigned long value;
258 	int ret;
259 
260 	ret = kstrtoul(buf, 10, &value);
261 	if (ret < 0)
262 		return ret;
263 	if (value > 1)
264 		return -EINVAL;
265 
266 	if (value)
267 		set_bit(flag, &transparent_hugepage_flags);
268 	else
269 		clear_bit(flag, &transparent_hugepage_flags);
270 
271 	return count;
272 }
273 
274 /*
275  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
276  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
277  * memory just to allocate one more hugepage.
278  */
279 static ssize_t defrag_show(struct kobject *kobj,
280 			   struct kobj_attribute *attr, char *buf)
281 {
282 	return double_flag_show(kobj, attr, buf,
283 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
284 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
285 }
286 static ssize_t defrag_store(struct kobject *kobj,
287 			    struct kobj_attribute *attr,
288 			    const char *buf, size_t count)
289 {
290 	return double_flag_store(kobj, attr, buf, count,
291 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
292 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
293 }
294 static struct kobj_attribute defrag_attr =
295 	__ATTR(defrag, 0644, defrag_show, defrag_store);
296 
297 #ifdef CONFIG_DEBUG_VM
298 static ssize_t debug_cow_show(struct kobject *kobj,
299 				struct kobj_attribute *attr, char *buf)
300 {
301 	return single_flag_show(kobj, attr, buf,
302 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
303 }
304 static ssize_t debug_cow_store(struct kobject *kobj,
305 			       struct kobj_attribute *attr,
306 			       const char *buf, size_t count)
307 {
308 	return single_flag_store(kobj, attr, buf, count,
309 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
310 }
311 static struct kobj_attribute debug_cow_attr =
312 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313 #endif /* CONFIG_DEBUG_VM */
314 
315 static struct attribute *hugepage_attr[] = {
316 	&enabled_attr.attr,
317 	&defrag_attr.attr,
318 #ifdef CONFIG_DEBUG_VM
319 	&debug_cow_attr.attr,
320 #endif
321 	NULL,
322 };
323 
324 static struct attribute_group hugepage_attr_group = {
325 	.attrs = hugepage_attr,
326 };
327 
328 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
329 					 struct kobj_attribute *attr,
330 					 char *buf)
331 {
332 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
333 }
334 
335 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
336 					  struct kobj_attribute *attr,
337 					  const char *buf, size_t count)
338 {
339 	unsigned long msecs;
340 	int err;
341 
342 	err = strict_strtoul(buf, 10, &msecs);
343 	if (err || msecs > UINT_MAX)
344 		return -EINVAL;
345 
346 	khugepaged_scan_sleep_millisecs = msecs;
347 	wake_up_interruptible(&khugepaged_wait);
348 
349 	return count;
350 }
351 static struct kobj_attribute scan_sleep_millisecs_attr =
352 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
353 	       scan_sleep_millisecs_store);
354 
355 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
356 					  struct kobj_attribute *attr,
357 					  char *buf)
358 {
359 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
360 }
361 
362 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
363 					   struct kobj_attribute *attr,
364 					   const char *buf, size_t count)
365 {
366 	unsigned long msecs;
367 	int err;
368 
369 	err = strict_strtoul(buf, 10, &msecs);
370 	if (err || msecs > UINT_MAX)
371 		return -EINVAL;
372 
373 	khugepaged_alloc_sleep_millisecs = msecs;
374 	wake_up_interruptible(&khugepaged_wait);
375 
376 	return count;
377 }
378 static struct kobj_attribute alloc_sleep_millisecs_attr =
379 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
380 	       alloc_sleep_millisecs_store);
381 
382 static ssize_t pages_to_scan_show(struct kobject *kobj,
383 				  struct kobj_attribute *attr,
384 				  char *buf)
385 {
386 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
387 }
388 static ssize_t pages_to_scan_store(struct kobject *kobj,
389 				   struct kobj_attribute *attr,
390 				   const char *buf, size_t count)
391 {
392 	int err;
393 	unsigned long pages;
394 
395 	err = strict_strtoul(buf, 10, &pages);
396 	if (err || !pages || pages > UINT_MAX)
397 		return -EINVAL;
398 
399 	khugepaged_pages_to_scan = pages;
400 
401 	return count;
402 }
403 static struct kobj_attribute pages_to_scan_attr =
404 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
405 	       pages_to_scan_store);
406 
407 static ssize_t pages_collapsed_show(struct kobject *kobj,
408 				    struct kobj_attribute *attr,
409 				    char *buf)
410 {
411 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
412 }
413 static struct kobj_attribute pages_collapsed_attr =
414 	__ATTR_RO(pages_collapsed);
415 
416 static ssize_t full_scans_show(struct kobject *kobj,
417 			       struct kobj_attribute *attr,
418 			       char *buf)
419 {
420 	return sprintf(buf, "%u\n", khugepaged_full_scans);
421 }
422 static struct kobj_attribute full_scans_attr =
423 	__ATTR_RO(full_scans);
424 
425 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
426 				      struct kobj_attribute *attr, char *buf)
427 {
428 	return single_flag_show(kobj, attr, buf,
429 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
430 }
431 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
432 				       struct kobj_attribute *attr,
433 				       const char *buf, size_t count)
434 {
435 	return single_flag_store(kobj, attr, buf, count,
436 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
437 }
438 static struct kobj_attribute khugepaged_defrag_attr =
439 	__ATTR(defrag, 0644, khugepaged_defrag_show,
440 	       khugepaged_defrag_store);
441 
442 /*
443  * max_ptes_none controls if khugepaged should collapse hugepages over
444  * any unmapped ptes in turn potentially increasing the memory
445  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
446  * reduce the available free memory in the system as it
447  * runs. Increasing max_ptes_none will instead potentially reduce the
448  * free memory in the system during the khugepaged scan.
449  */
450 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
451 					     struct kobj_attribute *attr,
452 					     char *buf)
453 {
454 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
455 }
456 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
457 					      struct kobj_attribute *attr,
458 					      const char *buf, size_t count)
459 {
460 	int err;
461 	unsigned long max_ptes_none;
462 
463 	err = strict_strtoul(buf, 10, &max_ptes_none);
464 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
465 		return -EINVAL;
466 
467 	khugepaged_max_ptes_none = max_ptes_none;
468 
469 	return count;
470 }
471 static struct kobj_attribute khugepaged_max_ptes_none_attr =
472 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
473 	       khugepaged_max_ptes_none_store);
474 
475 static struct attribute *khugepaged_attr[] = {
476 	&khugepaged_defrag_attr.attr,
477 	&khugepaged_max_ptes_none_attr.attr,
478 	&pages_to_scan_attr.attr,
479 	&pages_collapsed_attr.attr,
480 	&full_scans_attr.attr,
481 	&scan_sleep_millisecs_attr.attr,
482 	&alloc_sleep_millisecs_attr.attr,
483 	NULL,
484 };
485 
486 static struct attribute_group khugepaged_attr_group = {
487 	.attrs = khugepaged_attr,
488 	.name = "khugepaged",
489 };
490 
491 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
492 {
493 	int err;
494 
495 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
496 	if (unlikely(!*hugepage_kobj)) {
497 		printk(KERN_ERR "hugepage: failed kobject create\n");
498 		return -ENOMEM;
499 	}
500 
501 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
502 	if (err) {
503 		printk(KERN_ERR "hugepage: failed register hugeage group\n");
504 		goto delete_obj;
505 	}
506 
507 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
508 	if (err) {
509 		printk(KERN_ERR "hugepage: failed register hugeage group\n");
510 		goto remove_hp_group;
511 	}
512 
513 	return 0;
514 
515 remove_hp_group:
516 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
517 delete_obj:
518 	kobject_put(*hugepage_kobj);
519 	return err;
520 }
521 
522 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
523 {
524 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
525 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
526 	kobject_put(hugepage_kobj);
527 }
528 #else
529 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
530 {
531 	return 0;
532 }
533 
534 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
535 {
536 }
537 #endif /* CONFIG_SYSFS */
538 
539 static int __init hugepage_init(void)
540 {
541 	int err;
542 	struct kobject *hugepage_kobj;
543 
544 	if (!has_transparent_hugepage()) {
545 		transparent_hugepage_flags = 0;
546 		return -EINVAL;
547 	}
548 
549 	err = hugepage_init_sysfs(&hugepage_kobj);
550 	if (err)
551 		return err;
552 
553 	err = khugepaged_slab_init();
554 	if (err)
555 		goto out;
556 
557 	err = mm_slots_hash_init();
558 	if (err) {
559 		khugepaged_slab_free();
560 		goto out;
561 	}
562 
563 	/*
564 	 * By default disable transparent hugepages on smaller systems,
565 	 * where the extra memory used could hurt more than TLB overhead
566 	 * is likely to save.  The admin can still enable it through /sys.
567 	 */
568 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
569 		transparent_hugepage_flags = 0;
570 
571 	start_khugepaged();
572 
573 	set_recommended_min_free_kbytes();
574 
575 	return 0;
576 out:
577 	hugepage_exit_sysfs(hugepage_kobj);
578 	return err;
579 }
580 module_init(hugepage_init)
581 
582 static int __init setup_transparent_hugepage(char *str)
583 {
584 	int ret = 0;
585 	if (!str)
586 		goto out;
587 	if (!strcmp(str, "always")) {
588 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
589 			&transparent_hugepage_flags);
590 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
591 			  &transparent_hugepage_flags);
592 		ret = 1;
593 	} else if (!strcmp(str, "madvise")) {
594 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
595 			  &transparent_hugepage_flags);
596 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
597 			&transparent_hugepage_flags);
598 		ret = 1;
599 	} else if (!strcmp(str, "never")) {
600 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
601 			  &transparent_hugepage_flags);
602 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
603 			  &transparent_hugepage_flags);
604 		ret = 1;
605 	}
606 out:
607 	if (!ret)
608 		printk(KERN_WARNING
609 		       "transparent_hugepage= cannot parse, ignored\n");
610 	return ret;
611 }
612 __setup("transparent_hugepage=", setup_transparent_hugepage);
613 
614 static void prepare_pmd_huge_pte(pgtable_t pgtable,
615 				 struct mm_struct *mm)
616 {
617 	assert_spin_locked(&mm->page_table_lock);
618 
619 	/* FIFO */
620 	if (!mm->pmd_huge_pte)
621 		INIT_LIST_HEAD(&pgtable->lru);
622 	else
623 		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
624 	mm->pmd_huge_pte = pgtable;
625 }
626 
627 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
628 {
629 	if (likely(vma->vm_flags & VM_WRITE))
630 		pmd = pmd_mkwrite(pmd);
631 	return pmd;
632 }
633 
634 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
635 					struct vm_area_struct *vma,
636 					unsigned long haddr, pmd_t *pmd,
637 					struct page *page)
638 {
639 	int ret = 0;
640 	pgtable_t pgtable;
641 
642 	VM_BUG_ON(!PageCompound(page));
643 	pgtable = pte_alloc_one(mm, haddr);
644 	if (unlikely(!pgtable)) {
645 		mem_cgroup_uncharge_page(page);
646 		put_page(page);
647 		return VM_FAULT_OOM;
648 	}
649 
650 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
651 	__SetPageUptodate(page);
652 
653 	spin_lock(&mm->page_table_lock);
654 	if (unlikely(!pmd_none(*pmd))) {
655 		spin_unlock(&mm->page_table_lock);
656 		mem_cgroup_uncharge_page(page);
657 		put_page(page);
658 		pte_free(mm, pgtable);
659 	} else {
660 		pmd_t entry;
661 		entry = mk_pmd(page, vma->vm_page_prot);
662 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
663 		entry = pmd_mkhuge(entry);
664 		/*
665 		 * The spinlocking to take the lru_lock inside
666 		 * page_add_new_anon_rmap() acts as a full memory
667 		 * barrier to be sure clear_huge_page writes become
668 		 * visible after the set_pmd_at() write.
669 		 */
670 		page_add_new_anon_rmap(page, vma, haddr);
671 		set_pmd_at(mm, haddr, pmd, entry);
672 		prepare_pmd_huge_pte(pgtable, mm);
673 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
674 		spin_unlock(&mm->page_table_lock);
675 	}
676 
677 	return ret;
678 }
679 
680 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
681 {
682 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
683 }
684 
685 static inline struct page *alloc_hugepage_vma(int defrag,
686 					      struct vm_area_struct *vma,
687 					      unsigned long haddr, int nd,
688 					      gfp_t extra_gfp)
689 {
690 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
691 			       HPAGE_PMD_ORDER, vma, haddr, nd);
692 }
693 
694 #ifndef CONFIG_NUMA
695 static inline struct page *alloc_hugepage(int defrag)
696 {
697 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
698 			   HPAGE_PMD_ORDER);
699 }
700 #endif
701 
702 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
703 			       unsigned long address, pmd_t *pmd,
704 			       unsigned int flags)
705 {
706 	struct page *page;
707 	unsigned long haddr = address & HPAGE_PMD_MASK;
708 	pte_t *pte;
709 
710 	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
711 		if (unlikely(anon_vma_prepare(vma)))
712 			return VM_FAULT_OOM;
713 		if (unlikely(khugepaged_enter(vma)))
714 			return VM_FAULT_OOM;
715 		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
716 					  vma, haddr, numa_node_id(), 0);
717 		if (unlikely(!page)) {
718 			count_vm_event(THP_FAULT_FALLBACK);
719 			goto out;
720 		}
721 		count_vm_event(THP_FAULT_ALLOC);
722 		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
723 			put_page(page);
724 			goto out;
725 		}
726 
727 		return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
728 	}
729 out:
730 	/*
731 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
732 	 * run pte_offset_map on the pmd, if an huge pmd could
733 	 * materialize from under us from a different thread.
734 	 */
735 	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
736 		return VM_FAULT_OOM;
737 	/* if an huge pmd materialized from under us just retry later */
738 	if (unlikely(pmd_trans_huge(*pmd)))
739 		return 0;
740 	/*
741 	 * A regular pmd is established and it can't morph into a huge pmd
742 	 * from under us anymore at this point because we hold the mmap_sem
743 	 * read mode and khugepaged takes it in write mode. So now it's
744 	 * safe to run pte_offset_map().
745 	 */
746 	pte = pte_offset_map(pmd, address);
747 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
748 }
749 
750 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
751 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
752 		  struct vm_area_struct *vma)
753 {
754 	struct page *src_page;
755 	pmd_t pmd;
756 	pgtable_t pgtable;
757 	int ret;
758 
759 	ret = -ENOMEM;
760 	pgtable = pte_alloc_one(dst_mm, addr);
761 	if (unlikely(!pgtable))
762 		goto out;
763 
764 	spin_lock(&dst_mm->page_table_lock);
765 	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
766 
767 	ret = -EAGAIN;
768 	pmd = *src_pmd;
769 	if (unlikely(!pmd_trans_huge(pmd))) {
770 		pte_free(dst_mm, pgtable);
771 		goto out_unlock;
772 	}
773 	if (unlikely(pmd_trans_splitting(pmd))) {
774 		/* split huge page running from under us */
775 		spin_unlock(&src_mm->page_table_lock);
776 		spin_unlock(&dst_mm->page_table_lock);
777 		pte_free(dst_mm, pgtable);
778 
779 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
780 		goto out;
781 	}
782 	src_page = pmd_page(pmd);
783 	VM_BUG_ON(!PageHead(src_page));
784 	get_page(src_page);
785 	page_dup_rmap(src_page);
786 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
787 
788 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
789 	pmd = pmd_mkold(pmd_wrprotect(pmd));
790 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
791 	prepare_pmd_huge_pte(pgtable, dst_mm);
792 
793 	ret = 0;
794 out_unlock:
795 	spin_unlock(&src_mm->page_table_lock);
796 	spin_unlock(&dst_mm->page_table_lock);
797 out:
798 	return ret;
799 }
800 
801 /* no "address" argument so destroys page coloring of some arch */
802 pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
803 {
804 	pgtable_t pgtable;
805 
806 	assert_spin_locked(&mm->page_table_lock);
807 
808 	/* FIFO */
809 	pgtable = mm->pmd_huge_pte;
810 	if (list_empty(&pgtable->lru))
811 		mm->pmd_huge_pte = NULL;
812 	else {
813 		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
814 					      struct page, lru);
815 		list_del(&pgtable->lru);
816 	}
817 	return pgtable;
818 }
819 
820 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
821 					struct vm_area_struct *vma,
822 					unsigned long address,
823 					pmd_t *pmd, pmd_t orig_pmd,
824 					struct page *page,
825 					unsigned long haddr)
826 {
827 	pgtable_t pgtable;
828 	pmd_t _pmd;
829 	int ret = 0, i;
830 	struct page **pages;
831 
832 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
833 			GFP_KERNEL);
834 	if (unlikely(!pages)) {
835 		ret |= VM_FAULT_OOM;
836 		goto out;
837 	}
838 
839 	for (i = 0; i < HPAGE_PMD_NR; i++) {
840 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
841 					       __GFP_OTHER_NODE,
842 					       vma, address, page_to_nid(page));
843 		if (unlikely(!pages[i] ||
844 			     mem_cgroup_newpage_charge(pages[i], mm,
845 						       GFP_KERNEL))) {
846 			if (pages[i])
847 				put_page(pages[i]);
848 			mem_cgroup_uncharge_start();
849 			while (--i >= 0) {
850 				mem_cgroup_uncharge_page(pages[i]);
851 				put_page(pages[i]);
852 			}
853 			mem_cgroup_uncharge_end();
854 			kfree(pages);
855 			ret |= VM_FAULT_OOM;
856 			goto out;
857 		}
858 	}
859 
860 	for (i = 0; i < HPAGE_PMD_NR; i++) {
861 		copy_user_highpage(pages[i], page + i,
862 				   haddr + PAGE_SIZE * i, vma);
863 		__SetPageUptodate(pages[i]);
864 		cond_resched();
865 	}
866 
867 	spin_lock(&mm->page_table_lock);
868 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
869 		goto out_free_pages;
870 	VM_BUG_ON(!PageHead(page));
871 
872 	pmdp_clear_flush_notify(vma, haddr, pmd);
873 	/* leave pmd empty until pte is filled */
874 
875 	pgtable = get_pmd_huge_pte(mm);
876 	pmd_populate(mm, &_pmd, pgtable);
877 
878 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
879 		pte_t *pte, entry;
880 		entry = mk_pte(pages[i], vma->vm_page_prot);
881 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
882 		page_add_new_anon_rmap(pages[i], vma, haddr);
883 		pte = pte_offset_map(&_pmd, haddr);
884 		VM_BUG_ON(!pte_none(*pte));
885 		set_pte_at(mm, haddr, pte, entry);
886 		pte_unmap(pte);
887 	}
888 	kfree(pages);
889 
890 	mm->nr_ptes++;
891 	smp_wmb(); /* make pte visible before pmd */
892 	pmd_populate(mm, pmd, pgtable);
893 	page_remove_rmap(page);
894 	spin_unlock(&mm->page_table_lock);
895 
896 	ret |= VM_FAULT_WRITE;
897 	put_page(page);
898 
899 out:
900 	return ret;
901 
902 out_free_pages:
903 	spin_unlock(&mm->page_table_lock);
904 	mem_cgroup_uncharge_start();
905 	for (i = 0; i < HPAGE_PMD_NR; i++) {
906 		mem_cgroup_uncharge_page(pages[i]);
907 		put_page(pages[i]);
908 	}
909 	mem_cgroup_uncharge_end();
910 	kfree(pages);
911 	goto out;
912 }
913 
914 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
915 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
916 {
917 	int ret = 0;
918 	struct page *page, *new_page;
919 	unsigned long haddr;
920 
921 	VM_BUG_ON(!vma->anon_vma);
922 	spin_lock(&mm->page_table_lock);
923 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
924 		goto out_unlock;
925 
926 	page = pmd_page(orig_pmd);
927 	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
928 	haddr = address & HPAGE_PMD_MASK;
929 	if (page_mapcount(page) == 1) {
930 		pmd_t entry;
931 		entry = pmd_mkyoung(orig_pmd);
932 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
933 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
934 			update_mmu_cache(vma, address, entry);
935 		ret |= VM_FAULT_WRITE;
936 		goto out_unlock;
937 	}
938 	get_page(page);
939 	spin_unlock(&mm->page_table_lock);
940 
941 	if (transparent_hugepage_enabled(vma) &&
942 	    !transparent_hugepage_debug_cow())
943 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
944 					      vma, haddr, numa_node_id(), 0);
945 	else
946 		new_page = NULL;
947 
948 	if (unlikely(!new_page)) {
949 		count_vm_event(THP_FAULT_FALLBACK);
950 		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
951 						   pmd, orig_pmd, page, haddr);
952 		put_page(page);
953 		goto out;
954 	}
955 	count_vm_event(THP_FAULT_ALLOC);
956 
957 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
958 		put_page(new_page);
959 		put_page(page);
960 		ret |= VM_FAULT_OOM;
961 		goto out;
962 	}
963 
964 	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
965 	__SetPageUptodate(new_page);
966 
967 	spin_lock(&mm->page_table_lock);
968 	put_page(page);
969 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
970 		mem_cgroup_uncharge_page(new_page);
971 		put_page(new_page);
972 	} else {
973 		pmd_t entry;
974 		VM_BUG_ON(!PageHead(page));
975 		entry = mk_pmd(new_page, vma->vm_page_prot);
976 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
977 		entry = pmd_mkhuge(entry);
978 		pmdp_clear_flush_notify(vma, haddr, pmd);
979 		page_add_new_anon_rmap(new_page, vma, haddr);
980 		set_pmd_at(mm, haddr, pmd, entry);
981 		update_mmu_cache(vma, address, entry);
982 		page_remove_rmap(page);
983 		put_page(page);
984 		ret |= VM_FAULT_WRITE;
985 	}
986 out_unlock:
987 	spin_unlock(&mm->page_table_lock);
988 out:
989 	return ret;
990 }
991 
992 struct page *follow_trans_huge_pmd(struct mm_struct *mm,
993 				   unsigned long addr,
994 				   pmd_t *pmd,
995 				   unsigned int flags)
996 {
997 	struct page *page = NULL;
998 
999 	assert_spin_locked(&mm->page_table_lock);
1000 
1001 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1002 		goto out;
1003 
1004 	page = pmd_page(*pmd);
1005 	VM_BUG_ON(!PageHead(page));
1006 	if (flags & FOLL_TOUCH) {
1007 		pmd_t _pmd;
1008 		/*
1009 		 * We should set the dirty bit only for FOLL_WRITE but
1010 		 * for now the dirty bit in the pmd is meaningless.
1011 		 * And if the dirty bit will become meaningful and
1012 		 * we'll only set it with FOLL_WRITE, an atomic
1013 		 * set_bit will be required on the pmd to set the
1014 		 * young bit, instead of the current set_pmd_at.
1015 		 */
1016 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1017 		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1018 	}
1019 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1020 	VM_BUG_ON(!PageCompound(page));
1021 	if (flags & FOLL_GET)
1022 		get_page_foll(page);
1023 
1024 out:
1025 	return page;
1026 }
1027 
1028 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1029 		 pmd_t *pmd, unsigned long addr)
1030 {
1031 	int ret = 0;
1032 
1033 	spin_lock(&tlb->mm->page_table_lock);
1034 	if (likely(pmd_trans_huge(*pmd))) {
1035 		if (unlikely(pmd_trans_splitting(*pmd))) {
1036 			spin_unlock(&tlb->mm->page_table_lock);
1037 			wait_split_huge_page(vma->anon_vma,
1038 					     pmd);
1039 		} else {
1040 			struct page *page;
1041 			pgtable_t pgtable;
1042 			pgtable = get_pmd_huge_pte(tlb->mm);
1043 			page = pmd_page(*pmd);
1044 			pmd_clear(pmd);
1045 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1046 			page_remove_rmap(page);
1047 			VM_BUG_ON(page_mapcount(page) < 0);
1048 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1049 			VM_BUG_ON(!PageHead(page));
1050 			spin_unlock(&tlb->mm->page_table_lock);
1051 			tlb_remove_page(tlb, page);
1052 			pte_free(tlb->mm, pgtable);
1053 			ret = 1;
1054 		}
1055 	} else
1056 		spin_unlock(&tlb->mm->page_table_lock);
1057 
1058 	return ret;
1059 }
1060 
1061 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1062 		unsigned long addr, unsigned long end,
1063 		unsigned char *vec)
1064 {
1065 	int ret = 0;
1066 
1067 	spin_lock(&vma->vm_mm->page_table_lock);
1068 	if (likely(pmd_trans_huge(*pmd))) {
1069 		ret = !pmd_trans_splitting(*pmd);
1070 		spin_unlock(&vma->vm_mm->page_table_lock);
1071 		if (unlikely(!ret))
1072 			wait_split_huge_page(vma->anon_vma, pmd);
1073 		else {
1074 			/*
1075 			 * All logical pages in the range are present
1076 			 * if backed by a huge page.
1077 			 */
1078 			memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1079 		}
1080 	} else
1081 		spin_unlock(&vma->vm_mm->page_table_lock);
1082 
1083 	return ret;
1084 }
1085 
1086 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1087 		  unsigned long old_addr,
1088 		  unsigned long new_addr, unsigned long old_end,
1089 		  pmd_t *old_pmd, pmd_t *new_pmd)
1090 {
1091 	int ret = 0;
1092 	pmd_t pmd;
1093 
1094 	struct mm_struct *mm = vma->vm_mm;
1095 
1096 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1097 	    (new_addr & ~HPAGE_PMD_MASK) ||
1098 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1099 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1100 		goto out;
1101 
1102 	/*
1103 	 * The destination pmd shouldn't be established, free_pgtables()
1104 	 * should have release it.
1105 	 */
1106 	if (WARN_ON(!pmd_none(*new_pmd))) {
1107 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1108 		goto out;
1109 	}
1110 
1111 	spin_lock(&mm->page_table_lock);
1112 	if (likely(pmd_trans_huge(*old_pmd))) {
1113 		if (pmd_trans_splitting(*old_pmd)) {
1114 			spin_unlock(&mm->page_table_lock);
1115 			wait_split_huge_page(vma->anon_vma, old_pmd);
1116 			ret = -1;
1117 		} else {
1118 			pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1119 			VM_BUG_ON(!pmd_none(*new_pmd));
1120 			set_pmd_at(mm, new_addr, new_pmd, pmd);
1121 			spin_unlock(&mm->page_table_lock);
1122 			ret = 1;
1123 		}
1124 	} else {
1125 		spin_unlock(&mm->page_table_lock);
1126 	}
1127 out:
1128 	return ret;
1129 }
1130 
1131 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1132 		unsigned long addr, pgprot_t newprot)
1133 {
1134 	struct mm_struct *mm = vma->vm_mm;
1135 	int ret = 0;
1136 
1137 	spin_lock(&mm->page_table_lock);
1138 	if (likely(pmd_trans_huge(*pmd))) {
1139 		if (unlikely(pmd_trans_splitting(*pmd))) {
1140 			spin_unlock(&mm->page_table_lock);
1141 			wait_split_huge_page(vma->anon_vma, pmd);
1142 		} else {
1143 			pmd_t entry;
1144 
1145 			entry = pmdp_get_and_clear(mm, addr, pmd);
1146 			entry = pmd_modify(entry, newprot);
1147 			set_pmd_at(mm, addr, pmd, entry);
1148 			spin_unlock(&vma->vm_mm->page_table_lock);
1149 			ret = 1;
1150 		}
1151 	} else
1152 		spin_unlock(&vma->vm_mm->page_table_lock);
1153 
1154 	return ret;
1155 }
1156 
1157 pmd_t *page_check_address_pmd(struct page *page,
1158 			      struct mm_struct *mm,
1159 			      unsigned long address,
1160 			      enum page_check_address_pmd_flag flag)
1161 {
1162 	pgd_t *pgd;
1163 	pud_t *pud;
1164 	pmd_t *pmd, *ret = NULL;
1165 
1166 	if (address & ~HPAGE_PMD_MASK)
1167 		goto out;
1168 
1169 	pgd = pgd_offset(mm, address);
1170 	if (!pgd_present(*pgd))
1171 		goto out;
1172 
1173 	pud = pud_offset(pgd, address);
1174 	if (!pud_present(*pud))
1175 		goto out;
1176 
1177 	pmd = pmd_offset(pud, address);
1178 	if (pmd_none(*pmd))
1179 		goto out;
1180 	if (pmd_page(*pmd) != page)
1181 		goto out;
1182 	/*
1183 	 * split_vma() may create temporary aliased mappings. There is
1184 	 * no risk as long as all huge pmd are found and have their
1185 	 * splitting bit set before __split_huge_page_refcount
1186 	 * runs. Finding the same huge pmd more than once during the
1187 	 * same rmap walk is not a problem.
1188 	 */
1189 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1190 	    pmd_trans_splitting(*pmd))
1191 		goto out;
1192 	if (pmd_trans_huge(*pmd)) {
1193 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1194 			  !pmd_trans_splitting(*pmd));
1195 		ret = pmd;
1196 	}
1197 out:
1198 	return ret;
1199 }
1200 
1201 static int __split_huge_page_splitting(struct page *page,
1202 				       struct vm_area_struct *vma,
1203 				       unsigned long address)
1204 {
1205 	struct mm_struct *mm = vma->vm_mm;
1206 	pmd_t *pmd;
1207 	int ret = 0;
1208 
1209 	spin_lock(&mm->page_table_lock);
1210 	pmd = page_check_address_pmd(page, mm, address,
1211 				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1212 	if (pmd) {
1213 		/*
1214 		 * We can't temporarily set the pmd to null in order
1215 		 * to split it, the pmd must remain marked huge at all
1216 		 * times or the VM won't take the pmd_trans_huge paths
1217 		 * and it won't wait on the anon_vma->root->mutex to
1218 		 * serialize against split_huge_page*.
1219 		 */
1220 		pmdp_splitting_flush_notify(vma, address, pmd);
1221 		ret = 1;
1222 	}
1223 	spin_unlock(&mm->page_table_lock);
1224 
1225 	return ret;
1226 }
1227 
1228 static void __split_huge_page_refcount(struct page *page)
1229 {
1230 	int i;
1231 	struct zone *zone = page_zone(page);
1232 	int tail_count = 0;
1233 
1234 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1235 	spin_lock_irq(&zone->lru_lock);
1236 	compound_lock(page);
1237 	/* complete memcg works before add pages to LRU */
1238 	mem_cgroup_split_huge_fixup(page);
1239 
1240 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1241 		struct page *page_tail = page + i;
1242 
1243 		/* tail_page->_mapcount cannot change */
1244 		BUG_ON(page_mapcount(page_tail) < 0);
1245 		tail_count += page_mapcount(page_tail);
1246 		/* check for overflow */
1247 		BUG_ON(tail_count < 0);
1248 		BUG_ON(atomic_read(&page_tail->_count) != 0);
1249 		/*
1250 		 * tail_page->_count is zero and not changing from
1251 		 * under us. But get_page_unless_zero() may be running
1252 		 * from under us on the tail_page. If we used
1253 		 * atomic_set() below instead of atomic_add(), we
1254 		 * would then run atomic_set() concurrently with
1255 		 * get_page_unless_zero(), and atomic_set() is
1256 		 * implemented in C not using locked ops. spin_unlock
1257 		 * on x86 sometime uses locked ops because of PPro
1258 		 * errata 66, 92, so unless somebody can guarantee
1259 		 * atomic_set() here would be safe on all archs (and
1260 		 * not only on x86), it's safer to use atomic_add().
1261 		 */
1262 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1263 			   &page_tail->_count);
1264 
1265 		/* after clearing PageTail the gup refcount can be released */
1266 		smp_mb();
1267 
1268 		/*
1269 		 * retain hwpoison flag of the poisoned tail page:
1270 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1271 		 *   by the memory-failure.
1272 		 */
1273 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1274 		page_tail->flags |= (page->flags &
1275 				     ((1L << PG_referenced) |
1276 				      (1L << PG_swapbacked) |
1277 				      (1L << PG_mlocked) |
1278 				      (1L << PG_uptodate)));
1279 		page_tail->flags |= (1L << PG_dirty);
1280 
1281 		/* clear PageTail before overwriting first_page */
1282 		smp_wmb();
1283 
1284 		/*
1285 		 * __split_huge_page_splitting() already set the
1286 		 * splitting bit in all pmd that could map this
1287 		 * hugepage, that will ensure no CPU can alter the
1288 		 * mapcount on the head page. The mapcount is only
1289 		 * accounted in the head page and it has to be
1290 		 * transferred to all tail pages in the below code. So
1291 		 * for this code to be safe, the split the mapcount
1292 		 * can't change. But that doesn't mean userland can't
1293 		 * keep changing and reading the page contents while
1294 		 * we transfer the mapcount, so the pmd splitting
1295 		 * status is achieved setting a reserved bit in the
1296 		 * pmd, not by clearing the present bit.
1297 		*/
1298 		page_tail->_mapcount = page->_mapcount;
1299 
1300 		BUG_ON(page_tail->mapping);
1301 		page_tail->mapping = page->mapping;
1302 
1303 		page_tail->index = page->index + i;
1304 
1305 		BUG_ON(!PageAnon(page_tail));
1306 		BUG_ON(!PageUptodate(page_tail));
1307 		BUG_ON(!PageDirty(page_tail));
1308 		BUG_ON(!PageSwapBacked(page_tail));
1309 
1310 
1311 		lru_add_page_tail(zone, page, page_tail);
1312 	}
1313 	atomic_sub(tail_count, &page->_count);
1314 	BUG_ON(atomic_read(&page->_count) <= 0);
1315 
1316 	__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1317 	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1318 
1319 	ClearPageCompound(page);
1320 	compound_unlock(page);
1321 	spin_unlock_irq(&zone->lru_lock);
1322 
1323 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1324 		struct page *page_tail = page + i;
1325 		BUG_ON(page_count(page_tail) <= 0);
1326 		/*
1327 		 * Tail pages may be freed if there wasn't any mapping
1328 		 * like if add_to_swap() is running on a lru page that
1329 		 * had its mapping zapped. And freeing these pages
1330 		 * requires taking the lru_lock so we do the put_page
1331 		 * of the tail pages after the split is complete.
1332 		 */
1333 		put_page(page_tail);
1334 	}
1335 
1336 	/*
1337 	 * Only the head page (now become a regular page) is required
1338 	 * to be pinned by the caller.
1339 	 */
1340 	BUG_ON(page_count(page) <= 0);
1341 }
1342 
1343 static int __split_huge_page_map(struct page *page,
1344 				 struct vm_area_struct *vma,
1345 				 unsigned long address)
1346 {
1347 	struct mm_struct *mm = vma->vm_mm;
1348 	pmd_t *pmd, _pmd;
1349 	int ret = 0, i;
1350 	pgtable_t pgtable;
1351 	unsigned long haddr;
1352 
1353 	spin_lock(&mm->page_table_lock);
1354 	pmd = page_check_address_pmd(page, mm, address,
1355 				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1356 	if (pmd) {
1357 		pgtable = get_pmd_huge_pte(mm);
1358 		pmd_populate(mm, &_pmd, pgtable);
1359 
1360 		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1361 		     i++, haddr += PAGE_SIZE) {
1362 			pte_t *pte, entry;
1363 			BUG_ON(PageCompound(page+i));
1364 			entry = mk_pte(page + i, vma->vm_page_prot);
1365 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1366 			if (!pmd_write(*pmd))
1367 				entry = pte_wrprotect(entry);
1368 			else
1369 				BUG_ON(page_mapcount(page) != 1);
1370 			if (!pmd_young(*pmd))
1371 				entry = pte_mkold(entry);
1372 			pte = pte_offset_map(&_pmd, haddr);
1373 			BUG_ON(!pte_none(*pte));
1374 			set_pte_at(mm, haddr, pte, entry);
1375 			pte_unmap(pte);
1376 		}
1377 
1378 		mm->nr_ptes++;
1379 		smp_wmb(); /* make pte visible before pmd */
1380 		/*
1381 		 * Up to this point the pmd is present and huge and
1382 		 * userland has the whole access to the hugepage
1383 		 * during the split (which happens in place). If we
1384 		 * overwrite the pmd with the not-huge version
1385 		 * pointing to the pte here (which of course we could
1386 		 * if all CPUs were bug free), userland could trigger
1387 		 * a small page size TLB miss on the small sized TLB
1388 		 * while the hugepage TLB entry is still established
1389 		 * in the huge TLB. Some CPU doesn't like that. See
1390 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1391 		 * Erratum 383 on page 93. Intel should be safe but is
1392 		 * also warns that it's only safe if the permission
1393 		 * and cache attributes of the two entries loaded in
1394 		 * the two TLB is identical (which should be the case
1395 		 * here). But it is generally safer to never allow
1396 		 * small and huge TLB entries for the same virtual
1397 		 * address to be loaded simultaneously. So instead of
1398 		 * doing "pmd_populate(); flush_tlb_range();" we first
1399 		 * mark the current pmd notpresent (atomically because
1400 		 * here the pmd_trans_huge and pmd_trans_splitting
1401 		 * must remain set at all times on the pmd until the
1402 		 * split is complete for this pmd), then we flush the
1403 		 * SMP TLB and finally we write the non-huge version
1404 		 * of the pmd entry with pmd_populate.
1405 		 */
1406 		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1407 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1408 		pmd_populate(mm, pmd, pgtable);
1409 		ret = 1;
1410 	}
1411 	spin_unlock(&mm->page_table_lock);
1412 
1413 	return ret;
1414 }
1415 
1416 /* must be called with anon_vma->root->mutex hold */
1417 static void __split_huge_page(struct page *page,
1418 			      struct anon_vma *anon_vma)
1419 {
1420 	int mapcount, mapcount2;
1421 	struct anon_vma_chain *avc;
1422 
1423 	BUG_ON(!PageHead(page));
1424 	BUG_ON(PageTail(page));
1425 
1426 	mapcount = 0;
1427 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1428 		struct vm_area_struct *vma = avc->vma;
1429 		unsigned long addr = vma_address(page, vma);
1430 		BUG_ON(is_vma_temporary_stack(vma));
1431 		if (addr == -EFAULT)
1432 			continue;
1433 		mapcount += __split_huge_page_splitting(page, vma, addr);
1434 	}
1435 	/*
1436 	 * It is critical that new vmas are added to the tail of the
1437 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1438 	 * and establishes a child pmd before
1439 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1440 	 * we fail to prevent copy_huge_pmd() from running until the
1441 	 * whole __split_huge_page() is complete), we will still see
1442 	 * the newly established pmd of the child later during the
1443 	 * walk, to be able to set it as pmd_trans_splitting too.
1444 	 */
1445 	if (mapcount != page_mapcount(page))
1446 		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1447 		       mapcount, page_mapcount(page));
1448 	BUG_ON(mapcount != page_mapcount(page));
1449 
1450 	__split_huge_page_refcount(page);
1451 
1452 	mapcount2 = 0;
1453 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1454 		struct vm_area_struct *vma = avc->vma;
1455 		unsigned long addr = vma_address(page, vma);
1456 		BUG_ON(is_vma_temporary_stack(vma));
1457 		if (addr == -EFAULT)
1458 			continue;
1459 		mapcount2 += __split_huge_page_map(page, vma, addr);
1460 	}
1461 	if (mapcount != mapcount2)
1462 		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1463 		       mapcount, mapcount2, page_mapcount(page));
1464 	BUG_ON(mapcount != mapcount2);
1465 }
1466 
1467 int split_huge_page(struct page *page)
1468 {
1469 	struct anon_vma *anon_vma;
1470 	int ret = 1;
1471 
1472 	BUG_ON(!PageAnon(page));
1473 	anon_vma = page_lock_anon_vma(page);
1474 	if (!anon_vma)
1475 		goto out;
1476 	ret = 0;
1477 	if (!PageCompound(page))
1478 		goto out_unlock;
1479 
1480 	BUG_ON(!PageSwapBacked(page));
1481 	__split_huge_page(page, anon_vma);
1482 	count_vm_event(THP_SPLIT);
1483 
1484 	BUG_ON(PageCompound(page));
1485 out_unlock:
1486 	page_unlock_anon_vma(anon_vma);
1487 out:
1488 	return ret;
1489 }
1490 
1491 #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1492 		   VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1493 
1494 int hugepage_madvise(struct vm_area_struct *vma,
1495 		     unsigned long *vm_flags, int advice)
1496 {
1497 	switch (advice) {
1498 	case MADV_HUGEPAGE:
1499 		/*
1500 		 * Be somewhat over-protective like KSM for now!
1501 		 */
1502 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1503 			return -EINVAL;
1504 		*vm_flags &= ~VM_NOHUGEPAGE;
1505 		*vm_flags |= VM_HUGEPAGE;
1506 		/*
1507 		 * If the vma become good for khugepaged to scan,
1508 		 * register it here without waiting a page fault that
1509 		 * may not happen any time soon.
1510 		 */
1511 		if (unlikely(khugepaged_enter_vma_merge(vma)))
1512 			return -ENOMEM;
1513 		break;
1514 	case MADV_NOHUGEPAGE:
1515 		/*
1516 		 * Be somewhat over-protective like KSM for now!
1517 		 */
1518 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1519 			return -EINVAL;
1520 		*vm_flags &= ~VM_HUGEPAGE;
1521 		*vm_flags |= VM_NOHUGEPAGE;
1522 		/*
1523 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1524 		 * this vma even if we leave the mm registered in khugepaged if
1525 		 * it got registered before VM_NOHUGEPAGE was set.
1526 		 */
1527 		break;
1528 	}
1529 
1530 	return 0;
1531 }
1532 
1533 static int __init khugepaged_slab_init(void)
1534 {
1535 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1536 					  sizeof(struct mm_slot),
1537 					  __alignof__(struct mm_slot), 0, NULL);
1538 	if (!mm_slot_cache)
1539 		return -ENOMEM;
1540 
1541 	return 0;
1542 }
1543 
1544 static void __init khugepaged_slab_free(void)
1545 {
1546 	kmem_cache_destroy(mm_slot_cache);
1547 	mm_slot_cache = NULL;
1548 }
1549 
1550 static inline struct mm_slot *alloc_mm_slot(void)
1551 {
1552 	if (!mm_slot_cache)	/* initialization failed */
1553 		return NULL;
1554 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1555 }
1556 
1557 static inline void free_mm_slot(struct mm_slot *mm_slot)
1558 {
1559 	kmem_cache_free(mm_slot_cache, mm_slot);
1560 }
1561 
1562 static int __init mm_slots_hash_init(void)
1563 {
1564 	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1565 				GFP_KERNEL);
1566 	if (!mm_slots_hash)
1567 		return -ENOMEM;
1568 	return 0;
1569 }
1570 
1571 #if 0
1572 static void __init mm_slots_hash_free(void)
1573 {
1574 	kfree(mm_slots_hash);
1575 	mm_slots_hash = NULL;
1576 }
1577 #endif
1578 
1579 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1580 {
1581 	struct mm_slot *mm_slot;
1582 	struct hlist_head *bucket;
1583 	struct hlist_node *node;
1584 
1585 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1586 				% MM_SLOTS_HASH_HEADS];
1587 	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1588 		if (mm == mm_slot->mm)
1589 			return mm_slot;
1590 	}
1591 	return NULL;
1592 }
1593 
1594 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1595 				    struct mm_slot *mm_slot)
1596 {
1597 	struct hlist_head *bucket;
1598 
1599 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1600 				% MM_SLOTS_HASH_HEADS];
1601 	mm_slot->mm = mm;
1602 	hlist_add_head(&mm_slot->hash, bucket);
1603 }
1604 
1605 static inline int khugepaged_test_exit(struct mm_struct *mm)
1606 {
1607 	return atomic_read(&mm->mm_users) == 0;
1608 }
1609 
1610 int __khugepaged_enter(struct mm_struct *mm)
1611 {
1612 	struct mm_slot *mm_slot;
1613 	int wakeup;
1614 
1615 	mm_slot = alloc_mm_slot();
1616 	if (!mm_slot)
1617 		return -ENOMEM;
1618 
1619 	/* __khugepaged_exit() must not run from under us */
1620 	VM_BUG_ON(khugepaged_test_exit(mm));
1621 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1622 		free_mm_slot(mm_slot);
1623 		return 0;
1624 	}
1625 
1626 	spin_lock(&khugepaged_mm_lock);
1627 	insert_to_mm_slots_hash(mm, mm_slot);
1628 	/*
1629 	 * Insert just behind the scanning cursor, to let the area settle
1630 	 * down a little.
1631 	 */
1632 	wakeup = list_empty(&khugepaged_scan.mm_head);
1633 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1634 	spin_unlock(&khugepaged_mm_lock);
1635 
1636 	atomic_inc(&mm->mm_count);
1637 	if (wakeup)
1638 		wake_up_interruptible(&khugepaged_wait);
1639 
1640 	return 0;
1641 }
1642 
1643 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1644 {
1645 	unsigned long hstart, hend;
1646 	if (!vma->anon_vma)
1647 		/*
1648 		 * Not yet faulted in so we will register later in the
1649 		 * page fault if needed.
1650 		 */
1651 		return 0;
1652 	if (vma->vm_ops)
1653 		/* khugepaged not yet working on file or special mappings */
1654 		return 0;
1655 	/*
1656 	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1657 	 * true too, verify it here.
1658 	 */
1659 	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1660 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1661 	hend = vma->vm_end & HPAGE_PMD_MASK;
1662 	if (hstart < hend)
1663 		return khugepaged_enter(vma);
1664 	return 0;
1665 }
1666 
1667 void __khugepaged_exit(struct mm_struct *mm)
1668 {
1669 	struct mm_slot *mm_slot;
1670 	int free = 0;
1671 
1672 	spin_lock(&khugepaged_mm_lock);
1673 	mm_slot = get_mm_slot(mm);
1674 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1675 		hlist_del(&mm_slot->hash);
1676 		list_del(&mm_slot->mm_node);
1677 		free = 1;
1678 	}
1679 	spin_unlock(&khugepaged_mm_lock);
1680 
1681 	if (free) {
1682 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1683 		free_mm_slot(mm_slot);
1684 		mmdrop(mm);
1685 	} else if (mm_slot) {
1686 		/*
1687 		 * This is required to serialize against
1688 		 * khugepaged_test_exit() (which is guaranteed to run
1689 		 * under mmap sem read mode). Stop here (after we
1690 		 * return all pagetables will be destroyed) until
1691 		 * khugepaged has finished working on the pagetables
1692 		 * under the mmap_sem.
1693 		 */
1694 		down_write(&mm->mmap_sem);
1695 		up_write(&mm->mmap_sem);
1696 	}
1697 }
1698 
1699 static void release_pte_page(struct page *page)
1700 {
1701 	/* 0 stands for page_is_file_cache(page) == false */
1702 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1703 	unlock_page(page);
1704 	putback_lru_page(page);
1705 }
1706 
1707 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1708 {
1709 	while (--_pte >= pte) {
1710 		pte_t pteval = *_pte;
1711 		if (!pte_none(pteval))
1712 			release_pte_page(pte_page(pteval));
1713 	}
1714 }
1715 
1716 static void release_all_pte_pages(pte_t *pte)
1717 {
1718 	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1719 }
1720 
1721 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1722 					unsigned long address,
1723 					pte_t *pte)
1724 {
1725 	struct page *page;
1726 	pte_t *_pte;
1727 	int referenced = 0, isolated = 0, none = 0;
1728 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1729 	     _pte++, address += PAGE_SIZE) {
1730 		pte_t pteval = *_pte;
1731 		if (pte_none(pteval)) {
1732 			if (++none <= khugepaged_max_ptes_none)
1733 				continue;
1734 			else {
1735 				release_pte_pages(pte, _pte);
1736 				goto out;
1737 			}
1738 		}
1739 		if (!pte_present(pteval) || !pte_write(pteval)) {
1740 			release_pte_pages(pte, _pte);
1741 			goto out;
1742 		}
1743 		page = vm_normal_page(vma, address, pteval);
1744 		if (unlikely(!page)) {
1745 			release_pte_pages(pte, _pte);
1746 			goto out;
1747 		}
1748 		VM_BUG_ON(PageCompound(page));
1749 		BUG_ON(!PageAnon(page));
1750 		VM_BUG_ON(!PageSwapBacked(page));
1751 
1752 		/* cannot use mapcount: can't collapse if there's a gup pin */
1753 		if (page_count(page) != 1) {
1754 			release_pte_pages(pte, _pte);
1755 			goto out;
1756 		}
1757 		/*
1758 		 * We can do it before isolate_lru_page because the
1759 		 * page can't be freed from under us. NOTE: PG_lock
1760 		 * is needed to serialize against split_huge_page
1761 		 * when invoked from the VM.
1762 		 */
1763 		if (!trylock_page(page)) {
1764 			release_pte_pages(pte, _pte);
1765 			goto out;
1766 		}
1767 		/*
1768 		 * Isolate the page to avoid collapsing an hugepage
1769 		 * currently in use by the VM.
1770 		 */
1771 		if (isolate_lru_page(page)) {
1772 			unlock_page(page);
1773 			release_pte_pages(pte, _pte);
1774 			goto out;
1775 		}
1776 		/* 0 stands for page_is_file_cache(page) == false */
1777 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1778 		VM_BUG_ON(!PageLocked(page));
1779 		VM_BUG_ON(PageLRU(page));
1780 
1781 		/* If there is no mapped pte young don't collapse the page */
1782 		if (pte_young(pteval) || PageReferenced(page) ||
1783 		    mmu_notifier_test_young(vma->vm_mm, address))
1784 			referenced = 1;
1785 	}
1786 	if (unlikely(!referenced))
1787 		release_all_pte_pages(pte);
1788 	else
1789 		isolated = 1;
1790 out:
1791 	return isolated;
1792 }
1793 
1794 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1795 				      struct vm_area_struct *vma,
1796 				      unsigned long address,
1797 				      spinlock_t *ptl)
1798 {
1799 	pte_t *_pte;
1800 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1801 		pte_t pteval = *_pte;
1802 		struct page *src_page;
1803 
1804 		if (pte_none(pteval)) {
1805 			clear_user_highpage(page, address);
1806 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1807 		} else {
1808 			src_page = pte_page(pteval);
1809 			copy_user_highpage(page, src_page, address, vma);
1810 			VM_BUG_ON(page_mapcount(src_page) != 1);
1811 			VM_BUG_ON(page_count(src_page) != 2);
1812 			release_pte_page(src_page);
1813 			/*
1814 			 * ptl mostly unnecessary, but preempt has to
1815 			 * be disabled to update the per-cpu stats
1816 			 * inside page_remove_rmap().
1817 			 */
1818 			spin_lock(ptl);
1819 			/*
1820 			 * paravirt calls inside pte_clear here are
1821 			 * superfluous.
1822 			 */
1823 			pte_clear(vma->vm_mm, address, _pte);
1824 			page_remove_rmap(src_page);
1825 			spin_unlock(ptl);
1826 			free_page_and_swap_cache(src_page);
1827 		}
1828 
1829 		address += PAGE_SIZE;
1830 		page++;
1831 	}
1832 }
1833 
1834 static void collapse_huge_page(struct mm_struct *mm,
1835 			       unsigned long address,
1836 			       struct page **hpage,
1837 			       struct vm_area_struct *vma,
1838 			       int node)
1839 {
1840 	pgd_t *pgd;
1841 	pud_t *pud;
1842 	pmd_t *pmd, _pmd;
1843 	pte_t *pte;
1844 	pgtable_t pgtable;
1845 	struct page *new_page;
1846 	spinlock_t *ptl;
1847 	int isolated;
1848 	unsigned long hstart, hend;
1849 
1850 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1851 #ifndef CONFIG_NUMA
1852 	up_read(&mm->mmap_sem);
1853 	VM_BUG_ON(!*hpage);
1854 	new_page = *hpage;
1855 #else
1856 	VM_BUG_ON(*hpage);
1857 	/*
1858 	 * Allocate the page while the vma is still valid and under
1859 	 * the mmap_sem read mode so there is no memory allocation
1860 	 * later when we take the mmap_sem in write mode. This is more
1861 	 * friendly behavior (OTOH it may actually hide bugs) to
1862 	 * filesystems in userland with daemons allocating memory in
1863 	 * the userland I/O paths.  Allocating memory with the
1864 	 * mmap_sem in read mode is good idea also to allow greater
1865 	 * scalability.
1866 	 */
1867 	new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1868 				      node, __GFP_OTHER_NODE);
1869 
1870 	/*
1871 	 * After allocating the hugepage, release the mmap_sem read lock in
1872 	 * preparation for taking it in write mode.
1873 	 */
1874 	up_read(&mm->mmap_sem);
1875 	if (unlikely(!new_page)) {
1876 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1877 		*hpage = ERR_PTR(-ENOMEM);
1878 		return;
1879 	}
1880 #endif
1881 
1882 	count_vm_event(THP_COLLAPSE_ALLOC);
1883 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1884 #ifdef CONFIG_NUMA
1885 		put_page(new_page);
1886 #endif
1887 		return;
1888 	}
1889 
1890 	/*
1891 	 * Prevent all access to pagetables with the exception of
1892 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1893 	 * handled by the anon_vma lock + PG_lock.
1894 	 */
1895 	down_write(&mm->mmap_sem);
1896 	if (unlikely(khugepaged_test_exit(mm)))
1897 		goto out;
1898 
1899 	vma = find_vma(mm, address);
1900 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1901 	hend = vma->vm_end & HPAGE_PMD_MASK;
1902 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1903 		goto out;
1904 
1905 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1906 	    (vma->vm_flags & VM_NOHUGEPAGE))
1907 		goto out;
1908 
1909 	if (!vma->anon_vma || vma->vm_ops)
1910 		goto out;
1911 	if (is_vma_temporary_stack(vma))
1912 		goto out;
1913 	/*
1914 	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1915 	 * true too, verify it here.
1916 	 */
1917 	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1918 
1919 	pgd = pgd_offset(mm, address);
1920 	if (!pgd_present(*pgd))
1921 		goto out;
1922 
1923 	pud = pud_offset(pgd, address);
1924 	if (!pud_present(*pud))
1925 		goto out;
1926 
1927 	pmd = pmd_offset(pud, address);
1928 	/* pmd can't go away or become huge under us */
1929 	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1930 		goto out;
1931 
1932 	anon_vma_lock(vma->anon_vma);
1933 
1934 	pte = pte_offset_map(pmd, address);
1935 	ptl = pte_lockptr(mm, pmd);
1936 
1937 	spin_lock(&mm->page_table_lock); /* probably unnecessary */
1938 	/*
1939 	 * After this gup_fast can't run anymore. This also removes
1940 	 * any huge TLB entry from the CPU so we won't allow
1941 	 * huge and small TLB entries for the same virtual address
1942 	 * to avoid the risk of CPU bugs in that area.
1943 	 */
1944 	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1945 	spin_unlock(&mm->page_table_lock);
1946 
1947 	spin_lock(ptl);
1948 	isolated = __collapse_huge_page_isolate(vma, address, pte);
1949 	spin_unlock(ptl);
1950 
1951 	if (unlikely(!isolated)) {
1952 		pte_unmap(pte);
1953 		spin_lock(&mm->page_table_lock);
1954 		BUG_ON(!pmd_none(*pmd));
1955 		set_pmd_at(mm, address, pmd, _pmd);
1956 		spin_unlock(&mm->page_table_lock);
1957 		anon_vma_unlock(vma->anon_vma);
1958 		goto out;
1959 	}
1960 
1961 	/*
1962 	 * All pages are isolated and locked so anon_vma rmap
1963 	 * can't run anymore.
1964 	 */
1965 	anon_vma_unlock(vma->anon_vma);
1966 
1967 	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1968 	pte_unmap(pte);
1969 	__SetPageUptodate(new_page);
1970 	pgtable = pmd_pgtable(_pmd);
1971 	VM_BUG_ON(page_count(pgtable) != 1);
1972 	VM_BUG_ON(page_mapcount(pgtable) != 0);
1973 
1974 	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1975 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1976 	_pmd = pmd_mkhuge(_pmd);
1977 
1978 	/*
1979 	 * spin_lock() below is not the equivalent of smp_wmb(), so
1980 	 * this is needed to avoid the copy_huge_page writes to become
1981 	 * visible after the set_pmd_at() write.
1982 	 */
1983 	smp_wmb();
1984 
1985 	spin_lock(&mm->page_table_lock);
1986 	BUG_ON(!pmd_none(*pmd));
1987 	page_add_new_anon_rmap(new_page, vma, address);
1988 	set_pmd_at(mm, address, pmd, _pmd);
1989 	update_mmu_cache(vma, address, _pmd);
1990 	prepare_pmd_huge_pte(pgtable, mm);
1991 	mm->nr_ptes--;
1992 	spin_unlock(&mm->page_table_lock);
1993 
1994 #ifndef CONFIG_NUMA
1995 	*hpage = NULL;
1996 #endif
1997 	khugepaged_pages_collapsed++;
1998 out_up_write:
1999 	up_write(&mm->mmap_sem);
2000 	return;
2001 
2002 out:
2003 	mem_cgroup_uncharge_page(new_page);
2004 #ifdef CONFIG_NUMA
2005 	put_page(new_page);
2006 #endif
2007 	goto out_up_write;
2008 }
2009 
2010 static int khugepaged_scan_pmd(struct mm_struct *mm,
2011 			       struct vm_area_struct *vma,
2012 			       unsigned long address,
2013 			       struct page **hpage)
2014 {
2015 	pgd_t *pgd;
2016 	pud_t *pud;
2017 	pmd_t *pmd;
2018 	pte_t *pte, *_pte;
2019 	int ret = 0, referenced = 0, none = 0;
2020 	struct page *page;
2021 	unsigned long _address;
2022 	spinlock_t *ptl;
2023 	int node = -1;
2024 
2025 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2026 
2027 	pgd = pgd_offset(mm, address);
2028 	if (!pgd_present(*pgd))
2029 		goto out;
2030 
2031 	pud = pud_offset(pgd, address);
2032 	if (!pud_present(*pud))
2033 		goto out;
2034 
2035 	pmd = pmd_offset(pud, address);
2036 	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2037 		goto out;
2038 
2039 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2040 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2041 	     _pte++, _address += PAGE_SIZE) {
2042 		pte_t pteval = *_pte;
2043 		if (pte_none(pteval)) {
2044 			if (++none <= khugepaged_max_ptes_none)
2045 				continue;
2046 			else
2047 				goto out_unmap;
2048 		}
2049 		if (!pte_present(pteval) || !pte_write(pteval))
2050 			goto out_unmap;
2051 		page = vm_normal_page(vma, _address, pteval);
2052 		if (unlikely(!page))
2053 			goto out_unmap;
2054 		/*
2055 		 * Chose the node of the first page. This could
2056 		 * be more sophisticated and look at more pages,
2057 		 * but isn't for now.
2058 		 */
2059 		if (node == -1)
2060 			node = page_to_nid(page);
2061 		VM_BUG_ON(PageCompound(page));
2062 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2063 			goto out_unmap;
2064 		/* cannot use mapcount: can't collapse if there's a gup pin */
2065 		if (page_count(page) != 1)
2066 			goto out_unmap;
2067 		if (pte_young(pteval) || PageReferenced(page) ||
2068 		    mmu_notifier_test_young(vma->vm_mm, address))
2069 			referenced = 1;
2070 	}
2071 	if (referenced)
2072 		ret = 1;
2073 out_unmap:
2074 	pte_unmap_unlock(pte, ptl);
2075 	if (ret)
2076 		/* collapse_huge_page will return with the mmap_sem released */
2077 		collapse_huge_page(mm, address, hpage, vma, node);
2078 out:
2079 	return ret;
2080 }
2081 
2082 static void collect_mm_slot(struct mm_slot *mm_slot)
2083 {
2084 	struct mm_struct *mm = mm_slot->mm;
2085 
2086 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2087 
2088 	if (khugepaged_test_exit(mm)) {
2089 		/* free mm_slot */
2090 		hlist_del(&mm_slot->hash);
2091 		list_del(&mm_slot->mm_node);
2092 
2093 		/*
2094 		 * Not strictly needed because the mm exited already.
2095 		 *
2096 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2097 		 */
2098 
2099 		/* khugepaged_mm_lock actually not necessary for the below */
2100 		free_mm_slot(mm_slot);
2101 		mmdrop(mm);
2102 	}
2103 }
2104 
2105 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2106 					    struct page **hpage)
2107 	__releases(&khugepaged_mm_lock)
2108 	__acquires(&khugepaged_mm_lock)
2109 {
2110 	struct mm_slot *mm_slot;
2111 	struct mm_struct *mm;
2112 	struct vm_area_struct *vma;
2113 	int progress = 0;
2114 
2115 	VM_BUG_ON(!pages);
2116 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2117 
2118 	if (khugepaged_scan.mm_slot)
2119 		mm_slot = khugepaged_scan.mm_slot;
2120 	else {
2121 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2122 				     struct mm_slot, mm_node);
2123 		khugepaged_scan.address = 0;
2124 		khugepaged_scan.mm_slot = mm_slot;
2125 	}
2126 	spin_unlock(&khugepaged_mm_lock);
2127 
2128 	mm = mm_slot->mm;
2129 	down_read(&mm->mmap_sem);
2130 	if (unlikely(khugepaged_test_exit(mm)))
2131 		vma = NULL;
2132 	else
2133 		vma = find_vma(mm, khugepaged_scan.address);
2134 
2135 	progress++;
2136 	for (; vma; vma = vma->vm_next) {
2137 		unsigned long hstart, hend;
2138 
2139 		cond_resched();
2140 		if (unlikely(khugepaged_test_exit(mm))) {
2141 			progress++;
2142 			break;
2143 		}
2144 
2145 		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2146 		     !khugepaged_always()) ||
2147 		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2148 		skip:
2149 			progress++;
2150 			continue;
2151 		}
2152 		if (!vma->anon_vma || vma->vm_ops)
2153 			goto skip;
2154 		if (is_vma_temporary_stack(vma))
2155 			goto skip;
2156 		/*
2157 		 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2158 		 * must be true too, verify it here.
2159 		 */
2160 		VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2161 			  vma->vm_flags & VM_NO_THP);
2162 
2163 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2164 		hend = vma->vm_end & HPAGE_PMD_MASK;
2165 		if (hstart >= hend)
2166 			goto skip;
2167 		if (khugepaged_scan.address > hend)
2168 			goto skip;
2169 		if (khugepaged_scan.address < hstart)
2170 			khugepaged_scan.address = hstart;
2171 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2172 
2173 		while (khugepaged_scan.address < hend) {
2174 			int ret;
2175 			cond_resched();
2176 			if (unlikely(khugepaged_test_exit(mm)))
2177 				goto breakouterloop;
2178 
2179 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2180 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2181 				  hend);
2182 			ret = khugepaged_scan_pmd(mm, vma,
2183 						  khugepaged_scan.address,
2184 						  hpage);
2185 			/* move to next address */
2186 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2187 			progress += HPAGE_PMD_NR;
2188 			if (ret)
2189 				/* we released mmap_sem so break loop */
2190 				goto breakouterloop_mmap_sem;
2191 			if (progress >= pages)
2192 				goto breakouterloop;
2193 		}
2194 	}
2195 breakouterloop:
2196 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2197 breakouterloop_mmap_sem:
2198 
2199 	spin_lock(&khugepaged_mm_lock);
2200 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2201 	/*
2202 	 * Release the current mm_slot if this mm is about to die, or
2203 	 * if we scanned all vmas of this mm.
2204 	 */
2205 	if (khugepaged_test_exit(mm) || !vma) {
2206 		/*
2207 		 * Make sure that if mm_users is reaching zero while
2208 		 * khugepaged runs here, khugepaged_exit will find
2209 		 * mm_slot not pointing to the exiting mm.
2210 		 */
2211 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2212 			khugepaged_scan.mm_slot = list_entry(
2213 				mm_slot->mm_node.next,
2214 				struct mm_slot, mm_node);
2215 			khugepaged_scan.address = 0;
2216 		} else {
2217 			khugepaged_scan.mm_slot = NULL;
2218 			khugepaged_full_scans++;
2219 		}
2220 
2221 		collect_mm_slot(mm_slot);
2222 	}
2223 
2224 	return progress;
2225 }
2226 
2227 static int khugepaged_has_work(void)
2228 {
2229 	return !list_empty(&khugepaged_scan.mm_head) &&
2230 		khugepaged_enabled();
2231 }
2232 
2233 static int khugepaged_wait_event(void)
2234 {
2235 	return !list_empty(&khugepaged_scan.mm_head) ||
2236 		!khugepaged_enabled();
2237 }
2238 
2239 static void khugepaged_do_scan(struct page **hpage)
2240 {
2241 	unsigned int progress = 0, pass_through_head = 0;
2242 	unsigned int pages = khugepaged_pages_to_scan;
2243 
2244 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2245 
2246 	while (progress < pages) {
2247 		cond_resched();
2248 
2249 #ifndef CONFIG_NUMA
2250 		if (!*hpage) {
2251 			*hpage = alloc_hugepage(khugepaged_defrag());
2252 			if (unlikely(!*hpage)) {
2253 				count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2254 				break;
2255 			}
2256 			count_vm_event(THP_COLLAPSE_ALLOC);
2257 		}
2258 #else
2259 		if (IS_ERR(*hpage))
2260 			break;
2261 #endif
2262 
2263 		if (unlikely(kthread_should_stop() || freezing(current)))
2264 			break;
2265 
2266 		spin_lock(&khugepaged_mm_lock);
2267 		if (!khugepaged_scan.mm_slot)
2268 			pass_through_head++;
2269 		if (khugepaged_has_work() &&
2270 		    pass_through_head < 2)
2271 			progress += khugepaged_scan_mm_slot(pages - progress,
2272 							    hpage);
2273 		else
2274 			progress = pages;
2275 		spin_unlock(&khugepaged_mm_lock);
2276 	}
2277 }
2278 
2279 static void khugepaged_alloc_sleep(void)
2280 {
2281 	wait_event_freezable_timeout(khugepaged_wait, false,
2282 			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2283 }
2284 
2285 #ifndef CONFIG_NUMA
2286 static struct page *khugepaged_alloc_hugepage(void)
2287 {
2288 	struct page *hpage;
2289 
2290 	do {
2291 		hpage = alloc_hugepage(khugepaged_defrag());
2292 		if (!hpage) {
2293 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2294 			khugepaged_alloc_sleep();
2295 		} else
2296 			count_vm_event(THP_COLLAPSE_ALLOC);
2297 	} while (unlikely(!hpage) &&
2298 		 likely(khugepaged_enabled()));
2299 	return hpage;
2300 }
2301 #endif
2302 
2303 static void khugepaged_loop(void)
2304 {
2305 	struct page *hpage;
2306 
2307 #ifdef CONFIG_NUMA
2308 	hpage = NULL;
2309 #endif
2310 	while (likely(khugepaged_enabled())) {
2311 #ifndef CONFIG_NUMA
2312 		hpage = khugepaged_alloc_hugepage();
2313 		if (unlikely(!hpage))
2314 			break;
2315 #else
2316 		if (IS_ERR(hpage)) {
2317 			khugepaged_alloc_sleep();
2318 			hpage = NULL;
2319 		}
2320 #endif
2321 
2322 		khugepaged_do_scan(&hpage);
2323 #ifndef CONFIG_NUMA
2324 		if (hpage)
2325 			put_page(hpage);
2326 #endif
2327 		try_to_freeze();
2328 		if (unlikely(kthread_should_stop()))
2329 			break;
2330 		if (khugepaged_has_work()) {
2331 			if (!khugepaged_scan_sleep_millisecs)
2332 				continue;
2333 			wait_event_freezable_timeout(khugepaged_wait, false,
2334 			    msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2335 		} else if (khugepaged_enabled())
2336 			wait_event_freezable(khugepaged_wait,
2337 					     khugepaged_wait_event());
2338 	}
2339 }
2340 
2341 static int khugepaged(void *none)
2342 {
2343 	struct mm_slot *mm_slot;
2344 
2345 	set_freezable();
2346 	set_user_nice(current, 19);
2347 
2348 	/* serialize with start_khugepaged() */
2349 	mutex_lock(&khugepaged_mutex);
2350 
2351 	for (;;) {
2352 		mutex_unlock(&khugepaged_mutex);
2353 		VM_BUG_ON(khugepaged_thread != current);
2354 		khugepaged_loop();
2355 		VM_BUG_ON(khugepaged_thread != current);
2356 
2357 		mutex_lock(&khugepaged_mutex);
2358 		if (!khugepaged_enabled())
2359 			break;
2360 		if (unlikely(kthread_should_stop()))
2361 			break;
2362 	}
2363 
2364 	spin_lock(&khugepaged_mm_lock);
2365 	mm_slot = khugepaged_scan.mm_slot;
2366 	khugepaged_scan.mm_slot = NULL;
2367 	if (mm_slot)
2368 		collect_mm_slot(mm_slot);
2369 	spin_unlock(&khugepaged_mm_lock);
2370 
2371 	khugepaged_thread = NULL;
2372 	mutex_unlock(&khugepaged_mutex);
2373 
2374 	return 0;
2375 }
2376 
2377 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2378 {
2379 	struct page *page;
2380 
2381 	spin_lock(&mm->page_table_lock);
2382 	if (unlikely(!pmd_trans_huge(*pmd))) {
2383 		spin_unlock(&mm->page_table_lock);
2384 		return;
2385 	}
2386 	page = pmd_page(*pmd);
2387 	VM_BUG_ON(!page_count(page));
2388 	get_page(page);
2389 	spin_unlock(&mm->page_table_lock);
2390 
2391 	split_huge_page(page);
2392 
2393 	put_page(page);
2394 	BUG_ON(pmd_trans_huge(*pmd));
2395 }
2396 
2397 static void split_huge_page_address(struct mm_struct *mm,
2398 				    unsigned long address)
2399 {
2400 	pgd_t *pgd;
2401 	pud_t *pud;
2402 	pmd_t *pmd;
2403 
2404 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2405 
2406 	pgd = pgd_offset(mm, address);
2407 	if (!pgd_present(*pgd))
2408 		return;
2409 
2410 	pud = pud_offset(pgd, address);
2411 	if (!pud_present(*pud))
2412 		return;
2413 
2414 	pmd = pmd_offset(pud, address);
2415 	if (!pmd_present(*pmd))
2416 		return;
2417 	/*
2418 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2419 	 * materialize from under us.
2420 	 */
2421 	split_huge_page_pmd(mm, pmd);
2422 }
2423 
2424 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2425 			     unsigned long start,
2426 			     unsigned long end,
2427 			     long adjust_next)
2428 {
2429 	/*
2430 	 * If the new start address isn't hpage aligned and it could
2431 	 * previously contain an hugepage: check if we need to split
2432 	 * an huge pmd.
2433 	 */
2434 	if (start & ~HPAGE_PMD_MASK &&
2435 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2436 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2437 		split_huge_page_address(vma->vm_mm, start);
2438 
2439 	/*
2440 	 * If the new end address isn't hpage aligned and it could
2441 	 * previously contain an hugepage: check if we need to split
2442 	 * an huge pmd.
2443 	 */
2444 	if (end & ~HPAGE_PMD_MASK &&
2445 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2446 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2447 		split_huge_page_address(vma->vm_mm, end);
2448 
2449 	/*
2450 	 * If we're also updating the vma->vm_next->vm_start, if the new
2451 	 * vm_next->vm_start isn't page aligned and it could previously
2452 	 * contain an hugepage: check if we need to split an huge pmd.
2453 	 */
2454 	if (adjust_next > 0) {
2455 		struct vm_area_struct *next = vma->vm_next;
2456 		unsigned long nstart = next->vm_start;
2457 		nstart += adjust_next << PAGE_SHIFT;
2458 		if (nstart & ~HPAGE_PMD_MASK &&
2459 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2460 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2461 			split_huge_page_address(next->vm_mm, nstart);
2462 	}
2463 }
2464