xref: /openbmc/linux/mm/huge_memory.c (revision 6cda08a2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 
36 #include <asm/tlb.h>
37 #include <asm/pgalloc.h>
38 #include "internal.h"
39 
40 /*
41  * By default, transparent hugepage support is disabled in order to avoid
42  * risking an increased memory footprint for applications that are not
43  * guaranteed to benefit from it. When transparent hugepage support is
44  * enabled, it is for all mappings, and khugepaged scans all mappings.
45  * Defrag is invoked by khugepaged hugepage allocations and by page faults
46  * for all hugepage allocations.
47  */
48 unsigned long transparent_hugepage_flags __read_mostly =
49 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
50 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
51 #endif
52 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
53 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
54 #endif
55 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
58 
59 static struct shrinker deferred_split_shrinker;
60 
61 static atomic_t huge_zero_refcount;
62 struct page *huge_zero_page __read_mostly;
63 
64 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
65 {
66 	/* The addr is used to check if the vma size fits */
67 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
68 
69 	if (!transhuge_vma_suitable(vma, addr))
70 		return false;
71 	if (vma_is_anonymous(vma))
72 		return __transparent_hugepage_enabled(vma);
73 	if (vma_is_shmem(vma))
74 		return shmem_huge_enabled(vma);
75 
76 	return false;
77 }
78 
79 static struct page *get_huge_zero_page(void)
80 {
81 	struct page *zero_page;
82 retry:
83 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
84 		return READ_ONCE(huge_zero_page);
85 
86 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
87 			HPAGE_PMD_ORDER);
88 	if (!zero_page) {
89 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
90 		return NULL;
91 	}
92 	count_vm_event(THP_ZERO_PAGE_ALLOC);
93 	preempt_disable();
94 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
95 		preempt_enable();
96 		__free_pages(zero_page, compound_order(zero_page));
97 		goto retry;
98 	}
99 
100 	/* We take additional reference here. It will be put back by shrinker */
101 	atomic_set(&huge_zero_refcount, 2);
102 	preempt_enable();
103 	return READ_ONCE(huge_zero_page);
104 }
105 
106 static void put_huge_zero_page(void)
107 {
108 	/*
109 	 * Counter should never go to zero here. Only shrinker can put
110 	 * last reference.
111 	 */
112 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
113 }
114 
115 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
116 {
117 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 		return READ_ONCE(huge_zero_page);
119 
120 	if (!get_huge_zero_page())
121 		return NULL;
122 
123 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
124 		put_huge_zero_page();
125 
126 	return READ_ONCE(huge_zero_page);
127 }
128 
129 void mm_put_huge_zero_page(struct mm_struct *mm)
130 {
131 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
132 		put_huge_zero_page();
133 }
134 
135 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
136 					struct shrink_control *sc)
137 {
138 	/* we can free zero page only if last reference remains */
139 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
140 }
141 
142 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
143 				       struct shrink_control *sc)
144 {
145 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
146 		struct page *zero_page = xchg(&huge_zero_page, NULL);
147 		BUG_ON(zero_page == NULL);
148 		__free_pages(zero_page, compound_order(zero_page));
149 		return HPAGE_PMD_NR;
150 	}
151 
152 	return 0;
153 }
154 
155 static struct shrinker huge_zero_page_shrinker = {
156 	.count_objects = shrink_huge_zero_page_count,
157 	.scan_objects = shrink_huge_zero_page_scan,
158 	.seeks = DEFAULT_SEEKS,
159 };
160 
161 #ifdef CONFIG_SYSFS
162 static ssize_t enabled_show(struct kobject *kobj,
163 			    struct kobj_attribute *attr, char *buf)
164 {
165 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
166 		return sprintf(buf, "[always] madvise never\n");
167 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
168 		return sprintf(buf, "always [madvise] never\n");
169 	else
170 		return sprintf(buf, "always madvise [never]\n");
171 }
172 
173 static ssize_t enabled_store(struct kobject *kobj,
174 			     struct kobj_attribute *attr,
175 			     const char *buf, size_t count)
176 {
177 	ssize_t ret = count;
178 
179 	if (!memcmp("always", buf,
180 		    min(sizeof("always")-1, count))) {
181 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 	} else if (!memcmp("madvise", buf,
184 			   min(sizeof("madvise")-1, count))) {
185 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
186 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187 	} else if (!memcmp("never", buf,
188 			   min(sizeof("never")-1, count))) {
189 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
190 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
191 	} else
192 		ret = -EINVAL;
193 
194 	if (ret > 0) {
195 		int err = start_stop_khugepaged();
196 		if (err)
197 			ret = err;
198 	}
199 	return ret;
200 }
201 static struct kobj_attribute enabled_attr =
202 	__ATTR(enabled, 0644, enabled_show, enabled_store);
203 
204 ssize_t single_hugepage_flag_show(struct kobject *kobj,
205 				struct kobj_attribute *attr, char *buf,
206 				enum transparent_hugepage_flag flag)
207 {
208 	return sprintf(buf, "%d\n",
209 		       !!test_bit(flag, &transparent_hugepage_flags));
210 }
211 
212 ssize_t single_hugepage_flag_store(struct kobject *kobj,
213 				 struct kobj_attribute *attr,
214 				 const char *buf, size_t count,
215 				 enum transparent_hugepage_flag flag)
216 {
217 	unsigned long value;
218 	int ret;
219 
220 	ret = kstrtoul(buf, 10, &value);
221 	if (ret < 0)
222 		return ret;
223 	if (value > 1)
224 		return -EINVAL;
225 
226 	if (value)
227 		set_bit(flag, &transparent_hugepage_flags);
228 	else
229 		clear_bit(flag, &transparent_hugepage_flags);
230 
231 	return count;
232 }
233 
234 static ssize_t defrag_show(struct kobject *kobj,
235 			   struct kobj_attribute *attr, char *buf)
236 {
237 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
238 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
239 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
240 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
241 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
242 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
243 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
244 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
245 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
246 }
247 
248 static ssize_t defrag_store(struct kobject *kobj,
249 			    struct kobj_attribute *attr,
250 			    const char *buf, size_t count)
251 {
252 	if (!memcmp("always", buf,
253 		    min(sizeof("always")-1, count))) {
254 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
255 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
256 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
257 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
258 	} else if (!memcmp("defer+madvise", buf,
259 		    min(sizeof("defer+madvise")-1, count))) {
260 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
261 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
262 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
264 	} else if (!memcmp("defer", buf,
265 		    min(sizeof("defer")-1, count))) {
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
268 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
269 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
270 	} else if (!memcmp("madvise", buf,
271 			   min(sizeof("madvise")-1, count))) {
272 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
273 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
274 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
275 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
276 	} else if (!memcmp("never", buf,
277 			   min(sizeof("never")-1, count))) {
278 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
279 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
280 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
281 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
282 	} else
283 		return -EINVAL;
284 
285 	return count;
286 }
287 static struct kobj_attribute defrag_attr =
288 	__ATTR(defrag, 0644, defrag_show, defrag_store);
289 
290 static ssize_t use_zero_page_show(struct kobject *kobj,
291 		struct kobj_attribute *attr, char *buf)
292 {
293 	return single_hugepage_flag_show(kobj, attr, buf,
294 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
295 }
296 static ssize_t use_zero_page_store(struct kobject *kobj,
297 		struct kobj_attribute *attr, const char *buf, size_t count)
298 {
299 	return single_hugepage_flag_store(kobj, attr, buf, count,
300 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
301 }
302 static struct kobj_attribute use_zero_page_attr =
303 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
304 
305 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
306 		struct kobj_attribute *attr, char *buf)
307 {
308 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
309 }
310 static struct kobj_attribute hpage_pmd_size_attr =
311 	__ATTR_RO(hpage_pmd_size);
312 
313 #ifdef CONFIG_DEBUG_VM
314 static ssize_t debug_cow_show(struct kobject *kobj,
315 				struct kobj_attribute *attr, char *buf)
316 {
317 	return single_hugepage_flag_show(kobj, attr, buf,
318 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
319 }
320 static ssize_t debug_cow_store(struct kobject *kobj,
321 			       struct kobj_attribute *attr,
322 			       const char *buf, size_t count)
323 {
324 	return single_hugepage_flag_store(kobj, attr, buf, count,
325 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
326 }
327 static struct kobj_attribute debug_cow_attr =
328 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
329 #endif /* CONFIG_DEBUG_VM */
330 
331 static struct attribute *hugepage_attr[] = {
332 	&enabled_attr.attr,
333 	&defrag_attr.attr,
334 	&use_zero_page_attr.attr,
335 	&hpage_pmd_size_attr.attr,
336 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
337 	&shmem_enabled_attr.attr,
338 #endif
339 #ifdef CONFIG_DEBUG_VM
340 	&debug_cow_attr.attr,
341 #endif
342 	NULL,
343 };
344 
345 static const struct attribute_group hugepage_attr_group = {
346 	.attrs = hugepage_attr,
347 };
348 
349 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
350 {
351 	int err;
352 
353 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
354 	if (unlikely(!*hugepage_kobj)) {
355 		pr_err("failed to create transparent hugepage kobject\n");
356 		return -ENOMEM;
357 	}
358 
359 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
360 	if (err) {
361 		pr_err("failed to register transparent hugepage group\n");
362 		goto delete_obj;
363 	}
364 
365 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
366 	if (err) {
367 		pr_err("failed to register transparent hugepage group\n");
368 		goto remove_hp_group;
369 	}
370 
371 	return 0;
372 
373 remove_hp_group:
374 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
375 delete_obj:
376 	kobject_put(*hugepage_kobj);
377 	return err;
378 }
379 
380 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
381 {
382 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
383 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
384 	kobject_put(hugepage_kobj);
385 }
386 #else
387 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
388 {
389 	return 0;
390 }
391 
392 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
393 {
394 }
395 #endif /* CONFIG_SYSFS */
396 
397 static int __init hugepage_init(void)
398 {
399 	int err;
400 	struct kobject *hugepage_kobj;
401 
402 	if (!has_transparent_hugepage()) {
403 		transparent_hugepage_flags = 0;
404 		return -EINVAL;
405 	}
406 
407 	/*
408 	 * hugepages can't be allocated by the buddy allocator
409 	 */
410 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
411 	/*
412 	 * we use page->mapping and page->index in second tail page
413 	 * as list_head: assuming THP order >= 2
414 	 */
415 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
416 
417 	err = hugepage_init_sysfs(&hugepage_kobj);
418 	if (err)
419 		goto err_sysfs;
420 
421 	err = khugepaged_init();
422 	if (err)
423 		goto err_slab;
424 
425 	err = register_shrinker(&huge_zero_page_shrinker);
426 	if (err)
427 		goto err_hzp_shrinker;
428 	err = register_shrinker(&deferred_split_shrinker);
429 	if (err)
430 		goto err_split_shrinker;
431 
432 	/*
433 	 * By default disable transparent hugepages on smaller systems,
434 	 * where the extra memory used could hurt more than TLB overhead
435 	 * is likely to save.  The admin can still enable it through /sys.
436 	 */
437 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
438 		transparent_hugepage_flags = 0;
439 		return 0;
440 	}
441 
442 	err = start_stop_khugepaged();
443 	if (err)
444 		goto err_khugepaged;
445 
446 	return 0;
447 err_khugepaged:
448 	unregister_shrinker(&deferred_split_shrinker);
449 err_split_shrinker:
450 	unregister_shrinker(&huge_zero_page_shrinker);
451 err_hzp_shrinker:
452 	khugepaged_destroy();
453 err_slab:
454 	hugepage_exit_sysfs(hugepage_kobj);
455 err_sysfs:
456 	return err;
457 }
458 subsys_initcall(hugepage_init);
459 
460 static int __init setup_transparent_hugepage(char *str)
461 {
462 	int ret = 0;
463 	if (!str)
464 		goto out;
465 	if (!strcmp(str, "always")) {
466 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
467 			&transparent_hugepage_flags);
468 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
469 			  &transparent_hugepage_flags);
470 		ret = 1;
471 	} else if (!strcmp(str, "madvise")) {
472 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
473 			  &transparent_hugepage_flags);
474 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
475 			&transparent_hugepage_flags);
476 		ret = 1;
477 	} else if (!strcmp(str, "never")) {
478 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
479 			  &transparent_hugepage_flags);
480 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
481 			  &transparent_hugepage_flags);
482 		ret = 1;
483 	}
484 out:
485 	if (!ret)
486 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
487 	return ret;
488 }
489 __setup("transparent_hugepage=", setup_transparent_hugepage);
490 
491 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
492 {
493 	if (likely(vma->vm_flags & VM_WRITE))
494 		pmd = pmd_mkwrite(pmd);
495 	return pmd;
496 }
497 
498 static inline struct list_head *page_deferred_list(struct page *page)
499 {
500 	/* ->lru in the tail pages is occupied by compound_head. */
501 	return &page[2].deferred_list;
502 }
503 
504 void prep_transhuge_page(struct page *page)
505 {
506 	/*
507 	 * we use page->mapping and page->indexlru in second tail page
508 	 * as list_head: assuming THP order >= 2
509 	 */
510 
511 	INIT_LIST_HEAD(page_deferred_list(page));
512 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
513 }
514 
515 static unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
516 		loff_t off, unsigned long flags, unsigned long size)
517 {
518 	unsigned long addr;
519 	loff_t off_end = off + len;
520 	loff_t off_align = round_up(off, size);
521 	unsigned long len_pad;
522 
523 	if (off_end <= off_align || (off_end - off_align) < size)
524 		return 0;
525 
526 	len_pad = len + size;
527 	if (len_pad < len || (off + len_pad) < off)
528 		return 0;
529 
530 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
531 					      off >> PAGE_SHIFT, flags);
532 	if (IS_ERR_VALUE(addr))
533 		return 0;
534 
535 	addr += (off - addr) & (size - 1);
536 	return addr;
537 }
538 
539 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
540 		unsigned long len, unsigned long pgoff, unsigned long flags)
541 {
542 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
543 
544 	if (addr)
545 		goto out;
546 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
547 		goto out;
548 
549 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
550 	if (addr)
551 		return addr;
552 
553  out:
554 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
555 }
556 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
557 
558 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
559 			struct page *page, gfp_t gfp)
560 {
561 	struct vm_area_struct *vma = vmf->vma;
562 	struct mem_cgroup *memcg;
563 	pgtable_t pgtable;
564 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
565 	vm_fault_t ret = 0;
566 
567 	VM_BUG_ON_PAGE(!PageCompound(page), page);
568 
569 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
570 		put_page(page);
571 		count_vm_event(THP_FAULT_FALLBACK);
572 		return VM_FAULT_FALLBACK;
573 	}
574 
575 	pgtable = pte_alloc_one(vma->vm_mm);
576 	if (unlikely(!pgtable)) {
577 		ret = VM_FAULT_OOM;
578 		goto release;
579 	}
580 
581 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
582 	/*
583 	 * The memory barrier inside __SetPageUptodate makes sure that
584 	 * clear_huge_page writes become visible before the set_pmd_at()
585 	 * write.
586 	 */
587 	__SetPageUptodate(page);
588 
589 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
590 	if (unlikely(!pmd_none(*vmf->pmd))) {
591 		goto unlock_release;
592 	} else {
593 		pmd_t entry;
594 
595 		ret = check_stable_address_space(vma->vm_mm);
596 		if (ret)
597 			goto unlock_release;
598 
599 		/* Deliver the page fault to userland */
600 		if (userfaultfd_missing(vma)) {
601 			vm_fault_t ret2;
602 
603 			spin_unlock(vmf->ptl);
604 			mem_cgroup_cancel_charge(page, memcg, true);
605 			put_page(page);
606 			pte_free(vma->vm_mm, pgtable);
607 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
608 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
609 			return ret2;
610 		}
611 
612 		entry = mk_huge_pmd(page, vma->vm_page_prot);
613 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
614 		page_add_new_anon_rmap(page, vma, haddr, true);
615 		mem_cgroup_commit_charge(page, memcg, false, true);
616 		lru_cache_add_active_or_unevictable(page, vma);
617 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
618 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
619 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
620 		mm_inc_nr_ptes(vma->vm_mm);
621 		spin_unlock(vmf->ptl);
622 		count_vm_event(THP_FAULT_ALLOC);
623 		count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
624 	}
625 
626 	return 0;
627 unlock_release:
628 	spin_unlock(vmf->ptl);
629 release:
630 	if (pgtable)
631 		pte_free(vma->vm_mm, pgtable);
632 	mem_cgroup_cancel_charge(page, memcg, true);
633 	put_page(page);
634 	return ret;
635 
636 }
637 
638 /*
639  * always: directly stall for all thp allocations
640  * defer: wake kswapd and fail if not immediately available
641  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
642  *		  fail if not immediately available
643  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
644  *	    available
645  * never: never stall for any thp allocation
646  */
647 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
648 {
649 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
650 
651 	/* Always do synchronous compaction */
652 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
653 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
654 
655 	/* Kick kcompactd and fail quickly */
656 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
657 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
658 
659 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
660 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
661 		return GFP_TRANSHUGE_LIGHT |
662 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
663 					__GFP_KSWAPD_RECLAIM);
664 
665 	/* Only do synchronous compaction if madvised */
666 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
667 		return GFP_TRANSHUGE_LIGHT |
668 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
669 
670 	return GFP_TRANSHUGE_LIGHT;
671 }
672 
673 /* Caller must hold page table lock. */
674 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
675 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
676 		struct page *zero_page)
677 {
678 	pmd_t entry;
679 	if (!pmd_none(*pmd))
680 		return false;
681 	entry = mk_pmd(zero_page, vma->vm_page_prot);
682 	entry = pmd_mkhuge(entry);
683 	if (pgtable)
684 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
685 	set_pmd_at(mm, haddr, pmd, entry);
686 	mm_inc_nr_ptes(mm);
687 	return true;
688 }
689 
690 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
691 {
692 	struct vm_area_struct *vma = vmf->vma;
693 	gfp_t gfp;
694 	struct page *page;
695 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
696 
697 	if (!transhuge_vma_suitable(vma, haddr))
698 		return VM_FAULT_FALLBACK;
699 	if (unlikely(anon_vma_prepare(vma)))
700 		return VM_FAULT_OOM;
701 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
702 		return VM_FAULT_OOM;
703 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
704 			!mm_forbids_zeropage(vma->vm_mm) &&
705 			transparent_hugepage_use_zero_page()) {
706 		pgtable_t pgtable;
707 		struct page *zero_page;
708 		bool set;
709 		vm_fault_t ret;
710 		pgtable = pte_alloc_one(vma->vm_mm);
711 		if (unlikely(!pgtable))
712 			return VM_FAULT_OOM;
713 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
714 		if (unlikely(!zero_page)) {
715 			pte_free(vma->vm_mm, pgtable);
716 			count_vm_event(THP_FAULT_FALLBACK);
717 			return VM_FAULT_FALLBACK;
718 		}
719 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
720 		ret = 0;
721 		set = false;
722 		if (pmd_none(*vmf->pmd)) {
723 			ret = check_stable_address_space(vma->vm_mm);
724 			if (ret) {
725 				spin_unlock(vmf->ptl);
726 			} else if (userfaultfd_missing(vma)) {
727 				spin_unlock(vmf->ptl);
728 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
729 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
730 			} else {
731 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
732 						   haddr, vmf->pmd, zero_page);
733 				spin_unlock(vmf->ptl);
734 				set = true;
735 			}
736 		} else
737 			spin_unlock(vmf->ptl);
738 		if (!set)
739 			pte_free(vma->vm_mm, pgtable);
740 		return ret;
741 	}
742 	gfp = alloc_hugepage_direct_gfpmask(vma);
743 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
744 	if (unlikely(!page)) {
745 		count_vm_event(THP_FAULT_FALLBACK);
746 		return VM_FAULT_FALLBACK;
747 	}
748 	prep_transhuge_page(page);
749 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
750 }
751 
752 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
753 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
754 		pgtable_t pgtable)
755 {
756 	struct mm_struct *mm = vma->vm_mm;
757 	pmd_t entry;
758 	spinlock_t *ptl;
759 
760 	ptl = pmd_lock(mm, pmd);
761 	if (!pmd_none(*pmd)) {
762 		if (write) {
763 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
764 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
765 				goto out_unlock;
766 			}
767 			entry = pmd_mkyoung(*pmd);
768 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
769 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
770 				update_mmu_cache_pmd(vma, addr, pmd);
771 		}
772 
773 		goto out_unlock;
774 	}
775 
776 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
777 	if (pfn_t_devmap(pfn))
778 		entry = pmd_mkdevmap(entry);
779 	if (write) {
780 		entry = pmd_mkyoung(pmd_mkdirty(entry));
781 		entry = maybe_pmd_mkwrite(entry, vma);
782 	}
783 
784 	if (pgtable) {
785 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
786 		mm_inc_nr_ptes(mm);
787 		pgtable = NULL;
788 	}
789 
790 	set_pmd_at(mm, addr, pmd, entry);
791 	update_mmu_cache_pmd(vma, addr, pmd);
792 
793 out_unlock:
794 	spin_unlock(ptl);
795 	if (pgtable)
796 		pte_free(mm, pgtable);
797 }
798 
799 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
800 {
801 	unsigned long addr = vmf->address & PMD_MASK;
802 	struct vm_area_struct *vma = vmf->vma;
803 	pgprot_t pgprot = vma->vm_page_prot;
804 	pgtable_t pgtable = NULL;
805 
806 	/*
807 	 * If we had pmd_special, we could avoid all these restrictions,
808 	 * but we need to be consistent with PTEs and architectures that
809 	 * can't support a 'special' bit.
810 	 */
811 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
812 			!pfn_t_devmap(pfn));
813 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
814 						(VM_PFNMAP|VM_MIXEDMAP));
815 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
816 
817 	if (addr < vma->vm_start || addr >= vma->vm_end)
818 		return VM_FAULT_SIGBUS;
819 
820 	if (arch_needs_pgtable_deposit()) {
821 		pgtable = pte_alloc_one(vma->vm_mm);
822 		if (!pgtable)
823 			return VM_FAULT_OOM;
824 	}
825 
826 	track_pfn_insert(vma, &pgprot, pfn);
827 
828 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
829 	return VM_FAULT_NOPAGE;
830 }
831 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
832 
833 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
834 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
835 {
836 	if (likely(vma->vm_flags & VM_WRITE))
837 		pud = pud_mkwrite(pud);
838 	return pud;
839 }
840 
841 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
842 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
843 {
844 	struct mm_struct *mm = vma->vm_mm;
845 	pud_t entry;
846 	spinlock_t *ptl;
847 
848 	ptl = pud_lock(mm, pud);
849 	if (!pud_none(*pud)) {
850 		if (write) {
851 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
852 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
853 				goto out_unlock;
854 			}
855 			entry = pud_mkyoung(*pud);
856 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
857 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
858 				update_mmu_cache_pud(vma, addr, pud);
859 		}
860 		goto out_unlock;
861 	}
862 
863 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
864 	if (pfn_t_devmap(pfn))
865 		entry = pud_mkdevmap(entry);
866 	if (write) {
867 		entry = pud_mkyoung(pud_mkdirty(entry));
868 		entry = maybe_pud_mkwrite(entry, vma);
869 	}
870 	set_pud_at(mm, addr, pud, entry);
871 	update_mmu_cache_pud(vma, addr, pud);
872 
873 out_unlock:
874 	spin_unlock(ptl);
875 }
876 
877 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
878 {
879 	unsigned long addr = vmf->address & PUD_MASK;
880 	struct vm_area_struct *vma = vmf->vma;
881 	pgprot_t pgprot = vma->vm_page_prot;
882 
883 	/*
884 	 * If we had pud_special, we could avoid all these restrictions,
885 	 * but we need to be consistent with PTEs and architectures that
886 	 * can't support a 'special' bit.
887 	 */
888 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
889 			!pfn_t_devmap(pfn));
890 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
891 						(VM_PFNMAP|VM_MIXEDMAP));
892 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
893 
894 	if (addr < vma->vm_start || addr >= vma->vm_end)
895 		return VM_FAULT_SIGBUS;
896 
897 	track_pfn_insert(vma, &pgprot, pfn);
898 
899 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
900 	return VM_FAULT_NOPAGE;
901 }
902 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
903 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
904 
905 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
906 		pmd_t *pmd, int flags)
907 {
908 	pmd_t _pmd;
909 
910 	_pmd = pmd_mkyoung(*pmd);
911 	if (flags & FOLL_WRITE)
912 		_pmd = pmd_mkdirty(_pmd);
913 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
914 				pmd, _pmd, flags & FOLL_WRITE))
915 		update_mmu_cache_pmd(vma, addr, pmd);
916 }
917 
918 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
919 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
920 {
921 	unsigned long pfn = pmd_pfn(*pmd);
922 	struct mm_struct *mm = vma->vm_mm;
923 	struct page *page;
924 
925 	assert_spin_locked(pmd_lockptr(mm, pmd));
926 
927 	/*
928 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
929 	 * not be in this function with `flags & FOLL_COW` set.
930 	 */
931 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
932 
933 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
934 		return NULL;
935 
936 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
937 		/* pass */;
938 	else
939 		return NULL;
940 
941 	if (flags & FOLL_TOUCH)
942 		touch_pmd(vma, addr, pmd, flags);
943 
944 	/*
945 	 * device mapped pages can only be returned if the
946 	 * caller will manage the page reference count.
947 	 */
948 	if (!(flags & FOLL_GET))
949 		return ERR_PTR(-EEXIST);
950 
951 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
952 	*pgmap = get_dev_pagemap(pfn, *pgmap);
953 	if (!*pgmap)
954 		return ERR_PTR(-EFAULT);
955 	page = pfn_to_page(pfn);
956 	get_page(page);
957 
958 	return page;
959 }
960 
961 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
962 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
963 		  struct vm_area_struct *vma)
964 {
965 	spinlock_t *dst_ptl, *src_ptl;
966 	struct page *src_page;
967 	pmd_t pmd;
968 	pgtable_t pgtable = NULL;
969 	int ret = -ENOMEM;
970 
971 	/* Skip if can be re-fill on fault */
972 	if (!vma_is_anonymous(vma))
973 		return 0;
974 
975 	pgtable = pte_alloc_one(dst_mm);
976 	if (unlikely(!pgtable))
977 		goto out;
978 
979 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
980 	src_ptl = pmd_lockptr(src_mm, src_pmd);
981 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
982 
983 	ret = -EAGAIN;
984 	pmd = *src_pmd;
985 
986 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
987 	if (unlikely(is_swap_pmd(pmd))) {
988 		swp_entry_t entry = pmd_to_swp_entry(pmd);
989 
990 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
991 		if (is_write_migration_entry(entry)) {
992 			make_migration_entry_read(&entry);
993 			pmd = swp_entry_to_pmd(entry);
994 			if (pmd_swp_soft_dirty(*src_pmd))
995 				pmd = pmd_swp_mksoft_dirty(pmd);
996 			set_pmd_at(src_mm, addr, src_pmd, pmd);
997 		}
998 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
999 		mm_inc_nr_ptes(dst_mm);
1000 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1001 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1002 		ret = 0;
1003 		goto out_unlock;
1004 	}
1005 #endif
1006 
1007 	if (unlikely(!pmd_trans_huge(pmd))) {
1008 		pte_free(dst_mm, pgtable);
1009 		goto out_unlock;
1010 	}
1011 	/*
1012 	 * When page table lock is held, the huge zero pmd should not be
1013 	 * under splitting since we don't split the page itself, only pmd to
1014 	 * a page table.
1015 	 */
1016 	if (is_huge_zero_pmd(pmd)) {
1017 		struct page *zero_page;
1018 		/*
1019 		 * get_huge_zero_page() will never allocate a new page here,
1020 		 * since we already have a zero page to copy. It just takes a
1021 		 * reference.
1022 		 */
1023 		zero_page = mm_get_huge_zero_page(dst_mm);
1024 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1025 				zero_page);
1026 		ret = 0;
1027 		goto out_unlock;
1028 	}
1029 
1030 	src_page = pmd_page(pmd);
1031 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1032 	get_page(src_page);
1033 	page_dup_rmap(src_page, true);
1034 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1035 	mm_inc_nr_ptes(dst_mm);
1036 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1037 
1038 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1039 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1040 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1041 
1042 	ret = 0;
1043 out_unlock:
1044 	spin_unlock(src_ptl);
1045 	spin_unlock(dst_ptl);
1046 out:
1047 	return ret;
1048 }
1049 
1050 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1051 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1052 		pud_t *pud, int flags)
1053 {
1054 	pud_t _pud;
1055 
1056 	_pud = pud_mkyoung(*pud);
1057 	if (flags & FOLL_WRITE)
1058 		_pud = pud_mkdirty(_pud);
1059 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1060 				pud, _pud, flags & FOLL_WRITE))
1061 		update_mmu_cache_pud(vma, addr, pud);
1062 }
1063 
1064 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1065 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1066 {
1067 	unsigned long pfn = pud_pfn(*pud);
1068 	struct mm_struct *mm = vma->vm_mm;
1069 	struct page *page;
1070 
1071 	assert_spin_locked(pud_lockptr(mm, pud));
1072 
1073 	if (flags & FOLL_WRITE && !pud_write(*pud))
1074 		return NULL;
1075 
1076 	if (pud_present(*pud) && pud_devmap(*pud))
1077 		/* pass */;
1078 	else
1079 		return NULL;
1080 
1081 	if (flags & FOLL_TOUCH)
1082 		touch_pud(vma, addr, pud, flags);
1083 
1084 	/*
1085 	 * device mapped pages can only be returned if the
1086 	 * caller will manage the page reference count.
1087 	 */
1088 	if (!(flags & FOLL_GET))
1089 		return ERR_PTR(-EEXIST);
1090 
1091 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1092 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1093 	if (!*pgmap)
1094 		return ERR_PTR(-EFAULT);
1095 	page = pfn_to_page(pfn);
1096 	get_page(page);
1097 
1098 	return page;
1099 }
1100 
1101 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1102 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1103 		  struct vm_area_struct *vma)
1104 {
1105 	spinlock_t *dst_ptl, *src_ptl;
1106 	pud_t pud;
1107 	int ret;
1108 
1109 	dst_ptl = pud_lock(dst_mm, dst_pud);
1110 	src_ptl = pud_lockptr(src_mm, src_pud);
1111 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1112 
1113 	ret = -EAGAIN;
1114 	pud = *src_pud;
1115 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1116 		goto out_unlock;
1117 
1118 	/*
1119 	 * When page table lock is held, the huge zero pud should not be
1120 	 * under splitting since we don't split the page itself, only pud to
1121 	 * a page table.
1122 	 */
1123 	if (is_huge_zero_pud(pud)) {
1124 		/* No huge zero pud yet */
1125 	}
1126 
1127 	pudp_set_wrprotect(src_mm, addr, src_pud);
1128 	pud = pud_mkold(pud_wrprotect(pud));
1129 	set_pud_at(dst_mm, addr, dst_pud, pud);
1130 
1131 	ret = 0;
1132 out_unlock:
1133 	spin_unlock(src_ptl);
1134 	spin_unlock(dst_ptl);
1135 	return ret;
1136 }
1137 
1138 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1139 {
1140 	pud_t entry;
1141 	unsigned long haddr;
1142 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1143 
1144 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1145 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1146 		goto unlock;
1147 
1148 	entry = pud_mkyoung(orig_pud);
1149 	if (write)
1150 		entry = pud_mkdirty(entry);
1151 	haddr = vmf->address & HPAGE_PUD_MASK;
1152 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1153 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1154 
1155 unlock:
1156 	spin_unlock(vmf->ptl);
1157 }
1158 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1159 
1160 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1161 {
1162 	pmd_t entry;
1163 	unsigned long haddr;
1164 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1165 
1166 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1167 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1168 		goto unlock;
1169 
1170 	entry = pmd_mkyoung(orig_pmd);
1171 	if (write)
1172 		entry = pmd_mkdirty(entry);
1173 	haddr = vmf->address & HPAGE_PMD_MASK;
1174 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1175 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1176 
1177 unlock:
1178 	spin_unlock(vmf->ptl);
1179 }
1180 
1181 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1182 			pmd_t orig_pmd, struct page *page)
1183 {
1184 	struct vm_area_struct *vma = vmf->vma;
1185 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1186 	struct mem_cgroup *memcg;
1187 	pgtable_t pgtable;
1188 	pmd_t _pmd;
1189 	int i;
1190 	vm_fault_t ret = 0;
1191 	struct page **pages;
1192 	struct mmu_notifier_range range;
1193 
1194 	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1195 			      GFP_KERNEL);
1196 	if (unlikely(!pages)) {
1197 		ret |= VM_FAULT_OOM;
1198 		goto out;
1199 	}
1200 
1201 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1202 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1203 					       vmf->address, page_to_nid(page));
1204 		if (unlikely(!pages[i] ||
1205 			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1206 				     GFP_KERNEL, &memcg, false))) {
1207 			if (pages[i])
1208 				put_page(pages[i]);
1209 			while (--i >= 0) {
1210 				memcg = (void *)page_private(pages[i]);
1211 				set_page_private(pages[i], 0);
1212 				mem_cgroup_cancel_charge(pages[i], memcg,
1213 						false);
1214 				put_page(pages[i]);
1215 			}
1216 			kfree(pages);
1217 			ret |= VM_FAULT_OOM;
1218 			goto out;
1219 		}
1220 		set_page_private(pages[i], (unsigned long)memcg);
1221 	}
1222 
1223 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1224 		copy_user_highpage(pages[i], page + i,
1225 				   haddr + PAGE_SIZE * i, vma);
1226 		__SetPageUptodate(pages[i]);
1227 		cond_resched();
1228 	}
1229 
1230 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1231 				haddr, haddr + HPAGE_PMD_SIZE);
1232 	mmu_notifier_invalidate_range_start(&range);
1233 
1234 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1235 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1236 		goto out_free_pages;
1237 	VM_BUG_ON_PAGE(!PageHead(page), page);
1238 
1239 	/*
1240 	 * Leave pmd empty until pte is filled note we must notify here as
1241 	 * concurrent CPU thread might write to new page before the call to
1242 	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1243 	 * device seeing memory write in different order than CPU.
1244 	 *
1245 	 * See Documentation/vm/mmu_notifier.rst
1246 	 */
1247 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1248 
1249 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1250 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1251 
1252 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1253 		pte_t entry;
1254 		entry = mk_pte(pages[i], vma->vm_page_prot);
1255 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1256 		memcg = (void *)page_private(pages[i]);
1257 		set_page_private(pages[i], 0);
1258 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1259 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1260 		lru_cache_add_active_or_unevictable(pages[i], vma);
1261 		vmf->pte = pte_offset_map(&_pmd, haddr);
1262 		VM_BUG_ON(!pte_none(*vmf->pte));
1263 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1264 		pte_unmap(vmf->pte);
1265 	}
1266 	kfree(pages);
1267 
1268 	smp_wmb(); /* make pte visible before pmd */
1269 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1270 	page_remove_rmap(page, true);
1271 	spin_unlock(vmf->ptl);
1272 
1273 	/*
1274 	 * No need to double call mmu_notifier->invalidate_range() callback as
1275 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1276 	 */
1277 	mmu_notifier_invalidate_range_only_end(&range);
1278 
1279 	ret |= VM_FAULT_WRITE;
1280 	put_page(page);
1281 
1282 out:
1283 	return ret;
1284 
1285 out_free_pages:
1286 	spin_unlock(vmf->ptl);
1287 	mmu_notifier_invalidate_range_end(&range);
1288 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1289 		memcg = (void *)page_private(pages[i]);
1290 		set_page_private(pages[i], 0);
1291 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1292 		put_page(pages[i]);
1293 	}
1294 	kfree(pages);
1295 	goto out;
1296 }
1297 
1298 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1299 {
1300 	struct vm_area_struct *vma = vmf->vma;
1301 	struct page *page = NULL, *new_page;
1302 	struct mem_cgroup *memcg;
1303 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1304 	struct mmu_notifier_range range;
1305 	gfp_t huge_gfp;			/* for allocation and charge */
1306 	vm_fault_t ret = 0;
1307 
1308 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1309 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1310 	if (is_huge_zero_pmd(orig_pmd))
1311 		goto alloc;
1312 	spin_lock(vmf->ptl);
1313 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1314 		goto out_unlock;
1315 
1316 	page = pmd_page(orig_pmd);
1317 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1318 	/*
1319 	 * We can only reuse the page if nobody else maps the huge page or it's
1320 	 * part.
1321 	 */
1322 	if (!trylock_page(page)) {
1323 		get_page(page);
1324 		spin_unlock(vmf->ptl);
1325 		lock_page(page);
1326 		spin_lock(vmf->ptl);
1327 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1328 			unlock_page(page);
1329 			put_page(page);
1330 			goto out_unlock;
1331 		}
1332 		put_page(page);
1333 	}
1334 	if (reuse_swap_page(page, NULL)) {
1335 		pmd_t entry;
1336 		entry = pmd_mkyoung(orig_pmd);
1337 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1338 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1339 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1340 		ret |= VM_FAULT_WRITE;
1341 		unlock_page(page);
1342 		goto out_unlock;
1343 	}
1344 	unlock_page(page);
1345 	get_page(page);
1346 	spin_unlock(vmf->ptl);
1347 alloc:
1348 	if (__transparent_hugepage_enabled(vma) &&
1349 	    !transparent_hugepage_debug_cow()) {
1350 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1351 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1352 	} else
1353 		new_page = NULL;
1354 
1355 	if (likely(new_page)) {
1356 		prep_transhuge_page(new_page);
1357 	} else {
1358 		if (!page) {
1359 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1360 			ret |= VM_FAULT_FALLBACK;
1361 		} else {
1362 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1363 			if (ret & VM_FAULT_OOM) {
1364 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1365 				ret |= VM_FAULT_FALLBACK;
1366 			}
1367 			put_page(page);
1368 		}
1369 		count_vm_event(THP_FAULT_FALLBACK);
1370 		goto out;
1371 	}
1372 
1373 	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1374 					huge_gfp, &memcg, true))) {
1375 		put_page(new_page);
1376 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1377 		if (page)
1378 			put_page(page);
1379 		ret |= VM_FAULT_FALLBACK;
1380 		count_vm_event(THP_FAULT_FALLBACK);
1381 		goto out;
1382 	}
1383 
1384 	count_vm_event(THP_FAULT_ALLOC);
1385 	count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1386 
1387 	if (!page)
1388 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1389 	else
1390 		copy_user_huge_page(new_page, page, vmf->address,
1391 				    vma, HPAGE_PMD_NR);
1392 	__SetPageUptodate(new_page);
1393 
1394 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1395 				haddr, haddr + HPAGE_PMD_SIZE);
1396 	mmu_notifier_invalidate_range_start(&range);
1397 
1398 	spin_lock(vmf->ptl);
1399 	if (page)
1400 		put_page(page);
1401 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1402 		spin_unlock(vmf->ptl);
1403 		mem_cgroup_cancel_charge(new_page, memcg, true);
1404 		put_page(new_page);
1405 		goto out_mn;
1406 	} else {
1407 		pmd_t entry;
1408 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1409 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1410 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1411 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1412 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1413 		lru_cache_add_active_or_unevictable(new_page, vma);
1414 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1415 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1416 		if (!page) {
1417 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1418 		} else {
1419 			VM_BUG_ON_PAGE(!PageHead(page), page);
1420 			page_remove_rmap(page, true);
1421 			put_page(page);
1422 		}
1423 		ret |= VM_FAULT_WRITE;
1424 	}
1425 	spin_unlock(vmf->ptl);
1426 out_mn:
1427 	/*
1428 	 * No need to double call mmu_notifier->invalidate_range() callback as
1429 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1430 	 */
1431 	mmu_notifier_invalidate_range_only_end(&range);
1432 out:
1433 	return ret;
1434 out_unlock:
1435 	spin_unlock(vmf->ptl);
1436 	return ret;
1437 }
1438 
1439 /*
1440  * FOLL_FORCE can write to even unwritable pmd's, but only
1441  * after we've gone through a COW cycle and they are dirty.
1442  */
1443 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1444 {
1445 	return pmd_write(pmd) ||
1446 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1447 }
1448 
1449 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1450 				   unsigned long addr,
1451 				   pmd_t *pmd,
1452 				   unsigned int flags)
1453 {
1454 	struct mm_struct *mm = vma->vm_mm;
1455 	struct page *page = NULL;
1456 
1457 	assert_spin_locked(pmd_lockptr(mm, pmd));
1458 
1459 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1460 		goto out;
1461 
1462 	/* Avoid dumping huge zero page */
1463 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1464 		return ERR_PTR(-EFAULT);
1465 
1466 	/* Full NUMA hinting faults to serialise migration in fault paths */
1467 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1468 		goto out;
1469 
1470 	page = pmd_page(*pmd);
1471 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1472 	if (flags & FOLL_TOUCH)
1473 		touch_pmd(vma, addr, pmd, flags);
1474 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1475 		/*
1476 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1477 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1478 		 *
1479 		 * For anon THP:
1480 		 *
1481 		 * In most cases the pmd is the only mapping of the page as we
1482 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1483 		 * writable private mappings in populate_vma_page_range().
1484 		 *
1485 		 * The only scenario when we have the page shared here is if we
1486 		 * mlocking read-only mapping shared over fork(). We skip
1487 		 * mlocking such pages.
1488 		 *
1489 		 * For file THP:
1490 		 *
1491 		 * We can expect PageDoubleMap() to be stable under page lock:
1492 		 * for file pages we set it in page_add_file_rmap(), which
1493 		 * requires page to be locked.
1494 		 */
1495 
1496 		if (PageAnon(page) && compound_mapcount(page) != 1)
1497 			goto skip_mlock;
1498 		if (PageDoubleMap(page) || !page->mapping)
1499 			goto skip_mlock;
1500 		if (!trylock_page(page))
1501 			goto skip_mlock;
1502 		lru_add_drain();
1503 		if (page->mapping && !PageDoubleMap(page))
1504 			mlock_vma_page(page);
1505 		unlock_page(page);
1506 	}
1507 skip_mlock:
1508 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1509 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1510 	if (flags & FOLL_GET)
1511 		get_page(page);
1512 
1513 out:
1514 	return page;
1515 }
1516 
1517 /* NUMA hinting page fault entry point for trans huge pmds */
1518 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1519 {
1520 	struct vm_area_struct *vma = vmf->vma;
1521 	struct anon_vma *anon_vma = NULL;
1522 	struct page *page;
1523 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1524 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1525 	int target_nid, last_cpupid = -1;
1526 	bool page_locked;
1527 	bool migrated = false;
1528 	bool was_writable;
1529 	int flags = 0;
1530 
1531 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1532 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1533 		goto out_unlock;
1534 
1535 	/*
1536 	 * If there are potential migrations, wait for completion and retry
1537 	 * without disrupting NUMA hinting information. Do not relock and
1538 	 * check_same as the page may no longer be mapped.
1539 	 */
1540 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1541 		page = pmd_page(*vmf->pmd);
1542 		if (!get_page_unless_zero(page))
1543 			goto out_unlock;
1544 		spin_unlock(vmf->ptl);
1545 		put_and_wait_on_page_locked(page);
1546 		goto out;
1547 	}
1548 
1549 	page = pmd_page(pmd);
1550 	BUG_ON(is_huge_zero_page(page));
1551 	page_nid = page_to_nid(page);
1552 	last_cpupid = page_cpupid_last(page);
1553 	count_vm_numa_event(NUMA_HINT_FAULTS);
1554 	if (page_nid == this_nid) {
1555 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1556 		flags |= TNF_FAULT_LOCAL;
1557 	}
1558 
1559 	/* See similar comment in do_numa_page for explanation */
1560 	if (!pmd_savedwrite(pmd))
1561 		flags |= TNF_NO_GROUP;
1562 
1563 	/*
1564 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1565 	 * page_table_lock if at all possible
1566 	 */
1567 	page_locked = trylock_page(page);
1568 	target_nid = mpol_misplaced(page, vma, haddr);
1569 	if (target_nid == NUMA_NO_NODE) {
1570 		/* If the page was locked, there are no parallel migrations */
1571 		if (page_locked)
1572 			goto clear_pmdnuma;
1573 	}
1574 
1575 	/* Migration could have started since the pmd_trans_migrating check */
1576 	if (!page_locked) {
1577 		page_nid = NUMA_NO_NODE;
1578 		if (!get_page_unless_zero(page))
1579 			goto out_unlock;
1580 		spin_unlock(vmf->ptl);
1581 		put_and_wait_on_page_locked(page);
1582 		goto out;
1583 	}
1584 
1585 	/*
1586 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1587 	 * to serialises splits
1588 	 */
1589 	get_page(page);
1590 	spin_unlock(vmf->ptl);
1591 	anon_vma = page_lock_anon_vma_read(page);
1592 
1593 	/* Confirm the PMD did not change while page_table_lock was released */
1594 	spin_lock(vmf->ptl);
1595 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1596 		unlock_page(page);
1597 		put_page(page);
1598 		page_nid = NUMA_NO_NODE;
1599 		goto out_unlock;
1600 	}
1601 
1602 	/* Bail if we fail to protect against THP splits for any reason */
1603 	if (unlikely(!anon_vma)) {
1604 		put_page(page);
1605 		page_nid = NUMA_NO_NODE;
1606 		goto clear_pmdnuma;
1607 	}
1608 
1609 	/*
1610 	 * Since we took the NUMA fault, we must have observed the !accessible
1611 	 * bit. Make sure all other CPUs agree with that, to avoid them
1612 	 * modifying the page we're about to migrate.
1613 	 *
1614 	 * Must be done under PTL such that we'll observe the relevant
1615 	 * inc_tlb_flush_pending().
1616 	 *
1617 	 * We are not sure a pending tlb flush here is for a huge page
1618 	 * mapping or not. Hence use the tlb range variant
1619 	 */
1620 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1621 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1622 		/*
1623 		 * change_huge_pmd() released the pmd lock before
1624 		 * invalidating the secondary MMUs sharing the primary
1625 		 * MMU pagetables (with ->invalidate_range()). The
1626 		 * mmu_notifier_invalidate_range_end() (which
1627 		 * internally calls ->invalidate_range()) in
1628 		 * change_pmd_range() will run after us, so we can't
1629 		 * rely on it here and we need an explicit invalidate.
1630 		 */
1631 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1632 					      haddr + HPAGE_PMD_SIZE);
1633 	}
1634 
1635 	/*
1636 	 * Migrate the THP to the requested node, returns with page unlocked
1637 	 * and access rights restored.
1638 	 */
1639 	spin_unlock(vmf->ptl);
1640 
1641 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1642 				vmf->pmd, pmd, vmf->address, page, target_nid);
1643 	if (migrated) {
1644 		flags |= TNF_MIGRATED;
1645 		page_nid = target_nid;
1646 	} else
1647 		flags |= TNF_MIGRATE_FAIL;
1648 
1649 	goto out;
1650 clear_pmdnuma:
1651 	BUG_ON(!PageLocked(page));
1652 	was_writable = pmd_savedwrite(pmd);
1653 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1654 	pmd = pmd_mkyoung(pmd);
1655 	if (was_writable)
1656 		pmd = pmd_mkwrite(pmd);
1657 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1658 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1659 	unlock_page(page);
1660 out_unlock:
1661 	spin_unlock(vmf->ptl);
1662 
1663 out:
1664 	if (anon_vma)
1665 		page_unlock_anon_vma_read(anon_vma);
1666 
1667 	if (page_nid != NUMA_NO_NODE)
1668 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1669 				flags);
1670 
1671 	return 0;
1672 }
1673 
1674 /*
1675  * Return true if we do MADV_FREE successfully on entire pmd page.
1676  * Otherwise, return false.
1677  */
1678 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1679 		pmd_t *pmd, unsigned long addr, unsigned long next)
1680 {
1681 	spinlock_t *ptl;
1682 	pmd_t orig_pmd;
1683 	struct page *page;
1684 	struct mm_struct *mm = tlb->mm;
1685 	bool ret = false;
1686 
1687 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1688 
1689 	ptl = pmd_trans_huge_lock(pmd, vma);
1690 	if (!ptl)
1691 		goto out_unlocked;
1692 
1693 	orig_pmd = *pmd;
1694 	if (is_huge_zero_pmd(orig_pmd))
1695 		goto out;
1696 
1697 	if (unlikely(!pmd_present(orig_pmd))) {
1698 		VM_BUG_ON(thp_migration_supported() &&
1699 				  !is_pmd_migration_entry(orig_pmd));
1700 		goto out;
1701 	}
1702 
1703 	page = pmd_page(orig_pmd);
1704 	/*
1705 	 * If other processes are mapping this page, we couldn't discard
1706 	 * the page unless they all do MADV_FREE so let's skip the page.
1707 	 */
1708 	if (page_mapcount(page) != 1)
1709 		goto out;
1710 
1711 	if (!trylock_page(page))
1712 		goto out;
1713 
1714 	/*
1715 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1716 	 * will deactivate only them.
1717 	 */
1718 	if (next - addr != HPAGE_PMD_SIZE) {
1719 		get_page(page);
1720 		spin_unlock(ptl);
1721 		split_huge_page(page);
1722 		unlock_page(page);
1723 		put_page(page);
1724 		goto out_unlocked;
1725 	}
1726 
1727 	if (PageDirty(page))
1728 		ClearPageDirty(page);
1729 	unlock_page(page);
1730 
1731 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1732 		pmdp_invalidate(vma, addr, pmd);
1733 		orig_pmd = pmd_mkold(orig_pmd);
1734 		orig_pmd = pmd_mkclean(orig_pmd);
1735 
1736 		set_pmd_at(mm, addr, pmd, orig_pmd);
1737 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1738 	}
1739 
1740 	mark_page_lazyfree(page);
1741 	ret = true;
1742 out:
1743 	spin_unlock(ptl);
1744 out_unlocked:
1745 	return ret;
1746 }
1747 
1748 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1749 {
1750 	pgtable_t pgtable;
1751 
1752 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1753 	pte_free(mm, pgtable);
1754 	mm_dec_nr_ptes(mm);
1755 }
1756 
1757 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1758 		 pmd_t *pmd, unsigned long addr)
1759 {
1760 	pmd_t orig_pmd;
1761 	spinlock_t *ptl;
1762 
1763 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1764 
1765 	ptl = __pmd_trans_huge_lock(pmd, vma);
1766 	if (!ptl)
1767 		return 0;
1768 	/*
1769 	 * For architectures like ppc64 we look at deposited pgtable
1770 	 * when calling pmdp_huge_get_and_clear. So do the
1771 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1772 	 * operations.
1773 	 */
1774 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1775 			tlb->fullmm);
1776 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1777 	if (vma_is_dax(vma)) {
1778 		if (arch_needs_pgtable_deposit())
1779 			zap_deposited_table(tlb->mm, pmd);
1780 		spin_unlock(ptl);
1781 		if (is_huge_zero_pmd(orig_pmd))
1782 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1783 	} else if (is_huge_zero_pmd(orig_pmd)) {
1784 		zap_deposited_table(tlb->mm, pmd);
1785 		spin_unlock(ptl);
1786 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1787 	} else {
1788 		struct page *page = NULL;
1789 		int flush_needed = 1;
1790 
1791 		if (pmd_present(orig_pmd)) {
1792 			page = pmd_page(orig_pmd);
1793 			page_remove_rmap(page, true);
1794 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1795 			VM_BUG_ON_PAGE(!PageHead(page), page);
1796 		} else if (thp_migration_supported()) {
1797 			swp_entry_t entry;
1798 
1799 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1800 			entry = pmd_to_swp_entry(orig_pmd);
1801 			page = pfn_to_page(swp_offset(entry));
1802 			flush_needed = 0;
1803 		} else
1804 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1805 
1806 		if (PageAnon(page)) {
1807 			zap_deposited_table(tlb->mm, pmd);
1808 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1809 		} else {
1810 			if (arch_needs_pgtable_deposit())
1811 				zap_deposited_table(tlb->mm, pmd);
1812 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1813 		}
1814 
1815 		spin_unlock(ptl);
1816 		if (flush_needed)
1817 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1818 	}
1819 	return 1;
1820 }
1821 
1822 #ifndef pmd_move_must_withdraw
1823 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1824 					 spinlock_t *old_pmd_ptl,
1825 					 struct vm_area_struct *vma)
1826 {
1827 	/*
1828 	 * With split pmd lock we also need to move preallocated
1829 	 * PTE page table if new_pmd is on different PMD page table.
1830 	 *
1831 	 * We also don't deposit and withdraw tables for file pages.
1832 	 */
1833 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1834 }
1835 #endif
1836 
1837 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1838 {
1839 #ifdef CONFIG_MEM_SOFT_DIRTY
1840 	if (unlikely(is_pmd_migration_entry(pmd)))
1841 		pmd = pmd_swp_mksoft_dirty(pmd);
1842 	else if (pmd_present(pmd))
1843 		pmd = pmd_mksoft_dirty(pmd);
1844 #endif
1845 	return pmd;
1846 }
1847 
1848 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1849 		  unsigned long new_addr, unsigned long old_end,
1850 		  pmd_t *old_pmd, pmd_t *new_pmd)
1851 {
1852 	spinlock_t *old_ptl, *new_ptl;
1853 	pmd_t pmd;
1854 	struct mm_struct *mm = vma->vm_mm;
1855 	bool force_flush = false;
1856 
1857 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1858 	    (new_addr & ~HPAGE_PMD_MASK) ||
1859 	    old_end - old_addr < HPAGE_PMD_SIZE)
1860 		return false;
1861 
1862 	/*
1863 	 * The destination pmd shouldn't be established, free_pgtables()
1864 	 * should have release it.
1865 	 */
1866 	if (WARN_ON(!pmd_none(*new_pmd))) {
1867 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1868 		return false;
1869 	}
1870 
1871 	/*
1872 	 * We don't have to worry about the ordering of src and dst
1873 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1874 	 */
1875 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1876 	if (old_ptl) {
1877 		new_ptl = pmd_lockptr(mm, new_pmd);
1878 		if (new_ptl != old_ptl)
1879 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1880 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1881 		if (pmd_present(pmd))
1882 			force_flush = true;
1883 		VM_BUG_ON(!pmd_none(*new_pmd));
1884 
1885 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1886 			pgtable_t pgtable;
1887 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1888 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1889 		}
1890 		pmd = move_soft_dirty_pmd(pmd);
1891 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1892 		if (force_flush)
1893 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1894 		if (new_ptl != old_ptl)
1895 			spin_unlock(new_ptl);
1896 		spin_unlock(old_ptl);
1897 		return true;
1898 	}
1899 	return false;
1900 }
1901 
1902 /*
1903  * Returns
1904  *  - 0 if PMD could not be locked
1905  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1906  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1907  */
1908 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1909 		unsigned long addr, pgprot_t newprot, int prot_numa)
1910 {
1911 	struct mm_struct *mm = vma->vm_mm;
1912 	spinlock_t *ptl;
1913 	pmd_t entry;
1914 	bool preserve_write;
1915 	int ret;
1916 
1917 	ptl = __pmd_trans_huge_lock(pmd, vma);
1918 	if (!ptl)
1919 		return 0;
1920 
1921 	preserve_write = prot_numa && pmd_write(*pmd);
1922 	ret = 1;
1923 
1924 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1925 	if (is_swap_pmd(*pmd)) {
1926 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1927 
1928 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1929 		if (is_write_migration_entry(entry)) {
1930 			pmd_t newpmd;
1931 			/*
1932 			 * A protection check is difficult so
1933 			 * just be safe and disable write
1934 			 */
1935 			make_migration_entry_read(&entry);
1936 			newpmd = swp_entry_to_pmd(entry);
1937 			if (pmd_swp_soft_dirty(*pmd))
1938 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1939 			set_pmd_at(mm, addr, pmd, newpmd);
1940 		}
1941 		goto unlock;
1942 	}
1943 #endif
1944 
1945 	/*
1946 	 * Avoid trapping faults against the zero page. The read-only
1947 	 * data is likely to be read-cached on the local CPU and
1948 	 * local/remote hits to the zero page are not interesting.
1949 	 */
1950 	if (prot_numa && is_huge_zero_pmd(*pmd))
1951 		goto unlock;
1952 
1953 	if (prot_numa && pmd_protnone(*pmd))
1954 		goto unlock;
1955 
1956 	/*
1957 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1958 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1959 	 * which is also under down_read(mmap_sem):
1960 	 *
1961 	 *	CPU0:				CPU1:
1962 	 *				change_huge_pmd(prot_numa=1)
1963 	 *				 pmdp_huge_get_and_clear_notify()
1964 	 * madvise_dontneed()
1965 	 *  zap_pmd_range()
1966 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1967 	 *   // skip the pmd
1968 	 *				 set_pmd_at();
1969 	 *				 // pmd is re-established
1970 	 *
1971 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1972 	 * which may break userspace.
1973 	 *
1974 	 * pmdp_invalidate() is required to make sure we don't miss
1975 	 * dirty/young flags set by hardware.
1976 	 */
1977 	entry = pmdp_invalidate(vma, addr, pmd);
1978 
1979 	entry = pmd_modify(entry, newprot);
1980 	if (preserve_write)
1981 		entry = pmd_mk_savedwrite(entry);
1982 	ret = HPAGE_PMD_NR;
1983 	set_pmd_at(mm, addr, pmd, entry);
1984 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1985 unlock:
1986 	spin_unlock(ptl);
1987 	return ret;
1988 }
1989 
1990 /*
1991  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1992  *
1993  * Note that if it returns page table lock pointer, this routine returns without
1994  * unlocking page table lock. So callers must unlock it.
1995  */
1996 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1997 {
1998 	spinlock_t *ptl;
1999 	ptl = pmd_lock(vma->vm_mm, pmd);
2000 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2001 			pmd_devmap(*pmd)))
2002 		return ptl;
2003 	spin_unlock(ptl);
2004 	return NULL;
2005 }
2006 
2007 /*
2008  * Returns true if a given pud maps a thp, false otherwise.
2009  *
2010  * Note that if it returns true, this routine returns without unlocking page
2011  * table lock. So callers must unlock it.
2012  */
2013 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2014 {
2015 	spinlock_t *ptl;
2016 
2017 	ptl = pud_lock(vma->vm_mm, pud);
2018 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2019 		return ptl;
2020 	spin_unlock(ptl);
2021 	return NULL;
2022 }
2023 
2024 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2025 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2026 		 pud_t *pud, unsigned long addr)
2027 {
2028 	spinlock_t *ptl;
2029 
2030 	ptl = __pud_trans_huge_lock(pud, vma);
2031 	if (!ptl)
2032 		return 0;
2033 	/*
2034 	 * For architectures like ppc64 we look at deposited pgtable
2035 	 * when calling pudp_huge_get_and_clear. So do the
2036 	 * pgtable_trans_huge_withdraw after finishing pudp related
2037 	 * operations.
2038 	 */
2039 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2040 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2041 	if (vma_is_dax(vma)) {
2042 		spin_unlock(ptl);
2043 		/* No zero page support yet */
2044 	} else {
2045 		/* No support for anonymous PUD pages yet */
2046 		BUG();
2047 	}
2048 	return 1;
2049 }
2050 
2051 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2052 		unsigned long haddr)
2053 {
2054 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2055 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2056 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2057 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2058 
2059 	count_vm_event(THP_SPLIT_PUD);
2060 
2061 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2062 }
2063 
2064 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2065 		unsigned long address)
2066 {
2067 	spinlock_t *ptl;
2068 	struct mmu_notifier_range range;
2069 
2070 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2071 				address & HPAGE_PUD_MASK,
2072 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2073 	mmu_notifier_invalidate_range_start(&range);
2074 	ptl = pud_lock(vma->vm_mm, pud);
2075 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2076 		goto out;
2077 	__split_huge_pud_locked(vma, pud, range.start);
2078 
2079 out:
2080 	spin_unlock(ptl);
2081 	/*
2082 	 * No need to double call mmu_notifier->invalidate_range() callback as
2083 	 * the above pudp_huge_clear_flush_notify() did already call it.
2084 	 */
2085 	mmu_notifier_invalidate_range_only_end(&range);
2086 }
2087 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2088 
2089 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2090 		unsigned long haddr, pmd_t *pmd)
2091 {
2092 	struct mm_struct *mm = vma->vm_mm;
2093 	pgtable_t pgtable;
2094 	pmd_t _pmd;
2095 	int i;
2096 
2097 	/*
2098 	 * Leave pmd empty until pte is filled note that it is fine to delay
2099 	 * notification until mmu_notifier_invalidate_range_end() as we are
2100 	 * replacing a zero pmd write protected page with a zero pte write
2101 	 * protected page.
2102 	 *
2103 	 * See Documentation/vm/mmu_notifier.rst
2104 	 */
2105 	pmdp_huge_clear_flush(vma, haddr, pmd);
2106 
2107 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2108 	pmd_populate(mm, &_pmd, pgtable);
2109 
2110 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2111 		pte_t *pte, entry;
2112 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2113 		entry = pte_mkspecial(entry);
2114 		pte = pte_offset_map(&_pmd, haddr);
2115 		VM_BUG_ON(!pte_none(*pte));
2116 		set_pte_at(mm, haddr, pte, entry);
2117 		pte_unmap(pte);
2118 	}
2119 	smp_wmb(); /* make pte visible before pmd */
2120 	pmd_populate(mm, pmd, pgtable);
2121 }
2122 
2123 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2124 		unsigned long haddr, bool freeze)
2125 {
2126 	struct mm_struct *mm = vma->vm_mm;
2127 	struct page *page;
2128 	pgtable_t pgtable;
2129 	pmd_t old_pmd, _pmd;
2130 	bool young, write, soft_dirty, pmd_migration = false;
2131 	unsigned long addr;
2132 	int i;
2133 
2134 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2135 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2136 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2137 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2138 				&& !pmd_devmap(*pmd));
2139 
2140 	count_vm_event(THP_SPLIT_PMD);
2141 
2142 	if (!vma_is_anonymous(vma)) {
2143 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2144 		/*
2145 		 * We are going to unmap this huge page. So
2146 		 * just go ahead and zap it
2147 		 */
2148 		if (arch_needs_pgtable_deposit())
2149 			zap_deposited_table(mm, pmd);
2150 		if (vma_is_dax(vma))
2151 			return;
2152 		page = pmd_page(_pmd);
2153 		if (!PageDirty(page) && pmd_dirty(_pmd))
2154 			set_page_dirty(page);
2155 		if (!PageReferenced(page) && pmd_young(_pmd))
2156 			SetPageReferenced(page);
2157 		page_remove_rmap(page, true);
2158 		put_page(page);
2159 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2160 		return;
2161 	} else if (is_huge_zero_pmd(*pmd)) {
2162 		/*
2163 		 * FIXME: Do we want to invalidate secondary mmu by calling
2164 		 * mmu_notifier_invalidate_range() see comments below inside
2165 		 * __split_huge_pmd() ?
2166 		 *
2167 		 * We are going from a zero huge page write protected to zero
2168 		 * small page also write protected so it does not seems useful
2169 		 * to invalidate secondary mmu at this time.
2170 		 */
2171 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2172 	}
2173 
2174 	/*
2175 	 * Up to this point the pmd is present and huge and userland has the
2176 	 * whole access to the hugepage during the split (which happens in
2177 	 * place). If we overwrite the pmd with the not-huge version pointing
2178 	 * to the pte here (which of course we could if all CPUs were bug
2179 	 * free), userland could trigger a small page size TLB miss on the
2180 	 * small sized TLB while the hugepage TLB entry is still established in
2181 	 * the huge TLB. Some CPU doesn't like that.
2182 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2183 	 * 383 on page 93. Intel should be safe but is also warns that it's
2184 	 * only safe if the permission and cache attributes of the two entries
2185 	 * loaded in the two TLB is identical (which should be the case here).
2186 	 * But it is generally safer to never allow small and huge TLB entries
2187 	 * for the same virtual address to be loaded simultaneously. So instead
2188 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2189 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2190 	 * must remain set at all times on the pmd until the split is complete
2191 	 * for this pmd), then we flush the SMP TLB and finally we write the
2192 	 * non-huge version of the pmd entry with pmd_populate.
2193 	 */
2194 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2195 
2196 	pmd_migration = is_pmd_migration_entry(old_pmd);
2197 	if (unlikely(pmd_migration)) {
2198 		swp_entry_t entry;
2199 
2200 		entry = pmd_to_swp_entry(old_pmd);
2201 		page = pfn_to_page(swp_offset(entry));
2202 		write = is_write_migration_entry(entry);
2203 		young = false;
2204 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2205 	} else {
2206 		page = pmd_page(old_pmd);
2207 		if (pmd_dirty(old_pmd))
2208 			SetPageDirty(page);
2209 		write = pmd_write(old_pmd);
2210 		young = pmd_young(old_pmd);
2211 		soft_dirty = pmd_soft_dirty(old_pmd);
2212 	}
2213 	VM_BUG_ON_PAGE(!page_count(page), page);
2214 	page_ref_add(page, HPAGE_PMD_NR - 1);
2215 
2216 	/*
2217 	 * Withdraw the table only after we mark the pmd entry invalid.
2218 	 * This's critical for some architectures (Power).
2219 	 */
2220 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2221 	pmd_populate(mm, &_pmd, pgtable);
2222 
2223 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2224 		pte_t entry, *pte;
2225 		/*
2226 		 * Note that NUMA hinting access restrictions are not
2227 		 * transferred to avoid any possibility of altering
2228 		 * permissions across VMAs.
2229 		 */
2230 		if (freeze || pmd_migration) {
2231 			swp_entry_t swp_entry;
2232 			swp_entry = make_migration_entry(page + i, write);
2233 			entry = swp_entry_to_pte(swp_entry);
2234 			if (soft_dirty)
2235 				entry = pte_swp_mksoft_dirty(entry);
2236 		} else {
2237 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2238 			entry = maybe_mkwrite(entry, vma);
2239 			if (!write)
2240 				entry = pte_wrprotect(entry);
2241 			if (!young)
2242 				entry = pte_mkold(entry);
2243 			if (soft_dirty)
2244 				entry = pte_mksoft_dirty(entry);
2245 		}
2246 		pte = pte_offset_map(&_pmd, addr);
2247 		BUG_ON(!pte_none(*pte));
2248 		set_pte_at(mm, addr, pte, entry);
2249 		atomic_inc(&page[i]._mapcount);
2250 		pte_unmap(pte);
2251 	}
2252 
2253 	/*
2254 	 * Set PG_double_map before dropping compound_mapcount to avoid
2255 	 * false-negative page_mapped().
2256 	 */
2257 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2258 		for (i = 0; i < HPAGE_PMD_NR; i++)
2259 			atomic_inc(&page[i]._mapcount);
2260 	}
2261 
2262 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2263 		/* Last compound_mapcount is gone. */
2264 		__dec_node_page_state(page, NR_ANON_THPS);
2265 		if (TestClearPageDoubleMap(page)) {
2266 			/* No need in mapcount reference anymore */
2267 			for (i = 0; i < HPAGE_PMD_NR; i++)
2268 				atomic_dec(&page[i]._mapcount);
2269 		}
2270 	}
2271 
2272 	smp_wmb(); /* make pte visible before pmd */
2273 	pmd_populate(mm, pmd, pgtable);
2274 
2275 	if (freeze) {
2276 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2277 			page_remove_rmap(page + i, false);
2278 			put_page(page + i);
2279 		}
2280 	}
2281 }
2282 
2283 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2284 		unsigned long address, bool freeze, struct page *page)
2285 {
2286 	spinlock_t *ptl;
2287 	struct mmu_notifier_range range;
2288 
2289 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2290 				address & HPAGE_PMD_MASK,
2291 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2292 	mmu_notifier_invalidate_range_start(&range);
2293 	ptl = pmd_lock(vma->vm_mm, pmd);
2294 
2295 	/*
2296 	 * If caller asks to setup a migration entries, we need a page to check
2297 	 * pmd against. Otherwise we can end up replacing wrong page.
2298 	 */
2299 	VM_BUG_ON(freeze && !page);
2300 	if (page && page != pmd_page(*pmd))
2301 	        goto out;
2302 
2303 	if (pmd_trans_huge(*pmd)) {
2304 		page = pmd_page(*pmd);
2305 		if (PageMlocked(page))
2306 			clear_page_mlock(page);
2307 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2308 		goto out;
2309 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2310 out:
2311 	spin_unlock(ptl);
2312 	/*
2313 	 * No need to double call mmu_notifier->invalidate_range() callback.
2314 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2315 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2316 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2317 	 *    fault will trigger a flush_notify before pointing to a new page
2318 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2319 	 *    page in the meantime)
2320 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2321 	 *     to invalidate secondary tlb entry they are all still valid.
2322 	 *     any further changes to individual pte will notify. So no need
2323 	 *     to call mmu_notifier->invalidate_range()
2324 	 */
2325 	mmu_notifier_invalidate_range_only_end(&range);
2326 }
2327 
2328 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2329 		bool freeze, struct page *page)
2330 {
2331 	pgd_t *pgd;
2332 	p4d_t *p4d;
2333 	pud_t *pud;
2334 	pmd_t *pmd;
2335 
2336 	pgd = pgd_offset(vma->vm_mm, address);
2337 	if (!pgd_present(*pgd))
2338 		return;
2339 
2340 	p4d = p4d_offset(pgd, address);
2341 	if (!p4d_present(*p4d))
2342 		return;
2343 
2344 	pud = pud_offset(p4d, address);
2345 	if (!pud_present(*pud))
2346 		return;
2347 
2348 	pmd = pmd_offset(pud, address);
2349 
2350 	__split_huge_pmd(vma, pmd, address, freeze, page);
2351 }
2352 
2353 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2354 			     unsigned long start,
2355 			     unsigned long end,
2356 			     long adjust_next)
2357 {
2358 	/*
2359 	 * If the new start address isn't hpage aligned and it could
2360 	 * previously contain an hugepage: check if we need to split
2361 	 * an huge pmd.
2362 	 */
2363 	if (start & ~HPAGE_PMD_MASK &&
2364 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2365 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2366 		split_huge_pmd_address(vma, start, false, NULL);
2367 
2368 	/*
2369 	 * If the new end address isn't hpage aligned and it could
2370 	 * previously contain an hugepage: check if we need to split
2371 	 * an huge pmd.
2372 	 */
2373 	if (end & ~HPAGE_PMD_MASK &&
2374 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2375 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2376 		split_huge_pmd_address(vma, end, false, NULL);
2377 
2378 	/*
2379 	 * If we're also updating the vma->vm_next->vm_start, if the new
2380 	 * vm_next->vm_start isn't page aligned and it could previously
2381 	 * contain an hugepage: check if we need to split an huge pmd.
2382 	 */
2383 	if (adjust_next > 0) {
2384 		struct vm_area_struct *next = vma->vm_next;
2385 		unsigned long nstart = next->vm_start;
2386 		nstart += adjust_next << PAGE_SHIFT;
2387 		if (nstart & ~HPAGE_PMD_MASK &&
2388 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2389 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2390 			split_huge_pmd_address(next, nstart, false, NULL);
2391 	}
2392 }
2393 
2394 static void unmap_page(struct page *page)
2395 {
2396 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2397 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2398 	bool unmap_success;
2399 
2400 	VM_BUG_ON_PAGE(!PageHead(page), page);
2401 
2402 	if (PageAnon(page))
2403 		ttu_flags |= TTU_SPLIT_FREEZE;
2404 
2405 	unmap_success = try_to_unmap(page, ttu_flags);
2406 	VM_BUG_ON_PAGE(!unmap_success, page);
2407 }
2408 
2409 static void remap_page(struct page *page)
2410 {
2411 	int i;
2412 	if (PageTransHuge(page)) {
2413 		remove_migration_ptes(page, page, true);
2414 	} else {
2415 		for (i = 0; i < HPAGE_PMD_NR; i++)
2416 			remove_migration_ptes(page + i, page + i, true);
2417 	}
2418 }
2419 
2420 static void __split_huge_page_tail(struct page *head, int tail,
2421 		struct lruvec *lruvec, struct list_head *list)
2422 {
2423 	struct page *page_tail = head + tail;
2424 
2425 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2426 
2427 	/*
2428 	 * Clone page flags before unfreezing refcount.
2429 	 *
2430 	 * After successful get_page_unless_zero() might follow flags change,
2431 	 * for exmaple lock_page() which set PG_waiters.
2432 	 */
2433 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2434 	page_tail->flags |= (head->flags &
2435 			((1L << PG_referenced) |
2436 			 (1L << PG_swapbacked) |
2437 			 (1L << PG_swapcache) |
2438 			 (1L << PG_mlocked) |
2439 			 (1L << PG_uptodate) |
2440 			 (1L << PG_active) |
2441 			 (1L << PG_workingset) |
2442 			 (1L << PG_locked) |
2443 			 (1L << PG_unevictable) |
2444 			 (1L << PG_dirty)));
2445 
2446 	/* ->mapping in first tail page is compound_mapcount */
2447 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2448 			page_tail);
2449 	page_tail->mapping = head->mapping;
2450 	page_tail->index = head->index + tail;
2451 
2452 	/* Page flags must be visible before we make the page non-compound. */
2453 	smp_wmb();
2454 
2455 	/*
2456 	 * Clear PageTail before unfreezing page refcount.
2457 	 *
2458 	 * After successful get_page_unless_zero() might follow put_page()
2459 	 * which needs correct compound_head().
2460 	 */
2461 	clear_compound_head(page_tail);
2462 
2463 	/* Finally unfreeze refcount. Additional reference from page cache. */
2464 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2465 					  PageSwapCache(head)));
2466 
2467 	if (page_is_young(head))
2468 		set_page_young(page_tail);
2469 	if (page_is_idle(head))
2470 		set_page_idle(page_tail);
2471 
2472 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2473 
2474 	/*
2475 	 * always add to the tail because some iterators expect new
2476 	 * pages to show after the currently processed elements - e.g.
2477 	 * migrate_pages
2478 	 */
2479 	lru_add_page_tail(head, page_tail, lruvec, list);
2480 }
2481 
2482 static void __split_huge_page(struct page *page, struct list_head *list,
2483 		pgoff_t end, unsigned long flags)
2484 {
2485 	struct page *head = compound_head(page);
2486 	pg_data_t *pgdat = page_pgdat(head);
2487 	struct lruvec *lruvec;
2488 	int i;
2489 
2490 	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2491 
2492 	/* complete memcg works before add pages to LRU */
2493 	mem_cgroup_split_huge_fixup(head);
2494 
2495 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2496 		__split_huge_page_tail(head, i, lruvec, list);
2497 		/* Some pages can be beyond i_size: drop them from page cache */
2498 		if (head[i].index >= end) {
2499 			ClearPageDirty(head + i);
2500 			__delete_from_page_cache(head + i, NULL);
2501 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2502 				shmem_uncharge(head->mapping->host, 1);
2503 			put_page(head + i);
2504 		}
2505 	}
2506 
2507 	ClearPageCompound(head);
2508 	/* See comment in __split_huge_page_tail() */
2509 	if (PageAnon(head)) {
2510 		/* Additional pin to swap cache */
2511 		if (PageSwapCache(head))
2512 			page_ref_add(head, 2);
2513 		else
2514 			page_ref_inc(head);
2515 	} else {
2516 		/* Additional pin to page cache */
2517 		page_ref_add(head, 2);
2518 		xa_unlock(&head->mapping->i_pages);
2519 	}
2520 
2521 	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2522 
2523 	remap_page(head);
2524 
2525 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2526 		struct page *subpage = head + i;
2527 		if (subpage == page)
2528 			continue;
2529 		unlock_page(subpage);
2530 
2531 		/*
2532 		 * Subpages may be freed if there wasn't any mapping
2533 		 * like if add_to_swap() is running on a lru page that
2534 		 * had its mapping zapped. And freeing these pages
2535 		 * requires taking the lru_lock so we do the put_page
2536 		 * of the tail pages after the split is complete.
2537 		 */
2538 		put_page(subpage);
2539 	}
2540 }
2541 
2542 int total_mapcount(struct page *page)
2543 {
2544 	int i, compound, ret;
2545 
2546 	VM_BUG_ON_PAGE(PageTail(page), page);
2547 
2548 	if (likely(!PageCompound(page)))
2549 		return atomic_read(&page->_mapcount) + 1;
2550 
2551 	compound = compound_mapcount(page);
2552 	if (PageHuge(page))
2553 		return compound;
2554 	ret = compound;
2555 	for (i = 0; i < HPAGE_PMD_NR; i++)
2556 		ret += atomic_read(&page[i]._mapcount) + 1;
2557 	/* File pages has compound_mapcount included in _mapcount */
2558 	if (!PageAnon(page))
2559 		return ret - compound * HPAGE_PMD_NR;
2560 	if (PageDoubleMap(page))
2561 		ret -= HPAGE_PMD_NR;
2562 	return ret;
2563 }
2564 
2565 /*
2566  * This calculates accurately how many mappings a transparent hugepage
2567  * has (unlike page_mapcount() which isn't fully accurate). This full
2568  * accuracy is primarily needed to know if copy-on-write faults can
2569  * reuse the page and change the mapping to read-write instead of
2570  * copying them. At the same time this returns the total_mapcount too.
2571  *
2572  * The function returns the highest mapcount any one of the subpages
2573  * has. If the return value is one, even if different processes are
2574  * mapping different subpages of the transparent hugepage, they can
2575  * all reuse it, because each process is reusing a different subpage.
2576  *
2577  * The total_mapcount is instead counting all virtual mappings of the
2578  * subpages. If the total_mapcount is equal to "one", it tells the
2579  * caller all mappings belong to the same "mm" and in turn the
2580  * anon_vma of the transparent hugepage can become the vma->anon_vma
2581  * local one as no other process may be mapping any of the subpages.
2582  *
2583  * It would be more accurate to replace page_mapcount() with
2584  * page_trans_huge_mapcount(), however we only use
2585  * page_trans_huge_mapcount() in the copy-on-write faults where we
2586  * need full accuracy to avoid breaking page pinning, because
2587  * page_trans_huge_mapcount() is slower than page_mapcount().
2588  */
2589 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2590 {
2591 	int i, ret, _total_mapcount, mapcount;
2592 
2593 	/* hugetlbfs shouldn't call it */
2594 	VM_BUG_ON_PAGE(PageHuge(page), page);
2595 
2596 	if (likely(!PageTransCompound(page))) {
2597 		mapcount = atomic_read(&page->_mapcount) + 1;
2598 		if (total_mapcount)
2599 			*total_mapcount = mapcount;
2600 		return mapcount;
2601 	}
2602 
2603 	page = compound_head(page);
2604 
2605 	_total_mapcount = ret = 0;
2606 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2607 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2608 		ret = max(ret, mapcount);
2609 		_total_mapcount += mapcount;
2610 	}
2611 	if (PageDoubleMap(page)) {
2612 		ret -= 1;
2613 		_total_mapcount -= HPAGE_PMD_NR;
2614 	}
2615 	mapcount = compound_mapcount(page);
2616 	ret += mapcount;
2617 	_total_mapcount += mapcount;
2618 	if (total_mapcount)
2619 		*total_mapcount = _total_mapcount;
2620 	return ret;
2621 }
2622 
2623 /* Racy check whether the huge page can be split */
2624 bool can_split_huge_page(struct page *page, int *pextra_pins)
2625 {
2626 	int extra_pins;
2627 
2628 	/* Additional pins from page cache */
2629 	if (PageAnon(page))
2630 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2631 	else
2632 		extra_pins = HPAGE_PMD_NR;
2633 	if (pextra_pins)
2634 		*pextra_pins = extra_pins;
2635 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2636 }
2637 
2638 /*
2639  * This function splits huge page into normal pages. @page can point to any
2640  * subpage of huge page to split. Split doesn't change the position of @page.
2641  *
2642  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2643  * The huge page must be locked.
2644  *
2645  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2646  *
2647  * Both head page and tail pages will inherit mapping, flags, and so on from
2648  * the hugepage.
2649  *
2650  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2651  * they are not mapped.
2652  *
2653  * Returns 0 if the hugepage is split successfully.
2654  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2655  * us.
2656  */
2657 int split_huge_page_to_list(struct page *page, struct list_head *list)
2658 {
2659 	struct page *head = compound_head(page);
2660 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2661 	struct anon_vma *anon_vma = NULL;
2662 	struct address_space *mapping = NULL;
2663 	int count, mapcount, extra_pins, ret;
2664 	bool mlocked;
2665 	unsigned long flags;
2666 	pgoff_t end;
2667 
2668 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2669 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2670 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2671 
2672 	if (PageWriteback(page))
2673 		return -EBUSY;
2674 
2675 	if (PageAnon(head)) {
2676 		/*
2677 		 * The caller does not necessarily hold an mmap_sem that would
2678 		 * prevent the anon_vma disappearing so we first we take a
2679 		 * reference to it and then lock the anon_vma for write. This
2680 		 * is similar to page_lock_anon_vma_read except the write lock
2681 		 * is taken to serialise against parallel split or collapse
2682 		 * operations.
2683 		 */
2684 		anon_vma = page_get_anon_vma(head);
2685 		if (!anon_vma) {
2686 			ret = -EBUSY;
2687 			goto out;
2688 		}
2689 		end = -1;
2690 		mapping = NULL;
2691 		anon_vma_lock_write(anon_vma);
2692 	} else {
2693 		mapping = head->mapping;
2694 
2695 		/* Truncated ? */
2696 		if (!mapping) {
2697 			ret = -EBUSY;
2698 			goto out;
2699 		}
2700 
2701 		anon_vma = NULL;
2702 		i_mmap_lock_read(mapping);
2703 
2704 		/*
2705 		 *__split_huge_page() may need to trim off pages beyond EOF:
2706 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2707 		 * which cannot be nested inside the page tree lock. So note
2708 		 * end now: i_size itself may be changed at any moment, but
2709 		 * head page lock is good enough to serialize the trimming.
2710 		 */
2711 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2712 	}
2713 
2714 	/*
2715 	 * Racy check if we can split the page, before unmap_page() will
2716 	 * split PMDs
2717 	 */
2718 	if (!can_split_huge_page(head, &extra_pins)) {
2719 		ret = -EBUSY;
2720 		goto out_unlock;
2721 	}
2722 
2723 	mlocked = PageMlocked(page);
2724 	unmap_page(head);
2725 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2726 
2727 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2728 	if (mlocked)
2729 		lru_add_drain();
2730 
2731 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2732 	spin_lock_irqsave(&pgdata->lru_lock, flags);
2733 
2734 	if (mapping) {
2735 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2736 
2737 		/*
2738 		 * Check if the head page is present in page cache.
2739 		 * We assume all tail are present too, if head is there.
2740 		 */
2741 		xa_lock(&mapping->i_pages);
2742 		if (xas_load(&xas) != head)
2743 			goto fail;
2744 	}
2745 
2746 	/* Prevent deferred_split_scan() touching ->_refcount */
2747 	spin_lock(&pgdata->split_queue_lock);
2748 	count = page_count(head);
2749 	mapcount = total_mapcount(head);
2750 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2751 		if (!list_empty(page_deferred_list(head))) {
2752 			pgdata->split_queue_len--;
2753 			list_del(page_deferred_list(head));
2754 		}
2755 		if (mapping)
2756 			__dec_node_page_state(page, NR_SHMEM_THPS);
2757 		spin_unlock(&pgdata->split_queue_lock);
2758 		__split_huge_page(page, list, end, flags);
2759 		if (PageSwapCache(head)) {
2760 			swp_entry_t entry = { .val = page_private(head) };
2761 
2762 			ret = split_swap_cluster(entry);
2763 		} else
2764 			ret = 0;
2765 	} else {
2766 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2767 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2768 					mapcount, count);
2769 			if (PageTail(page))
2770 				dump_page(head, NULL);
2771 			dump_page(page, "total_mapcount(head) > 0");
2772 			BUG();
2773 		}
2774 		spin_unlock(&pgdata->split_queue_lock);
2775 fail:		if (mapping)
2776 			xa_unlock(&mapping->i_pages);
2777 		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2778 		remap_page(head);
2779 		ret = -EBUSY;
2780 	}
2781 
2782 out_unlock:
2783 	if (anon_vma) {
2784 		anon_vma_unlock_write(anon_vma);
2785 		put_anon_vma(anon_vma);
2786 	}
2787 	if (mapping)
2788 		i_mmap_unlock_read(mapping);
2789 out:
2790 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2791 	return ret;
2792 }
2793 
2794 void free_transhuge_page(struct page *page)
2795 {
2796 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2797 	unsigned long flags;
2798 
2799 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2800 	if (!list_empty(page_deferred_list(page))) {
2801 		pgdata->split_queue_len--;
2802 		list_del(page_deferred_list(page));
2803 	}
2804 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2805 	free_compound_page(page);
2806 }
2807 
2808 void deferred_split_huge_page(struct page *page)
2809 {
2810 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2811 	unsigned long flags;
2812 
2813 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2814 
2815 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2816 	if (list_empty(page_deferred_list(page))) {
2817 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2818 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2819 		pgdata->split_queue_len++;
2820 	}
2821 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2822 }
2823 
2824 static unsigned long deferred_split_count(struct shrinker *shrink,
2825 		struct shrink_control *sc)
2826 {
2827 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2828 	return READ_ONCE(pgdata->split_queue_len);
2829 }
2830 
2831 static unsigned long deferred_split_scan(struct shrinker *shrink,
2832 		struct shrink_control *sc)
2833 {
2834 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2835 	unsigned long flags;
2836 	LIST_HEAD(list), *pos, *next;
2837 	struct page *page;
2838 	int split = 0;
2839 
2840 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2841 	/* Take pin on all head pages to avoid freeing them under us */
2842 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2843 		page = list_entry((void *)pos, struct page, mapping);
2844 		page = compound_head(page);
2845 		if (get_page_unless_zero(page)) {
2846 			list_move(page_deferred_list(page), &list);
2847 		} else {
2848 			/* We lost race with put_compound_page() */
2849 			list_del_init(page_deferred_list(page));
2850 			pgdata->split_queue_len--;
2851 		}
2852 		if (!--sc->nr_to_scan)
2853 			break;
2854 	}
2855 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2856 
2857 	list_for_each_safe(pos, next, &list) {
2858 		page = list_entry((void *)pos, struct page, mapping);
2859 		if (!trylock_page(page))
2860 			goto next;
2861 		/* split_huge_page() removes page from list on success */
2862 		if (!split_huge_page(page))
2863 			split++;
2864 		unlock_page(page);
2865 next:
2866 		put_page(page);
2867 	}
2868 
2869 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2870 	list_splice_tail(&list, &pgdata->split_queue);
2871 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2872 
2873 	/*
2874 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2875 	 * This can happen if pages were freed under us.
2876 	 */
2877 	if (!split && list_empty(&pgdata->split_queue))
2878 		return SHRINK_STOP;
2879 	return split;
2880 }
2881 
2882 static struct shrinker deferred_split_shrinker = {
2883 	.count_objects = deferred_split_count,
2884 	.scan_objects = deferred_split_scan,
2885 	.seeks = DEFAULT_SEEKS,
2886 	.flags = SHRINKER_NUMA_AWARE,
2887 };
2888 
2889 #ifdef CONFIG_DEBUG_FS
2890 static int split_huge_pages_set(void *data, u64 val)
2891 {
2892 	struct zone *zone;
2893 	struct page *page;
2894 	unsigned long pfn, max_zone_pfn;
2895 	unsigned long total = 0, split = 0;
2896 
2897 	if (val != 1)
2898 		return -EINVAL;
2899 
2900 	for_each_populated_zone(zone) {
2901 		max_zone_pfn = zone_end_pfn(zone);
2902 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2903 			if (!pfn_valid(pfn))
2904 				continue;
2905 
2906 			page = pfn_to_page(pfn);
2907 			if (!get_page_unless_zero(page))
2908 				continue;
2909 
2910 			if (zone != page_zone(page))
2911 				goto next;
2912 
2913 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2914 				goto next;
2915 
2916 			total++;
2917 			lock_page(page);
2918 			if (!split_huge_page(page))
2919 				split++;
2920 			unlock_page(page);
2921 next:
2922 			put_page(page);
2923 		}
2924 	}
2925 
2926 	pr_info("%lu of %lu THP split\n", split, total);
2927 
2928 	return 0;
2929 }
2930 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2931 		"%llu\n");
2932 
2933 static int __init split_huge_pages_debugfs(void)
2934 {
2935 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2936 			    &split_huge_pages_fops);
2937 	return 0;
2938 }
2939 late_initcall(split_huge_pages_debugfs);
2940 #endif
2941 
2942 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2943 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2944 		struct page *page)
2945 {
2946 	struct vm_area_struct *vma = pvmw->vma;
2947 	struct mm_struct *mm = vma->vm_mm;
2948 	unsigned long address = pvmw->address;
2949 	pmd_t pmdval;
2950 	swp_entry_t entry;
2951 	pmd_t pmdswp;
2952 
2953 	if (!(pvmw->pmd && !pvmw->pte))
2954 		return;
2955 
2956 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2957 	pmdval = *pvmw->pmd;
2958 	pmdp_invalidate(vma, address, pvmw->pmd);
2959 	if (pmd_dirty(pmdval))
2960 		set_page_dirty(page);
2961 	entry = make_migration_entry(page, pmd_write(pmdval));
2962 	pmdswp = swp_entry_to_pmd(entry);
2963 	if (pmd_soft_dirty(pmdval))
2964 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2965 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2966 	page_remove_rmap(page, true);
2967 	put_page(page);
2968 }
2969 
2970 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2971 {
2972 	struct vm_area_struct *vma = pvmw->vma;
2973 	struct mm_struct *mm = vma->vm_mm;
2974 	unsigned long address = pvmw->address;
2975 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2976 	pmd_t pmde;
2977 	swp_entry_t entry;
2978 
2979 	if (!(pvmw->pmd && !pvmw->pte))
2980 		return;
2981 
2982 	entry = pmd_to_swp_entry(*pvmw->pmd);
2983 	get_page(new);
2984 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2985 	if (pmd_swp_soft_dirty(*pvmw->pmd))
2986 		pmde = pmd_mksoft_dirty(pmde);
2987 	if (is_write_migration_entry(entry))
2988 		pmde = maybe_pmd_mkwrite(pmde, vma);
2989 
2990 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2991 	if (PageAnon(new))
2992 		page_add_anon_rmap(new, vma, mmun_start, true);
2993 	else
2994 		page_add_file_rmap(new, true);
2995 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2996 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2997 		mlock_vma_page(new);
2998 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2999 }
3000 #endif
3001