xref: /openbmc/linux/mm/huge_memory.c (revision 63dc02bd)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <asm/tlb.h>
21 #include <asm/pgalloc.h>
22 #include "internal.h"
23 
24 /*
25  * By default transparent hugepage support is enabled for all mappings
26  * and khugepaged scans all mappings. Defrag is only invoked by
27  * khugepaged hugepage allocations and by page faults inside
28  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29  * allocations.
30  */
31 unsigned long transparent_hugepage_flags __read_mostly =
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
34 #endif
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37 #endif
38 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40 
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43 static unsigned int khugepaged_pages_collapsed;
44 static unsigned int khugepaged_full_scans;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48 static struct task_struct *khugepaged_thread __read_mostly;
49 static DEFINE_MUTEX(khugepaged_mutex);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52 /*
53  * default collapse hugepages if there is at least one pte mapped like
54  * it would have happened if the vma was large enough during page
55  * fault.
56  */
57 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58 
59 static int khugepaged(void *none);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
63 
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head *mm_slots_hash __read_mostly;
66 static struct kmem_cache *mm_slot_cache __read_mostly;
67 
68 /**
69  * struct mm_slot - hash lookup from mm to mm_slot
70  * @hash: hash collision list
71  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72  * @mm: the mm that this information is valid for
73  */
74 struct mm_slot {
75 	struct hlist_node hash;
76 	struct list_head mm_node;
77 	struct mm_struct *mm;
78 };
79 
80 /**
81  * struct khugepaged_scan - cursor for scanning
82  * @mm_head: the head of the mm list to scan
83  * @mm_slot: the current mm_slot we are scanning
84  * @address: the next address inside that to be scanned
85  *
86  * There is only the one khugepaged_scan instance of this cursor structure.
87  */
88 struct khugepaged_scan {
89 	struct list_head mm_head;
90 	struct mm_slot *mm_slot;
91 	unsigned long address;
92 };
93 static struct khugepaged_scan khugepaged_scan = {
94 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95 };
96 
97 
98 static int set_recommended_min_free_kbytes(void)
99 {
100 	struct zone *zone;
101 	int nr_zones = 0;
102 	unsigned long recommended_min;
103 	extern int min_free_kbytes;
104 
105 	if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
106 		      &transparent_hugepage_flags) &&
107 	    !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
108 		      &transparent_hugepage_flags))
109 		return 0;
110 
111 	for_each_populated_zone(zone)
112 		nr_zones++;
113 
114 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
115 	recommended_min = pageblock_nr_pages * nr_zones * 2;
116 
117 	/*
118 	 * Make sure that on average at least two pageblocks are almost free
119 	 * of another type, one for a migratetype to fall back to and a
120 	 * second to avoid subsequent fallbacks of other types There are 3
121 	 * MIGRATE_TYPES we care about.
122 	 */
123 	recommended_min += pageblock_nr_pages * nr_zones *
124 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
125 
126 	/* don't ever allow to reserve more than 5% of the lowmem */
127 	recommended_min = min(recommended_min,
128 			      (unsigned long) nr_free_buffer_pages() / 20);
129 	recommended_min <<= (PAGE_SHIFT-10);
130 
131 	if (recommended_min > min_free_kbytes)
132 		min_free_kbytes = recommended_min;
133 	setup_per_zone_wmarks();
134 	return 0;
135 }
136 late_initcall(set_recommended_min_free_kbytes);
137 
138 static int start_khugepaged(void)
139 {
140 	int err = 0;
141 	if (khugepaged_enabled()) {
142 		int wakeup;
143 		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
144 			err = -ENOMEM;
145 			goto out;
146 		}
147 		mutex_lock(&khugepaged_mutex);
148 		if (!khugepaged_thread)
149 			khugepaged_thread = kthread_run(khugepaged, NULL,
150 							"khugepaged");
151 		if (unlikely(IS_ERR(khugepaged_thread))) {
152 			printk(KERN_ERR
153 			       "khugepaged: kthread_run(khugepaged) failed\n");
154 			err = PTR_ERR(khugepaged_thread);
155 			khugepaged_thread = NULL;
156 		}
157 		wakeup = !list_empty(&khugepaged_scan.mm_head);
158 		mutex_unlock(&khugepaged_mutex);
159 		if (wakeup)
160 			wake_up_interruptible(&khugepaged_wait);
161 
162 		set_recommended_min_free_kbytes();
163 	} else
164 		/* wakeup to exit */
165 		wake_up_interruptible(&khugepaged_wait);
166 out:
167 	return err;
168 }
169 
170 #ifdef CONFIG_SYSFS
171 
172 static ssize_t double_flag_show(struct kobject *kobj,
173 				struct kobj_attribute *attr, char *buf,
174 				enum transparent_hugepage_flag enabled,
175 				enum transparent_hugepage_flag req_madv)
176 {
177 	if (test_bit(enabled, &transparent_hugepage_flags)) {
178 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
179 		return sprintf(buf, "[always] madvise never\n");
180 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
181 		return sprintf(buf, "always [madvise] never\n");
182 	else
183 		return sprintf(buf, "always madvise [never]\n");
184 }
185 static ssize_t double_flag_store(struct kobject *kobj,
186 				 struct kobj_attribute *attr,
187 				 const char *buf, size_t count,
188 				 enum transparent_hugepage_flag enabled,
189 				 enum transparent_hugepage_flag req_madv)
190 {
191 	if (!memcmp("always", buf,
192 		    min(sizeof("always")-1, count))) {
193 		set_bit(enabled, &transparent_hugepage_flags);
194 		clear_bit(req_madv, &transparent_hugepage_flags);
195 	} else if (!memcmp("madvise", buf,
196 			   min(sizeof("madvise")-1, count))) {
197 		clear_bit(enabled, &transparent_hugepage_flags);
198 		set_bit(req_madv, &transparent_hugepage_flags);
199 	} else if (!memcmp("never", buf,
200 			   min(sizeof("never")-1, count))) {
201 		clear_bit(enabled, &transparent_hugepage_flags);
202 		clear_bit(req_madv, &transparent_hugepage_flags);
203 	} else
204 		return -EINVAL;
205 
206 	return count;
207 }
208 
209 static ssize_t enabled_show(struct kobject *kobj,
210 			    struct kobj_attribute *attr, char *buf)
211 {
212 	return double_flag_show(kobj, attr, buf,
213 				TRANSPARENT_HUGEPAGE_FLAG,
214 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
215 }
216 static ssize_t enabled_store(struct kobject *kobj,
217 			     struct kobj_attribute *attr,
218 			     const char *buf, size_t count)
219 {
220 	ssize_t ret;
221 
222 	ret = double_flag_store(kobj, attr, buf, count,
223 				TRANSPARENT_HUGEPAGE_FLAG,
224 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
225 
226 	if (ret > 0) {
227 		int err = start_khugepaged();
228 		if (err)
229 			ret = err;
230 	}
231 
232 	if (ret > 0 &&
233 	    (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
234 		      &transparent_hugepage_flags) ||
235 	     test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
236 		      &transparent_hugepage_flags)))
237 		set_recommended_min_free_kbytes();
238 
239 	return ret;
240 }
241 static struct kobj_attribute enabled_attr =
242 	__ATTR(enabled, 0644, enabled_show, enabled_store);
243 
244 static ssize_t single_flag_show(struct kobject *kobj,
245 				struct kobj_attribute *attr, char *buf,
246 				enum transparent_hugepage_flag flag)
247 {
248 	return sprintf(buf, "%d\n",
249 		       !!test_bit(flag, &transparent_hugepage_flags));
250 }
251 
252 static ssize_t single_flag_store(struct kobject *kobj,
253 				 struct kobj_attribute *attr,
254 				 const char *buf, size_t count,
255 				 enum transparent_hugepage_flag flag)
256 {
257 	unsigned long value;
258 	int ret;
259 
260 	ret = kstrtoul(buf, 10, &value);
261 	if (ret < 0)
262 		return ret;
263 	if (value > 1)
264 		return -EINVAL;
265 
266 	if (value)
267 		set_bit(flag, &transparent_hugepage_flags);
268 	else
269 		clear_bit(flag, &transparent_hugepage_flags);
270 
271 	return count;
272 }
273 
274 /*
275  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
276  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
277  * memory just to allocate one more hugepage.
278  */
279 static ssize_t defrag_show(struct kobject *kobj,
280 			   struct kobj_attribute *attr, char *buf)
281 {
282 	return double_flag_show(kobj, attr, buf,
283 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
284 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
285 }
286 static ssize_t defrag_store(struct kobject *kobj,
287 			    struct kobj_attribute *attr,
288 			    const char *buf, size_t count)
289 {
290 	return double_flag_store(kobj, attr, buf, count,
291 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
292 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
293 }
294 static struct kobj_attribute defrag_attr =
295 	__ATTR(defrag, 0644, defrag_show, defrag_store);
296 
297 #ifdef CONFIG_DEBUG_VM
298 static ssize_t debug_cow_show(struct kobject *kobj,
299 				struct kobj_attribute *attr, char *buf)
300 {
301 	return single_flag_show(kobj, attr, buf,
302 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
303 }
304 static ssize_t debug_cow_store(struct kobject *kobj,
305 			       struct kobj_attribute *attr,
306 			       const char *buf, size_t count)
307 {
308 	return single_flag_store(kobj, attr, buf, count,
309 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
310 }
311 static struct kobj_attribute debug_cow_attr =
312 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313 #endif /* CONFIG_DEBUG_VM */
314 
315 static struct attribute *hugepage_attr[] = {
316 	&enabled_attr.attr,
317 	&defrag_attr.attr,
318 #ifdef CONFIG_DEBUG_VM
319 	&debug_cow_attr.attr,
320 #endif
321 	NULL,
322 };
323 
324 static struct attribute_group hugepage_attr_group = {
325 	.attrs = hugepage_attr,
326 };
327 
328 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
329 					 struct kobj_attribute *attr,
330 					 char *buf)
331 {
332 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
333 }
334 
335 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
336 					  struct kobj_attribute *attr,
337 					  const char *buf, size_t count)
338 {
339 	unsigned long msecs;
340 	int err;
341 
342 	err = strict_strtoul(buf, 10, &msecs);
343 	if (err || msecs > UINT_MAX)
344 		return -EINVAL;
345 
346 	khugepaged_scan_sleep_millisecs = msecs;
347 	wake_up_interruptible(&khugepaged_wait);
348 
349 	return count;
350 }
351 static struct kobj_attribute scan_sleep_millisecs_attr =
352 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
353 	       scan_sleep_millisecs_store);
354 
355 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
356 					  struct kobj_attribute *attr,
357 					  char *buf)
358 {
359 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
360 }
361 
362 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
363 					   struct kobj_attribute *attr,
364 					   const char *buf, size_t count)
365 {
366 	unsigned long msecs;
367 	int err;
368 
369 	err = strict_strtoul(buf, 10, &msecs);
370 	if (err || msecs > UINT_MAX)
371 		return -EINVAL;
372 
373 	khugepaged_alloc_sleep_millisecs = msecs;
374 	wake_up_interruptible(&khugepaged_wait);
375 
376 	return count;
377 }
378 static struct kobj_attribute alloc_sleep_millisecs_attr =
379 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
380 	       alloc_sleep_millisecs_store);
381 
382 static ssize_t pages_to_scan_show(struct kobject *kobj,
383 				  struct kobj_attribute *attr,
384 				  char *buf)
385 {
386 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
387 }
388 static ssize_t pages_to_scan_store(struct kobject *kobj,
389 				   struct kobj_attribute *attr,
390 				   const char *buf, size_t count)
391 {
392 	int err;
393 	unsigned long pages;
394 
395 	err = strict_strtoul(buf, 10, &pages);
396 	if (err || !pages || pages > UINT_MAX)
397 		return -EINVAL;
398 
399 	khugepaged_pages_to_scan = pages;
400 
401 	return count;
402 }
403 static struct kobj_attribute pages_to_scan_attr =
404 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
405 	       pages_to_scan_store);
406 
407 static ssize_t pages_collapsed_show(struct kobject *kobj,
408 				    struct kobj_attribute *attr,
409 				    char *buf)
410 {
411 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
412 }
413 static struct kobj_attribute pages_collapsed_attr =
414 	__ATTR_RO(pages_collapsed);
415 
416 static ssize_t full_scans_show(struct kobject *kobj,
417 			       struct kobj_attribute *attr,
418 			       char *buf)
419 {
420 	return sprintf(buf, "%u\n", khugepaged_full_scans);
421 }
422 static struct kobj_attribute full_scans_attr =
423 	__ATTR_RO(full_scans);
424 
425 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
426 				      struct kobj_attribute *attr, char *buf)
427 {
428 	return single_flag_show(kobj, attr, buf,
429 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
430 }
431 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
432 				       struct kobj_attribute *attr,
433 				       const char *buf, size_t count)
434 {
435 	return single_flag_store(kobj, attr, buf, count,
436 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
437 }
438 static struct kobj_attribute khugepaged_defrag_attr =
439 	__ATTR(defrag, 0644, khugepaged_defrag_show,
440 	       khugepaged_defrag_store);
441 
442 /*
443  * max_ptes_none controls if khugepaged should collapse hugepages over
444  * any unmapped ptes in turn potentially increasing the memory
445  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
446  * reduce the available free memory in the system as it
447  * runs. Increasing max_ptes_none will instead potentially reduce the
448  * free memory in the system during the khugepaged scan.
449  */
450 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
451 					     struct kobj_attribute *attr,
452 					     char *buf)
453 {
454 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
455 }
456 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
457 					      struct kobj_attribute *attr,
458 					      const char *buf, size_t count)
459 {
460 	int err;
461 	unsigned long max_ptes_none;
462 
463 	err = strict_strtoul(buf, 10, &max_ptes_none);
464 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
465 		return -EINVAL;
466 
467 	khugepaged_max_ptes_none = max_ptes_none;
468 
469 	return count;
470 }
471 static struct kobj_attribute khugepaged_max_ptes_none_attr =
472 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
473 	       khugepaged_max_ptes_none_store);
474 
475 static struct attribute *khugepaged_attr[] = {
476 	&khugepaged_defrag_attr.attr,
477 	&khugepaged_max_ptes_none_attr.attr,
478 	&pages_to_scan_attr.attr,
479 	&pages_collapsed_attr.attr,
480 	&full_scans_attr.attr,
481 	&scan_sleep_millisecs_attr.attr,
482 	&alloc_sleep_millisecs_attr.attr,
483 	NULL,
484 };
485 
486 static struct attribute_group khugepaged_attr_group = {
487 	.attrs = khugepaged_attr,
488 	.name = "khugepaged",
489 };
490 
491 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
492 {
493 	int err;
494 
495 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
496 	if (unlikely(!*hugepage_kobj)) {
497 		printk(KERN_ERR "hugepage: failed kobject create\n");
498 		return -ENOMEM;
499 	}
500 
501 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
502 	if (err) {
503 		printk(KERN_ERR "hugepage: failed register hugeage group\n");
504 		goto delete_obj;
505 	}
506 
507 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
508 	if (err) {
509 		printk(KERN_ERR "hugepage: failed register hugeage group\n");
510 		goto remove_hp_group;
511 	}
512 
513 	return 0;
514 
515 remove_hp_group:
516 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
517 delete_obj:
518 	kobject_put(*hugepage_kobj);
519 	return err;
520 }
521 
522 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
523 {
524 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
525 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
526 	kobject_put(hugepage_kobj);
527 }
528 #else
529 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
530 {
531 	return 0;
532 }
533 
534 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
535 {
536 }
537 #endif /* CONFIG_SYSFS */
538 
539 static int __init hugepage_init(void)
540 {
541 	int err;
542 	struct kobject *hugepage_kobj;
543 
544 	if (!has_transparent_hugepage()) {
545 		transparent_hugepage_flags = 0;
546 		return -EINVAL;
547 	}
548 
549 	err = hugepage_init_sysfs(&hugepage_kobj);
550 	if (err)
551 		return err;
552 
553 	err = khugepaged_slab_init();
554 	if (err)
555 		goto out;
556 
557 	err = mm_slots_hash_init();
558 	if (err) {
559 		khugepaged_slab_free();
560 		goto out;
561 	}
562 
563 	/*
564 	 * By default disable transparent hugepages on smaller systems,
565 	 * where the extra memory used could hurt more than TLB overhead
566 	 * is likely to save.  The admin can still enable it through /sys.
567 	 */
568 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
569 		transparent_hugepage_flags = 0;
570 
571 	start_khugepaged();
572 
573 	set_recommended_min_free_kbytes();
574 
575 	return 0;
576 out:
577 	hugepage_exit_sysfs(hugepage_kobj);
578 	return err;
579 }
580 module_init(hugepage_init)
581 
582 static int __init setup_transparent_hugepage(char *str)
583 {
584 	int ret = 0;
585 	if (!str)
586 		goto out;
587 	if (!strcmp(str, "always")) {
588 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
589 			&transparent_hugepage_flags);
590 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
591 			  &transparent_hugepage_flags);
592 		ret = 1;
593 	} else if (!strcmp(str, "madvise")) {
594 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
595 			  &transparent_hugepage_flags);
596 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
597 			&transparent_hugepage_flags);
598 		ret = 1;
599 	} else if (!strcmp(str, "never")) {
600 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
601 			  &transparent_hugepage_flags);
602 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
603 			  &transparent_hugepage_flags);
604 		ret = 1;
605 	}
606 out:
607 	if (!ret)
608 		printk(KERN_WARNING
609 		       "transparent_hugepage= cannot parse, ignored\n");
610 	return ret;
611 }
612 __setup("transparent_hugepage=", setup_transparent_hugepage);
613 
614 static void prepare_pmd_huge_pte(pgtable_t pgtable,
615 				 struct mm_struct *mm)
616 {
617 	assert_spin_locked(&mm->page_table_lock);
618 
619 	/* FIFO */
620 	if (!mm->pmd_huge_pte)
621 		INIT_LIST_HEAD(&pgtable->lru);
622 	else
623 		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
624 	mm->pmd_huge_pte = pgtable;
625 }
626 
627 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
628 {
629 	if (likely(vma->vm_flags & VM_WRITE))
630 		pmd = pmd_mkwrite(pmd);
631 	return pmd;
632 }
633 
634 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
635 					struct vm_area_struct *vma,
636 					unsigned long haddr, pmd_t *pmd,
637 					struct page *page)
638 {
639 	int ret = 0;
640 	pgtable_t pgtable;
641 
642 	VM_BUG_ON(!PageCompound(page));
643 	pgtable = pte_alloc_one(mm, haddr);
644 	if (unlikely(!pgtable)) {
645 		mem_cgroup_uncharge_page(page);
646 		put_page(page);
647 		return VM_FAULT_OOM;
648 	}
649 
650 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
651 	__SetPageUptodate(page);
652 
653 	spin_lock(&mm->page_table_lock);
654 	if (unlikely(!pmd_none(*pmd))) {
655 		spin_unlock(&mm->page_table_lock);
656 		mem_cgroup_uncharge_page(page);
657 		put_page(page);
658 		pte_free(mm, pgtable);
659 	} else {
660 		pmd_t entry;
661 		entry = mk_pmd(page, vma->vm_page_prot);
662 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
663 		entry = pmd_mkhuge(entry);
664 		/*
665 		 * The spinlocking to take the lru_lock inside
666 		 * page_add_new_anon_rmap() acts as a full memory
667 		 * barrier to be sure clear_huge_page writes become
668 		 * visible after the set_pmd_at() write.
669 		 */
670 		page_add_new_anon_rmap(page, vma, haddr);
671 		set_pmd_at(mm, haddr, pmd, entry);
672 		prepare_pmd_huge_pte(pgtable, mm);
673 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
674 		mm->nr_ptes++;
675 		spin_unlock(&mm->page_table_lock);
676 	}
677 
678 	return ret;
679 }
680 
681 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
682 {
683 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
684 }
685 
686 static inline struct page *alloc_hugepage_vma(int defrag,
687 					      struct vm_area_struct *vma,
688 					      unsigned long haddr, int nd,
689 					      gfp_t extra_gfp)
690 {
691 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
692 			       HPAGE_PMD_ORDER, vma, haddr, nd);
693 }
694 
695 #ifndef CONFIG_NUMA
696 static inline struct page *alloc_hugepage(int defrag)
697 {
698 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
699 			   HPAGE_PMD_ORDER);
700 }
701 #endif
702 
703 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
704 			       unsigned long address, pmd_t *pmd,
705 			       unsigned int flags)
706 {
707 	struct page *page;
708 	unsigned long haddr = address & HPAGE_PMD_MASK;
709 	pte_t *pte;
710 
711 	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
712 		if (unlikely(anon_vma_prepare(vma)))
713 			return VM_FAULT_OOM;
714 		if (unlikely(khugepaged_enter(vma)))
715 			return VM_FAULT_OOM;
716 		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
717 					  vma, haddr, numa_node_id(), 0);
718 		if (unlikely(!page)) {
719 			count_vm_event(THP_FAULT_FALLBACK);
720 			goto out;
721 		}
722 		count_vm_event(THP_FAULT_ALLOC);
723 		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
724 			put_page(page);
725 			goto out;
726 		}
727 
728 		return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
729 	}
730 out:
731 	/*
732 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
733 	 * run pte_offset_map on the pmd, if an huge pmd could
734 	 * materialize from under us from a different thread.
735 	 */
736 	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
737 		return VM_FAULT_OOM;
738 	/* if an huge pmd materialized from under us just retry later */
739 	if (unlikely(pmd_trans_huge(*pmd)))
740 		return 0;
741 	/*
742 	 * A regular pmd is established and it can't morph into a huge pmd
743 	 * from under us anymore at this point because we hold the mmap_sem
744 	 * read mode and khugepaged takes it in write mode. So now it's
745 	 * safe to run pte_offset_map().
746 	 */
747 	pte = pte_offset_map(pmd, address);
748 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
749 }
750 
751 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
752 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
753 		  struct vm_area_struct *vma)
754 {
755 	struct page *src_page;
756 	pmd_t pmd;
757 	pgtable_t pgtable;
758 	int ret;
759 
760 	ret = -ENOMEM;
761 	pgtable = pte_alloc_one(dst_mm, addr);
762 	if (unlikely(!pgtable))
763 		goto out;
764 
765 	spin_lock(&dst_mm->page_table_lock);
766 	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
767 
768 	ret = -EAGAIN;
769 	pmd = *src_pmd;
770 	if (unlikely(!pmd_trans_huge(pmd))) {
771 		pte_free(dst_mm, pgtable);
772 		goto out_unlock;
773 	}
774 	if (unlikely(pmd_trans_splitting(pmd))) {
775 		/* split huge page running from under us */
776 		spin_unlock(&src_mm->page_table_lock);
777 		spin_unlock(&dst_mm->page_table_lock);
778 		pte_free(dst_mm, pgtable);
779 
780 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
781 		goto out;
782 	}
783 	src_page = pmd_page(pmd);
784 	VM_BUG_ON(!PageHead(src_page));
785 	get_page(src_page);
786 	page_dup_rmap(src_page);
787 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
788 
789 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
790 	pmd = pmd_mkold(pmd_wrprotect(pmd));
791 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
792 	prepare_pmd_huge_pte(pgtable, dst_mm);
793 	dst_mm->nr_ptes++;
794 
795 	ret = 0;
796 out_unlock:
797 	spin_unlock(&src_mm->page_table_lock);
798 	spin_unlock(&dst_mm->page_table_lock);
799 out:
800 	return ret;
801 }
802 
803 /* no "address" argument so destroys page coloring of some arch */
804 pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
805 {
806 	pgtable_t pgtable;
807 
808 	assert_spin_locked(&mm->page_table_lock);
809 
810 	/* FIFO */
811 	pgtable = mm->pmd_huge_pte;
812 	if (list_empty(&pgtable->lru))
813 		mm->pmd_huge_pte = NULL;
814 	else {
815 		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
816 					      struct page, lru);
817 		list_del(&pgtable->lru);
818 	}
819 	return pgtable;
820 }
821 
822 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
823 					struct vm_area_struct *vma,
824 					unsigned long address,
825 					pmd_t *pmd, pmd_t orig_pmd,
826 					struct page *page,
827 					unsigned long haddr)
828 {
829 	pgtable_t pgtable;
830 	pmd_t _pmd;
831 	int ret = 0, i;
832 	struct page **pages;
833 
834 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
835 			GFP_KERNEL);
836 	if (unlikely(!pages)) {
837 		ret |= VM_FAULT_OOM;
838 		goto out;
839 	}
840 
841 	for (i = 0; i < HPAGE_PMD_NR; i++) {
842 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
843 					       __GFP_OTHER_NODE,
844 					       vma, address, page_to_nid(page));
845 		if (unlikely(!pages[i] ||
846 			     mem_cgroup_newpage_charge(pages[i], mm,
847 						       GFP_KERNEL))) {
848 			if (pages[i])
849 				put_page(pages[i]);
850 			mem_cgroup_uncharge_start();
851 			while (--i >= 0) {
852 				mem_cgroup_uncharge_page(pages[i]);
853 				put_page(pages[i]);
854 			}
855 			mem_cgroup_uncharge_end();
856 			kfree(pages);
857 			ret |= VM_FAULT_OOM;
858 			goto out;
859 		}
860 	}
861 
862 	for (i = 0; i < HPAGE_PMD_NR; i++) {
863 		copy_user_highpage(pages[i], page + i,
864 				   haddr + PAGE_SIZE * i, vma);
865 		__SetPageUptodate(pages[i]);
866 		cond_resched();
867 	}
868 
869 	spin_lock(&mm->page_table_lock);
870 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
871 		goto out_free_pages;
872 	VM_BUG_ON(!PageHead(page));
873 
874 	pmdp_clear_flush_notify(vma, haddr, pmd);
875 	/* leave pmd empty until pte is filled */
876 
877 	pgtable = get_pmd_huge_pte(mm);
878 	pmd_populate(mm, &_pmd, pgtable);
879 
880 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
881 		pte_t *pte, entry;
882 		entry = mk_pte(pages[i], vma->vm_page_prot);
883 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
884 		page_add_new_anon_rmap(pages[i], vma, haddr);
885 		pte = pte_offset_map(&_pmd, haddr);
886 		VM_BUG_ON(!pte_none(*pte));
887 		set_pte_at(mm, haddr, pte, entry);
888 		pte_unmap(pte);
889 	}
890 	kfree(pages);
891 
892 	smp_wmb(); /* make pte visible before pmd */
893 	pmd_populate(mm, pmd, pgtable);
894 	page_remove_rmap(page);
895 	spin_unlock(&mm->page_table_lock);
896 
897 	ret |= VM_FAULT_WRITE;
898 	put_page(page);
899 
900 out:
901 	return ret;
902 
903 out_free_pages:
904 	spin_unlock(&mm->page_table_lock);
905 	mem_cgroup_uncharge_start();
906 	for (i = 0; i < HPAGE_PMD_NR; i++) {
907 		mem_cgroup_uncharge_page(pages[i]);
908 		put_page(pages[i]);
909 	}
910 	mem_cgroup_uncharge_end();
911 	kfree(pages);
912 	goto out;
913 }
914 
915 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
916 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
917 {
918 	int ret = 0;
919 	struct page *page, *new_page;
920 	unsigned long haddr;
921 
922 	VM_BUG_ON(!vma->anon_vma);
923 	spin_lock(&mm->page_table_lock);
924 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
925 		goto out_unlock;
926 
927 	page = pmd_page(orig_pmd);
928 	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
929 	haddr = address & HPAGE_PMD_MASK;
930 	if (page_mapcount(page) == 1) {
931 		pmd_t entry;
932 		entry = pmd_mkyoung(orig_pmd);
933 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
934 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
935 			update_mmu_cache(vma, address, entry);
936 		ret |= VM_FAULT_WRITE;
937 		goto out_unlock;
938 	}
939 	get_page(page);
940 	spin_unlock(&mm->page_table_lock);
941 
942 	if (transparent_hugepage_enabled(vma) &&
943 	    !transparent_hugepage_debug_cow())
944 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
945 					      vma, haddr, numa_node_id(), 0);
946 	else
947 		new_page = NULL;
948 
949 	if (unlikely(!new_page)) {
950 		count_vm_event(THP_FAULT_FALLBACK);
951 		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
952 						   pmd, orig_pmd, page, haddr);
953 		put_page(page);
954 		goto out;
955 	}
956 	count_vm_event(THP_FAULT_ALLOC);
957 
958 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
959 		put_page(new_page);
960 		put_page(page);
961 		ret |= VM_FAULT_OOM;
962 		goto out;
963 	}
964 
965 	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
966 	__SetPageUptodate(new_page);
967 
968 	spin_lock(&mm->page_table_lock);
969 	put_page(page);
970 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
971 		mem_cgroup_uncharge_page(new_page);
972 		put_page(new_page);
973 	} else {
974 		pmd_t entry;
975 		VM_BUG_ON(!PageHead(page));
976 		entry = mk_pmd(new_page, vma->vm_page_prot);
977 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
978 		entry = pmd_mkhuge(entry);
979 		pmdp_clear_flush_notify(vma, haddr, pmd);
980 		page_add_new_anon_rmap(new_page, vma, haddr);
981 		set_pmd_at(mm, haddr, pmd, entry);
982 		update_mmu_cache(vma, address, entry);
983 		page_remove_rmap(page);
984 		put_page(page);
985 		ret |= VM_FAULT_WRITE;
986 	}
987 out_unlock:
988 	spin_unlock(&mm->page_table_lock);
989 out:
990 	return ret;
991 }
992 
993 struct page *follow_trans_huge_pmd(struct mm_struct *mm,
994 				   unsigned long addr,
995 				   pmd_t *pmd,
996 				   unsigned int flags)
997 {
998 	struct page *page = NULL;
999 
1000 	assert_spin_locked(&mm->page_table_lock);
1001 
1002 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1003 		goto out;
1004 
1005 	page = pmd_page(*pmd);
1006 	VM_BUG_ON(!PageHead(page));
1007 	if (flags & FOLL_TOUCH) {
1008 		pmd_t _pmd;
1009 		/*
1010 		 * We should set the dirty bit only for FOLL_WRITE but
1011 		 * for now the dirty bit in the pmd is meaningless.
1012 		 * And if the dirty bit will become meaningful and
1013 		 * we'll only set it with FOLL_WRITE, an atomic
1014 		 * set_bit will be required on the pmd to set the
1015 		 * young bit, instead of the current set_pmd_at.
1016 		 */
1017 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1018 		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1019 	}
1020 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1021 	VM_BUG_ON(!PageCompound(page));
1022 	if (flags & FOLL_GET)
1023 		get_page_foll(page);
1024 
1025 out:
1026 	return page;
1027 }
1028 
1029 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1030 		 pmd_t *pmd, unsigned long addr)
1031 {
1032 	int ret = 0;
1033 
1034 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1035 		struct page *page;
1036 		pgtable_t pgtable;
1037 		pgtable = get_pmd_huge_pte(tlb->mm);
1038 		page = pmd_page(*pmd);
1039 		pmd_clear(pmd);
1040 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1041 		page_remove_rmap(page);
1042 		VM_BUG_ON(page_mapcount(page) < 0);
1043 		add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1044 		VM_BUG_ON(!PageHead(page));
1045 		tlb->mm->nr_ptes--;
1046 		spin_unlock(&tlb->mm->page_table_lock);
1047 		tlb_remove_page(tlb, page);
1048 		pte_free(tlb->mm, pgtable);
1049 		ret = 1;
1050 	}
1051 	return ret;
1052 }
1053 
1054 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1055 		unsigned long addr, unsigned long end,
1056 		unsigned char *vec)
1057 {
1058 	int ret = 0;
1059 
1060 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1061 		/*
1062 		 * All logical pages in the range are present
1063 		 * if backed by a huge page.
1064 		 */
1065 		spin_unlock(&vma->vm_mm->page_table_lock);
1066 		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1067 		ret = 1;
1068 	}
1069 
1070 	return ret;
1071 }
1072 
1073 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1074 		  unsigned long old_addr,
1075 		  unsigned long new_addr, unsigned long old_end,
1076 		  pmd_t *old_pmd, pmd_t *new_pmd)
1077 {
1078 	int ret = 0;
1079 	pmd_t pmd;
1080 
1081 	struct mm_struct *mm = vma->vm_mm;
1082 
1083 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1084 	    (new_addr & ~HPAGE_PMD_MASK) ||
1085 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1086 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1087 		goto out;
1088 
1089 	/*
1090 	 * The destination pmd shouldn't be established, free_pgtables()
1091 	 * should have release it.
1092 	 */
1093 	if (WARN_ON(!pmd_none(*new_pmd))) {
1094 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1095 		goto out;
1096 	}
1097 
1098 	ret = __pmd_trans_huge_lock(old_pmd, vma);
1099 	if (ret == 1) {
1100 		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1101 		VM_BUG_ON(!pmd_none(*new_pmd));
1102 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1103 		spin_unlock(&mm->page_table_lock);
1104 	}
1105 out:
1106 	return ret;
1107 }
1108 
1109 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1110 		unsigned long addr, pgprot_t newprot)
1111 {
1112 	struct mm_struct *mm = vma->vm_mm;
1113 	int ret = 0;
1114 
1115 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1116 		pmd_t entry;
1117 		entry = pmdp_get_and_clear(mm, addr, pmd);
1118 		entry = pmd_modify(entry, newprot);
1119 		set_pmd_at(mm, addr, pmd, entry);
1120 		spin_unlock(&vma->vm_mm->page_table_lock);
1121 		ret = 1;
1122 	}
1123 
1124 	return ret;
1125 }
1126 
1127 /*
1128  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1129  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1130  *
1131  * Note that if it returns 1, this routine returns without unlocking page
1132  * table locks. So callers must unlock them.
1133  */
1134 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1135 {
1136 	spin_lock(&vma->vm_mm->page_table_lock);
1137 	if (likely(pmd_trans_huge(*pmd))) {
1138 		if (unlikely(pmd_trans_splitting(*pmd))) {
1139 			spin_unlock(&vma->vm_mm->page_table_lock);
1140 			wait_split_huge_page(vma->anon_vma, pmd);
1141 			return -1;
1142 		} else {
1143 			/* Thp mapped by 'pmd' is stable, so we can
1144 			 * handle it as it is. */
1145 			return 1;
1146 		}
1147 	}
1148 	spin_unlock(&vma->vm_mm->page_table_lock);
1149 	return 0;
1150 }
1151 
1152 pmd_t *page_check_address_pmd(struct page *page,
1153 			      struct mm_struct *mm,
1154 			      unsigned long address,
1155 			      enum page_check_address_pmd_flag flag)
1156 {
1157 	pgd_t *pgd;
1158 	pud_t *pud;
1159 	pmd_t *pmd, *ret = NULL;
1160 
1161 	if (address & ~HPAGE_PMD_MASK)
1162 		goto out;
1163 
1164 	pgd = pgd_offset(mm, address);
1165 	if (!pgd_present(*pgd))
1166 		goto out;
1167 
1168 	pud = pud_offset(pgd, address);
1169 	if (!pud_present(*pud))
1170 		goto out;
1171 
1172 	pmd = pmd_offset(pud, address);
1173 	if (pmd_none(*pmd))
1174 		goto out;
1175 	if (pmd_page(*pmd) != page)
1176 		goto out;
1177 	/*
1178 	 * split_vma() may create temporary aliased mappings. There is
1179 	 * no risk as long as all huge pmd are found and have their
1180 	 * splitting bit set before __split_huge_page_refcount
1181 	 * runs. Finding the same huge pmd more than once during the
1182 	 * same rmap walk is not a problem.
1183 	 */
1184 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1185 	    pmd_trans_splitting(*pmd))
1186 		goto out;
1187 	if (pmd_trans_huge(*pmd)) {
1188 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1189 			  !pmd_trans_splitting(*pmd));
1190 		ret = pmd;
1191 	}
1192 out:
1193 	return ret;
1194 }
1195 
1196 static int __split_huge_page_splitting(struct page *page,
1197 				       struct vm_area_struct *vma,
1198 				       unsigned long address)
1199 {
1200 	struct mm_struct *mm = vma->vm_mm;
1201 	pmd_t *pmd;
1202 	int ret = 0;
1203 
1204 	spin_lock(&mm->page_table_lock);
1205 	pmd = page_check_address_pmd(page, mm, address,
1206 				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1207 	if (pmd) {
1208 		/*
1209 		 * We can't temporarily set the pmd to null in order
1210 		 * to split it, the pmd must remain marked huge at all
1211 		 * times or the VM won't take the pmd_trans_huge paths
1212 		 * and it won't wait on the anon_vma->root->mutex to
1213 		 * serialize against split_huge_page*.
1214 		 */
1215 		pmdp_splitting_flush_notify(vma, address, pmd);
1216 		ret = 1;
1217 	}
1218 	spin_unlock(&mm->page_table_lock);
1219 
1220 	return ret;
1221 }
1222 
1223 static void __split_huge_page_refcount(struct page *page)
1224 {
1225 	int i;
1226 	struct zone *zone = page_zone(page);
1227 	int tail_count = 0;
1228 
1229 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1230 	spin_lock_irq(&zone->lru_lock);
1231 	compound_lock(page);
1232 	/* complete memcg works before add pages to LRU */
1233 	mem_cgroup_split_huge_fixup(page);
1234 
1235 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1236 		struct page *page_tail = page + i;
1237 
1238 		/* tail_page->_mapcount cannot change */
1239 		BUG_ON(page_mapcount(page_tail) < 0);
1240 		tail_count += page_mapcount(page_tail);
1241 		/* check for overflow */
1242 		BUG_ON(tail_count < 0);
1243 		BUG_ON(atomic_read(&page_tail->_count) != 0);
1244 		/*
1245 		 * tail_page->_count is zero and not changing from
1246 		 * under us. But get_page_unless_zero() may be running
1247 		 * from under us on the tail_page. If we used
1248 		 * atomic_set() below instead of atomic_add(), we
1249 		 * would then run atomic_set() concurrently with
1250 		 * get_page_unless_zero(), and atomic_set() is
1251 		 * implemented in C not using locked ops. spin_unlock
1252 		 * on x86 sometime uses locked ops because of PPro
1253 		 * errata 66, 92, so unless somebody can guarantee
1254 		 * atomic_set() here would be safe on all archs (and
1255 		 * not only on x86), it's safer to use atomic_add().
1256 		 */
1257 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1258 			   &page_tail->_count);
1259 
1260 		/* after clearing PageTail the gup refcount can be released */
1261 		smp_mb();
1262 
1263 		/*
1264 		 * retain hwpoison flag of the poisoned tail page:
1265 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1266 		 *   by the memory-failure.
1267 		 */
1268 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1269 		page_tail->flags |= (page->flags &
1270 				     ((1L << PG_referenced) |
1271 				      (1L << PG_swapbacked) |
1272 				      (1L << PG_mlocked) |
1273 				      (1L << PG_uptodate)));
1274 		page_tail->flags |= (1L << PG_dirty);
1275 
1276 		/* clear PageTail before overwriting first_page */
1277 		smp_wmb();
1278 
1279 		/*
1280 		 * __split_huge_page_splitting() already set the
1281 		 * splitting bit in all pmd that could map this
1282 		 * hugepage, that will ensure no CPU can alter the
1283 		 * mapcount on the head page. The mapcount is only
1284 		 * accounted in the head page and it has to be
1285 		 * transferred to all tail pages in the below code. So
1286 		 * for this code to be safe, the split the mapcount
1287 		 * can't change. But that doesn't mean userland can't
1288 		 * keep changing and reading the page contents while
1289 		 * we transfer the mapcount, so the pmd splitting
1290 		 * status is achieved setting a reserved bit in the
1291 		 * pmd, not by clearing the present bit.
1292 		*/
1293 		page_tail->_mapcount = page->_mapcount;
1294 
1295 		BUG_ON(page_tail->mapping);
1296 		page_tail->mapping = page->mapping;
1297 
1298 		page_tail->index = page->index + i;
1299 
1300 		BUG_ON(!PageAnon(page_tail));
1301 		BUG_ON(!PageUptodate(page_tail));
1302 		BUG_ON(!PageDirty(page_tail));
1303 		BUG_ON(!PageSwapBacked(page_tail));
1304 
1305 
1306 		lru_add_page_tail(zone, page, page_tail);
1307 	}
1308 	atomic_sub(tail_count, &page->_count);
1309 	BUG_ON(atomic_read(&page->_count) <= 0);
1310 
1311 	__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1312 	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1313 
1314 	ClearPageCompound(page);
1315 	compound_unlock(page);
1316 	spin_unlock_irq(&zone->lru_lock);
1317 
1318 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1319 		struct page *page_tail = page + i;
1320 		BUG_ON(page_count(page_tail) <= 0);
1321 		/*
1322 		 * Tail pages may be freed if there wasn't any mapping
1323 		 * like if add_to_swap() is running on a lru page that
1324 		 * had its mapping zapped. And freeing these pages
1325 		 * requires taking the lru_lock so we do the put_page
1326 		 * of the tail pages after the split is complete.
1327 		 */
1328 		put_page(page_tail);
1329 	}
1330 
1331 	/*
1332 	 * Only the head page (now become a regular page) is required
1333 	 * to be pinned by the caller.
1334 	 */
1335 	BUG_ON(page_count(page) <= 0);
1336 }
1337 
1338 static int __split_huge_page_map(struct page *page,
1339 				 struct vm_area_struct *vma,
1340 				 unsigned long address)
1341 {
1342 	struct mm_struct *mm = vma->vm_mm;
1343 	pmd_t *pmd, _pmd;
1344 	int ret = 0, i;
1345 	pgtable_t pgtable;
1346 	unsigned long haddr;
1347 
1348 	spin_lock(&mm->page_table_lock);
1349 	pmd = page_check_address_pmd(page, mm, address,
1350 				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1351 	if (pmd) {
1352 		pgtable = get_pmd_huge_pte(mm);
1353 		pmd_populate(mm, &_pmd, pgtable);
1354 
1355 		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1356 		     i++, haddr += PAGE_SIZE) {
1357 			pte_t *pte, entry;
1358 			BUG_ON(PageCompound(page+i));
1359 			entry = mk_pte(page + i, vma->vm_page_prot);
1360 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1361 			if (!pmd_write(*pmd))
1362 				entry = pte_wrprotect(entry);
1363 			else
1364 				BUG_ON(page_mapcount(page) != 1);
1365 			if (!pmd_young(*pmd))
1366 				entry = pte_mkold(entry);
1367 			pte = pte_offset_map(&_pmd, haddr);
1368 			BUG_ON(!pte_none(*pte));
1369 			set_pte_at(mm, haddr, pte, entry);
1370 			pte_unmap(pte);
1371 		}
1372 
1373 		smp_wmb(); /* make pte visible before pmd */
1374 		/*
1375 		 * Up to this point the pmd is present and huge and
1376 		 * userland has the whole access to the hugepage
1377 		 * during the split (which happens in place). If we
1378 		 * overwrite the pmd with the not-huge version
1379 		 * pointing to the pte here (which of course we could
1380 		 * if all CPUs were bug free), userland could trigger
1381 		 * a small page size TLB miss on the small sized TLB
1382 		 * while the hugepage TLB entry is still established
1383 		 * in the huge TLB. Some CPU doesn't like that. See
1384 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1385 		 * Erratum 383 on page 93. Intel should be safe but is
1386 		 * also warns that it's only safe if the permission
1387 		 * and cache attributes of the two entries loaded in
1388 		 * the two TLB is identical (which should be the case
1389 		 * here). But it is generally safer to never allow
1390 		 * small and huge TLB entries for the same virtual
1391 		 * address to be loaded simultaneously. So instead of
1392 		 * doing "pmd_populate(); flush_tlb_range();" we first
1393 		 * mark the current pmd notpresent (atomically because
1394 		 * here the pmd_trans_huge and pmd_trans_splitting
1395 		 * must remain set at all times on the pmd until the
1396 		 * split is complete for this pmd), then we flush the
1397 		 * SMP TLB and finally we write the non-huge version
1398 		 * of the pmd entry with pmd_populate.
1399 		 */
1400 		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1401 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1402 		pmd_populate(mm, pmd, pgtable);
1403 		ret = 1;
1404 	}
1405 	spin_unlock(&mm->page_table_lock);
1406 
1407 	return ret;
1408 }
1409 
1410 /* must be called with anon_vma->root->mutex hold */
1411 static void __split_huge_page(struct page *page,
1412 			      struct anon_vma *anon_vma)
1413 {
1414 	int mapcount, mapcount2;
1415 	struct anon_vma_chain *avc;
1416 
1417 	BUG_ON(!PageHead(page));
1418 	BUG_ON(PageTail(page));
1419 
1420 	mapcount = 0;
1421 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1422 		struct vm_area_struct *vma = avc->vma;
1423 		unsigned long addr = vma_address(page, vma);
1424 		BUG_ON(is_vma_temporary_stack(vma));
1425 		if (addr == -EFAULT)
1426 			continue;
1427 		mapcount += __split_huge_page_splitting(page, vma, addr);
1428 	}
1429 	/*
1430 	 * It is critical that new vmas are added to the tail of the
1431 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1432 	 * and establishes a child pmd before
1433 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1434 	 * we fail to prevent copy_huge_pmd() from running until the
1435 	 * whole __split_huge_page() is complete), we will still see
1436 	 * the newly established pmd of the child later during the
1437 	 * walk, to be able to set it as pmd_trans_splitting too.
1438 	 */
1439 	if (mapcount != page_mapcount(page))
1440 		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1441 		       mapcount, page_mapcount(page));
1442 	BUG_ON(mapcount != page_mapcount(page));
1443 
1444 	__split_huge_page_refcount(page);
1445 
1446 	mapcount2 = 0;
1447 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1448 		struct vm_area_struct *vma = avc->vma;
1449 		unsigned long addr = vma_address(page, vma);
1450 		BUG_ON(is_vma_temporary_stack(vma));
1451 		if (addr == -EFAULT)
1452 			continue;
1453 		mapcount2 += __split_huge_page_map(page, vma, addr);
1454 	}
1455 	if (mapcount != mapcount2)
1456 		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1457 		       mapcount, mapcount2, page_mapcount(page));
1458 	BUG_ON(mapcount != mapcount2);
1459 }
1460 
1461 int split_huge_page(struct page *page)
1462 {
1463 	struct anon_vma *anon_vma;
1464 	int ret = 1;
1465 
1466 	BUG_ON(!PageAnon(page));
1467 	anon_vma = page_lock_anon_vma(page);
1468 	if (!anon_vma)
1469 		goto out;
1470 	ret = 0;
1471 	if (!PageCompound(page))
1472 		goto out_unlock;
1473 
1474 	BUG_ON(!PageSwapBacked(page));
1475 	__split_huge_page(page, anon_vma);
1476 	count_vm_event(THP_SPLIT);
1477 
1478 	BUG_ON(PageCompound(page));
1479 out_unlock:
1480 	page_unlock_anon_vma(anon_vma);
1481 out:
1482 	return ret;
1483 }
1484 
1485 #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1486 		   VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1487 
1488 int hugepage_madvise(struct vm_area_struct *vma,
1489 		     unsigned long *vm_flags, int advice)
1490 {
1491 	switch (advice) {
1492 	case MADV_HUGEPAGE:
1493 		/*
1494 		 * Be somewhat over-protective like KSM for now!
1495 		 */
1496 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1497 			return -EINVAL;
1498 		*vm_flags &= ~VM_NOHUGEPAGE;
1499 		*vm_flags |= VM_HUGEPAGE;
1500 		/*
1501 		 * If the vma become good for khugepaged to scan,
1502 		 * register it here without waiting a page fault that
1503 		 * may not happen any time soon.
1504 		 */
1505 		if (unlikely(khugepaged_enter_vma_merge(vma)))
1506 			return -ENOMEM;
1507 		break;
1508 	case MADV_NOHUGEPAGE:
1509 		/*
1510 		 * Be somewhat over-protective like KSM for now!
1511 		 */
1512 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1513 			return -EINVAL;
1514 		*vm_flags &= ~VM_HUGEPAGE;
1515 		*vm_flags |= VM_NOHUGEPAGE;
1516 		/*
1517 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1518 		 * this vma even if we leave the mm registered in khugepaged if
1519 		 * it got registered before VM_NOHUGEPAGE was set.
1520 		 */
1521 		break;
1522 	}
1523 
1524 	return 0;
1525 }
1526 
1527 static int __init khugepaged_slab_init(void)
1528 {
1529 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1530 					  sizeof(struct mm_slot),
1531 					  __alignof__(struct mm_slot), 0, NULL);
1532 	if (!mm_slot_cache)
1533 		return -ENOMEM;
1534 
1535 	return 0;
1536 }
1537 
1538 static void __init khugepaged_slab_free(void)
1539 {
1540 	kmem_cache_destroy(mm_slot_cache);
1541 	mm_slot_cache = NULL;
1542 }
1543 
1544 static inline struct mm_slot *alloc_mm_slot(void)
1545 {
1546 	if (!mm_slot_cache)	/* initialization failed */
1547 		return NULL;
1548 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1549 }
1550 
1551 static inline void free_mm_slot(struct mm_slot *mm_slot)
1552 {
1553 	kmem_cache_free(mm_slot_cache, mm_slot);
1554 }
1555 
1556 static int __init mm_slots_hash_init(void)
1557 {
1558 	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1559 				GFP_KERNEL);
1560 	if (!mm_slots_hash)
1561 		return -ENOMEM;
1562 	return 0;
1563 }
1564 
1565 #if 0
1566 static void __init mm_slots_hash_free(void)
1567 {
1568 	kfree(mm_slots_hash);
1569 	mm_slots_hash = NULL;
1570 }
1571 #endif
1572 
1573 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1574 {
1575 	struct mm_slot *mm_slot;
1576 	struct hlist_head *bucket;
1577 	struct hlist_node *node;
1578 
1579 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1580 				% MM_SLOTS_HASH_HEADS];
1581 	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1582 		if (mm == mm_slot->mm)
1583 			return mm_slot;
1584 	}
1585 	return NULL;
1586 }
1587 
1588 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1589 				    struct mm_slot *mm_slot)
1590 {
1591 	struct hlist_head *bucket;
1592 
1593 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1594 				% MM_SLOTS_HASH_HEADS];
1595 	mm_slot->mm = mm;
1596 	hlist_add_head(&mm_slot->hash, bucket);
1597 }
1598 
1599 static inline int khugepaged_test_exit(struct mm_struct *mm)
1600 {
1601 	return atomic_read(&mm->mm_users) == 0;
1602 }
1603 
1604 int __khugepaged_enter(struct mm_struct *mm)
1605 {
1606 	struct mm_slot *mm_slot;
1607 	int wakeup;
1608 
1609 	mm_slot = alloc_mm_slot();
1610 	if (!mm_slot)
1611 		return -ENOMEM;
1612 
1613 	/* __khugepaged_exit() must not run from under us */
1614 	VM_BUG_ON(khugepaged_test_exit(mm));
1615 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1616 		free_mm_slot(mm_slot);
1617 		return 0;
1618 	}
1619 
1620 	spin_lock(&khugepaged_mm_lock);
1621 	insert_to_mm_slots_hash(mm, mm_slot);
1622 	/*
1623 	 * Insert just behind the scanning cursor, to let the area settle
1624 	 * down a little.
1625 	 */
1626 	wakeup = list_empty(&khugepaged_scan.mm_head);
1627 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1628 	spin_unlock(&khugepaged_mm_lock);
1629 
1630 	atomic_inc(&mm->mm_count);
1631 	if (wakeup)
1632 		wake_up_interruptible(&khugepaged_wait);
1633 
1634 	return 0;
1635 }
1636 
1637 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1638 {
1639 	unsigned long hstart, hend;
1640 	if (!vma->anon_vma)
1641 		/*
1642 		 * Not yet faulted in so we will register later in the
1643 		 * page fault if needed.
1644 		 */
1645 		return 0;
1646 	if (vma->vm_ops)
1647 		/* khugepaged not yet working on file or special mappings */
1648 		return 0;
1649 	/*
1650 	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1651 	 * true too, verify it here.
1652 	 */
1653 	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1654 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1655 	hend = vma->vm_end & HPAGE_PMD_MASK;
1656 	if (hstart < hend)
1657 		return khugepaged_enter(vma);
1658 	return 0;
1659 }
1660 
1661 void __khugepaged_exit(struct mm_struct *mm)
1662 {
1663 	struct mm_slot *mm_slot;
1664 	int free = 0;
1665 
1666 	spin_lock(&khugepaged_mm_lock);
1667 	mm_slot = get_mm_slot(mm);
1668 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1669 		hlist_del(&mm_slot->hash);
1670 		list_del(&mm_slot->mm_node);
1671 		free = 1;
1672 	}
1673 	spin_unlock(&khugepaged_mm_lock);
1674 
1675 	if (free) {
1676 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1677 		free_mm_slot(mm_slot);
1678 		mmdrop(mm);
1679 	} else if (mm_slot) {
1680 		/*
1681 		 * This is required to serialize against
1682 		 * khugepaged_test_exit() (which is guaranteed to run
1683 		 * under mmap sem read mode). Stop here (after we
1684 		 * return all pagetables will be destroyed) until
1685 		 * khugepaged has finished working on the pagetables
1686 		 * under the mmap_sem.
1687 		 */
1688 		down_write(&mm->mmap_sem);
1689 		up_write(&mm->mmap_sem);
1690 	}
1691 }
1692 
1693 static void release_pte_page(struct page *page)
1694 {
1695 	/* 0 stands for page_is_file_cache(page) == false */
1696 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1697 	unlock_page(page);
1698 	putback_lru_page(page);
1699 }
1700 
1701 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1702 {
1703 	while (--_pte >= pte) {
1704 		pte_t pteval = *_pte;
1705 		if (!pte_none(pteval))
1706 			release_pte_page(pte_page(pteval));
1707 	}
1708 }
1709 
1710 static void release_all_pte_pages(pte_t *pte)
1711 {
1712 	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1713 }
1714 
1715 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1716 					unsigned long address,
1717 					pte_t *pte)
1718 {
1719 	struct page *page;
1720 	pte_t *_pte;
1721 	int referenced = 0, isolated = 0, none = 0;
1722 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1723 	     _pte++, address += PAGE_SIZE) {
1724 		pte_t pteval = *_pte;
1725 		if (pte_none(pteval)) {
1726 			if (++none <= khugepaged_max_ptes_none)
1727 				continue;
1728 			else {
1729 				release_pte_pages(pte, _pte);
1730 				goto out;
1731 			}
1732 		}
1733 		if (!pte_present(pteval) || !pte_write(pteval)) {
1734 			release_pte_pages(pte, _pte);
1735 			goto out;
1736 		}
1737 		page = vm_normal_page(vma, address, pteval);
1738 		if (unlikely(!page)) {
1739 			release_pte_pages(pte, _pte);
1740 			goto out;
1741 		}
1742 		VM_BUG_ON(PageCompound(page));
1743 		BUG_ON(!PageAnon(page));
1744 		VM_BUG_ON(!PageSwapBacked(page));
1745 
1746 		/* cannot use mapcount: can't collapse if there's a gup pin */
1747 		if (page_count(page) != 1) {
1748 			release_pte_pages(pte, _pte);
1749 			goto out;
1750 		}
1751 		/*
1752 		 * We can do it before isolate_lru_page because the
1753 		 * page can't be freed from under us. NOTE: PG_lock
1754 		 * is needed to serialize against split_huge_page
1755 		 * when invoked from the VM.
1756 		 */
1757 		if (!trylock_page(page)) {
1758 			release_pte_pages(pte, _pte);
1759 			goto out;
1760 		}
1761 		/*
1762 		 * Isolate the page to avoid collapsing an hugepage
1763 		 * currently in use by the VM.
1764 		 */
1765 		if (isolate_lru_page(page)) {
1766 			unlock_page(page);
1767 			release_pte_pages(pte, _pte);
1768 			goto out;
1769 		}
1770 		/* 0 stands for page_is_file_cache(page) == false */
1771 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1772 		VM_BUG_ON(!PageLocked(page));
1773 		VM_BUG_ON(PageLRU(page));
1774 
1775 		/* If there is no mapped pte young don't collapse the page */
1776 		if (pte_young(pteval) || PageReferenced(page) ||
1777 		    mmu_notifier_test_young(vma->vm_mm, address))
1778 			referenced = 1;
1779 	}
1780 	if (unlikely(!referenced))
1781 		release_all_pte_pages(pte);
1782 	else
1783 		isolated = 1;
1784 out:
1785 	return isolated;
1786 }
1787 
1788 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1789 				      struct vm_area_struct *vma,
1790 				      unsigned long address,
1791 				      spinlock_t *ptl)
1792 {
1793 	pte_t *_pte;
1794 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1795 		pte_t pteval = *_pte;
1796 		struct page *src_page;
1797 
1798 		if (pte_none(pteval)) {
1799 			clear_user_highpage(page, address);
1800 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1801 		} else {
1802 			src_page = pte_page(pteval);
1803 			copy_user_highpage(page, src_page, address, vma);
1804 			VM_BUG_ON(page_mapcount(src_page) != 1);
1805 			VM_BUG_ON(page_count(src_page) != 2);
1806 			release_pte_page(src_page);
1807 			/*
1808 			 * ptl mostly unnecessary, but preempt has to
1809 			 * be disabled to update the per-cpu stats
1810 			 * inside page_remove_rmap().
1811 			 */
1812 			spin_lock(ptl);
1813 			/*
1814 			 * paravirt calls inside pte_clear here are
1815 			 * superfluous.
1816 			 */
1817 			pte_clear(vma->vm_mm, address, _pte);
1818 			page_remove_rmap(src_page);
1819 			spin_unlock(ptl);
1820 			free_page_and_swap_cache(src_page);
1821 		}
1822 
1823 		address += PAGE_SIZE;
1824 		page++;
1825 	}
1826 }
1827 
1828 static void collapse_huge_page(struct mm_struct *mm,
1829 			       unsigned long address,
1830 			       struct page **hpage,
1831 			       struct vm_area_struct *vma,
1832 			       int node)
1833 {
1834 	pgd_t *pgd;
1835 	pud_t *pud;
1836 	pmd_t *pmd, _pmd;
1837 	pte_t *pte;
1838 	pgtable_t pgtable;
1839 	struct page *new_page;
1840 	spinlock_t *ptl;
1841 	int isolated;
1842 	unsigned long hstart, hend;
1843 
1844 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1845 #ifndef CONFIG_NUMA
1846 	up_read(&mm->mmap_sem);
1847 	VM_BUG_ON(!*hpage);
1848 	new_page = *hpage;
1849 #else
1850 	VM_BUG_ON(*hpage);
1851 	/*
1852 	 * Allocate the page while the vma is still valid and under
1853 	 * the mmap_sem read mode so there is no memory allocation
1854 	 * later when we take the mmap_sem in write mode. This is more
1855 	 * friendly behavior (OTOH it may actually hide bugs) to
1856 	 * filesystems in userland with daemons allocating memory in
1857 	 * the userland I/O paths.  Allocating memory with the
1858 	 * mmap_sem in read mode is good idea also to allow greater
1859 	 * scalability.
1860 	 */
1861 	new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1862 				      node, __GFP_OTHER_NODE);
1863 
1864 	/*
1865 	 * After allocating the hugepage, release the mmap_sem read lock in
1866 	 * preparation for taking it in write mode.
1867 	 */
1868 	up_read(&mm->mmap_sem);
1869 	if (unlikely(!new_page)) {
1870 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1871 		*hpage = ERR_PTR(-ENOMEM);
1872 		return;
1873 	}
1874 #endif
1875 
1876 	count_vm_event(THP_COLLAPSE_ALLOC);
1877 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1878 #ifdef CONFIG_NUMA
1879 		put_page(new_page);
1880 #endif
1881 		return;
1882 	}
1883 
1884 	/*
1885 	 * Prevent all access to pagetables with the exception of
1886 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1887 	 * handled by the anon_vma lock + PG_lock.
1888 	 */
1889 	down_write(&mm->mmap_sem);
1890 	if (unlikely(khugepaged_test_exit(mm)))
1891 		goto out;
1892 
1893 	vma = find_vma(mm, address);
1894 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1895 	hend = vma->vm_end & HPAGE_PMD_MASK;
1896 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1897 		goto out;
1898 
1899 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1900 	    (vma->vm_flags & VM_NOHUGEPAGE))
1901 		goto out;
1902 
1903 	if (!vma->anon_vma || vma->vm_ops)
1904 		goto out;
1905 	if (is_vma_temporary_stack(vma))
1906 		goto out;
1907 	/*
1908 	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1909 	 * true too, verify it here.
1910 	 */
1911 	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1912 
1913 	pgd = pgd_offset(mm, address);
1914 	if (!pgd_present(*pgd))
1915 		goto out;
1916 
1917 	pud = pud_offset(pgd, address);
1918 	if (!pud_present(*pud))
1919 		goto out;
1920 
1921 	pmd = pmd_offset(pud, address);
1922 	/* pmd can't go away or become huge under us */
1923 	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1924 		goto out;
1925 
1926 	anon_vma_lock(vma->anon_vma);
1927 
1928 	pte = pte_offset_map(pmd, address);
1929 	ptl = pte_lockptr(mm, pmd);
1930 
1931 	spin_lock(&mm->page_table_lock); /* probably unnecessary */
1932 	/*
1933 	 * After this gup_fast can't run anymore. This also removes
1934 	 * any huge TLB entry from the CPU so we won't allow
1935 	 * huge and small TLB entries for the same virtual address
1936 	 * to avoid the risk of CPU bugs in that area.
1937 	 */
1938 	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1939 	spin_unlock(&mm->page_table_lock);
1940 
1941 	spin_lock(ptl);
1942 	isolated = __collapse_huge_page_isolate(vma, address, pte);
1943 	spin_unlock(ptl);
1944 
1945 	if (unlikely(!isolated)) {
1946 		pte_unmap(pte);
1947 		spin_lock(&mm->page_table_lock);
1948 		BUG_ON(!pmd_none(*pmd));
1949 		set_pmd_at(mm, address, pmd, _pmd);
1950 		spin_unlock(&mm->page_table_lock);
1951 		anon_vma_unlock(vma->anon_vma);
1952 		goto out;
1953 	}
1954 
1955 	/*
1956 	 * All pages are isolated and locked so anon_vma rmap
1957 	 * can't run anymore.
1958 	 */
1959 	anon_vma_unlock(vma->anon_vma);
1960 
1961 	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1962 	pte_unmap(pte);
1963 	__SetPageUptodate(new_page);
1964 	pgtable = pmd_pgtable(_pmd);
1965 	VM_BUG_ON(page_count(pgtable) != 1);
1966 	VM_BUG_ON(page_mapcount(pgtable) != 0);
1967 
1968 	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1969 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1970 	_pmd = pmd_mkhuge(_pmd);
1971 
1972 	/*
1973 	 * spin_lock() below is not the equivalent of smp_wmb(), so
1974 	 * this is needed to avoid the copy_huge_page writes to become
1975 	 * visible after the set_pmd_at() write.
1976 	 */
1977 	smp_wmb();
1978 
1979 	spin_lock(&mm->page_table_lock);
1980 	BUG_ON(!pmd_none(*pmd));
1981 	page_add_new_anon_rmap(new_page, vma, address);
1982 	set_pmd_at(mm, address, pmd, _pmd);
1983 	update_mmu_cache(vma, address, _pmd);
1984 	prepare_pmd_huge_pte(pgtable, mm);
1985 	spin_unlock(&mm->page_table_lock);
1986 
1987 #ifndef CONFIG_NUMA
1988 	*hpage = NULL;
1989 #endif
1990 	khugepaged_pages_collapsed++;
1991 out_up_write:
1992 	up_write(&mm->mmap_sem);
1993 	return;
1994 
1995 out:
1996 	mem_cgroup_uncharge_page(new_page);
1997 #ifdef CONFIG_NUMA
1998 	put_page(new_page);
1999 #endif
2000 	goto out_up_write;
2001 }
2002 
2003 static int khugepaged_scan_pmd(struct mm_struct *mm,
2004 			       struct vm_area_struct *vma,
2005 			       unsigned long address,
2006 			       struct page **hpage)
2007 {
2008 	pgd_t *pgd;
2009 	pud_t *pud;
2010 	pmd_t *pmd;
2011 	pte_t *pte, *_pte;
2012 	int ret = 0, referenced = 0, none = 0;
2013 	struct page *page;
2014 	unsigned long _address;
2015 	spinlock_t *ptl;
2016 	int node = -1;
2017 
2018 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2019 
2020 	pgd = pgd_offset(mm, address);
2021 	if (!pgd_present(*pgd))
2022 		goto out;
2023 
2024 	pud = pud_offset(pgd, address);
2025 	if (!pud_present(*pud))
2026 		goto out;
2027 
2028 	pmd = pmd_offset(pud, address);
2029 	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2030 		goto out;
2031 
2032 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2033 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2034 	     _pte++, _address += PAGE_SIZE) {
2035 		pte_t pteval = *_pte;
2036 		if (pte_none(pteval)) {
2037 			if (++none <= khugepaged_max_ptes_none)
2038 				continue;
2039 			else
2040 				goto out_unmap;
2041 		}
2042 		if (!pte_present(pteval) || !pte_write(pteval))
2043 			goto out_unmap;
2044 		page = vm_normal_page(vma, _address, pteval);
2045 		if (unlikely(!page))
2046 			goto out_unmap;
2047 		/*
2048 		 * Chose the node of the first page. This could
2049 		 * be more sophisticated and look at more pages,
2050 		 * but isn't for now.
2051 		 */
2052 		if (node == -1)
2053 			node = page_to_nid(page);
2054 		VM_BUG_ON(PageCompound(page));
2055 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2056 			goto out_unmap;
2057 		/* cannot use mapcount: can't collapse if there's a gup pin */
2058 		if (page_count(page) != 1)
2059 			goto out_unmap;
2060 		if (pte_young(pteval) || PageReferenced(page) ||
2061 		    mmu_notifier_test_young(vma->vm_mm, address))
2062 			referenced = 1;
2063 	}
2064 	if (referenced)
2065 		ret = 1;
2066 out_unmap:
2067 	pte_unmap_unlock(pte, ptl);
2068 	if (ret)
2069 		/* collapse_huge_page will return with the mmap_sem released */
2070 		collapse_huge_page(mm, address, hpage, vma, node);
2071 out:
2072 	return ret;
2073 }
2074 
2075 static void collect_mm_slot(struct mm_slot *mm_slot)
2076 {
2077 	struct mm_struct *mm = mm_slot->mm;
2078 
2079 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2080 
2081 	if (khugepaged_test_exit(mm)) {
2082 		/* free mm_slot */
2083 		hlist_del(&mm_slot->hash);
2084 		list_del(&mm_slot->mm_node);
2085 
2086 		/*
2087 		 * Not strictly needed because the mm exited already.
2088 		 *
2089 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2090 		 */
2091 
2092 		/* khugepaged_mm_lock actually not necessary for the below */
2093 		free_mm_slot(mm_slot);
2094 		mmdrop(mm);
2095 	}
2096 }
2097 
2098 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2099 					    struct page **hpage)
2100 	__releases(&khugepaged_mm_lock)
2101 	__acquires(&khugepaged_mm_lock)
2102 {
2103 	struct mm_slot *mm_slot;
2104 	struct mm_struct *mm;
2105 	struct vm_area_struct *vma;
2106 	int progress = 0;
2107 
2108 	VM_BUG_ON(!pages);
2109 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2110 
2111 	if (khugepaged_scan.mm_slot)
2112 		mm_slot = khugepaged_scan.mm_slot;
2113 	else {
2114 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2115 				     struct mm_slot, mm_node);
2116 		khugepaged_scan.address = 0;
2117 		khugepaged_scan.mm_slot = mm_slot;
2118 	}
2119 	spin_unlock(&khugepaged_mm_lock);
2120 
2121 	mm = mm_slot->mm;
2122 	down_read(&mm->mmap_sem);
2123 	if (unlikely(khugepaged_test_exit(mm)))
2124 		vma = NULL;
2125 	else
2126 		vma = find_vma(mm, khugepaged_scan.address);
2127 
2128 	progress++;
2129 	for (; vma; vma = vma->vm_next) {
2130 		unsigned long hstart, hend;
2131 
2132 		cond_resched();
2133 		if (unlikely(khugepaged_test_exit(mm))) {
2134 			progress++;
2135 			break;
2136 		}
2137 
2138 		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2139 		     !khugepaged_always()) ||
2140 		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2141 		skip:
2142 			progress++;
2143 			continue;
2144 		}
2145 		if (!vma->anon_vma || vma->vm_ops)
2146 			goto skip;
2147 		if (is_vma_temporary_stack(vma))
2148 			goto skip;
2149 		/*
2150 		 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2151 		 * must be true too, verify it here.
2152 		 */
2153 		VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2154 			  vma->vm_flags & VM_NO_THP);
2155 
2156 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2157 		hend = vma->vm_end & HPAGE_PMD_MASK;
2158 		if (hstart >= hend)
2159 			goto skip;
2160 		if (khugepaged_scan.address > hend)
2161 			goto skip;
2162 		if (khugepaged_scan.address < hstart)
2163 			khugepaged_scan.address = hstart;
2164 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2165 
2166 		while (khugepaged_scan.address < hend) {
2167 			int ret;
2168 			cond_resched();
2169 			if (unlikely(khugepaged_test_exit(mm)))
2170 				goto breakouterloop;
2171 
2172 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2173 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2174 				  hend);
2175 			ret = khugepaged_scan_pmd(mm, vma,
2176 						  khugepaged_scan.address,
2177 						  hpage);
2178 			/* move to next address */
2179 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2180 			progress += HPAGE_PMD_NR;
2181 			if (ret)
2182 				/* we released mmap_sem so break loop */
2183 				goto breakouterloop_mmap_sem;
2184 			if (progress >= pages)
2185 				goto breakouterloop;
2186 		}
2187 	}
2188 breakouterloop:
2189 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2190 breakouterloop_mmap_sem:
2191 
2192 	spin_lock(&khugepaged_mm_lock);
2193 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2194 	/*
2195 	 * Release the current mm_slot if this mm is about to die, or
2196 	 * if we scanned all vmas of this mm.
2197 	 */
2198 	if (khugepaged_test_exit(mm) || !vma) {
2199 		/*
2200 		 * Make sure that if mm_users is reaching zero while
2201 		 * khugepaged runs here, khugepaged_exit will find
2202 		 * mm_slot not pointing to the exiting mm.
2203 		 */
2204 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2205 			khugepaged_scan.mm_slot = list_entry(
2206 				mm_slot->mm_node.next,
2207 				struct mm_slot, mm_node);
2208 			khugepaged_scan.address = 0;
2209 		} else {
2210 			khugepaged_scan.mm_slot = NULL;
2211 			khugepaged_full_scans++;
2212 		}
2213 
2214 		collect_mm_slot(mm_slot);
2215 	}
2216 
2217 	return progress;
2218 }
2219 
2220 static int khugepaged_has_work(void)
2221 {
2222 	return !list_empty(&khugepaged_scan.mm_head) &&
2223 		khugepaged_enabled();
2224 }
2225 
2226 static int khugepaged_wait_event(void)
2227 {
2228 	return !list_empty(&khugepaged_scan.mm_head) ||
2229 		!khugepaged_enabled();
2230 }
2231 
2232 static void khugepaged_do_scan(struct page **hpage)
2233 {
2234 	unsigned int progress = 0, pass_through_head = 0;
2235 	unsigned int pages = khugepaged_pages_to_scan;
2236 
2237 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2238 
2239 	while (progress < pages) {
2240 		cond_resched();
2241 
2242 #ifndef CONFIG_NUMA
2243 		if (!*hpage) {
2244 			*hpage = alloc_hugepage(khugepaged_defrag());
2245 			if (unlikely(!*hpage)) {
2246 				count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2247 				break;
2248 			}
2249 			count_vm_event(THP_COLLAPSE_ALLOC);
2250 		}
2251 #else
2252 		if (IS_ERR(*hpage))
2253 			break;
2254 #endif
2255 
2256 		if (unlikely(kthread_should_stop() || freezing(current)))
2257 			break;
2258 
2259 		spin_lock(&khugepaged_mm_lock);
2260 		if (!khugepaged_scan.mm_slot)
2261 			pass_through_head++;
2262 		if (khugepaged_has_work() &&
2263 		    pass_through_head < 2)
2264 			progress += khugepaged_scan_mm_slot(pages - progress,
2265 							    hpage);
2266 		else
2267 			progress = pages;
2268 		spin_unlock(&khugepaged_mm_lock);
2269 	}
2270 }
2271 
2272 static void khugepaged_alloc_sleep(void)
2273 {
2274 	wait_event_freezable_timeout(khugepaged_wait, false,
2275 			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2276 }
2277 
2278 #ifndef CONFIG_NUMA
2279 static struct page *khugepaged_alloc_hugepage(void)
2280 {
2281 	struct page *hpage;
2282 
2283 	do {
2284 		hpage = alloc_hugepage(khugepaged_defrag());
2285 		if (!hpage) {
2286 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2287 			khugepaged_alloc_sleep();
2288 		} else
2289 			count_vm_event(THP_COLLAPSE_ALLOC);
2290 	} while (unlikely(!hpage) &&
2291 		 likely(khugepaged_enabled()));
2292 	return hpage;
2293 }
2294 #endif
2295 
2296 static void khugepaged_loop(void)
2297 {
2298 	struct page *hpage;
2299 
2300 #ifdef CONFIG_NUMA
2301 	hpage = NULL;
2302 #endif
2303 	while (likely(khugepaged_enabled())) {
2304 #ifndef CONFIG_NUMA
2305 		hpage = khugepaged_alloc_hugepage();
2306 		if (unlikely(!hpage))
2307 			break;
2308 #else
2309 		if (IS_ERR(hpage)) {
2310 			khugepaged_alloc_sleep();
2311 			hpage = NULL;
2312 		}
2313 #endif
2314 
2315 		khugepaged_do_scan(&hpage);
2316 #ifndef CONFIG_NUMA
2317 		if (hpage)
2318 			put_page(hpage);
2319 #endif
2320 		try_to_freeze();
2321 		if (unlikely(kthread_should_stop()))
2322 			break;
2323 		if (khugepaged_has_work()) {
2324 			if (!khugepaged_scan_sleep_millisecs)
2325 				continue;
2326 			wait_event_freezable_timeout(khugepaged_wait, false,
2327 			    msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2328 		} else if (khugepaged_enabled())
2329 			wait_event_freezable(khugepaged_wait,
2330 					     khugepaged_wait_event());
2331 	}
2332 }
2333 
2334 static int khugepaged(void *none)
2335 {
2336 	struct mm_slot *mm_slot;
2337 
2338 	set_freezable();
2339 	set_user_nice(current, 19);
2340 
2341 	/* serialize with start_khugepaged() */
2342 	mutex_lock(&khugepaged_mutex);
2343 
2344 	for (;;) {
2345 		mutex_unlock(&khugepaged_mutex);
2346 		VM_BUG_ON(khugepaged_thread != current);
2347 		khugepaged_loop();
2348 		VM_BUG_ON(khugepaged_thread != current);
2349 
2350 		mutex_lock(&khugepaged_mutex);
2351 		if (!khugepaged_enabled())
2352 			break;
2353 		if (unlikely(kthread_should_stop()))
2354 			break;
2355 	}
2356 
2357 	spin_lock(&khugepaged_mm_lock);
2358 	mm_slot = khugepaged_scan.mm_slot;
2359 	khugepaged_scan.mm_slot = NULL;
2360 	if (mm_slot)
2361 		collect_mm_slot(mm_slot);
2362 	spin_unlock(&khugepaged_mm_lock);
2363 
2364 	khugepaged_thread = NULL;
2365 	mutex_unlock(&khugepaged_mutex);
2366 
2367 	return 0;
2368 }
2369 
2370 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2371 {
2372 	struct page *page;
2373 
2374 	spin_lock(&mm->page_table_lock);
2375 	if (unlikely(!pmd_trans_huge(*pmd))) {
2376 		spin_unlock(&mm->page_table_lock);
2377 		return;
2378 	}
2379 	page = pmd_page(*pmd);
2380 	VM_BUG_ON(!page_count(page));
2381 	get_page(page);
2382 	spin_unlock(&mm->page_table_lock);
2383 
2384 	split_huge_page(page);
2385 
2386 	put_page(page);
2387 	BUG_ON(pmd_trans_huge(*pmd));
2388 }
2389 
2390 static void split_huge_page_address(struct mm_struct *mm,
2391 				    unsigned long address)
2392 {
2393 	pgd_t *pgd;
2394 	pud_t *pud;
2395 	pmd_t *pmd;
2396 
2397 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2398 
2399 	pgd = pgd_offset(mm, address);
2400 	if (!pgd_present(*pgd))
2401 		return;
2402 
2403 	pud = pud_offset(pgd, address);
2404 	if (!pud_present(*pud))
2405 		return;
2406 
2407 	pmd = pmd_offset(pud, address);
2408 	if (!pmd_present(*pmd))
2409 		return;
2410 	/*
2411 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2412 	 * materialize from under us.
2413 	 */
2414 	split_huge_page_pmd(mm, pmd);
2415 }
2416 
2417 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2418 			     unsigned long start,
2419 			     unsigned long end,
2420 			     long adjust_next)
2421 {
2422 	/*
2423 	 * If the new start address isn't hpage aligned and it could
2424 	 * previously contain an hugepage: check if we need to split
2425 	 * an huge pmd.
2426 	 */
2427 	if (start & ~HPAGE_PMD_MASK &&
2428 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2429 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2430 		split_huge_page_address(vma->vm_mm, start);
2431 
2432 	/*
2433 	 * If the new end address isn't hpage aligned and it could
2434 	 * previously contain an hugepage: check if we need to split
2435 	 * an huge pmd.
2436 	 */
2437 	if (end & ~HPAGE_PMD_MASK &&
2438 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2439 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2440 		split_huge_page_address(vma->vm_mm, end);
2441 
2442 	/*
2443 	 * If we're also updating the vma->vm_next->vm_start, if the new
2444 	 * vm_next->vm_start isn't page aligned and it could previously
2445 	 * contain an hugepage: check if we need to split an huge pmd.
2446 	 */
2447 	if (adjust_next > 0) {
2448 		struct vm_area_struct *next = vma->vm_next;
2449 		unsigned long nstart = next->vm_start;
2450 		nstart += adjust_next << PAGE_SHIFT;
2451 		if (nstart & ~HPAGE_PMD_MASK &&
2452 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2453 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2454 			split_huge_page_address(next->vm_mm, nstart);
2455 	}
2456 }
2457