1 /* 2 * Copyright (C) 2009 Red Hat, Inc. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/mm.h> 11 #include <linux/sched.h> 12 #include <linux/sched/coredump.h> 13 #include <linux/sched/numa_balancing.h> 14 #include <linux/highmem.h> 15 #include <linux/hugetlb.h> 16 #include <linux/mmu_notifier.h> 17 #include <linux/rmap.h> 18 #include <linux/swap.h> 19 #include <linux/shrinker.h> 20 #include <linux/mm_inline.h> 21 #include <linux/swapops.h> 22 #include <linux/dax.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 36 #include <asm/tlb.h> 37 #include <asm/pgalloc.h> 38 #include "internal.h" 39 40 /* 41 * By default transparent hugepage support is disabled in order that avoid 42 * to risk increase the memory footprint of applications without a guaranteed 43 * benefit. When transparent hugepage support is enabled, is for all mappings, 44 * and khugepaged scans all mappings. 45 * Defrag is invoked by khugepaged hugepage allocations and by page faults 46 * for all hugepage allocations. 47 */ 48 unsigned long transparent_hugepage_flags __read_mostly = 49 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 50 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 51 #endif 52 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 53 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 54 #endif 55 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 57 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 58 59 static struct shrinker deferred_split_shrinker; 60 61 static atomic_t huge_zero_refcount; 62 struct page *huge_zero_page __read_mostly; 63 64 static struct page *get_huge_zero_page(void) 65 { 66 struct page *zero_page; 67 retry: 68 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 69 return READ_ONCE(huge_zero_page); 70 71 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 72 HPAGE_PMD_ORDER); 73 if (!zero_page) { 74 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 75 return NULL; 76 } 77 count_vm_event(THP_ZERO_PAGE_ALLOC); 78 preempt_disable(); 79 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 80 preempt_enable(); 81 __free_pages(zero_page, compound_order(zero_page)); 82 goto retry; 83 } 84 85 /* We take additional reference here. It will be put back by shrinker */ 86 atomic_set(&huge_zero_refcount, 2); 87 preempt_enable(); 88 return READ_ONCE(huge_zero_page); 89 } 90 91 static void put_huge_zero_page(void) 92 { 93 /* 94 * Counter should never go to zero here. Only shrinker can put 95 * last reference. 96 */ 97 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 98 } 99 100 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 101 { 102 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 103 return READ_ONCE(huge_zero_page); 104 105 if (!get_huge_zero_page()) 106 return NULL; 107 108 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 109 put_huge_zero_page(); 110 111 return READ_ONCE(huge_zero_page); 112 } 113 114 void mm_put_huge_zero_page(struct mm_struct *mm) 115 { 116 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 117 put_huge_zero_page(); 118 } 119 120 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 121 struct shrink_control *sc) 122 { 123 /* we can free zero page only if last reference remains */ 124 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 125 } 126 127 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 128 struct shrink_control *sc) 129 { 130 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 131 struct page *zero_page = xchg(&huge_zero_page, NULL); 132 BUG_ON(zero_page == NULL); 133 __free_pages(zero_page, compound_order(zero_page)); 134 return HPAGE_PMD_NR; 135 } 136 137 return 0; 138 } 139 140 static struct shrinker huge_zero_page_shrinker = { 141 .count_objects = shrink_huge_zero_page_count, 142 .scan_objects = shrink_huge_zero_page_scan, 143 .seeks = DEFAULT_SEEKS, 144 }; 145 146 #ifdef CONFIG_SYSFS 147 static ssize_t enabled_show(struct kobject *kobj, 148 struct kobj_attribute *attr, char *buf) 149 { 150 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 151 return sprintf(buf, "[always] madvise never\n"); 152 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) 153 return sprintf(buf, "always [madvise] never\n"); 154 else 155 return sprintf(buf, "always madvise [never]\n"); 156 } 157 158 static ssize_t enabled_store(struct kobject *kobj, 159 struct kobj_attribute *attr, 160 const char *buf, size_t count) 161 { 162 ssize_t ret = count; 163 164 if (!memcmp("always", buf, 165 min(sizeof("always")-1, count))) { 166 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 167 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 168 } else if (!memcmp("madvise", buf, 169 min(sizeof("madvise")-1, count))) { 170 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 171 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 172 } else if (!memcmp("never", buf, 173 min(sizeof("never")-1, count))) { 174 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 175 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 176 } else 177 ret = -EINVAL; 178 179 if (ret > 0) { 180 int err = start_stop_khugepaged(); 181 if (err) 182 ret = err; 183 } 184 return ret; 185 } 186 static struct kobj_attribute enabled_attr = 187 __ATTR(enabled, 0644, enabled_show, enabled_store); 188 189 ssize_t single_hugepage_flag_show(struct kobject *kobj, 190 struct kobj_attribute *attr, char *buf, 191 enum transparent_hugepage_flag flag) 192 { 193 return sprintf(buf, "%d\n", 194 !!test_bit(flag, &transparent_hugepage_flags)); 195 } 196 197 ssize_t single_hugepage_flag_store(struct kobject *kobj, 198 struct kobj_attribute *attr, 199 const char *buf, size_t count, 200 enum transparent_hugepage_flag flag) 201 { 202 unsigned long value; 203 int ret; 204 205 ret = kstrtoul(buf, 10, &value); 206 if (ret < 0) 207 return ret; 208 if (value > 1) 209 return -EINVAL; 210 211 if (value) 212 set_bit(flag, &transparent_hugepage_flags); 213 else 214 clear_bit(flag, &transparent_hugepage_flags); 215 216 return count; 217 } 218 219 static ssize_t defrag_show(struct kobject *kobj, 220 struct kobj_attribute *attr, char *buf) 221 { 222 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 223 return sprintf(buf, "[always] defer defer+madvise madvise never\n"); 224 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 225 return sprintf(buf, "always [defer] defer+madvise madvise never\n"); 226 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 227 return sprintf(buf, "always defer [defer+madvise] madvise never\n"); 228 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 229 return sprintf(buf, "always defer defer+madvise [madvise] never\n"); 230 return sprintf(buf, "always defer defer+madvise madvise [never]\n"); 231 } 232 233 static ssize_t defrag_store(struct kobject *kobj, 234 struct kobj_attribute *attr, 235 const char *buf, size_t count) 236 { 237 if (!memcmp("always", buf, 238 min(sizeof("always")-1, count))) { 239 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 242 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 243 } else if (!memcmp("defer+madvise", buf, 244 min(sizeof("defer+madvise")-1, count))) { 245 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 248 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 249 } else if (!memcmp("defer", buf, 250 min(sizeof("defer")-1, count))) { 251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 255 } else if (!memcmp("madvise", buf, 256 min(sizeof("madvise")-1, count))) { 257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 260 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 261 } else if (!memcmp("never", buf, 262 min(sizeof("never")-1, count))) { 263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 267 } else 268 return -EINVAL; 269 270 return count; 271 } 272 static struct kobj_attribute defrag_attr = 273 __ATTR(defrag, 0644, defrag_show, defrag_store); 274 275 static ssize_t use_zero_page_show(struct kobject *kobj, 276 struct kobj_attribute *attr, char *buf) 277 { 278 return single_hugepage_flag_show(kobj, attr, buf, 279 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 280 } 281 static ssize_t use_zero_page_store(struct kobject *kobj, 282 struct kobj_attribute *attr, const char *buf, size_t count) 283 { 284 return single_hugepage_flag_store(kobj, attr, buf, count, 285 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 286 } 287 static struct kobj_attribute use_zero_page_attr = 288 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 289 290 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 291 struct kobj_attribute *attr, char *buf) 292 { 293 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE); 294 } 295 static struct kobj_attribute hpage_pmd_size_attr = 296 __ATTR_RO(hpage_pmd_size); 297 298 #ifdef CONFIG_DEBUG_VM 299 static ssize_t debug_cow_show(struct kobject *kobj, 300 struct kobj_attribute *attr, char *buf) 301 { 302 return single_hugepage_flag_show(kobj, attr, buf, 303 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 304 } 305 static ssize_t debug_cow_store(struct kobject *kobj, 306 struct kobj_attribute *attr, 307 const char *buf, size_t count) 308 { 309 return single_hugepage_flag_store(kobj, attr, buf, count, 310 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 311 } 312 static struct kobj_attribute debug_cow_attr = 313 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 314 #endif /* CONFIG_DEBUG_VM */ 315 316 static struct attribute *hugepage_attr[] = { 317 &enabled_attr.attr, 318 &defrag_attr.attr, 319 &use_zero_page_attr.attr, 320 &hpage_pmd_size_attr.attr, 321 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) 322 &shmem_enabled_attr.attr, 323 #endif 324 #ifdef CONFIG_DEBUG_VM 325 &debug_cow_attr.attr, 326 #endif 327 NULL, 328 }; 329 330 static struct attribute_group hugepage_attr_group = { 331 .attrs = hugepage_attr, 332 }; 333 334 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 335 { 336 int err; 337 338 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 339 if (unlikely(!*hugepage_kobj)) { 340 pr_err("failed to create transparent hugepage kobject\n"); 341 return -ENOMEM; 342 } 343 344 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 345 if (err) { 346 pr_err("failed to register transparent hugepage group\n"); 347 goto delete_obj; 348 } 349 350 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 351 if (err) { 352 pr_err("failed to register transparent hugepage group\n"); 353 goto remove_hp_group; 354 } 355 356 return 0; 357 358 remove_hp_group: 359 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 360 delete_obj: 361 kobject_put(*hugepage_kobj); 362 return err; 363 } 364 365 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 366 { 367 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 368 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 369 kobject_put(hugepage_kobj); 370 } 371 #else 372 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 373 { 374 return 0; 375 } 376 377 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 378 { 379 } 380 #endif /* CONFIG_SYSFS */ 381 382 static int __init hugepage_init(void) 383 { 384 int err; 385 struct kobject *hugepage_kobj; 386 387 if (!has_transparent_hugepage()) { 388 transparent_hugepage_flags = 0; 389 return -EINVAL; 390 } 391 392 /* 393 * hugepages can't be allocated by the buddy allocator 394 */ 395 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 396 /* 397 * we use page->mapping and page->index in second tail page 398 * as list_head: assuming THP order >= 2 399 */ 400 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 401 402 err = hugepage_init_sysfs(&hugepage_kobj); 403 if (err) 404 goto err_sysfs; 405 406 err = khugepaged_init(); 407 if (err) 408 goto err_slab; 409 410 err = register_shrinker(&huge_zero_page_shrinker); 411 if (err) 412 goto err_hzp_shrinker; 413 err = register_shrinker(&deferred_split_shrinker); 414 if (err) 415 goto err_split_shrinker; 416 417 /* 418 * By default disable transparent hugepages on smaller systems, 419 * where the extra memory used could hurt more than TLB overhead 420 * is likely to save. The admin can still enable it through /sys. 421 */ 422 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) { 423 transparent_hugepage_flags = 0; 424 return 0; 425 } 426 427 err = start_stop_khugepaged(); 428 if (err) 429 goto err_khugepaged; 430 431 return 0; 432 err_khugepaged: 433 unregister_shrinker(&deferred_split_shrinker); 434 err_split_shrinker: 435 unregister_shrinker(&huge_zero_page_shrinker); 436 err_hzp_shrinker: 437 khugepaged_destroy(); 438 err_slab: 439 hugepage_exit_sysfs(hugepage_kobj); 440 err_sysfs: 441 return err; 442 } 443 subsys_initcall(hugepage_init); 444 445 static int __init setup_transparent_hugepage(char *str) 446 { 447 int ret = 0; 448 if (!str) 449 goto out; 450 if (!strcmp(str, "always")) { 451 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 452 &transparent_hugepage_flags); 453 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 454 &transparent_hugepage_flags); 455 ret = 1; 456 } else if (!strcmp(str, "madvise")) { 457 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 458 &transparent_hugepage_flags); 459 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 460 &transparent_hugepage_flags); 461 ret = 1; 462 } else if (!strcmp(str, "never")) { 463 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 464 &transparent_hugepage_flags); 465 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 466 &transparent_hugepage_flags); 467 ret = 1; 468 } 469 out: 470 if (!ret) 471 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 472 return ret; 473 } 474 __setup("transparent_hugepage=", setup_transparent_hugepage); 475 476 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 477 { 478 if (likely(vma->vm_flags & VM_WRITE)) 479 pmd = pmd_mkwrite(pmd); 480 return pmd; 481 } 482 483 static inline struct list_head *page_deferred_list(struct page *page) 484 { 485 /* 486 * ->lru in the tail pages is occupied by compound_head. 487 * Let's use ->mapping + ->index in the second tail page as list_head. 488 */ 489 return (struct list_head *)&page[2].mapping; 490 } 491 492 void prep_transhuge_page(struct page *page) 493 { 494 /* 495 * we use page->mapping and page->indexlru in second tail page 496 * as list_head: assuming THP order >= 2 497 */ 498 499 INIT_LIST_HEAD(page_deferred_list(page)); 500 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 501 } 502 503 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len, 504 loff_t off, unsigned long flags, unsigned long size) 505 { 506 unsigned long addr; 507 loff_t off_end = off + len; 508 loff_t off_align = round_up(off, size); 509 unsigned long len_pad; 510 511 if (off_end <= off_align || (off_end - off_align) < size) 512 return 0; 513 514 len_pad = len + size; 515 if (len_pad < len || (off + len_pad) < off) 516 return 0; 517 518 addr = current->mm->get_unmapped_area(filp, 0, len_pad, 519 off >> PAGE_SHIFT, flags); 520 if (IS_ERR_VALUE(addr)) 521 return 0; 522 523 addr += (off - addr) & (size - 1); 524 return addr; 525 } 526 527 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 528 unsigned long len, unsigned long pgoff, unsigned long flags) 529 { 530 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 531 532 if (addr) 533 goto out; 534 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) 535 goto out; 536 537 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE); 538 if (addr) 539 return addr; 540 541 out: 542 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 543 } 544 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 545 546 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page, 547 gfp_t gfp) 548 { 549 struct vm_area_struct *vma = vmf->vma; 550 struct mem_cgroup *memcg; 551 pgtable_t pgtable; 552 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 553 554 VM_BUG_ON_PAGE(!PageCompound(page), page); 555 556 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) { 557 put_page(page); 558 count_vm_event(THP_FAULT_FALLBACK); 559 return VM_FAULT_FALLBACK; 560 } 561 562 pgtable = pte_alloc_one(vma->vm_mm, haddr); 563 if (unlikely(!pgtable)) { 564 mem_cgroup_cancel_charge(page, memcg, true); 565 put_page(page); 566 return VM_FAULT_OOM; 567 } 568 569 clear_huge_page(page, haddr, HPAGE_PMD_NR); 570 /* 571 * The memory barrier inside __SetPageUptodate makes sure that 572 * clear_huge_page writes become visible before the set_pmd_at() 573 * write. 574 */ 575 __SetPageUptodate(page); 576 577 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 578 if (unlikely(!pmd_none(*vmf->pmd))) { 579 spin_unlock(vmf->ptl); 580 mem_cgroup_cancel_charge(page, memcg, true); 581 put_page(page); 582 pte_free(vma->vm_mm, pgtable); 583 } else { 584 pmd_t entry; 585 586 /* Deliver the page fault to userland */ 587 if (userfaultfd_missing(vma)) { 588 int ret; 589 590 spin_unlock(vmf->ptl); 591 mem_cgroup_cancel_charge(page, memcg, true); 592 put_page(page); 593 pte_free(vma->vm_mm, pgtable); 594 ret = handle_userfault(vmf, VM_UFFD_MISSING); 595 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 596 return ret; 597 } 598 599 entry = mk_huge_pmd(page, vma->vm_page_prot); 600 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 601 page_add_new_anon_rmap(page, vma, haddr, true); 602 mem_cgroup_commit_charge(page, memcg, false, true); 603 lru_cache_add_active_or_unevictable(page, vma); 604 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 605 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 606 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 607 atomic_long_inc(&vma->vm_mm->nr_ptes); 608 spin_unlock(vmf->ptl); 609 count_vm_event(THP_FAULT_ALLOC); 610 } 611 612 return 0; 613 } 614 615 /* 616 * always: directly stall for all thp allocations 617 * defer: wake kswapd and fail if not immediately available 618 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 619 * fail if not immediately available 620 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 621 * available 622 * never: never stall for any thp allocation 623 */ 624 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) 625 { 626 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); 627 628 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 629 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 630 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 631 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 632 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 633 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM : 634 __GFP_KSWAPD_RECLAIM); 635 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 636 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM : 637 0); 638 return GFP_TRANSHUGE_LIGHT; 639 } 640 641 /* Caller must hold page table lock. */ 642 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 643 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 644 struct page *zero_page) 645 { 646 pmd_t entry; 647 if (!pmd_none(*pmd)) 648 return false; 649 entry = mk_pmd(zero_page, vma->vm_page_prot); 650 entry = pmd_mkhuge(entry); 651 if (pgtable) 652 pgtable_trans_huge_deposit(mm, pmd, pgtable); 653 set_pmd_at(mm, haddr, pmd, entry); 654 atomic_long_inc(&mm->nr_ptes); 655 return true; 656 } 657 658 int do_huge_pmd_anonymous_page(struct vm_fault *vmf) 659 { 660 struct vm_area_struct *vma = vmf->vma; 661 gfp_t gfp; 662 struct page *page; 663 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 664 665 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 666 return VM_FAULT_FALLBACK; 667 if (unlikely(anon_vma_prepare(vma))) 668 return VM_FAULT_OOM; 669 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 670 return VM_FAULT_OOM; 671 if (!(vmf->flags & FAULT_FLAG_WRITE) && 672 !mm_forbids_zeropage(vma->vm_mm) && 673 transparent_hugepage_use_zero_page()) { 674 pgtable_t pgtable; 675 struct page *zero_page; 676 bool set; 677 int ret; 678 pgtable = pte_alloc_one(vma->vm_mm, haddr); 679 if (unlikely(!pgtable)) 680 return VM_FAULT_OOM; 681 zero_page = mm_get_huge_zero_page(vma->vm_mm); 682 if (unlikely(!zero_page)) { 683 pte_free(vma->vm_mm, pgtable); 684 count_vm_event(THP_FAULT_FALLBACK); 685 return VM_FAULT_FALLBACK; 686 } 687 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 688 ret = 0; 689 set = false; 690 if (pmd_none(*vmf->pmd)) { 691 if (userfaultfd_missing(vma)) { 692 spin_unlock(vmf->ptl); 693 ret = handle_userfault(vmf, VM_UFFD_MISSING); 694 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 695 } else { 696 set_huge_zero_page(pgtable, vma->vm_mm, vma, 697 haddr, vmf->pmd, zero_page); 698 spin_unlock(vmf->ptl); 699 set = true; 700 } 701 } else 702 spin_unlock(vmf->ptl); 703 if (!set) 704 pte_free(vma->vm_mm, pgtable); 705 return ret; 706 } 707 gfp = alloc_hugepage_direct_gfpmask(vma); 708 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 709 if (unlikely(!page)) { 710 count_vm_event(THP_FAULT_FALLBACK); 711 return VM_FAULT_FALLBACK; 712 } 713 prep_transhuge_page(page); 714 return __do_huge_pmd_anonymous_page(vmf, page, gfp); 715 } 716 717 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 718 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 719 pgtable_t pgtable) 720 { 721 struct mm_struct *mm = vma->vm_mm; 722 pmd_t entry; 723 spinlock_t *ptl; 724 725 ptl = pmd_lock(mm, pmd); 726 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 727 if (pfn_t_devmap(pfn)) 728 entry = pmd_mkdevmap(entry); 729 if (write) { 730 entry = pmd_mkyoung(pmd_mkdirty(entry)); 731 entry = maybe_pmd_mkwrite(entry, vma); 732 } 733 734 if (pgtable) { 735 pgtable_trans_huge_deposit(mm, pmd, pgtable); 736 atomic_long_inc(&mm->nr_ptes); 737 } 738 739 set_pmd_at(mm, addr, pmd, entry); 740 update_mmu_cache_pmd(vma, addr, pmd); 741 spin_unlock(ptl); 742 } 743 744 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 745 pmd_t *pmd, pfn_t pfn, bool write) 746 { 747 pgprot_t pgprot = vma->vm_page_prot; 748 pgtable_t pgtable = NULL; 749 /* 750 * If we had pmd_special, we could avoid all these restrictions, 751 * but we need to be consistent with PTEs and architectures that 752 * can't support a 'special' bit. 753 */ 754 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 755 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 756 (VM_PFNMAP|VM_MIXEDMAP)); 757 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 758 BUG_ON(!pfn_t_devmap(pfn)); 759 760 if (addr < vma->vm_start || addr >= vma->vm_end) 761 return VM_FAULT_SIGBUS; 762 763 if (arch_needs_pgtable_deposit()) { 764 pgtable = pte_alloc_one(vma->vm_mm, addr); 765 if (!pgtable) 766 return VM_FAULT_OOM; 767 } 768 769 track_pfn_insert(vma, &pgprot, pfn); 770 771 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable); 772 return VM_FAULT_NOPAGE; 773 } 774 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 775 776 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 777 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 778 { 779 if (likely(vma->vm_flags & VM_WRITE)) 780 pud = pud_mkwrite(pud); 781 return pud; 782 } 783 784 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 785 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 786 { 787 struct mm_struct *mm = vma->vm_mm; 788 pud_t entry; 789 spinlock_t *ptl; 790 791 ptl = pud_lock(mm, pud); 792 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 793 if (pfn_t_devmap(pfn)) 794 entry = pud_mkdevmap(entry); 795 if (write) { 796 entry = pud_mkyoung(pud_mkdirty(entry)); 797 entry = maybe_pud_mkwrite(entry, vma); 798 } 799 set_pud_at(mm, addr, pud, entry); 800 update_mmu_cache_pud(vma, addr, pud); 801 spin_unlock(ptl); 802 } 803 804 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 805 pud_t *pud, pfn_t pfn, bool write) 806 { 807 pgprot_t pgprot = vma->vm_page_prot; 808 /* 809 * If we had pud_special, we could avoid all these restrictions, 810 * but we need to be consistent with PTEs and architectures that 811 * can't support a 'special' bit. 812 */ 813 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 814 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 815 (VM_PFNMAP|VM_MIXEDMAP)); 816 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 817 BUG_ON(!pfn_t_devmap(pfn)); 818 819 if (addr < vma->vm_start || addr >= vma->vm_end) 820 return VM_FAULT_SIGBUS; 821 822 track_pfn_insert(vma, &pgprot, pfn); 823 824 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write); 825 return VM_FAULT_NOPAGE; 826 } 827 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 828 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 829 830 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 831 pmd_t *pmd) 832 { 833 pmd_t _pmd; 834 835 /* 836 * We should set the dirty bit only for FOLL_WRITE but for now 837 * the dirty bit in the pmd is meaningless. And if the dirty 838 * bit will become meaningful and we'll only set it with 839 * FOLL_WRITE, an atomic set_bit will be required on the pmd to 840 * set the young bit, instead of the current set_pmd_at. 841 */ 842 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); 843 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 844 pmd, _pmd, 1)) 845 update_mmu_cache_pmd(vma, addr, pmd); 846 } 847 848 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 849 pmd_t *pmd, int flags) 850 { 851 unsigned long pfn = pmd_pfn(*pmd); 852 struct mm_struct *mm = vma->vm_mm; 853 struct dev_pagemap *pgmap; 854 struct page *page; 855 856 assert_spin_locked(pmd_lockptr(mm, pmd)); 857 858 /* 859 * When we COW a devmap PMD entry, we split it into PTEs, so we should 860 * not be in this function with `flags & FOLL_COW` set. 861 */ 862 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); 863 864 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 865 return NULL; 866 867 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 868 /* pass */; 869 else 870 return NULL; 871 872 if (flags & FOLL_TOUCH) 873 touch_pmd(vma, addr, pmd); 874 875 /* 876 * device mapped pages can only be returned if the 877 * caller will manage the page reference count. 878 */ 879 if (!(flags & FOLL_GET)) 880 return ERR_PTR(-EEXIST); 881 882 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 883 pgmap = get_dev_pagemap(pfn, NULL); 884 if (!pgmap) 885 return ERR_PTR(-EFAULT); 886 page = pfn_to_page(pfn); 887 get_page(page); 888 put_dev_pagemap(pgmap); 889 890 return page; 891 } 892 893 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 894 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 895 struct vm_area_struct *vma) 896 { 897 spinlock_t *dst_ptl, *src_ptl; 898 struct page *src_page; 899 pmd_t pmd; 900 pgtable_t pgtable = NULL; 901 int ret = -ENOMEM; 902 903 /* Skip if can be re-fill on fault */ 904 if (!vma_is_anonymous(vma)) 905 return 0; 906 907 pgtable = pte_alloc_one(dst_mm, addr); 908 if (unlikely(!pgtable)) 909 goto out; 910 911 dst_ptl = pmd_lock(dst_mm, dst_pmd); 912 src_ptl = pmd_lockptr(src_mm, src_pmd); 913 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 914 915 ret = -EAGAIN; 916 pmd = *src_pmd; 917 if (unlikely(!pmd_trans_huge(pmd))) { 918 pte_free(dst_mm, pgtable); 919 goto out_unlock; 920 } 921 /* 922 * When page table lock is held, the huge zero pmd should not be 923 * under splitting since we don't split the page itself, only pmd to 924 * a page table. 925 */ 926 if (is_huge_zero_pmd(pmd)) { 927 struct page *zero_page; 928 /* 929 * get_huge_zero_page() will never allocate a new page here, 930 * since we already have a zero page to copy. It just takes a 931 * reference. 932 */ 933 zero_page = mm_get_huge_zero_page(dst_mm); 934 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 935 zero_page); 936 ret = 0; 937 goto out_unlock; 938 } 939 940 src_page = pmd_page(pmd); 941 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 942 get_page(src_page); 943 page_dup_rmap(src_page, true); 944 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 945 atomic_long_inc(&dst_mm->nr_ptes); 946 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 947 948 pmdp_set_wrprotect(src_mm, addr, src_pmd); 949 pmd = pmd_mkold(pmd_wrprotect(pmd)); 950 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 951 952 ret = 0; 953 out_unlock: 954 spin_unlock(src_ptl); 955 spin_unlock(dst_ptl); 956 out: 957 return ret; 958 } 959 960 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 961 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 962 pud_t *pud) 963 { 964 pud_t _pud; 965 966 /* 967 * We should set the dirty bit only for FOLL_WRITE but for now 968 * the dirty bit in the pud is meaningless. And if the dirty 969 * bit will become meaningful and we'll only set it with 970 * FOLL_WRITE, an atomic set_bit will be required on the pud to 971 * set the young bit, instead of the current set_pud_at. 972 */ 973 _pud = pud_mkyoung(pud_mkdirty(*pud)); 974 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 975 pud, _pud, 1)) 976 update_mmu_cache_pud(vma, addr, pud); 977 } 978 979 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 980 pud_t *pud, int flags) 981 { 982 unsigned long pfn = pud_pfn(*pud); 983 struct mm_struct *mm = vma->vm_mm; 984 struct dev_pagemap *pgmap; 985 struct page *page; 986 987 assert_spin_locked(pud_lockptr(mm, pud)); 988 989 if (flags & FOLL_WRITE && !pud_write(*pud)) 990 return NULL; 991 992 if (pud_present(*pud) && pud_devmap(*pud)) 993 /* pass */; 994 else 995 return NULL; 996 997 if (flags & FOLL_TOUCH) 998 touch_pud(vma, addr, pud); 999 1000 /* 1001 * device mapped pages can only be returned if the 1002 * caller will manage the page reference count. 1003 */ 1004 if (!(flags & FOLL_GET)) 1005 return ERR_PTR(-EEXIST); 1006 1007 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1008 pgmap = get_dev_pagemap(pfn, NULL); 1009 if (!pgmap) 1010 return ERR_PTR(-EFAULT); 1011 page = pfn_to_page(pfn); 1012 get_page(page); 1013 put_dev_pagemap(pgmap); 1014 1015 return page; 1016 } 1017 1018 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1019 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1020 struct vm_area_struct *vma) 1021 { 1022 spinlock_t *dst_ptl, *src_ptl; 1023 pud_t pud; 1024 int ret; 1025 1026 dst_ptl = pud_lock(dst_mm, dst_pud); 1027 src_ptl = pud_lockptr(src_mm, src_pud); 1028 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1029 1030 ret = -EAGAIN; 1031 pud = *src_pud; 1032 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1033 goto out_unlock; 1034 1035 /* 1036 * When page table lock is held, the huge zero pud should not be 1037 * under splitting since we don't split the page itself, only pud to 1038 * a page table. 1039 */ 1040 if (is_huge_zero_pud(pud)) { 1041 /* No huge zero pud yet */ 1042 } 1043 1044 pudp_set_wrprotect(src_mm, addr, src_pud); 1045 pud = pud_mkold(pud_wrprotect(pud)); 1046 set_pud_at(dst_mm, addr, dst_pud, pud); 1047 1048 ret = 0; 1049 out_unlock: 1050 spin_unlock(src_ptl); 1051 spin_unlock(dst_ptl); 1052 return ret; 1053 } 1054 1055 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1056 { 1057 pud_t entry; 1058 unsigned long haddr; 1059 bool write = vmf->flags & FAULT_FLAG_WRITE; 1060 1061 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1062 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1063 goto unlock; 1064 1065 entry = pud_mkyoung(orig_pud); 1066 if (write) 1067 entry = pud_mkdirty(entry); 1068 haddr = vmf->address & HPAGE_PUD_MASK; 1069 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write)) 1070 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud); 1071 1072 unlock: 1073 spin_unlock(vmf->ptl); 1074 } 1075 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1076 1077 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd) 1078 { 1079 pmd_t entry; 1080 unsigned long haddr; 1081 bool write = vmf->flags & FAULT_FLAG_WRITE; 1082 1083 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1084 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1085 goto unlock; 1086 1087 entry = pmd_mkyoung(orig_pmd); 1088 if (write) 1089 entry = pmd_mkdirty(entry); 1090 haddr = vmf->address & HPAGE_PMD_MASK; 1091 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) 1092 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); 1093 1094 unlock: 1095 spin_unlock(vmf->ptl); 1096 } 1097 1098 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd, 1099 struct page *page) 1100 { 1101 struct vm_area_struct *vma = vmf->vma; 1102 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1103 struct mem_cgroup *memcg; 1104 pgtable_t pgtable; 1105 pmd_t _pmd; 1106 int ret = 0, i; 1107 struct page **pages; 1108 unsigned long mmun_start; /* For mmu_notifiers */ 1109 unsigned long mmun_end; /* For mmu_notifiers */ 1110 1111 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, 1112 GFP_KERNEL); 1113 if (unlikely(!pages)) { 1114 ret |= VM_FAULT_OOM; 1115 goto out; 1116 } 1117 1118 for (i = 0; i < HPAGE_PMD_NR; i++) { 1119 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma, 1120 vmf->address, page_to_nid(page)); 1121 if (unlikely(!pages[i] || 1122 mem_cgroup_try_charge(pages[i], vma->vm_mm, 1123 GFP_KERNEL, &memcg, false))) { 1124 if (pages[i]) 1125 put_page(pages[i]); 1126 while (--i >= 0) { 1127 memcg = (void *)page_private(pages[i]); 1128 set_page_private(pages[i], 0); 1129 mem_cgroup_cancel_charge(pages[i], memcg, 1130 false); 1131 put_page(pages[i]); 1132 } 1133 kfree(pages); 1134 ret |= VM_FAULT_OOM; 1135 goto out; 1136 } 1137 set_page_private(pages[i], (unsigned long)memcg); 1138 } 1139 1140 for (i = 0; i < HPAGE_PMD_NR; i++) { 1141 copy_user_highpage(pages[i], page + i, 1142 haddr + PAGE_SIZE * i, vma); 1143 __SetPageUptodate(pages[i]); 1144 cond_resched(); 1145 } 1146 1147 mmun_start = haddr; 1148 mmun_end = haddr + HPAGE_PMD_SIZE; 1149 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 1150 1151 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1152 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1153 goto out_free_pages; 1154 VM_BUG_ON_PAGE(!PageHead(page), page); 1155 1156 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 1157 /* leave pmd empty until pte is filled */ 1158 1159 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd); 1160 pmd_populate(vma->vm_mm, &_pmd, pgtable); 1161 1162 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1163 pte_t entry; 1164 entry = mk_pte(pages[i], vma->vm_page_prot); 1165 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1166 memcg = (void *)page_private(pages[i]); 1167 set_page_private(pages[i], 0); 1168 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false); 1169 mem_cgroup_commit_charge(pages[i], memcg, false, false); 1170 lru_cache_add_active_or_unevictable(pages[i], vma); 1171 vmf->pte = pte_offset_map(&_pmd, haddr); 1172 VM_BUG_ON(!pte_none(*vmf->pte)); 1173 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry); 1174 pte_unmap(vmf->pte); 1175 } 1176 kfree(pages); 1177 1178 smp_wmb(); /* make pte visible before pmd */ 1179 pmd_populate(vma->vm_mm, vmf->pmd, pgtable); 1180 page_remove_rmap(page, true); 1181 spin_unlock(vmf->ptl); 1182 1183 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1184 1185 ret |= VM_FAULT_WRITE; 1186 put_page(page); 1187 1188 out: 1189 return ret; 1190 1191 out_free_pages: 1192 spin_unlock(vmf->ptl); 1193 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1194 for (i = 0; i < HPAGE_PMD_NR; i++) { 1195 memcg = (void *)page_private(pages[i]); 1196 set_page_private(pages[i], 0); 1197 mem_cgroup_cancel_charge(pages[i], memcg, false); 1198 put_page(pages[i]); 1199 } 1200 kfree(pages); 1201 goto out; 1202 } 1203 1204 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd) 1205 { 1206 struct vm_area_struct *vma = vmf->vma; 1207 struct page *page = NULL, *new_page; 1208 struct mem_cgroup *memcg; 1209 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1210 unsigned long mmun_start; /* For mmu_notifiers */ 1211 unsigned long mmun_end; /* For mmu_notifiers */ 1212 gfp_t huge_gfp; /* for allocation and charge */ 1213 int ret = 0; 1214 1215 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1216 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1217 if (is_huge_zero_pmd(orig_pmd)) 1218 goto alloc; 1219 spin_lock(vmf->ptl); 1220 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1221 goto out_unlock; 1222 1223 page = pmd_page(orig_pmd); 1224 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 1225 /* 1226 * We can only reuse the page if nobody else maps the huge page or it's 1227 * part. 1228 */ 1229 if (page_trans_huge_mapcount(page, NULL) == 1) { 1230 pmd_t entry; 1231 entry = pmd_mkyoung(orig_pmd); 1232 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1233 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1234 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1235 ret |= VM_FAULT_WRITE; 1236 goto out_unlock; 1237 } 1238 get_page(page); 1239 spin_unlock(vmf->ptl); 1240 alloc: 1241 if (transparent_hugepage_enabled(vma) && 1242 !transparent_hugepage_debug_cow()) { 1243 huge_gfp = alloc_hugepage_direct_gfpmask(vma); 1244 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER); 1245 } else 1246 new_page = NULL; 1247 1248 if (likely(new_page)) { 1249 prep_transhuge_page(new_page); 1250 } else { 1251 if (!page) { 1252 split_huge_pmd(vma, vmf->pmd, vmf->address); 1253 ret |= VM_FAULT_FALLBACK; 1254 } else { 1255 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page); 1256 if (ret & VM_FAULT_OOM) { 1257 split_huge_pmd(vma, vmf->pmd, vmf->address); 1258 ret |= VM_FAULT_FALLBACK; 1259 } 1260 put_page(page); 1261 } 1262 count_vm_event(THP_FAULT_FALLBACK); 1263 goto out; 1264 } 1265 1266 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm, 1267 huge_gfp, &memcg, true))) { 1268 put_page(new_page); 1269 split_huge_pmd(vma, vmf->pmd, vmf->address); 1270 if (page) 1271 put_page(page); 1272 ret |= VM_FAULT_FALLBACK; 1273 count_vm_event(THP_FAULT_FALLBACK); 1274 goto out; 1275 } 1276 1277 count_vm_event(THP_FAULT_ALLOC); 1278 1279 if (!page) 1280 clear_huge_page(new_page, haddr, HPAGE_PMD_NR); 1281 else 1282 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); 1283 __SetPageUptodate(new_page); 1284 1285 mmun_start = haddr; 1286 mmun_end = haddr + HPAGE_PMD_SIZE; 1287 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 1288 1289 spin_lock(vmf->ptl); 1290 if (page) 1291 put_page(page); 1292 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1293 spin_unlock(vmf->ptl); 1294 mem_cgroup_cancel_charge(new_page, memcg, true); 1295 put_page(new_page); 1296 goto out_mn; 1297 } else { 1298 pmd_t entry; 1299 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1300 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1301 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 1302 page_add_new_anon_rmap(new_page, vma, haddr, true); 1303 mem_cgroup_commit_charge(new_page, memcg, false, true); 1304 lru_cache_add_active_or_unevictable(new_page, vma); 1305 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 1306 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1307 if (!page) { 1308 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1309 } else { 1310 VM_BUG_ON_PAGE(!PageHead(page), page); 1311 page_remove_rmap(page, true); 1312 put_page(page); 1313 } 1314 ret |= VM_FAULT_WRITE; 1315 } 1316 spin_unlock(vmf->ptl); 1317 out_mn: 1318 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1319 out: 1320 return ret; 1321 out_unlock: 1322 spin_unlock(vmf->ptl); 1323 return ret; 1324 } 1325 1326 /* 1327 * FOLL_FORCE can write to even unwritable pmd's, but only 1328 * after we've gone through a COW cycle and they are dirty. 1329 */ 1330 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) 1331 { 1332 return pmd_write(pmd) || 1333 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); 1334 } 1335 1336 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1337 unsigned long addr, 1338 pmd_t *pmd, 1339 unsigned int flags) 1340 { 1341 struct mm_struct *mm = vma->vm_mm; 1342 struct page *page = NULL; 1343 1344 assert_spin_locked(pmd_lockptr(mm, pmd)); 1345 1346 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) 1347 goto out; 1348 1349 /* Avoid dumping huge zero page */ 1350 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1351 return ERR_PTR(-EFAULT); 1352 1353 /* Full NUMA hinting faults to serialise migration in fault paths */ 1354 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1355 goto out; 1356 1357 page = pmd_page(*pmd); 1358 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1359 if (flags & FOLL_TOUCH) 1360 touch_pmd(vma, addr, pmd); 1361 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1362 /* 1363 * We don't mlock() pte-mapped THPs. This way we can avoid 1364 * leaking mlocked pages into non-VM_LOCKED VMAs. 1365 * 1366 * For anon THP: 1367 * 1368 * In most cases the pmd is the only mapping of the page as we 1369 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1370 * writable private mappings in populate_vma_page_range(). 1371 * 1372 * The only scenario when we have the page shared here is if we 1373 * mlocking read-only mapping shared over fork(). We skip 1374 * mlocking such pages. 1375 * 1376 * For file THP: 1377 * 1378 * We can expect PageDoubleMap() to be stable under page lock: 1379 * for file pages we set it in page_add_file_rmap(), which 1380 * requires page to be locked. 1381 */ 1382 1383 if (PageAnon(page) && compound_mapcount(page) != 1) 1384 goto skip_mlock; 1385 if (PageDoubleMap(page) || !page->mapping) 1386 goto skip_mlock; 1387 if (!trylock_page(page)) 1388 goto skip_mlock; 1389 lru_add_drain(); 1390 if (page->mapping && !PageDoubleMap(page)) 1391 mlock_vma_page(page); 1392 unlock_page(page); 1393 } 1394 skip_mlock: 1395 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1396 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1397 if (flags & FOLL_GET) 1398 get_page(page); 1399 1400 out: 1401 return page; 1402 } 1403 1404 /* NUMA hinting page fault entry point for trans huge pmds */ 1405 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd) 1406 { 1407 struct vm_area_struct *vma = vmf->vma; 1408 struct anon_vma *anon_vma = NULL; 1409 struct page *page; 1410 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1411 int page_nid = -1, this_nid = numa_node_id(); 1412 int target_nid, last_cpupid = -1; 1413 bool page_locked; 1414 bool migrated = false; 1415 bool was_writable; 1416 int flags = 0; 1417 1418 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1419 if (unlikely(!pmd_same(pmd, *vmf->pmd))) 1420 goto out_unlock; 1421 1422 /* 1423 * If there are potential migrations, wait for completion and retry 1424 * without disrupting NUMA hinting information. Do not relock and 1425 * check_same as the page may no longer be mapped. 1426 */ 1427 if (unlikely(pmd_trans_migrating(*vmf->pmd))) { 1428 page = pmd_page(*vmf->pmd); 1429 if (!get_page_unless_zero(page)) 1430 goto out_unlock; 1431 spin_unlock(vmf->ptl); 1432 wait_on_page_locked(page); 1433 put_page(page); 1434 goto out; 1435 } 1436 1437 page = pmd_page(pmd); 1438 BUG_ON(is_huge_zero_page(page)); 1439 page_nid = page_to_nid(page); 1440 last_cpupid = page_cpupid_last(page); 1441 count_vm_numa_event(NUMA_HINT_FAULTS); 1442 if (page_nid == this_nid) { 1443 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1444 flags |= TNF_FAULT_LOCAL; 1445 } 1446 1447 /* See similar comment in do_numa_page for explanation */ 1448 if (!pmd_savedwrite(pmd)) 1449 flags |= TNF_NO_GROUP; 1450 1451 /* 1452 * Acquire the page lock to serialise THP migrations but avoid dropping 1453 * page_table_lock if at all possible 1454 */ 1455 page_locked = trylock_page(page); 1456 target_nid = mpol_misplaced(page, vma, haddr); 1457 if (target_nid == -1) { 1458 /* If the page was locked, there are no parallel migrations */ 1459 if (page_locked) 1460 goto clear_pmdnuma; 1461 } 1462 1463 /* Migration could have started since the pmd_trans_migrating check */ 1464 if (!page_locked) { 1465 page_nid = -1; 1466 if (!get_page_unless_zero(page)) 1467 goto out_unlock; 1468 spin_unlock(vmf->ptl); 1469 wait_on_page_locked(page); 1470 put_page(page); 1471 goto out; 1472 } 1473 1474 /* 1475 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1476 * to serialises splits 1477 */ 1478 get_page(page); 1479 spin_unlock(vmf->ptl); 1480 anon_vma = page_lock_anon_vma_read(page); 1481 1482 /* Confirm the PMD did not change while page_table_lock was released */ 1483 spin_lock(vmf->ptl); 1484 if (unlikely(!pmd_same(pmd, *vmf->pmd))) { 1485 unlock_page(page); 1486 put_page(page); 1487 page_nid = -1; 1488 goto out_unlock; 1489 } 1490 1491 /* Bail if we fail to protect against THP splits for any reason */ 1492 if (unlikely(!anon_vma)) { 1493 put_page(page); 1494 page_nid = -1; 1495 goto clear_pmdnuma; 1496 } 1497 1498 /* 1499 * Migrate the THP to the requested node, returns with page unlocked 1500 * and access rights restored. 1501 */ 1502 spin_unlock(vmf->ptl); 1503 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, 1504 vmf->pmd, pmd, vmf->address, page, target_nid); 1505 if (migrated) { 1506 flags |= TNF_MIGRATED; 1507 page_nid = target_nid; 1508 } else 1509 flags |= TNF_MIGRATE_FAIL; 1510 1511 goto out; 1512 clear_pmdnuma: 1513 BUG_ON(!PageLocked(page)); 1514 was_writable = pmd_savedwrite(pmd); 1515 pmd = pmd_modify(pmd, vma->vm_page_prot); 1516 pmd = pmd_mkyoung(pmd); 1517 if (was_writable) 1518 pmd = pmd_mkwrite(pmd); 1519 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1520 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1521 unlock_page(page); 1522 out_unlock: 1523 spin_unlock(vmf->ptl); 1524 1525 out: 1526 if (anon_vma) 1527 page_unlock_anon_vma_read(anon_vma); 1528 1529 if (page_nid != -1) 1530 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1531 flags); 1532 1533 return 0; 1534 } 1535 1536 /* 1537 * Return true if we do MADV_FREE successfully on entire pmd page. 1538 * Otherwise, return false. 1539 */ 1540 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1541 pmd_t *pmd, unsigned long addr, unsigned long next) 1542 { 1543 spinlock_t *ptl; 1544 pmd_t orig_pmd; 1545 struct page *page; 1546 struct mm_struct *mm = tlb->mm; 1547 bool ret = false; 1548 1549 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); 1550 1551 ptl = pmd_trans_huge_lock(pmd, vma); 1552 if (!ptl) 1553 goto out_unlocked; 1554 1555 orig_pmd = *pmd; 1556 if (is_huge_zero_pmd(orig_pmd)) 1557 goto out; 1558 1559 page = pmd_page(orig_pmd); 1560 /* 1561 * If other processes are mapping this page, we couldn't discard 1562 * the page unless they all do MADV_FREE so let's skip the page. 1563 */ 1564 if (page_mapcount(page) != 1) 1565 goto out; 1566 1567 if (!trylock_page(page)) 1568 goto out; 1569 1570 /* 1571 * If user want to discard part-pages of THP, split it so MADV_FREE 1572 * will deactivate only them. 1573 */ 1574 if (next - addr != HPAGE_PMD_SIZE) { 1575 get_page(page); 1576 spin_unlock(ptl); 1577 split_huge_page(page); 1578 unlock_page(page); 1579 put_page(page); 1580 goto out_unlocked; 1581 } 1582 1583 if (PageDirty(page)) 1584 ClearPageDirty(page); 1585 unlock_page(page); 1586 1587 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1588 pmdp_invalidate(vma, addr, pmd); 1589 orig_pmd = pmd_mkold(orig_pmd); 1590 orig_pmd = pmd_mkclean(orig_pmd); 1591 1592 set_pmd_at(mm, addr, pmd, orig_pmd); 1593 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1594 } 1595 1596 mark_page_lazyfree(page); 1597 ret = true; 1598 out: 1599 spin_unlock(ptl); 1600 out_unlocked: 1601 return ret; 1602 } 1603 1604 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1605 { 1606 pgtable_t pgtable; 1607 1608 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1609 pte_free(mm, pgtable); 1610 atomic_long_dec(&mm->nr_ptes); 1611 } 1612 1613 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1614 pmd_t *pmd, unsigned long addr) 1615 { 1616 pmd_t orig_pmd; 1617 spinlock_t *ptl; 1618 1619 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); 1620 1621 ptl = __pmd_trans_huge_lock(pmd, vma); 1622 if (!ptl) 1623 return 0; 1624 /* 1625 * For architectures like ppc64 we look at deposited pgtable 1626 * when calling pmdp_huge_get_and_clear. So do the 1627 * pgtable_trans_huge_withdraw after finishing pmdp related 1628 * operations. 1629 */ 1630 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1631 tlb->fullmm); 1632 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1633 if (vma_is_dax(vma)) { 1634 if (arch_needs_pgtable_deposit()) 1635 zap_deposited_table(tlb->mm, pmd); 1636 spin_unlock(ptl); 1637 if (is_huge_zero_pmd(orig_pmd)) 1638 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1639 } else if (is_huge_zero_pmd(orig_pmd)) { 1640 zap_deposited_table(tlb->mm, pmd); 1641 spin_unlock(ptl); 1642 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1643 } else { 1644 struct page *page = pmd_page(orig_pmd); 1645 page_remove_rmap(page, true); 1646 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1647 VM_BUG_ON_PAGE(!PageHead(page), page); 1648 if (PageAnon(page)) { 1649 zap_deposited_table(tlb->mm, pmd); 1650 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1651 } else { 1652 if (arch_needs_pgtable_deposit()) 1653 zap_deposited_table(tlb->mm, pmd); 1654 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1655 } 1656 spin_unlock(ptl); 1657 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1658 } 1659 return 1; 1660 } 1661 1662 #ifndef pmd_move_must_withdraw 1663 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1664 spinlock_t *old_pmd_ptl, 1665 struct vm_area_struct *vma) 1666 { 1667 /* 1668 * With split pmd lock we also need to move preallocated 1669 * PTE page table if new_pmd is on different PMD page table. 1670 * 1671 * We also don't deposit and withdraw tables for file pages. 1672 */ 1673 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1674 } 1675 #endif 1676 1677 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1678 unsigned long new_addr, unsigned long old_end, 1679 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush) 1680 { 1681 spinlock_t *old_ptl, *new_ptl; 1682 pmd_t pmd; 1683 struct mm_struct *mm = vma->vm_mm; 1684 bool force_flush = false; 1685 1686 if ((old_addr & ~HPAGE_PMD_MASK) || 1687 (new_addr & ~HPAGE_PMD_MASK) || 1688 old_end - old_addr < HPAGE_PMD_SIZE) 1689 return false; 1690 1691 /* 1692 * The destination pmd shouldn't be established, free_pgtables() 1693 * should have release it. 1694 */ 1695 if (WARN_ON(!pmd_none(*new_pmd))) { 1696 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1697 return false; 1698 } 1699 1700 /* 1701 * We don't have to worry about the ordering of src and dst 1702 * ptlocks because exclusive mmap_sem prevents deadlock. 1703 */ 1704 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1705 if (old_ptl) { 1706 new_ptl = pmd_lockptr(mm, new_pmd); 1707 if (new_ptl != old_ptl) 1708 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1709 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1710 if (pmd_present(pmd) && pmd_dirty(pmd)) 1711 force_flush = true; 1712 VM_BUG_ON(!pmd_none(*new_pmd)); 1713 1714 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1715 pgtable_t pgtable; 1716 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1717 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1718 } 1719 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); 1720 if (new_ptl != old_ptl) 1721 spin_unlock(new_ptl); 1722 if (force_flush) 1723 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1724 else 1725 *need_flush = true; 1726 spin_unlock(old_ptl); 1727 return true; 1728 } 1729 return false; 1730 } 1731 1732 /* 1733 * Returns 1734 * - 0 if PMD could not be locked 1735 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1736 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1737 */ 1738 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1739 unsigned long addr, pgprot_t newprot, int prot_numa) 1740 { 1741 struct mm_struct *mm = vma->vm_mm; 1742 spinlock_t *ptl; 1743 pmd_t entry; 1744 bool preserve_write; 1745 int ret; 1746 1747 ptl = __pmd_trans_huge_lock(pmd, vma); 1748 if (!ptl) 1749 return 0; 1750 1751 preserve_write = prot_numa && pmd_write(*pmd); 1752 ret = 1; 1753 1754 /* 1755 * Avoid trapping faults against the zero page. The read-only 1756 * data is likely to be read-cached on the local CPU and 1757 * local/remote hits to the zero page are not interesting. 1758 */ 1759 if (prot_numa && is_huge_zero_pmd(*pmd)) 1760 goto unlock; 1761 1762 if (prot_numa && pmd_protnone(*pmd)) 1763 goto unlock; 1764 1765 /* 1766 * In case prot_numa, we are under down_read(mmap_sem). It's critical 1767 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 1768 * which is also under down_read(mmap_sem): 1769 * 1770 * CPU0: CPU1: 1771 * change_huge_pmd(prot_numa=1) 1772 * pmdp_huge_get_and_clear_notify() 1773 * madvise_dontneed() 1774 * zap_pmd_range() 1775 * pmd_trans_huge(*pmd) == 0 (without ptl) 1776 * // skip the pmd 1777 * set_pmd_at(); 1778 * // pmd is re-established 1779 * 1780 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 1781 * which may break userspace. 1782 * 1783 * pmdp_invalidate() is required to make sure we don't miss 1784 * dirty/young flags set by hardware. 1785 */ 1786 entry = *pmd; 1787 pmdp_invalidate(vma, addr, pmd); 1788 1789 /* 1790 * Recover dirty/young flags. It relies on pmdp_invalidate to not 1791 * corrupt them. 1792 */ 1793 if (pmd_dirty(*pmd)) 1794 entry = pmd_mkdirty(entry); 1795 if (pmd_young(*pmd)) 1796 entry = pmd_mkyoung(entry); 1797 1798 entry = pmd_modify(entry, newprot); 1799 if (preserve_write) 1800 entry = pmd_mk_savedwrite(entry); 1801 ret = HPAGE_PMD_NR; 1802 set_pmd_at(mm, addr, pmd, entry); 1803 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry)); 1804 unlock: 1805 spin_unlock(ptl); 1806 return ret; 1807 } 1808 1809 /* 1810 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1811 * 1812 * Note that if it returns page table lock pointer, this routine returns without 1813 * unlocking page table lock. So callers must unlock it. 1814 */ 1815 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1816 { 1817 spinlock_t *ptl; 1818 ptl = pmd_lock(vma->vm_mm, pmd); 1819 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd))) 1820 return ptl; 1821 spin_unlock(ptl); 1822 return NULL; 1823 } 1824 1825 /* 1826 * Returns true if a given pud maps a thp, false otherwise. 1827 * 1828 * Note that if it returns true, this routine returns without unlocking page 1829 * table lock. So callers must unlock it. 1830 */ 1831 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1832 { 1833 spinlock_t *ptl; 1834 1835 ptl = pud_lock(vma->vm_mm, pud); 1836 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1837 return ptl; 1838 spin_unlock(ptl); 1839 return NULL; 1840 } 1841 1842 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1843 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1844 pud_t *pud, unsigned long addr) 1845 { 1846 pud_t orig_pud; 1847 spinlock_t *ptl; 1848 1849 ptl = __pud_trans_huge_lock(pud, vma); 1850 if (!ptl) 1851 return 0; 1852 /* 1853 * For architectures like ppc64 we look at deposited pgtable 1854 * when calling pudp_huge_get_and_clear. So do the 1855 * pgtable_trans_huge_withdraw after finishing pudp related 1856 * operations. 1857 */ 1858 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud, 1859 tlb->fullmm); 1860 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1861 if (vma_is_dax(vma)) { 1862 spin_unlock(ptl); 1863 /* No zero page support yet */ 1864 } else { 1865 /* No support for anonymous PUD pages yet */ 1866 BUG(); 1867 } 1868 return 1; 1869 } 1870 1871 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 1872 unsigned long haddr) 1873 { 1874 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 1875 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1876 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 1877 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 1878 1879 count_vm_event(THP_SPLIT_PUD); 1880 1881 pudp_huge_clear_flush_notify(vma, haddr, pud); 1882 } 1883 1884 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 1885 unsigned long address) 1886 { 1887 spinlock_t *ptl; 1888 struct mm_struct *mm = vma->vm_mm; 1889 unsigned long haddr = address & HPAGE_PUD_MASK; 1890 1891 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE); 1892 ptl = pud_lock(mm, pud); 1893 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 1894 goto out; 1895 __split_huge_pud_locked(vma, pud, haddr); 1896 1897 out: 1898 spin_unlock(ptl); 1899 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE); 1900 } 1901 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1902 1903 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1904 unsigned long haddr, pmd_t *pmd) 1905 { 1906 struct mm_struct *mm = vma->vm_mm; 1907 pgtable_t pgtable; 1908 pmd_t _pmd; 1909 int i; 1910 1911 /* leave pmd empty until pte is filled */ 1912 pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1913 1914 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1915 pmd_populate(mm, &_pmd, pgtable); 1916 1917 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1918 pte_t *pte, entry; 1919 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 1920 entry = pte_mkspecial(entry); 1921 pte = pte_offset_map(&_pmd, haddr); 1922 VM_BUG_ON(!pte_none(*pte)); 1923 set_pte_at(mm, haddr, pte, entry); 1924 pte_unmap(pte); 1925 } 1926 smp_wmb(); /* make pte visible before pmd */ 1927 pmd_populate(mm, pmd, pgtable); 1928 } 1929 1930 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 1931 unsigned long haddr, bool freeze) 1932 { 1933 struct mm_struct *mm = vma->vm_mm; 1934 struct page *page; 1935 pgtable_t pgtable; 1936 pmd_t _pmd; 1937 bool young, write, dirty, soft_dirty; 1938 unsigned long addr; 1939 int i; 1940 1941 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 1942 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1943 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 1944 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)); 1945 1946 count_vm_event(THP_SPLIT_PMD); 1947 1948 if (!vma_is_anonymous(vma)) { 1949 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1950 /* 1951 * We are going to unmap this huge page. So 1952 * just go ahead and zap it 1953 */ 1954 if (arch_needs_pgtable_deposit()) 1955 zap_deposited_table(mm, pmd); 1956 if (vma_is_dax(vma)) 1957 return; 1958 page = pmd_page(_pmd); 1959 if (!PageReferenced(page) && pmd_young(_pmd)) 1960 SetPageReferenced(page); 1961 page_remove_rmap(page, true); 1962 put_page(page); 1963 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1964 return; 1965 } else if (is_huge_zero_pmd(*pmd)) { 1966 return __split_huge_zero_page_pmd(vma, haddr, pmd); 1967 } 1968 1969 page = pmd_page(*pmd); 1970 VM_BUG_ON_PAGE(!page_count(page), page); 1971 page_ref_add(page, HPAGE_PMD_NR - 1); 1972 write = pmd_write(*pmd); 1973 young = pmd_young(*pmd); 1974 dirty = pmd_dirty(*pmd); 1975 soft_dirty = pmd_soft_dirty(*pmd); 1976 1977 pmdp_huge_split_prepare(vma, haddr, pmd); 1978 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1979 pmd_populate(mm, &_pmd, pgtable); 1980 1981 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 1982 pte_t entry, *pte; 1983 /* 1984 * Note that NUMA hinting access restrictions are not 1985 * transferred to avoid any possibility of altering 1986 * permissions across VMAs. 1987 */ 1988 if (freeze) { 1989 swp_entry_t swp_entry; 1990 swp_entry = make_migration_entry(page + i, write); 1991 entry = swp_entry_to_pte(swp_entry); 1992 if (soft_dirty) 1993 entry = pte_swp_mksoft_dirty(entry); 1994 } else { 1995 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 1996 entry = maybe_mkwrite(entry, vma); 1997 if (!write) 1998 entry = pte_wrprotect(entry); 1999 if (!young) 2000 entry = pte_mkold(entry); 2001 if (soft_dirty) 2002 entry = pte_mksoft_dirty(entry); 2003 } 2004 if (dirty) 2005 SetPageDirty(page + i); 2006 pte = pte_offset_map(&_pmd, addr); 2007 BUG_ON(!pte_none(*pte)); 2008 set_pte_at(mm, addr, pte, entry); 2009 atomic_inc(&page[i]._mapcount); 2010 pte_unmap(pte); 2011 } 2012 2013 /* 2014 * Set PG_double_map before dropping compound_mapcount to avoid 2015 * false-negative page_mapped(). 2016 */ 2017 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) { 2018 for (i = 0; i < HPAGE_PMD_NR; i++) 2019 atomic_inc(&page[i]._mapcount); 2020 } 2021 2022 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 2023 /* Last compound_mapcount is gone. */ 2024 __dec_node_page_state(page, NR_ANON_THPS); 2025 if (TestClearPageDoubleMap(page)) { 2026 /* No need in mapcount reference anymore */ 2027 for (i = 0; i < HPAGE_PMD_NR; i++) 2028 atomic_dec(&page[i]._mapcount); 2029 } 2030 } 2031 2032 smp_wmb(); /* make pte visible before pmd */ 2033 /* 2034 * Up to this point the pmd is present and huge and userland has the 2035 * whole access to the hugepage during the split (which happens in 2036 * place). If we overwrite the pmd with the not-huge version pointing 2037 * to the pte here (which of course we could if all CPUs were bug 2038 * free), userland could trigger a small page size TLB miss on the 2039 * small sized TLB while the hugepage TLB entry is still established in 2040 * the huge TLB. Some CPU doesn't like that. 2041 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum 2042 * 383 on page 93. Intel should be safe but is also warns that it's 2043 * only safe if the permission and cache attributes of the two entries 2044 * loaded in the two TLB is identical (which should be the case here). 2045 * But it is generally safer to never allow small and huge TLB entries 2046 * for the same virtual address to be loaded simultaneously. So instead 2047 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2048 * current pmd notpresent (atomically because here the pmd_trans_huge 2049 * and pmd_trans_splitting must remain set at all times on the pmd 2050 * until the split is complete for this pmd), then we flush the SMP TLB 2051 * and finally we write the non-huge version of the pmd entry with 2052 * pmd_populate. 2053 */ 2054 pmdp_invalidate(vma, haddr, pmd); 2055 pmd_populate(mm, pmd, pgtable); 2056 2057 if (freeze) { 2058 for (i = 0; i < HPAGE_PMD_NR; i++) { 2059 page_remove_rmap(page + i, false); 2060 put_page(page + i); 2061 } 2062 } 2063 } 2064 2065 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2066 unsigned long address, bool freeze, struct page *page) 2067 { 2068 spinlock_t *ptl; 2069 struct mm_struct *mm = vma->vm_mm; 2070 unsigned long haddr = address & HPAGE_PMD_MASK; 2071 2072 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE); 2073 ptl = pmd_lock(mm, pmd); 2074 2075 /* 2076 * If caller asks to setup a migration entries, we need a page to check 2077 * pmd against. Otherwise we can end up replacing wrong page. 2078 */ 2079 VM_BUG_ON(freeze && !page); 2080 if (page && page != pmd_page(*pmd)) 2081 goto out; 2082 2083 if (pmd_trans_huge(*pmd)) { 2084 page = pmd_page(*pmd); 2085 if (PageMlocked(page)) 2086 clear_page_mlock(page); 2087 } else if (!pmd_devmap(*pmd)) 2088 goto out; 2089 __split_huge_pmd_locked(vma, pmd, haddr, freeze); 2090 out: 2091 spin_unlock(ptl); 2092 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE); 2093 } 2094 2095 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2096 bool freeze, struct page *page) 2097 { 2098 pgd_t *pgd; 2099 p4d_t *p4d; 2100 pud_t *pud; 2101 pmd_t *pmd; 2102 2103 pgd = pgd_offset(vma->vm_mm, address); 2104 if (!pgd_present(*pgd)) 2105 return; 2106 2107 p4d = p4d_offset(pgd, address); 2108 if (!p4d_present(*p4d)) 2109 return; 2110 2111 pud = pud_offset(p4d, address); 2112 if (!pud_present(*pud)) 2113 return; 2114 2115 pmd = pmd_offset(pud, address); 2116 2117 __split_huge_pmd(vma, pmd, address, freeze, page); 2118 } 2119 2120 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2121 unsigned long start, 2122 unsigned long end, 2123 long adjust_next) 2124 { 2125 /* 2126 * If the new start address isn't hpage aligned and it could 2127 * previously contain an hugepage: check if we need to split 2128 * an huge pmd. 2129 */ 2130 if (start & ~HPAGE_PMD_MASK && 2131 (start & HPAGE_PMD_MASK) >= vma->vm_start && 2132 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2133 split_huge_pmd_address(vma, start, false, NULL); 2134 2135 /* 2136 * If the new end address isn't hpage aligned and it could 2137 * previously contain an hugepage: check if we need to split 2138 * an huge pmd. 2139 */ 2140 if (end & ~HPAGE_PMD_MASK && 2141 (end & HPAGE_PMD_MASK) >= vma->vm_start && 2142 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2143 split_huge_pmd_address(vma, end, false, NULL); 2144 2145 /* 2146 * If we're also updating the vma->vm_next->vm_start, if the new 2147 * vm_next->vm_start isn't page aligned and it could previously 2148 * contain an hugepage: check if we need to split an huge pmd. 2149 */ 2150 if (adjust_next > 0) { 2151 struct vm_area_struct *next = vma->vm_next; 2152 unsigned long nstart = next->vm_start; 2153 nstart += adjust_next << PAGE_SHIFT; 2154 if (nstart & ~HPAGE_PMD_MASK && 2155 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 2156 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 2157 split_huge_pmd_address(next, nstart, false, NULL); 2158 } 2159 } 2160 2161 static void freeze_page(struct page *page) 2162 { 2163 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | 2164 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD; 2165 bool unmap_success; 2166 2167 VM_BUG_ON_PAGE(!PageHead(page), page); 2168 2169 if (PageAnon(page)) 2170 ttu_flags |= TTU_MIGRATION; 2171 2172 unmap_success = try_to_unmap(page, ttu_flags); 2173 VM_BUG_ON_PAGE(!unmap_success, page); 2174 } 2175 2176 static void unfreeze_page(struct page *page) 2177 { 2178 int i; 2179 if (PageTransHuge(page)) { 2180 remove_migration_ptes(page, page, true); 2181 } else { 2182 for (i = 0; i < HPAGE_PMD_NR; i++) 2183 remove_migration_ptes(page + i, page + i, true); 2184 } 2185 } 2186 2187 static void __split_huge_page_tail(struct page *head, int tail, 2188 struct lruvec *lruvec, struct list_head *list) 2189 { 2190 struct page *page_tail = head + tail; 2191 2192 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2193 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail); 2194 2195 /* 2196 * tail_page->_refcount is zero and not changing from under us. But 2197 * get_page_unless_zero() may be running from under us on the 2198 * tail_page. If we used atomic_set() below instead of atomic_inc() or 2199 * atomic_add(), we would then run atomic_set() concurrently with 2200 * get_page_unless_zero(), and atomic_set() is implemented in C not 2201 * using locked ops. spin_unlock on x86 sometime uses locked ops 2202 * because of PPro errata 66, 92, so unless somebody can guarantee 2203 * atomic_set() here would be safe on all archs (and not only on x86), 2204 * it's safer to use atomic_inc()/atomic_add(). 2205 */ 2206 if (PageAnon(head) && !PageSwapCache(head)) { 2207 page_ref_inc(page_tail); 2208 } else { 2209 /* Additional pin to radix tree */ 2210 page_ref_add(page_tail, 2); 2211 } 2212 2213 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2214 page_tail->flags |= (head->flags & 2215 ((1L << PG_referenced) | 2216 (1L << PG_swapbacked) | 2217 (1L << PG_swapcache) | 2218 (1L << PG_mlocked) | 2219 (1L << PG_uptodate) | 2220 (1L << PG_active) | 2221 (1L << PG_locked) | 2222 (1L << PG_unevictable) | 2223 (1L << PG_dirty))); 2224 2225 /* 2226 * After clearing PageTail the gup refcount can be released. 2227 * Page flags also must be visible before we make the page non-compound. 2228 */ 2229 smp_wmb(); 2230 2231 clear_compound_head(page_tail); 2232 2233 if (page_is_young(head)) 2234 set_page_young(page_tail); 2235 if (page_is_idle(head)) 2236 set_page_idle(page_tail); 2237 2238 /* ->mapping in first tail page is compound_mapcount */ 2239 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2240 page_tail); 2241 page_tail->mapping = head->mapping; 2242 2243 page_tail->index = head->index + tail; 2244 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2245 lru_add_page_tail(head, page_tail, lruvec, list); 2246 } 2247 2248 static void __split_huge_page(struct page *page, struct list_head *list, 2249 unsigned long flags) 2250 { 2251 struct page *head = compound_head(page); 2252 struct zone *zone = page_zone(head); 2253 struct lruvec *lruvec; 2254 pgoff_t end = -1; 2255 int i; 2256 2257 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat); 2258 2259 /* complete memcg works before add pages to LRU */ 2260 mem_cgroup_split_huge_fixup(head); 2261 2262 if (!PageAnon(page)) 2263 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE); 2264 2265 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 2266 __split_huge_page_tail(head, i, lruvec, list); 2267 /* Some pages can be beyond i_size: drop them from page cache */ 2268 if (head[i].index >= end) { 2269 __ClearPageDirty(head + i); 2270 __delete_from_page_cache(head + i, NULL); 2271 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) 2272 shmem_uncharge(head->mapping->host, 1); 2273 put_page(head + i); 2274 } 2275 } 2276 2277 ClearPageCompound(head); 2278 /* See comment in __split_huge_page_tail() */ 2279 if (PageAnon(head)) { 2280 /* Additional pin to radix tree of swap cache */ 2281 if (PageSwapCache(head)) 2282 page_ref_add(head, 2); 2283 else 2284 page_ref_inc(head); 2285 } else { 2286 /* Additional pin to radix tree */ 2287 page_ref_add(head, 2); 2288 spin_unlock(&head->mapping->tree_lock); 2289 } 2290 2291 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 2292 2293 unfreeze_page(head); 2294 2295 for (i = 0; i < HPAGE_PMD_NR; i++) { 2296 struct page *subpage = head + i; 2297 if (subpage == page) 2298 continue; 2299 unlock_page(subpage); 2300 2301 /* 2302 * Subpages may be freed if there wasn't any mapping 2303 * like if add_to_swap() is running on a lru page that 2304 * had its mapping zapped. And freeing these pages 2305 * requires taking the lru_lock so we do the put_page 2306 * of the tail pages after the split is complete. 2307 */ 2308 put_page(subpage); 2309 } 2310 } 2311 2312 int total_mapcount(struct page *page) 2313 { 2314 int i, compound, ret; 2315 2316 VM_BUG_ON_PAGE(PageTail(page), page); 2317 2318 if (likely(!PageCompound(page))) 2319 return atomic_read(&page->_mapcount) + 1; 2320 2321 compound = compound_mapcount(page); 2322 if (PageHuge(page)) 2323 return compound; 2324 ret = compound; 2325 for (i = 0; i < HPAGE_PMD_NR; i++) 2326 ret += atomic_read(&page[i]._mapcount) + 1; 2327 /* File pages has compound_mapcount included in _mapcount */ 2328 if (!PageAnon(page)) 2329 return ret - compound * HPAGE_PMD_NR; 2330 if (PageDoubleMap(page)) 2331 ret -= HPAGE_PMD_NR; 2332 return ret; 2333 } 2334 2335 /* 2336 * This calculates accurately how many mappings a transparent hugepage 2337 * has (unlike page_mapcount() which isn't fully accurate). This full 2338 * accuracy is primarily needed to know if copy-on-write faults can 2339 * reuse the page and change the mapping to read-write instead of 2340 * copying them. At the same time this returns the total_mapcount too. 2341 * 2342 * The function returns the highest mapcount any one of the subpages 2343 * has. If the return value is one, even if different processes are 2344 * mapping different subpages of the transparent hugepage, they can 2345 * all reuse it, because each process is reusing a different subpage. 2346 * 2347 * The total_mapcount is instead counting all virtual mappings of the 2348 * subpages. If the total_mapcount is equal to "one", it tells the 2349 * caller all mappings belong to the same "mm" and in turn the 2350 * anon_vma of the transparent hugepage can become the vma->anon_vma 2351 * local one as no other process may be mapping any of the subpages. 2352 * 2353 * It would be more accurate to replace page_mapcount() with 2354 * page_trans_huge_mapcount(), however we only use 2355 * page_trans_huge_mapcount() in the copy-on-write faults where we 2356 * need full accuracy to avoid breaking page pinning, because 2357 * page_trans_huge_mapcount() is slower than page_mapcount(). 2358 */ 2359 int page_trans_huge_mapcount(struct page *page, int *total_mapcount) 2360 { 2361 int i, ret, _total_mapcount, mapcount; 2362 2363 /* hugetlbfs shouldn't call it */ 2364 VM_BUG_ON_PAGE(PageHuge(page), page); 2365 2366 if (likely(!PageTransCompound(page))) { 2367 mapcount = atomic_read(&page->_mapcount) + 1; 2368 if (total_mapcount) 2369 *total_mapcount = mapcount; 2370 return mapcount; 2371 } 2372 2373 page = compound_head(page); 2374 2375 _total_mapcount = ret = 0; 2376 for (i = 0; i < HPAGE_PMD_NR; i++) { 2377 mapcount = atomic_read(&page[i]._mapcount) + 1; 2378 ret = max(ret, mapcount); 2379 _total_mapcount += mapcount; 2380 } 2381 if (PageDoubleMap(page)) { 2382 ret -= 1; 2383 _total_mapcount -= HPAGE_PMD_NR; 2384 } 2385 mapcount = compound_mapcount(page); 2386 ret += mapcount; 2387 _total_mapcount += mapcount; 2388 if (total_mapcount) 2389 *total_mapcount = _total_mapcount; 2390 return ret; 2391 } 2392 2393 /* Racy check whether the huge page can be split */ 2394 bool can_split_huge_page(struct page *page, int *pextra_pins) 2395 { 2396 int extra_pins; 2397 2398 /* Additional pins from radix tree */ 2399 if (PageAnon(page)) 2400 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0; 2401 else 2402 extra_pins = HPAGE_PMD_NR; 2403 if (pextra_pins) 2404 *pextra_pins = extra_pins; 2405 return total_mapcount(page) == page_count(page) - extra_pins - 1; 2406 } 2407 2408 /* 2409 * This function splits huge page into normal pages. @page can point to any 2410 * subpage of huge page to split. Split doesn't change the position of @page. 2411 * 2412 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2413 * The huge page must be locked. 2414 * 2415 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2416 * 2417 * Both head page and tail pages will inherit mapping, flags, and so on from 2418 * the hugepage. 2419 * 2420 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2421 * they are not mapped. 2422 * 2423 * Returns 0 if the hugepage is split successfully. 2424 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2425 * us. 2426 */ 2427 int split_huge_page_to_list(struct page *page, struct list_head *list) 2428 { 2429 struct page *head = compound_head(page); 2430 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); 2431 struct anon_vma *anon_vma = NULL; 2432 struct address_space *mapping = NULL; 2433 int count, mapcount, extra_pins, ret; 2434 bool mlocked; 2435 unsigned long flags; 2436 2437 VM_BUG_ON_PAGE(is_huge_zero_page(page), page); 2438 VM_BUG_ON_PAGE(!PageLocked(page), page); 2439 VM_BUG_ON_PAGE(!PageCompound(page), page); 2440 2441 if (PageAnon(head)) { 2442 /* 2443 * The caller does not necessarily hold an mmap_sem that would 2444 * prevent the anon_vma disappearing so we first we take a 2445 * reference to it and then lock the anon_vma for write. This 2446 * is similar to page_lock_anon_vma_read except the write lock 2447 * is taken to serialise against parallel split or collapse 2448 * operations. 2449 */ 2450 anon_vma = page_get_anon_vma(head); 2451 if (!anon_vma) { 2452 ret = -EBUSY; 2453 goto out; 2454 } 2455 mapping = NULL; 2456 anon_vma_lock_write(anon_vma); 2457 } else { 2458 mapping = head->mapping; 2459 2460 /* Truncated ? */ 2461 if (!mapping) { 2462 ret = -EBUSY; 2463 goto out; 2464 } 2465 2466 anon_vma = NULL; 2467 i_mmap_lock_read(mapping); 2468 } 2469 2470 /* 2471 * Racy check if we can split the page, before freeze_page() will 2472 * split PMDs 2473 */ 2474 if (!can_split_huge_page(head, &extra_pins)) { 2475 ret = -EBUSY; 2476 goto out_unlock; 2477 } 2478 2479 mlocked = PageMlocked(page); 2480 freeze_page(head); 2481 VM_BUG_ON_PAGE(compound_mapcount(head), head); 2482 2483 /* Make sure the page is not on per-CPU pagevec as it takes pin */ 2484 if (mlocked) 2485 lru_add_drain(); 2486 2487 /* prevent PageLRU to go away from under us, and freeze lru stats */ 2488 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags); 2489 2490 if (mapping) { 2491 void **pslot; 2492 2493 spin_lock(&mapping->tree_lock); 2494 pslot = radix_tree_lookup_slot(&mapping->page_tree, 2495 page_index(head)); 2496 /* 2497 * Check if the head page is present in radix tree. 2498 * We assume all tail are present too, if head is there. 2499 */ 2500 if (radix_tree_deref_slot_protected(pslot, 2501 &mapping->tree_lock) != head) 2502 goto fail; 2503 } 2504 2505 /* Prevent deferred_split_scan() touching ->_refcount */ 2506 spin_lock(&pgdata->split_queue_lock); 2507 count = page_count(head); 2508 mapcount = total_mapcount(head); 2509 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { 2510 if (!list_empty(page_deferred_list(head))) { 2511 pgdata->split_queue_len--; 2512 list_del(page_deferred_list(head)); 2513 } 2514 if (mapping) 2515 __dec_node_page_state(page, NR_SHMEM_THPS); 2516 spin_unlock(&pgdata->split_queue_lock); 2517 __split_huge_page(page, list, flags); 2518 ret = 0; 2519 } else { 2520 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { 2521 pr_alert("total_mapcount: %u, page_count(): %u\n", 2522 mapcount, count); 2523 if (PageTail(page)) 2524 dump_page(head, NULL); 2525 dump_page(page, "total_mapcount(head) > 0"); 2526 BUG(); 2527 } 2528 spin_unlock(&pgdata->split_queue_lock); 2529 fail: if (mapping) 2530 spin_unlock(&mapping->tree_lock); 2531 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 2532 unfreeze_page(head); 2533 ret = -EBUSY; 2534 } 2535 2536 out_unlock: 2537 if (anon_vma) { 2538 anon_vma_unlock_write(anon_vma); 2539 put_anon_vma(anon_vma); 2540 } 2541 if (mapping) 2542 i_mmap_unlock_read(mapping); 2543 out: 2544 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2545 return ret; 2546 } 2547 2548 void free_transhuge_page(struct page *page) 2549 { 2550 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2551 unsigned long flags; 2552 2553 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2554 if (!list_empty(page_deferred_list(page))) { 2555 pgdata->split_queue_len--; 2556 list_del(page_deferred_list(page)); 2557 } 2558 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2559 free_compound_page(page); 2560 } 2561 2562 void deferred_split_huge_page(struct page *page) 2563 { 2564 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2565 unsigned long flags; 2566 2567 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2568 2569 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2570 if (list_empty(page_deferred_list(page))) { 2571 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2572 list_add_tail(page_deferred_list(page), &pgdata->split_queue); 2573 pgdata->split_queue_len++; 2574 } 2575 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2576 } 2577 2578 static unsigned long deferred_split_count(struct shrinker *shrink, 2579 struct shrink_control *sc) 2580 { 2581 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2582 return ACCESS_ONCE(pgdata->split_queue_len); 2583 } 2584 2585 static unsigned long deferred_split_scan(struct shrinker *shrink, 2586 struct shrink_control *sc) 2587 { 2588 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2589 unsigned long flags; 2590 LIST_HEAD(list), *pos, *next; 2591 struct page *page; 2592 int split = 0; 2593 2594 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2595 /* Take pin on all head pages to avoid freeing them under us */ 2596 list_for_each_safe(pos, next, &pgdata->split_queue) { 2597 page = list_entry((void *)pos, struct page, mapping); 2598 page = compound_head(page); 2599 if (get_page_unless_zero(page)) { 2600 list_move(page_deferred_list(page), &list); 2601 } else { 2602 /* We lost race with put_compound_page() */ 2603 list_del_init(page_deferred_list(page)); 2604 pgdata->split_queue_len--; 2605 } 2606 if (!--sc->nr_to_scan) 2607 break; 2608 } 2609 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2610 2611 list_for_each_safe(pos, next, &list) { 2612 page = list_entry((void *)pos, struct page, mapping); 2613 lock_page(page); 2614 /* split_huge_page() removes page from list on success */ 2615 if (!split_huge_page(page)) 2616 split++; 2617 unlock_page(page); 2618 put_page(page); 2619 } 2620 2621 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2622 list_splice_tail(&list, &pgdata->split_queue); 2623 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2624 2625 /* 2626 * Stop shrinker if we didn't split any page, but the queue is empty. 2627 * This can happen if pages were freed under us. 2628 */ 2629 if (!split && list_empty(&pgdata->split_queue)) 2630 return SHRINK_STOP; 2631 return split; 2632 } 2633 2634 static struct shrinker deferred_split_shrinker = { 2635 .count_objects = deferred_split_count, 2636 .scan_objects = deferred_split_scan, 2637 .seeks = DEFAULT_SEEKS, 2638 .flags = SHRINKER_NUMA_AWARE, 2639 }; 2640 2641 #ifdef CONFIG_DEBUG_FS 2642 static int split_huge_pages_set(void *data, u64 val) 2643 { 2644 struct zone *zone; 2645 struct page *page; 2646 unsigned long pfn, max_zone_pfn; 2647 unsigned long total = 0, split = 0; 2648 2649 if (val != 1) 2650 return -EINVAL; 2651 2652 for_each_populated_zone(zone) { 2653 max_zone_pfn = zone_end_pfn(zone); 2654 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2655 if (!pfn_valid(pfn)) 2656 continue; 2657 2658 page = pfn_to_page(pfn); 2659 if (!get_page_unless_zero(page)) 2660 continue; 2661 2662 if (zone != page_zone(page)) 2663 goto next; 2664 2665 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2666 goto next; 2667 2668 total++; 2669 lock_page(page); 2670 if (!split_huge_page(page)) 2671 split++; 2672 unlock_page(page); 2673 next: 2674 put_page(page); 2675 } 2676 } 2677 2678 pr_info("%lu of %lu THP split\n", split, total); 2679 2680 return 0; 2681 } 2682 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, 2683 "%llu\n"); 2684 2685 static int __init split_huge_pages_debugfs(void) 2686 { 2687 void *ret; 2688 2689 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 2690 &split_huge_pages_fops); 2691 if (!ret) 2692 pr_warn("Failed to create split_huge_pages in debugfs"); 2693 return 0; 2694 } 2695 late_initcall(split_huge_pages_debugfs); 2696 #endif 2697