1 /* 2 * Copyright (C) 2009 Red Hat, Inc. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/highmem.h> 11 #include <linux/hugetlb.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/rmap.h> 14 #include <linux/swap.h> 15 #include <linux/shrinker.h> 16 #include <linux/mm_inline.h> 17 #include <linux/kthread.h> 18 #include <linux/khugepaged.h> 19 #include <linux/freezer.h> 20 #include <linux/mman.h> 21 #include <linux/pagemap.h> 22 #include <linux/migrate.h> 23 #include <linux/hashtable.h> 24 25 #include <asm/tlb.h> 26 #include <asm/pgalloc.h> 27 #include "internal.h" 28 29 /* 30 * By default transparent hugepage support is enabled for all mappings 31 * and khugepaged scans all mappings. Defrag is only invoked by 32 * khugepaged hugepage allocations and by page faults inside 33 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived 34 * allocations. 35 */ 36 unsigned long transparent_hugepage_flags __read_mostly = 37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 38 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 39 #endif 40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 41 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 42 #endif 43 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)| 44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 45 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 46 47 /* default scan 8*512 pte (or vmas) every 30 second */ 48 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8; 49 static unsigned int khugepaged_pages_collapsed; 50 static unsigned int khugepaged_full_scans; 51 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 52 /* during fragmentation poll the hugepage allocator once every minute */ 53 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 54 static struct task_struct *khugepaged_thread __read_mostly; 55 static DEFINE_MUTEX(khugepaged_mutex); 56 static DEFINE_SPINLOCK(khugepaged_mm_lock); 57 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 58 /* 59 * default collapse hugepages if there is at least one pte mapped like 60 * it would have happened if the vma was large enough during page 61 * fault. 62 */ 63 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1; 64 65 static int khugepaged(void *none); 66 static int khugepaged_slab_init(void); 67 68 #define MM_SLOTS_HASH_BITS 10 69 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 70 71 static struct kmem_cache *mm_slot_cache __read_mostly; 72 73 /** 74 * struct mm_slot - hash lookup from mm to mm_slot 75 * @hash: hash collision list 76 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head 77 * @mm: the mm that this information is valid for 78 */ 79 struct mm_slot { 80 struct hlist_node hash; 81 struct list_head mm_node; 82 struct mm_struct *mm; 83 }; 84 85 /** 86 * struct khugepaged_scan - cursor for scanning 87 * @mm_head: the head of the mm list to scan 88 * @mm_slot: the current mm_slot we are scanning 89 * @address: the next address inside that to be scanned 90 * 91 * There is only the one khugepaged_scan instance of this cursor structure. 92 */ 93 struct khugepaged_scan { 94 struct list_head mm_head; 95 struct mm_slot *mm_slot; 96 unsigned long address; 97 }; 98 static struct khugepaged_scan khugepaged_scan = { 99 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 100 }; 101 102 103 static int set_recommended_min_free_kbytes(void) 104 { 105 struct zone *zone; 106 int nr_zones = 0; 107 unsigned long recommended_min; 108 109 if (!khugepaged_enabled()) 110 return 0; 111 112 for_each_populated_zone(zone) 113 nr_zones++; 114 115 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */ 116 recommended_min = pageblock_nr_pages * nr_zones * 2; 117 118 /* 119 * Make sure that on average at least two pageblocks are almost free 120 * of another type, one for a migratetype to fall back to and a 121 * second to avoid subsequent fallbacks of other types There are 3 122 * MIGRATE_TYPES we care about. 123 */ 124 recommended_min += pageblock_nr_pages * nr_zones * 125 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 126 127 /* don't ever allow to reserve more than 5% of the lowmem */ 128 recommended_min = min(recommended_min, 129 (unsigned long) nr_free_buffer_pages() / 20); 130 recommended_min <<= (PAGE_SHIFT-10); 131 132 if (recommended_min > min_free_kbytes) 133 min_free_kbytes = recommended_min; 134 setup_per_zone_wmarks(); 135 return 0; 136 } 137 late_initcall(set_recommended_min_free_kbytes); 138 139 static int start_khugepaged(void) 140 { 141 int err = 0; 142 if (khugepaged_enabled()) { 143 if (!khugepaged_thread) 144 khugepaged_thread = kthread_run(khugepaged, NULL, 145 "khugepaged"); 146 if (unlikely(IS_ERR(khugepaged_thread))) { 147 printk(KERN_ERR 148 "khugepaged: kthread_run(khugepaged) failed\n"); 149 err = PTR_ERR(khugepaged_thread); 150 khugepaged_thread = NULL; 151 } 152 153 if (!list_empty(&khugepaged_scan.mm_head)) 154 wake_up_interruptible(&khugepaged_wait); 155 156 set_recommended_min_free_kbytes(); 157 } else if (khugepaged_thread) { 158 kthread_stop(khugepaged_thread); 159 khugepaged_thread = NULL; 160 } 161 162 return err; 163 } 164 165 static atomic_t huge_zero_refcount; 166 static struct page *huge_zero_page __read_mostly; 167 168 static inline bool is_huge_zero_page(struct page *page) 169 { 170 return ACCESS_ONCE(huge_zero_page) == page; 171 } 172 173 static inline bool is_huge_zero_pmd(pmd_t pmd) 174 { 175 return is_huge_zero_page(pmd_page(pmd)); 176 } 177 178 static struct page *get_huge_zero_page(void) 179 { 180 struct page *zero_page; 181 retry: 182 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 183 return ACCESS_ONCE(huge_zero_page); 184 185 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 186 HPAGE_PMD_ORDER); 187 if (!zero_page) { 188 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 189 return NULL; 190 } 191 count_vm_event(THP_ZERO_PAGE_ALLOC); 192 preempt_disable(); 193 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 194 preempt_enable(); 195 __free_page(zero_page); 196 goto retry; 197 } 198 199 /* We take additional reference here. It will be put back by shrinker */ 200 atomic_set(&huge_zero_refcount, 2); 201 preempt_enable(); 202 return ACCESS_ONCE(huge_zero_page); 203 } 204 205 static void put_huge_zero_page(void) 206 { 207 /* 208 * Counter should never go to zero here. Only shrinker can put 209 * last reference. 210 */ 211 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 212 } 213 214 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 215 struct shrink_control *sc) 216 { 217 /* we can free zero page only if last reference remains */ 218 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 219 } 220 221 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 222 struct shrink_control *sc) 223 { 224 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 225 struct page *zero_page = xchg(&huge_zero_page, NULL); 226 BUG_ON(zero_page == NULL); 227 __free_page(zero_page); 228 return HPAGE_PMD_NR; 229 } 230 231 return 0; 232 } 233 234 static struct shrinker huge_zero_page_shrinker = { 235 .count_objects = shrink_huge_zero_page_count, 236 .scan_objects = shrink_huge_zero_page_scan, 237 .seeks = DEFAULT_SEEKS, 238 }; 239 240 #ifdef CONFIG_SYSFS 241 242 static ssize_t double_flag_show(struct kobject *kobj, 243 struct kobj_attribute *attr, char *buf, 244 enum transparent_hugepage_flag enabled, 245 enum transparent_hugepage_flag req_madv) 246 { 247 if (test_bit(enabled, &transparent_hugepage_flags)) { 248 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags)); 249 return sprintf(buf, "[always] madvise never\n"); 250 } else if (test_bit(req_madv, &transparent_hugepage_flags)) 251 return sprintf(buf, "always [madvise] never\n"); 252 else 253 return sprintf(buf, "always madvise [never]\n"); 254 } 255 static ssize_t double_flag_store(struct kobject *kobj, 256 struct kobj_attribute *attr, 257 const char *buf, size_t count, 258 enum transparent_hugepage_flag enabled, 259 enum transparent_hugepage_flag req_madv) 260 { 261 if (!memcmp("always", buf, 262 min(sizeof("always")-1, count))) { 263 set_bit(enabled, &transparent_hugepage_flags); 264 clear_bit(req_madv, &transparent_hugepage_flags); 265 } else if (!memcmp("madvise", buf, 266 min(sizeof("madvise")-1, count))) { 267 clear_bit(enabled, &transparent_hugepage_flags); 268 set_bit(req_madv, &transparent_hugepage_flags); 269 } else if (!memcmp("never", buf, 270 min(sizeof("never")-1, count))) { 271 clear_bit(enabled, &transparent_hugepage_flags); 272 clear_bit(req_madv, &transparent_hugepage_flags); 273 } else 274 return -EINVAL; 275 276 return count; 277 } 278 279 static ssize_t enabled_show(struct kobject *kobj, 280 struct kobj_attribute *attr, char *buf) 281 { 282 return double_flag_show(kobj, attr, buf, 283 TRANSPARENT_HUGEPAGE_FLAG, 284 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); 285 } 286 static ssize_t enabled_store(struct kobject *kobj, 287 struct kobj_attribute *attr, 288 const char *buf, size_t count) 289 { 290 ssize_t ret; 291 292 ret = double_flag_store(kobj, attr, buf, count, 293 TRANSPARENT_HUGEPAGE_FLAG, 294 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); 295 296 if (ret > 0) { 297 int err; 298 299 mutex_lock(&khugepaged_mutex); 300 err = start_khugepaged(); 301 mutex_unlock(&khugepaged_mutex); 302 303 if (err) 304 ret = err; 305 } 306 307 return ret; 308 } 309 static struct kobj_attribute enabled_attr = 310 __ATTR(enabled, 0644, enabled_show, enabled_store); 311 312 static ssize_t single_flag_show(struct kobject *kobj, 313 struct kobj_attribute *attr, char *buf, 314 enum transparent_hugepage_flag flag) 315 { 316 return sprintf(buf, "%d\n", 317 !!test_bit(flag, &transparent_hugepage_flags)); 318 } 319 320 static ssize_t single_flag_store(struct kobject *kobj, 321 struct kobj_attribute *attr, 322 const char *buf, size_t count, 323 enum transparent_hugepage_flag flag) 324 { 325 unsigned long value; 326 int ret; 327 328 ret = kstrtoul(buf, 10, &value); 329 if (ret < 0) 330 return ret; 331 if (value > 1) 332 return -EINVAL; 333 334 if (value) 335 set_bit(flag, &transparent_hugepage_flags); 336 else 337 clear_bit(flag, &transparent_hugepage_flags); 338 339 return count; 340 } 341 342 /* 343 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind 344 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of 345 * memory just to allocate one more hugepage. 346 */ 347 static ssize_t defrag_show(struct kobject *kobj, 348 struct kobj_attribute *attr, char *buf) 349 { 350 return double_flag_show(kobj, attr, buf, 351 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, 352 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); 353 } 354 static ssize_t defrag_store(struct kobject *kobj, 355 struct kobj_attribute *attr, 356 const char *buf, size_t count) 357 { 358 return double_flag_store(kobj, attr, buf, count, 359 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, 360 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); 361 } 362 static struct kobj_attribute defrag_attr = 363 __ATTR(defrag, 0644, defrag_show, defrag_store); 364 365 static ssize_t use_zero_page_show(struct kobject *kobj, 366 struct kobj_attribute *attr, char *buf) 367 { 368 return single_flag_show(kobj, attr, buf, 369 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 370 } 371 static ssize_t use_zero_page_store(struct kobject *kobj, 372 struct kobj_attribute *attr, const char *buf, size_t count) 373 { 374 return single_flag_store(kobj, attr, buf, count, 375 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 376 } 377 static struct kobj_attribute use_zero_page_attr = 378 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 379 #ifdef CONFIG_DEBUG_VM 380 static ssize_t debug_cow_show(struct kobject *kobj, 381 struct kobj_attribute *attr, char *buf) 382 { 383 return single_flag_show(kobj, attr, buf, 384 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 385 } 386 static ssize_t debug_cow_store(struct kobject *kobj, 387 struct kobj_attribute *attr, 388 const char *buf, size_t count) 389 { 390 return single_flag_store(kobj, attr, buf, count, 391 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 392 } 393 static struct kobj_attribute debug_cow_attr = 394 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 395 #endif /* CONFIG_DEBUG_VM */ 396 397 static struct attribute *hugepage_attr[] = { 398 &enabled_attr.attr, 399 &defrag_attr.attr, 400 &use_zero_page_attr.attr, 401 #ifdef CONFIG_DEBUG_VM 402 &debug_cow_attr.attr, 403 #endif 404 NULL, 405 }; 406 407 static struct attribute_group hugepage_attr_group = { 408 .attrs = hugepage_attr, 409 }; 410 411 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 412 struct kobj_attribute *attr, 413 char *buf) 414 { 415 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs); 416 } 417 418 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 419 struct kobj_attribute *attr, 420 const char *buf, size_t count) 421 { 422 unsigned long msecs; 423 int err; 424 425 err = kstrtoul(buf, 10, &msecs); 426 if (err || msecs > UINT_MAX) 427 return -EINVAL; 428 429 khugepaged_scan_sleep_millisecs = msecs; 430 wake_up_interruptible(&khugepaged_wait); 431 432 return count; 433 } 434 static struct kobj_attribute scan_sleep_millisecs_attr = 435 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, 436 scan_sleep_millisecs_store); 437 438 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 439 struct kobj_attribute *attr, 440 char *buf) 441 { 442 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 443 } 444 445 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 446 struct kobj_attribute *attr, 447 const char *buf, size_t count) 448 { 449 unsigned long msecs; 450 int err; 451 452 err = kstrtoul(buf, 10, &msecs); 453 if (err || msecs > UINT_MAX) 454 return -EINVAL; 455 456 khugepaged_alloc_sleep_millisecs = msecs; 457 wake_up_interruptible(&khugepaged_wait); 458 459 return count; 460 } 461 static struct kobj_attribute alloc_sleep_millisecs_attr = 462 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, 463 alloc_sleep_millisecs_store); 464 465 static ssize_t pages_to_scan_show(struct kobject *kobj, 466 struct kobj_attribute *attr, 467 char *buf) 468 { 469 return sprintf(buf, "%u\n", khugepaged_pages_to_scan); 470 } 471 static ssize_t pages_to_scan_store(struct kobject *kobj, 472 struct kobj_attribute *attr, 473 const char *buf, size_t count) 474 { 475 int err; 476 unsigned long pages; 477 478 err = kstrtoul(buf, 10, &pages); 479 if (err || !pages || pages > UINT_MAX) 480 return -EINVAL; 481 482 khugepaged_pages_to_scan = pages; 483 484 return count; 485 } 486 static struct kobj_attribute pages_to_scan_attr = 487 __ATTR(pages_to_scan, 0644, pages_to_scan_show, 488 pages_to_scan_store); 489 490 static ssize_t pages_collapsed_show(struct kobject *kobj, 491 struct kobj_attribute *attr, 492 char *buf) 493 { 494 return sprintf(buf, "%u\n", khugepaged_pages_collapsed); 495 } 496 static struct kobj_attribute pages_collapsed_attr = 497 __ATTR_RO(pages_collapsed); 498 499 static ssize_t full_scans_show(struct kobject *kobj, 500 struct kobj_attribute *attr, 501 char *buf) 502 { 503 return sprintf(buf, "%u\n", khugepaged_full_scans); 504 } 505 static struct kobj_attribute full_scans_attr = 506 __ATTR_RO(full_scans); 507 508 static ssize_t khugepaged_defrag_show(struct kobject *kobj, 509 struct kobj_attribute *attr, char *buf) 510 { 511 return single_flag_show(kobj, attr, buf, 512 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 513 } 514 static ssize_t khugepaged_defrag_store(struct kobject *kobj, 515 struct kobj_attribute *attr, 516 const char *buf, size_t count) 517 { 518 return single_flag_store(kobj, attr, buf, count, 519 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 520 } 521 static struct kobj_attribute khugepaged_defrag_attr = 522 __ATTR(defrag, 0644, khugepaged_defrag_show, 523 khugepaged_defrag_store); 524 525 /* 526 * max_ptes_none controls if khugepaged should collapse hugepages over 527 * any unmapped ptes in turn potentially increasing the memory 528 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 529 * reduce the available free memory in the system as it 530 * runs. Increasing max_ptes_none will instead potentially reduce the 531 * free memory in the system during the khugepaged scan. 532 */ 533 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, 534 struct kobj_attribute *attr, 535 char *buf) 536 { 537 return sprintf(buf, "%u\n", khugepaged_max_ptes_none); 538 } 539 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, 540 struct kobj_attribute *attr, 541 const char *buf, size_t count) 542 { 543 int err; 544 unsigned long max_ptes_none; 545 546 err = kstrtoul(buf, 10, &max_ptes_none); 547 if (err || max_ptes_none > HPAGE_PMD_NR-1) 548 return -EINVAL; 549 550 khugepaged_max_ptes_none = max_ptes_none; 551 552 return count; 553 } 554 static struct kobj_attribute khugepaged_max_ptes_none_attr = 555 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, 556 khugepaged_max_ptes_none_store); 557 558 static struct attribute *khugepaged_attr[] = { 559 &khugepaged_defrag_attr.attr, 560 &khugepaged_max_ptes_none_attr.attr, 561 &pages_to_scan_attr.attr, 562 &pages_collapsed_attr.attr, 563 &full_scans_attr.attr, 564 &scan_sleep_millisecs_attr.attr, 565 &alloc_sleep_millisecs_attr.attr, 566 NULL, 567 }; 568 569 static struct attribute_group khugepaged_attr_group = { 570 .attrs = khugepaged_attr, 571 .name = "khugepaged", 572 }; 573 574 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 575 { 576 int err; 577 578 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 579 if (unlikely(!*hugepage_kobj)) { 580 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n"); 581 return -ENOMEM; 582 } 583 584 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 585 if (err) { 586 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n"); 587 goto delete_obj; 588 } 589 590 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 591 if (err) { 592 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n"); 593 goto remove_hp_group; 594 } 595 596 return 0; 597 598 remove_hp_group: 599 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 600 delete_obj: 601 kobject_put(*hugepage_kobj); 602 return err; 603 } 604 605 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 606 { 607 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 608 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 609 kobject_put(hugepage_kobj); 610 } 611 #else 612 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 613 { 614 return 0; 615 } 616 617 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 618 { 619 } 620 #endif /* CONFIG_SYSFS */ 621 622 static int __init hugepage_init(void) 623 { 624 int err; 625 struct kobject *hugepage_kobj; 626 627 if (!has_transparent_hugepage()) { 628 transparent_hugepage_flags = 0; 629 return -EINVAL; 630 } 631 632 err = hugepage_init_sysfs(&hugepage_kobj); 633 if (err) 634 return err; 635 636 err = khugepaged_slab_init(); 637 if (err) 638 goto out; 639 640 register_shrinker(&huge_zero_page_shrinker); 641 642 /* 643 * By default disable transparent hugepages on smaller systems, 644 * where the extra memory used could hurt more than TLB overhead 645 * is likely to save. The admin can still enable it through /sys. 646 */ 647 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) 648 transparent_hugepage_flags = 0; 649 650 start_khugepaged(); 651 652 return 0; 653 out: 654 hugepage_exit_sysfs(hugepage_kobj); 655 return err; 656 } 657 module_init(hugepage_init) 658 659 static int __init setup_transparent_hugepage(char *str) 660 { 661 int ret = 0; 662 if (!str) 663 goto out; 664 if (!strcmp(str, "always")) { 665 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 666 &transparent_hugepage_flags); 667 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 668 &transparent_hugepage_flags); 669 ret = 1; 670 } else if (!strcmp(str, "madvise")) { 671 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 672 &transparent_hugepage_flags); 673 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 674 &transparent_hugepage_flags); 675 ret = 1; 676 } else if (!strcmp(str, "never")) { 677 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 678 &transparent_hugepage_flags); 679 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 680 &transparent_hugepage_flags); 681 ret = 1; 682 } 683 out: 684 if (!ret) 685 printk(KERN_WARNING 686 "transparent_hugepage= cannot parse, ignored\n"); 687 return ret; 688 } 689 __setup("transparent_hugepage=", setup_transparent_hugepage); 690 691 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 692 { 693 if (likely(vma->vm_flags & VM_WRITE)) 694 pmd = pmd_mkwrite(pmd); 695 return pmd; 696 } 697 698 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot) 699 { 700 pmd_t entry; 701 entry = mk_pmd(page, prot); 702 entry = pmd_mkhuge(entry); 703 return entry; 704 } 705 706 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, 707 struct vm_area_struct *vma, 708 unsigned long haddr, pmd_t *pmd, 709 struct page *page) 710 { 711 pgtable_t pgtable; 712 713 VM_BUG_ON(!PageCompound(page)); 714 pgtable = pte_alloc_one(mm, haddr); 715 if (unlikely(!pgtable)) 716 return VM_FAULT_OOM; 717 718 clear_huge_page(page, haddr, HPAGE_PMD_NR); 719 /* 720 * The memory barrier inside __SetPageUptodate makes sure that 721 * clear_huge_page writes become visible before the set_pmd_at() 722 * write. 723 */ 724 __SetPageUptodate(page); 725 726 spin_lock(&mm->page_table_lock); 727 if (unlikely(!pmd_none(*pmd))) { 728 spin_unlock(&mm->page_table_lock); 729 mem_cgroup_uncharge_page(page); 730 put_page(page); 731 pte_free(mm, pgtable); 732 } else { 733 pmd_t entry; 734 entry = mk_huge_pmd(page, vma->vm_page_prot); 735 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 736 page_add_new_anon_rmap(page, vma, haddr); 737 pgtable_trans_huge_deposit(mm, pmd, pgtable); 738 set_pmd_at(mm, haddr, pmd, entry); 739 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); 740 mm->nr_ptes++; 741 spin_unlock(&mm->page_table_lock); 742 } 743 744 return 0; 745 } 746 747 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp) 748 { 749 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp; 750 } 751 752 static inline struct page *alloc_hugepage_vma(int defrag, 753 struct vm_area_struct *vma, 754 unsigned long haddr, int nd, 755 gfp_t extra_gfp) 756 { 757 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp), 758 HPAGE_PMD_ORDER, vma, haddr, nd); 759 } 760 761 #ifndef CONFIG_NUMA 762 static inline struct page *alloc_hugepage(int defrag) 763 { 764 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0), 765 HPAGE_PMD_ORDER); 766 } 767 #endif 768 769 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 770 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 771 struct page *zero_page) 772 { 773 pmd_t entry; 774 if (!pmd_none(*pmd)) 775 return false; 776 entry = mk_pmd(zero_page, vma->vm_page_prot); 777 entry = pmd_wrprotect(entry); 778 entry = pmd_mkhuge(entry); 779 pgtable_trans_huge_deposit(mm, pmd, pgtable); 780 set_pmd_at(mm, haddr, pmd, entry); 781 mm->nr_ptes++; 782 return true; 783 } 784 785 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 786 unsigned long address, pmd_t *pmd, 787 unsigned int flags) 788 { 789 struct page *page; 790 unsigned long haddr = address & HPAGE_PMD_MASK; 791 792 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 793 return VM_FAULT_FALLBACK; 794 if (unlikely(anon_vma_prepare(vma))) 795 return VM_FAULT_OOM; 796 if (unlikely(khugepaged_enter(vma))) 797 return VM_FAULT_OOM; 798 if (!(flags & FAULT_FLAG_WRITE) && 799 transparent_hugepage_use_zero_page()) { 800 pgtable_t pgtable; 801 struct page *zero_page; 802 bool set; 803 pgtable = pte_alloc_one(mm, haddr); 804 if (unlikely(!pgtable)) 805 return VM_FAULT_OOM; 806 zero_page = get_huge_zero_page(); 807 if (unlikely(!zero_page)) { 808 pte_free(mm, pgtable); 809 count_vm_event(THP_FAULT_FALLBACK); 810 return VM_FAULT_FALLBACK; 811 } 812 spin_lock(&mm->page_table_lock); 813 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd, 814 zero_page); 815 spin_unlock(&mm->page_table_lock); 816 if (!set) { 817 pte_free(mm, pgtable); 818 put_huge_zero_page(); 819 } 820 return 0; 821 } 822 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), 823 vma, haddr, numa_node_id(), 0); 824 if (unlikely(!page)) { 825 count_vm_event(THP_FAULT_FALLBACK); 826 return VM_FAULT_FALLBACK; 827 } 828 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) { 829 put_page(page); 830 count_vm_event(THP_FAULT_FALLBACK); 831 return VM_FAULT_FALLBACK; 832 } 833 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) { 834 mem_cgroup_uncharge_page(page); 835 put_page(page); 836 count_vm_event(THP_FAULT_FALLBACK); 837 return VM_FAULT_FALLBACK; 838 } 839 840 count_vm_event(THP_FAULT_ALLOC); 841 return 0; 842 } 843 844 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 845 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 846 struct vm_area_struct *vma) 847 { 848 struct page *src_page; 849 pmd_t pmd; 850 pgtable_t pgtable; 851 int ret; 852 853 ret = -ENOMEM; 854 pgtable = pte_alloc_one(dst_mm, addr); 855 if (unlikely(!pgtable)) 856 goto out; 857 858 spin_lock(&dst_mm->page_table_lock); 859 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING); 860 861 ret = -EAGAIN; 862 pmd = *src_pmd; 863 if (unlikely(!pmd_trans_huge(pmd))) { 864 pte_free(dst_mm, pgtable); 865 goto out_unlock; 866 } 867 /* 868 * mm->page_table_lock is enough to be sure that huge zero pmd is not 869 * under splitting since we don't split the page itself, only pmd to 870 * a page table. 871 */ 872 if (is_huge_zero_pmd(pmd)) { 873 struct page *zero_page; 874 bool set; 875 /* 876 * get_huge_zero_page() will never allocate a new page here, 877 * since we already have a zero page to copy. It just takes a 878 * reference. 879 */ 880 zero_page = get_huge_zero_page(); 881 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 882 zero_page); 883 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */ 884 ret = 0; 885 goto out_unlock; 886 } 887 if (unlikely(pmd_trans_splitting(pmd))) { 888 /* split huge page running from under us */ 889 spin_unlock(&src_mm->page_table_lock); 890 spin_unlock(&dst_mm->page_table_lock); 891 pte_free(dst_mm, pgtable); 892 893 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */ 894 goto out; 895 } 896 src_page = pmd_page(pmd); 897 VM_BUG_ON(!PageHead(src_page)); 898 get_page(src_page); 899 page_dup_rmap(src_page); 900 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 901 902 pmdp_set_wrprotect(src_mm, addr, src_pmd); 903 pmd = pmd_mkold(pmd_wrprotect(pmd)); 904 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 905 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 906 dst_mm->nr_ptes++; 907 908 ret = 0; 909 out_unlock: 910 spin_unlock(&src_mm->page_table_lock); 911 spin_unlock(&dst_mm->page_table_lock); 912 out: 913 return ret; 914 } 915 916 void huge_pmd_set_accessed(struct mm_struct *mm, 917 struct vm_area_struct *vma, 918 unsigned long address, 919 pmd_t *pmd, pmd_t orig_pmd, 920 int dirty) 921 { 922 pmd_t entry; 923 unsigned long haddr; 924 925 spin_lock(&mm->page_table_lock); 926 if (unlikely(!pmd_same(*pmd, orig_pmd))) 927 goto unlock; 928 929 entry = pmd_mkyoung(orig_pmd); 930 haddr = address & HPAGE_PMD_MASK; 931 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty)) 932 update_mmu_cache_pmd(vma, address, pmd); 933 934 unlock: 935 spin_unlock(&mm->page_table_lock); 936 } 937 938 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm, 939 struct vm_area_struct *vma, unsigned long address, 940 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr) 941 { 942 pgtable_t pgtable; 943 pmd_t _pmd; 944 struct page *page; 945 int i, ret = 0; 946 unsigned long mmun_start; /* For mmu_notifiers */ 947 unsigned long mmun_end; /* For mmu_notifiers */ 948 949 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 950 if (!page) { 951 ret |= VM_FAULT_OOM; 952 goto out; 953 } 954 955 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { 956 put_page(page); 957 ret |= VM_FAULT_OOM; 958 goto out; 959 } 960 961 clear_user_highpage(page, address); 962 __SetPageUptodate(page); 963 964 mmun_start = haddr; 965 mmun_end = haddr + HPAGE_PMD_SIZE; 966 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 967 968 spin_lock(&mm->page_table_lock); 969 if (unlikely(!pmd_same(*pmd, orig_pmd))) 970 goto out_free_page; 971 972 pmdp_clear_flush(vma, haddr, pmd); 973 /* leave pmd empty until pte is filled */ 974 975 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 976 pmd_populate(mm, &_pmd, pgtable); 977 978 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 979 pte_t *pte, entry; 980 if (haddr == (address & PAGE_MASK)) { 981 entry = mk_pte(page, vma->vm_page_prot); 982 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 983 page_add_new_anon_rmap(page, vma, haddr); 984 } else { 985 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 986 entry = pte_mkspecial(entry); 987 } 988 pte = pte_offset_map(&_pmd, haddr); 989 VM_BUG_ON(!pte_none(*pte)); 990 set_pte_at(mm, haddr, pte, entry); 991 pte_unmap(pte); 992 } 993 smp_wmb(); /* make pte visible before pmd */ 994 pmd_populate(mm, pmd, pgtable); 995 spin_unlock(&mm->page_table_lock); 996 put_huge_zero_page(); 997 inc_mm_counter(mm, MM_ANONPAGES); 998 999 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1000 1001 ret |= VM_FAULT_WRITE; 1002 out: 1003 return ret; 1004 out_free_page: 1005 spin_unlock(&mm->page_table_lock); 1006 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1007 mem_cgroup_uncharge_page(page); 1008 put_page(page); 1009 goto out; 1010 } 1011 1012 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm, 1013 struct vm_area_struct *vma, 1014 unsigned long address, 1015 pmd_t *pmd, pmd_t orig_pmd, 1016 struct page *page, 1017 unsigned long haddr) 1018 { 1019 pgtable_t pgtable; 1020 pmd_t _pmd; 1021 int ret = 0, i; 1022 struct page **pages; 1023 unsigned long mmun_start; /* For mmu_notifiers */ 1024 unsigned long mmun_end; /* For mmu_notifiers */ 1025 1026 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, 1027 GFP_KERNEL); 1028 if (unlikely(!pages)) { 1029 ret |= VM_FAULT_OOM; 1030 goto out; 1031 } 1032 1033 for (i = 0; i < HPAGE_PMD_NR; i++) { 1034 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | 1035 __GFP_OTHER_NODE, 1036 vma, address, page_to_nid(page)); 1037 if (unlikely(!pages[i] || 1038 mem_cgroup_newpage_charge(pages[i], mm, 1039 GFP_KERNEL))) { 1040 if (pages[i]) 1041 put_page(pages[i]); 1042 mem_cgroup_uncharge_start(); 1043 while (--i >= 0) { 1044 mem_cgroup_uncharge_page(pages[i]); 1045 put_page(pages[i]); 1046 } 1047 mem_cgroup_uncharge_end(); 1048 kfree(pages); 1049 ret |= VM_FAULT_OOM; 1050 goto out; 1051 } 1052 } 1053 1054 for (i = 0; i < HPAGE_PMD_NR; i++) { 1055 copy_user_highpage(pages[i], page + i, 1056 haddr + PAGE_SIZE * i, vma); 1057 __SetPageUptodate(pages[i]); 1058 cond_resched(); 1059 } 1060 1061 mmun_start = haddr; 1062 mmun_end = haddr + HPAGE_PMD_SIZE; 1063 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1064 1065 spin_lock(&mm->page_table_lock); 1066 if (unlikely(!pmd_same(*pmd, orig_pmd))) 1067 goto out_free_pages; 1068 VM_BUG_ON(!PageHead(page)); 1069 1070 pmdp_clear_flush(vma, haddr, pmd); 1071 /* leave pmd empty until pte is filled */ 1072 1073 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1074 pmd_populate(mm, &_pmd, pgtable); 1075 1076 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1077 pte_t *pte, entry; 1078 entry = mk_pte(pages[i], vma->vm_page_prot); 1079 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1080 page_add_new_anon_rmap(pages[i], vma, haddr); 1081 pte = pte_offset_map(&_pmd, haddr); 1082 VM_BUG_ON(!pte_none(*pte)); 1083 set_pte_at(mm, haddr, pte, entry); 1084 pte_unmap(pte); 1085 } 1086 kfree(pages); 1087 1088 smp_wmb(); /* make pte visible before pmd */ 1089 pmd_populate(mm, pmd, pgtable); 1090 page_remove_rmap(page); 1091 spin_unlock(&mm->page_table_lock); 1092 1093 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1094 1095 ret |= VM_FAULT_WRITE; 1096 put_page(page); 1097 1098 out: 1099 return ret; 1100 1101 out_free_pages: 1102 spin_unlock(&mm->page_table_lock); 1103 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1104 mem_cgroup_uncharge_start(); 1105 for (i = 0; i < HPAGE_PMD_NR; i++) { 1106 mem_cgroup_uncharge_page(pages[i]); 1107 put_page(pages[i]); 1108 } 1109 mem_cgroup_uncharge_end(); 1110 kfree(pages); 1111 goto out; 1112 } 1113 1114 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1115 unsigned long address, pmd_t *pmd, pmd_t orig_pmd) 1116 { 1117 int ret = 0; 1118 struct page *page = NULL, *new_page; 1119 unsigned long haddr; 1120 unsigned long mmun_start; /* For mmu_notifiers */ 1121 unsigned long mmun_end; /* For mmu_notifiers */ 1122 1123 VM_BUG_ON(!vma->anon_vma); 1124 haddr = address & HPAGE_PMD_MASK; 1125 if (is_huge_zero_pmd(orig_pmd)) 1126 goto alloc; 1127 spin_lock(&mm->page_table_lock); 1128 if (unlikely(!pmd_same(*pmd, orig_pmd))) 1129 goto out_unlock; 1130 1131 page = pmd_page(orig_pmd); 1132 VM_BUG_ON(!PageCompound(page) || !PageHead(page)); 1133 if (page_mapcount(page) == 1) { 1134 pmd_t entry; 1135 entry = pmd_mkyoung(orig_pmd); 1136 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1137 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1)) 1138 update_mmu_cache_pmd(vma, address, pmd); 1139 ret |= VM_FAULT_WRITE; 1140 goto out_unlock; 1141 } 1142 get_page(page); 1143 spin_unlock(&mm->page_table_lock); 1144 alloc: 1145 if (transparent_hugepage_enabled(vma) && 1146 !transparent_hugepage_debug_cow()) 1147 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), 1148 vma, haddr, numa_node_id(), 0); 1149 else 1150 new_page = NULL; 1151 1152 if (unlikely(!new_page)) { 1153 if (is_huge_zero_pmd(orig_pmd)) { 1154 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma, 1155 address, pmd, orig_pmd, haddr); 1156 } else { 1157 ret = do_huge_pmd_wp_page_fallback(mm, vma, address, 1158 pmd, orig_pmd, page, haddr); 1159 if (ret & VM_FAULT_OOM) 1160 split_huge_page(page); 1161 put_page(page); 1162 } 1163 count_vm_event(THP_FAULT_FALLBACK); 1164 goto out; 1165 } 1166 1167 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) { 1168 put_page(new_page); 1169 if (page) { 1170 split_huge_page(page); 1171 put_page(page); 1172 } 1173 count_vm_event(THP_FAULT_FALLBACK); 1174 ret |= VM_FAULT_OOM; 1175 goto out; 1176 } 1177 1178 count_vm_event(THP_FAULT_ALLOC); 1179 1180 if (is_huge_zero_pmd(orig_pmd)) 1181 clear_huge_page(new_page, haddr, HPAGE_PMD_NR); 1182 else 1183 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); 1184 __SetPageUptodate(new_page); 1185 1186 mmun_start = haddr; 1187 mmun_end = haddr + HPAGE_PMD_SIZE; 1188 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1189 1190 spin_lock(&mm->page_table_lock); 1191 if (page) 1192 put_page(page); 1193 if (unlikely(!pmd_same(*pmd, orig_pmd))) { 1194 spin_unlock(&mm->page_table_lock); 1195 mem_cgroup_uncharge_page(new_page); 1196 put_page(new_page); 1197 goto out_mn; 1198 } else { 1199 pmd_t entry; 1200 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1201 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1202 pmdp_clear_flush(vma, haddr, pmd); 1203 page_add_new_anon_rmap(new_page, vma, haddr); 1204 set_pmd_at(mm, haddr, pmd, entry); 1205 update_mmu_cache_pmd(vma, address, pmd); 1206 if (is_huge_zero_pmd(orig_pmd)) { 1207 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); 1208 put_huge_zero_page(); 1209 } else { 1210 VM_BUG_ON(!PageHead(page)); 1211 page_remove_rmap(page); 1212 put_page(page); 1213 } 1214 ret |= VM_FAULT_WRITE; 1215 } 1216 spin_unlock(&mm->page_table_lock); 1217 out_mn: 1218 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1219 out: 1220 return ret; 1221 out_unlock: 1222 spin_unlock(&mm->page_table_lock); 1223 return ret; 1224 } 1225 1226 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1227 unsigned long addr, 1228 pmd_t *pmd, 1229 unsigned int flags) 1230 { 1231 struct mm_struct *mm = vma->vm_mm; 1232 struct page *page = NULL; 1233 1234 assert_spin_locked(&mm->page_table_lock); 1235 1236 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1237 goto out; 1238 1239 /* Avoid dumping huge zero page */ 1240 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1241 return ERR_PTR(-EFAULT); 1242 1243 page = pmd_page(*pmd); 1244 VM_BUG_ON(!PageHead(page)); 1245 if (flags & FOLL_TOUCH) { 1246 pmd_t _pmd; 1247 /* 1248 * We should set the dirty bit only for FOLL_WRITE but 1249 * for now the dirty bit in the pmd is meaningless. 1250 * And if the dirty bit will become meaningful and 1251 * we'll only set it with FOLL_WRITE, an atomic 1252 * set_bit will be required on the pmd to set the 1253 * young bit, instead of the current set_pmd_at. 1254 */ 1255 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); 1256 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1257 pmd, _pmd, 1)) 1258 update_mmu_cache_pmd(vma, addr, pmd); 1259 } 1260 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1261 if (page->mapping && trylock_page(page)) { 1262 lru_add_drain(); 1263 if (page->mapping) 1264 mlock_vma_page(page); 1265 unlock_page(page); 1266 } 1267 } 1268 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1269 VM_BUG_ON(!PageCompound(page)); 1270 if (flags & FOLL_GET) 1271 get_page_foll(page); 1272 1273 out: 1274 return page; 1275 } 1276 1277 /* NUMA hinting page fault entry point for trans huge pmds */ 1278 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 1279 unsigned long addr, pmd_t pmd, pmd_t *pmdp) 1280 { 1281 struct page *page; 1282 unsigned long haddr = addr & HPAGE_PMD_MASK; 1283 int target_nid; 1284 int current_nid = -1; 1285 bool migrated; 1286 1287 spin_lock(&mm->page_table_lock); 1288 if (unlikely(!pmd_same(pmd, *pmdp))) 1289 goto out_unlock; 1290 1291 page = pmd_page(pmd); 1292 get_page(page); 1293 current_nid = page_to_nid(page); 1294 count_vm_numa_event(NUMA_HINT_FAULTS); 1295 if (current_nid == numa_node_id()) 1296 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1297 1298 target_nid = mpol_misplaced(page, vma, haddr); 1299 if (target_nid == -1) { 1300 put_page(page); 1301 goto clear_pmdnuma; 1302 } 1303 1304 /* Acquire the page lock to serialise THP migrations */ 1305 spin_unlock(&mm->page_table_lock); 1306 lock_page(page); 1307 1308 /* Confirm the PTE did not while locked */ 1309 spin_lock(&mm->page_table_lock); 1310 if (unlikely(!pmd_same(pmd, *pmdp))) { 1311 unlock_page(page); 1312 put_page(page); 1313 goto out_unlock; 1314 } 1315 spin_unlock(&mm->page_table_lock); 1316 1317 /* Migrate the THP to the requested node */ 1318 migrated = migrate_misplaced_transhuge_page(mm, vma, 1319 pmdp, pmd, addr, page, target_nid); 1320 if (!migrated) 1321 goto check_same; 1322 1323 task_numa_fault(target_nid, HPAGE_PMD_NR, true); 1324 return 0; 1325 1326 check_same: 1327 spin_lock(&mm->page_table_lock); 1328 if (unlikely(!pmd_same(pmd, *pmdp))) 1329 goto out_unlock; 1330 clear_pmdnuma: 1331 pmd = pmd_mknonnuma(pmd); 1332 set_pmd_at(mm, haddr, pmdp, pmd); 1333 VM_BUG_ON(pmd_numa(*pmdp)); 1334 update_mmu_cache_pmd(vma, addr, pmdp); 1335 out_unlock: 1336 spin_unlock(&mm->page_table_lock); 1337 if (current_nid != -1) 1338 task_numa_fault(current_nid, HPAGE_PMD_NR, false); 1339 return 0; 1340 } 1341 1342 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1343 pmd_t *pmd, unsigned long addr) 1344 { 1345 int ret = 0; 1346 1347 if (__pmd_trans_huge_lock(pmd, vma) == 1) { 1348 struct page *page; 1349 pgtable_t pgtable; 1350 pmd_t orig_pmd; 1351 /* 1352 * For architectures like ppc64 we look at deposited pgtable 1353 * when calling pmdp_get_and_clear. So do the 1354 * pgtable_trans_huge_withdraw after finishing pmdp related 1355 * operations. 1356 */ 1357 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd); 1358 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1359 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd); 1360 if (is_huge_zero_pmd(orig_pmd)) { 1361 tlb->mm->nr_ptes--; 1362 spin_unlock(&tlb->mm->page_table_lock); 1363 put_huge_zero_page(); 1364 } else { 1365 page = pmd_page(orig_pmd); 1366 page_remove_rmap(page); 1367 VM_BUG_ON(page_mapcount(page) < 0); 1368 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1369 VM_BUG_ON(!PageHead(page)); 1370 tlb->mm->nr_ptes--; 1371 spin_unlock(&tlb->mm->page_table_lock); 1372 tlb_remove_page(tlb, page); 1373 } 1374 pte_free(tlb->mm, pgtable); 1375 ret = 1; 1376 } 1377 return ret; 1378 } 1379 1380 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1381 unsigned long addr, unsigned long end, 1382 unsigned char *vec) 1383 { 1384 int ret = 0; 1385 1386 if (__pmd_trans_huge_lock(pmd, vma) == 1) { 1387 /* 1388 * All logical pages in the range are present 1389 * if backed by a huge page. 1390 */ 1391 spin_unlock(&vma->vm_mm->page_table_lock); 1392 memset(vec, 1, (end - addr) >> PAGE_SHIFT); 1393 ret = 1; 1394 } 1395 1396 return ret; 1397 } 1398 1399 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma, 1400 unsigned long old_addr, 1401 unsigned long new_addr, unsigned long old_end, 1402 pmd_t *old_pmd, pmd_t *new_pmd) 1403 { 1404 int ret = 0; 1405 pmd_t pmd; 1406 1407 struct mm_struct *mm = vma->vm_mm; 1408 1409 if ((old_addr & ~HPAGE_PMD_MASK) || 1410 (new_addr & ~HPAGE_PMD_MASK) || 1411 old_end - old_addr < HPAGE_PMD_SIZE || 1412 (new_vma->vm_flags & VM_NOHUGEPAGE)) 1413 goto out; 1414 1415 /* 1416 * The destination pmd shouldn't be established, free_pgtables() 1417 * should have release it. 1418 */ 1419 if (WARN_ON(!pmd_none(*new_pmd))) { 1420 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1421 goto out; 1422 } 1423 1424 ret = __pmd_trans_huge_lock(old_pmd, vma); 1425 if (ret == 1) { 1426 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd); 1427 VM_BUG_ON(!pmd_none(*new_pmd)); 1428 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); 1429 spin_unlock(&mm->page_table_lock); 1430 } 1431 out: 1432 return ret; 1433 } 1434 1435 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1436 unsigned long addr, pgprot_t newprot, int prot_numa) 1437 { 1438 struct mm_struct *mm = vma->vm_mm; 1439 int ret = 0; 1440 1441 if (__pmd_trans_huge_lock(pmd, vma) == 1) { 1442 pmd_t entry; 1443 entry = pmdp_get_and_clear(mm, addr, pmd); 1444 if (!prot_numa) { 1445 entry = pmd_modify(entry, newprot); 1446 BUG_ON(pmd_write(entry)); 1447 } else { 1448 struct page *page = pmd_page(*pmd); 1449 1450 /* only check non-shared pages */ 1451 if (page_mapcount(page) == 1 && 1452 !pmd_numa(*pmd)) { 1453 entry = pmd_mknuma(entry); 1454 } 1455 } 1456 set_pmd_at(mm, addr, pmd, entry); 1457 spin_unlock(&vma->vm_mm->page_table_lock); 1458 ret = 1; 1459 } 1460 1461 return ret; 1462 } 1463 1464 /* 1465 * Returns 1 if a given pmd maps a stable (not under splitting) thp. 1466 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise. 1467 * 1468 * Note that if it returns 1, this routine returns without unlocking page 1469 * table locks. So callers must unlock them. 1470 */ 1471 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1472 { 1473 spin_lock(&vma->vm_mm->page_table_lock); 1474 if (likely(pmd_trans_huge(*pmd))) { 1475 if (unlikely(pmd_trans_splitting(*pmd))) { 1476 spin_unlock(&vma->vm_mm->page_table_lock); 1477 wait_split_huge_page(vma->anon_vma, pmd); 1478 return -1; 1479 } else { 1480 /* Thp mapped by 'pmd' is stable, so we can 1481 * handle it as it is. */ 1482 return 1; 1483 } 1484 } 1485 spin_unlock(&vma->vm_mm->page_table_lock); 1486 return 0; 1487 } 1488 1489 pmd_t *page_check_address_pmd(struct page *page, 1490 struct mm_struct *mm, 1491 unsigned long address, 1492 enum page_check_address_pmd_flag flag) 1493 { 1494 pmd_t *pmd, *ret = NULL; 1495 1496 if (address & ~HPAGE_PMD_MASK) 1497 goto out; 1498 1499 pmd = mm_find_pmd(mm, address); 1500 if (!pmd) 1501 goto out; 1502 if (pmd_none(*pmd)) 1503 goto out; 1504 if (pmd_page(*pmd) != page) 1505 goto out; 1506 /* 1507 * split_vma() may create temporary aliased mappings. There is 1508 * no risk as long as all huge pmd are found and have their 1509 * splitting bit set before __split_huge_page_refcount 1510 * runs. Finding the same huge pmd more than once during the 1511 * same rmap walk is not a problem. 1512 */ 1513 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG && 1514 pmd_trans_splitting(*pmd)) 1515 goto out; 1516 if (pmd_trans_huge(*pmd)) { 1517 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG && 1518 !pmd_trans_splitting(*pmd)); 1519 ret = pmd; 1520 } 1521 out: 1522 return ret; 1523 } 1524 1525 static int __split_huge_page_splitting(struct page *page, 1526 struct vm_area_struct *vma, 1527 unsigned long address) 1528 { 1529 struct mm_struct *mm = vma->vm_mm; 1530 pmd_t *pmd; 1531 int ret = 0; 1532 /* For mmu_notifiers */ 1533 const unsigned long mmun_start = address; 1534 const unsigned long mmun_end = address + HPAGE_PMD_SIZE; 1535 1536 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1537 spin_lock(&mm->page_table_lock); 1538 pmd = page_check_address_pmd(page, mm, address, 1539 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG); 1540 if (pmd) { 1541 /* 1542 * We can't temporarily set the pmd to null in order 1543 * to split it, the pmd must remain marked huge at all 1544 * times or the VM won't take the pmd_trans_huge paths 1545 * and it won't wait on the anon_vma->root->rwsem to 1546 * serialize against split_huge_page*. 1547 */ 1548 pmdp_splitting_flush(vma, address, pmd); 1549 ret = 1; 1550 } 1551 spin_unlock(&mm->page_table_lock); 1552 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1553 1554 return ret; 1555 } 1556 1557 static void __split_huge_page_refcount(struct page *page, 1558 struct list_head *list) 1559 { 1560 int i; 1561 struct zone *zone = page_zone(page); 1562 struct lruvec *lruvec; 1563 int tail_count = 0; 1564 1565 /* prevent PageLRU to go away from under us, and freeze lru stats */ 1566 spin_lock_irq(&zone->lru_lock); 1567 lruvec = mem_cgroup_page_lruvec(page, zone); 1568 1569 compound_lock(page); 1570 /* complete memcg works before add pages to LRU */ 1571 mem_cgroup_split_huge_fixup(page); 1572 1573 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 1574 struct page *page_tail = page + i; 1575 1576 /* tail_page->_mapcount cannot change */ 1577 BUG_ON(page_mapcount(page_tail) < 0); 1578 tail_count += page_mapcount(page_tail); 1579 /* check for overflow */ 1580 BUG_ON(tail_count < 0); 1581 BUG_ON(atomic_read(&page_tail->_count) != 0); 1582 /* 1583 * tail_page->_count is zero and not changing from 1584 * under us. But get_page_unless_zero() may be running 1585 * from under us on the tail_page. If we used 1586 * atomic_set() below instead of atomic_add(), we 1587 * would then run atomic_set() concurrently with 1588 * get_page_unless_zero(), and atomic_set() is 1589 * implemented in C not using locked ops. spin_unlock 1590 * on x86 sometime uses locked ops because of PPro 1591 * errata 66, 92, so unless somebody can guarantee 1592 * atomic_set() here would be safe on all archs (and 1593 * not only on x86), it's safer to use atomic_add(). 1594 */ 1595 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1, 1596 &page_tail->_count); 1597 1598 /* after clearing PageTail the gup refcount can be released */ 1599 smp_mb(); 1600 1601 /* 1602 * retain hwpoison flag of the poisoned tail page: 1603 * fix for the unsuitable process killed on Guest Machine(KVM) 1604 * by the memory-failure. 1605 */ 1606 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON; 1607 page_tail->flags |= (page->flags & 1608 ((1L << PG_referenced) | 1609 (1L << PG_swapbacked) | 1610 (1L << PG_mlocked) | 1611 (1L << PG_uptodate) | 1612 (1L << PG_active) | 1613 (1L << PG_unevictable))); 1614 page_tail->flags |= (1L << PG_dirty); 1615 1616 /* clear PageTail before overwriting first_page */ 1617 smp_wmb(); 1618 1619 /* 1620 * __split_huge_page_splitting() already set the 1621 * splitting bit in all pmd that could map this 1622 * hugepage, that will ensure no CPU can alter the 1623 * mapcount on the head page. The mapcount is only 1624 * accounted in the head page and it has to be 1625 * transferred to all tail pages in the below code. So 1626 * for this code to be safe, the split the mapcount 1627 * can't change. But that doesn't mean userland can't 1628 * keep changing and reading the page contents while 1629 * we transfer the mapcount, so the pmd splitting 1630 * status is achieved setting a reserved bit in the 1631 * pmd, not by clearing the present bit. 1632 */ 1633 page_tail->_mapcount = page->_mapcount; 1634 1635 BUG_ON(page_tail->mapping); 1636 page_tail->mapping = page->mapping; 1637 1638 page_tail->index = page->index + i; 1639 page_nid_xchg_last(page_tail, page_nid_last(page)); 1640 1641 BUG_ON(!PageAnon(page_tail)); 1642 BUG_ON(!PageUptodate(page_tail)); 1643 BUG_ON(!PageDirty(page_tail)); 1644 BUG_ON(!PageSwapBacked(page_tail)); 1645 1646 lru_add_page_tail(page, page_tail, lruvec, list); 1647 } 1648 atomic_sub(tail_count, &page->_count); 1649 BUG_ON(atomic_read(&page->_count) <= 0); 1650 1651 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1); 1652 1653 ClearPageCompound(page); 1654 compound_unlock(page); 1655 spin_unlock_irq(&zone->lru_lock); 1656 1657 for (i = 1; i < HPAGE_PMD_NR; i++) { 1658 struct page *page_tail = page + i; 1659 BUG_ON(page_count(page_tail) <= 0); 1660 /* 1661 * Tail pages may be freed if there wasn't any mapping 1662 * like if add_to_swap() is running on a lru page that 1663 * had its mapping zapped. And freeing these pages 1664 * requires taking the lru_lock so we do the put_page 1665 * of the tail pages after the split is complete. 1666 */ 1667 put_page(page_tail); 1668 } 1669 1670 /* 1671 * Only the head page (now become a regular page) is required 1672 * to be pinned by the caller. 1673 */ 1674 BUG_ON(page_count(page) <= 0); 1675 } 1676 1677 static int __split_huge_page_map(struct page *page, 1678 struct vm_area_struct *vma, 1679 unsigned long address) 1680 { 1681 struct mm_struct *mm = vma->vm_mm; 1682 pmd_t *pmd, _pmd; 1683 int ret = 0, i; 1684 pgtable_t pgtable; 1685 unsigned long haddr; 1686 1687 spin_lock(&mm->page_table_lock); 1688 pmd = page_check_address_pmd(page, mm, address, 1689 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG); 1690 if (pmd) { 1691 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1692 pmd_populate(mm, &_pmd, pgtable); 1693 1694 haddr = address; 1695 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1696 pte_t *pte, entry; 1697 BUG_ON(PageCompound(page+i)); 1698 entry = mk_pte(page + i, vma->vm_page_prot); 1699 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1700 if (!pmd_write(*pmd)) 1701 entry = pte_wrprotect(entry); 1702 else 1703 BUG_ON(page_mapcount(page) != 1); 1704 if (!pmd_young(*pmd)) 1705 entry = pte_mkold(entry); 1706 if (pmd_numa(*pmd)) 1707 entry = pte_mknuma(entry); 1708 pte = pte_offset_map(&_pmd, haddr); 1709 BUG_ON(!pte_none(*pte)); 1710 set_pte_at(mm, haddr, pte, entry); 1711 pte_unmap(pte); 1712 } 1713 1714 smp_wmb(); /* make pte visible before pmd */ 1715 /* 1716 * Up to this point the pmd is present and huge and 1717 * userland has the whole access to the hugepage 1718 * during the split (which happens in place). If we 1719 * overwrite the pmd with the not-huge version 1720 * pointing to the pte here (which of course we could 1721 * if all CPUs were bug free), userland could trigger 1722 * a small page size TLB miss on the small sized TLB 1723 * while the hugepage TLB entry is still established 1724 * in the huge TLB. Some CPU doesn't like that. See 1725 * http://support.amd.com/us/Processor_TechDocs/41322.pdf, 1726 * Erratum 383 on page 93. Intel should be safe but is 1727 * also warns that it's only safe if the permission 1728 * and cache attributes of the two entries loaded in 1729 * the two TLB is identical (which should be the case 1730 * here). But it is generally safer to never allow 1731 * small and huge TLB entries for the same virtual 1732 * address to be loaded simultaneously. So instead of 1733 * doing "pmd_populate(); flush_tlb_range();" we first 1734 * mark the current pmd notpresent (atomically because 1735 * here the pmd_trans_huge and pmd_trans_splitting 1736 * must remain set at all times on the pmd until the 1737 * split is complete for this pmd), then we flush the 1738 * SMP TLB and finally we write the non-huge version 1739 * of the pmd entry with pmd_populate. 1740 */ 1741 pmdp_invalidate(vma, address, pmd); 1742 pmd_populate(mm, pmd, pgtable); 1743 ret = 1; 1744 } 1745 spin_unlock(&mm->page_table_lock); 1746 1747 return ret; 1748 } 1749 1750 /* must be called with anon_vma->root->rwsem held */ 1751 static void __split_huge_page(struct page *page, 1752 struct anon_vma *anon_vma, 1753 struct list_head *list) 1754 { 1755 int mapcount, mapcount2; 1756 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1757 struct anon_vma_chain *avc; 1758 1759 BUG_ON(!PageHead(page)); 1760 BUG_ON(PageTail(page)); 1761 1762 mapcount = 0; 1763 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1764 struct vm_area_struct *vma = avc->vma; 1765 unsigned long addr = vma_address(page, vma); 1766 BUG_ON(is_vma_temporary_stack(vma)); 1767 mapcount += __split_huge_page_splitting(page, vma, addr); 1768 } 1769 /* 1770 * It is critical that new vmas are added to the tail of the 1771 * anon_vma list. This guarantes that if copy_huge_pmd() runs 1772 * and establishes a child pmd before 1773 * __split_huge_page_splitting() freezes the parent pmd (so if 1774 * we fail to prevent copy_huge_pmd() from running until the 1775 * whole __split_huge_page() is complete), we will still see 1776 * the newly established pmd of the child later during the 1777 * walk, to be able to set it as pmd_trans_splitting too. 1778 */ 1779 if (mapcount != page_mapcount(page)) 1780 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1781 mapcount, page_mapcount(page)); 1782 BUG_ON(mapcount != page_mapcount(page)); 1783 1784 __split_huge_page_refcount(page, list); 1785 1786 mapcount2 = 0; 1787 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1788 struct vm_area_struct *vma = avc->vma; 1789 unsigned long addr = vma_address(page, vma); 1790 BUG_ON(is_vma_temporary_stack(vma)); 1791 mapcount2 += __split_huge_page_map(page, vma, addr); 1792 } 1793 if (mapcount != mapcount2) 1794 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n", 1795 mapcount, mapcount2, page_mapcount(page)); 1796 BUG_ON(mapcount != mapcount2); 1797 } 1798 1799 /* 1800 * Split a hugepage into normal pages. This doesn't change the position of head 1801 * page. If @list is null, tail pages will be added to LRU list, otherwise, to 1802 * @list. Both head page and tail pages will inherit mapping, flags, and so on 1803 * from the hugepage. 1804 * Return 0 if the hugepage is split successfully otherwise return 1. 1805 */ 1806 int split_huge_page_to_list(struct page *page, struct list_head *list) 1807 { 1808 struct anon_vma *anon_vma; 1809 int ret = 1; 1810 1811 BUG_ON(is_huge_zero_page(page)); 1812 BUG_ON(!PageAnon(page)); 1813 1814 /* 1815 * The caller does not necessarily hold an mmap_sem that would prevent 1816 * the anon_vma disappearing so we first we take a reference to it 1817 * and then lock the anon_vma for write. This is similar to 1818 * page_lock_anon_vma_read except the write lock is taken to serialise 1819 * against parallel split or collapse operations. 1820 */ 1821 anon_vma = page_get_anon_vma(page); 1822 if (!anon_vma) 1823 goto out; 1824 anon_vma_lock_write(anon_vma); 1825 1826 ret = 0; 1827 if (!PageCompound(page)) 1828 goto out_unlock; 1829 1830 BUG_ON(!PageSwapBacked(page)); 1831 __split_huge_page(page, anon_vma, list); 1832 count_vm_event(THP_SPLIT); 1833 1834 BUG_ON(PageCompound(page)); 1835 out_unlock: 1836 anon_vma_unlock_write(anon_vma); 1837 put_anon_vma(anon_vma); 1838 out: 1839 return ret; 1840 } 1841 1842 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE) 1843 1844 int hugepage_madvise(struct vm_area_struct *vma, 1845 unsigned long *vm_flags, int advice) 1846 { 1847 struct mm_struct *mm = vma->vm_mm; 1848 1849 switch (advice) { 1850 case MADV_HUGEPAGE: 1851 /* 1852 * Be somewhat over-protective like KSM for now! 1853 */ 1854 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP)) 1855 return -EINVAL; 1856 if (mm->def_flags & VM_NOHUGEPAGE) 1857 return -EINVAL; 1858 *vm_flags &= ~VM_NOHUGEPAGE; 1859 *vm_flags |= VM_HUGEPAGE; 1860 /* 1861 * If the vma become good for khugepaged to scan, 1862 * register it here without waiting a page fault that 1863 * may not happen any time soon. 1864 */ 1865 if (unlikely(khugepaged_enter_vma_merge(vma))) 1866 return -ENOMEM; 1867 break; 1868 case MADV_NOHUGEPAGE: 1869 /* 1870 * Be somewhat over-protective like KSM for now! 1871 */ 1872 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP)) 1873 return -EINVAL; 1874 *vm_flags &= ~VM_HUGEPAGE; 1875 *vm_flags |= VM_NOHUGEPAGE; 1876 /* 1877 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 1878 * this vma even if we leave the mm registered in khugepaged if 1879 * it got registered before VM_NOHUGEPAGE was set. 1880 */ 1881 break; 1882 } 1883 1884 return 0; 1885 } 1886 1887 static int __init khugepaged_slab_init(void) 1888 { 1889 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 1890 sizeof(struct mm_slot), 1891 __alignof__(struct mm_slot), 0, NULL); 1892 if (!mm_slot_cache) 1893 return -ENOMEM; 1894 1895 return 0; 1896 } 1897 1898 static inline struct mm_slot *alloc_mm_slot(void) 1899 { 1900 if (!mm_slot_cache) /* initialization failed */ 1901 return NULL; 1902 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 1903 } 1904 1905 static inline void free_mm_slot(struct mm_slot *mm_slot) 1906 { 1907 kmem_cache_free(mm_slot_cache, mm_slot); 1908 } 1909 1910 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 1911 { 1912 struct mm_slot *mm_slot; 1913 1914 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) 1915 if (mm == mm_slot->mm) 1916 return mm_slot; 1917 1918 return NULL; 1919 } 1920 1921 static void insert_to_mm_slots_hash(struct mm_struct *mm, 1922 struct mm_slot *mm_slot) 1923 { 1924 mm_slot->mm = mm; 1925 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); 1926 } 1927 1928 static inline int khugepaged_test_exit(struct mm_struct *mm) 1929 { 1930 return atomic_read(&mm->mm_users) == 0; 1931 } 1932 1933 int __khugepaged_enter(struct mm_struct *mm) 1934 { 1935 struct mm_slot *mm_slot; 1936 int wakeup; 1937 1938 mm_slot = alloc_mm_slot(); 1939 if (!mm_slot) 1940 return -ENOMEM; 1941 1942 /* __khugepaged_exit() must not run from under us */ 1943 VM_BUG_ON(khugepaged_test_exit(mm)); 1944 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 1945 free_mm_slot(mm_slot); 1946 return 0; 1947 } 1948 1949 spin_lock(&khugepaged_mm_lock); 1950 insert_to_mm_slots_hash(mm, mm_slot); 1951 /* 1952 * Insert just behind the scanning cursor, to let the area settle 1953 * down a little. 1954 */ 1955 wakeup = list_empty(&khugepaged_scan.mm_head); 1956 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); 1957 spin_unlock(&khugepaged_mm_lock); 1958 1959 atomic_inc(&mm->mm_count); 1960 if (wakeup) 1961 wake_up_interruptible(&khugepaged_wait); 1962 1963 return 0; 1964 } 1965 1966 int khugepaged_enter_vma_merge(struct vm_area_struct *vma) 1967 { 1968 unsigned long hstart, hend; 1969 if (!vma->anon_vma) 1970 /* 1971 * Not yet faulted in so we will register later in the 1972 * page fault if needed. 1973 */ 1974 return 0; 1975 if (vma->vm_ops) 1976 /* khugepaged not yet working on file or special mappings */ 1977 return 0; 1978 VM_BUG_ON(vma->vm_flags & VM_NO_THP); 1979 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 1980 hend = vma->vm_end & HPAGE_PMD_MASK; 1981 if (hstart < hend) 1982 return khugepaged_enter(vma); 1983 return 0; 1984 } 1985 1986 void __khugepaged_exit(struct mm_struct *mm) 1987 { 1988 struct mm_slot *mm_slot; 1989 int free = 0; 1990 1991 spin_lock(&khugepaged_mm_lock); 1992 mm_slot = get_mm_slot(mm); 1993 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 1994 hash_del(&mm_slot->hash); 1995 list_del(&mm_slot->mm_node); 1996 free = 1; 1997 } 1998 spin_unlock(&khugepaged_mm_lock); 1999 2000 if (free) { 2001 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 2002 free_mm_slot(mm_slot); 2003 mmdrop(mm); 2004 } else if (mm_slot) { 2005 /* 2006 * This is required to serialize against 2007 * khugepaged_test_exit() (which is guaranteed to run 2008 * under mmap sem read mode). Stop here (after we 2009 * return all pagetables will be destroyed) until 2010 * khugepaged has finished working on the pagetables 2011 * under the mmap_sem. 2012 */ 2013 down_write(&mm->mmap_sem); 2014 up_write(&mm->mmap_sem); 2015 } 2016 } 2017 2018 static void release_pte_page(struct page *page) 2019 { 2020 /* 0 stands for page_is_file_cache(page) == false */ 2021 dec_zone_page_state(page, NR_ISOLATED_ANON + 0); 2022 unlock_page(page); 2023 putback_lru_page(page); 2024 } 2025 2026 static void release_pte_pages(pte_t *pte, pte_t *_pte) 2027 { 2028 while (--_pte >= pte) { 2029 pte_t pteval = *_pte; 2030 if (!pte_none(pteval)) 2031 release_pte_page(pte_page(pteval)); 2032 } 2033 } 2034 2035 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 2036 unsigned long address, 2037 pte_t *pte) 2038 { 2039 struct page *page; 2040 pte_t *_pte; 2041 int referenced = 0, none = 0; 2042 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; 2043 _pte++, address += PAGE_SIZE) { 2044 pte_t pteval = *_pte; 2045 if (pte_none(pteval)) { 2046 if (++none <= khugepaged_max_ptes_none) 2047 continue; 2048 else 2049 goto out; 2050 } 2051 if (!pte_present(pteval) || !pte_write(pteval)) 2052 goto out; 2053 page = vm_normal_page(vma, address, pteval); 2054 if (unlikely(!page)) 2055 goto out; 2056 2057 VM_BUG_ON(PageCompound(page)); 2058 BUG_ON(!PageAnon(page)); 2059 VM_BUG_ON(!PageSwapBacked(page)); 2060 2061 /* cannot use mapcount: can't collapse if there's a gup pin */ 2062 if (page_count(page) != 1) 2063 goto out; 2064 /* 2065 * We can do it before isolate_lru_page because the 2066 * page can't be freed from under us. NOTE: PG_lock 2067 * is needed to serialize against split_huge_page 2068 * when invoked from the VM. 2069 */ 2070 if (!trylock_page(page)) 2071 goto out; 2072 /* 2073 * Isolate the page to avoid collapsing an hugepage 2074 * currently in use by the VM. 2075 */ 2076 if (isolate_lru_page(page)) { 2077 unlock_page(page); 2078 goto out; 2079 } 2080 /* 0 stands for page_is_file_cache(page) == false */ 2081 inc_zone_page_state(page, NR_ISOLATED_ANON + 0); 2082 VM_BUG_ON(!PageLocked(page)); 2083 VM_BUG_ON(PageLRU(page)); 2084 2085 /* If there is no mapped pte young don't collapse the page */ 2086 if (pte_young(pteval) || PageReferenced(page) || 2087 mmu_notifier_test_young(vma->vm_mm, address)) 2088 referenced = 1; 2089 } 2090 if (likely(referenced)) 2091 return 1; 2092 out: 2093 release_pte_pages(pte, _pte); 2094 return 0; 2095 } 2096 2097 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 2098 struct vm_area_struct *vma, 2099 unsigned long address, 2100 spinlock_t *ptl) 2101 { 2102 pte_t *_pte; 2103 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) { 2104 pte_t pteval = *_pte; 2105 struct page *src_page; 2106 2107 if (pte_none(pteval)) { 2108 clear_user_highpage(page, address); 2109 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 2110 } else { 2111 src_page = pte_page(pteval); 2112 copy_user_highpage(page, src_page, address, vma); 2113 VM_BUG_ON(page_mapcount(src_page) != 1); 2114 release_pte_page(src_page); 2115 /* 2116 * ptl mostly unnecessary, but preempt has to 2117 * be disabled to update the per-cpu stats 2118 * inside page_remove_rmap(). 2119 */ 2120 spin_lock(ptl); 2121 /* 2122 * paravirt calls inside pte_clear here are 2123 * superfluous. 2124 */ 2125 pte_clear(vma->vm_mm, address, _pte); 2126 page_remove_rmap(src_page); 2127 spin_unlock(ptl); 2128 free_page_and_swap_cache(src_page); 2129 } 2130 2131 address += PAGE_SIZE; 2132 page++; 2133 } 2134 } 2135 2136 static void khugepaged_alloc_sleep(void) 2137 { 2138 wait_event_freezable_timeout(khugepaged_wait, false, 2139 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 2140 } 2141 2142 #ifdef CONFIG_NUMA 2143 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 2144 { 2145 if (IS_ERR(*hpage)) { 2146 if (!*wait) 2147 return false; 2148 2149 *wait = false; 2150 *hpage = NULL; 2151 khugepaged_alloc_sleep(); 2152 } else if (*hpage) { 2153 put_page(*hpage); 2154 *hpage = NULL; 2155 } 2156 2157 return true; 2158 } 2159 2160 static struct page 2161 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm, 2162 struct vm_area_struct *vma, unsigned long address, 2163 int node) 2164 { 2165 VM_BUG_ON(*hpage); 2166 /* 2167 * Allocate the page while the vma is still valid and under 2168 * the mmap_sem read mode so there is no memory allocation 2169 * later when we take the mmap_sem in write mode. This is more 2170 * friendly behavior (OTOH it may actually hide bugs) to 2171 * filesystems in userland with daemons allocating memory in 2172 * the userland I/O paths. Allocating memory with the 2173 * mmap_sem in read mode is good idea also to allow greater 2174 * scalability. 2175 */ 2176 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address, 2177 node, __GFP_OTHER_NODE); 2178 2179 /* 2180 * After allocating the hugepage, release the mmap_sem read lock in 2181 * preparation for taking it in write mode. 2182 */ 2183 up_read(&mm->mmap_sem); 2184 if (unlikely(!*hpage)) { 2185 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 2186 *hpage = ERR_PTR(-ENOMEM); 2187 return NULL; 2188 } 2189 2190 count_vm_event(THP_COLLAPSE_ALLOC); 2191 return *hpage; 2192 } 2193 #else 2194 static struct page *khugepaged_alloc_hugepage(bool *wait) 2195 { 2196 struct page *hpage; 2197 2198 do { 2199 hpage = alloc_hugepage(khugepaged_defrag()); 2200 if (!hpage) { 2201 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 2202 if (!*wait) 2203 return NULL; 2204 2205 *wait = false; 2206 khugepaged_alloc_sleep(); 2207 } else 2208 count_vm_event(THP_COLLAPSE_ALLOC); 2209 } while (unlikely(!hpage) && likely(khugepaged_enabled())); 2210 2211 return hpage; 2212 } 2213 2214 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 2215 { 2216 if (!*hpage) 2217 *hpage = khugepaged_alloc_hugepage(wait); 2218 2219 if (unlikely(!*hpage)) 2220 return false; 2221 2222 return true; 2223 } 2224 2225 static struct page 2226 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm, 2227 struct vm_area_struct *vma, unsigned long address, 2228 int node) 2229 { 2230 up_read(&mm->mmap_sem); 2231 VM_BUG_ON(!*hpage); 2232 return *hpage; 2233 } 2234 #endif 2235 2236 static bool hugepage_vma_check(struct vm_area_struct *vma) 2237 { 2238 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || 2239 (vma->vm_flags & VM_NOHUGEPAGE)) 2240 return false; 2241 2242 if (!vma->anon_vma || vma->vm_ops) 2243 return false; 2244 if (is_vma_temporary_stack(vma)) 2245 return false; 2246 VM_BUG_ON(vma->vm_flags & VM_NO_THP); 2247 return true; 2248 } 2249 2250 static void collapse_huge_page(struct mm_struct *mm, 2251 unsigned long address, 2252 struct page **hpage, 2253 struct vm_area_struct *vma, 2254 int node) 2255 { 2256 pmd_t *pmd, _pmd; 2257 pte_t *pte; 2258 pgtable_t pgtable; 2259 struct page *new_page; 2260 spinlock_t *ptl; 2261 int isolated; 2262 unsigned long hstart, hend; 2263 unsigned long mmun_start; /* For mmu_notifiers */ 2264 unsigned long mmun_end; /* For mmu_notifiers */ 2265 2266 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 2267 2268 /* release the mmap_sem read lock. */ 2269 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node); 2270 if (!new_page) 2271 return; 2272 2273 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) 2274 return; 2275 2276 /* 2277 * Prevent all access to pagetables with the exception of 2278 * gup_fast later hanlded by the ptep_clear_flush and the VM 2279 * handled by the anon_vma lock + PG_lock. 2280 */ 2281 down_write(&mm->mmap_sem); 2282 if (unlikely(khugepaged_test_exit(mm))) 2283 goto out; 2284 2285 vma = find_vma(mm, address); 2286 if (!vma) 2287 goto out; 2288 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2289 hend = vma->vm_end & HPAGE_PMD_MASK; 2290 if (address < hstart || address + HPAGE_PMD_SIZE > hend) 2291 goto out; 2292 if (!hugepage_vma_check(vma)) 2293 goto out; 2294 pmd = mm_find_pmd(mm, address); 2295 if (!pmd) 2296 goto out; 2297 if (pmd_trans_huge(*pmd)) 2298 goto out; 2299 2300 anon_vma_lock_write(vma->anon_vma); 2301 2302 pte = pte_offset_map(pmd, address); 2303 ptl = pte_lockptr(mm, pmd); 2304 2305 mmun_start = address; 2306 mmun_end = address + HPAGE_PMD_SIZE; 2307 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2308 spin_lock(&mm->page_table_lock); /* probably unnecessary */ 2309 /* 2310 * After this gup_fast can't run anymore. This also removes 2311 * any huge TLB entry from the CPU so we won't allow 2312 * huge and small TLB entries for the same virtual address 2313 * to avoid the risk of CPU bugs in that area. 2314 */ 2315 _pmd = pmdp_clear_flush(vma, address, pmd); 2316 spin_unlock(&mm->page_table_lock); 2317 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2318 2319 spin_lock(ptl); 2320 isolated = __collapse_huge_page_isolate(vma, address, pte); 2321 spin_unlock(ptl); 2322 2323 if (unlikely(!isolated)) { 2324 pte_unmap(pte); 2325 spin_lock(&mm->page_table_lock); 2326 BUG_ON(!pmd_none(*pmd)); 2327 /* 2328 * We can only use set_pmd_at when establishing 2329 * hugepmds and never for establishing regular pmds that 2330 * points to regular pagetables. Use pmd_populate for that 2331 */ 2332 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 2333 spin_unlock(&mm->page_table_lock); 2334 anon_vma_unlock_write(vma->anon_vma); 2335 goto out; 2336 } 2337 2338 /* 2339 * All pages are isolated and locked so anon_vma rmap 2340 * can't run anymore. 2341 */ 2342 anon_vma_unlock_write(vma->anon_vma); 2343 2344 __collapse_huge_page_copy(pte, new_page, vma, address, ptl); 2345 pte_unmap(pte); 2346 __SetPageUptodate(new_page); 2347 pgtable = pmd_pgtable(_pmd); 2348 2349 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot); 2350 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 2351 2352 /* 2353 * spin_lock() below is not the equivalent of smp_wmb(), so 2354 * this is needed to avoid the copy_huge_page writes to become 2355 * visible after the set_pmd_at() write. 2356 */ 2357 smp_wmb(); 2358 2359 spin_lock(&mm->page_table_lock); 2360 BUG_ON(!pmd_none(*pmd)); 2361 page_add_new_anon_rmap(new_page, vma, address); 2362 pgtable_trans_huge_deposit(mm, pmd, pgtable); 2363 set_pmd_at(mm, address, pmd, _pmd); 2364 update_mmu_cache_pmd(vma, address, pmd); 2365 spin_unlock(&mm->page_table_lock); 2366 2367 *hpage = NULL; 2368 2369 khugepaged_pages_collapsed++; 2370 out_up_write: 2371 up_write(&mm->mmap_sem); 2372 return; 2373 2374 out: 2375 mem_cgroup_uncharge_page(new_page); 2376 goto out_up_write; 2377 } 2378 2379 static int khugepaged_scan_pmd(struct mm_struct *mm, 2380 struct vm_area_struct *vma, 2381 unsigned long address, 2382 struct page **hpage) 2383 { 2384 pmd_t *pmd; 2385 pte_t *pte, *_pte; 2386 int ret = 0, referenced = 0, none = 0; 2387 struct page *page; 2388 unsigned long _address; 2389 spinlock_t *ptl; 2390 int node = NUMA_NO_NODE; 2391 2392 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 2393 2394 pmd = mm_find_pmd(mm, address); 2395 if (!pmd) 2396 goto out; 2397 if (pmd_trans_huge(*pmd)) 2398 goto out; 2399 2400 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2401 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; 2402 _pte++, _address += PAGE_SIZE) { 2403 pte_t pteval = *_pte; 2404 if (pte_none(pteval)) { 2405 if (++none <= khugepaged_max_ptes_none) 2406 continue; 2407 else 2408 goto out_unmap; 2409 } 2410 if (!pte_present(pteval) || !pte_write(pteval)) 2411 goto out_unmap; 2412 page = vm_normal_page(vma, _address, pteval); 2413 if (unlikely(!page)) 2414 goto out_unmap; 2415 /* 2416 * Chose the node of the first page. This could 2417 * be more sophisticated and look at more pages, 2418 * but isn't for now. 2419 */ 2420 if (node == NUMA_NO_NODE) 2421 node = page_to_nid(page); 2422 VM_BUG_ON(PageCompound(page)); 2423 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page)) 2424 goto out_unmap; 2425 /* cannot use mapcount: can't collapse if there's a gup pin */ 2426 if (page_count(page) != 1) 2427 goto out_unmap; 2428 if (pte_young(pteval) || PageReferenced(page) || 2429 mmu_notifier_test_young(vma->vm_mm, address)) 2430 referenced = 1; 2431 } 2432 if (referenced) 2433 ret = 1; 2434 out_unmap: 2435 pte_unmap_unlock(pte, ptl); 2436 if (ret) 2437 /* collapse_huge_page will return with the mmap_sem released */ 2438 collapse_huge_page(mm, address, hpage, vma, node); 2439 out: 2440 return ret; 2441 } 2442 2443 static void collect_mm_slot(struct mm_slot *mm_slot) 2444 { 2445 struct mm_struct *mm = mm_slot->mm; 2446 2447 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); 2448 2449 if (khugepaged_test_exit(mm)) { 2450 /* free mm_slot */ 2451 hash_del(&mm_slot->hash); 2452 list_del(&mm_slot->mm_node); 2453 2454 /* 2455 * Not strictly needed because the mm exited already. 2456 * 2457 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 2458 */ 2459 2460 /* khugepaged_mm_lock actually not necessary for the below */ 2461 free_mm_slot(mm_slot); 2462 mmdrop(mm); 2463 } 2464 } 2465 2466 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, 2467 struct page **hpage) 2468 __releases(&khugepaged_mm_lock) 2469 __acquires(&khugepaged_mm_lock) 2470 { 2471 struct mm_slot *mm_slot; 2472 struct mm_struct *mm; 2473 struct vm_area_struct *vma; 2474 int progress = 0; 2475 2476 VM_BUG_ON(!pages); 2477 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); 2478 2479 if (khugepaged_scan.mm_slot) 2480 mm_slot = khugepaged_scan.mm_slot; 2481 else { 2482 mm_slot = list_entry(khugepaged_scan.mm_head.next, 2483 struct mm_slot, mm_node); 2484 khugepaged_scan.address = 0; 2485 khugepaged_scan.mm_slot = mm_slot; 2486 } 2487 spin_unlock(&khugepaged_mm_lock); 2488 2489 mm = mm_slot->mm; 2490 down_read(&mm->mmap_sem); 2491 if (unlikely(khugepaged_test_exit(mm))) 2492 vma = NULL; 2493 else 2494 vma = find_vma(mm, khugepaged_scan.address); 2495 2496 progress++; 2497 for (; vma; vma = vma->vm_next) { 2498 unsigned long hstart, hend; 2499 2500 cond_resched(); 2501 if (unlikely(khugepaged_test_exit(mm))) { 2502 progress++; 2503 break; 2504 } 2505 if (!hugepage_vma_check(vma)) { 2506 skip: 2507 progress++; 2508 continue; 2509 } 2510 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2511 hend = vma->vm_end & HPAGE_PMD_MASK; 2512 if (hstart >= hend) 2513 goto skip; 2514 if (khugepaged_scan.address > hend) 2515 goto skip; 2516 if (khugepaged_scan.address < hstart) 2517 khugepaged_scan.address = hstart; 2518 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2519 2520 while (khugepaged_scan.address < hend) { 2521 int ret; 2522 cond_resched(); 2523 if (unlikely(khugepaged_test_exit(mm))) 2524 goto breakouterloop; 2525 2526 VM_BUG_ON(khugepaged_scan.address < hstart || 2527 khugepaged_scan.address + HPAGE_PMD_SIZE > 2528 hend); 2529 ret = khugepaged_scan_pmd(mm, vma, 2530 khugepaged_scan.address, 2531 hpage); 2532 /* move to next address */ 2533 khugepaged_scan.address += HPAGE_PMD_SIZE; 2534 progress += HPAGE_PMD_NR; 2535 if (ret) 2536 /* we released mmap_sem so break loop */ 2537 goto breakouterloop_mmap_sem; 2538 if (progress >= pages) 2539 goto breakouterloop; 2540 } 2541 } 2542 breakouterloop: 2543 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */ 2544 breakouterloop_mmap_sem: 2545 2546 spin_lock(&khugepaged_mm_lock); 2547 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2548 /* 2549 * Release the current mm_slot if this mm is about to die, or 2550 * if we scanned all vmas of this mm. 2551 */ 2552 if (khugepaged_test_exit(mm) || !vma) { 2553 /* 2554 * Make sure that if mm_users is reaching zero while 2555 * khugepaged runs here, khugepaged_exit will find 2556 * mm_slot not pointing to the exiting mm. 2557 */ 2558 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { 2559 khugepaged_scan.mm_slot = list_entry( 2560 mm_slot->mm_node.next, 2561 struct mm_slot, mm_node); 2562 khugepaged_scan.address = 0; 2563 } else { 2564 khugepaged_scan.mm_slot = NULL; 2565 khugepaged_full_scans++; 2566 } 2567 2568 collect_mm_slot(mm_slot); 2569 } 2570 2571 return progress; 2572 } 2573 2574 static int khugepaged_has_work(void) 2575 { 2576 return !list_empty(&khugepaged_scan.mm_head) && 2577 khugepaged_enabled(); 2578 } 2579 2580 static int khugepaged_wait_event(void) 2581 { 2582 return !list_empty(&khugepaged_scan.mm_head) || 2583 kthread_should_stop(); 2584 } 2585 2586 static void khugepaged_do_scan(void) 2587 { 2588 struct page *hpage = NULL; 2589 unsigned int progress = 0, pass_through_head = 0; 2590 unsigned int pages = khugepaged_pages_to_scan; 2591 bool wait = true; 2592 2593 barrier(); /* write khugepaged_pages_to_scan to local stack */ 2594 2595 while (progress < pages) { 2596 if (!khugepaged_prealloc_page(&hpage, &wait)) 2597 break; 2598 2599 cond_resched(); 2600 2601 if (unlikely(kthread_should_stop() || freezing(current))) 2602 break; 2603 2604 spin_lock(&khugepaged_mm_lock); 2605 if (!khugepaged_scan.mm_slot) 2606 pass_through_head++; 2607 if (khugepaged_has_work() && 2608 pass_through_head < 2) 2609 progress += khugepaged_scan_mm_slot(pages - progress, 2610 &hpage); 2611 else 2612 progress = pages; 2613 spin_unlock(&khugepaged_mm_lock); 2614 } 2615 2616 if (!IS_ERR_OR_NULL(hpage)) 2617 put_page(hpage); 2618 } 2619 2620 static void khugepaged_wait_work(void) 2621 { 2622 try_to_freeze(); 2623 2624 if (khugepaged_has_work()) { 2625 if (!khugepaged_scan_sleep_millisecs) 2626 return; 2627 2628 wait_event_freezable_timeout(khugepaged_wait, 2629 kthread_should_stop(), 2630 msecs_to_jiffies(khugepaged_scan_sleep_millisecs)); 2631 return; 2632 } 2633 2634 if (khugepaged_enabled()) 2635 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2636 } 2637 2638 static int khugepaged(void *none) 2639 { 2640 struct mm_slot *mm_slot; 2641 2642 set_freezable(); 2643 set_user_nice(current, 19); 2644 2645 while (!kthread_should_stop()) { 2646 khugepaged_do_scan(); 2647 khugepaged_wait_work(); 2648 } 2649 2650 spin_lock(&khugepaged_mm_lock); 2651 mm_slot = khugepaged_scan.mm_slot; 2652 khugepaged_scan.mm_slot = NULL; 2653 if (mm_slot) 2654 collect_mm_slot(mm_slot); 2655 spin_unlock(&khugepaged_mm_lock); 2656 return 0; 2657 } 2658 2659 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2660 unsigned long haddr, pmd_t *pmd) 2661 { 2662 struct mm_struct *mm = vma->vm_mm; 2663 pgtable_t pgtable; 2664 pmd_t _pmd; 2665 int i; 2666 2667 pmdp_clear_flush(vma, haddr, pmd); 2668 /* leave pmd empty until pte is filled */ 2669 2670 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2671 pmd_populate(mm, &_pmd, pgtable); 2672 2673 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 2674 pte_t *pte, entry; 2675 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 2676 entry = pte_mkspecial(entry); 2677 pte = pte_offset_map(&_pmd, haddr); 2678 VM_BUG_ON(!pte_none(*pte)); 2679 set_pte_at(mm, haddr, pte, entry); 2680 pte_unmap(pte); 2681 } 2682 smp_wmb(); /* make pte visible before pmd */ 2683 pmd_populate(mm, pmd, pgtable); 2684 put_huge_zero_page(); 2685 } 2686 2687 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address, 2688 pmd_t *pmd) 2689 { 2690 struct page *page; 2691 struct mm_struct *mm = vma->vm_mm; 2692 unsigned long haddr = address & HPAGE_PMD_MASK; 2693 unsigned long mmun_start; /* For mmu_notifiers */ 2694 unsigned long mmun_end; /* For mmu_notifiers */ 2695 2696 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE); 2697 2698 mmun_start = haddr; 2699 mmun_end = haddr + HPAGE_PMD_SIZE; 2700 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2701 spin_lock(&mm->page_table_lock); 2702 if (unlikely(!pmd_trans_huge(*pmd))) { 2703 spin_unlock(&mm->page_table_lock); 2704 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2705 return; 2706 } 2707 if (is_huge_zero_pmd(*pmd)) { 2708 __split_huge_zero_page_pmd(vma, haddr, pmd); 2709 spin_unlock(&mm->page_table_lock); 2710 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2711 return; 2712 } 2713 page = pmd_page(*pmd); 2714 VM_BUG_ON(!page_count(page)); 2715 get_page(page); 2716 spin_unlock(&mm->page_table_lock); 2717 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2718 2719 split_huge_page(page); 2720 2721 put_page(page); 2722 BUG_ON(pmd_trans_huge(*pmd)); 2723 } 2724 2725 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address, 2726 pmd_t *pmd) 2727 { 2728 struct vm_area_struct *vma; 2729 2730 vma = find_vma(mm, address); 2731 BUG_ON(vma == NULL); 2732 split_huge_page_pmd(vma, address, pmd); 2733 } 2734 2735 static void split_huge_page_address(struct mm_struct *mm, 2736 unsigned long address) 2737 { 2738 pmd_t *pmd; 2739 2740 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK)); 2741 2742 pmd = mm_find_pmd(mm, address); 2743 if (!pmd) 2744 return; 2745 /* 2746 * Caller holds the mmap_sem write mode, so a huge pmd cannot 2747 * materialize from under us. 2748 */ 2749 split_huge_page_pmd_mm(mm, address, pmd); 2750 } 2751 2752 void __vma_adjust_trans_huge(struct vm_area_struct *vma, 2753 unsigned long start, 2754 unsigned long end, 2755 long adjust_next) 2756 { 2757 /* 2758 * If the new start address isn't hpage aligned and it could 2759 * previously contain an hugepage: check if we need to split 2760 * an huge pmd. 2761 */ 2762 if (start & ~HPAGE_PMD_MASK && 2763 (start & HPAGE_PMD_MASK) >= vma->vm_start && 2764 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2765 split_huge_page_address(vma->vm_mm, start); 2766 2767 /* 2768 * If the new end address isn't hpage aligned and it could 2769 * previously contain an hugepage: check if we need to split 2770 * an huge pmd. 2771 */ 2772 if (end & ~HPAGE_PMD_MASK && 2773 (end & HPAGE_PMD_MASK) >= vma->vm_start && 2774 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2775 split_huge_page_address(vma->vm_mm, end); 2776 2777 /* 2778 * If we're also updating the vma->vm_next->vm_start, if the new 2779 * vm_next->vm_start isn't page aligned and it could previously 2780 * contain an hugepage: check if we need to split an huge pmd. 2781 */ 2782 if (adjust_next > 0) { 2783 struct vm_area_struct *next = vma->vm_next; 2784 unsigned long nstart = next->vm_start; 2785 nstart += adjust_next << PAGE_SHIFT; 2786 if (nstart & ~HPAGE_PMD_MASK && 2787 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 2788 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 2789 split_huge_page_address(next->vm_mm, nstart); 2790 } 2791 } 2792