xref: /openbmc/linux/mm/huge_memory.c (revision 53f9cd5c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 
40 #include <asm/tlb.h>
41 #include <asm/pgalloc.h>
42 #include "internal.h"
43 #include "swap.h"
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/thp.h>
47 
48 /*
49  * By default, transparent hugepage support is disabled in order to avoid
50  * risking an increased memory footprint for applications that are not
51  * guaranteed to benefit from it. When transparent hugepage support is
52  * enabled, it is for all mappings, and khugepaged scans all mappings.
53  * Defrag is invoked by khugepaged hugepage allocations and by page faults
54  * for all hugepage allocations.
55  */
56 unsigned long transparent_hugepage_flags __read_mostly =
57 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
58 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
59 #endif
60 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
61 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
62 #endif
63 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
64 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
65 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
66 
67 static struct shrinker deferred_split_shrinker;
68 
69 static atomic_t huge_zero_refcount;
70 struct page *huge_zero_page __read_mostly;
71 unsigned long huge_zero_pfn __read_mostly = ~0UL;
72 
73 bool hugepage_vma_check(struct vm_area_struct *vma,
74 			unsigned long vm_flags,
75 			bool smaps, bool in_pf)
76 {
77 	if (!vma->vm_mm)		/* vdso */
78 		return false;
79 
80 	/*
81 	 * Explicitly disabled through madvise or prctl, or some
82 	 * architectures may disable THP for some mappings, for
83 	 * example, s390 kvm.
84 	 * */
85 	if ((vm_flags & VM_NOHUGEPAGE) ||
86 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
87 		return false;
88 	/*
89 	 * If the hardware/firmware marked hugepage support disabled.
90 	 */
91 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX))
92 		return false;
93 
94 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
95 	if (vma_is_dax(vma))
96 		return in_pf;
97 
98 	/*
99 	 * Special VMA and hugetlb VMA.
100 	 * Must be checked after dax since some dax mappings may have
101 	 * VM_MIXEDMAP set.
102 	 */
103 	if (vm_flags & VM_NO_KHUGEPAGED)
104 		return false;
105 
106 	/*
107 	 * Check alignment for file vma and size for both file and anon vma.
108 	 *
109 	 * Skip the check for page fault. Huge fault does the check in fault
110 	 * handlers. And this check is not suitable for huge PUD fault.
111 	 */
112 	if (!in_pf &&
113 	    !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
114 		return false;
115 
116 	/*
117 	 * Enabled via shmem mount options or sysfs settings.
118 	 * Must be done before hugepage flags check since shmem has its
119 	 * own flags.
120 	 */
121 	if (!in_pf && shmem_file(vma->vm_file))
122 		return shmem_huge_enabled(vma);
123 
124 	if (!hugepage_flags_enabled())
125 		return false;
126 
127 	/* THP settings require madvise. */
128 	if (!(vm_flags & VM_HUGEPAGE) && !hugepage_flags_always())
129 		return false;
130 
131 	/* Only regular file is valid */
132 	if (!in_pf && file_thp_enabled(vma))
133 		return true;
134 
135 	if (!vma_is_anonymous(vma))
136 		return false;
137 
138 	if (vma_is_temporary_stack(vma))
139 		return false;
140 
141 	/*
142 	 * THPeligible bit of smaps should show 1 for proper VMAs even
143 	 * though anon_vma is not initialized yet.
144 	 *
145 	 * Allow page fault since anon_vma may be not initialized until
146 	 * the first page fault.
147 	 */
148 	if (!vma->anon_vma)
149 		return (smaps || in_pf);
150 
151 	return true;
152 }
153 
154 static bool get_huge_zero_page(void)
155 {
156 	struct page *zero_page;
157 retry:
158 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
159 		return true;
160 
161 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
162 			HPAGE_PMD_ORDER);
163 	if (!zero_page) {
164 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
165 		return false;
166 	}
167 	count_vm_event(THP_ZERO_PAGE_ALLOC);
168 	preempt_disable();
169 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
170 		preempt_enable();
171 		__free_pages(zero_page, compound_order(zero_page));
172 		goto retry;
173 	}
174 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
175 
176 	/* We take additional reference here. It will be put back by shrinker */
177 	atomic_set(&huge_zero_refcount, 2);
178 	preempt_enable();
179 	return true;
180 }
181 
182 static void put_huge_zero_page(void)
183 {
184 	/*
185 	 * Counter should never go to zero here. Only shrinker can put
186 	 * last reference.
187 	 */
188 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
189 }
190 
191 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
192 {
193 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
194 		return READ_ONCE(huge_zero_page);
195 
196 	if (!get_huge_zero_page())
197 		return NULL;
198 
199 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
200 		put_huge_zero_page();
201 
202 	return READ_ONCE(huge_zero_page);
203 }
204 
205 void mm_put_huge_zero_page(struct mm_struct *mm)
206 {
207 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
208 		put_huge_zero_page();
209 }
210 
211 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
212 					struct shrink_control *sc)
213 {
214 	/* we can free zero page only if last reference remains */
215 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
216 }
217 
218 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
219 				       struct shrink_control *sc)
220 {
221 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
222 		struct page *zero_page = xchg(&huge_zero_page, NULL);
223 		BUG_ON(zero_page == NULL);
224 		WRITE_ONCE(huge_zero_pfn, ~0UL);
225 		__free_pages(zero_page, compound_order(zero_page));
226 		return HPAGE_PMD_NR;
227 	}
228 
229 	return 0;
230 }
231 
232 static struct shrinker huge_zero_page_shrinker = {
233 	.count_objects = shrink_huge_zero_page_count,
234 	.scan_objects = shrink_huge_zero_page_scan,
235 	.seeks = DEFAULT_SEEKS,
236 };
237 
238 #ifdef CONFIG_SYSFS
239 static ssize_t enabled_show(struct kobject *kobj,
240 			    struct kobj_attribute *attr, char *buf)
241 {
242 	const char *output;
243 
244 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
245 		output = "[always] madvise never";
246 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
247 			  &transparent_hugepage_flags))
248 		output = "always [madvise] never";
249 	else
250 		output = "always madvise [never]";
251 
252 	return sysfs_emit(buf, "%s\n", output);
253 }
254 
255 static ssize_t enabled_store(struct kobject *kobj,
256 			     struct kobj_attribute *attr,
257 			     const char *buf, size_t count)
258 {
259 	ssize_t ret = count;
260 
261 	if (sysfs_streq(buf, "always")) {
262 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
264 	} else if (sysfs_streq(buf, "madvise")) {
265 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
266 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
267 	} else if (sysfs_streq(buf, "never")) {
268 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
269 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 	} else
271 		ret = -EINVAL;
272 
273 	if (ret > 0) {
274 		int err = start_stop_khugepaged();
275 		if (err)
276 			ret = err;
277 	}
278 	return ret;
279 }
280 
281 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
282 
283 ssize_t single_hugepage_flag_show(struct kobject *kobj,
284 				  struct kobj_attribute *attr, char *buf,
285 				  enum transparent_hugepage_flag flag)
286 {
287 	return sysfs_emit(buf, "%d\n",
288 			  !!test_bit(flag, &transparent_hugepage_flags));
289 }
290 
291 ssize_t single_hugepage_flag_store(struct kobject *kobj,
292 				 struct kobj_attribute *attr,
293 				 const char *buf, size_t count,
294 				 enum transparent_hugepage_flag flag)
295 {
296 	unsigned long value;
297 	int ret;
298 
299 	ret = kstrtoul(buf, 10, &value);
300 	if (ret < 0)
301 		return ret;
302 	if (value > 1)
303 		return -EINVAL;
304 
305 	if (value)
306 		set_bit(flag, &transparent_hugepage_flags);
307 	else
308 		clear_bit(flag, &transparent_hugepage_flags);
309 
310 	return count;
311 }
312 
313 static ssize_t defrag_show(struct kobject *kobj,
314 			   struct kobj_attribute *attr, char *buf)
315 {
316 	const char *output;
317 
318 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
319 		     &transparent_hugepage_flags))
320 		output = "[always] defer defer+madvise madvise never";
321 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
322 			  &transparent_hugepage_flags))
323 		output = "always [defer] defer+madvise madvise never";
324 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
325 			  &transparent_hugepage_flags))
326 		output = "always defer [defer+madvise] madvise never";
327 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
328 			  &transparent_hugepage_flags))
329 		output = "always defer defer+madvise [madvise] never";
330 	else
331 		output = "always defer defer+madvise madvise [never]";
332 
333 	return sysfs_emit(buf, "%s\n", output);
334 }
335 
336 static ssize_t defrag_store(struct kobject *kobj,
337 			    struct kobj_attribute *attr,
338 			    const char *buf, size_t count)
339 {
340 	if (sysfs_streq(buf, "always")) {
341 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
342 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
343 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
344 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
345 	} else if (sysfs_streq(buf, "defer+madvise")) {
346 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
347 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
348 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
349 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
350 	} else if (sysfs_streq(buf, "defer")) {
351 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
352 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
353 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
354 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
355 	} else if (sysfs_streq(buf, "madvise")) {
356 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
357 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
358 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
359 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
360 	} else if (sysfs_streq(buf, "never")) {
361 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
362 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
363 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
364 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
365 	} else
366 		return -EINVAL;
367 
368 	return count;
369 }
370 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
371 
372 static ssize_t use_zero_page_show(struct kobject *kobj,
373 				  struct kobj_attribute *attr, char *buf)
374 {
375 	return single_hugepage_flag_show(kobj, attr, buf,
376 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static ssize_t use_zero_page_store(struct kobject *kobj,
379 		struct kobj_attribute *attr, const char *buf, size_t count)
380 {
381 	return single_hugepage_flag_store(kobj, attr, buf, count,
382 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383 }
384 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
385 
386 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
387 				   struct kobj_attribute *attr, char *buf)
388 {
389 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
390 }
391 static struct kobj_attribute hpage_pmd_size_attr =
392 	__ATTR_RO(hpage_pmd_size);
393 
394 static struct attribute *hugepage_attr[] = {
395 	&enabled_attr.attr,
396 	&defrag_attr.attr,
397 	&use_zero_page_attr.attr,
398 	&hpage_pmd_size_attr.attr,
399 #ifdef CONFIG_SHMEM
400 	&shmem_enabled_attr.attr,
401 #endif
402 	NULL,
403 };
404 
405 static const struct attribute_group hugepage_attr_group = {
406 	.attrs = hugepage_attr,
407 };
408 
409 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
410 {
411 	int err;
412 
413 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
414 	if (unlikely(!*hugepage_kobj)) {
415 		pr_err("failed to create transparent hugepage kobject\n");
416 		return -ENOMEM;
417 	}
418 
419 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
420 	if (err) {
421 		pr_err("failed to register transparent hugepage group\n");
422 		goto delete_obj;
423 	}
424 
425 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
426 	if (err) {
427 		pr_err("failed to register transparent hugepage group\n");
428 		goto remove_hp_group;
429 	}
430 
431 	return 0;
432 
433 remove_hp_group:
434 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
435 delete_obj:
436 	kobject_put(*hugepage_kobj);
437 	return err;
438 }
439 
440 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
441 {
442 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
443 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
444 	kobject_put(hugepage_kobj);
445 }
446 #else
447 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
448 {
449 	return 0;
450 }
451 
452 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
453 {
454 }
455 #endif /* CONFIG_SYSFS */
456 
457 static int __init hugepage_init(void)
458 {
459 	int err;
460 	struct kobject *hugepage_kobj;
461 
462 	if (!has_transparent_hugepage()) {
463 		/*
464 		 * Hardware doesn't support hugepages, hence disable
465 		 * DAX PMD support.
466 		 */
467 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
468 		return -EINVAL;
469 	}
470 
471 	/*
472 	 * hugepages can't be allocated by the buddy allocator
473 	 */
474 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
475 	/*
476 	 * we use page->mapping and page->index in second tail page
477 	 * as list_head: assuming THP order >= 2
478 	 */
479 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
480 
481 	err = hugepage_init_sysfs(&hugepage_kobj);
482 	if (err)
483 		goto err_sysfs;
484 
485 	err = khugepaged_init();
486 	if (err)
487 		goto err_slab;
488 
489 	err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
490 	if (err)
491 		goto err_hzp_shrinker;
492 	err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
493 	if (err)
494 		goto err_split_shrinker;
495 
496 	/*
497 	 * By default disable transparent hugepages on smaller systems,
498 	 * where the extra memory used could hurt more than TLB overhead
499 	 * is likely to save.  The admin can still enable it through /sys.
500 	 */
501 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
502 		transparent_hugepage_flags = 0;
503 		return 0;
504 	}
505 
506 	err = start_stop_khugepaged();
507 	if (err)
508 		goto err_khugepaged;
509 
510 	return 0;
511 err_khugepaged:
512 	unregister_shrinker(&deferred_split_shrinker);
513 err_split_shrinker:
514 	unregister_shrinker(&huge_zero_page_shrinker);
515 err_hzp_shrinker:
516 	khugepaged_destroy();
517 err_slab:
518 	hugepage_exit_sysfs(hugepage_kobj);
519 err_sysfs:
520 	return err;
521 }
522 subsys_initcall(hugepage_init);
523 
524 static int __init setup_transparent_hugepage(char *str)
525 {
526 	int ret = 0;
527 	if (!str)
528 		goto out;
529 	if (!strcmp(str, "always")) {
530 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
531 			&transparent_hugepage_flags);
532 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
533 			  &transparent_hugepage_flags);
534 		ret = 1;
535 	} else if (!strcmp(str, "madvise")) {
536 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
537 			  &transparent_hugepage_flags);
538 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
539 			&transparent_hugepage_flags);
540 		ret = 1;
541 	} else if (!strcmp(str, "never")) {
542 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
543 			  &transparent_hugepage_flags);
544 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
545 			  &transparent_hugepage_flags);
546 		ret = 1;
547 	}
548 out:
549 	if (!ret)
550 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
551 	return ret;
552 }
553 __setup("transparent_hugepage=", setup_transparent_hugepage);
554 
555 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
556 {
557 	if (likely(vma->vm_flags & VM_WRITE))
558 		pmd = pmd_mkwrite(pmd);
559 	return pmd;
560 }
561 
562 #ifdef CONFIG_MEMCG
563 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
564 {
565 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
566 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
567 
568 	if (memcg)
569 		return &memcg->deferred_split_queue;
570 	else
571 		return &pgdat->deferred_split_queue;
572 }
573 #else
574 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
575 {
576 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
577 
578 	return &pgdat->deferred_split_queue;
579 }
580 #endif
581 
582 void prep_transhuge_page(struct page *page)
583 {
584 	/*
585 	 * we use page->mapping and page->index in second tail page
586 	 * as list_head: assuming THP order >= 2
587 	 */
588 
589 	INIT_LIST_HEAD(page_deferred_list(page));
590 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
591 }
592 
593 static inline bool is_transparent_hugepage(struct page *page)
594 {
595 	if (!PageCompound(page))
596 		return false;
597 
598 	page = compound_head(page);
599 	return is_huge_zero_page(page) ||
600 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
601 }
602 
603 static unsigned long __thp_get_unmapped_area(struct file *filp,
604 		unsigned long addr, unsigned long len,
605 		loff_t off, unsigned long flags, unsigned long size)
606 {
607 	loff_t off_end = off + len;
608 	loff_t off_align = round_up(off, size);
609 	unsigned long len_pad, ret;
610 
611 	if (off_end <= off_align || (off_end - off_align) < size)
612 		return 0;
613 
614 	len_pad = len + size;
615 	if (len_pad < len || (off + len_pad) < off)
616 		return 0;
617 
618 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
619 					      off >> PAGE_SHIFT, flags);
620 
621 	/*
622 	 * The failure might be due to length padding. The caller will retry
623 	 * without the padding.
624 	 */
625 	if (IS_ERR_VALUE(ret))
626 		return 0;
627 
628 	/*
629 	 * Do not try to align to THP boundary if allocation at the address
630 	 * hint succeeds.
631 	 */
632 	if (ret == addr)
633 		return addr;
634 
635 	ret += (off - ret) & (size - 1);
636 	return ret;
637 }
638 
639 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
640 		unsigned long len, unsigned long pgoff, unsigned long flags)
641 {
642 	unsigned long ret;
643 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
644 
645 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
646 	if (ret)
647 		return ret;
648 
649 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
650 }
651 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
652 
653 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
654 			struct page *page, gfp_t gfp)
655 {
656 	struct vm_area_struct *vma = vmf->vma;
657 	pgtable_t pgtable;
658 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
659 	vm_fault_t ret = 0;
660 
661 	VM_BUG_ON_PAGE(!PageCompound(page), page);
662 
663 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
664 		put_page(page);
665 		count_vm_event(THP_FAULT_FALLBACK);
666 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
667 		return VM_FAULT_FALLBACK;
668 	}
669 	cgroup_throttle_swaprate(page, gfp);
670 
671 	pgtable = pte_alloc_one(vma->vm_mm);
672 	if (unlikely(!pgtable)) {
673 		ret = VM_FAULT_OOM;
674 		goto release;
675 	}
676 
677 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
678 	/*
679 	 * The memory barrier inside __SetPageUptodate makes sure that
680 	 * clear_huge_page writes become visible before the set_pmd_at()
681 	 * write.
682 	 */
683 	__SetPageUptodate(page);
684 
685 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
686 	if (unlikely(!pmd_none(*vmf->pmd))) {
687 		goto unlock_release;
688 	} else {
689 		pmd_t entry;
690 
691 		ret = check_stable_address_space(vma->vm_mm);
692 		if (ret)
693 			goto unlock_release;
694 
695 		/* Deliver the page fault to userland */
696 		if (userfaultfd_missing(vma)) {
697 			spin_unlock(vmf->ptl);
698 			put_page(page);
699 			pte_free(vma->vm_mm, pgtable);
700 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
701 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
702 			return ret;
703 		}
704 
705 		entry = mk_huge_pmd(page, vma->vm_page_prot);
706 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
707 		page_add_new_anon_rmap(page, vma, haddr);
708 		lru_cache_add_inactive_or_unevictable(page, vma);
709 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
710 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
711 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
712 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
713 		mm_inc_nr_ptes(vma->vm_mm);
714 		spin_unlock(vmf->ptl);
715 		count_vm_event(THP_FAULT_ALLOC);
716 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
717 	}
718 
719 	return 0;
720 unlock_release:
721 	spin_unlock(vmf->ptl);
722 release:
723 	if (pgtable)
724 		pte_free(vma->vm_mm, pgtable);
725 	put_page(page);
726 	return ret;
727 
728 }
729 
730 /*
731  * always: directly stall for all thp allocations
732  * defer: wake kswapd and fail if not immediately available
733  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
734  *		  fail if not immediately available
735  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
736  *	    available
737  * never: never stall for any thp allocation
738  */
739 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
740 {
741 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
742 
743 	/* Always do synchronous compaction */
744 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
745 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
746 
747 	/* Kick kcompactd and fail quickly */
748 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
749 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
750 
751 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
752 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
753 		return GFP_TRANSHUGE_LIGHT |
754 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
755 					__GFP_KSWAPD_RECLAIM);
756 
757 	/* Only do synchronous compaction if madvised */
758 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
759 		return GFP_TRANSHUGE_LIGHT |
760 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
761 
762 	return GFP_TRANSHUGE_LIGHT;
763 }
764 
765 /* Caller must hold page table lock. */
766 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
767 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
768 		struct page *zero_page)
769 {
770 	pmd_t entry;
771 	if (!pmd_none(*pmd))
772 		return;
773 	entry = mk_pmd(zero_page, vma->vm_page_prot);
774 	entry = pmd_mkhuge(entry);
775 	if (pgtable)
776 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
777 	set_pmd_at(mm, haddr, pmd, entry);
778 	mm_inc_nr_ptes(mm);
779 }
780 
781 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
782 {
783 	struct vm_area_struct *vma = vmf->vma;
784 	gfp_t gfp;
785 	struct folio *folio;
786 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
787 
788 	if (!transhuge_vma_suitable(vma, haddr))
789 		return VM_FAULT_FALLBACK;
790 	if (unlikely(anon_vma_prepare(vma)))
791 		return VM_FAULT_OOM;
792 	khugepaged_enter_vma(vma, vma->vm_flags);
793 
794 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
795 			!mm_forbids_zeropage(vma->vm_mm) &&
796 			transparent_hugepage_use_zero_page()) {
797 		pgtable_t pgtable;
798 		struct page *zero_page;
799 		vm_fault_t ret;
800 		pgtable = pte_alloc_one(vma->vm_mm);
801 		if (unlikely(!pgtable))
802 			return VM_FAULT_OOM;
803 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
804 		if (unlikely(!zero_page)) {
805 			pte_free(vma->vm_mm, pgtable);
806 			count_vm_event(THP_FAULT_FALLBACK);
807 			return VM_FAULT_FALLBACK;
808 		}
809 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
810 		ret = 0;
811 		if (pmd_none(*vmf->pmd)) {
812 			ret = check_stable_address_space(vma->vm_mm);
813 			if (ret) {
814 				spin_unlock(vmf->ptl);
815 				pte_free(vma->vm_mm, pgtable);
816 			} else if (userfaultfd_missing(vma)) {
817 				spin_unlock(vmf->ptl);
818 				pte_free(vma->vm_mm, pgtable);
819 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
820 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
821 			} else {
822 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
823 						   haddr, vmf->pmd, zero_page);
824 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
825 				spin_unlock(vmf->ptl);
826 			}
827 		} else {
828 			spin_unlock(vmf->ptl);
829 			pte_free(vma->vm_mm, pgtable);
830 		}
831 		return ret;
832 	}
833 	gfp = vma_thp_gfp_mask(vma);
834 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
835 	if (unlikely(!folio)) {
836 		count_vm_event(THP_FAULT_FALLBACK);
837 		return VM_FAULT_FALLBACK;
838 	}
839 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
840 }
841 
842 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
843 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
844 		pgtable_t pgtable)
845 {
846 	struct mm_struct *mm = vma->vm_mm;
847 	pmd_t entry;
848 	spinlock_t *ptl;
849 
850 	ptl = pmd_lock(mm, pmd);
851 	if (!pmd_none(*pmd)) {
852 		if (write) {
853 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
854 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
855 				goto out_unlock;
856 			}
857 			entry = pmd_mkyoung(*pmd);
858 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
859 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
860 				update_mmu_cache_pmd(vma, addr, pmd);
861 		}
862 
863 		goto out_unlock;
864 	}
865 
866 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
867 	if (pfn_t_devmap(pfn))
868 		entry = pmd_mkdevmap(entry);
869 	if (write) {
870 		entry = pmd_mkyoung(pmd_mkdirty(entry));
871 		entry = maybe_pmd_mkwrite(entry, vma);
872 	}
873 
874 	if (pgtable) {
875 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
876 		mm_inc_nr_ptes(mm);
877 		pgtable = NULL;
878 	}
879 
880 	set_pmd_at(mm, addr, pmd, entry);
881 	update_mmu_cache_pmd(vma, addr, pmd);
882 
883 out_unlock:
884 	spin_unlock(ptl);
885 	if (pgtable)
886 		pte_free(mm, pgtable);
887 }
888 
889 /**
890  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
891  * @vmf: Structure describing the fault
892  * @pfn: pfn to insert
893  * @pgprot: page protection to use
894  * @write: whether it's a write fault
895  *
896  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
897  * also consult the vmf_insert_mixed_prot() documentation when
898  * @pgprot != @vmf->vma->vm_page_prot.
899  *
900  * Return: vm_fault_t value.
901  */
902 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
903 				   pgprot_t pgprot, bool write)
904 {
905 	unsigned long addr = vmf->address & PMD_MASK;
906 	struct vm_area_struct *vma = vmf->vma;
907 	pgtable_t pgtable = NULL;
908 
909 	/*
910 	 * If we had pmd_special, we could avoid all these restrictions,
911 	 * but we need to be consistent with PTEs and architectures that
912 	 * can't support a 'special' bit.
913 	 */
914 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
915 			!pfn_t_devmap(pfn));
916 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
917 						(VM_PFNMAP|VM_MIXEDMAP));
918 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
919 
920 	if (addr < vma->vm_start || addr >= vma->vm_end)
921 		return VM_FAULT_SIGBUS;
922 
923 	if (arch_needs_pgtable_deposit()) {
924 		pgtable = pte_alloc_one(vma->vm_mm);
925 		if (!pgtable)
926 			return VM_FAULT_OOM;
927 	}
928 
929 	track_pfn_insert(vma, &pgprot, pfn);
930 
931 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
932 	return VM_FAULT_NOPAGE;
933 }
934 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
935 
936 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
937 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
938 {
939 	if (likely(vma->vm_flags & VM_WRITE))
940 		pud = pud_mkwrite(pud);
941 	return pud;
942 }
943 
944 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
945 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
946 {
947 	struct mm_struct *mm = vma->vm_mm;
948 	pud_t entry;
949 	spinlock_t *ptl;
950 
951 	ptl = pud_lock(mm, pud);
952 	if (!pud_none(*pud)) {
953 		if (write) {
954 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
955 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
956 				goto out_unlock;
957 			}
958 			entry = pud_mkyoung(*pud);
959 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
960 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
961 				update_mmu_cache_pud(vma, addr, pud);
962 		}
963 		goto out_unlock;
964 	}
965 
966 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
967 	if (pfn_t_devmap(pfn))
968 		entry = pud_mkdevmap(entry);
969 	if (write) {
970 		entry = pud_mkyoung(pud_mkdirty(entry));
971 		entry = maybe_pud_mkwrite(entry, vma);
972 	}
973 	set_pud_at(mm, addr, pud, entry);
974 	update_mmu_cache_pud(vma, addr, pud);
975 
976 out_unlock:
977 	spin_unlock(ptl);
978 }
979 
980 /**
981  * vmf_insert_pfn_pud_prot - insert a pud size pfn
982  * @vmf: Structure describing the fault
983  * @pfn: pfn to insert
984  * @pgprot: page protection to use
985  * @write: whether it's a write fault
986  *
987  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
988  * also consult the vmf_insert_mixed_prot() documentation when
989  * @pgprot != @vmf->vma->vm_page_prot.
990  *
991  * Return: vm_fault_t value.
992  */
993 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
994 				   pgprot_t pgprot, bool write)
995 {
996 	unsigned long addr = vmf->address & PUD_MASK;
997 	struct vm_area_struct *vma = vmf->vma;
998 
999 	/*
1000 	 * If we had pud_special, we could avoid all these restrictions,
1001 	 * but we need to be consistent with PTEs and architectures that
1002 	 * can't support a 'special' bit.
1003 	 */
1004 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1005 			!pfn_t_devmap(pfn));
1006 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1007 						(VM_PFNMAP|VM_MIXEDMAP));
1008 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1009 
1010 	if (addr < vma->vm_start || addr >= vma->vm_end)
1011 		return VM_FAULT_SIGBUS;
1012 
1013 	track_pfn_insert(vma, &pgprot, pfn);
1014 
1015 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
1016 	return VM_FAULT_NOPAGE;
1017 }
1018 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
1019 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1020 
1021 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1022 		      pmd_t *pmd, bool write)
1023 {
1024 	pmd_t _pmd;
1025 
1026 	_pmd = pmd_mkyoung(*pmd);
1027 	if (write)
1028 		_pmd = pmd_mkdirty(_pmd);
1029 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1030 				  pmd, _pmd, write))
1031 		update_mmu_cache_pmd(vma, addr, pmd);
1032 }
1033 
1034 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1035 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1036 {
1037 	unsigned long pfn = pmd_pfn(*pmd);
1038 	struct mm_struct *mm = vma->vm_mm;
1039 	struct page *page;
1040 
1041 	assert_spin_locked(pmd_lockptr(mm, pmd));
1042 
1043 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1044 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1045 			 (FOLL_PIN | FOLL_GET)))
1046 		return NULL;
1047 
1048 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1049 		return NULL;
1050 
1051 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1052 		/* pass */;
1053 	else
1054 		return NULL;
1055 
1056 	if (flags & FOLL_TOUCH)
1057 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1058 
1059 	/*
1060 	 * device mapped pages can only be returned if the
1061 	 * caller will manage the page reference count.
1062 	 */
1063 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1064 		return ERR_PTR(-EEXIST);
1065 
1066 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1067 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1068 	if (!*pgmap)
1069 		return ERR_PTR(-EFAULT);
1070 	page = pfn_to_page(pfn);
1071 	if (!try_grab_page(page, flags))
1072 		page = ERR_PTR(-ENOMEM);
1073 
1074 	return page;
1075 }
1076 
1077 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1078 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1079 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1080 {
1081 	spinlock_t *dst_ptl, *src_ptl;
1082 	struct page *src_page;
1083 	pmd_t pmd;
1084 	pgtable_t pgtable = NULL;
1085 	int ret = -ENOMEM;
1086 
1087 	/* Skip if can be re-fill on fault */
1088 	if (!vma_is_anonymous(dst_vma))
1089 		return 0;
1090 
1091 	pgtable = pte_alloc_one(dst_mm);
1092 	if (unlikely(!pgtable))
1093 		goto out;
1094 
1095 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1096 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1097 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1098 
1099 	ret = -EAGAIN;
1100 	pmd = *src_pmd;
1101 
1102 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1103 	if (unlikely(is_swap_pmd(pmd))) {
1104 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1105 
1106 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1107 		if (!is_readable_migration_entry(entry)) {
1108 			entry = make_readable_migration_entry(
1109 							swp_offset(entry));
1110 			pmd = swp_entry_to_pmd(entry);
1111 			if (pmd_swp_soft_dirty(*src_pmd))
1112 				pmd = pmd_swp_mksoft_dirty(pmd);
1113 			if (pmd_swp_uffd_wp(*src_pmd))
1114 				pmd = pmd_swp_mkuffd_wp(pmd);
1115 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1116 		}
1117 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118 		mm_inc_nr_ptes(dst_mm);
1119 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1120 		if (!userfaultfd_wp(dst_vma))
1121 			pmd = pmd_swp_clear_uffd_wp(pmd);
1122 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1123 		ret = 0;
1124 		goto out_unlock;
1125 	}
1126 #endif
1127 
1128 	if (unlikely(!pmd_trans_huge(pmd))) {
1129 		pte_free(dst_mm, pgtable);
1130 		goto out_unlock;
1131 	}
1132 	/*
1133 	 * When page table lock is held, the huge zero pmd should not be
1134 	 * under splitting since we don't split the page itself, only pmd to
1135 	 * a page table.
1136 	 */
1137 	if (is_huge_zero_pmd(pmd)) {
1138 		/*
1139 		 * get_huge_zero_page() will never allocate a new page here,
1140 		 * since we already have a zero page to copy. It just takes a
1141 		 * reference.
1142 		 */
1143 		mm_get_huge_zero_page(dst_mm);
1144 		goto out_zero_page;
1145 	}
1146 
1147 	src_page = pmd_page(pmd);
1148 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1149 
1150 	get_page(src_page);
1151 	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1152 		/* Page maybe pinned: split and retry the fault on PTEs. */
1153 		put_page(src_page);
1154 		pte_free(dst_mm, pgtable);
1155 		spin_unlock(src_ptl);
1156 		spin_unlock(dst_ptl);
1157 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1158 		return -EAGAIN;
1159 	}
1160 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1161 out_zero_page:
1162 	mm_inc_nr_ptes(dst_mm);
1163 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1164 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1165 	if (!userfaultfd_wp(dst_vma))
1166 		pmd = pmd_clear_uffd_wp(pmd);
1167 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1168 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1169 
1170 	ret = 0;
1171 out_unlock:
1172 	spin_unlock(src_ptl);
1173 	spin_unlock(dst_ptl);
1174 out:
1175 	return ret;
1176 }
1177 
1178 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1179 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1180 		      pud_t *pud, bool write)
1181 {
1182 	pud_t _pud;
1183 
1184 	_pud = pud_mkyoung(*pud);
1185 	if (write)
1186 		_pud = pud_mkdirty(_pud);
1187 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1188 				  pud, _pud, write))
1189 		update_mmu_cache_pud(vma, addr, pud);
1190 }
1191 
1192 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1193 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1194 {
1195 	unsigned long pfn = pud_pfn(*pud);
1196 	struct mm_struct *mm = vma->vm_mm;
1197 	struct page *page;
1198 
1199 	assert_spin_locked(pud_lockptr(mm, pud));
1200 
1201 	if (flags & FOLL_WRITE && !pud_write(*pud))
1202 		return NULL;
1203 
1204 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1205 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1206 			 (FOLL_PIN | FOLL_GET)))
1207 		return NULL;
1208 
1209 	if (pud_present(*pud) && pud_devmap(*pud))
1210 		/* pass */;
1211 	else
1212 		return NULL;
1213 
1214 	if (flags & FOLL_TOUCH)
1215 		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1216 
1217 	/*
1218 	 * device mapped pages can only be returned if the
1219 	 * caller will manage the page reference count.
1220 	 *
1221 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1222 	 */
1223 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1224 		return ERR_PTR(-EEXIST);
1225 
1226 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1227 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1228 	if (!*pgmap)
1229 		return ERR_PTR(-EFAULT);
1230 	page = pfn_to_page(pfn);
1231 	if (!try_grab_page(page, flags))
1232 		page = ERR_PTR(-ENOMEM);
1233 
1234 	return page;
1235 }
1236 
1237 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1238 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1239 		  struct vm_area_struct *vma)
1240 {
1241 	spinlock_t *dst_ptl, *src_ptl;
1242 	pud_t pud;
1243 	int ret;
1244 
1245 	dst_ptl = pud_lock(dst_mm, dst_pud);
1246 	src_ptl = pud_lockptr(src_mm, src_pud);
1247 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1248 
1249 	ret = -EAGAIN;
1250 	pud = *src_pud;
1251 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1252 		goto out_unlock;
1253 
1254 	/*
1255 	 * When page table lock is held, the huge zero pud should not be
1256 	 * under splitting since we don't split the page itself, only pud to
1257 	 * a page table.
1258 	 */
1259 	if (is_huge_zero_pud(pud)) {
1260 		/* No huge zero pud yet */
1261 	}
1262 
1263 	/*
1264 	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1265 	 * and split if duplicating fails.
1266 	 */
1267 	pudp_set_wrprotect(src_mm, addr, src_pud);
1268 	pud = pud_mkold(pud_wrprotect(pud));
1269 	set_pud_at(dst_mm, addr, dst_pud, pud);
1270 
1271 	ret = 0;
1272 out_unlock:
1273 	spin_unlock(src_ptl);
1274 	spin_unlock(dst_ptl);
1275 	return ret;
1276 }
1277 
1278 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1279 {
1280 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1281 
1282 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1283 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1284 		goto unlock;
1285 
1286 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1287 unlock:
1288 	spin_unlock(vmf->ptl);
1289 }
1290 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1291 
1292 void huge_pmd_set_accessed(struct vm_fault *vmf)
1293 {
1294 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1295 
1296 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1297 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1298 		goto unlock;
1299 
1300 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1301 
1302 unlock:
1303 	spin_unlock(vmf->ptl);
1304 }
1305 
1306 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1307 {
1308 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1309 	struct vm_area_struct *vma = vmf->vma;
1310 	struct page *page;
1311 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1312 	pmd_t orig_pmd = vmf->orig_pmd;
1313 
1314 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1315 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1316 
1317 	VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
1318 	VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
1319 
1320 	if (is_huge_zero_pmd(orig_pmd))
1321 		goto fallback;
1322 
1323 	spin_lock(vmf->ptl);
1324 
1325 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1326 		spin_unlock(vmf->ptl);
1327 		return 0;
1328 	}
1329 
1330 	page = pmd_page(orig_pmd);
1331 	VM_BUG_ON_PAGE(!PageHead(page), page);
1332 
1333 	/* Early check when only holding the PT lock. */
1334 	if (PageAnonExclusive(page))
1335 		goto reuse;
1336 
1337 	if (!trylock_page(page)) {
1338 		get_page(page);
1339 		spin_unlock(vmf->ptl);
1340 		lock_page(page);
1341 		spin_lock(vmf->ptl);
1342 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1343 			spin_unlock(vmf->ptl);
1344 			unlock_page(page);
1345 			put_page(page);
1346 			return 0;
1347 		}
1348 		put_page(page);
1349 	}
1350 
1351 	/* Recheck after temporarily dropping the PT lock. */
1352 	if (PageAnonExclusive(page)) {
1353 		unlock_page(page);
1354 		goto reuse;
1355 	}
1356 
1357 	/*
1358 	 * See do_wp_page(): we can only reuse the page exclusively if there are
1359 	 * no additional references. Note that we always drain the LRU
1360 	 * pagevecs immediately after adding a THP.
1361 	 */
1362 	if (page_count(page) > 1 + PageSwapCache(page) * thp_nr_pages(page))
1363 		goto unlock_fallback;
1364 	if (PageSwapCache(page))
1365 		try_to_free_swap(page);
1366 	if (page_count(page) == 1) {
1367 		pmd_t entry;
1368 
1369 		page_move_anon_rmap(page, vma);
1370 		unlock_page(page);
1371 reuse:
1372 		if (unlikely(unshare)) {
1373 			spin_unlock(vmf->ptl);
1374 			return 0;
1375 		}
1376 		entry = pmd_mkyoung(orig_pmd);
1377 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1378 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1379 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1380 		spin_unlock(vmf->ptl);
1381 		return VM_FAULT_WRITE;
1382 	}
1383 
1384 unlock_fallback:
1385 	unlock_page(page);
1386 	spin_unlock(vmf->ptl);
1387 fallback:
1388 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1389 	return VM_FAULT_FALLBACK;
1390 }
1391 
1392 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1393 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1394 					struct vm_area_struct *vma,
1395 					unsigned int flags)
1396 {
1397 	/* If the pmd is writable, we can write to the page. */
1398 	if (pmd_write(pmd))
1399 		return true;
1400 
1401 	/* Maybe FOLL_FORCE is set to override it? */
1402 	if (!(flags & FOLL_FORCE))
1403 		return false;
1404 
1405 	/* But FOLL_FORCE has no effect on shared mappings */
1406 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1407 		return false;
1408 
1409 	/* ... or read-only private ones */
1410 	if (!(vma->vm_flags & VM_MAYWRITE))
1411 		return false;
1412 
1413 	/* ... or already writable ones that just need to take a write fault */
1414 	if (vma->vm_flags & VM_WRITE)
1415 		return false;
1416 
1417 	/*
1418 	 * See can_change_pte_writable(): we broke COW and could map the page
1419 	 * writable if we have an exclusive anonymous page ...
1420 	 */
1421 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1422 		return false;
1423 
1424 	/* ... and a write-fault isn't required for other reasons. */
1425 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1426 		return false;
1427 	return !userfaultfd_huge_pmd_wp(vma, pmd);
1428 }
1429 
1430 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1431 				   unsigned long addr,
1432 				   pmd_t *pmd,
1433 				   unsigned int flags)
1434 {
1435 	struct mm_struct *mm = vma->vm_mm;
1436 	struct page *page;
1437 
1438 	assert_spin_locked(pmd_lockptr(mm, pmd));
1439 
1440 	page = pmd_page(*pmd);
1441 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1442 
1443 	if ((flags & FOLL_WRITE) &&
1444 	    !can_follow_write_pmd(*pmd, page, vma, flags))
1445 		return NULL;
1446 
1447 	/* Avoid dumping huge zero page */
1448 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1449 		return ERR_PTR(-EFAULT);
1450 
1451 	/* Full NUMA hinting faults to serialise migration in fault paths */
1452 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1453 		return NULL;
1454 
1455 	if (!pmd_write(*pmd) && gup_must_unshare(flags, page))
1456 		return ERR_PTR(-EMLINK);
1457 
1458 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1459 			!PageAnonExclusive(page), page);
1460 
1461 	if (!try_grab_page(page, flags))
1462 		return ERR_PTR(-ENOMEM);
1463 
1464 	if (flags & FOLL_TOUCH)
1465 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1466 
1467 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1468 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1469 
1470 	return page;
1471 }
1472 
1473 /* NUMA hinting page fault entry point for trans huge pmds */
1474 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1475 {
1476 	struct vm_area_struct *vma = vmf->vma;
1477 	pmd_t oldpmd = vmf->orig_pmd;
1478 	pmd_t pmd;
1479 	struct page *page;
1480 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1481 	int page_nid = NUMA_NO_NODE;
1482 	int target_nid, last_cpupid = -1;
1483 	bool migrated = false;
1484 	bool was_writable = pmd_savedwrite(oldpmd);
1485 	int flags = 0;
1486 
1487 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1488 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1489 		spin_unlock(vmf->ptl);
1490 		goto out;
1491 	}
1492 
1493 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1494 	page = vm_normal_page_pmd(vma, haddr, pmd);
1495 	if (!page)
1496 		goto out_map;
1497 
1498 	/* See similar comment in do_numa_page for explanation */
1499 	if (!was_writable)
1500 		flags |= TNF_NO_GROUP;
1501 
1502 	page_nid = page_to_nid(page);
1503 	last_cpupid = page_cpupid_last(page);
1504 	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1505 				       &flags);
1506 
1507 	if (target_nid == NUMA_NO_NODE) {
1508 		put_page(page);
1509 		goto out_map;
1510 	}
1511 
1512 	spin_unlock(vmf->ptl);
1513 
1514 	migrated = migrate_misplaced_page(page, vma, target_nid);
1515 	if (migrated) {
1516 		flags |= TNF_MIGRATED;
1517 		page_nid = target_nid;
1518 	} else {
1519 		flags |= TNF_MIGRATE_FAIL;
1520 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1521 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1522 			spin_unlock(vmf->ptl);
1523 			goto out;
1524 		}
1525 		goto out_map;
1526 	}
1527 
1528 out:
1529 	if (page_nid != NUMA_NO_NODE)
1530 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1531 				flags);
1532 
1533 	return 0;
1534 
1535 out_map:
1536 	/* Restore the PMD */
1537 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1538 	pmd = pmd_mkyoung(pmd);
1539 	if (was_writable)
1540 		pmd = pmd_mkwrite(pmd);
1541 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1542 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1543 	spin_unlock(vmf->ptl);
1544 	goto out;
1545 }
1546 
1547 /*
1548  * Return true if we do MADV_FREE successfully on entire pmd page.
1549  * Otherwise, return false.
1550  */
1551 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1552 		pmd_t *pmd, unsigned long addr, unsigned long next)
1553 {
1554 	spinlock_t *ptl;
1555 	pmd_t orig_pmd;
1556 	struct page *page;
1557 	struct mm_struct *mm = tlb->mm;
1558 	bool ret = false;
1559 
1560 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1561 
1562 	ptl = pmd_trans_huge_lock(pmd, vma);
1563 	if (!ptl)
1564 		goto out_unlocked;
1565 
1566 	orig_pmd = *pmd;
1567 	if (is_huge_zero_pmd(orig_pmd))
1568 		goto out;
1569 
1570 	if (unlikely(!pmd_present(orig_pmd))) {
1571 		VM_BUG_ON(thp_migration_supported() &&
1572 				  !is_pmd_migration_entry(orig_pmd));
1573 		goto out;
1574 	}
1575 
1576 	page = pmd_page(orig_pmd);
1577 	/*
1578 	 * If other processes are mapping this page, we couldn't discard
1579 	 * the page unless they all do MADV_FREE so let's skip the page.
1580 	 */
1581 	if (total_mapcount(page) != 1)
1582 		goto out;
1583 
1584 	if (!trylock_page(page))
1585 		goto out;
1586 
1587 	/*
1588 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1589 	 * will deactivate only them.
1590 	 */
1591 	if (next - addr != HPAGE_PMD_SIZE) {
1592 		get_page(page);
1593 		spin_unlock(ptl);
1594 		split_huge_page(page);
1595 		unlock_page(page);
1596 		put_page(page);
1597 		goto out_unlocked;
1598 	}
1599 
1600 	if (PageDirty(page))
1601 		ClearPageDirty(page);
1602 	unlock_page(page);
1603 
1604 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1605 		pmdp_invalidate(vma, addr, pmd);
1606 		orig_pmd = pmd_mkold(orig_pmd);
1607 		orig_pmd = pmd_mkclean(orig_pmd);
1608 
1609 		set_pmd_at(mm, addr, pmd, orig_pmd);
1610 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1611 	}
1612 
1613 	mark_page_lazyfree(page);
1614 	ret = true;
1615 out:
1616 	spin_unlock(ptl);
1617 out_unlocked:
1618 	return ret;
1619 }
1620 
1621 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1622 {
1623 	pgtable_t pgtable;
1624 
1625 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1626 	pte_free(mm, pgtable);
1627 	mm_dec_nr_ptes(mm);
1628 }
1629 
1630 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1631 		 pmd_t *pmd, unsigned long addr)
1632 {
1633 	pmd_t orig_pmd;
1634 	spinlock_t *ptl;
1635 
1636 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1637 
1638 	ptl = __pmd_trans_huge_lock(pmd, vma);
1639 	if (!ptl)
1640 		return 0;
1641 	/*
1642 	 * For architectures like ppc64 we look at deposited pgtable
1643 	 * when calling pmdp_huge_get_and_clear. So do the
1644 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1645 	 * operations.
1646 	 */
1647 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1648 						tlb->fullmm);
1649 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1650 	if (vma_is_special_huge(vma)) {
1651 		if (arch_needs_pgtable_deposit())
1652 			zap_deposited_table(tlb->mm, pmd);
1653 		spin_unlock(ptl);
1654 	} else if (is_huge_zero_pmd(orig_pmd)) {
1655 		zap_deposited_table(tlb->mm, pmd);
1656 		spin_unlock(ptl);
1657 	} else {
1658 		struct page *page = NULL;
1659 		int flush_needed = 1;
1660 
1661 		if (pmd_present(orig_pmd)) {
1662 			page = pmd_page(orig_pmd);
1663 			page_remove_rmap(page, vma, true);
1664 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1665 			VM_BUG_ON_PAGE(!PageHead(page), page);
1666 		} else if (thp_migration_supported()) {
1667 			swp_entry_t entry;
1668 
1669 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1670 			entry = pmd_to_swp_entry(orig_pmd);
1671 			page = pfn_swap_entry_to_page(entry);
1672 			flush_needed = 0;
1673 		} else
1674 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1675 
1676 		if (PageAnon(page)) {
1677 			zap_deposited_table(tlb->mm, pmd);
1678 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1679 		} else {
1680 			if (arch_needs_pgtable_deposit())
1681 				zap_deposited_table(tlb->mm, pmd);
1682 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1683 		}
1684 
1685 		spin_unlock(ptl);
1686 		if (flush_needed)
1687 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1688 	}
1689 	return 1;
1690 }
1691 
1692 #ifndef pmd_move_must_withdraw
1693 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1694 					 spinlock_t *old_pmd_ptl,
1695 					 struct vm_area_struct *vma)
1696 {
1697 	/*
1698 	 * With split pmd lock we also need to move preallocated
1699 	 * PTE page table if new_pmd is on different PMD page table.
1700 	 *
1701 	 * We also don't deposit and withdraw tables for file pages.
1702 	 */
1703 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1704 }
1705 #endif
1706 
1707 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1708 {
1709 #ifdef CONFIG_MEM_SOFT_DIRTY
1710 	if (unlikely(is_pmd_migration_entry(pmd)))
1711 		pmd = pmd_swp_mksoft_dirty(pmd);
1712 	else if (pmd_present(pmd))
1713 		pmd = pmd_mksoft_dirty(pmd);
1714 #endif
1715 	return pmd;
1716 }
1717 
1718 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1719 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1720 {
1721 	spinlock_t *old_ptl, *new_ptl;
1722 	pmd_t pmd;
1723 	struct mm_struct *mm = vma->vm_mm;
1724 	bool force_flush = false;
1725 
1726 	/*
1727 	 * The destination pmd shouldn't be established, free_pgtables()
1728 	 * should have release it.
1729 	 */
1730 	if (WARN_ON(!pmd_none(*new_pmd))) {
1731 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1732 		return false;
1733 	}
1734 
1735 	/*
1736 	 * We don't have to worry about the ordering of src and dst
1737 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1738 	 */
1739 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1740 	if (old_ptl) {
1741 		new_ptl = pmd_lockptr(mm, new_pmd);
1742 		if (new_ptl != old_ptl)
1743 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1744 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1745 		if (pmd_present(pmd))
1746 			force_flush = true;
1747 		VM_BUG_ON(!pmd_none(*new_pmd));
1748 
1749 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1750 			pgtable_t pgtable;
1751 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1752 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1753 		}
1754 		pmd = move_soft_dirty_pmd(pmd);
1755 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1756 		if (force_flush)
1757 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1758 		if (new_ptl != old_ptl)
1759 			spin_unlock(new_ptl);
1760 		spin_unlock(old_ptl);
1761 		return true;
1762 	}
1763 	return false;
1764 }
1765 
1766 /*
1767  * Returns
1768  *  - 0 if PMD could not be locked
1769  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1770  *      or if prot_numa but THP migration is not supported
1771  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1772  */
1773 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1774 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1775 		    unsigned long cp_flags)
1776 {
1777 	struct mm_struct *mm = vma->vm_mm;
1778 	spinlock_t *ptl;
1779 	pmd_t oldpmd, entry;
1780 	bool preserve_write;
1781 	int ret;
1782 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1783 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1784 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1785 
1786 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1787 
1788 	if (prot_numa && !thp_migration_supported())
1789 		return 1;
1790 
1791 	ptl = __pmd_trans_huge_lock(pmd, vma);
1792 	if (!ptl)
1793 		return 0;
1794 
1795 	preserve_write = prot_numa && pmd_write(*pmd);
1796 	ret = 1;
1797 
1798 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1799 	if (is_swap_pmd(*pmd)) {
1800 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1801 		struct page *page = pfn_swap_entry_to_page(entry);
1802 
1803 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1804 		if (is_writable_migration_entry(entry)) {
1805 			pmd_t newpmd;
1806 			/*
1807 			 * A protection check is difficult so
1808 			 * just be safe and disable write
1809 			 */
1810 			if (PageAnon(page))
1811 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1812 			else
1813 				entry = make_readable_migration_entry(swp_offset(entry));
1814 			newpmd = swp_entry_to_pmd(entry);
1815 			if (pmd_swp_soft_dirty(*pmd))
1816 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1817 			if (pmd_swp_uffd_wp(*pmd))
1818 				newpmd = pmd_swp_mkuffd_wp(newpmd);
1819 			set_pmd_at(mm, addr, pmd, newpmd);
1820 		}
1821 		goto unlock;
1822 	}
1823 #endif
1824 
1825 	if (prot_numa) {
1826 		struct page *page;
1827 		/*
1828 		 * Avoid trapping faults against the zero page. The read-only
1829 		 * data is likely to be read-cached on the local CPU and
1830 		 * local/remote hits to the zero page are not interesting.
1831 		 */
1832 		if (is_huge_zero_pmd(*pmd))
1833 			goto unlock;
1834 
1835 		if (pmd_protnone(*pmd))
1836 			goto unlock;
1837 
1838 		page = pmd_page(*pmd);
1839 		/*
1840 		 * Skip scanning top tier node if normal numa
1841 		 * balancing is disabled
1842 		 */
1843 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1844 		    node_is_toptier(page_to_nid(page)))
1845 			goto unlock;
1846 	}
1847 	/*
1848 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1849 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1850 	 * which is also under mmap_read_lock(mm):
1851 	 *
1852 	 *	CPU0:				CPU1:
1853 	 *				change_huge_pmd(prot_numa=1)
1854 	 *				 pmdp_huge_get_and_clear_notify()
1855 	 * madvise_dontneed()
1856 	 *  zap_pmd_range()
1857 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1858 	 *   // skip the pmd
1859 	 *				 set_pmd_at();
1860 	 *				 // pmd is re-established
1861 	 *
1862 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1863 	 * which may break userspace.
1864 	 *
1865 	 * pmdp_invalidate_ad() is required to make sure we don't miss
1866 	 * dirty/young flags set by hardware.
1867 	 */
1868 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1869 
1870 	entry = pmd_modify(oldpmd, newprot);
1871 	if (preserve_write)
1872 		entry = pmd_mk_savedwrite(entry);
1873 	if (uffd_wp) {
1874 		entry = pmd_wrprotect(entry);
1875 		entry = pmd_mkuffd_wp(entry);
1876 	} else if (uffd_wp_resolve) {
1877 		/*
1878 		 * Leave the write bit to be handled by PF interrupt
1879 		 * handler, then things like COW could be properly
1880 		 * handled.
1881 		 */
1882 		entry = pmd_clear_uffd_wp(entry);
1883 	}
1884 	ret = HPAGE_PMD_NR;
1885 	set_pmd_at(mm, addr, pmd, entry);
1886 
1887 	if (huge_pmd_needs_flush(oldpmd, entry))
1888 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1889 
1890 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1891 unlock:
1892 	spin_unlock(ptl);
1893 	return ret;
1894 }
1895 
1896 /*
1897  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1898  *
1899  * Note that if it returns page table lock pointer, this routine returns without
1900  * unlocking page table lock. So callers must unlock it.
1901  */
1902 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1903 {
1904 	spinlock_t *ptl;
1905 	ptl = pmd_lock(vma->vm_mm, pmd);
1906 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1907 			pmd_devmap(*pmd)))
1908 		return ptl;
1909 	spin_unlock(ptl);
1910 	return NULL;
1911 }
1912 
1913 /*
1914  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1915  *
1916  * Note that if it returns page table lock pointer, this routine returns without
1917  * unlocking page table lock. So callers must unlock it.
1918  */
1919 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1920 {
1921 	spinlock_t *ptl;
1922 
1923 	ptl = pud_lock(vma->vm_mm, pud);
1924 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1925 		return ptl;
1926 	spin_unlock(ptl);
1927 	return NULL;
1928 }
1929 
1930 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1931 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1932 		 pud_t *pud, unsigned long addr)
1933 {
1934 	spinlock_t *ptl;
1935 
1936 	ptl = __pud_trans_huge_lock(pud, vma);
1937 	if (!ptl)
1938 		return 0;
1939 
1940 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1941 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1942 	if (vma_is_special_huge(vma)) {
1943 		spin_unlock(ptl);
1944 		/* No zero page support yet */
1945 	} else {
1946 		/* No support for anonymous PUD pages yet */
1947 		BUG();
1948 	}
1949 	return 1;
1950 }
1951 
1952 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1953 		unsigned long haddr)
1954 {
1955 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1956 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1957 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1958 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1959 
1960 	count_vm_event(THP_SPLIT_PUD);
1961 
1962 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1963 }
1964 
1965 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1966 		unsigned long address)
1967 {
1968 	spinlock_t *ptl;
1969 	struct mmu_notifier_range range;
1970 
1971 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1972 				address & HPAGE_PUD_MASK,
1973 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1974 	mmu_notifier_invalidate_range_start(&range);
1975 	ptl = pud_lock(vma->vm_mm, pud);
1976 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1977 		goto out;
1978 	__split_huge_pud_locked(vma, pud, range.start);
1979 
1980 out:
1981 	spin_unlock(ptl);
1982 	/*
1983 	 * No need to double call mmu_notifier->invalidate_range() callback as
1984 	 * the above pudp_huge_clear_flush_notify() did already call it.
1985 	 */
1986 	mmu_notifier_invalidate_range_only_end(&range);
1987 }
1988 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1989 
1990 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1991 		unsigned long haddr, pmd_t *pmd)
1992 {
1993 	struct mm_struct *mm = vma->vm_mm;
1994 	pgtable_t pgtable;
1995 	pmd_t _pmd;
1996 	int i;
1997 
1998 	/*
1999 	 * Leave pmd empty until pte is filled note that it is fine to delay
2000 	 * notification until mmu_notifier_invalidate_range_end() as we are
2001 	 * replacing a zero pmd write protected page with a zero pte write
2002 	 * protected page.
2003 	 *
2004 	 * See Documentation/mm/mmu_notifier.rst
2005 	 */
2006 	pmdp_huge_clear_flush(vma, haddr, pmd);
2007 
2008 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2009 	pmd_populate(mm, &_pmd, pgtable);
2010 
2011 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2012 		pte_t *pte, entry;
2013 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2014 		entry = pte_mkspecial(entry);
2015 		pte = pte_offset_map(&_pmd, haddr);
2016 		VM_BUG_ON(!pte_none(*pte));
2017 		set_pte_at(mm, haddr, pte, entry);
2018 		pte_unmap(pte);
2019 	}
2020 	smp_wmb(); /* make pte visible before pmd */
2021 	pmd_populate(mm, pmd, pgtable);
2022 }
2023 
2024 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2025 		unsigned long haddr, bool freeze)
2026 {
2027 	struct mm_struct *mm = vma->vm_mm;
2028 	struct page *page;
2029 	pgtable_t pgtable;
2030 	pmd_t old_pmd, _pmd;
2031 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2032 	bool anon_exclusive = false;
2033 	unsigned long addr;
2034 	int i;
2035 
2036 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2037 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2038 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2039 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2040 				&& !pmd_devmap(*pmd));
2041 
2042 	count_vm_event(THP_SPLIT_PMD);
2043 
2044 	if (!vma_is_anonymous(vma)) {
2045 		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2046 		/*
2047 		 * We are going to unmap this huge page. So
2048 		 * just go ahead and zap it
2049 		 */
2050 		if (arch_needs_pgtable_deposit())
2051 			zap_deposited_table(mm, pmd);
2052 		if (vma_is_special_huge(vma))
2053 			return;
2054 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2055 			swp_entry_t entry;
2056 
2057 			entry = pmd_to_swp_entry(old_pmd);
2058 			page = pfn_swap_entry_to_page(entry);
2059 		} else {
2060 			page = pmd_page(old_pmd);
2061 			if (!PageDirty(page) && pmd_dirty(old_pmd))
2062 				set_page_dirty(page);
2063 			if (!PageReferenced(page) && pmd_young(old_pmd))
2064 				SetPageReferenced(page);
2065 			page_remove_rmap(page, vma, true);
2066 			put_page(page);
2067 		}
2068 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2069 		return;
2070 	}
2071 
2072 	if (is_huge_zero_pmd(*pmd)) {
2073 		/*
2074 		 * FIXME: Do we want to invalidate secondary mmu by calling
2075 		 * mmu_notifier_invalidate_range() see comments below inside
2076 		 * __split_huge_pmd() ?
2077 		 *
2078 		 * We are going from a zero huge page write protected to zero
2079 		 * small page also write protected so it does not seems useful
2080 		 * to invalidate secondary mmu at this time.
2081 		 */
2082 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2083 	}
2084 
2085 	/*
2086 	 * Up to this point the pmd is present and huge and userland has the
2087 	 * whole access to the hugepage during the split (which happens in
2088 	 * place). If we overwrite the pmd with the not-huge version pointing
2089 	 * to the pte here (which of course we could if all CPUs were bug
2090 	 * free), userland could trigger a small page size TLB miss on the
2091 	 * small sized TLB while the hugepage TLB entry is still established in
2092 	 * the huge TLB. Some CPU doesn't like that.
2093 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2094 	 * 383 on page 105. Intel should be safe but is also warns that it's
2095 	 * only safe if the permission and cache attributes of the two entries
2096 	 * loaded in the two TLB is identical (which should be the case here).
2097 	 * But it is generally safer to never allow small and huge TLB entries
2098 	 * for the same virtual address to be loaded simultaneously. So instead
2099 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2100 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2101 	 * must remain set at all times on the pmd until the split is complete
2102 	 * for this pmd), then we flush the SMP TLB and finally we write the
2103 	 * non-huge version of the pmd entry with pmd_populate.
2104 	 */
2105 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2106 
2107 	pmd_migration = is_pmd_migration_entry(old_pmd);
2108 	if (unlikely(pmd_migration)) {
2109 		swp_entry_t entry;
2110 
2111 		entry = pmd_to_swp_entry(old_pmd);
2112 		page = pfn_swap_entry_to_page(entry);
2113 		write = is_writable_migration_entry(entry);
2114 		if (PageAnon(page))
2115 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2116 		young = false;
2117 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2118 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2119 	} else {
2120 		page = pmd_page(old_pmd);
2121 		if (pmd_dirty(old_pmd))
2122 			SetPageDirty(page);
2123 		write = pmd_write(old_pmd);
2124 		young = pmd_young(old_pmd);
2125 		soft_dirty = pmd_soft_dirty(old_pmd);
2126 		uffd_wp = pmd_uffd_wp(old_pmd);
2127 
2128 		VM_BUG_ON_PAGE(!page_count(page), page);
2129 		page_ref_add(page, HPAGE_PMD_NR - 1);
2130 
2131 		/*
2132 		 * Without "freeze", we'll simply split the PMD, propagating the
2133 		 * PageAnonExclusive() flag for each PTE by setting it for
2134 		 * each subpage -- no need to (temporarily) clear.
2135 		 *
2136 		 * With "freeze" we want to replace mapped pages by
2137 		 * migration entries right away. This is only possible if we
2138 		 * managed to clear PageAnonExclusive() -- see
2139 		 * set_pmd_migration_entry().
2140 		 *
2141 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2142 		 * only and let try_to_migrate_one() fail later.
2143 		 */
2144 		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2145 		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2146 			freeze = false;
2147 	}
2148 
2149 	/*
2150 	 * Withdraw the table only after we mark the pmd entry invalid.
2151 	 * This's critical for some architectures (Power).
2152 	 */
2153 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2154 	pmd_populate(mm, &_pmd, pgtable);
2155 
2156 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2157 		pte_t entry, *pte;
2158 		/*
2159 		 * Note that NUMA hinting access restrictions are not
2160 		 * transferred to avoid any possibility of altering
2161 		 * permissions across VMAs.
2162 		 */
2163 		if (freeze || pmd_migration) {
2164 			swp_entry_t swp_entry;
2165 			if (write)
2166 				swp_entry = make_writable_migration_entry(
2167 							page_to_pfn(page + i));
2168 			else if (anon_exclusive)
2169 				swp_entry = make_readable_exclusive_migration_entry(
2170 							page_to_pfn(page + i));
2171 			else
2172 				swp_entry = make_readable_migration_entry(
2173 							page_to_pfn(page + i));
2174 			entry = swp_entry_to_pte(swp_entry);
2175 			if (soft_dirty)
2176 				entry = pte_swp_mksoft_dirty(entry);
2177 			if (uffd_wp)
2178 				entry = pte_swp_mkuffd_wp(entry);
2179 		} else {
2180 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2181 			entry = maybe_mkwrite(entry, vma);
2182 			if (anon_exclusive)
2183 				SetPageAnonExclusive(page + i);
2184 			if (!write)
2185 				entry = pte_wrprotect(entry);
2186 			if (!young)
2187 				entry = pte_mkold(entry);
2188 			if (soft_dirty)
2189 				entry = pte_mksoft_dirty(entry);
2190 			if (uffd_wp)
2191 				entry = pte_mkuffd_wp(entry);
2192 		}
2193 		pte = pte_offset_map(&_pmd, addr);
2194 		BUG_ON(!pte_none(*pte));
2195 		set_pte_at(mm, addr, pte, entry);
2196 		if (!pmd_migration)
2197 			atomic_inc(&page[i]._mapcount);
2198 		pte_unmap(pte);
2199 	}
2200 
2201 	if (!pmd_migration) {
2202 		/*
2203 		 * Set PG_double_map before dropping compound_mapcount to avoid
2204 		 * false-negative page_mapped().
2205 		 */
2206 		if (compound_mapcount(page) > 1 &&
2207 		    !TestSetPageDoubleMap(page)) {
2208 			for (i = 0; i < HPAGE_PMD_NR; i++)
2209 				atomic_inc(&page[i]._mapcount);
2210 		}
2211 
2212 		lock_page_memcg(page);
2213 		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2214 			/* Last compound_mapcount is gone. */
2215 			__mod_lruvec_page_state(page, NR_ANON_THPS,
2216 						-HPAGE_PMD_NR);
2217 			if (TestClearPageDoubleMap(page)) {
2218 				/* No need in mapcount reference anymore */
2219 				for (i = 0; i < HPAGE_PMD_NR; i++)
2220 					atomic_dec(&page[i]._mapcount);
2221 			}
2222 		}
2223 		unlock_page_memcg(page);
2224 
2225 		/* Above is effectively page_remove_rmap(page, vma, true) */
2226 		munlock_vma_page(page, vma, true);
2227 	}
2228 
2229 	smp_wmb(); /* make pte visible before pmd */
2230 	pmd_populate(mm, pmd, pgtable);
2231 
2232 	if (freeze) {
2233 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2234 			page_remove_rmap(page + i, vma, false);
2235 			put_page(page + i);
2236 		}
2237 	}
2238 }
2239 
2240 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2241 		unsigned long address, bool freeze, struct folio *folio)
2242 {
2243 	spinlock_t *ptl;
2244 	struct mmu_notifier_range range;
2245 
2246 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2247 				address & HPAGE_PMD_MASK,
2248 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2249 	mmu_notifier_invalidate_range_start(&range);
2250 	ptl = pmd_lock(vma->vm_mm, pmd);
2251 
2252 	/*
2253 	 * If caller asks to setup a migration entry, we need a folio to check
2254 	 * pmd against. Otherwise we can end up replacing wrong folio.
2255 	 */
2256 	VM_BUG_ON(freeze && !folio);
2257 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2258 
2259 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2260 	    is_pmd_migration_entry(*pmd)) {
2261 		/*
2262 		 * It's safe to call pmd_page when folio is set because it's
2263 		 * guaranteed that pmd is present.
2264 		 */
2265 		if (folio && folio != page_folio(pmd_page(*pmd)))
2266 			goto out;
2267 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2268 	}
2269 
2270 out:
2271 	spin_unlock(ptl);
2272 	/*
2273 	 * No need to double call mmu_notifier->invalidate_range() callback.
2274 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2275 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2276 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2277 	 *    fault will trigger a flush_notify before pointing to a new page
2278 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2279 	 *    page in the meantime)
2280 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2281 	 *     to invalidate secondary tlb entry they are all still valid.
2282 	 *     any further changes to individual pte will notify. So no need
2283 	 *     to call mmu_notifier->invalidate_range()
2284 	 */
2285 	mmu_notifier_invalidate_range_only_end(&range);
2286 }
2287 
2288 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2289 		bool freeze, struct folio *folio)
2290 {
2291 	pgd_t *pgd;
2292 	p4d_t *p4d;
2293 	pud_t *pud;
2294 	pmd_t *pmd;
2295 
2296 	pgd = pgd_offset(vma->vm_mm, address);
2297 	if (!pgd_present(*pgd))
2298 		return;
2299 
2300 	p4d = p4d_offset(pgd, address);
2301 	if (!p4d_present(*p4d))
2302 		return;
2303 
2304 	pud = pud_offset(p4d, address);
2305 	if (!pud_present(*pud))
2306 		return;
2307 
2308 	pmd = pmd_offset(pud, address);
2309 
2310 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2311 }
2312 
2313 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2314 {
2315 	/*
2316 	 * If the new address isn't hpage aligned and it could previously
2317 	 * contain an hugepage: check if we need to split an huge pmd.
2318 	 */
2319 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2320 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2321 			 ALIGN(address, HPAGE_PMD_SIZE)))
2322 		split_huge_pmd_address(vma, address, false, NULL);
2323 }
2324 
2325 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2326 			     unsigned long start,
2327 			     unsigned long end,
2328 			     long adjust_next)
2329 {
2330 	/* Check if we need to split start first. */
2331 	split_huge_pmd_if_needed(vma, start);
2332 
2333 	/* Check if we need to split end next. */
2334 	split_huge_pmd_if_needed(vma, end);
2335 
2336 	/*
2337 	 * If we're also updating the vma->vm_next->vm_start,
2338 	 * check if we need to split it.
2339 	 */
2340 	if (adjust_next > 0) {
2341 		struct vm_area_struct *next = vma->vm_next;
2342 		unsigned long nstart = next->vm_start;
2343 		nstart += adjust_next;
2344 		split_huge_pmd_if_needed(next, nstart);
2345 	}
2346 }
2347 
2348 static void unmap_page(struct page *page)
2349 {
2350 	struct folio *folio = page_folio(page);
2351 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2352 		TTU_SYNC;
2353 
2354 	VM_BUG_ON_PAGE(!PageHead(page), page);
2355 
2356 	/*
2357 	 * Anon pages need migration entries to preserve them, but file
2358 	 * pages can simply be left unmapped, then faulted back on demand.
2359 	 * If that is ever changed (perhaps for mlock), update remap_page().
2360 	 */
2361 	if (folio_test_anon(folio))
2362 		try_to_migrate(folio, ttu_flags);
2363 	else
2364 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2365 }
2366 
2367 static void remap_page(struct folio *folio, unsigned long nr)
2368 {
2369 	int i = 0;
2370 
2371 	/* If unmap_page() uses try_to_migrate() on file, remove this check */
2372 	if (!folio_test_anon(folio))
2373 		return;
2374 	for (;;) {
2375 		remove_migration_ptes(folio, folio, true);
2376 		i += folio_nr_pages(folio);
2377 		if (i >= nr)
2378 			break;
2379 		folio = folio_next(folio);
2380 	}
2381 }
2382 
2383 static void lru_add_page_tail(struct page *head, struct page *tail,
2384 		struct lruvec *lruvec, struct list_head *list)
2385 {
2386 	VM_BUG_ON_PAGE(!PageHead(head), head);
2387 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2388 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2389 	lockdep_assert_held(&lruvec->lru_lock);
2390 
2391 	if (list) {
2392 		/* page reclaim is reclaiming a huge page */
2393 		VM_WARN_ON(PageLRU(head));
2394 		get_page(tail);
2395 		list_add_tail(&tail->lru, list);
2396 	} else {
2397 		/* head is still on lru (and we have it frozen) */
2398 		VM_WARN_ON(!PageLRU(head));
2399 		if (PageUnevictable(tail))
2400 			tail->mlock_count = 0;
2401 		else
2402 			list_add_tail(&tail->lru, &head->lru);
2403 		SetPageLRU(tail);
2404 	}
2405 }
2406 
2407 static void __split_huge_page_tail(struct page *head, int tail,
2408 		struct lruvec *lruvec, struct list_head *list)
2409 {
2410 	struct page *page_tail = head + tail;
2411 
2412 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2413 
2414 	/*
2415 	 * Clone page flags before unfreezing refcount.
2416 	 *
2417 	 * After successful get_page_unless_zero() might follow flags change,
2418 	 * for example lock_page() which set PG_waiters.
2419 	 *
2420 	 * Note that for mapped sub-pages of an anonymous THP,
2421 	 * PG_anon_exclusive has been cleared in unmap_page() and is stored in
2422 	 * the migration entry instead from where remap_page() will restore it.
2423 	 * We can still have PG_anon_exclusive set on effectively unmapped and
2424 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2425 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2426 	 */
2427 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2428 	page_tail->flags |= (head->flags &
2429 			((1L << PG_referenced) |
2430 			 (1L << PG_swapbacked) |
2431 			 (1L << PG_swapcache) |
2432 			 (1L << PG_mlocked) |
2433 			 (1L << PG_uptodate) |
2434 			 (1L << PG_active) |
2435 			 (1L << PG_workingset) |
2436 			 (1L << PG_locked) |
2437 			 (1L << PG_unevictable) |
2438 #ifdef CONFIG_64BIT
2439 			 (1L << PG_arch_2) |
2440 #endif
2441 			 (1L << PG_dirty)));
2442 
2443 	/* ->mapping in first tail page is compound_mapcount */
2444 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2445 			page_tail);
2446 	page_tail->mapping = head->mapping;
2447 	page_tail->index = head->index + tail;
2448 	page_tail->private = 0;
2449 
2450 	/* Page flags must be visible before we make the page non-compound. */
2451 	smp_wmb();
2452 
2453 	/*
2454 	 * Clear PageTail before unfreezing page refcount.
2455 	 *
2456 	 * After successful get_page_unless_zero() might follow put_page()
2457 	 * which needs correct compound_head().
2458 	 */
2459 	clear_compound_head(page_tail);
2460 
2461 	/* Finally unfreeze refcount. Additional reference from page cache. */
2462 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2463 					  PageSwapCache(head)));
2464 
2465 	if (page_is_young(head))
2466 		set_page_young(page_tail);
2467 	if (page_is_idle(head))
2468 		set_page_idle(page_tail);
2469 
2470 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2471 
2472 	/*
2473 	 * always add to the tail because some iterators expect new
2474 	 * pages to show after the currently processed elements - e.g.
2475 	 * migrate_pages
2476 	 */
2477 	lru_add_page_tail(head, page_tail, lruvec, list);
2478 }
2479 
2480 static void __split_huge_page(struct page *page, struct list_head *list,
2481 		pgoff_t end)
2482 {
2483 	struct folio *folio = page_folio(page);
2484 	struct page *head = &folio->page;
2485 	struct lruvec *lruvec;
2486 	struct address_space *swap_cache = NULL;
2487 	unsigned long offset = 0;
2488 	unsigned int nr = thp_nr_pages(head);
2489 	int i;
2490 
2491 	/* complete memcg works before add pages to LRU */
2492 	split_page_memcg(head, nr);
2493 
2494 	if (PageAnon(head) && PageSwapCache(head)) {
2495 		swp_entry_t entry = { .val = page_private(head) };
2496 
2497 		offset = swp_offset(entry);
2498 		swap_cache = swap_address_space(entry);
2499 		xa_lock(&swap_cache->i_pages);
2500 	}
2501 
2502 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2503 	lruvec = folio_lruvec_lock(folio);
2504 
2505 	ClearPageHasHWPoisoned(head);
2506 
2507 	for (i = nr - 1; i >= 1; i--) {
2508 		__split_huge_page_tail(head, i, lruvec, list);
2509 		/* Some pages can be beyond EOF: drop them from page cache */
2510 		if (head[i].index >= end) {
2511 			struct folio *tail = page_folio(head + i);
2512 
2513 			if (shmem_mapping(head->mapping))
2514 				shmem_uncharge(head->mapping->host, 1);
2515 			else if (folio_test_clear_dirty(tail))
2516 				folio_account_cleaned(tail,
2517 					inode_to_wb(folio->mapping->host));
2518 			__filemap_remove_folio(tail, NULL);
2519 			folio_put(tail);
2520 		} else if (!PageAnon(page)) {
2521 			__xa_store(&head->mapping->i_pages, head[i].index,
2522 					head + i, 0);
2523 		} else if (swap_cache) {
2524 			__xa_store(&swap_cache->i_pages, offset + i,
2525 					head + i, 0);
2526 		}
2527 	}
2528 
2529 	ClearPageCompound(head);
2530 	unlock_page_lruvec(lruvec);
2531 	/* Caller disabled irqs, so they are still disabled here */
2532 
2533 	split_page_owner(head, nr);
2534 
2535 	/* See comment in __split_huge_page_tail() */
2536 	if (PageAnon(head)) {
2537 		/* Additional pin to swap cache */
2538 		if (PageSwapCache(head)) {
2539 			page_ref_add(head, 2);
2540 			xa_unlock(&swap_cache->i_pages);
2541 		} else {
2542 			page_ref_inc(head);
2543 		}
2544 	} else {
2545 		/* Additional pin to page cache */
2546 		page_ref_add(head, 2);
2547 		xa_unlock(&head->mapping->i_pages);
2548 	}
2549 	local_irq_enable();
2550 
2551 	remap_page(folio, nr);
2552 
2553 	if (PageSwapCache(head)) {
2554 		swp_entry_t entry = { .val = page_private(head) };
2555 
2556 		split_swap_cluster(entry);
2557 	}
2558 
2559 	for (i = 0; i < nr; i++) {
2560 		struct page *subpage = head + i;
2561 		if (subpage == page)
2562 			continue;
2563 		unlock_page(subpage);
2564 
2565 		/*
2566 		 * Subpages may be freed if there wasn't any mapping
2567 		 * like if add_to_swap() is running on a lru page that
2568 		 * had its mapping zapped. And freeing these pages
2569 		 * requires taking the lru_lock so we do the put_page
2570 		 * of the tail pages after the split is complete.
2571 		 */
2572 		free_page_and_swap_cache(subpage);
2573 	}
2574 }
2575 
2576 /* Racy check whether the huge page can be split */
2577 bool can_split_folio(struct folio *folio, int *pextra_pins)
2578 {
2579 	int extra_pins;
2580 
2581 	/* Additional pins from page cache */
2582 	if (folio_test_anon(folio))
2583 		extra_pins = folio_test_swapcache(folio) ?
2584 				folio_nr_pages(folio) : 0;
2585 	else
2586 		extra_pins = folio_nr_pages(folio);
2587 	if (pextra_pins)
2588 		*pextra_pins = extra_pins;
2589 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2590 }
2591 
2592 /*
2593  * This function splits huge page into normal pages. @page can point to any
2594  * subpage of huge page to split. Split doesn't change the position of @page.
2595  *
2596  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2597  * The huge page must be locked.
2598  *
2599  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2600  *
2601  * Both head page and tail pages will inherit mapping, flags, and so on from
2602  * the hugepage.
2603  *
2604  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2605  * they are not mapped.
2606  *
2607  * Returns 0 if the hugepage is split successfully.
2608  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2609  * us.
2610  */
2611 int split_huge_page_to_list(struct page *page, struct list_head *list)
2612 {
2613 	struct folio *folio = page_folio(page);
2614 	struct page *head = &folio->page;
2615 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2616 	XA_STATE(xas, &head->mapping->i_pages, head->index);
2617 	struct anon_vma *anon_vma = NULL;
2618 	struct address_space *mapping = NULL;
2619 	int extra_pins, ret;
2620 	pgoff_t end;
2621 	bool is_hzp;
2622 
2623 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2624 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2625 
2626 	is_hzp = is_huge_zero_page(head);
2627 	VM_WARN_ON_ONCE_PAGE(is_hzp, head);
2628 	if (is_hzp)
2629 		return -EBUSY;
2630 
2631 	if (PageWriteback(head))
2632 		return -EBUSY;
2633 
2634 	if (PageAnon(head)) {
2635 		/*
2636 		 * The caller does not necessarily hold an mmap_lock that would
2637 		 * prevent the anon_vma disappearing so we first we take a
2638 		 * reference to it and then lock the anon_vma for write. This
2639 		 * is similar to folio_lock_anon_vma_read except the write lock
2640 		 * is taken to serialise against parallel split or collapse
2641 		 * operations.
2642 		 */
2643 		anon_vma = page_get_anon_vma(head);
2644 		if (!anon_vma) {
2645 			ret = -EBUSY;
2646 			goto out;
2647 		}
2648 		end = -1;
2649 		mapping = NULL;
2650 		anon_vma_lock_write(anon_vma);
2651 	} else {
2652 		mapping = head->mapping;
2653 
2654 		/* Truncated ? */
2655 		if (!mapping) {
2656 			ret = -EBUSY;
2657 			goto out;
2658 		}
2659 
2660 		xas_split_alloc(&xas, head, compound_order(head),
2661 				mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK);
2662 		if (xas_error(&xas)) {
2663 			ret = xas_error(&xas);
2664 			goto out;
2665 		}
2666 
2667 		anon_vma = NULL;
2668 		i_mmap_lock_read(mapping);
2669 
2670 		/*
2671 		 *__split_huge_page() may need to trim off pages beyond EOF:
2672 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2673 		 * which cannot be nested inside the page tree lock. So note
2674 		 * end now: i_size itself may be changed at any moment, but
2675 		 * head page lock is good enough to serialize the trimming.
2676 		 */
2677 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2678 		if (shmem_mapping(mapping))
2679 			end = shmem_fallocend(mapping->host, end);
2680 	}
2681 
2682 	/*
2683 	 * Racy check if we can split the page, before unmap_page() will
2684 	 * split PMDs
2685 	 */
2686 	if (!can_split_folio(folio, &extra_pins)) {
2687 		ret = -EBUSY;
2688 		goto out_unlock;
2689 	}
2690 
2691 	unmap_page(head);
2692 
2693 	/* block interrupt reentry in xa_lock and spinlock */
2694 	local_irq_disable();
2695 	if (mapping) {
2696 		/*
2697 		 * Check if the head page is present in page cache.
2698 		 * We assume all tail are present too, if head is there.
2699 		 */
2700 		xas_lock(&xas);
2701 		xas_reset(&xas);
2702 		if (xas_load(&xas) != head)
2703 			goto fail;
2704 	}
2705 
2706 	/* Prevent deferred_split_scan() touching ->_refcount */
2707 	spin_lock(&ds_queue->split_queue_lock);
2708 	if (page_ref_freeze(head, 1 + extra_pins)) {
2709 		if (!list_empty(page_deferred_list(head))) {
2710 			ds_queue->split_queue_len--;
2711 			list_del(page_deferred_list(head));
2712 		}
2713 		spin_unlock(&ds_queue->split_queue_lock);
2714 		if (mapping) {
2715 			int nr = thp_nr_pages(head);
2716 
2717 			xas_split(&xas, head, thp_order(head));
2718 			if (PageSwapBacked(head)) {
2719 				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
2720 							-nr);
2721 			} else {
2722 				__mod_lruvec_page_state(head, NR_FILE_THPS,
2723 							-nr);
2724 				filemap_nr_thps_dec(mapping);
2725 			}
2726 		}
2727 
2728 		__split_huge_page(page, list, end);
2729 		ret = 0;
2730 	} else {
2731 		spin_unlock(&ds_queue->split_queue_lock);
2732 fail:
2733 		if (mapping)
2734 			xas_unlock(&xas);
2735 		local_irq_enable();
2736 		remap_page(folio, folio_nr_pages(folio));
2737 		ret = -EBUSY;
2738 	}
2739 
2740 out_unlock:
2741 	if (anon_vma) {
2742 		anon_vma_unlock_write(anon_vma);
2743 		put_anon_vma(anon_vma);
2744 	}
2745 	if (mapping)
2746 		i_mmap_unlock_read(mapping);
2747 out:
2748 	xas_destroy(&xas);
2749 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2750 	return ret;
2751 }
2752 
2753 void free_transhuge_page(struct page *page)
2754 {
2755 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2756 	unsigned long flags;
2757 
2758 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2759 	if (!list_empty(page_deferred_list(page))) {
2760 		ds_queue->split_queue_len--;
2761 		list_del(page_deferred_list(page));
2762 	}
2763 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2764 	free_compound_page(page);
2765 }
2766 
2767 void deferred_split_huge_page(struct page *page)
2768 {
2769 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2770 #ifdef CONFIG_MEMCG
2771 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2772 #endif
2773 	unsigned long flags;
2774 
2775 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2776 
2777 	/*
2778 	 * The try_to_unmap() in page reclaim path might reach here too,
2779 	 * this may cause a race condition to corrupt deferred split queue.
2780 	 * And, if page reclaim is already handling the same page, it is
2781 	 * unnecessary to handle it again in shrinker.
2782 	 *
2783 	 * Check PageSwapCache to determine if the page is being
2784 	 * handled by page reclaim since THP swap would add the page into
2785 	 * swap cache before calling try_to_unmap().
2786 	 */
2787 	if (PageSwapCache(page))
2788 		return;
2789 
2790 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2791 	if (list_empty(page_deferred_list(page))) {
2792 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2793 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2794 		ds_queue->split_queue_len++;
2795 #ifdef CONFIG_MEMCG
2796 		if (memcg)
2797 			set_shrinker_bit(memcg, page_to_nid(page),
2798 					 deferred_split_shrinker.id);
2799 #endif
2800 	}
2801 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2802 }
2803 
2804 static unsigned long deferred_split_count(struct shrinker *shrink,
2805 		struct shrink_control *sc)
2806 {
2807 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2808 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2809 
2810 #ifdef CONFIG_MEMCG
2811 	if (sc->memcg)
2812 		ds_queue = &sc->memcg->deferred_split_queue;
2813 #endif
2814 	return READ_ONCE(ds_queue->split_queue_len);
2815 }
2816 
2817 static unsigned long deferred_split_scan(struct shrinker *shrink,
2818 		struct shrink_control *sc)
2819 {
2820 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2821 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2822 	unsigned long flags;
2823 	LIST_HEAD(list), *pos, *next;
2824 	struct page *page;
2825 	int split = 0;
2826 
2827 #ifdef CONFIG_MEMCG
2828 	if (sc->memcg)
2829 		ds_queue = &sc->memcg->deferred_split_queue;
2830 #endif
2831 
2832 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2833 	/* Take pin on all head pages to avoid freeing them under us */
2834 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2835 		page = list_entry((void *)pos, struct page, deferred_list);
2836 		page = compound_head(page);
2837 		if (get_page_unless_zero(page)) {
2838 			list_move(page_deferred_list(page), &list);
2839 		} else {
2840 			/* We lost race with put_compound_page() */
2841 			list_del_init(page_deferred_list(page));
2842 			ds_queue->split_queue_len--;
2843 		}
2844 		if (!--sc->nr_to_scan)
2845 			break;
2846 	}
2847 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2848 
2849 	list_for_each_safe(pos, next, &list) {
2850 		page = list_entry((void *)pos, struct page, deferred_list);
2851 		if (!trylock_page(page))
2852 			goto next;
2853 		/* split_huge_page() removes page from list on success */
2854 		if (!split_huge_page(page))
2855 			split++;
2856 		unlock_page(page);
2857 next:
2858 		put_page(page);
2859 	}
2860 
2861 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2862 	list_splice_tail(&list, &ds_queue->split_queue);
2863 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2864 
2865 	/*
2866 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2867 	 * This can happen if pages were freed under us.
2868 	 */
2869 	if (!split && list_empty(&ds_queue->split_queue))
2870 		return SHRINK_STOP;
2871 	return split;
2872 }
2873 
2874 static struct shrinker deferred_split_shrinker = {
2875 	.count_objects = deferred_split_count,
2876 	.scan_objects = deferred_split_scan,
2877 	.seeks = DEFAULT_SEEKS,
2878 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2879 		 SHRINKER_NONSLAB,
2880 };
2881 
2882 #ifdef CONFIG_DEBUG_FS
2883 static void split_huge_pages_all(void)
2884 {
2885 	struct zone *zone;
2886 	struct page *page;
2887 	unsigned long pfn, max_zone_pfn;
2888 	unsigned long total = 0, split = 0;
2889 
2890 	pr_debug("Split all THPs\n");
2891 	for_each_zone(zone) {
2892 		if (!managed_zone(zone))
2893 			continue;
2894 		max_zone_pfn = zone_end_pfn(zone);
2895 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2896 			int nr_pages;
2897 			if (!pfn_valid(pfn))
2898 				continue;
2899 
2900 			page = pfn_to_page(pfn);
2901 			if (!get_page_unless_zero(page))
2902 				continue;
2903 
2904 			if (zone != page_zone(page))
2905 				goto next;
2906 
2907 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2908 				goto next;
2909 
2910 			total++;
2911 			lock_page(page);
2912 			nr_pages = thp_nr_pages(page);
2913 			if (!split_huge_page(page))
2914 				split++;
2915 			pfn += nr_pages - 1;
2916 			unlock_page(page);
2917 next:
2918 			put_page(page);
2919 			cond_resched();
2920 		}
2921 	}
2922 
2923 	pr_debug("%lu of %lu THP split\n", split, total);
2924 }
2925 
2926 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2927 {
2928 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2929 		    is_vm_hugetlb_page(vma);
2930 }
2931 
2932 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2933 				unsigned long vaddr_end)
2934 {
2935 	int ret = 0;
2936 	struct task_struct *task;
2937 	struct mm_struct *mm;
2938 	unsigned long total = 0, split = 0;
2939 	unsigned long addr;
2940 
2941 	vaddr_start &= PAGE_MASK;
2942 	vaddr_end &= PAGE_MASK;
2943 
2944 	/* Find the task_struct from pid */
2945 	rcu_read_lock();
2946 	task = find_task_by_vpid(pid);
2947 	if (!task) {
2948 		rcu_read_unlock();
2949 		ret = -ESRCH;
2950 		goto out;
2951 	}
2952 	get_task_struct(task);
2953 	rcu_read_unlock();
2954 
2955 	/* Find the mm_struct */
2956 	mm = get_task_mm(task);
2957 	put_task_struct(task);
2958 
2959 	if (!mm) {
2960 		ret = -EINVAL;
2961 		goto out;
2962 	}
2963 
2964 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2965 		 pid, vaddr_start, vaddr_end);
2966 
2967 	mmap_read_lock(mm);
2968 	/*
2969 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
2970 	 * table filled with PTE-mapped THPs, each of which is distinct.
2971 	 */
2972 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2973 		struct vm_area_struct *vma = vma_lookup(mm, addr);
2974 		struct page *page;
2975 
2976 		if (!vma)
2977 			break;
2978 
2979 		/* skip special VMA and hugetlb VMA */
2980 		if (vma_not_suitable_for_thp_split(vma)) {
2981 			addr = vma->vm_end;
2982 			continue;
2983 		}
2984 
2985 		/* FOLL_DUMP to ignore special (like zero) pages */
2986 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2987 
2988 		if (IS_ERR_OR_NULL(page) || is_zone_device_page(page))
2989 			continue;
2990 
2991 		if (!is_transparent_hugepage(page))
2992 			goto next;
2993 
2994 		total++;
2995 		if (!can_split_folio(page_folio(page), NULL))
2996 			goto next;
2997 
2998 		if (!trylock_page(page))
2999 			goto next;
3000 
3001 		if (!split_huge_page(page))
3002 			split++;
3003 
3004 		unlock_page(page);
3005 next:
3006 		put_page(page);
3007 		cond_resched();
3008 	}
3009 	mmap_read_unlock(mm);
3010 	mmput(mm);
3011 
3012 	pr_debug("%lu of %lu THP split\n", split, total);
3013 
3014 out:
3015 	return ret;
3016 }
3017 
3018 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3019 				pgoff_t off_end)
3020 {
3021 	struct filename *file;
3022 	struct file *candidate;
3023 	struct address_space *mapping;
3024 	int ret = -EINVAL;
3025 	pgoff_t index;
3026 	int nr_pages = 1;
3027 	unsigned long total = 0, split = 0;
3028 
3029 	file = getname_kernel(file_path);
3030 	if (IS_ERR(file))
3031 		return ret;
3032 
3033 	candidate = file_open_name(file, O_RDONLY, 0);
3034 	if (IS_ERR(candidate))
3035 		goto out;
3036 
3037 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3038 		 file_path, off_start, off_end);
3039 
3040 	mapping = candidate->f_mapping;
3041 
3042 	for (index = off_start; index < off_end; index += nr_pages) {
3043 		struct page *fpage = pagecache_get_page(mapping, index,
3044 						FGP_ENTRY | FGP_HEAD, 0);
3045 
3046 		nr_pages = 1;
3047 		if (xa_is_value(fpage) || !fpage)
3048 			continue;
3049 
3050 		if (!is_transparent_hugepage(fpage))
3051 			goto next;
3052 
3053 		total++;
3054 		nr_pages = thp_nr_pages(fpage);
3055 
3056 		if (!trylock_page(fpage))
3057 			goto next;
3058 
3059 		if (!split_huge_page(fpage))
3060 			split++;
3061 
3062 		unlock_page(fpage);
3063 next:
3064 		put_page(fpage);
3065 		cond_resched();
3066 	}
3067 
3068 	filp_close(candidate, NULL);
3069 	ret = 0;
3070 
3071 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3072 out:
3073 	putname(file);
3074 	return ret;
3075 }
3076 
3077 #define MAX_INPUT_BUF_SZ 255
3078 
3079 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3080 				size_t count, loff_t *ppops)
3081 {
3082 	static DEFINE_MUTEX(split_debug_mutex);
3083 	ssize_t ret;
3084 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3085 	char input_buf[MAX_INPUT_BUF_SZ];
3086 	int pid;
3087 	unsigned long vaddr_start, vaddr_end;
3088 
3089 	ret = mutex_lock_interruptible(&split_debug_mutex);
3090 	if (ret)
3091 		return ret;
3092 
3093 	ret = -EFAULT;
3094 
3095 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3096 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3097 		goto out;
3098 
3099 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3100 
3101 	if (input_buf[0] == '/') {
3102 		char *tok;
3103 		char *buf = input_buf;
3104 		char file_path[MAX_INPUT_BUF_SZ];
3105 		pgoff_t off_start = 0, off_end = 0;
3106 		size_t input_len = strlen(input_buf);
3107 
3108 		tok = strsep(&buf, ",");
3109 		if (tok) {
3110 			strcpy(file_path, tok);
3111 		} else {
3112 			ret = -EINVAL;
3113 			goto out;
3114 		}
3115 
3116 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3117 		if (ret != 2) {
3118 			ret = -EINVAL;
3119 			goto out;
3120 		}
3121 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3122 		if (!ret)
3123 			ret = input_len;
3124 
3125 		goto out;
3126 	}
3127 
3128 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3129 	if (ret == 1 && pid == 1) {
3130 		split_huge_pages_all();
3131 		ret = strlen(input_buf);
3132 		goto out;
3133 	} else if (ret != 3) {
3134 		ret = -EINVAL;
3135 		goto out;
3136 	}
3137 
3138 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3139 	if (!ret)
3140 		ret = strlen(input_buf);
3141 out:
3142 	mutex_unlock(&split_debug_mutex);
3143 	return ret;
3144 
3145 }
3146 
3147 static const struct file_operations split_huge_pages_fops = {
3148 	.owner	 = THIS_MODULE,
3149 	.write	 = split_huge_pages_write,
3150 	.llseek  = no_llseek,
3151 };
3152 
3153 static int __init split_huge_pages_debugfs(void)
3154 {
3155 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3156 			    &split_huge_pages_fops);
3157 	return 0;
3158 }
3159 late_initcall(split_huge_pages_debugfs);
3160 #endif
3161 
3162 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3163 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3164 		struct page *page)
3165 {
3166 	struct vm_area_struct *vma = pvmw->vma;
3167 	struct mm_struct *mm = vma->vm_mm;
3168 	unsigned long address = pvmw->address;
3169 	bool anon_exclusive;
3170 	pmd_t pmdval;
3171 	swp_entry_t entry;
3172 	pmd_t pmdswp;
3173 
3174 	if (!(pvmw->pmd && !pvmw->pte))
3175 		return 0;
3176 
3177 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3178 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3179 
3180 	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3181 	if (anon_exclusive && page_try_share_anon_rmap(page)) {
3182 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3183 		return -EBUSY;
3184 	}
3185 
3186 	if (pmd_dirty(pmdval))
3187 		set_page_dirty(page);
3188 	if (pmd_write(pmdval))
3189 		entry = make_writable_migration_entry(page_to_pfn(page));
3190 	else if (anon_exclusive)
3191 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3192 	else
3193 		entry = make_readable_migration_entry(page_to_pfn(page));
3194 	pmdswp = swp_entry_to_pmd(entry);
3195 	if (pmd_soft_dirty(pmdval))
3196 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3197 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3198 	page_remove_rmap(page, vma, true);
3199 	put_page(page);
3200 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3201 
3202 	return 0;
3203 }
3204 
3205 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3206 {
3207 	struct vm_area_struct *vma = pvmw->vma;
3208 	struct mm_struct *mm = vma->vm_mm;
3209 	unsigned long address = pvmw->address;
3210 	unsigned long haddr = address & HPAGE_PMD_MASK;
3211 	pmd_t pmde;
3212 	swp_entry_t entry;
3213 
3214 	if (!(pvmw->pmd && !pvmw->pte))
3215 		return;
3216 
3217 	entry = pmd_to_swp_entry(*pvmw->pmd);
3218 	get_page(new);
3219 	pmde = pmd_mkold(mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)));
3220 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3221 		pmde = pmd_mksoft_dirty(pmde);
3222 	if (is_writable_migration_entry(entry))
3223 		pmde = maybe_pmd_mkwrite(pmde, vma);
3224 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3225 		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3226 
3227 	if (PageAnon(new)) {
3228 		rmap_t rmap_flags = RMAP_COMPOUND;
3229 
3230 		if (!is_readable_migration_entry(entry))
3231 			rmap_flags |= RMAP_EXCLUSIVE;
3232 
3233 		page_add_anon_rmap(new, vma, haddr, rmap_flags);
3234 	} else {
3235 		page_add_file_rmap(new, vma, true);
3236 	}
3237 	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3238 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3239 
3240 	/* No need to invalidate - it was non-present before */
3241 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3242 	trace_remove_migration_pmd(address, pmd_val(pmde));
3243 }
3244 #endif
3245