1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/coredump.h> 11 #include <linux/sched/numa_balancing.h> 12 #include <linux/highmem.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mmu_notifier.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/shrinker.h> 18 #include <linux/mm_inline.h> 19 #include <linux/swapops.h> 20 #include <linux/dax.h> 21 #include <linux/khugepaged.h> 22 #include <linux/freezer.h> 23 #include <linux/pfn_t.h> 24 #include <linux/mman.h> 25 #include <linux/memremap.h> 26 #include <linux/pagemap.h> 27 #include <linux/debugfs.h> 28 #include <linux/migrate.h> 29 #include <linux/hashtable.h> 30 #include <linux/userfaultfd_k.h> 31 #include <linux/page_idle.h> 32 #include <linux/shmem_fs.h> 33 #include <linux/oom.h> 34 #include <linux/numa.h> 35 #include <linux/page_owner.h> 36 37 #include <asm/tlb.h> 38 #include <asm/pgalloc.h> 39 #include "internal.h" 40 41 /* 42 * By default, transparent hugepage support is disabled in order to avoid 43 * risking an increased memory footprint for applications that are not 44 * guaranteed to benefit from it. When transparent hugepage support is 45 * enabled, it is for all mappings, and khugepaged scans all mappings. 46 * Defrag is invoked by khugepaged hugepage allocations and by page faults 47 * for all hugepage allocations. 48 */ 49 unsigned long transparent_hugepage_flags __read_mostly = 50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 52 #endif 53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 55 #endif 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 59 60 static struct shrinker deferred_split_shrinker; 61 62 static atomic_t huge_zero_refcount; 63 struct page *huge_zero_page __read_mostly; 64 65 bool transparent_hugepage_enabled(struct vm_area_struct *vma) 66 { 67 /* The addr is used to check if the vma size fits */ 68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE; 69 70 if (!transhuge_vma_suitable(vma, addr)) 71 return false; 72 if (vma_is_anonymous(vma)) 73 return __transparent_hugepage_enabled(vma); 74 if (vma_is_shmem(vma)) 75 return shmem_huge_enabled(vma); 76 77 return false; 78 } 79 80 static struct page *get_huge_zero_page(void) 81 { 82 struct page *zero_page; 83 retry: 84 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 85 return READ_ONCE(huge_zero_page); 86 87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 88 HPAGE_PMD_ORDER); 89 if (!zero_page) { 90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 91 return NULL; 92 } 93 count_vm_event(THP_ZERO_PAGE_ALLOC); 94 preempt_disable(); 95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 96 preempt_enable(); 97 __free_pages(zero_page, compound_order(zero_page)); 98 goto retry; 99 } 100 101 /* We take additional reference here. It will be put back by shrinker */ 102 atomic_set(&huge_zero_refcount, 2); 103 preempt_enable(); 104 return READ_ONCE(huge_zero_page); 105 } 106 107 static void put_huge_zero_page(void) 108 { 109 /* 110 * Counter should never go to zero here. Only shrinker can put 111 * last reference. 112 */ 113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 114 } 115 116 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 117 { 118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 119 return READ_ONCE(huge_zero_page); 120 121 if (!get_huge_zero_page()) 122 return NULL; 123 124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 125 put_huge_zero_page(); 126 127 return READ_ONCE(huge_zero_page); 128 } 129 130 void mm_put_huge_zero_page(struct mm_struct *mm) 131 { 132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 133 put_huge_zero_page(); 134 } 135 136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 137 struct shrink_control *sc) 138 { 139 /* we can free zero page only if last reference remains */ 140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 141 } 142 143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 144 struct shrink_control *sc) 145 { 146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 147 struct page *zero_page = xchg(&huge_zero_page, NULL); 148 BUG_ON(zero_page == NULL); 149 __free_pages(zero_page, compound_order(zero_page)); 150 return HPAGE_PMD_NR; 151 } 152 153 return 0; 154 } 155 156 static struct shrinker huge_zero_page_shrinker = { 157 .count_objects = shrink_huge_zero_page_count, 158 .scan_objects = shrink_huge_zero_page_scan, 159 .seeks = DEFAULT_SEEKS, 160 }; 161 162 #ifdef CONFIG_SYSFS 163 static ssize_t enabled_show(struct kobject *kobj, 164 struct kobj_attribute *attr, char *buf) 165 { 166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 167 return sprintf(buf, "[always] madvise never\n"); 168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) 169 return sprintf(buf, "always [madvise] never\n"); 170 else 171 return sprintf(buf, "always madvise [never]\n"); 172 } 173 174 static ssize_t enabled_store(struct kobject *kobj, 175 struct kobj_attribute *attr, 176 const char *buf, size_t count) 177 { 178 ssize_t ret = count; 179 180 if (sysfs_streq(buf, "always")) { 181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 183 } else if (sysfs_streq(buf, "madvise")) { 184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 186 } else if (sysfs_streq(buf, "never")) { 187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 189 } else 190 ret = -EINVAL; 191 192 if (ret > 0) { 193 int err = start_stop_khugepaged(); 194 if (err) 195 ret = err; 196 } 197 return ret; 198 } 199 static struct kobj_attribute enabled_attr = 200 __ATTR(enabled, 0644, enabled_show, enabled_store); 201 202 ssize_t single_hugepage_flag_show(struct kobject *kobj, 203 struct kobj_attribute *attr, char *buf, 204 enum transparent_hugepage_flag flag) 205 { 206 return sprintf(buf, "%d\n", 207 !!test_bit(flag, &transparent_hugepage_flags)); 208 } 209 210 ssize_t single_hugepage_flag_store(struct kobject *kobj, 211 struct kobj_attribute *attr, 212 const char *buf, size_t count, 213 enum transparent_hugepage_flag flag) 214 { 215 unsigned long value; 216 int ret; 217 218 ret = kstrtoul(buf, 10, &value); 219 if (ret < 0) 220 return ret; 221 if (value > 1) 222 return -EINVAL; 223 224 if (value) 225 set_bit(flag, &transparent_hugepage_flags); 226 else 227 clear_bit(flag, &transparent_hugepage_flags); 228 229 return count; 230 } 231 232 static ssize_t defrag_show(struct kobject *kobj, 233 struct kobj_attribute *attr, char *buf) 234 { 235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 236 return sprintf(buf, "[always] defer defer+madvise madvise never\n"); 237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 238 return sprintf(buf, "always [defer] defer+madvise madvise never\n"); 239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 240 return sprintf(buf, "always defer [defer+madvise] madvise never\n"); 241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 242 return sprintf(buf, "always defer defer+madvise [madvise] never\n"); 243 return sprintf(buf, "always defer defer+madvise madvise [never]\n"); 244 } 245 246 static ssize_t defrag_store(struct kobject *kobj, 247 struct kobj_attribute *attr, 248 const char *buf, size_t count) 249 { 250 if (sysfs_streq(buf, "always")) { 251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 255 } else if (sysfs_streq(buf, "defer+madvise")) { 256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 260 } else if (sysfs_streq(buf, "defer")) { 261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 265 } else if (sysfs_streq(buf, "madvise")) { 266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 270 } else if (sysfs_streq(buf, "never")) { 271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 275 } else 276 return -EINVAL; 277 278 return count; 279 } 280 static struct kobj_attribute defrag_attr = 281 __ATTR(defrag, 0644, defrag_show, defrag_store); 282 283 static ssize_t use_zero_page_show(struct kobject *kobj, 284 struct kobj_attribute *attr, char *buf) 285 { 286 return single_hugepage_flag_show(kobj, attr, buf, 287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 288 } 289 static ssize_t use_zero_page_store(struct kobject *kobj, 290 struct kobj_attribute *attr, const char *buf, size_t count) 291 { 292 return single_hugepage_flag_store(kobj, attr, buf, count, 293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 294 } 295 static struct kobj_attribute use_zero_page_attr = 296 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 297 298 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 299 struct kobj_attribute *attr, char *buf) 300 { 301 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE); 302 } 303 static struct kobj_attribute hpage_pmd_size_attr = 304 __ATTR_RO(hpage_pmd_size); 305 306 static struct attribute *hugepage_attr[] = { 307 &enabled_attr.attr, 308 &defrag_attr.attr, 309 &use_zero_page_attr.attr, 310 &hpage_pmd_size_attr.attr, 311 #ifdef CONFIG_SHMEM 312 &shmem_enabled_attr.attr, 313 #endif 314 NULL, 315 }; 316 317 static const struct attribute_group hugepage_attr_group = { 318 .attrs = hugepage_attr, 319 }; 320 321 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 322 { 323 int err; 324 325 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 326 if (unlikely(!*hugepage_kobj)) { 327 pr_err("failed to create transparent hugepage kobject\n"); 328 return -ENOMEM; 329 } 330 331 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 332 if (err) { 333 pr_err("failed to register transparent hugepage group\n"); 334 goto delete_obj; 335 } 336 337 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 338 if (err) { 339 pr_err("failed to register transparent hugepage group\n"); 340 goto remove_hp_group; 341 } 342 343 return 0; 344 345 remove_hp_group: 346 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 347 delete_obj: 348 kobject_put(*hugepage_kobj); 349 return err; 350 } 351 352 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 353 { 354 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 355 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 356 kobject_put(hugepage_kobj); 357 } 358 #else 359 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 360 { 361 return 0; 362 } 363 364 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 365 { 366 } 367 #endif /* CONFIG_SYSFS */ 368 369 static int __init hugepage_init(void) 370 { 371 int err; 372 struct kobject *hugepage_kobj; 373 374 if (!has_transparent_hugepage()) { 375 transparent_hugepage_flags = 0; 376 return -EINVAL; 377 } 378 379 /* 380 * hugepages can't be allocated by the buddy allocator 381 */ 382 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 383 /* 384 * we use page->mapping and page->index in second tail page 385 * as list_head: assuming THP order >= 2 386 */ 387 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 388 389 err = hugepage_init_sysfs(&hugepage_kobj); 390 if (err) 391 goto err_sysfs; 392 393 err = khugepaged_init(); 394 if (err) 395 goto err_slab; 396 397 err = register_shrinker(&huge_zero_page_shrinker); 398 if (err) 399 goto err_hzp_shrinker; 400 err = register_shrinker(&deferred_split_shrinker); 401 if (err) 402 goto err_split_shrinker; 403 404 /* 405 * By default disable transparent hugepages on smaller systems, 406 * where the extra memory used could hurt more than TLB overhead 407 * is likely to save. The admin can still enable it through /sys. 408 */ 409 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 410 transparent_hugepage_flags = 0; 411 return 0; 412 } 413 414 err = start_stop_khugepaged(); 415 if (err) 416 goto err_khugepaged; 417 418 return 0; 419 err_khugepaged: 420 unregister_shrinker(&deferred_split_shrinker); 421 err_split_shrinker: 422 unregister_shrinker(&huge_zero_page_shrinker); 423 err_hzp_shrinker: 424 khugepaged_destroy(); 425 err_slab: 426 hugepage_exit_sysfs(hugepage_kobj); 427 err_sysfs: 428 return err; 429 } 430 subsys_initcall(hugepage_init); 431 432 static int __init setup_transparent_hugepage(char *str) 433 { 434 int ret = 0; 435 if (!str) 436 goto out; 437 if (!strcmp(str, "always")) { 438 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 439 &transparent_hugepage_flags); 440 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 441 &transparent_hugepage_flags); 442 ret = 1; 443 } else if (!strcmp(str, "madvise")) { 444 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 445 &transparent_hugepage_flags); 446 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 447 &transparent_hugepage_flags); 448 ret = 1; 449 } else if (!strcmp(str, "never")) { 450 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 451 &transparent_hugepage_flags); 452 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 453 &transparent_hugepage_flags); 454 ret = 1; 455 } 456 out: 457 if (!ret) 458 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 459 return ret; 460 } 461 __setup("transparent_hugepage=", setup_transparent_hugepage); 462 463 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 464 { 465 if (likely(vma->vm_flags & VM_WRITE)) 466 pmd = pmd_mkwrite(pmd); 467 return pmd; 468 } 469 470 #ifdef CONFIG_MEMCG 471 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 472 { 473 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup; 474 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 475 476 if (memcg) 477 return &memcg->deferred_split_queue; 478 else 479 return &pgdat->deferred_split_queue; 480 } 481 #else 482 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 483 { 484 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 485 486 return &pgdat->deferred_split_queue; 487 } 488 #endif 489 490 void prep_transhuge_page(struct page *page) 491 { 492 /* 493 * we use page->mapping and page->indexlru in second tail page 494 * as list_head: assuming THP order >= 2 495 */ 496 497 INIT_LIST_HEAD(page_deferred_list(page)); 498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 499 } 500 501 bool is_transparent_hugepage(struct page *page) 502 { 503 if (!PageCompound(page)) 504 return false; 505 506 page = compound_head(page); 507 return is_huge_zero_page(page) || 508 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR; 509 } 510 EXPORT_SYMBOL_GPL(is_transparent_hugepage); 511 512 static unsigned long __thp_get_unmapped_area(struct file *filp, 513 unsigned long addr, unsigned long len, 514 loff_t off, unsigned long flags, unsigned long size) 515 { 516 loff_t off_end = off + len; 517 loff_t off_align = round_up(off, size); 518 unsigned long len_pad, ret; 519 520 if (off_end <= off_align || (off_end - off_align) < size) 521 return 0; 522 523 len_pad = len + size; 524 if (len_pad < len || (off + len_pad) < off) 525 return 0; 526 527 ret = current->mm->get_unmapped_area(filp, addr, len_pad, 528 off >> PAGE_SHIFT, flags); 529 530 /* 531 * The failure might be due to length padding. The caller will retry 532 * without the padding. 533 */ 534 if (IS_ERR_VALUE(ret)) 535 return 0; 536 537 /* 538 * Do not try to align to THP boundary if allocation at the address 539 * hint succeeds. 540 */ 541 if (ret == addr) 542 return addr; 543 544 ret += (off - ret) & (size - 1); 545 return ret; 546 } 547 548 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 549 unsigned long len, unsigned long pgoff, unsigned long flags) 550 { 551 unsigned long ret; 552 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 553 554 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) 555 goto out; 556 557 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); 558 if (ret) 559 return ret; 560 out: 561 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 562 } 563 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 564 565 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 566 struct page *page, gfp_t gfp) 567 { 568 struct vm_area_struct *vma = vmf->vma; 569 pgtable_t pgtable; 570 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 571 vm_fault_t ret = 0; 572 573 VM_BUG_ON_PAGE(!PageCompound(page), page); 574 575 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) { 576 put_page(page); 577 count_vm_event(THP_FAULT_FALLBACK); 578 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 579 return VM_FAULT_FALLBACK; 580 } 581 cgroup_throttle_swaprate(page, gfp); 582 583 pgtable = pte_alloc_one(vma->vm_mm); 584 if (unlikely(!pgtable)) { 585 ret = VM_FAULT_OOM; 586 goto release; 587 } 588 589 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 590 /* 591 * The memory barrier inside __SetPageUptodate makes sure that 592 * clear_huge_page writes become visible before the set_pmd_at() 593 * write. 594 */ 595 __SetPageUptodate(page); 596 597 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 598 if (unlikely(!pmd_none(*vmf->pmd))) { 599 goto unlock_release; 600 } else { 601 pmd_t entry; 602 603 ret = check_stable_address_space(vma->vm_mm); 604 if (ret) 605 goto unlock_release; 606 607 /* Deliver the page fault to userland */ 608 if (userfaultfd_missing(vma)) { 609 vm_fault_t ret2; 610 611 spin_unlock(vmf->ptl); 612 put_page(page); 613 pte_free(vma->vm_mm, pgtable); 614 ret2 = handle_userfault(vmf, VM_UFFD_MISSING); 615 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK); 616 return ret2; 617 } 618 619 entry = mk_huge_pmd(page, vma->vm_page_prot); 620 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 621 page_add_new_anon_rmap(page, vma, haddr, true); 622 lru_cache_add_inactive_or_unevictable(page, vma); 623 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 624 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 625 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 626 mm_inc_nr_ptes(vma->vm_mm); 627 spin_unlock(vmf->ptl); 628 count_vm_event(THP_FAULT_ALLOC); 629 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 630 } 631 632 return 0; 633 unlock_release: 634 spin_unlock(vmf->ptl); 635 release: 636 if (pgtable) 637 pte_free(vma->vm_mm, pgtable); 638 put_page(page); 639 return ret; 640 641 } 642 643 /* 644 * always: directly stall for all thp allocations 645 * defer: wake kswapd and fail if not immediately available 646 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 647 * fail if not immediately available 648 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 649 * available 650 * never: never stall for any thp allocation 651 */ 652 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) 653 { 654 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); 655 656 /* Always do synchronous compaction */ 657 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 658 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 659 660 /* Kick kcompactd and fail quickly */ 661 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 662 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 663 664 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 665 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 666 return GFP_TRANSHUGE_LIGHT | 667 (vma_madvised ? __GFP_DIRECT_RECLAIM : 668 __GFP_KSWAPD_RECLAIM); 669 670 /* Only do synchronous compaction if madvised */ 671 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 672 return GFP_TRANSHUGE_LIGHT | 673 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 674 675 return GFP_TRANSHUGE_LIGHT; 676 } 677 678 /* Caller must hold page table lock. */ 679 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 680 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 681 struct page *zero_page) 682 { 683 pmd_t entry; 684 if (!pmd_none(*pmd)) 685 return false; 686 entry = mk_pmd(zero_page, vma->vm_page_prot); 687 entry = pmd_mkhuge(entry); 688 if (pgtable) 689 pgtable_trans_huge_deposit(mm, pmd, pgtable); 690 set_pmd_at(mm, haddr, pmd, entry); 691 mm_inc_nr_ptes(mm); 692 return true; 693 } 694 695 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 696 { 697 struct vm_area_struct *vma = vmf->vma; 698 gfp_t gfp; 699 struct page *page; 700 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 701 702 if (!transhuge_vma_suitable(vma, haddr)) 703 return VM_FAULT_FALLBACK; 704 if (unlikely(anon_vma_prepare(vma))) 705 return VM_FAULT_OOM; 706 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 707 return VM_FAULT_OOM; 708 if (!(vmf->flags & FAULT_FLAG_WRITE) && 709 !mm_forbids_zeropage(vma->vm_mm) && 710 transparent_hugepage_use_zero_page()) { 711 pgtable_t pgtable; 712 struct page *zero_page; 713 bool set; 714 vm_fault_t ret; 715 pgtable = pte_alloc_one(vma->vm_mm); 716 if (unlikely(!pgtable)) 717 return VM_FAULT_OOM; 718 zero_page = mm_get_huge_zero_page(vma->vm_mm); 719 if (unlikely(!zero_page)) { 720 pte_free(vma->vm_mm, pgtable); 721 count_vm_event(THP_FAULT_FALLBACK); 722 return VM_FAULT_FALLBACK; 723 } 724 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 725 ret = 0; 726 set = false; 727 if (pmd_none(*vmf->pmd)) { 728 ret = check_stable_address_space(vma->vm_mm); 729 if (ret) { 730 spin_unlock(vmf->ptl); 731 } else if (userfaultfd_missing(vma)) { 732 spin_unlock(vmf->ptl); 733 ret = handle_userfault(vmf, VM_UFFD_MISSING); 734 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 735 } else { 736 set_huge_zero_page(pgtable, vma->vm_mm, vma, 737 haddr, vmf->pmd, zero_page); 738 spin_unlock(vmf->ptl); 739 set = true; 740 } 741 } else 742 spin_unlock(vmf->ptl); 743 if (!set) 744 pte_free(vma->vm_mm, pgtable); 745 return ret; 746 } 747 gfp = alloc_hugepage_direct_gfpmask(vma); 748 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 749 if (unlikely(!page)) { 750 count_vm_event(THP_FAULT_FALLBACK); 751 return VM_FAULT_FALLBACK; 752 } 753 prep_transhuge_page(page); 754 return __do_huge_pmd_anonymous_page(vmf, page, gfp); 755 } 756 757 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 758 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 759 pgtable_t pgtable) 760 { 761 struct mm_struct *mm = vma->vm_mm; 762 pmd_t entry; 763 spinlock_t *ptl; 764 765 ptl = pmd_lock(mm, pmd); 766 if (!pmd_none(*pmd)) { 767 if (write) { 768 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 769 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 770 goto out_unlock; 771 } 772 entry = pmd_mkyoung(*pmd); 773 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 774 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 775 update_mmu_cache_pmd(vma, addr, pmd); 776 } 777 778 goto out_unlock; 779 } 780 781 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 782 if (pfn_t_devmap(pfn)) 783 entry = pmd_mkdevmap(entry); 784 if (write) { 785 entry = pmd_mkyoung(pmd_mkdirty(entry)); 786 entry = maybe_pmd_mkwrite(entry, vma); 787 } 788 789 if (pgtable) { 790 pgtable_trans_huge_deposit(mm, pmd, pgtable); 791 mm_inc_nr_ptes(mm); 792 pgtable = NULL; 793 } 794 795 set_pmd_at(mm, addr, pmd, entry); 796 update_mmu_cache_pmd(vma, addr, pmd); 797 798 out_unlock: 799 spin_unlock(ptl); 800 if (pgtable) 801 pte_free(mm, pgtable); 802 } 803 804 /** 805 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn 806 * @vmf: Structure describing the fault 807 * @pfn: pfn to insert 808 * @pgprot: page protection to use 809 * @write: whether it's a write fault 810 * 811 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and 812 * also consult the vmf_insert_mixed_prot() documentation when 813 * @pgprot != @vmf->vma->vm_page_prot. 814 * 815 * Return: vm_fault_t value. 816 */ 817 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn, 818 pgprot_t pgprot, bool write) 819 { 820 unsigned long addr = vmf->address & PMD_MASK; 821 struct vm_area_struct *vma = vmf->vma; 822 pgtable_t pgtable = NULL; 823 824 /* 825 * If we had pmd_special, we could avoid all these restrictions, 826 * but we need to be consistent with PTEs and architectures that 827 * can't support a 'special' bit. 828 */ 829 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 830 !pfn_t_devmap(pfn)); 831 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 832 (VM_PFNMAP|VM_MIXEDMAP)); 833 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 834 835 if (addr < vma->vm_start || addr >= vma->vm_end) 836 return VM_FAULT_SIGBUS; 837 838 if (arch_needs_pgtable_deposit()) { 839 pgtable = pte_alloc_one(vma->vm_mm); 840 if (!pgtable) 841 return VM_FAULT_OOM; 842 } 843 844 track_pfn_insert(vma, &pgprot, pfn); 845 846 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 847 return VM_FAULT_NOPAGE; 848 } 849 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot); 850 851 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 852 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 853 { 854 if (likely(vma->vm_flags & VM_WRITE)) 855 pud = pud_mkwrite(pud); 856 return pud; 857 } 858 859 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 860 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 861 { 862 struct mm_struct *mm = vma->vm_mm; 863 pud_t entry; 864 spinlock_t *ptl; 865 866 ptl = pud_lock(mm, pud); 867 if (!pud_none(*pud)) { 868 if (write) { 869 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 870 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 871 goto out_unlock; 872 } 873 entry = pud_mkyoung(*pud); 874 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 875 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 876 update_mmu_cache_pud(vma, addr, pud); 877 } 878 goto out_unlock; 879 } 880 881 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 882 if (pfn_t_devmap(pfn)) 883 entry = pud_mkdevmap(entry); 884 if (write) { 885 entry = pud_mkyoung(pud_mkdirty(entry)); 886 entry = maybe_pud_mkwrite(entry, vma); 887 } 888 set_pud_at(mm, addr, pud, entry); 889 update_mmu_cache_pud(vma, addr, pud); 890 891 out_unlock: 892 spin_unlock(ptl); 893 } 894 895 /** 896 * vmf_insert_pfn_pud_prot - insert a pud size pfn 897 * @vmf: Structure describing the fault 898 * @pfn: pfn to insert 899 * @pgprot: page protection to use 900 * @write: whether it's a write fault 901 * 902 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and 903 * also consult the vmf_insert_mixed_prot() documentation when 904 * @pgprot != @vmf->vma->vm_page_prot. 905 * 906 * Return: vm_fault_t value. 907 */ 908 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn, 909 pgprot_t pgprot, bool write) 910 { 911 unsigned long addr = vmf->address & PUD_MASK; 912 struct vm_area_struct *vma = vmf->vma; 913 914 /* 915 * If we had pud_special, we could avoid all these restrictions, 916 * but we need to be consistent with PTEs and architectures that 917 * can't support a 'special' bit. 918 */ 919 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 920 !pfn_t_devmap(pfn)); 921 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 922 (VM_PFNMAP|VM_MIXEDMAP)); 923 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 924 925 if (addr < vma->vm_start || addr >= vma->vm_end) 926 return VM_FAULT_SIGBUS; 927 928 track_pfn_insert(vma, &pgprot, pfn); 929 930 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write); 931 return VM_FAULT_NOPAGE; 932 } 933 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot); 934 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 935 936 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 937 pmd_t *pmd, int flags) 938 { 939 pmd_t _pmd; 940 941 _pmd = pmd_mkyoung(*pmd); 942 if (flags & FOLL_WRITE) 943 _pmd = pmd_mkdirty(_pmd); 944 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 945 pmd, _pmd, flags & FOLL_WRITE)) 946 update_mmu_cache_pmd(vma, addr, pmd); 947 } 948 949 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 950 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 951 { 952 unsigned long pfn = pmd_pfn(*pmd); 953 struct mm_struct *mm = vma->vm_mm; 954 struct page *page; 955 956 assert_spin_locked(pmd_lockptr(mm, pmd)); 957 958 /* 959 * When we COW a devmap PMD entry, we split it into PTEs, so we should 960 * not be in this function with `flags & FOLL_COW` set. 961 */ 962 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); 963 964 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 965 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 966 (FOLL_PIN | FOLL_GET))) 967 return NULL; 968 969 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 970 return NULL; 971 972 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 973 /* pass */; 974 else 975 return NULL; 976 977 if (flags & FOLL_TOUCH) 978 touch_pmd(vma, addr, pmd, flags); 979 980 /* 981 * device mapped pages can only be returned if the 982 * caller will manage the page reference count. 983 */ 984 if (!(flags & (FOLL_GET | FOLL_PIN))) 985 return ERR_PTR(-EEXIST); 986 987 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 988 *pgmap = get_dev_pagemap(pfn, *pgmap); 989 if (!*pgmap) 990 return ERR_PTR(-EFAULT); 991 page = pfn_to_page(pfn); 992 if (!try_grab_page(page, flags)) 993 page = ERR_PTR(-ENOMEM); 994 995 return page; 996 } 997 998 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 999 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1000 struct vm_area_struct *vma) 1001 { 1002 spinlock_t *dst_ptl, *src_ptl; 1003 struct page *src_page; 1004 pmd_t pmd; 1005 pgtable_t pgtable = NULL; 1006 int ret = -ENOMEM; 1007 1008 /* Skip if can be re-fill on fault */ 1009 if (!vma_is_anonymous(vma)) 1010 return 0; 1011 1012 pgtable = pte_alloc_one(dst_mm); 1013 if (unlikely(!pgtable)) 1014 goto out; 1015 1016 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1017 src_ptl = pmd_lockptr(src_mm, src_pmd); 1018 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1019 1020 ret = -EAGAIN; 1021 pmd = *src_pmd; 1022 1023 /* 1024 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA 1025 * does not have the VM_UFFD_WP, which means that the uffd 1026 * fork event is not enabled. 1027 */ 1028 if (!(vma->vm_flags & VM_UFFD_WP)) 1029 pmd = pmd_clear_uffd_wp(pmd); 1030 1031 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1032 if (unlikely(is_swap_pmd(pmd))) { 1033 swp_entry_t entry = pmd_to_swp_entry(pmd); 1034 1035 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1036 if (is_write_migration_entry(entry)) { 1037 make_migration_entry_read(&entry); 1038 pmd = swp_entry_to_pmd(entry); 1039 if (pmd_swp_soft_dirty(*src_pmd)) 1040 pmd = pmd_swp_mksoft_dirty(pmd); 1041 set_pmd_at(src_mm, addr, src_pmd, pmd); 1042 } 1043 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1044 mm_inc_nr_ptes(dst_mm); 1045 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1046 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1047 ret = 0; 1048 goto out_unlock; 1049 } 1050 #endif 1051 1052 if (unlikely(!pmd_trans_huge(pmd))) { 1053 pte_free(dst_mm, pgtable); 1054 goto out_unlock; 1055 } 1056 /* 1057 * When page table lock is held, the huge zero pmd should not be 1058 * under splitting since we don't split the page itself, only pmd to 1059 * a page table. 1060 */ 1061 if (is_huge_zero_pmd(pmd)) { 1062 struct page *zero_page; 1063 /* 1064 * get_huge_zero_page() will never allocate a new page here, 1065 * since we already have a zero page to copy. It just takes a 1066 * reference. 1067 */ 1068 zero_page = mm_get_huge_zero_page(dst_mm); 1069 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 1070 zero_page); 1071 ret = 0; 1072 goto out_unlock; 1073 } 1074 1075 src_page = pmd_page(pmd); 1076 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1077 get_page(src_page); 1078 page_dup_rmap(src_page, true); 1079 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1080 mm_inc_nr_ptes(dst_mm); 1081 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1082 1083 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1084 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1085 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1086 1087 ret = 0; 1088 out_unlock: 1089 spin_unlock(src_ptl); 1090 spin_unlock(dst_ptl); 1091 out: 1092 return ret; 1093 } 1094 1095 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1096 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1097 pud_t *pud, int flags) 1098 { 1099 pud_t _pud; 1100 1101 _pud = pud_mkyoung(*pud); 1102 if (flags & FOLL_WRITE) 1103 _pud = pud_mkdirty(_pud); 1104 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1105 pud, _pud, flags & FOLL_WRITE)) 1106 update_mmu_cache_pud(vma, addr, pud); 1107 } 1108 1109 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1110 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1111 { 1112 unsigned long pfn = pud_pfn(*pud); 1113 struct mm_struct *mm = vma->vm_mm; 1114 struct page *page; 1115 1116 assert_spin_locked(pud_lockptr(mm, pud)); 1117 1118 if (flags & FOLL_WRITE && !pud_write(*pud)) 1119 return NULL; 1120 1121 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 1122 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 1123 (FOLL_PIN | FOLL_GET))) 1124 return NULL; 1125 1126 if (pud_present(*pud) && pud_devmap(*pud)) 1127 /* pass */; 1128 else 1129 return NULL; 1130 1131 if (flags & FOLL_TOUCH) 1132 touch_pud(vma, addr, pud, flags); 1133 1134 /* 1135 * device mapped pages can only be returned if the 1136 * caller will manage the page reference count. 1137 * 1138 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: 1139 */ 1140 if (!(flags & (FOLL_GET | FOLL_PIN))) 1141 return ERR_PTR(-EEXIST); 1142 1143 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1144 *pgmap = get_dev_pagemap(pfn, *pgmap); 1145 if (!*pgmap) 1146 return ERR_PTR(-EFAULT); 1147 page = pfn_to_page(pfn); 1148 if (!try_grab_page(page, flags)) 1149 page = ERR_PTR(-ENOMEM); 1150 1151 return page; 1152 } 1153 1154 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1155 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1156 struct vm_area_struct *vma) 1157 { 1158 spinlock_t *dst_ptl, *src_ptl; 1159 pud_t pud; 1160 int ret; 1161 1162 dst_ptl = pud_lock(dst_mm, dst_pud); 1163 src_ptl = pud_lockptr(src_mm, src_pud); 1164 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1165 1166 ret = -EAGAIN; 1167 pud = *src_pud; 1168 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1169 goto out_unlock; 1170 1171 /* 1172 * When page table lock is held, the huge zero pud should not be 1173 * under splitting since we don't split the page itself, only pud to 1174 * a page table. 1175 */ 1176 if (is_huge_zero_pud(pud)) { 1177 /* No huge zero pud yet */ 1178 } 1179 1180 pudp_set_wrprotect(src_mm, addr, src_pud); 1181 pud = pud_mkold(pud_wrprotect(pud)); 1182 set_pud_at(dst_mm, addr, dst_pud, pud); 1183 1184 ret = 0; 1185 out_unlock: 1186 spin_unlock(src_ptl); 1187 spin_unlock(dst_ptl); 1188 return ret; 1189 } 1190 1191 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1192 { 1193 pud_t entry; 1194 unsigned long haddr; 1195 bool write = vmf->flags & FAULT_FLAG_WRITE; 1196 1197 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1198 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1199 goto unlock; 1200 1201 entry = pud_mkyoung(orig_pud); 1202 if (write) 1203 entry = pud_mkdirty(entry); 1204 haddr = vmf->address & HPAGE_PUD_MASK; 1205 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write)) 1206 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud); 1207 1208 unlock: 1209 spin_unlock(vmf->ptl); 1210 } 1211 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1212 1213 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd) 1214 { 1215 pmd_t entry; 1216 unsigned long haddr; 1217 bool write = vmf->flags & FAULT_FLAG_WRITE; 1218 1219 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1220 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1221 goto unlock; 1222 1223 entry = pmd_mkyoung(orig_pmd); 1224 if (write) 1225 entry = pmd_mkdirty(entry); 1226 haddr = vmf->address & HPAGE_PMD_MASK; 1227 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) 1228 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); 1229 1230 unlock: 1231 spin_unlock(vmf->ptl); 1232 } 1233 1234 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd) 1235 { 1236 struct vm_area_struct *vma = vmf->vma; 1237 struct page *page; 1238 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1239 1240 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1241 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1242 1243 if (is_huge_zero_pmd(orig_pmd)) 1244 goto fallback; 1245 1246 spin_lock(vmf->ptl); 1247 1248 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1249 spin_unlock(vmf->ptl); 1250 return 0; 1251 } 1252 1253 page = pmd_page(orig_pmd); 1254 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 1255 1256 /* Lock page for reuse_swap_page() */ 1257 if (!trylock_page(page)) { 1258 get_page(page); 1259 spin_unlock(vmf->ptl); 1260 lock_page(page); 1261 spin_lock(vmf->ptl); 1262 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1263 spin_unlock(vmf->ptl); 1264 unlock_page(page); 1265 put_page(page); 1266 return 0; 1267 } 1268 put_page(page); 1269 } 1270 1271 /* 1272 * We can only reuse the page if nobody else maps the huge page or it's 1273 * part. 1274 */ 1275 if (reuse_swap_page(page, NULL)) { 1276 pmd_t entry; 1277 entry = pmd_mkyoung(orig_pmd); 1278 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1279 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1280 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1281 unlock_page(page); 1282 spin_unlock(vmf->ptl); 1283 return VM_FAULT_WRITE; 1284 } 1285 1286 unlock_page(page); 1287 spin_unlock(vmf->ptl); 1288 fallback: 1289 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1290 return VM_FAULT_FALLBACK; 1291 } 1292 1293 /* 1294 * FOLL_FORCE or a forced COW break can write even to unwritable pmd's, 1295 * but only after we've gone through a COW cycle and they are dirty. 1296 */ 1297 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) 1298 { 1299 return pmd_write(pmd) || ((flags & FOLL_COW) && pmd_dirty(pmd)); 1300 } 1301 1302 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1303 unsigned long addr, 1304 pmd_t *pmd, 1305 unsigned int flags) 1306 { 1307 struct mm_struct *mm = vma->vm_mm; 1308 struct page *page = NULL; 1309 1310 assert_spin_locked(pmd_lockptr(mm, pmd)); 1311 1312 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) 1313 goto out; 1314 1315 /* Avoid dumping huge zero page */ 1316 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1317 return ERR_PTR(-EFAULT); 1318 1319 /* Full NUMA hinting faults to serialise migration in fault paths */ 1320 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1321 goto out; 1322 1323 page = pmd_page(*pmd); 1324 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1325 1326 if (!try_grab_page(page, flags)) 1327 return ERR_PTR(-ENOMEM); 1328 1329 if (flags & FOLL_TOUCH) 1330 touch_pmd(vma, addr, pmd, flags); 1331 1332 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1333 /* 1334 * We don't mlock() pte-mapped THPs. This way we can avoid 1335 * leaking mlocked pages into non-VM_LOCKED VMAs. 1336 * 1337 * For anon THP: 1338 * 1339 * In most cases the pmd is the only mapping of the page as we 1340 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1341 * writable private mappings in populate_vma_page_range(). 1342 * 1343 * The only scenario when we have the page shared here is if we 1344 * mlocking read-only mapping shared over fork(). We skip 1345 * mlocking such pages. 1346 * 1347 * For file THP: 1348 * 1349 * We can expect PageDoubleMap() to be stable under page lock: 1350 * for file pages we set it in page_add_file_rmap(), which 1351 * requires page to be locked. 1352 */ 1353 1354 if (PageAnon(page) && compound_mapcount(page) != 1) 1355 goto skip_mlock; 1356 if (PageDoubleMap(page) || !page->mapping) 1357 goto skip_mlock; 1358 if (!trylock_page(page)) 1359 goto skip_mlock; 1360 if (page->mapping && !PageDoubleMap(page)) 1361 mlock_vma_page(page); 1362 unlock_page(page); 1363 } 1364 skip_mlock: 1365 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1366 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1367 1368 out: 1369 return page; 1370 } 1371 1372 /* NUMA hinting page fault entry point for trans huge pmds */ 1373 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd) 1374 { 1375 struct vm_area_struct *vma = vmf->vma; 1376 struct anon_vma *anon_vma = NULL; 1377 struct page *page; 1378 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1379 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id(); 1380 int target_nid, last_cpupid = -1; 1381 bool page_locked; 1382 bool migrated = false; 1383 bool was_writable; 1384 int flags = 0; 1385 1386 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1387 if (unlikely(!pmd_same(pmd, *vmf->pmd))) 1388 goto out_unlock; 1389 1390 /* 1391 * If there are potential migrations, wait for completion and retry 1392 * without disrupting NUMA hinting information. Do not relock and 1393 * check_same as the page may no longer be mapped. 1394 */ 1395 if (unlikely(pmd_trans_migrating(*vmf->pmd))) { 1396 page = pmd_page(*vmf->pmd); 1397 if (!get_page_unless_zero(page)) 1398 goto out_unlock; 1399 spin_unlock(vmf->ptl); 1400 put_and_wait_on_page_locked(page); 1401 goto out; 1402 } 1403 1404 page = pmd_page(pmd); 1405 BUG_ON(is_huge_zero_page(page)); 1406 page_nid = page_to_nid(page); 1407 last_cpupid = page_cpupid_last(page); 1408 count_vm_numa_event(NUMA_HINT_FAULTS); 1409 if (page_nid == this_nid) { 1410 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1411 flags |= TNF_FAULT_LOCAL; 1412 } 1413 1414 /* See similar comment in do_numa_page for explanation */ 1415 if (!pmd_savedwrite(pmd)) 1416 flags |= TNF_NO_GROUP; 1417 1418 /* 1419 * Acquire the page lock to serialise THP migrations but avoid dropping 1420 * page_table_lock if at all possible 1421 */ 1422 page_locked = trylock_page(page); 1423 target_nid = mpol_misplaced(page, vma, haddr); 1424 if (target_nid == NUMA_NO_NODE) { 1425 /* If the page was locked, there are no parallel migrations */ 1426 if (page_locked) 1427 goto clear_pmdnuma; 1428 } 1429 1430 /* Migration could have started since the pmd_trans_migrating check */ 1431 if (!page_locked) { 1432 page_nid = NUMA_NO_NODE; 1433 if (!get_page_unless_zero(page)) 1434 goto out_unlock; 1435 spin_unlock(vmf->ptl); 1436 put_and_wait_on_page_locked(page); 1437 goto out; 1438 } 1439 1440 /* 1441 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1442 * to serialises splits 1443 */ 1444 get_page(page); 1445 spin_unlock(vmf->ptl); 1446 anon_vma = page_lock_anon_vma_read(page); 1447 1448 /* Confirm the PMD did not change while page_table_lock was released */ 1449 spin_lock(vmf->ptl); 1450 if (unlikely(!pmd_same(pmd, *vmf->pmd))) { 1451 unlock_page(page); 1452 put_page(page); 1453 page_nid = NUMA_NO_NODE; 1454 goto out_unlock; 1455 } 1456 1457 /* Bail if we fail to protect against THP splits for any reason */ 1458 if (unlikely(!anon_vma)) { 1459 put_page(page); 1460 page_nid = NUMA_NO_NODE; 1461 goto clear_pmdnuma; 1462 } 1463 1464 /* 1465 * Since we took the NUMA fault, we must have observed the !accessible 1466 * bit. Make sure all other CPUs agree with that, to avoid them 1467 * modifying the page we're about to migrate. 1468 * 1469 * Must be done under PTL such that we'll observe the relevant 1470 * inc_tlb_flush_pending(). 1471 * 1472 * We are not sure a pending tlb flush here is for a huge page 1473 * mapping or not. Hence use the tlb range variant 1474 */ 1475 if (mm_tlb_flush_pending(vma->vm_mm)) { 1476 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE); 1477 /* 1478 * change_huge_pmd() released the pmd lock before 1479 * invalidating the secondary MMUs sharing the primary 1480 * MMU pagetables (with ->invalidate_range()). The 1481 * mmu_notifier_invalidate_range_end() (which 1482 * internally calls ->invalidate_range()) in 1483 * change_pmd_range() will run after us, so we can't 1484 * rely on it here and we need an explicit invalidate. 1485 */ 1486 mmu_notifier_invalidate_range(vma->vm_mm, haddr, 1487 haddr + HPAGE_PMD_SIZE); 1488 } 1489 1490 /* 1491 * Migrate the THP to the requested node, returns with page unlocked 1492 * and access rights restored. 1493 */ 1494 spin_unlock(vmf->ptl); 1495 1496 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, 1497 vmf->pmd, pmd, vmf->address, page, target_nid); 1498 if (migrated) { 1499 flags |= TNF_MIGRATED; 1500 page_nid = target_nid; 1501 } else 1502 flags |= TNF_MIGRATE_FAIL; 1503 1504 goto out; 1505 clear_pmdnuma: 1506 BUG_ON(!PageLocked(page)); 1507 was_writable = pmd_savedwrite(pmd); 1508 pmd = pmd_modify(pmd, vma->vm_page_prot); 1509 pmd = pmd_mkyoung(pmd); 1510 if (was_writable) 1511 pmd = pmd_mkwrite(pmd); 1512 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1513 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1514 unlock_page(page); 1515 out_unlock: 1516 spin_unlock(vmf->ptl); 1517 1518 out: 1519 if (anon_vma) 1520 page_unlock_anon_vma_read(anon_vma); 1521 1522 if (page_nid != NUMA_NO_NODE) 1523 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1524 flags); 1525 1526 return 0; 1527 } 1528 1529 /* 1530 * Return true if we do MADV_FREE successfully on entire pmd page. 1531 * Otherwise, return false. 1532 */ 1533 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1534 pmd_t *pmd, unsigned long addr, unsigned long next) 1535 { 1536 spinlock_t *ptl; 1537 pmd_t orig_pmd; 1538 struct page *page; 1539 struct mm_struct *mm = tlb->mm; 1540 bool ret = false; 1541 1542 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1543 1544 ptl = pmd_trans_huge_lock(pmd, vma); 1545 if (!ptl) 1546 goto out_unlocked; 1547 1548 orig_pmd = *pmd; 1549 if (is_huge_zero_pmd(orig_pmd)) 1550 goto out; 1551 1552 if (unlikely(!pmd_present(orig_pmd))) { 1553 VM_BUG_ON(thp_migration_supported() && 1554 !is_pmd_migration_entry(orig_pmd)); 1555 goto out; 1556 } 1557 1558 page = pmd_page(orig_pmd); 1559 /* 1560 * If other processes are mapping this page, we couldn't discard 1561 * the page unless they all do MADV_FREE so let's skip the page. 1562 */ 1563 if (page_mapcount(page) != 1) 1564 goto out; 1565 1566 if (!trylock_page(page)) 1567 goto out; 1568 1569 /* 1570 * If user want to discard part-pages of THP, split it so MADV_FREE 1571 * will deactivate only them. 1572 */ 1573 if (next - addr != HPAGE_PMD_SIZE) { 1574 get_page(page); 1575 spin_unlock(ptl); 1576 split_huge_page(page); 1577 unlock_page(page); 1578 put_page(page); 1579 goto out_unlocked; 1580 } 1581 1582 if (PageDirty(page)) 1583 ClearPageDirty(page); 1584 unlock_page(page); 1585 1586 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1587 pmdp_invalidate(vma, addr, pmd); 1588 orig_pmd = pmd_mkold(orig_pmd); 1589 orig_pmd = pmd_mkclean(orig_pmd); 1590 1591 set_pmd_at(mm, addr, pmd, orig_pmd); 1592 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1593 } 1594 1595 mark_page_lazyfree(page); 1596 ret = true; 1597 out: 1598 spin_unlock(ptl); 1599 out_unlocked: 1600 return ret; 1601 } 1602 1603 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1604 { 1605 pgtable_t pgtable; 1606 1607 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1608 pte_free(mm, pgtable); 1609 mm_dec_nr_ptes(mm); 1610 } 1611 1612 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1613 pmd_t *pmd, unsigned long addr) 1614 { 1615 pmd_t orig_pmd; 1616 spinlock_t *ptl; 1617 1618 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1619 1620 ptl = __pmd_trans_huge_lock(pmd, vma); 1621 if (!ptl) 1622 return 0; 1623 /* 1624 * For architectures like ppc64 we look at deposited pgtable 1625 * when calling pmdp_huge_get_and_clear. So do the 1626 * pgtable_trans_huge_withdraw after finishing pmdp related 1627 * operations. 1628 */ 1629 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1630 tlb->fullmm); 1631 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1632 if (vma_is_special_huge(vma)) { 1633 if (arch_needs_pgtable_deposit()) 1634 zap_deposited_table(tlb->mm, pmd); 1635 spin_unlock(ptl); 1636 if (is_huge_zero_pmd(orig_pmd)) 1637 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1638 } else if (is_huge_zero_pmd(orig_pmd)) { 1639 zap_deposited_table(tlb->mm, pmd); 1640 spin_unlock(ptl); 1641 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1642 } else { 1643 struct page *page = NULL; 1644 int flush_needed = 1; 1645 1646 if (pmd_present(orig_pmd)) { 1647 page = pmd_page(orig_pmd); 1648 page_remove_rmap(page, true); 1649 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1650 VM_BUG_ON_PAGE(!PageHead(page), page); 1651 } else if (thp_migration_supported()) { 1652 swp_entry_t entry; 1653 1654 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1655 entry = pmd_to_swp_entry(orig_pmd); 1656 page = pfn_to_page(swp_offset(entry)); 1657 flush_needed = 0; 1658 } else 1659 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1660 1661 if (PageAnon(page)) { 1662 zap_deposited_table(tlb->mm, pmd); 1663 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1664 } else { 1665 if (arch_needs_pgtable_deposit()) 1666 zap_deposited_table(tlb->mm, pmd); 1667 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR); 1668 } 1669 1670 spin_unlock(ptl); 1671 if (flush_needed) 1672 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1673 } 1674 return 1; 1675 } 1676 1677 #ifndef pmd_move_must_withdraw 1678 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1679 spinlock_t *old_pmd_ptl, 1680 struct vm_area_struct *vma) 1681 { 1682 /* 1683 * With split pmd lock we also need to move preallocated 1684 * PTE page table if new_pmd is on different PMD page table. 1685 * 1686 * We also don't deposit and withdraw tables for file pages. 1687 */ 1688 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1689 } 1690 #endif 1691 1692 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1693 { 1694 #ifdef CONFIG_MEM_SOFT_DIRTY 1695 if (unlikely(is_pmd_migration_entry(pmd))) 1696 pmd = pmd_swp_mksoft_dirty(pmd); 1697 else if (pmd_present(pmd)) 1698 pmd = pmd_mksoft_dirty(pmd); 1699 #endif 1700 return pmd; 1701 } 1702 1703 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1704 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1705 { 1706 spinlock_t *old_ptl, *new_ptl; 1707 pmd_t pmd; 1708 struct mm_struct *mm = vma->vm_mm; 1709 bool force_flush = false; 1710 1711 /* 1712 * The destination pmd shouldn't be established, free_pgtables() 1713 * should have release it. 1714 */ 1715 if (WARN_ON(!pmd_none(*new_pmd))) { 1716 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1717 return false; 1718 } 1719 1720 /* 1721 * We don't have to worry about the ordering of src and dst 1722 * ptlocks because exclusive mmap_lock prevents deadlock. 1723 */ 1724 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1725 if (old_ptl) { 1726 new_ptl = pmd_lockptr(mm, new_pmd); 1727 if (new_ptl != old_ptl) 1728 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1729 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1730 if (pmd_present(pmd)) 1731 force_flush = true; 1732 VM_BUG_ON(!pmd_none(*new_pmd)); 1733 1734 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1735 pgtable_t pgtable; 1736 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1737 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1738 } 1739 pmd = move_soft_dirty_pmd(pmd); 1740 set_pmd_at(mm, new_addr, new_pmd, pmd); 1741 if (force_flush) 1742 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1743 if (new_ptl != old_ptl) 1744 spin_unlock(new_ptl); 1745 spin_unlock(old_ptl); 1746 return true; 1747 } 1748 return false; 1749 } 1750 1751 /* 1752 * Returns 1753 * - 0 if PMD could not be locked 1754 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1755 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1756 */ 1757 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1758 unsigned long addr, pgprot_t newprot, unsigned long cp_flags) 1759 { 1760 struct mm_struct *mm = vma->vm_mm; 1761 spinlock_t *ptl; 1762 pmd_t entry; 1763 bool preserve_write; 1764 int ret; 1765 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 1766 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 1767 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 1768 1769 ptl = __pmd_trans_huge_lock(pmd, vma); 1770 if (!ptl) 1771 return 0; 1772 1773 preserve_write = prot_numa && pmd_write(*pmd); 1774 ret = 1; 1775 1776 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1777 if (is_swap_pmd(*pmd)) { 1778 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1779 1780 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 1781 if (is_write_migration_entry(entry)) { 1782 pmd_t newpmd; 1783 /* 1784 * A protection check is difficult so 1785 * just be safe and disable write 1786 */ 1787 make_migration_entry_read(&entry); 1788 newpmd = swp_entry_to_pmd(entry); 1789 if (pmd_swp_soft_dirty(*pmd)) 1790 newpmd = pmd_swp_mksoft_dirty(newpmd); 1791 set_pmd_at(mm, addr, pmd, newpmd); 1792 } 1793 goto unlock; 1794 } 1795 #endif 1796 1797 /* 1798 * Avoid trapping faults against the zero page. The read-only 1799 * data is likely to be read-cached on the local CPU and 1800 * local/remote hits to the zero page are not interesting. 1801 */ 1802 if (prot_numa && is_huge_zero_pmd(*pmd)) 1803 goto unlock; 1804 1805 if (prot_numa && pmd_protnone(*pmd)) 1806 goto unlock; 1807 1808 /* 1809 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 1810 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 1811 * which is also under mmap_read_lock(mm): 1812 * 1813 * CPU0: CPU1: 1814 * change_huge_pmd(prot_numa=1) 1815 * pmdp_huge_get_and_clear_notify() 1816 * madvise_dontneed() 1817 * zap_pmd_range() 1818 * pmd_trans_huge(*pmd) == 0 (without ptl) 1819 * // skip the pmd 1820 * set_pmd_at(); 1821 * // pmd is re-established 1822 * 1823 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 1824 * which may break userspace. 1825 * 1826 * pmdp_invalidate() is required to make sure we don't miss 1827 * dirty/young flags set by hardware. 1828 */ 1829 entry = pmdp_invalidate(vma, addr, pmd); 1830 1831 entry = pmd_modify(entry, newprot); 1832 if (preserve_write) 1833 entry = pmd_mk_savedwrite(entry); 1834 if (uffd_wp) { 1835 entry = pmd_wrprotect(entry); 1836 entry = pmd_mkuffd_wp(entry); 1837 } else if (uffd_wp_resolve) { 1838 /* 1839 * Leave the write bit to be handled by PF interrupt 1840 * handler, then things like COW could be properly 1841 * handled. 1842 */ 1843 entry = pmd_clear_uffd_wp(entry); 1844 } 1845 ret = HPAGE_PMD_NR; 1846 set_pmd_at(mm, addr, pmd, entry); 1847 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry)); 1848 unlock: 1849 spin_unlock(ptl); 1850 return ret; 1851 } 1852 1853 /* 1854 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1855 * 1856 * Note that if it returns page table lock pointer, this routine returns without 1857 * unlocking page table lock. So callers must unlock it. 1858 */ 1859 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1860 { 1861 spinlock_t *ptl; 1862 ptl = pmd_lock(vma->vm_mm, pmd); 1863 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 1864 pmd_devmap(*pmd))) 1865 return ptl; 1866 spin_unlock(ptl); 1867 return NULL; 1868 } 1869 1870 /* 1871 * Returns true if a given pud maps a thp, false otherwise. 1872 * 1873 * Note that if it returns true, this routine returns without unlocking page 1874 * table lock. So callers must unlock it. 1875 */ 1876 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1877 { 1878 spinlock_t *ptl; 1879 1880 ptl = pud_lock(vma->vm_mm, pud); 1881 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1882 return ptl; 1883 spin_unlock(ptl); 1884 return NULL; 1885 } 1886 1887 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1888 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1889 pud_t *pud, unsigned long addr) 1890 { 1891 spinlock_t *ptl; 1892 1893 ptl = __pud_trans_huge_lock(pud, vma); 1894 if (!ptl) 1895 return 0; 1896 /* 1897 * For architectures like ppc64 we look at deposited pgtable 1898 * when calling pudp_huge_get_and_clear. So do the 1899 * pgtable_trans_huge_withdraw after finishing pudp related 1900 * operations. 1901 */ 1902 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm); 1903 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1904 if (vma_is_special_huge(vma)) { 1905 spin_unlock(ptl); 1906 /* No zero page support yet */ 1907 } else { 1908 /* No support for anonymous PUD pages yet */ 1909 BUG(); 1910 } 1911 return 1; 1912 } 1913 1914 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 1915 unsigned long haddr) 1916 { 1917 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 1918 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1919 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 1920 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 1921 1922 count_vm_event(THP_SPLIT_PUD); 1923 1924 pudp_huge_clear_flush_notify(vma, haddr, pud); 1925 } 1926 1927 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 1928 unsigned long address) 1929 { 1930 spinlock_t *ptl; 1931 struct mmu_notifier_range range; 1932 1933 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1934 address & HPAGE_PUD_MASK, 1935 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 1936 mmu_notifier_invalidate_range_start(&range); 1937 ptl = pud_lock(vma->vm_mm, pud); 1938 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 1939 goto out; 1940 __split_huge_pud_locked(vma, pud, range.start); 1941 1942 out: 1943 spin_unlock(ptl); 1944 /* 1945 * No need to double call mmu_notifier->invalidate_range() callback as 1946 * the above pudp_huge_clear_flush_notify() did already call it. 1947 */ 1948 mmu_notifier_invalidate_range_only_end(&range); 1949 } 1950 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1951 1952 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1953 unsigned long haddr, pmd_t *pmd) 1954 { 1955 struct mm_struct *mm = vma->vm_mm; 1956 pgtable_t pgtable; 1957 pmd_t _pmd; 1958 int i; 1959 1960 /* 1961 * Leave pmd empty until pte is filled note that it is fine to delay 1962 * notification until mmu_notifier_invalidate_range_end() as we are 1963 * replacing a zero pmd write protected page with a zero pte write 1964 * protected page. 1965 * 1966 * See Documentation/vm/mmu_notifier.rst 1967 */ 1968 pmdp_huge_clear_flush(vma, haddr, pmd); 1969 1970 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1971 pmd_populate(mm, &_pmd, pgtable); 1972 1973 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1974 pte_t *pte, entry; 1975 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 1976 entry = pte_mkspecial(entry); 1977 pte = pte_offset_map(&_pmd, haddr); 1978 VM_BUG_ON(!pte_none(*pte)); 1979 set_pte_at(mm, haddr, pte, entry); 1980 pte_unmap(pte); 1981 } 1982 smp_wmb(); /* make pte visible before pmd */ 1983 pmd_populate(mm, pmd, pgtable); 1984 } 1985 1986 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 1987 unsigned long haddr, bool freeze) 1988 { 1989 struct mm_struct *mm = vma->vm_mm; 1990 struct page *page; 1991 pgtable_t pgtable; 1992 pmd_t old_pmd, _pmd; 1993 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 1994 unsigned long addr; 1995 int i; 1996 1997 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 1998 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1999 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2000 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2001 && !pmd_devmap(*pmd)); 2002 2003 count_vm_event(THP_SPLIT_PMD); 2004 2005 if (!vma_is_anonymous(vma)) { 2006 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 2007 /* 2008 * We are going to unmap this huge page. So 2009 * just go ahead and zap it 2010 */ 2011 if (arch_needs_pgtable_deposit()) 2012 zap_deposited_table(mm, pmd); 2013 if (vma_is_special_huge(vma)) 2014 return; 2015 page = pmd_page(_pmd); 2016 if (!PageDirty(page) && pmd_dirty(_pmd)) 2017 set_page_dirty(page); 2018 if (!PageReferenced(page) && pmd_young(_pmd)) 2019 SetPageReferenced(page); 2020 page_remove_rmap(page, true); 2021 put_page(page); 2022 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR); 2023 return; 2024 } else if (is_huge_zero_pmd(*pmd)) { 2025 /* 2026 * FIXME: Do we want to invalidate secondary mmu by calling 2027 * mmu_notifier_invalidate_range() see comments below inside 2028 * __split_huge_pmd() ? 2029 * 2030 * We are going from a zero huge page write protected to zero 2031 * small page also write protected so it does not seems useful 2032 * to invalidate secondary mmu at this time. 2033 */ 2034 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2035 } 2036 2037 /* 2038 * Up to this point the pmd is present and huge and userland has the 2039 * whole access to the hugepage during the split (which happens in 2040 * place). If we overwrite the pmd with the not-huge version pointing 2041 * to the pte here (which of course we could if all CPUs were bug 2042 * free), userland could trigger a small page size TLB miss on the 2043 * small sized TLB while the hugepage TLB entry is still established in 2044 * the huge TLB. Some CPU doesn't like that. 2045 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2046 * 383 on page 105. Intel should be safe but is also warns that it's 2047 * only safe if the permission and cache attributes of the two entries 2048 * loaded in the two TLB is identical (which should be the case here). 2049 * But it is generally safer to never allow small and huge TLB entries 2050 * for the same virtual address to be loaded simultaneously. So instead 2051 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2052 * current pmd notpresent (atomically because here the pmd_trans_huge 2053 * must remain set at all times on the pmd until the split is complete 2054 * for this pmd), then we flush the SMP TLB and finally we write the 2055 * non-huge version of the pmd entry with pmd_populate. 2056 */ 2057 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2058 2059 pmd_migration = is_pmd_migration_entry(old_pmd); 2060 if (unlikely(pmd_migration)) { 2061 swp_entry_t entry; 2062 2063 entry = pmd_to_swp_entry(old_pmd); 2064 page = pfn_to_page(swp_offset(entry)); 2065 write = is_write_migration_entry(entry); 2066 young = false; 2067 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2068 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2069 } else { 2070 page = pmd_page(old_pmd); 2071 if (pmd_dirty(old_pmd)) 2072 SetPageDirty(page); 2073 write = pmd_write(old_pmd); 2074 young = pmd_young(old_pmd); 2075 soft_dirty = pmd_soft_dirty(old_pmd); 2076 uffd_wp = pmd_uffd_wp(old_pmd); 2077 } 2078 VM_BUG_ON_PAGE(!page_count(page), page); 2079 page_ref_add(page, HPAGE_PMD_NR - 1); 2080 2081 /* 2082 * Withdraw the table only after we mark the pmd entry invalid. 2083 * This's critical for some architectures (Power). 2084 */ 2085 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2086 pmd_populate(mm, &_pmd, pgtable); 2087 2088 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2089 pte_t entry, *pte; 2090 /* 2091 * Note that NUMA hinting access restrictions are not 2092 * transferred to avoid any possibility of altering 2093 * permissions across VMAs. 2094 */ 2095 if (freeze || pmd_migration) { 2096 swp_entry_t swp_entry; 2097 swp_entry = make_migration_entry(page + i, write); 2098 entry = swp_entry_to_pte(swp_entry); 2099 if (soft_dirty) 2100 entry = pte_swp_mksoft_dirty(entry); 2101 if (uffd_wp) 2102 entry = pte_swp_mkuffd_wp(entry); 2103 } else { 2104 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2105 entry = maybe_mkwrite(entry, vma); 2106 if (!write) 2107 entry = pte_wrprotect(entry); 2108 if (!young) 2109 entry = pte_mkold(entry); 2110 if (soft_dirty) 2111 entry = pte_mksoft_dirty(entry); 2112 if (uffd_wp) 2113 entry = pte_mkuffd_wp(entry); 2114 } 2115 pte = pte_offset_map(&_pmd, addr); 2116 BUG_ON(!pte_none(*pte)); 2117 set_pte_at(mm, addr, pte, entry); 2118 atomic_inc(&page[i]._mapcount); 2119 pte_unmap(pte); 2120 } 2121 2122 /* 2123 * Set PG_double_map before dropping compound_mapcount to avoid 2124 * false-negative page_mapped(). 2125 */ 2126 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) { 2127 for (i = 0; i < HPAGE_PMD_NR; i++) 2128 atomic_inc(&page[i]._mapcount); 2129 } 2130 2131 lock_page_memcg(page); 2132 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 2133 /* Last compound_mapcount is gone. */ 2134 __dec_lruvec_page_state(page, NR_ANON_THPS); 2135 if (TestClearPageDoubleMap(page)) { 2136 /* No need in mapcount reference anymore */ 2137 for (i = 0; i < HPAGE_PMD_NR; i++) 2138 atomic_dec(&page[i]._mapcount); 2139 } 2140 } 2141 unlock_page_memcg(page); 2142 2143 smp_wmb(); /* make pte visible before pmd */ 2144 pmd_populate(mm, pmd, pgtable); 2145 2146 if (freeze) { 2147 for (i = 0; i < HPAGE_PMD_NR; i++) { 2148 page_remove_rmap(page + i, false); 2149 put_page(page + i); 2150 } 2151 } 2152 } 2153 2154 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2155 unsigned long address, bool freeze, struct page *page) 2156 { 2157 spinlock_t *ptl; 2158 struct mmu_notifier_range range; 2159 bool was_locked = false; 2160 pmd_t _pmd; 2161 2162 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 2163 address & HPAGE_PMD_MASK, 2164 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2165 mmu_notifier_invalidate_range_start(&range); 2166 ptl = pmd_lock(vma->vm_mm, pmd); 2167 2168 /* 2169 * If caller asks to setup a migration entries, we need a page to check 2170 * pmd against. Otherwise we can end up replacing wrong page. 2171 */ 2172 VM_BUG_ON(freeze && !page); 2173 if (page) { 2174 VM_WARN_ON_ONCE(!PageLocked(page)); 2175 was_locked = true; 2176 if (page != pmd_page(*pmd)) 2177 goto out; 2178 } 2179 2180 repeat: 2181 if (pmd_trans_huge(*pmd)) { 2182 if (!page) { 2183 page = pmd_page(*pmd); 2184 if (unlikely(!trylock_page(page))) { 2185 get_page(page); 2186 _pmd = *pmd; 2187 spin_unlock(ptl); 2188 lock_page(page); 2189 spin_lock(ptl); 2190 if (unlikely(!pmd_same(*pmd, _pmd))) { 2191 unlock_page(page); 2192 put_page(page); 2193 page = NULL; 2194 goto repeat; 2195 } 2196 put_page(page); 2197 } 2198 } 2199 if (PageMlocked(page)) 2200 clear_page_mlock(page); 2201 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd))) 2202 goto out; 2203 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2204 out: 2205 spin_unlock(ptl); 2206 if (!was_locked && page) 2207 unlock_page(page); 2208 /* 2209 * No need to double call mmu_notifier->invalidate_range() callback. 2210 * They are 3 cases to consider inside __split_huge_pmd_locked(): 2211 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious 2212 * 2) __split_huge_zero_page_pmd() read only zero page and any write 2213 * fault will trigger a flush_notify before pointing to a new page 2214 * (it is fine if the secondary mmu keeps pointing to the old zero 2215 * page in the meantime) 2216 * 3) Split a huge pmd into pte pointing to the same page. No need 2217 * to invalidate secondary tlb entry they are all still valid. 2218 * any further changes to individual pte will notify. So no need 2219 * to call mmu_notifier->invalidate_range() 2220 */ 2221 mmu_notifier_invalidate_range_only_end(&range); 2222 } 2223 2224 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2225 bool freeze, struct page *page) 2226 { 2227 pgd_t *pgd; 2228 p4d_t *p4d; 2229 pud_t *pud; 2230 pmd_t *pmd; 2231 2232 pgd = pgd_offset(vma->vm_mm, address); 2233 if (!pgd_present(*pgd)) 2234 return; 2235 2236 p4d = p4d_offset(pgd, address); 2237 if (!p4d_present(*p4d)) 2238 return; 2239 2240 pud = pud_offset(p4d, address); 2241 if (!pud_present(*pud)) 2242 return; 2243 2244 pmd = pmd_offset(pud, address); 2245 2246 __split_huge_pmd(vma, pmd, address, freeze, page); 2247 } 2248 2249 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2250 unsigned long start, 2251 unsigned long end, 2252 long adjust_next) 2253 { 2254 /* 2255 * If the new start address isn't hpage aligned and it could 2256 * previously contain an hugepage: check if we need to split 2257 * an huge pmd. 2258 */ 2259 if (start & ~HPAGE_PMD_MASK && 2260 (start & HPAGE_PMD_MASK) >= vma->vm_start && 2261 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2262 split_huge_pmd_address(vma, start, false, NULL); 2263 2264 /* 2265 * If the new end address isn't hpage aligned and it could 2266 * previously contain an hugepage: check if we need to split 2267 * an huge pmd. 2268 */ 2269 if (end & ~HPAGE_PMD_MASK && 2270 (end & HPAGE_PMD_MASK) >= vma->vm_start && 2271 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2272 split_huge_pmd_address(vma, end, false, NULL); 2273 2274 /* 2275 * If we're also updating the vma->vm_next->vm_start, if the new 2276 * vm_next->vm_start isn't page aligned and it could previously 2277 * contain an hugepage: check if we need to split an huge pmd. 2278 */ 2279 if (adjust_next > 0) { 2280 struct vm_area_struct *next = vma->vm_next; 2281 unsigned long nstart = next->vm_start; 2282 nstart += adjust_next << PAGE_SHIFT; 2283 if (nstart & ~HPAGE_PMD_MASK && 2284 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 2285 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 2286 split_huge_pmd_address(next, nstart, false, NULL); 2287 } 2288 } 2289 2290 static void unmap_page(struct page *page) 2291 { 2292 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | 2293 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD; 2294 bool unmap_success; 2295 2296 VM_BUG_ON_PAGE(!PageHead(page), page); 2297 2298 if (PageAnon(page)) 2299 ttu_flags |= TTU_SPLIT_FREEZE; 2300 2301 unmap_success = try_to_unmap(page, ttu_flags); 2302 VM_BUG_ON_PAGE(!unmap_success, page); 2303 } 2304 2305 static void remap_page(struct page *page) 2306 { 2307 int i; 2308 if (PageTransHuge(page)) { 2309 remove_migration_ptes(page, page, true); 2310 } else { 2311 for (i = 0; i < HPAGE_PMD_NR; i++) 2312 remove_migration_ptes(page + i, page + i, true); 2313 } 2314 } 2315 2316 static void __split_huge_page_tail(struct page *head, int tail, 2317 struct lruvec *lruvec, struct list_head *list) 2318 { 2319 struct page *page_tail = head + tail; 2320 2321 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2322 2323 /* 2324 * Clone page flags before unfreezing refcount. 2325 * 2326 * After successful get_page_unless_zero() might follow flags change, 2327 * for exmaple lock_page() which set PG_waiters. 2328 */ 2329 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2330 page_tail->flags |= (head->flags & 2331 ((1L << PG_referenced) | 2332 (1L << PG_swapbacked) | 2333 (1L << PG_swapcache) | 2334 (1L << PG_mlocked) | 2335 (1L << PG_uptodate) | 2336 (1L << PG_active) | 2337 (1L << PG_workingset) | 2338 (1L << PG_locked) | 2339 (1L << PG_unevictable) | 2340 (1L << PG_dirty))); 2341 2342 /* ->mapping in first tail page is compound_mapcount */ 2343 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2344 page_tail); 2345 page_tail->mapping = head->mapping; 2346 page_tail->index = head->index + tail; 2347 2348 /* Page flags must be visible before we make the page non-compound. */ 2349 smp_wmb(); 2350 2351 /* 2352 * Clear PageTail before unfreezing page refcount. 2353 * 2354 * After successful get_page_unless_zero() might follow put_page() 2355 * which needs correct compound_head(). 2356 */ 2357 clear_compound_head(page_tail); 2358 2359 /* Finally unfreeze refcount. Additional reference from page cache. */ 2360 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || 2361 PageSwapCache(head))); 2362 2363 if (page_is_young(head)) 2364 set_page_young(page_tail); 2365 if (page_is_idle(head)) 2366 set_page_idle(page_tail); 2367 2368 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2369 2370 /* 2371 * always add to the tail because some iterators expect new 2372 * pages to show after the currently processed elements - e.g. 2373 * migrate_pages 2374 */ 2375 lru_add_page_tail(head, page_tail, lruvec, list); 2376 } 2377 2378 static void __split_huge_page(struct page *page, struct list_head *list, 2379 pgoff_t end, unsigned long flags) 2380 { 2381 struct page *head = compound_head(page); 2382 pg_data_t *pgdat = page_pgdat(head); 2383 struct lruvec *lruvec; 2384 struct address_space *swap_cache = NULL; 2385 unsigned long offset = 0; 2386 int i; 2387 2388 lruvec = mem_cgroup_page_lruvec(head, pgdat); 2389 2390 /* complete memcg works before add pages to LRU */ 2391 mem_cgroup_split_huge_fixup(head); 2392 2393 if (PageAnon(head) && PageSwapCache(head)) { 2394 swp_entry_t entry = { .val = page_private(head) }; 2395 2396 offset = swp_offset(entry); 2397 swap_cache = swap_address_space(entry); 2398 xa_lock(&swap_cache->i_pages); 2399 } 2400 2401 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 2402 __split_huge_page_tail(head, i, lruvec, list); 2403 /* Some pages can be beyond i_size: drop them from page cache */ 2404 if (head[i].index >= end) { 2405 ClearPageDirty(head + i); 2406 __delete_from_page_cache(head + i, NULL); 2407 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) 2408 shmem_uncharge(head->mapping->host, 1); 2409 put_page(head + i); 2410 } else if (!PageAnon(page)) { 2411 __xa_store(&head->mapping->i_pages, head[i].index, 2412 head + i, 0); 2413 } else if (swap_cache) { 2414 __xa_store(&swap_cache->i_pages, offset + i, 2415 head + i, 0); 2416 } 2417 } 2418 2419 ClearPageCompound(head); 2420 2421 split_page_owner(head, HPAGE_PMD_ORDER); 2422 2423 /* See comment in __split_huge_page_tail() */ 2424 if (PageAnon(head)) { 2425 /* Additional pin to swap cache */ 2426 if (PageSwapCache(head)) { 2427 page_ref_add(head, 2); 2428 xa_unlock(&swap_cache->i_pages); 2429 } else { 2430 page_ref_inc(head); 2431 } 2432 } else { 2433 /* Additional pin to page cache */ 2434 page_ref_add(head, 2); 2435 xa_unlock(&head->mapping->i_pages); 2436 } 2437 2438 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 2439 2440 remap_page(head); 2441 2442 for (i = 0; i < HPAGE_PMD_NR; i++) { 2443 struct page *subpage = head + i; 2444 if (subpage == page) 2445 continue; 2446 unlock_page(subpage); 2447 2448 /* 2449 * Subpages may be freed if there wasn't any mapping 2450 * like if add_to_swap() is running on a lru page that 2451 * had its mapping zapped. And freeing these pages 2452 * requires taking the lru_lock so we do the put_page 2453 * of the tail pages after the split is complete. 2454 */ 2455 put_page(subpage); 2456 } 2457 } 2458 2459 int total_mapcount(struct page *page) 2460 { 2461 int i, compound, ret; 2462 2463 VM_BUG_ON_PAGE(PageTail(page), page); 2464 2465 if (likely(!PageCompound(page))) 2466 return atomic_read(&page->_mapcount) + 1; 2467 2468 compound = compound_mapcount(page); 2469 if (PageHuge(page)) 2470 return compound; 2471 ret = compound; 2472 for (i = 0; i < HPAGE_PMD_NR; i++) 2473 ret += atomic_read(&page[i]._mapcount) + 1; 2474 /* File pages has compound_mapcount included in _mapcount */ 2475 if (!PageAnon(page)) 2476 return ret - compound * HPAGE_PMD_NR; 2477 if (PageDoubleMap(page)) 2478 ret -= HPAGE_PMD_NR; 2479 return ret; 2480 } 2481 2482 /* 2483 * This calculates accurately how many mappings a transparent hugepage 2484 * has (unlike page_mapcount() which isn't fully accurate). This full 2485 * accuracy is primarily needed to know if copy-on-write faults can 2486 * reuse the page and change the mapping to read-write instead of 2487 * copying them. At the same time this returns the total_mapcount too. 2488 * 2489 * The function returns the highest mapcount any one of the subpages 2490 * has. If the return value is one, even if different processes are 2491 * mapping different subpages of the transparent hugepage, they can 2492 * all reuse it, because each process is reusing a different subpage. 2493 * 2494 * The total_mapcount is instead counting all virtual mappings of the 2495 * subpages. If the total_mapcount is equal to "one", it tells the 2496 * caller all mappings belong to the same "mm" and in turn the 2497 * anon_vma of the transparent hugepage can become the vma->anon_vma 2498 * local one as no other process may be mapping any of the subpages. 2499 * 2500 * It would be more accurate to replace page_mapcount() with 2501 * page_trans_huge_mapcount(), however we only use 2502 * page_trans_huge_mapcount() in the copy-on-write faults where we 2503 * need full accuracy to avoid breaking page pinning, because 2504 * page_trans_huge_mapcount() is slower than page_mapcount(). 2505 */ 2506 int page_trans_huge_mapcount(struct page *page, int *total_mapcount) 2507 { 2508 int i, ret, _total_mapcount, mapcount; 2509 2510 /* hugetlbfs shouldn't call it */ 2511 VM_BUG_ON_PAGE(PageHuge(page), page); 2512 2513 if (likely(!PageTransCompound(page))) { 2514 mapcount = atomic_read(&page->_mapcount) + 1; 2515 if (total_mapcount) 2516 *total_mapcount = mapcount; 2517 return mapcount; 2518 } 2519 2520 page = compound_head(page); 2521 2522 _total_mapcount = ret = 0; 2523 for (i = 0; i < HPAGE_PMD_NR; i++) { 2524 mapcount = atomic_read(&page[i]._mapcount) + 1; 2525 ret = max(ret, mapcount); 2526 _total_mapcount += mapcount; 2527 } 2528 if (PageDoubleMap(page)) { 2529 ret -= 1; 2530 _total_mapcount -= HPAGE_PMD_NR; 2531 } 2532 mapcount = compound_mapcount(page); 2533 ret += mapcount; 2534 _total_mapcount += mapcount; 2535 if (total_mapcount) 2536 *total_mapcount = _total_mapcount; 2537 return ret; 2538 } 2539 2540 /* Racy check whether the huge page can be split */ 2541 bool can_split_huge_page(struct page *page, int *pextra_pins) 2542 { 2543 int extra_pins; 2544 2545 /* Additional pins from page cache */ 2546 if (PageAnon(page)) 2547 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0; 2548 else 2549 extra_pins = HPAGE_PMD_NR; 2550 if (pextra_pins) 2551 *pextra_pins = extra_pins; 2552 return total_mapcount(page) == page_count(page) - extra_pins - 1; 2553 } 2554 2555 /* 2556 * This function splits huge page into normal pages. @page can point to any 2557 * subpage of huge page to split. Split doesn't change the position of @page. 2558 * 2559 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2560 * The huge page must be locked. 2561 * 2562 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2563 * 2564 * Both head page and tail pages will inherit mapping, flags, and so on from 2565 * the hugepage. 2566 * 2567 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2568 * they are not mapped. 2569 * 2570 * Returns 0 if the hugepage is split successfully. 2571 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2572 * us. 2573 */ 2574 int split_huge_page_to_list(struct page *page, struct list_head *list) 2575 { 2576 struct page *head = compound_head(page); 2577 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); 2578 struct deferred_split *ds_queue = get_deferred_split_queue(head); 2579 struct anon_vma *anon_vma = NULL; 2580 struct address_space *mapping = NULL; 2581 int count, mapcount, extra_pins, ret; 2582 unsigned long flags; 2583 pgoff_t end; 2584 2585 VM_BUG_ON_PAGE(is_huge_zero_page(head), head); 2586 VM_BUG_ON_PAGE(!PageLocked(head), head); 2587 VM_BUG_ON_PAGE(!PageCompound(head), head); 2588 2589 if (PageWriteback(head)) 2590 return -EBUSY; 2591 2592 if (PageAnon(head)) { 2593 /* 2594 * The caller does not necessarily hold an mmap_lock that would 2595 * prevent the anon_vma disappearing so we first we take a 2596 * reference to it and then lock the anon_vma for write. This 2597 * is similar to page_lock_anon_vma_read except the write lock 2598 * is taken to serialise against parallel split or collapse 2599 * operations. 2600 */ 2601 anon_vma = page_get_anon_vma(head); 2602 if (!anon_vma) { 2603 ret = -EBUSY; 2604 goto out; 2605 } 2606 end = -1; 2607 mapping = NULL; 2608 anon_vma_lock_write(anon_vma); 2609 } else { 2610 mapping = head->mapping; 2611 2612 /* Truncated ? */ 2613 if (!mapping) { 2614 ret = -EBUSY; 2615 goto out; 2616 } 2617 2618 anon_vma = NULL; 2619 i_mmap_lock_read(mapping); 2620 2621 /* 2622 *__split_huge_page() may need to trim off pages beyond EOF: 2623 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 2624 * which cannot be nested inside the page tree lock. So note 2625 * end now: i_size itself may be changed at any moment, but 2626 * head page lock is good enough to serialize the trimming. 2627 */ 2628 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2629 } 2630 2631 /* 2632 * Racy check if we can split the page, before unmap_page() will 2633 * split PMDs 2634 */ 2635 if (!can_split_huge_page(head, &extra_pins)) { 2636 ret = -EBUSY; 2637 goto out_unlock; 2638 } 2639 2640 unmap_page(head); 2641 VM_BUG_ON_PAGE(compound_mapcount(head), head); 2642 2643 /* prevent PageLRU to go away from under us, and freeze lru stats */ 2644 spin_lock_irqsave(&pgdata->lru_lock, flags); 2645 2646 if (mapping) { 2647 XA_STATE(xas, &mapping->i_pages, page_index(head)); 2648 2649 /* 2650 * Check if the head page is present in page cache. 2651 * We assume all tail are present too, if head is there. 2652 */ 2653 xa_lock(&mapping->i_pages); 2654 if (xas_load(&xas) != head) 2655 goto fail; 2656 } 2657 2658 /* Prevent deferred_split_scan() touching ->_refcount */ 2659 spin_lock(&ds_queue->split_queue_lock); 2660 count = page_count(head); 2661 mapcount = total_mapcount(head); 2662 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { 2663 if (!list_empty(page_deferred_list(head))) { 2664 ds_queue->split_queue_len--; 2665 list_del(page_deferred_list(head)); 2666 } 2667 spin_unlock(&ds_queue->split_queue_lock); 2668 if (mapping) { 2669 if (PageSwapBacked(head)) 2670 __dec_node_page_state(head, NR_SHMEM_THPS); 2671 else 2672 __dec_node_page_state(head, NR_FILE_THPS); 2673 } 2674 2675 __split_huge_page(page, list, end, flags); 2676 if (PageSwapCache(head)) { 2677 swp_entry_t entry = { .val = page_private(head) }; 2678 2679 ret = split_swap_cluster(entry); 2680 } else 2681 ret = 0; 2682 } else { 2683 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { 2684 pr_alert("total_mapcount: %u, page_count(): %u\n", 2685 mapcount, count); 2686 if (PageTail(page)) 2687 dump_page(head, NULL); 2688 dump_page(page, "total_mapcount(head) > 0"); 2689 BUG(); 2690 } 2691 spin_unlock(&ds_queue->split_queue_lock); 2692 fail: if (mapping) 2693 xa_unlock(&mapping->i_pages); 2694 spin_unlock_irqrestore(&pgdata->lru_lock, flags); 2695 remap_page(head); 2696 ret = -EBUSY; 2697 } 2698 2699 out_unlock: 2700 if (anon_vma) { 2701 anon_vma_unlock_write(anon_vma); 2702 put_anon_vma(anon_vma); 2703 } 2704 if (mapping) 2705 i_mmap_unlock_read(mapping); 2706 out: 2707 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2708 return ret; 2709 } 2710 2711 void free_transhuge_page(struct page *page) 2712 { 2713 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2714 unsigned long flags; 2715 2716 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2717 if (!list_empty(page_deferred_list(page))) { 2718 ds_queue->split_queue_len--; 2719 list_del(page_deferred_list(page)); 2720 } 2721 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2722 free_compound_page(page); 2723 } 2724 2725 void deferred_split_huge_page(struct page *page) 2726 { 2727 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2728 #ifdef CONFIG_MEMCG 2729 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup; 2730 #endif 2731 unsigned long flags; 2732 2733 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2734 2735 /* 2736 * The try_to_unmap() in page reclaim path might reach here too, 2737 * this may cause a race condition to corrupt deferred split queue. 2738 * And, if page reclaim is already handling the same page, it is 2739 * unnecessary to handle it again in shrinker. 2740 * 2741 * Check PageSwapCache to determine if the page is being 2742 * handled by page reclaim since THP swap would add the page into 2743 * swap cache before calling try_to_unmap(). 2744 */ 2745 if (PageSwapCache(page)) 2746 return; 2747 2748 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2749 if (list_empty(page_deferred_list(page))) { 2750 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2751 list_add_tail(page_deferred_list(page), &ds_queue->split_queue); 2752 ds_queue->split_queue_len++; 2753 #ifdef CONFIG_MEMCG 2754 if (memcg) 2755 memcg_set_shrinker_bit(memcg, page_to_nid(page), 2756 deferred_split_shrinker.id); 2757 #endif 2758 } 2759 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2760 } 2761 2762 static unsigned long deferred_split_count(struct shrinker *shrink, 2763 struct shrink_control *sc) 2764 { 2765 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2766 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2767 2768 #ifdef CONFIG_MEMCG 2769 if (sc->memcg) 2770 ds_queue = &sc->memcg->deferred_split_queue; 2771 #endif 2772 return READ_ONCE(ds_queue->split_queue_len); 2773 } 2774 2775 static unsigned long deferred_split_scan(struct shrinker *shrink, 2776 struct shrink_control *sc) 2777 { 2778 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2779 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2780 unsigned long flags; 2781 LIST_HEAD(list), *pos, *next; 2782 struct page *page; 2783 int split = 0; 2784 2785 #ifdef CONFIG_MEMCG 2786 if (sc->memcg) 2787 ds_queue = &sc->memcg->deferred_split_queue; 2788 #endif 2789 2790 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2791 /* Take pin on all head pages to avoid freeing them under us */ 2792 list_for_each_safe(pos, next, &ds_queue->split_queue) { 2793 page = list_entry((void *)pos, struct page, mapping); 2794 page = compound_head(page); 2795 if (get_page_unless_zero(page)) { 2796 list_move(page_deferred_list(page), &list); 2797 } else { 2798 /* We lost race with put_compound_page() */ 2799 list_del_init(page_deferred_list(page)); 2800 ds_queue->split_queue_len--; 2801 } 2802 if (!--sc->nr_to_scan) 2803 break; 2804 } 2805 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2806 2807 list_for_each_safe(pos, next, &list) { 2808 page = list_entry((void *)pos, struct page, mapping); 2809 if (!trylock_page(page)) 2810 goto next; 2811 /* split_huge_page() removes page from list on success */ 2812 if (!split_huge_page(page)) 2813 split++; 2814 unlock_page(page); 2815 next: 2816 put_page(page); 2817 } 2818 2819 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2820 list_splice_tail(&list, &ds_queue->split_queue); 2821 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2822 2823 /* 2824 * Stop shrinker if we didn't split any page, but the queue is empty. 2825 * This can happen if pages were freed under us. 2826 */ 2827 if (!split && list_empty(&ds_queue->split_queue)) 2828 return SHRINK_STOP; 2829 return split; 2830 } 2831 2832 static struct shrinker deferred_split_shrinker = { 2833 .count_objects = deferred_split_count, 2834 .scan_objects = deferred_split_scan, 2835 .seeks = DEFAULT_SEEKS, 2836 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE | 2837 SHRINKER_NONSLAB, 2838 }; 2839 2840 #ifdef CONFIG_DEBUG_FS 2841 static int split_huge_pages_set(void *data, u64 val) 2842 { 2843 struct zone *zone; 2844 struct page *page; 2845 unsigned long pfn, max_zone_pfn; 2846 unsigned long total = 0, split = 0; 2847 2848 if (val != 1) 2849 return -EINVAL; 2850 2851 for_each_populated_zone(zone) { 2852 max_zone_pfn = zone_end_pfn(zone); 2853 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2854 if (!pfn_valid(pfn)) 2855 continue; 2856 2857 page = pfn_to_page(pfn); 2858 if (!get_page_unless_zero(page)) 2859 continue; 2860 2861 if (zone != page_zone(page)) 2862 goto next; 2863 2864 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2865 goto next; 2866 2867 total++; 2868 lock_page(page); 2869 if (!split_huge_page(page)) 2870 split++; 2871 unlock_page(page); 2872 next: 2873 put_page(page); 2874 } 2875 } 2876 2877 pr_info("%lu of %lu THP split\n", split, total); 2878 2879 return 0; 2880 } 2881 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, 2882 "%llu\n"); 2883 2884 static int __init split_huge_pages_debugfs(void) 2885 { 2886 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 2887 &split_huge_pages_fops); 2888 return 0; 2889 } 2890 late_initcall(split_huge_pages_debugfs); 2891 #endif 2892 2893 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2894 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 2895 struct page *page) 2896 { 2897 struct vm_area_struct *vma = pvmw->vma; 2898 struct mm_struct *mm = vma->vm_mm; 2899 unsigned long address = pvmw->address; 2900 pmd_t pmdval; 2901 swp_entry_t entry; 2902 pmd_t pmdswp; 2903 2904 if (!(pvmw->pmd && !pvmw->pte)) 2905 return; 2906 2907 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 2908 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 2909 if (pmd_dirty(pmdval)) 2910 set_page_dirty(page); 2911 entry = make_migration_entry(page, pmd_write(pmdval)); 2912 pmdswp = swp_entry_to_pmd(entry); 2913 if (pmd_soft_dirty(pmdval)) 2914 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 2915 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 2916 page_remove_rmap(page, true); 2917 put_page(page); 2918 } 2919 2920 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 2921 { 2922 struct vm_area_struct *vma = pvmw->vma; 2923 struct mm_struct *mm = vma->vm_mm; 2924 unsigned long address = pvmw->address; 2925 unsigned long mmun_start = address & HPAGE_PMD_MASK; 2926 pmd_t pmde; 2927 swp_entry_t entry; 2928 2929 if (!(pvmw->pmd && !pvmw->pte)) 2930 return; 2931 2932 entry = pmd_to_swp_entry(*pvmw->pmd); 2933 get_page(new); 2934 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot)); 2935 if (pmd_swp_soft_dirty(*pvmw->pmd)) 2936 pmde = pmd_mksoft_dirty(pmde); 2937 if (is_write_migration_entry(entry)) 2938 pmde = maybe_pmd_mkwrite(pmde, vma); 2939 2940 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE); 2941 if (PageAnon(new)) 2942 page_add_anon_rmap(new, vma, mmun_start, true); 2943 else 2944 page_add_file_rmap(new, true); 2945 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde); 2946 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new)) 2947 mlock_vma_page(new); 2948 update_mmu_cache_pmd(vma, address, pvmw->pmd); 2949 } 2950 #endif 2951