1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/coredump.h> 11 #include <linux/sched/numa_balancing.h> 12 #include <linux/highmem.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mmu_notifier.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/shrinker.h> 18 #include <linux/mm_inline.h> 19 #include <linux/swapops.h> 20 #include <linux/dax.h> 21 #include <linux/khugepaged.h> 22 #include <linux/freezer.h> 23 #include <linux/pfn_t.h> 24 #include <linux/mman.h> 25 #include <linux/memremap.h> 26 #include <linux/pagemap.h> 27 #include <linux/debugfs.h> 28 #include <linux/migrate.h> 29 #include <linux/hashtable.h> 30 #include <linux/userfaultfd_k.h> 31 #include <linux/page_idle.h> 32 #include <linux/shmem_fs.h> 33 #include <linux/oom.h> 34 #include <linux/numa.h> 35 #include <linux/page_owner.h> 36 37 #include <asm/tlb.h> 38 #include <asm/pgalloc.h> 39 #include "internal.h" 40 41 /* 42 * By default, transparent hugepage support is disabled in order to avoid 43 * risking an increased memory footprint for applications that are not 44 * guaranteed to benefit from it. When transparent hugepage support is 45 * enabled, it is for all mappings, and khugepaged scans all mappings. 46 * Defrag is invoked by khugepaged hugepage allocations and by page faults 47 * for all hugepage allocations. 48 */ 49 unsigned long transparent_hugepage_flags __read_mostly = 50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 52 #endif 53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 55 #endif 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 59 60 static struct shrinker deferred_split_shrinker; 61 62 static atomic_t huge_zero_refcount; 63 struct page *huge_zero_page __read_mostly; 64 65 bool transparent_hugepage_enabled(struct vm_area_struct *vma) 66 { 67 /* The addr is used to check if the vma size fits */ 68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE; 69 70 if (!transhuge_vma_suitable(vma, addr)) 71 return false; 72 if (vma_is_anonymous(vma)) 73 return __transparent_hugepage_enabled(vma); 74 if (vma_is_shmem(vma)) 75 return shmem_huge_enabled(vma); 76 77 return false; 78 } 79 80 static struct page *get_huge_zero_page(void) 81 { 82 struct page *zero_page; 83 retry: 84 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 85 return READ_ONCE(huge_zero_page); 86 87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 88 HPAGE_PMD_ORDER); 89 if (!zero_page) { 90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 91 return NULL; 92 } 93 count_vm_event(THP_ZERO_PAGE_ALLOC); 94 preempt_disable(); 95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 96 preempt_enable(); 97 __free_pages(zero_page, compound_order(zero_page)); 98 goto retry; 99 } 100 101 /* We take additional reference here. It will be put back by shrinker */ 102 atomic_set(&huge_zero_refcount, 2); 103 preempt_enable(); 104 return READ_ONCE(huge_zero_page); 105 } 106 107 static void put_huge_zero_page(void) 108 { 109 /* 110 * Counter should never go to zero here. Only shrinker can put 111 * last reference. 112 */ 113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 114 } 115 116 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 117 { 118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 119 return READ_ONCE(huge_zero_page); 120 121 if (!get_huge_zero_page()) 122 return NULL; 123 124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 125 put_huge_zero_page(); 126 127 return READ_ONCE(huge_zero_page); 128 } 129 130 void mm_put_huge_zero_page(struct mm_struct *mm) 131 { 132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 133 put_huge_zero_page(); 134 } 135 136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 137 struct shrink_control *sc) 138 { 139 /* we can free zero page only if last reference remains */ 140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 141 } 142 143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 144 struct shrink_control *sc) 145 { 146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 147 struct page *zero_page = xchg(&huge_zero_page, NULL); 148 BUG_ON(zero_page == NULL); 149 __free_pages(zero_page, compound_order(zero_page)); 150 return HPAGE_PMD_NR; 151 } 152 153 return 0; 154 } 155 156 static struct shrinker huge_zero_page_shrinker = { 157 .count_objects = shrink_huge_zero_page_count, 158 .scan_objects = shrink_huge_zero_page_scan, 159 .seeks = DEFAULT_SEEKS, 160 }; 161 162 #ifdef CONFIG_SYSFS 163 static ssize_t enabled_show(struct kobject *kobj, 164 struct kobj_attribute *attr, char *buf) 165 { 166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 167 return sprintf(buf, "[always] madvise never\n"); 168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) 169 return sprintf(buf, "always [madvise] never\n"); 170 else 171 return sprintf(buf, "always madvise [never]\n"); 172 } 173 174 static ssize_t enabled_store(struct kobject *kobj, 175 struct kobj_attribute *attr, 176 const char *buf, size_t count) 177 { 178 ssize_t ret = count; 179 180 if (sysfs_streq(buf, "always")) { 181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 183 } else if (sysfs_streq(buf, "madvise")) { 184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 186 } else if (sysfs_streq(buf, "never")) { 187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 189 } else 190 ret = -EINVAL; 191 192 if (ret > 0) { 193 int err = start_stop_khugepaged(); 194 if (err) 195 ret = err; 196 } 197 return ret; 198 } 199 static struct kobj_attribute enabled_attr = 200 __ATTR(enabled, 0644, enabled_show, enabled_store); 201 202 ssize_t single_hugepage_flag_show(struct kobject *kobj, 203 struct kobj_attribute *attr, char *buf, 204 enum transparent_hugepage_flag flag) 205 { 206 return sprintf(buf, "%d\n", 207 !!test_bit(flag, &transparent_hugepage_flags)); 208 } 209 210 ssize_t single_hugepage_flag_store(struct kobject *kobj, 211 struct kobj_attribute *attr, 212 const char *buf, size_t count, 213 enum transparent_hugepage_flag flag) 214 { 215 unsigned long value; 216 int ret; 217 218 ret = kstrtoul(buf, 10, &value); 219 if (ret < 0) 220 return ret; 221 if (value > 1) 222 return -EINVAL; 223 224 if (value) 225 set_bit(flag, &transparent_hugepage_flags); 226 else 227 clear_bit(flag, &transparent_hugepage_flags); 228 229 return count; 230 } 231 232 static ssize_t defrag_show(struct kobject *kobj, 233 struct kobj_attribute *attr, char *buf) 234 { 235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 236 return sprintf(buf, "[always] defer defer+madvise madvise never\n"); 237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 238 return sprintf(buf, "always [defer] defer+madvise madvise never\n"); 239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 240 return sprintf(buf, "always defer [defer+madvise] madvise never\n"); 241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 242 return sprintf(buf, "always defer defer+madvise [madvise] never\n"); 243 return sprintf(buf, "always defer defer+madvise madvise [never]\n"); 244 } 245 246 static ssize_t defrag_store(struct kobject *kobj, 247 struct kobj_attribute *attr, 248 const char *buf, size_t count) 249 { 250 if (sysfs_streq(buf, "always")) { 251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 255 } else if (sysfs_streq(buf, "defer+madvise")) { 256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 260 } else if (sysfs_streq(buf, "defer")) { 261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 265 } else if (sysfs_streq(buf, "madvise")) { 266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 270 } else if (sysfs_streq(buf, "never")) { 271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 275 } else 276 return -EINVAL; 277 278 return count; 279 } 280 static struct kobj_attribute defrag_attr = 281 __ATTR(defrag, 0644, defrag_show, defrag_store); 282 283 static ssize_t use_zero_page_show(struct kobject *kobj, 284 struct kobj_attribute *attr, char *buf) 285 { 286 return single_hugepage_flag_show(kobj, attr, buf, 287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 288 } 289 static ssize_t use_zero_page_store(struct kobject *kobj, 290 struct kobj_attribute *attr, const char *buf, size_t count) 291 { 292 return single_hugepage_flag_store(kobj, attr, buf, count, 293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 294 } 295 static struct kobj_attribute use_zero_page_attr = 296 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 297 298 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 299 struct kobj_attribute *attr, char *buf) 300 { 301 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE); 302 } 303 static struct kobj_attribute hpage_pmd_size_attr = 304 __ATTR_RO(hpage_pmd_size); 305 306 static struct attribute *hugepage_attr[] = { 307 &enabled_attr.attr, 308 &defrag_attr.attr, 309 &use_zero_page_attr.attr, 310 &hpage_pmd_size_attr.attr, 311 #ifdef CONFIG_SHMEM 312 &shmem_enabled_attr.attr, 313 #endif 314 NULL, 315 }; 316 317 static const struct attribute_group hugepage_attr_group = { 318 .attrs = hugepage_attr, 319 }; 320 321 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 322 { 323 int err; 324 325 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 326 if (unlikely(!*hugepage_kobj)) { 327 pr_err("failed to create transparent hugepage kobject\n"); 328 return -ENOMEM; 329 } 330 331 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 332 if (err) { 333 pr_err("failed to register transparent hugepage group\n"); 334 goto delete_obj; 335 } 336 337 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 338 if (err) { 339 pr_err("failed to register transparent hugepage group\n"); 340 goto remove_hp_group; 341 } 342 343 return 0; 344 345 remove_hp_group: 346 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 347 delete_obj: 348 kobject_put(*hugepage_kobj); 349 return err; 350 } 351 352 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 353 { 354 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 355 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 356 kobject_put(hugepage_kobj); 357 } 358 #else 359 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 360 { 361 return 0; 362 } 363 364 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 365 { 366 } 367 #endif /* CONFIG_SYSFS */ 368 369 static int __init hugepage_init(void) 370 { 371 int err; 372 struct kobject *hugepage_kobj; 373 374 if (!has_transparent_hugepage()) { 375 transparent_hugepage_flags = 0; 376 return -EINVAL; 377 } 378 379 /* 380 * hugepages can't be allocated by the buddy allocator 381 */ 382 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 383 /* 384 * we use page->mapping and page->index in second tail page 385 * as list_head: assuming THP order >= 2 386 */ 387 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 388 389 err = hugepage_init_sysfs(&hugepage_kobj); 390 if (err) 391 goto err_sysfs; 392 393 err = khugepaged_init(); 394 if (err) 395 goto err_slab; 396 397 err = register_shrinker(&huge_zero_page_shrinker); 398 if (err) 399 goto err_hzp_shrinker; 400 err = register_shrinker(&deferred_split_shrinker); 401 if (err) 402 goto err_split_shrinker; 403 404 /* 405 * By default disable transparent hugepages on smaller systems, 406 * where the extra memory used could hurt more than TLB overhead 407 * is likely to save. The admin can still enable it through /sys. 408 */ 409 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 410 transparent_hugepage_flags = 0; 411 return 0; 412 } 413 414 err = start_stop_khugepaged(); 415 if (err) 416 goto err_khugepaged; 417 418 return 0; 419 err_khugepaged: 420 unregister_shrinker(&deferred_split_shrinker); 421 err_split_shrinker: 422 unregister_shrinker(&huge_zero_page_shrinker); 423 err_hzp_shrinker: 424 khugepaged_destroy(); 425 err_slab: 426 hugepage_exit_sysfs(hugepage_kobj); 427 err_sysfs: 428 return err; 429 } 430 subsys_initcall(hugepage_init); 431 432 static int __init setup_transparent_hugepage(char *str) 433 { 434 int ret = 0; 435 if (!str) 436 goto out; 437 if (!strcmp(str, "always")) { 438 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 439 &transparent_hugepage_flags); 440 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 441 &transparent_hugepage_flags); 442 ret = 1; 443 } else if (!strcmp(str, "madvise")) { 444 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 445 &transparent_hugepage_flags); 446 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 447 &transparent_hugepage_flags); 448 ret = 1; 449 } else if (!strcmp(str, "never")) { 450 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 451 &transparent_hugepage_flags); 452 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 453 &transparent_hugepage_flags); 454 ret = 1; 455 } 456 out: 457 if (!ret) 458 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 459 return ret; 460 } 461 __setup("transparent_hugepage=", setup_transparent_hugepage); 462 463 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 464 { 465 if (likely(vma->vm_flags & VM_WRITE)) 466 pmd = pmd_mkwrite(pmd); 467 return pmd; 468 } 469 470 #ifdef CONFIG_MEMCG 471 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 472 { 473 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup; 474 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 475 476 if (memcg) 477 return &memcg->deferred_split_queue; 478 else 479 return &pgdat->deferred_split_queue; 480 } 481 #else 482 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 483 { 484 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 485 486 return &pgdat->deferred_split_queue; 487 } 488 #endif 489 490 void prep_transhuge_page(struct page *page) 491 { 492 /* 493 * we use page->mapping and page->indexlru in second tail page 494 * as list_head: assuming THP order >= 2 495 */ 496 497 INIT_LIST_HEAD(page_deferred_list(page)); 498 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 499 } 500 501 bool is_transparent_hugepage(struct page *page) 502 { 503 if (!PageCompound(page)) 504 return false; 505 506 page = compound_head(page); 507 return is_huge_zero_page(page) || 508 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR; 509 } 510 EXPORT_SYMBOL_GPL(is_transparent_hugepage); 511 512 static unsigned long __thp_get_unmapped_area(struct file *filp, 513 unsigned long addr, unsigned long len, 514 loff_t off, unsigned long flags, unsigned long size) 515 { 516 loff_t off_end = off + len; 517 loff_t off_align = round_up(off, size); 518 unsigned long len_pad, ret; 519 520 if (off_end <= off_align || (off_end - off_align) < size) 521 return 0; 522 523 len_pad = len + size; 524 if (len_pad < len || (off + len_pad) < off) 525 return 0; 526 527 ret = current->mm->get_unmapped_area(filp, addr, len_pad, 528 off >> PAGE_SHIFT, flags); 529 530 /* 531 * The failure might be due to length padding. The caller will retry 532 * without the padding. 533 */ 534 if (IS_ERR_VALUE(ret)) 535 return 0; 536 537 /* 538 * Do not try to align to THP boundary if allocation at the address 539 * hint succeeds. 540 */ 541 if (ret == addr) 542 return addr; 543 544 ret += (off - ret) & (size - 1); 545 return ret; 546 } 547 548 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 549 unsigned long len, unsigned long pgoff, unsigned long flags) 550 { 551 unsigned long ret; 552 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 553 554 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) 555 goto out; 556 557 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); 558 if (ret) 559 return ret; 560 out: 561 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 562 } 563 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 564 565 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 566 struct page *page, gfp_t gfp) 567 { 568 struct vm_area_struct *vma = vmf->vma; 569 pgtable_t pgtable; 570 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 571 vm_fault_t ret = 0; 572 573 VM_BUG_ON_PAGE(!PageCompound(page), page); 574 575 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) { 576 put_page(page); 577 count_vm_event(THP_FAULT_FALLBACK); 578 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 579 return VM_FAULT_FALLBACK; 580 } 581 cgroup_throttle_swaprate(page, gfp); 582 583 pgtable = pte_alloc_one(vma->vm_mm); 584 if (unlikely(!pgtable)) { 585 ret = VM_FAULT_OOM; 586 goto release; 587 } 588 589 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 590 /* 591 * The memory barrier inside __SetPageUptodate makes sure that 592 * clear_huge_page writes become visible before the set_pmd_at() 593 * write. 594 */ 595 __SetPageUptodate(page); 596 597 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 598 if (unlikely(!pmd_none(*vmf->pmd))) { 599 goto unlock_release; 600 } else { 601 pmd_t entry; 602 603 ret = check_stable_address_space(vma->vm_mm); 604 if (ret) 605 goto unlock_release; 606 607 /* Deliver the page fault to userland */ 608 if (userfaultfd_missing(vma)) { 609 vm_fault_t ret2; 610 611 spin_unlock(vmf->ptl); 612 put_page(page); 613 pte_free(vma->vm_mm, pgtable); 614 ret2 = handle_userfault(vmf, VM_UFFD_MISSING); 615 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK); 616 return ret2; 617 } 618 619 entry = mk_huge_pmd(page, vma->vm_page_prot); 620 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 621 page_add_new_anon_rmap(page, vma, haddr, true); 622 lru_cache_add_inactive_or_unevictable(page, vma); 623 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 624 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 625 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 626 mm_inc_nr_ptes(vma->vm_mm); 627 spin_unlock(vmf->ptl); 628 count_vm_event(THP_FAULT_ALLOC); 629 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 630 } 631 632 return 0; 633 unlock_release: 634 spin_unlock(vmf->ptl); 635 release: 636 if (pgtable) 637 pte_free(vma->vm_mm, pgtable); 638 put_page(page); 639 return ret; 640 641 } 642 643 /* 644 * always: directly stall for all thp allocations 645 * defer: wake kswapd and fail if not immediately available 646 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 647 * fail if not immediately available 648 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 649 * available 650 * never: never stall for any thp allocation 651 */ 652 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) 653 { 654 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); 655 656 /* Always do synchronous compaction */ 657 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 658 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 659 660 /* Kick kcompactd and fail quickly */ 661 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 662 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 663 664 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 665 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 666 return GFP_TRANSHUGE_LIGHT | 667 (vma_madvised ? __GFP_DIRECT_RECLAIM : 668 __GFP_KSWAPD_RECLAIM); 669 670 /* Only do synchronous compaction if madvised */ 671 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 672 return GFP_TRANSHUGE_LIGHT | 673 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 674 675 return GFP_TRANSHUGE_LIGHT; 676 } 677 678 /* Caller must hold page table lock. */ 679 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 680 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 681 struct page *zero_page) 682 { 683 pmd_t entry; 684 if (!pmd_none(*pmd)) 685 return false; 686 entry = mk_pmd(zero_page, vma->vm_page_prot); 687 entry = pmd_mkhuge(entry); 688 if (pgtable) 689 pgtable_trans_huge_deposit(mm, pmd, pgtable); 690 set_pmd_at(mm, haddr, pmd, entry); 691 mm_inc_nr_ptes(mm); 692 return true; 693 } 694 695 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 696 { 697 struct vm_area_struct *vma = vmf->vma; 698 gfp_t gfp; 699 struct page *page; 700 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 701 702 if (!transhuge_vma_suitable(vma, haddr)) 703 return VM_FAULT_FALLBACK; 704 if (unlikely(anon_vma_prepare(vma))) 705 return VM_FAULT_OOM; 706 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 707 return VM_FAULT_OOM; 708 if (!(vmf->flags & FAULT_FLAG_WRITE) && 709 !mm_forbids_zeropage(vma->vm_mm) && 710 transparent_hugepage_use_zero_page()) { 711 pgtable_t pgtable; 712 struct page *zero_page; 713 bool set; 714 vm_fault_t ret; 715 pgtable = pte_alloc_one(vma->vm_mm); 716 if (unlikely(!pgtable)) 717 return VM_FAULT_OOM; 718 zero_page = mm_get_huge_zero_page(vma->vm_mm); 719 if (unlikely(!zero_page)) { 720 pte_free(vma->vm_mm, pgtable); 721 count_vm_event(THP_FAULT_FALLBACK); 722 return VM_FAULT_FALLBACK; 723 } 724 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 725 ret = 0; 726 set = false; 727 if (pmd_none(*vmf->pmd)) { 728 ret = check_stable_address_space(vma->vm_mm); 729 if (ret) { 730 spin_unlock(vmf->ptl); 731 } else if (userfaultfd_missing(vma)) { 732 spin_unlock(vmf->ptl); 733 ret = handle_userfault(vmf, VM_UFFD_MISSING); 734 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 735 } else { 736 set_huge_zero_page(pgtable, vma->vm_mm, vma, 737 haddr, vmf->pmd, zero_page); 738 spin_unlock(vmf->ptl); 739 set = true; 740 } 741 } else 742 spin_unlock(vmf->ptl); 743 if (!set) 744 pte_free(vma->vm_mm, pgtable); 745 return ret; 746 } 747 gfp = alloc_hugepage_direct_gfpmask(vma); 748 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 749 if (unlikely(!page)) { 750 count_vm_event(THP_FAULT_FALLBACK); 751 return VM_FAULT_FALLBACK; 752 } 753 prep_transhuge_page(page); 754 return __do_huge_pmd_anonymous_page(vmf, page, gfp); 755 } 756 757 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 758 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 759 pgtable_t pgtable) 760 { 761 struct mm_struct *mm = vma->vm_mm; 762 pmd_t entry; 763 spinlock_t *ptl; 764 765 ptl = pmd_lock(mm, pmd); 766 if (!pmd_none(*pmd)) { 767 if (write) { 768 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 769 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 770 goto out_unlock; 771 } 772 entry = pmd_mkyoung(*pmd); 773 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 774 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 775 update_mmu_cache_pmd(vma, addr, pmd); 776 } 777 778 goto out_unlock; 779 } 780 781 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 782 if (pfn_t_devmap(pfn)) 783 entry = pmd_mkdevmap(entry); 784 if (write) { 785 entry = pmd_mkyoung(pmd_mkdirty(entry)); 786 entry = maybe_pmd_mkwrite(entry, vma); 787 } 788 789 if (pgtable) { 790 pgtable_trans_huge_deposit(mm, pmd, pgtable); 791 mm_inc_nr_ptes(mm); 792 pgtable = NULL; 793 } 794 795 set_pmd_at(mm, addr, pmd, entry); 796 update_mmu_cache_pmd(vma, addr, pmd); 797 798 out_unlock: 799 spin_unlock(ptl); 800 if (pgtable) 801 pte_free(mm, pgtable); 802 } 803 804 /** 805 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn 806 * @vmf: Structure describing the fault 807 * @pfn: pfn to insert 808 * @pgprot: page protection to use 809 * @write: whether it's a write fault 810 * 811 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and 812 * also consult the vmf_insert_mixed_prot() documentation when 813 * @pgprot != @vmf->vma->vm_page_prot. 814 * 815 * Return: vm_fault_t value. 816 */ 817 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn, 818 pgprot_t pgprot, bool write) 819 { 820 unsigned long addr = vmf->address & PMD_MASK; 821 struct vm_area_struct *vma = vmf->vma; 822 pgtable_t pgtable = NULL; 823 824 /* 825 * If we had pmd_special, we could avoid all these restrictions, 826 * but we need to be consistent with PTEs and architectures that 827 * can't support a 'special' bit. 828 */ 829 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 830 !pfn_t_devmap(pfn)); 831 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 832 (VM_PFNMAP|VM_MIXEDMAP)); 833 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 834 835 if (addr < vma->vm_start || addr >= vma->vm_end) 836 return VM_FAULT_SIGBUS; 837 838 if (arch_needs_pgtable_deposit()) { 839 pgtable = pte_alloc_one(vma->vm_mm); 840 if (!pgtable) 841 return VM_FAULT_OOM; 842 } 843 844 track_pfn_insert(vma, &pgprot, pfn); 845 846 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 847 return VM_FAULT_NOPAGE; 848 } 849 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot); 850 851 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 852 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 853 { 854 if (likely(vma->vm_flags & VM_WRITE)) 855 pud = pud_mkwrite(pud); 856 return pud; 857 } 858 859 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 860 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 861 { 862 struct mm_struct *mm = vma->vm_mm; 863 pud_t entry; 864 spinlock_t *ptl; 865 866 ptl = pud_lock(mm, pud); 867 if (!pud_none(*pud)) { 868 if (write) { 869 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 870 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 871 goto out_unlock; 872 } 873 entry = pud_mkyoung(*pud); 874 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 875 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 876 update_mmu_cache_pud(vma, addr, pud); 877 } 878 goto out_unlock; 879 } 880 881 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 882 if (pfn_t_devmap(pfn)) 883 entry = pud_mkdevmap(entry); 884 if (write) { 885 entry = pud_mkyoung(pud_mkdirty(entry)); 886 entry = maybe_pud_mkwrite(entry, vma); 887 } 888 set_pud_at(mm, addr, pud, entry); 889 update_mmu_cache_pud(vma, addr, pud); 890 891 out_unlock: 892 spin_unlock(ptl); 893 } 894 895 /** 896 * vmf_insert_pfn_pud_prot - insert a pud size pfn 897 * @vmf: Structure describing the fault 898 * @pfn: pfn to insert 899 * @pgprot: page protection to use 900 * @write: whether it's a write fault 901 * 902 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and 903 * also consult the vmf_insert_mixed_prot() documentation when 904 * @pgprot != @vmf->vma->vm_page_prot. 905 * 906 * Return: vm_fault_t value. 907 */ 908 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn, 909 pgprot_t pgprot, bool write) 910 { 911 unsigned long addr = vmf->address & PUD_MASK; 912 struct vm_area_struct *vma = vmf->vma; 913 914 /* 915 * If we had pud_special, we could avoid all these restrictions, 916 * but we need to be consistent with PTEs and architectures that 917 * can't support a 'special' bit. 918 */ 919 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 920 !pfn_t_devmap(pfn)); 921 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 922 (VM_PFNMAP|VM_MIXEDMAP)); 923 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 924 925 if (addr < vma->vm_start || addr >= vma->vm_end) 926 return VM_FAULT_SIGBUS; 927 928 track_pfn_insert(vma, &pgprot, pfn); 929 930 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write); 931 return VM_FAULT_NOPAGE; 932 } 933 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot); 934 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 935 936 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 937 pmd_t *pmd, int flags) 938 { 939 pmd_t _pmd; 940 941 _pmd = pmd_mkyoung(*pmd); 942 if (flags & FOLL_WRITE) 943 _pmd = pmd_mkdirty(_pmd); 944 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 945 pmd, _pmd, flags & FOLL_WRITE)) 946 update_mmu_cache_pmd(vma, addr, pmd); 947 } 948 949 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 950 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 951 { 952 unsigned long pfn = pmd_pfn(*pmd); 953 struct mm_struct *mm = vma->vm_mm; 954 struct page *page; 955 956 assert_spin_locked(pmd_lockptr(mm, pmd)); 957 958 /* 959 * When we COW a devmap PMD entry, we split it into PTEs, so we should 960 * not be in this function with `flags & FOLL_COW` set. 961 */ 962 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); 963 964 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 965 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 966 (FOLL_PIN | FOLL_GET))) 967 return NULL; 968 969 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 970 return NULL; 971 972 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 973 /* pass */; 974 else 975 return NULL; 976 977 if (flags & FOLL_TOUCH) 978 touch_pmd(vma, addr, pmd, flags); 979 980 /* 981 * device mapped pages can only be returned if the 982 * caller will manage the page reference count. 983 */ 984 if (!(flags & (FOLL_GET | FOLL_PIN))) 985 return ERR_PTR(-EEXIST); 986 987 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 988 *pgmap = get_dev_pagemap(pfn, *pgmap); 989 if (!*pgmap) 990 return ERR_PTR(-EFAULT); 991 page = pfn_to_page(pfn); 992 if (!try_grab_page(page, flags)) 993 page = ERR_PTR(-ENOMEM); 994 995 return page; 996 } 997 998 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 999 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1000 struct vm_area_struct *vma) 1001 { 1002 spinlock_t *dst_ptl, *src_ptl; 1003 struct page *src_page; 1004 pmd_t pmd; 1005 pgtable_t pgtable = NULL; 1006 int ret = -ENOMEM; 1007 1008 /* Skip if can be re-fill on fault */ 1009 if (!vma_is_anonymous(vma)) 1010 return 0; 1011 1012 pgtable = pte_alloc_one(dst_mm); 1013 if (unlikely(!pgtable)) 1014 goto out; 1015 1016 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1017 src_ptl = pmd_lockptr(src_mm, src_pmd); 1018 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1019 1020 ret = -EAGAIN; 1021 pmd = *src_pmd; 1022 1023 /* 1024 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA 1025 * does not have the VM_UFFD_WP, which means that the uffd 1026 * fork event is not enabled. 1027 */ 1028 if (!(vma->vm_flags & VM_UFFD_WP)) 1029 pmd = pmd_clear_uffd_wp(pmd); 1030 1031 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1032 if (unlikely(is_swap_pmd(pmd))) { 1033 swp_entry_t entry = pmd_to_swp_entry(pmd); 1034 1035 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1036 if (is_write_migration_entry(entry)) { 1037 make_migration_entry_read(&entry); 1038 pmd = swp_entry_to_pmd(entry); 1039 if (pmd_swp_soft_dirty(*src_pmd)) 1040 pmd = pmd_swp_mksoft_dirty(pmd); 1041 set_pmd_at(src_mm, addr, src_pmd, pmd); 1042 } 1043 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1044 mm_inc_nr_ptes(dst_mm); 1045 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1046 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1047 ret = 0; 1048 goto out_unlock; 1049 } 1050 #endif 1051 1052 if (unlikely(!pmd_trans_huge(pmd))) { 1053 pte_free(dst_mm, pgtable); 1054 goto out_unlock; 1055 } 1056 /* 1057 * When page table lock is held, the huge zero pmd should not be 1058 * under splitting since we don't split the page itself, only pmd to 1059 * a page table. 1060 */ 1061 if (is_huge_zero_pmd(pmd)) { 1062 struct page *zero_page; 1063 /* 1064 * get_huge_zero_page() will never allocate a new page here, 1065 * since we already have a zero page to copy. It just takes a 1066 * reference. 1067 */ 1068 zero_page = mm_get_huge_zero_page(dst_mm); 1069 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 1070 zero_page); 1071 ret = 0; 1072 goto out_unlock; 1073 } 1074 1075 src_page = pmd_page(pmd); 1076 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1077 1078 /* 1079 * If this page is a potentially pinned page, split and retry the fault 1080 * with smaller page size. Normally this should not happen because the 1081 * userspace should use MADV_DONTFORK upon pinned regions. This is a 1082 * best effort that the pinned pages won't be replaced by another 1083 * random page during the coming copy-on-write. 1084 */ 1085 if (unlikely(is_cow_mapping(vma->vm_flags) && 1086 atomic_read(&src_mm->has_pinned) && 1087 page_maybe_dma_pinned(src_page))) { 1088 pte_free(dst_mm, pgtable); 1089 spin_unlock(src_ptl); 1090 spin_unlock(dst_ptl); 1091 __split_huge_pmd(vma, src_pmd, addr, false, NULL); 1092 return -EAGAIN; 1093 } 1094 1095 get_page(src_page); 1096 page_dup_rmap(src_page, true); 1097 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1098 mm_inc_nr_ptes(dst_mm); 1099 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1100 1101 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1102 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1103 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1104 1105 ret = 0; 1106 out_unlock: 1107 spin_unlock(src_ptl); 1108 spin_unlock(dst_ptl); 1109 out: 1110 return ret; 1111 } 1112 1113 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1114 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1115 pud_t *pud, int flags) 1116 { 1117 pud_t _pud; 1118 1119 _pud = pud_mkyoung(*pud); 1120 if (flags & FOLL_WRITE) 1121 _pud = pud_mkdirty(_pud); 1122 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1123 pud, _pud, flags & FOLL_WRITE)) 1124 update_mmu_cache_pud(vma, addr, pud); 1125 } 1126 1127 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1128 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1129 { 1130 unsigned long pfn = pud_pfn(*pud); 1131 struct mm_struct *mm = vma->vm_mm; 1132 struct page *page; 1133 1134 assert_spin_locked(pud_lockptr(mm, pud)); 1135 1136 if (flags & FOLL_WRITE && !pud_write(*pud)) 1137 return NULL; 1138 1139 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 1140 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 1141 (FOLL_PIN | FOLL_GET))) 1142 return NULL; 1143 1144 if (pud_present(*pud) && pud_devmap(*pud)) 1145 /* pass */; 1146 else 1147 return NULL; 1148 1149 if (flags & FOLL_TOUCH) 1150 touch_pud(vma, addr, pud, flags); 1151 1152 /* 1153 * device mapped pages can only be returned if the 1154 * caller will manage the page reference count. 1155 * 1156 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: 1157 */ 1158 if (!(flags & (FOLL_GET | FOLL_PIN))) 1159 return ERR_PTR(-EEXIST); 1160 1161 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1162 *pgmap = get_dev_pagemap(pfn, *pgmap); 1163 if (!*pgmap) 1164 return ERR_PTR(-EFAULT); 1165 page = pfn_to_page(pfn); 1166 if (!try_grab_page(page, flags)) 1167 page = ERR_PTR(-ENOMEM); 1168 1169 return page; 1170 } 1171 1172 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1173 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1174 struct vm_area_struct *vma) 1175 { 1176 spinlock_t *dst_ptl, *src_ptl; 1177 pud_t pud; 1178 int ret; 1179 1180 dst_ptl = pud_lock(dst_mm, dst_pud); 1181 src_ptl = pud_lockptr(src_mm, src_pud); 1182 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1183 1184 ret = -EAGAIN; 1185 pud = *src_pud; 1186 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1187 goto out_unlock; 1188 1189 /* 1190 * When page table lock is held, the huge zero pud should not be 1191 * under splitting since we don't split the page itself, only pud to 1192 * a page table. 1193 */ 1194 if (is_huge_zero_pud(pud)) { 1195 /* No huge zero pud yet */ 1196 } 1197 1198 /* Please refer to comments in copy_huge_pmd() */ 1199 if (unlikely(is_cow_mapping(vma->vm_flags) && 1200 atomic_read(&src_mm->has_pinned) && 1201 page_maybe_dma_pinned(pud_page(pud)))) { 1202 spin_unlock(src_ptl); 1203 spin_unlock(dst_ptl); 1204 __split_huge_pud(vma, src_pud, addr); 1205 return -EAGAIN; 1206 } 1207 1208 pudp_set_wrprotect(src_mm, addr, src_pud); 1209 pud = pud_mkold(pud_wrprotect(pud)); 1210 set_pud_at(dst_mm, addr, dst_pud, pud); 1211 1212 ret = 0; 1213 out_unlock: 1214 spin_unlock(src_ptl); 1215 spin_unlock(dst_ptl); 1216 return ret; 1217 } 1218 1219 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1220 { 1221 pud_t entry; 1222 unsigned long haddr; 1223 bool write = vmf->flags & FAULT_FLAG_WRITE; 1224 1225 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1226 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1227 goto unlock; 1228 1229 entry = pud_mkyoung(orig_pud); 1230 if (write) 1231 entry = pud_mkdirty(entry); 1232 haddr = vmf->address & HPAGE_PUD_MASK; 1233 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write)) 1234 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud); 1235 1236 unlock: 1237 spin_unlock(vmf->ptl); 1238 } 1239 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1240 1241 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd) 1242 { 1243 pmd_t entry; 1244 unsigned long haddr; 1245 bool write = vmf->flags & FAULT_FLAG_WRITE; 1246 1247 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1248 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1249 goto unlock; 1250 1251 entry = pmd_mkyoung(orig_pmd); 1252 if (write) 1253 entry = pmd_mkdirty(entry); 1254 haddr = vmf->address & HPAGE_PMD_MASK; 1255 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) 1256 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); 1257 1258 unlock: 1259 spin_unlock(vmf->ptl); 1260 } 1261 1262 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd) 1263 { 1264 struct vm_area_struct *vma = vmf->vma; 1265 struct page *page; 1266 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1267 1268 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1269 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1270 1271 if (is_huge_zero_pmd(orig_pmd)) 1272 goto fallback; 1273 1274 spin_lock(vmf->ptl); 1275 1276 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1277 spin_unlock(vmf->ptl); 1278 return 0; 1279 } 1280 1281 page = pmd_page(orig_pmd); 1282 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 1283 1284 /* Lock page for reuse_swap_page() */ 1285 if (!trylock_page(page)) { 1286 get_page(page); 1287 spin_unlock(vmf->ptl); 1288 lock_page(page); 1289 spin_lock(vmf->ptl); 1290 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1291 spin_unlock(vmf->ptl); 1292 unlock_page(page); 1293 put_page(page); 1294 return 0; 1295 } 1296 put_page(page); 1297 } 1298 1299 /* 1300 * We can only reuse the page if nobody else maps the huge page or it's 1301 * part. 1302 */ 1303 if (reuse_swap_page(page, NULL)) { 1304 pmd_t entry; 1305 entry = pmd_mkyoung(orig_pmd); 1306 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1307 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1308 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1309 unlock_page(page); 1310 spin_unlock(vmf->ptl); 1311 return VM_FAULT_WRITE; 1312 } 1313 1314 unlock_page(page); 1315 spin_unlock(vmf->ptl); 1316 fallback: 1317 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1318 return VM_FAULT_FALLBACK; 1319 } 1320 1321 /* 1322 * FOLL_FORCE can write to even unwritable pmd's, but only 1323 * after we've gone through a COW cycle and they are dirty. 1324 */ 1325 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) 1326 { 1327 return pmd_write(pmd) || 1328 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); 1329 } 1330 1331 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1332 unsigned long addr, 1333 pmd_t *pmd, 1334 unsigned int flags) 1335 { 1336 struct mm_struct *mm = vma->vm_mm; 1337 struct page *page = NULL; 1338 1339 assert_spin_locked(pmd_lockptr(mm, pmd)); 1340 1341 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) 1342 goto out; 1343 1344 /* Avoid dumping huge zero page */ 1345 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1346 return ERR_PTR(-EFAULT); 1347 1348 /* Full NUMA hinting faults to serialise migration in fault paths */ 1349 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1350 goto out; 1351 1352 page = pmd_page(*pmd); 1353 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1354 1355 if (!try_grab_page(page, flags)) 1356 return ERR_PTR(-ENOMEM); 1357 1358 if (flags & FOLL_TOUCH) 1359 touch_pmd(vma, addr, pmd, flags); 1360 1361 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1362 /* 1363 * We don't mlock() pte-mapped THPs. This way we can avoid 1364 * leaking mlocked pages into non-VM_LOCKED VMAs. 1365 * 1366 * For anon THP: 1367 * 1368 * In most cases the pmd is the only mapping of the page as we 1369 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1370 * writable private mappings in populate_vma_page_range(). 1371 * 1372 * The only scenario when we have the page shared here is if we 1373 * mlocking read-only mapping shared over fork(). We skip 1374 * mlocking such pages. 1375 * 1376 * For file THP: 1377 * 1378 * We can expect PageDoubleMap() to be stable under page lock: 1379 * for file pages we set it in page_add_file_rmap(), which 1380 * requires page to be locked. 1381 */ 1382 1383 if (PageAnon(page) && compound_mapcount(page) != 1) 1384 goto skip_mlock; 1385 if (PageDoubleMap(page) || !page->mapping) 1386 goto skip_mlock; 1387 if (!trylock_page(page)) 1388 goto skip_mlock; 1389 if (page->mapping && !PageDoubleMap(page)) 1390 mlock_vma_page(page); 1391 unlock_page(page); 1392 } 1393 skip_mlock: 1394 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1395 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1396 1397 out: 1398 return page; 1399 } 1400 1401 /* NUMA hinting page fault entry point for trans huge pmds */ 1402 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd) 1403 { 1404 struct vm_area_struct *vma = vmf->vma; 1405 struct anon_vma *anon_vma = NULL; 1406 struct page *page; 1407 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1408 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id(); 1409 int target_nid, last_cpupid = -1; 1410 bool page_locked; 1411 bool migrated = false; 1412 bool was_writable; 1413 int flags = 0; 1414 1415 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1416 if (unlikely(!pmd_same(pmd, *vmf->pmd))) 1417 goto out_unlock; 1418 1419 /* 1420 * If there are potential migrations, wait for completion and retry 1421 * without disrupting NUMA hinting information. Do not relock and 1422 * check_same as the page may no longer be mapped. 1423 */ 1424 if (unlikely(pmd_trans_migrating(*vmf->pmd))) { 1425 page = pmd_page(*vmf->pmd); 1426 if (!get_page_unless_zero(page)) 1427 goto out_unlock; 1428 spin_unlock(vmf->ptl); 1429 put_and_wait_on_page_locked(page); 1430 goto out; 1431 } 1432 1433 page = pmd_page(pmd); 1434 BUG_ON(is_huge_zero_page(page)); 1435 page_nid = page_to_nid(page); 1436 last_cpupid = page_cpupid_last(page); 1437 count_vm_numa_event(NUMA_HINT_FAULTS); 1438 if (page_nid == this_nid) { 1439 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1440 flags |= TNF_FAULT_LOCAL; 1441 } 1442 1443 /* See similar comment in do_numa_page for explanation */ 1444 if (!pmd_savedwrite(pmd)) 1445 flags |= TNF_NO_GROUP; 1446 1447 /* 1448 * Acquire the page lock to serialise THP migrations but avoid dropping 1449 * page_table_lock if at all possible 1450 */ 1451 page_locked = trylock_page(page); 1452 target_nid = mpol_misplaced(page, vma, haddr); 1453 if (target_nid == NUMA_NO_NODE) { 1454 /* If the page was locked, there are no parallel migrations */ 1455 if (page_locked) 1456 goto clear_pmdnuma; 1457 } 1458 1459 /* Migration could have started since the pmd_trans_migrating check */ 1460 if (!page_locked) { 1461 page_nid = NUMA_NO_NODE; 1462 if (!get_page_unless_zero(page)) 1463 goto out_unlock; 1464 spin_unlock(vmf->ptl); 1465 put_and_wait_on_page_locked(page); 1466 goto out; 1467 } 1468 1469 /* 1470 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1471 * to serialises splits 1472 */ 1473 get_page(page); 1474 spin_unlock(vmf->ptl); 1475 anon_vma = page_lock_anon_vma_read(page); 1476 1477 /* Confirm the PMD did not change while page_table_lock was released */ 1478 spin_lock(vmf->ptl); 1479 if (unlikely(!pmd_same(pmd, *vmf->pmd))) { 1480 unlock_page(page); 1481 put_page(page); 1482 page_nid = NUMA_NO_NODE; 1483 goto out_unlock; 1484 } 1485 1486 /* Bail if we fail to protect against THP splits for any reason */ 1487 if (unlikely(!anon_vma)) { 1488 put_page(page); 1489 page_nid = NUMA_NO_NODE; 1490 goto clear_pmdnuma; 1491 } 1492 1493 /* 1494 * Since we took the NUMA fault, we must have observed the !accessible 1495 * bit. Make sure all other CPUs agree with that, to avoid them 1496 * modifying the page we're about to migrate. 1497 * 1498 * Must be done under PTL such that we'll observe the relevant 1499 * inc_tlb_flush_pending(). 1500 * 1501 * We are not sure a pending tlb flush here is for a huge page 1502 * mapping or not. Hence use the tlb range variant 1503 */ 1504 if (mm_tlb_flush_pending(vma->vm_mm)) { 1505 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE); 1506 /* 1507 * change_huge_pmd() released the pmd lock before 1508 * invalidating the secondary MMUs sharing the primary 1509 * MMU pagetables (with ->invalidate_range()). The 1510 * mmu_notifier_invalidate_range_end() (which 1511 * internally calls ->invalidate_range()) in 1512 * change_pmd_range() will run after us, so we can't 1513 * rely on it here and we need an explicit invalidate. 1514 */ 1515 mmu_notifier_invalidate_range(vma->vm_mm, haddr, 1516 haddr + HPAGE_PMD_SIZE); 1517 } 1518 1519 /* 1520 * Migrate the THP to the requested node, returns with page unlocked 1521 * and access rights restored. 1522 */ 1523 spin_unlock(vmf->ptl); 1524 1525 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, 1526 vmf->pmd, pmd, vmf->address, page, target_nid); 1527 if (migrated) { 1528 flags |= TNF_MIGRATED; 1529 page_nid = target_nid; 1530 } else 1531 flags |= TNF_MIGRATE_FAIL; 1532 1533 goto out; 1534 clear_pmdnuma: 1535 BUG_ON(!PageLocked(page)); 1536 was_writable = pmd_savedwrite(pmd); 1537 pmd = pmd_modify(pmd, vma->vm_page_prot); 1538 pmd = pmd_mkyoung(pmd); 1539 if (was_writable) 1540 pmd = pmd_mkwrite(pmd); 1541 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1542 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1543 unlock_page(page); 1544 out_unlock: 1545 spin_unlock(vmf->ptl); 1546 1547 out: 1548 if (anon_vma) 1549 page_unlock_anon_vma_read(anon_vma); 1550 1551 if (page_nid != NUMA_NO_NODE) 1552 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1553 flags); 1554 1555 return 0; 1556 } 1557 1558 /* 1559 * Return true if we do MADV_FREE successfully on entire pmd page. 1560 * Otherwise, return false. 1561 */ 1562 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1563 pmd_t *pmd, unsigned long addr, unsigned long next) 1564 { 1565 spinlock_t *ptl; 1566 pmd_t orig_pmd; 1567 struct page *page; 1568 struct mm_struct *mm = tlb->mm; 1569 bool ret = false; 1570 1571 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1572 1573 ptl = pmd_trans_huge_lock(pmd, vma); 1574 if (!ptl) 1575 goto out_unlocked; 1576 1577 orig_pmd = *pmd; 1578 if (is_huge_zero_pmd(orig_pmd)) 1579 goto out; 1580 1581 if (unlikely(!pmd_present(orig_pmd))) { 1582 VM_BUG_ON(thp_migration_supported() && 1583 !is_pmd_migration_entry(orig_pmd)); 1584 goto out; 1585 } 1586 1587 page = pmd_page(orig_pmd); 1588 /* 1589 * If other processes are mapping this page, we couldn't discard 1590 * the page unless they all do MADV_FREE so let's skip the page. 1591 */ 1592 if (page_mapcount(page) != 1) 1593 goto out; 1594 1595 if (!trylock_page(page)) 1596 goto out; 1597 1598 /* 1599 * If user want to discard part-pages of THP, split it so MADV_FREE 1600 * will deactivate only them. 1601 */ 1602 if (next - addr != HPAGE_PMD_SIZE) { 1603 get_page(page); 1604 spin_unlock(ptl); 1605 split_huge_page(page); 1606 unlock_page(page); 1607 put_page(page); 1608 goto out_unlocked; 1609 } 1610 1611 if (PageDirty(page)) 1612 ClearPageDirty(page); 1613 unlock_page(page); 1614 1615 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1616 pmdp_invalidate(vma, addr, pmd); 1617 orig_pmd = pmd_mkold(orig_pmd); 1618 orig_pmd = pmd_mkclean(orig_pmd); 1619 1620 set_pmd_at(mm, addr, pmd, orig_pmd); 1621 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1622 } 1623 1624 mark_page_lazyfree(page); 1625 ret = true; 1626 out: 1627 spin_unlock(ptl); 1628 out_unlocked: 1629 return ret; 1630 } 1631 1632 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1633 { 1634 pgtable_t pgtable; 1635 1636 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1637 pte_free(mm, pgtable); 1638 mm_dec_nr_ptes(mm); 1639 } 1640 1641 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1642 pmd_t *pmd, unsigned long addr) 1643 { 1644 pmd_t orig_pmd; 1645 spinlock_t *ptl; 1646 1647 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1648 1649 ptl = __pmd_trans_huge_lock(pmd, vma); 1650 if (!ptl) 1651 return 0; 1652 /* 1653 * For architectures like ppc64 we look at deposited pgtable 1654 * when calling pmdp_huge_get_and_clear. So do the 1655 * pgtable_trans_huge_withdraw after finishing pmdp related 1656 * operations. 1657 */ 1658 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1659 tlb->fullmm); 1660 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1661 if (vma_is_special_huge(vma)) { 1662 if (arch_needs_pgtable_deposit()) 1663 zap_deposited_table(tlb->mm, pmd); 1664 spin_unlock(ptl); 1665 if (is_huge_zero_pmd(orig_pmd)) 1666 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1667 } else if (is_huge_zero_pmd(orig_pmd)) { 1668 zap_deposited_table(tlb->mm, pmd); 1669 spin_unlock(ptl); 1670 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1671 } else { 1672 struct page *page = NULL; 1673 int flush_needed = 1; 1674 1675 if (pmd_present(orig_pmd)) { 1676 page = pmd_page(orig_pmd); 1677 page_remove_rmap(page, true); 1678 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1679 VM_BUG_ON_PAGE(!PageHead(page), page); 1680 } else if (thp_migration_supported()) { 1681 swp_entry_t entry; 1682 1683 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1684 entry = pmd_to_swp_entry(orig_pmd); 1685 page = pfn_to_page(swp_offset(entry)); 1686 flush_needed = 0; 1687 } else 1688 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1689 1690 if (PageAnon(page)) { 1691 zap_deposited_table(tlb->mm, pmd); 1692 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1693 } else { 1694 if (arch_needs_pgtable_deposit()) 1695 zap_deposited_table(tlb->mm, pmd); 1696 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR); 1697 } 1698 1699 spin_unlock(ptl); 1700 if (flush_needed) 1701 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1702 } 1703 return 1; 1704 } 1705 1706 #ifndef pmd_move_must_withdraw 1707 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1708 spinlock_t *old_pmd_ptl, 1709 struct vm_area_struct *vma) 1710 { 1711 /* 1712 * With split pmd lock we also need to move preallocated 1713 * PTE page table if new_pmd is on different PMD page table. 1714 * 1715 * We also don't deposit and withdraw tables for file pages. 1716 */ 1717 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1718 } 1719 #endif 1720 1721 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1722 { 1723 #ifdef CONFIG_MEM_SOFT_DIRTY 1724 if (unlikely(is_pmd_migration_entry(pmd))) 1725 pmd = pmd_swp_mksoft_dirty(pmd); 1726 else if (pmd_present(pmd)) 1727 pmd = pmd_mksoft_dirty(pmd); 1728 #endif 1729 return pmd; 1730 } 1731 1732 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1733 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1734 { 1735 spinlock_t *old_ptl, *new_ptl; 1736 pmd_t pmd; 1737 struct mm_struct *mm = vma->vm_mm; 1738 bool force_flush = false; 1739 1740 /* 1741 * The destination pmd shouldn't be established, free_pgtables() 1742 * should have release it. 1743 */ 1744 if (WARN_ON(!pmd_none(*new_pmd))) { 1745 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1746 return false; 1747 } 1748 1749 /* 1750 * We don't have to worry about the ordering of src and dst 1751 * ptlocks because exclusive mmap_lock prevents deadlock. 1752 */ 1753 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1754 if (old_ptl) { 1755 new_ptl = pmd_lockptr(mm, new_pmd); 1756 if (new_ptl != old_ptl) 1757 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1758 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1759 if (pmd_present(pmd)) 1760 force_flush = true; 1761 VM_BUG_ON(!pmd_none(*new_pmd)); 1762 1763 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1764 pgtable_t pgtable; 1765 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1766 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1767 } 1768 pmd = move_soft_dirty_pmd(pmd); 1769 set_pmd_at(mm, new_addr, new_pmd, pmd); 1770 if (force_flush) 1771 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1772 if (new_ptl != old_ptl) 1773 spin_unlock(new_ptl); 1774 spin_unlock(old_ptl); 1775 return true; 1776 } 1777 return false; 1778 } 1779 1780 /* 1781 * Returns 1782 * - 0 if PMD could not be locked 1783 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1784 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1785 */ 1786 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1787 unsigned long addr, pgprot_t newprot, unsigned long cp_flags) 1788 { 1789 struct mm_struct *mm = vma->vm_mm; 1790 spinlock_t *ptl; 1791 pmd_t entry; 1792 bool preserve_write; 1793 int ret; 1794 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 1795 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 1796 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 1797 1798 ptl = __pmd_trans_huge_lock(pmd, vma); 1799 if (!ptl) 1800 return 0; 1801 1802 preserve_write = prot_numa && pmd_write(*pmd); 1803 ret = 1; 1804 1805 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1806 if (is_swap_pmd(*pmd)) { 1807 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1808 1809 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 1810 if (is_write_migration_entry(entry)) { 1811 pmd_t newpmd; 1812 /* 1813 * A protection check is difficult so 1814 * just be safe and disable write 1815 */ 1816 make_migration_entry_read(&entry); 1817 newpmd = swp_entry_to_pmd(entry); 1818 if (pmd_swp_soft_dirty(*pmd)) 1819 newpmd = pmd_swp_mksoft_dirty(newpmd); 1820 set_pmd_at(mm, addr, pmd, newpmd); 1821 } 1822 goto unlock; 1823 } 1824 #endif 1825 1826 /* 1827 * Avoid trapping faults against the zero page. The read-only 1828 * data is likely to be read-cached on the local CPU and 1829 * local/remote hits to the zero page are not interesting. 1830 */ 1831 if (prot_numa && is_huge_zero_pmd(*pmd)) 1832 goto unlock; 1833 1834 if (prot_numa && pmd_protnone(*pmd)) 1835 goto unlock; 1836 1837 /* 1838 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 1839 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 1840 * which is also under mmap_read_lock(mm): 1841 * 1842 * CPU0: CPU1: 1843 * change_huge_pmd(prot_numa=1) 1844 * pmdp_huge_get_and_clear_notify() 1845 * madvise_dontneed() 1846 * zap_pmd_range() 1847 * pmd_trans_huge(*pmd) == 0 (without ptl) 1848 * // skip the pmd 1849 * set_pmd_at(); 1850 * // pmd is re-established 1851 * 1852 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 1853 * which may break userspace. 1854 * 1855 * pmdp_invalidate() is required to make sure we don't miss 1856 * dirty/young flags set by hardware. 1857 */ 1858 entry = pmdp_invalidate(vma, addr, pmd); 1859 1860 entry = pmd_modify(entry, newprot); 1861 if (preserve_write) 1862 entry = pmd_mk_savedwrite(entry); 1863 if (uffd_wp) { 1864 entry = pmd_wrprotect(entry); 1865 entry = pmd_mkuffd_wp(entry); 1866 } else if (uffd_wp_resolve) { 1867 /* 1868 * Leave the write bit to be handled by PF interrupt 1869 * handler, then things like COW could be properly 1870 * handled. 1871 */ 1872 entry = pmd_clear_uffd_wp(entry); 1873 } 1874 ret = HPAGE_PMD_NR; 1875 set_pmd_at(mm, addr, pmd, entry); 1876 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry)); 1877 unlock: 1878 spin_unlock(ptl); 1879 return ret; 1880 } 1881 1882 /* 1883 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1884 * 1885 * Note that if it returns page table lock pointer, this routine returns without 1886 * unlocking page table lock. So callers must unlock it. 1887 */ 1888 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1889 { 1890 spinlock_t *ptl; 1891 ptl = pmd_lock(vma->vm_mm, pmd); 1892 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 1893 pmd_devmap(*pmd))) 1894 return ptl; 1895 spin_unlock(ptl); 1896 return NULL; 1897 } 1898 1899 /* 1900 * Returns true if a given pud maps a thp, false otherwise. 1901 * 1902 * Note that if it returns true, this routine returns without unlocking page 1903 * table lock. So callers must unlock it. 1904 */ 1905 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1906 { 1907 spinlock_t *ptl; 1908 1909 ptl = pud_lock(vma->vm_mm, pud); 1910 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1911 return ptl; 1912 spin_unlock(ptl); 1913 return NULL; 1914 } 1915 1916 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1917 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1918 pud_t *pud, unsigned long addr) 1919 { 1920 spinlock_t *ptl; 1921 1922 ptl = __pud_trans_huge_lock(pud, vma); 1923 if (!ptl) 1924 return 0; 1925 /* 1926 * For architectures like ppc64 we look at deposited pgtable 1927 * when calling pudp_huge_get_and_clear. So do the 1928 * pgtable_trans_huge_withdraw after finishing pudp related 1929 * operations. 1930 */ 1931 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm); 1932 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1933 if (vma_is_special_huge(vma)) { 1934 spin_unlock(ptl); 1935 /* No zero page support yet */ 1936 } else { 1937 /* No support for anonymous PUD pages yet */ 1938 BUG(); 1939 } 1940 return 1; 1941 } 1942 1943 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 1944 unsigned long haddr) 1945 { 1946 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 1947 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1948 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 1949 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 1950 1951 count_vm_event(THP_SPLIT_PUD); 1952 1953 pudp_huge_clear_flush_notify(vma, haddr, pud); 1954 } 1955 1956 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 1957 unsigned long address) 1958 { 1959 spinlock_t *ptl; 1960 struct mmu_notifier_range range; 1961 1962 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1963 address & HPAGE_PUD_MASK, 1964 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 1965 mmu_notifier_invalidate_range_start(&range); 1966 ptl = pud_lock(vma->vm_mm, pud); 1967 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 1968 goto out; 1969 __split_huge_pud_locked(vma, pud, range.start); 1970 1971 out: 1972 spin_unlock(ptl); 1973 /* 1974 * No need to double call mmu_notifier->invalidate_range() callback as 1975 * the above pudp_huge_clear_flush_notify() did already call it. 1976 */ 1977 mmu_notifier_invalidate_range_only_end(&range); 1978 } 1979 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1980 1981 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1982 unsigned long haddr, pmd_t *pmd) 1983 { 1984 struct mm_struct *mm = vma->vm_mm; 1985 pgtable_t pgtable; 1986 pmd_t _pmd; 1987 int i; 1988 1989 /* 1990 * Leave pmd empty until pte is filled note that it is fine to delay 1991 * notification until mmu_notifier_invalidate_range_end() as we are 1992 * replacing a zero pmd write protected page with a zero pte write 1993 * protected page. 1994 * 1995 * See Documentation/vm/mmu_notifier.rst 1996 */ 1997 pmdp_huge_clear_flush(vma, haddr, pmd); 1998 1999 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2000 pmd_populate(mm, &_pmd, pgtable); 2001 2002 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 2003 pte_t *pte, entry; 2004 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 2005 entry = pte_mkspecial(entry); 2006 pte = pte_offset_map(&_pmd, haddr); 2007 VM_BUG_ON(!pte_none(*pte)); 2008 set_pte_at(mm, haddr, pte, entry); 2009 pte_unmap(pte); 2010 } 2011 smp_wmb(); /* make pte visible before pmd */ 2012 pmd_populate(mm, pmd, pgtable); 2013 } 2014 2015 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2016 unsigned long haddr, bool freeze) 2017 { 2018 struct mm_struct *mm = vma->vm_mm; 2019 struct page *page; 2020 pgtable_t pgtable; 2021 pmd_t old_pmd, _pmd; 2022 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2023 unsigned long addr; 2024 int i; 2025 2026 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2027 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2028 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2029 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2030 && !pmd_devmap(*pmd)); 2031 2032 count_vm_event(THP_SPLIT_PMD); 2033 2034 if (!vma_is_anonymous(vma)) { 2035 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 2036 /* 2037 * We are going to unmap this huge page. So 2038 * just go ahead and zap it 2039 */ 2040 if (arch_needs_pgtable_deposit()) 2041 zap_deposited_table(mm, pmd); 2042 if (vma_is_special_huge(vma)) 2043 return; 2044 page = pmd_page(_pmd); 2045 if (!PageDirty(page) && pmd_dirty(_pmd)) 2046 set_page_dirty(page); 2047 if (!PageReferenced(page) && pmd_young(_pmd)) 2048 SetPageReferenced(page); 2049 page_remove_rmap(page, true); 2050 put_page(page); 2051 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR); 2052 return; 2053 } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) { 2054 /* 2055 * FIXME: Do we want to invalidate secondary mmu by calling 2056 * mmu_notifier_invalidate_range() see comments below inside 2057 * __split_huge_pmd() ? 2058 * 2059 * We are going from a zero huge page write protected to zero 2060 * small page also write protected so it does not seems useful 2061 * to invalidate secondary mmu at this time. 2062 */ 2063 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2064 } 2065 2066 /* 2067 * Up to this point the pmd is present and huge and userland has the 2068 * whole access to the hugepage during the split (which happens in 2069 * place). If we overwrite the pmd with the not-huge version pointing 2070 * to the pte here (which of course we could if all CPUs were bug 2071 * free), userland could trigger a small page size TLB miss on the 2072 * small sized TLB while the hugepage TLB entry is still established in 2073 * the huge TLB. Some CPU doesn't like that. 2074 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2075 * 383 on page 105. Intel should be safe but is also warns that it's 2076 * only safe if the permission and cache attributes of the two entries 2077 * loaded in the two TLB is identical (which should be the case here). 2078 * But it is generally safer to never allow small and huge TLB entries 2079 * for the same virtual address to be loaded simultaneously. So instead 2080 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2081 * current pmd notpresent (atomically because here the pmd_trans_huge 2082 * must remain set at all times on the pmd until the split is complete 2083 * for this pmd), then we flush the SMP TLB and finally we write the 2084 * non-huge version of the pmd entry with pmd_populate. 2085 */ 2086 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2087 2088 pmd_migration = is_pmd_migration_entry(old_pmd); 2089 if (unlikely(pmd_migration)) { 2090 swp_entry_t entry; 2091 2092 entry = pmd_to_swp_entry(old_pmd); 2093 page = pfn_to_page(swp_offset(entry)); 2094 write = is_write_migration_entry(entry); 2095 young = false; 2096 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2097 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2098 } else { 2099 page = pmd_page(old_pmd); 2100 if (pmd_dirty(old_pmd)) 2101 SetPageDirty(page); 2102 write = pmd_write(old_pmd); 2103 young = pmd_young(old_pmd); 2104 soft_dirty = pmd_soft_dirty(old_pmd); 2105 uffd_wp = pmd_uffd_wp(old_pmd); 2106 } 2107 VM_BUG_ON_PAGE(!page_count(page), page); 2108 page_ref_add(page, HPAGE_PMD_NR - 1); 2109 2110 /* 2111 * Withdraw the table only after we mark the pmd entry invalid. 2112 * This's critical for some architectures (Power). 2113 */ 2114 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2115 pmd_populate(mm, &_pmd, pgtable); 2116 2117 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2118 pte_t entry, *pte; 2119 /* 2120 * Note that NUMA hinting access restrictions are not 2121 * transferred to avoid any possibility of altering 2122 * permissions across VMAs. 2123 */ 2124 if (freeze || pmd_migration) { 2125 swp_entry_t swp_entry; 2126 swp_entry = make_migration_entry(page + i, write); 2127 entry = swp_entry_to_pte(swp_entry); 2128 if (soft_dirty) 2129 entry = pte_swp_mksoft_dirty(entry); 2130 if (uffd_wp) 2131 entry = pte_swp_mkuffd_wp(entry); 2132 } else { 2133 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2134 entry = maybe_mkwrite(entry, vma); 2135 if (!write) 2136 entry = pte_wrprotect(entry); 2137 if (!young) 2138 entry = pte_mkold(entry); 2139 if (soft_dirty) 2140 entry = pte_mksoft_dirty(entry); 2141 if (uffd_wp) 2142 entry = pte_mkuffd_wp(entry); 2143 } 2144 pte = pte_offset_map(&_pmd, addr); 2145 BUG_ON(!pte_none(*pte)); 2146 set_pte_at(mm, addr, pte, entry); 2147 if (!pmd_migration) 2148 atomic_inc(&page[i]._mapcount); 2149 pte_unmap(pte); 2150 } 2151 2152 if (!pmd_migration) { 2153 /* 2154 * Set PG_double_map before dropping compound_mapcount to avoid 2155 * false-negative page_mapped(). 2156 */ 2157 if (compound_mapcount(page) > 1 && 2158 !TestSetPageDoubleMap(page)) { 2159 for (i = 0; i < HPAGE_PMD_NR; i++) 2160 atomic_inc(&page[i]._mapcount); 2161 } 2162 2163 lock_page_memcg(page); 2164 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 2165 /* Last compound_mapcount is gone. */ 2166 __dec_lruvec_page_state(page, NR_ANON_THPS); 2167 if (TestClearPageDoubleMap(page)) { 2168 /* No need in mapcount reference anymore */ 2169 for (i = 0; i < HPAGE_PMD_NR; i++) 2170 atomic_dec(&page[i]._mapcount); 2171 } 2172 } 2173 unlock_page_memcg(page); 2174 } 2175 2176 smp_wmb(); /* make pte visible before pmd */ 2177 pmd_populate(mm, pmd, pgtable); 2178 2179 if (freeze) { 2180 for (i = 0; i < HPAGE_PMD_NR; i++) { 2181 page_remove_rmap(page + i, false); 2182 put_page(page + i); 2183 } 2184 } 2185 } 2186 2187 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2188 unsigned long address, bool freeze, struct page *page) 2189 { 2190 spinlock_t *ptl; 2191 struct mmu_notifier_range range; 2192 bool was_locked = false; 2193 pmd_t _pmd; 2194 2195 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 2196 address & HPAGE_PMD_MASK, 2197 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2198 mmu_notifier_invalidate_range_start(&range); 2199 ptl = pmd_lock(vma->vm_mm, pmd); 2200 2201 /* 2202 * If caller asks to setup a migration entries, we need a page to check 2203 * pmd against. Otherwise we can end up replacing wrong page. 2204 */ 2205 VM_BUG_ON(freeze && !page); 2206 if (page) { 2207 VM_WARN_ON_ONCE(!PageLocked(page)); 2208 was_locked = true; 2209 if (page != pmd_page(*pmd)) 2210 goto out; 2211 } 2212 2213 repeat: 2214 if (pmd_trans_huge(*pmd)) { 2215 if (!page) { 2216 page = pmd_page(*pmd); 2217 if (unlikely(!trylock_page(page))) { 2218 get_page(page); 2219 _pmd = *pmd; 2220 spin_unlock(ptl); 2221 lock_page(page); 2222 spin_lock(ptl); 2223 if (unlikely(!pmd_same(*pmd, _pmd))) { 2224 unlock_page(page); 2225 put_page(page); 2226 page = NULL; 2227 goto repeat; 2228 } 2229 put_page(page); 2230 } 2231 } 2232 if (PageMlocked(page)) 2233 clear_page_mlock(page); 2234 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd))) 2235 goto out; 2236 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2237 out: 2238 spin_unlock(ptl); 2239 if (!was_locked && page) 2240 unlock_page(page); 2241 /* 2242 * No need to double call mmu_notifier->invalidate_range() callback. 2243 * They are 3 cases to consider inside __split_huge_pmd_locked(): 2244 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious 2245 * 2) __split_huge_zero_page_pmd() read only zero page and any write 2246 * fault will trigger a flush_notify before pointing to a new page 2247 * (it is fine if the secondary mmu keeps pointing to the old zero 2248 * page in the meantime) 2249 * 3) Split a huge pmd into pte pointing to the same page. No need 2250 * to invalidate secondary tlb entry they are all still valid. 2251 * any further changes to individual pte will notify. So no need 2252 * to call mmu_notifier->invalidate_range() 2253 */ 2254 mmu_notifier_invalidate_range_only_end(&range); 2255 } 2256 2257 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2258 bool freeze, struct page *page) 2259 { 2260 pgd_t *pgd; 2261 p4d_t *p4d; 2262 pud_t *pud; 2263 pmd_t *pmd; 2264 2265 pgd = pgd_offset(vma->vm_mm, address); 2266 if (!pgd_present(*pgd)) 2267 return; 2268 2269 p4d = p4d_offset(pgd, address); 2270 if (!p4d_present(*p4d)) 2271 return; 2272 2273 pud = pud_offset(p4d, address); 2274 if (!pud_present(*pud)) 2275 return; 2276 2277 pmd = pmd_offset(pud, address); 2278 2279 __split_huge_pmd(vma, pmd, address, freeze, page); 2280 } 2281 2282 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2283 unsigned long start, 2284 unsigned long end, 2285 long adjust_next) 2286 { 2287 /* 2288 * If the new start address isn't hpage aligned and it could 2289 * previously contain an hugepage: check if we need to split 2290 * an huge pmd. 2291 */ 2292 if (start & ~HPAGE_PMD_MASK && 2293 (start & HPAGE_PMD_MASK) >= vma->vm_start && 2294 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2295 split_huge_pmd_address(vma, start, false, NULL); 2296 2297 /* 2298 * If the new end address isn't hpage aligned and it could 2299 * previously contain an hugepage: check if we need to split 2300 * an huge pmd. 2301 */ 2302 if (end & ~HPAGE_PMD_MASK && 2303 (end & HPAGE_PMD_MASK) >= vma->vm_start && 2304 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2305 split_huge_pmd_address(vma, end, false, NULL); 2306 2307 /* 2308 * If we're also updating the vma->vm_next->vm_start, if the new 2309 * vm_next->vm_start isn't hpage aligned and it could previously 2310 * contain an hugepage: check if we need to split an huge pmd. 2311 */ 2312 if (adjust_next > 0) { 2313 struct vm_area_struct *next = vma->vm_next; 2314 unsigned long nstart = next->vm_start; 2315 nstart += adjust_next; 2316 if (nstart & ~HPAGE_PMD_MASK && 2317 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 2318 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 2319 split_huge_pmd_address(next, nstart, false, NULL); 2320 } 2321 } 2322 2323 static void unmap_page(struct page *page) 2324 { 2325 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | 2326 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD; 2327 bool unmap_success; 2328 2329 VM_BUG_ON_PAGE(!PageHead(page), page); 2330 2331 if (PageAnon(page)) 2332 ttu_flags |= TTU_SPLIT_FREEZE; 2333 2334 unmap_success = try_to_unmap(page, ttu_flags); 2335 VM_BUG_ON_PAGE(!unmap_success, page); 2336 } 2337 2338 static void remap_page(struct page *page, unsigned int nr) 2339 { 2340 int i; 2341 if (PageTransHuge(page)) { 2342 remove_migration_ptes(page, page, true); 2343 } else { 2344 for (i = 0; i < nr; i++) 2345 remove_migration_ptes(page + i, page + i, true); 2346 } 2347 } 2348 2349 static void __split_huge_page_tail(struct page *head, int tail, 2350 struct lruvec *lruvec, struct list_head *list) 2351 { 2352 struct page *page_tail = head + tail; 2353 2354 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2355 2356 /* 2357 * Clone page flags before unfreezing refcount. 2358 * 2359 * After successful get_page_unless_zero() might follow flags change, 2360 * for exmaple lock_page() which set PG_waiters. 2361 */ 2362 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2363 page_tail->flags |= (head->flags & 2364 ((1L << PG_referenced) | 2365 (1L << PG_swapbacked) | 2366 (1L << PG_swapcache) | 2367 (1L << PG_mlocked) | 2368 (1L << PG_uptodate) | 2369 (1L << PG_active) | 2370 (1L << PG_workingset) | 2371 (1L << PG_locked) | 2372 (1L << PG_unevictable) | 2373 #ifdef CONFIG_64BIT 2374 (1L << PG_arch_2) | 2375 #endif 2376 (1L << PG_dirty))); 2377 2378 /* ->mapping in first tail page is compound_mapcount */ 2379 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2380 page_tail); 2381 page_tail->mapping = head->mapping; 2382 page_tail->index = head->index + tail; 2383 2384 /* Page flags must be visible before we make the page non-compound. */ 2385 smp_wmb(); 2386 2387 /* 2388 * Clear PageTail before unfreezing page refcount. 2389 * 2390 * After successful get_page_unless_zero() might follow put_page() 2391 * which needs correct compound_head(). 2392 */ 2393 clear_compound_head(page_tail); 2394 2395 /* Finally unfreeze refcount. Additional reference from page cache. */ 2396 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || 2397 PageSwapCache(head))); 2398 2399 if (page_is_young(head)) 2400 set_page_young(page_tail); 2401 if (page_is_idle(head)) 2402 set_page_idle(page_tail); 2403 2404 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2405 2406 /* 2407 * always add to the tail because some iterators expect new 2408 * pages to show after the currently processed elements - e.g. 2409 * migrate_pages 2410 */ 2411 lru_add_page_tail(head, page_tail, lruvec, list); 2412 } 2413 2414 static void __split_huge_page(struct page *page, struct list_head *list, 2415 pgoff_t end, unsigned long flags) 2416 { 2417 struct page *head = compound_head(page); 2418 pg_data_t *pgdat = page_pgdat(head); 2419 struct lruvec *lruvec; 2420 struct address_space *swap_cache = NULL; 2421 unsigned long offset = 0; 2422 unsigned int nr = thp_nr_pages(head); 2423 int i; 2424 2425 lruvec = mem_cgroup_page_lruvec(head, pgdat); 2426 2427 /* complete memcg works before add pages to LRU */ 2428 mem_cgroup_split_huge_fixup(head); 2429 2430 if (PageAnon(head) && PageSwapCache(head)) { 2431 swp_entry_t entry = { .val = page_private(head) }; 2432 2433 offset = swp_offset(entry); 2434 swap_cache = swap_address_space(entry); 2435 xa_lock(&swap_cache->i_pages); 2436 } 2437 2438 for (i = nr - 1; i >= 1; i--) { 2439 __split_huge_page_tail(head, i, lruvec, list); 2440 /* Some pages can be beyond i_size: drop them from page cache */ 2441 if (head[i].index >= end) { 2442 ClearPageDirty(head + i); 2443 __delete_from_page_cache(head + i, NULL); 2444 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) 2445 shmem_uncharge(head->mapping->host, 1); 2446 put_page(head + i); 2447 } else if (!PageAnon(page)) { 2448 __xa_store(&head->mapping->i_pages, head[i].index, 2449 head + i, 0); 2450 } else if (swap_cache) { 2451 __xa_store(&swap_cache->i_pages, offset + i, 2452 head + i, 0); 2453 } 2454 } 2455 2456 ClearPageCompound(head); 2457 2458 split_page_owner(head, nr); 2459 2460 /* See comment in __split_huge_page_tail() */ 2461 if (PageAnon(head)) { 2462 /* Additional pin to swap cache */ 2463 if (PageSwapCache(head)) { 2464 page_ref_add(head, 2); 2465 xa_unlock(&swap_cache->i_pages); 2466 } else { 2467 page_ref_inc(head); 2468 } 2469 } else { 2470 /* Additional pin to page cache */ 2471 page_ref_add(head, 2); 2472 xa_unlock(&head->mapping->i_pages); 2473 } 2474 2475 spin_unlock_irqrestore(&pgdat->lru_lock, flags); 2476 2477 remap_page(head, nr); 2478 2479 if (PageSwapCache(head)) { 2480 swp_entry_t entry = { .val = page_private(head) }; 2481 2482 split_swap_cluster(entry); 2483 } 2484 2485 for (i = 0; i < nr; i++) { 2486 struct page *subpage = head + i; 2487 if (subpage == page) 2488 continue; 2489 unlock_page(subpage); 2490 2491 /* 2492 * Subpages may be freed if there wasn't any mapping 2493 * like if add_to_swap() is running on a lru page that 2494 * had its mapping zapped. And freeing these pages 2495 * requires taking the lru_lock so we do the put_page 2496 * of the tail pages after the split is complete. 2497 */ 2498 put_page(subpage); 2499 } 2500 } 2501 2502 int total_mapcount(struct page *page) 2503 { 2504 int i, compound, nr, ret; 2505 2506 VM_BUG_ON_PAGE(PageTail(page), page); 2507 2508 if (likely(!PageCompound(page))) 2509 return atomic_read(&page->_mapcount) + 1; 2510 2511 compound = compound_mapcount(page); 2512 nr = compound_nr(page); 2513 if (PageHuge(page)) 2514 return compound; 2515 ret = compound; 2516 for (i = 0; i < nr; i++) 2517 ret += atomic_read(&page[i]._mapcount) + 1; 2518 /* File pages has compound_mapcount included in _mapcount */ 2519 if (!PageAnon(page)) 2520 return ret - compound * nr; 2521 if (PageDoubleMap(page)) 2522 ret -= nr; 2523 return ret; 2524 } 2525 2526 /* 2527 * This calculates accurately how many mappings a transparent hugepage 2528 * has (unlike page_mapcount() which isn't fully accurate). This full 2529 * accuracy is primarily needed to know if copy-on-write faults can 2530 * reuse the page and change the mapping to read-write instead of 2531 * copying them. At the same time this returns the total_mapcount too. 2532 * 2533 * The function returns the highest mapcount any one of the subpages 2534 * has. If the return value is one, even if different processes are 2535 * mapping different subpages of the transparent hugepage, they can 2536 * all reuse it, because each process is reusing a different subpage. 2537 * 2538 * The total_mapcount is instead counting all virtual mappings of the 2539 * subpages. If the total_mapcount is equal to "one", it tells the 2540 * caller all mappings belong to the same "mm" and in turn the 2541 * anon_vma of the transparent hugepage can become the vma->anon_vma 2542 * local one as no other process may be mapping any of the subpages. 2543 * 2544 * It would be more accurate to replace page_mapcount() with 2545 * page_trans_huge_mapcount(), however we only use 2546 * page_trans_huge_mapcount() in the copy-on-write faults where we 2547 * need full accuracy to avoid breaking page pinning, because 2548 * page_trans_huge_mapcount() is slower than page_mapcount(). 2549 */ 2550 int page_trans_huge_mapcount(struct page *page, int *total_mapcount) 2551 { 2552 int i, ret, _total_mapcount, mapcount; 2553 2554 /* hugetlbfs shouldn't call it */ 2555 VM_BUG_ON_PAGE(PageHuge(page), page); 2556 2557 if (likely(!PageTransCompound(page))) { 2558 mapcount = atomic_read(&page->_mapcount) + 1; 2559 if (total_mapcount) 2560 *total_mapcount = mapcount; 2561 return mapcount; 2562 } 2563 2564 page = compound_head(page); 2565 2566 _total_mapcount = ret = 0; 2567 for (i = 0; i < thp_nr_pages(page); i++) { 2568 mapcount = atomic_read(&page[i]._mapcount) + 1; 2569 ret = max(ret, mapcount); 2570 _total_mapcount += mapcount; 2571 } 2572 if (PageDoubleMap(page)) { 2573 ret -= 1; 2574 _total_mapcount -= thp_nr_pages(page); 2575 } 2576 mapcount = compound_mapcount(page); 2577 ret += mapcount; 2578 _total_mapcount += mapcount; 2579 if (total_mapcount) 2580 *total_mapcount = _total_mapcount; 2581 return ret; 2582 } 2583 2584 /* Racy check whether the huge page can be split */ 2585 bool can_split_huge_page(struct page *page, int *pextra_pins) 2586 { 2587 int extra_pins; 2588 2589 /* Additional pins from page cache */ 2590 if (PageAnon(page)) 2591 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0; 2592 else 2593 extra_pins = thp_nr_pages(page); 2594 if (pextra_pins) 2595 *pextra_pins = extra_pins; 2596 return total_mapcount(page) == page_count(page) - extra_pins - 1; 2597 } 2598 2599 /* 2600 * This function splits huge page into normal pages. @page can point to any 2601 * subpage of huge page to split. Split doesn't change the position of @page. 2602 * 2603 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2604 * The huge page must be locked. 2605 * 2606 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2607 * 2608 * Both head page and tail pages will inherit mapping, flags, and so on from 2609 * the hugepage. 2610 * 2611 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2612 * they are not mapped. 2613 * 2614 * Returns 0 if the hugepage is split successfully. 2615 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2616 * us. 2617 */ 2618 int split_huge_page_to_list(struct page *page, struct list_head *list) 2619 { 2620 struct page *head = compound_head(page); 2621 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); 2622 struct deferred_split *ds_queue = get_deferred_split_queue(head); 2623 struct anon_vma *anon_vma = NULL; 2624 struct address_space *mapping = NULL; 2625 int count, mapcount, extra_pins, ret; 2626 unsigned long flags; 2627 pgoff_t end; 2628 2629 VM_BUG_ON_PAGE(is_huge_zero_page(head), head); 2630 VM_BUG_ON_PAGE(!PageLocked(head), head); 2631 VM_BUG_ON_PAGE(!PageCompound(head), head); 2632 2633 if (PageWriteback(head)) 2634 return -EBUSY; 2635 2636 if (PageAnon(head)) { 2637 /* 2638 * The caller does not necessarily hold an mmap_lock that would 2639 * prevent the anon_vma disappearing so we first we take a 2640 * reference to it and then lock the anon_vma for write. This 2641 * is similar to page_lock_anon_vma_read except the write lock 2642 * is taken to serialise against parallel split or collapse 2643 * operations. 2644 */ 2645 anon_vma = page_get_anon_vma(head); 2646 if (!anon_vma) { 2647 ret = -EBUSY; 2648 goto out; 2649 } 2650 end = -1; 2651 mapping = NULL; 2652 anon_vma_lock_write(anon_vma); 2653 } else { 2654 mapping = head->mapping; 2655 2656 /* Truncated ? */ 2657 if (!mapping) { 2658 ret = -EBUSY; 2659 goto out; 2660 } 2661 2662 anon_vma = NULL; 2663 i_mmap_lock_read(mapping); 2664 2665 /* 2666 *__split_huge_page() may need to trim off pages beyond EOF: 2667 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 2668 * which cannot be nested inside the page tree lock. So note 2669 * end now: i_size itself may be changed at any moment, but 2670 * head page lock is good enough to serialize the trimming. 2671 */ 2672 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2673 } 2674 2675 /* 2676 * Racy check if we can split the page, before unmap_page() will 2677 * split PMDs 2678 */ 2679 if (!can_split_huge_page(head, &extra_pins)) { 2680 ret = -EBUSY; 2681 goto out_unlock; 2682 } 2683 2684 unmap_page(head); 2685 VM_BUG_ON_PAGE(compound_mapcount(head), head); 2686 2687 /* prevent PageLRU to go away from under us, and freeze lru stats */ 2688 spin_lock_irqsave(&pgdata->lru_lock, flags); 2689 2690 if (mapping) { 2691 XA_STATE(xas, &mapping->i_pages, page_index(head)); 2692 2693 /* 2694 * Check if the head page is present in page cache. 2695 * We assume all tail are present too, if head is there. 2696 */ 2697 xa_lock(&mapping->i_pages); 2698 if (xas_load(&xas) != head) 2699 goto fail; 2700 } 2701 2702 /* Prevent deferred_split_scan() touching ->_refcount */ 2703 spin_lock(&ds_queue->split_queue_lock); 2704 count = page_count(head); 2705 mapcount = total_mapcount(head); 2706 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { 2707 if (!list_empty(page_deferred_list(head))) { 2708 ds_queue->split_queue_len--; 2709 list_del(page_deferred_list(head)); 2710 } 2711 spin_unlock(&ds_queue->split_queue_lock); 2712 if (mapping) { 2713 if (PageSwapBacked(head)) 2714 __dec_node_page_state(head, NR_SHMEM_THPS); 2715 else 2716 __dec_node_page_state(head, NR_FILE_THPS); 2717 } 2718 2719 __split_huge_page(page, list, end, flags); 2720 ret = 0; 2721 } else { 2722 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { 2723 pr_alert("total_mapcount: %u, page_count(): %u\n", 2724 mapcount, count); 2725 if (PageTail(page)) 2726 dump_page(head, NULL); 2727 dump_page(page, "total_mapcount(head) > 0"); 2728 BUG(); 2729 } 2730 spin_unlock(&ds_queue->split_queue_lock); 2731 fail: if (mapping) 2732 xa_unlock(&mapping->i_pages); 2733 spin_unlock_irqrestore(&pgdata->lru_lock, flags); 2734 remap_page(head, thp_nr_pages(head)); 2735 ret = -EBUSY; 2736 } 2737 2738 out_unlock: 2739 if (anon_vma) { 2740 anon_vma_unlock_write(anon_vma); 2741 put_anon_vma(anon_vma); 2742 } 2743 if (mapping) 2744 i_mmap_unlock_read(mapping); 2745 out: 2746 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2747 return ret; 2748 } 2749 2750 void free_transhuge_page(struct page *page) 2751 { 2752 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2753 unsigned long flags; 2754 2755 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2756 if (!list_empty(page_deferred_list(page))) { 2757 ds_queue->split_queue_len--; 2758 list_del(page_deferred_list(page)); 2759 } 2760 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2761 free_compound_page(page); 2762 } 2763 2764 void deferred_split_huge_page(struct page *page) 2765 { 2766 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2767 #ifdef CONFIG_MEMCG 2768 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup; 2769 #endif 2770 unsigned long flags; 2771 2772 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2773 2774 /* 2775 * The try_to_unmap() in page reclaim path might reach here too, 2776 * this may cause a race condition to corrupt deferred split queue. 2777 * And, if page reclaim is already handling the same page, it is 2778 * unnecessary to handle it again in shrinker. 2779 * 2780 * Check PageSwapCache to determine if the page is being 2781 * handled by page reclaim since THP swap would add the page into 2782 * swap cache before calling try_to_unmap(). 2783 */ 2784 if (PageSwapCache(page)) 2785 return; 2786 2787 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2788 if (list_empty(page_deferred_list(page))) { 2789 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2790 list_add_tail(page_deferred_list(page), &ds_queue->split_queue); 2791 ds_queue->split_queue_len++; 2792 #ifdef CONFIG_MEMCG 2793 if (memcg) 2794 memcg_set_shrinker_bit(memcg, page_to_nid(page), 2795 deferred_split_shrinker.id); 2796 #endif 2797 } 2798 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2799 } 2800 2801 static unsigned long deferred_split_count(struct shrinker *shrink, 2802 struct shrink_control *sc) 2803 { 2804 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2805 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2806 2807 #ifdef CONFIG_MEMCG 2808 if (sc->memcg) 2809 ds_queue = &sc->memcg->deferred_split_queue; 2810 #endif 2811 return READ_ONCE(ds_queue->split_queue_len); 2812 } 2813 2814 static unsigned long deferred_split_scan(struct shrinker *shrink, 2815 struct shrink_control *sc) 2816 { 2817 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2818 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2819 unsigned long flags; 2820 LIST_HEAD(list), *pos, *next; 2821 struct page *page; 2822 int split = 0; 2823 2824 #ifdef CONFIG_MEMCG 2825 if (sc->memcg) 2826 ds_queue = &sc->memcg->deferred_split_queue; 2827 #endif 2828 2829 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2830 /* Take pin on all head pages to avoid freeing them under us */ 2831 list_for_each_safe(pos, next, &ds_queue->split_queue) { 2832 page = list_entry((void *)pos, struct page, mapping); 2833 page = compound_head(page); 2834 if (get_page_unless_zero(page)) { 2835 list_move(page_deferred_list(page), &list); 2836 } else { 2837 /* We lost race with put_compound_page() */ 2838 list_del_init(page_deferred_list(page)); 2839 ds_queue->split_queue_len--; 2840 } 2841 if (!--sc->nr_to_scan) 2842 break; 2843 } 2844 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2845 2846 list_for_each_safe(pos, next, &list) { 2847 page = list_entry((void *)pos, struct page, mapping); 2848 if (!trylock_page(page)) 2849 goto next; 2850 /* split_huge_page() removes page from list on success */ 2851 if (!split_huge_page(page)) 2852 split++; 2853 unlock_page(page); 2854 next: 2855 put_page(page); 2856 } 2857 2858 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2859 list_splice_tail(&list, &ds_queue->split_queue); 2860 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2861 2862 /* 2863 * Stop shrinker if we didn't split any page, but the queue is empty. 2864 * This can happen if pages were freed under us. 2865 */ 2866 if (!split && list_empty(&ds_queue->split_queue)) 2867 return SHRINK_STOP; 2868 return split; 2869 } 2870 2871 static struct shrinker deferred_split_shrinker = { 2872 .count_objects = deferred_split_count, 2873 .scan_objects = deferred_split_scan, 2874 .seeks = DEFAULT_SEEKS, 2875 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE | 2876 SHRINKER_NONSLAB, 2877 }; 2878 2879 #ifdef CONFIG_DEBUG_FS 2880 static int split_huge_pages_set(void *data, u64 val) 2881 { 2882 struct zone *zone; 2883 struct page *page; 2884 unsigned long pfn, max_zone_pfn; 2885 unsigned long total = 0, split = 0; 2886 2887 if (val != 1) 2888 return -EINVAL; 2889 2890 for_each_populated_zone(zone) { 2891 max_zone_pfn = zone_end_pfn(zone); 2892 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2893 if (!pfn_valid(pfn)) 2894 continue; 2895 2896 page = pfn_to_page(pfn); 2897 if (!get_page_unless_zero(page)) 2898 continue; 2899 2900 if (zone != page_zone(page)) 2901 goto next; 2902 2903 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2904 goto next; 2905 2906 total++; 2907 lock_page(page); 2908 if (!split_huge_page(page)) 2909 split++; 2910 unlock_page(page); 2911 next: 2912 put_page(page); 2913 } 2914 } 2915 2916 pr_info("%lu of %lu THP split\n", split, total); 2917 2918 return 0; 2919 } 2920 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, 2921 "%llu\n"); 2922 2923 static int __init split_huge_pages_debugfs(void) 2924 { 2925 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 2926 &split_huge_pages_fops); 2927 return 0; 2928 } 2929 late_initcall(split_huge_pages_debugfs); 2930 #endif 2931 2932 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2933 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 2934 struct page *page) 2935 { 2936 struct vm_area_struct *vma = pvmw->vma; 2937 struct mm_struct *mm = vma->vm_mm; 2938 unsigned long address = pvmw->address; 2939 pmd_t pmdval; 2940 swp_entry_t entry; 2941 pmd_t pmdswp; 2942 2943 if (!(pvmw->pmd && !pvmw->pte)) 2944 return; 2945 2946 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 2947 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 2948 if (pmd_dirty(pmdval)) 2949 set_page_dirty(page); 2950 entry = make_migration_entry(page, pmd_write(pmdval)); 2951 pmdswp = swp_entry_to_pmd(entry); 2952 if (pmd_soft_dirty(pmdval)) 2953 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 2954 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 2955 page_remove_rmap(page, true); 2956 put_page(page); 2957 } 2958 2959 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 2960 { 2961 struct vm_area_struct *vma = pvmw->vma; 2962 struct mm_struct *mm = vma->vm_mm; 2963 unsigned long address = pvmw->address; 2964 unsigned long mmun_start = address & HPAGE_PMD_MASK; 2965 pmd_t pmde; 2966 swp_entry_t entry; 2967 2968 if (!(pvmw->pmd && !pvmw->pte)) 2969 return; 2970 2971 entry = pmd_to_swp_entry(*pvmw->pmd); 2972 get_page(new); 2973 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot)); 2974 if (pmd_swp_soft_dirty(*pvmw->pmd)) 2975 pmde = pmd_mksoft_dirty(pmde); 2976 if (is_write_migration_entry(entry)) 2977 pmde = maybe_pmd_mkwrite(pmde, vma); 2978 2979 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE); 2980 if (PageAnon(new)) 2981 page_add_anon_rmap(new, vma, mmun_start, true); 2982 else 2983 page_add_file_rmap(new, true); 2984 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde); 2985 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new)) 2986 mlock_vma_page(new); 2987 update_mmu_cache_pmd(vma, address, pvmw->pmd); 2988 } 2989 #endif 2990