xref: /openbmc/linux/mm/huge_memory.c (revision 4beec1d7)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37 
38 /*
39  * By default transparent hugepage support is disabled in order that avoid
40  * to risk increase the memory footprint of applications without a guaranteed
41  * benefit. When transparent hugepage support is enabled, is for all mappings,
42  * and khugepaged scans all mappings.
43  * Defrag is invoked by khugepaged hugepage allocations and by page faults
44  * for all hugepage allocations.
45  */
46 unsigned long transparent_hugepage_flags __read_mostly =
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 #endif
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52 #endif
53 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
56 
57 static struct shrinker deferred_split_shrinker;
58 
59 static atomic_t huge_zero_refcount;
60 struct page *huge_zero_page __read_mostly;
61 
62 static struct page *get_huge_zero_page(void)
63 {
64 	struct page *zero_page;
65 retry:
66 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67 		return READ_ONCE(huge_zero_page);
68 
69 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70 			HPAGE_PMD_ORDER);
71 	if (!zero_page) {
72 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73 		return NULL;
74 	}
75 	count_vm_event(THP_ZERO_PAGE_ALLOC);
76 	preempt_disable();
77 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78 		preempt_enable();
79 		__free_pages(zero_page, compound_order(zero_page));
80 		goto retry;
81 	}
82 
83 	/* We take additional reference here. It will be put back by shrinker */
84 	atomic_set(&huge_zero_refcount, 2);
85 	preempt_enable();
86 	return READ_ONCE(huge_zero_page);
87 }
88 
89 static void put_huge_zero_page(void)
90 {
91 	/*
92 	 * Counter should never go to zero here. Only shrinker can put
93 	 * last reference.
94 	 */
95 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
96 }
97 
98 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
99 {
100 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
101 		return READ_ONCE(huge_zero_page);
102 
103 	if (!get_huge_zero_page())
104 		return NULL;
105 
106 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
107 		put_huge_zero_page();
108 
109 	return READ_ONCE(huge_zero_page);
110 }
111 
112 void mm_put_huge_zero_page(struct mm_struct *mm)
113 {
114 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 		put_huge_zero_page();
116 }
117 
118 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
119 					struct shrink_control *sc)
120 {
121 	/* we can free zero page only if last reference remains */
122 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
123 }
124 
125 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
126 				       struct shrink_control *sc)
127 {
128 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
129 		struct page *zero_page = xchg(&huge_zero_page, NULL);
130 		BUG_ON(zero_page == NULL);
131 		__free_pages(zero_page, compound_order(zero_page));
132 		return HPAGE_PMD_NR;
133 	}
134 
135 	return 0;
136 }
137 
138 static struct shrinker huge_zero_page_shrinker = {
139 	.count_objects = shrink_huge_zero_page_count,
140 	.scan_objects = shrink_huge_zero_page_scan,
141 	.seeks = DEFAULT_SEEKS,
142 };
143 
144 #ifdef CONFIG_SYSFS
145 
146 static ssize_t triple_flag_store(struct kobject *kobj,
147 				 struct kobj_attribute *attr,
148 				 const char *buf, size_t count,
149 				 enum transparent_hugepage_flag enabled,
150 				 enum transparent_hugepage_flag deferred,
151 				 enum transparent_hugepage_flag req_madv)
152 {
153 	if (!memcmp("defer", buf,
154 		    min(sizeof("defer")-1, count))) {
155 		if (enabled == deferred)
156 			return -EINVAL;
157 		clear_bit(enabled, &transparent_hugepage_flags);
158 		clear_bit(req_madv, &transparent_hugepage_flags);
159 		set_bit(deferred, &transparent_hugepage_flags);
160 	} else if (!memcmp("always", buf,
161 		    min(sizeof("always")-1, count))) {
162 		clear_bit(deferred, &transparent_hugepage_flags);
163 		clear_bit(req_madv, &transparent_hugepage_flags);
164 		set_bit(enabled, &transparent_hugepage_flags);
165 	} else if (!memcmp("madvise", buf,
166 			   min(sizeof("madvise")-1, count))) {
167 		clear_bit(enabled, &transparent_hugepage_flags);
168 		clear_bit(deferred, &transparent_hugepage_flags);
169 		set_bit(req_madv, &transparent_hugepage_flags);
170 	} else if (!memcmp("never", buf,
171 			   min(sizeof("never")-1, count))) {
172 		clear_bit(enabled, &transparent_hugepage_flags);
173 		clear_bit(req_madv, &transparent_hugepage_flags);
174 		clear_bit(deferred, &transparent_hugepage_flags);
175 	} else
176 		return -EINVAL;
177 
178 	return count;
179 }
180 
181 static ssize_t enabled_show(struct kobject *kobj,
182 			    struct kobj_attribute *attr, char *buf)
183 {
184 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
185 		return sprintf(buf, "[always] madvise never\n");
186 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
187 		return sprintf(buf, "always [madvise] never\n");
188 	else
189 		return sprintf(buf, "always madvise [never]\n");
190 }
191 
192 static ssize_t enabled_store(struct kobject *kobj,
193 			     struct kobj_attribute *attr,
194 			     const char *buf, size_t count)
195 {
196 	ssize_t ret;
197 
198 	ret = triple_flag_store(kobj, attr, buf, count,
199 				TRANSPARENT_HUGEPAGE_FLAG,
200 				TRANSPARENT_HUGEPAGE_FLAG,
201 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
202 
203 	if (ret > 0) {
204 		int err = start_stop_khugepaged();
205 		if (err)
206 			ret = err;
207 	}
208 
209 	return ret;
210 }
211 static struct kobj_attribute enabled_attr =
212 	__ATTR(enabled, 0644, enabled_show, enabled_store);
213 
214 ssize_t single_hugepage_flag_show(struct kobject *kobj,
215 				struct kobj_attribute *attr, char *buf,
216 				enum transparent_hugepage_flag flag)
217 {
218 	return sprintf(buf, "%d\n",
219 		       !!test_bit(flag, &transparent_hugepage_flags));
220 }
221 
222 ssize_t single_hugepage_flag_store(struct kobject *kobj,
223 				 struct kobj_attribute *attr,
224 				 const char *buf, size_t count,
225 				 enum transparent_hugepage_flag flag)
226 {
227 	unsigned long value;
228 	int ret;
229 
230 	ret = kstrtoul(buf, 10, &value);
231 	if (ret < 0)
232 		return ret;
233 	if (value > 1)
234 		return -EINVAL;
235 
236 	if (value)
237 		set_bit(flag, &transparent_hugepage_flags);
238 	else
239 		clear_bit(flag, &transparent_hugepage_flags);
240 
241 	return count;
242 }
243 
244 /*
245  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
246  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
247  * memory just to allocate one more hugepage.
248  */
249 static ssize_t defrag_show(struct kobject *kobj,
250 			   struct kobj_attribute *attr, char *buf)
251 {
252 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
253 		return sprintf(buf, "[always] defer madvise never\n");
254 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
255 		return sprintf(buf, "always [defer] madvise never\n");
256 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
257 		return sprintf(buf, "always defer [madvise] never\n");
258 	else
259 		return sprintf(buf, "always defer madvise [never]\n");
260 
261 }
262 static ssize_t defrag_store(struct kobject *kobj,
263 			    struct kobj_attribute *attr,
264 			    const char *buf, size_t count)
265 {
266 	return triple_flag_store(kobj, attr, buf, count,
267 				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
268 				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
269 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
270 }
271 static struct kobj_attribute defrag_attr =
272 	__ATTR(defrag, 0644, defrag_show, defrag_store);
273 
274 static ssize_t use_zero_page_show(struct kobject *kobj,
275 		struct kobj_attribute *attr, char *buf)
276 {
277 	return single_hugepage_flag_show(kobj, attr, buf,
278 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
279 }
280 static ssize_t use_zero_page_store(struct kobject *kobj,
281 		struct kobj_attribute *attr, const char *buf, size_t count)
282 {
283 	return single_hugepage_flag_store(kobj, attr, buf, count,
284 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
285 }
286 static struct kobj_attribute use_zero_page_attr =
287 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
288 
289 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
290 		struct kobj_attribute *attr, char *buf)
291 {
292 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
293 }
294 static struct kobj_attribute hpage_pmd_size_attr =
295 	__ATTR_RO(hpage_pmd_size);
296 
297 #ifdef CONFIG_DEBUG_VM
298 static ssize_t debug_cow_show(struct kobject *kobj,
299 				struct kobj_attribute *attr, char *buf)
300 {
301 	return single_hugepage_flag_show(kobj, attr, buf,
302 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
303 }
304 static ssize_t debug_cow_store(struct kobject *kobj,
305 			       struct kobj_attribute *attr,
306 			       const char *buf, size_t count)
307 {
308 	return single_hugepage_flag_store(kobj, attr, buf, count,
309 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
310 }
311 static struct kobj_attribute debug_cow_attr =
312 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313 #endif /* CONFIG_DEBUG_VM */
314 
315 static struct attribute *hugepage_attr[] = {
316 	&enabled_attr.attr,
317 	&defrag_attr.attr,
318 	&use_zero_page_attr.attr,
319 	&hpage_pmd_size_attr.attr,
320 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
321 	&shmem_enabled_attr.attr,
322 #endif
323 #ifdef CONFIG_DEBUG_VM
324 	&debug_cow_attr.attr,
325 #endif
326 	NULL,
327 };
328 
329 static struct attribute_group hugepage_attr_group = {
330 	.attrs = hugepage_attr,
331 };
332 
333 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
334 {
335 	int err;
336 
337 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
338 	if (unlikely(!*hugepage_kobj)) {
339 		pr_err("failed to create transparent hugepage kobject\n");
340 		return -ENOMEM;
341 	}
342 
343 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
344 	if (err) {
345 		pr_err("failed to register transparent hugepage group\n");
346 		goto delete_obj;
347 	}
348 
349 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
350 	if (err) {
351 		pr_err("failed to register transparent hugepage group\n");
352 		goto remove_hp_group;
353 	}
354 
355 	return 0;
356 
357 remove_hp_group:
358 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
359 delete_obj:
360 	kobject_put(*hugepage_kobj);
361 	return err;
362 }
363 
364 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365 {
366 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
367 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
368 	kobject_put(hugepage_kobj);
369 }
370 #else
371 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
372 {
373 	return 0;
374 }
375 
376 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
377 {
378 }
379 #endif /* CONFIG_SYSFS */
380 
381 static int __init hugepage_init(void)
382 {
383 	int err;
384 	struct kobject *hugepage_kobj;
385 
386 	if (!has_transparent_hugepage()) {
387 		transparent_hugepage_flags = 0;
388 		return -EINVAL;
389 	}
390 
391 	/*
392 	 * hugepages can't be allocated by the buddy allocator
393 	 */
394 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
395 	/*
396 	 * we use page->mapping and page->index in second tail page
397 	 * as list_head: assuming THP order >= 2
398 	 */
399 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
400 
401 	err = hugepage_init_sysfs(&hugepage_kobj);
402 	if (err)
403 		goto err_sysfs;
404 
405 	err = khugepaged_init();
406 	if (err)
407 		goto err_slab;
408 
409 	err = register_shrinker(&huge_zero_page_shrinker);
410 	if (err)
411 		goto err_hzp_shrinker;
412 	err = register_shrinker(&deferred_split_shrinker);
413 	if (err)
414 		goto err_split_shrinker;
415 
416 	/*
417 	 * By default disable transparent hugepages on smaller systems,
418 	 * where the extra memory used could hurt more than TLB overhead
419 	 * is likely to save.  The admin can still enable it through /sys.
420 	 */
421 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
422 		transparent_hugepage_flags = 0;
423 		return 0;
424 	}
425 
426 	err = start_stop_khugepaged();
427 	if (err)
428 		goto err_khugepaged;
429 
430 	return 0;
431 err_khugepaged:
432 	unregister_shrinker(&deferred_split_shrinker);
433 err_split_shrinker:
434 	unregister_shrinker(&huge_zero_page_shrinker);
435 err_hzp_shrinker:
436 	khugepaged_destroy();
437 err_slab:
438 	hugepage_exit_sysfs(hugepage_kobj);
439 err_sysfs:
440 	return err;
441 }
442 subsys_initcall(hugepage_init);
443 
444 static int __init setup_transparent_hugepage(char *str)
445 {
446 	int ret = 0;
447 	if (!str)
448 		goto out;
449 	if (!strcmp(str, "always")) {
450 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
451 			&transparent_hugepage_flags);
452 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
453 			  &transparent_hugepage_flags);
454 		ret = 1;
455 	} else if (!strcmp(str, "madvise")) {
456 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
457 			  &transparent_hugepage_flags);
458 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
459 			&transparent_hugepage_flags);
460 		ret = 1;
461 	} else if (!strcmp(str, "never")) {
462 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 			  &transparent_hugepage_flags);
464 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 			  &transparent_hugepage_flags);
466 		ret = 1;
467 	}
468 out:
469 	if (!ret)
470 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
471 	return ret;
472 }
473 __setup("transparent_hugepage=", setup_transparent_hugepage);
474 
475 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
476 {
477 	if (likely(vma->vm_flags & VM_WRITE))
478 		pmd = pmd_mkwrite(pmd);
479 	return pmd;
480 }
481 
482 static inline struct list_head *page_deferred_list(struct page *page)
483 {
484 	/*
485 	 * ->lru in the tail pages is occupied by compound_head.
486 	 * Let's use ->mapping + ->index in the second tail page as list_head.
487 	 */
488 	return (struct list_head *)&page[2].mapping;
489 }
490 
491 void prep_transhuge_page(struct page *page)
492 {
493 	/*
494 	 * we use page->mapping and page->indexlru in second tail page
495 	 * as list_head: assuming THP order >= 2
496 	 */
497 
498 	INIT_LIST_HEAD(page_deferred_list(page));
499 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
500 }
501 
502 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
503 		loff_t off, unsigned long flags, unsigned long size)
504 {
505 	unsigned long addr;
506 	loff_t off_end = off + len;
507 	loff_t off_align = round_up(off, size);
508 	unsigned long len_pad;
509 
510 	if (off_end <= off_align || (off_end - off_align) < size)
511 		return 0;
512 
513 	len_pad = len + size;
514 	if (len_pad < len || (off + len_pad) < off)
515 		return 0;
516 
517 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
518 					      off >> PAGE_SHIFT, flags);
519 	if (IS_ERR_VALUE(addr))
520 		return 0;
521 
522 	addr += (off - addr) & (size - 1);
523 	return addr;
524 }
525 
526 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
527 		unsigned long len, unsigned long pgoff, unsigned long flags)
528 {
529 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
530 
531 	if (addr)
532 		goto out;
533 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
534 		goto out;
535 
536 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
537 	if (addr)
538 		return addr;
539 
540  out:
541 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
542 }
543 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
544 
545 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
546 		gfp_t gfp)
547 {
548 	struct vm_area_struct *vma = vmf->vma;
549 	struct mem_cgroup *memcg;
550 	pgtable_t pgtable;
551 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
552 
553 	VM_BUG_ON_PAGE(!PageCompound(page), page);
554 
555 	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
556 		put_page(page);
557 		count_vm_event(THP_FAULT_FALLBACK);
558 		return VM_FAULT_FALLBACK;
559 	}
560 
561 	pgtable = pte_alloc_one(vma->vm_mm, haddr);
562 	if (unlikely(!pgtable)) {
563 		mem_cgroup_cancel_charge(page, memcg, true);
564 		put_page(page);
565 		return VM_FAULT_OOM;
566 	}
567 
568 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
569 	/*
570 	 * The memory barrier inside __SetPageUptodate makes sure that
571 	 * clear_huge_page writes become visible before the set_pmd_at()
572 	 * write.
573 	 */
574 	__SetPageUptodate(page);
575 
576 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
577 	if (unlikely(!pmd_none(*vmf->pmd))) {
578 		spin_unlock(vmf->ptl);
579 		mem_cgroup_cancel_charge(page, memcg, true);
580 		put_page(page);
581 		pte_free(vma->vm_mm, pgtable);
582 	} else {
583 		pmd_t entry;
584 
585 		/* Deliver the page fault to userland */
586 		if (userfaultfd_missing(vma)) {
587 			int ret;
588 
589 			spin_unlock(vmf->ptl);
590 			mem_cgroup_cancel_charge(page, memcg, true);
591 			put_page(page);
592 			pte_free(vma->vm_mm, pgtable);
593 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
594 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
595 			return ret;
596 		}
597 
598 		entry = mk_huge_pmd(page, vma->vm_page_prot);
599 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
600 		page_add_new_anon_rmap(page, vma, haddr, true);
601 		mem_cgroup_commit_charge(page, memcg, false, true);
602 		lru_cache_add_active_or_unevictable(page, vma);
603 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
604 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
605 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
606 		atomic_long_inc(&vma->vm_mm->nr_ptes);
607 		spin_unlock(vmf->ptl);
608 		count_vm_event(THP_FAULT_ALLOC);
609 	}
610 
611 	return 0;
612 }
613 
614 /*
615  * If THP defrag is set to always then directly reclaim/compact as necessary
616  * If set to defer then do only background reclaim/compact and defer to khugepaged
617  * If set to madvise and the VMA is flagged then directly reclaim/compact
618  * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
619  */
620 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
621 {
622 	bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
623 
624 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
625 				&transparent_hugepage_flags) && vma_madvised)
626 		return GFP_TRANSHUGE;
627 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
628 						&transparent_hugepage_flags))
629 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
630 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
631 						&transparent_hugepage_flags))
632 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
633 
634 	return GFP_TRANSHUGE_LIGHT;
635 }
636 
637 /* Caller must hold page table lock. */
638 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
639 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
640 		struct page *zero_page)
641 {
642 	pmd_t entry;
643 	if (!pmd_none(*pmd))
644 		return false;
645 	entry = mk_pmd(zero_page, vma->vm_page_prot);
646 	entry = pmd_mkhuge(entry);
647 	if (pgtable)
648 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
649 	set_pmd_at(mm, haddr, pmd, entry);
650 	atomic_long_inc(&mm->nr_ptes);
651 	return true;
652 }
653 
654 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
655 {
656 	struct vm_area_struct *vma = vmf->vma;
657 	gfp_t gfp;
658 	struct page *page;
659 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
660 
661 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
662 		return VM_FAULT_FALLBACK;
663 	if (unlikely(anon_vma_prepare(vma)))
664 		return VM_FAULT_OOM;
665 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
666 		return VM_FAULT_OOM;
667 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
668 			!mm_forbids_zeropage(vma->vm_mm) &&
669 			transparent_hugepage_use_zero_page()) {
670 		pgtable_t pgtable;
671 		struct page *zero_page;
672 		bool set;
673 		int ret;
674 		pgtable = pte_alloc_one(vma->vm_mm, haddr);
675 		if (unlikely(!pgtable))
676 			return VM_FAULT_OOM;
677 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
678 		if (unlikely(!zero_page)) {
679 			pte_free(vma->vm_mm, pgtable);
680 			count_vm_event(THP_FAULT_FALLBACK);
681 			return VM_FAULT_FALLBACK;
682 		}
683 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
684 		ret = 0;
685 		set = false;
686 		if (pmd_none(*vmf->pmd)) {
687 			if (userfaultfd_missing(vma)) {
688 				spin_unlock(vmf->ptl);
689 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
690 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
691 			} else {
692 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
693 						   haddr, vmf->pmd, zero_page);
694 				spin_unlock(vmf->ptl);
695 				set = true;
696 			}
697 		} else
698 			spin_unlock(vmf->ptl);
699 		if (!set)
700 			pte_free(vma->vm_mm, pgtable);
701 		return ret;
702 	}
703 	gfp = alloc_hugepage_direct_gfpmask(vma);
704 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
705 	if (unlikely(!page)) {
706 		count_vm_event(THP_FAULT_FALLBACK);
707 		return VM_FAULT_FALLBACK;
708 	}
709 	prep_transhuge_page(page);
710 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
711 }
712 
713 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
714 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
715 {
716 	struct mm_struct *mm = vma->vm_mm;
717 	pmd_t entry;
718 	spinlock_t *ptl;
719 
720 	ptl = pmd_lock(mm, pmd);
721 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
722 	if (pfn_t_devmap(pfn))
723 		entry = pmd_mkdevmap(entry);
724 	if (write) {
725 		entry = pmd_mkyoung(pmd_mkdirty(entry));
726 		entry = maybe_pmd_mkwrite(entry, vma);
727 	}
728 	set_pmd_at(mm, addr, pmd, entry);
729 	update_mmu_cache_pmd(vma, addr, pmd);
730 	spin_unlock(ptl);
731 }
732 
733 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
734 			pmd_t *pmd, pfn_t pfn, bool write)
735 {
736 	pgprot_t pgprot = vma->vm_page_prot;
737 	/*
738 	 * If we had pmd_special, we could avoid all these restrictions,
739 	 * but we need to be consistent with PTEs and architectures that
740 	 * can't support a 'special' bit.
741 	 */
742 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
743 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
744 						(VM_PFNMAP|VM_MIXEDMAP));
745 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
746 	BUG_ON(!pfn_t_devmap(pfn));
747 
748 	if (addr < vma->vm_start || addr >= vma->vm_end)
749 		return VM_FAULT_SIGBUS;
750 
751 	track_pfn_insert(vma, &pgprot, pfn);
752 
753 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
754 	return VM_FAULT_NOPAGE;
755 }
756 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
757 
758 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
759 		pmd_t *pmd)
760 {
761 	pmd_t _pmd;
762 
763 	/*
764 	 * We should set the dirty bit only for FOLL_WRITE but for now
765 	 * the dirty bit in the pmd is meaningless.  And if the dirty
766 	 * bit will become meaningful and we'll only set it with
767 	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
768 	 * set the young bit, instead of the current set_pmd_at.
769 	 */
770 	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
771 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
772 				pmd, _pmd,  1))
773 		update_mmu_cache_pmd(vma, addr, pmd);
774 }
775 
776 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
777 		pmd_t *pmd, int flags)
778 {
779 	unsigned long pfn = pmd_pfn(*pmd);
780 	struct mm_struct *mm = vma->vm_mm;
781 	struct dev_pagemap *pgmap;
782 	struct page *page;
783 
784 	assert_spin_locked(pmd_lockptr(mm, pmd));
785 
786 	/*
787 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
788 	 * not be in this function with `flags & FOLL_COW` set.
789 	 */
790 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
791 
792 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
793 		return NULL;
794 
795 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
796 		/* pass */;
797 	else
798 		return NULL;
799 
800 	if (flags & FOLL_TOUCH)
801 		touch_pmd(vma, addr, pmd);
802 
803 	/*
804 	 * device mapped pages can only be returned if the
805 	 * caller will manage the page reference count.
806 	 */
807 	if (!(flags & FOLL_GET))
808 		return ERR_PTR(-EEXIST);
809 
810 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
811 	pgmap = get_dev_pagemap(pfn, NULL);
812 	if (!pgmap)
813 		return ERR_PTR(-EFAULT);
814 	page = pfn_to_page(pfn);
815 	get_page(page);
816 	put_dev_pagemap(pgmap);
817 
818 	return page;
819 }
820 
821 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
822 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
823 		  struct vm_area_struct *vma)
824 {
825 	spinlock_t *dst_ptl, *src_ptl;
826 	struct page *src_page;
827 	pmd_t pmd;
828 	pgtable_t pgtable = NULL;
829 	int ret = -ENOMEM;
830 
831 	/* Skip if can be re-fill on fault */
832 	if (!vma_is_anonymous(vma))
833 		return 0;
834 
835 	pgtable = pte_alloc_one(dst_mm, addr);
836 	if (unlikely(!pgtable))
837 		goto out;
838 
839 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
840 	src_ptl = pmd_lockptr(src_mm, src_pmd);
841 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
842 
843 	ret = -EAGAIN;
844 	pmd = *src_pmd;
845 	if (unlikely(!pmd_trans_huge(pmd))) {
846 		pte_free(dst_mm, pgtable);
847 		goto out_unlock;
848 	}
849 	/*
850 	 * When page table lock is held, the huge zero pmd should not be
851 	 * under splitting since we don't split the page itself, only pmd to
852 	 * a page table.
853 	 */
854 	if (is_huge_zero_pmd(pmd)) {
855 		struct page *zero_page;
856 		/*
857 		 * get_huge_zero_page() will never allocate a new page here,
858 		 * since we already have a zero page to copy. It just takes a
859 		 * reference.
860 		 */
861 		zero_page = mm_get_huge_zero_page(dst_mm);
862 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
863 				zero_page);
864 		ret = 0;
865 		goto out_unlock;
866 	}
867 
868 	src_page = pmd_page(pmd);
869 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
870 	get_page(src_page);
871 	page_dup_rmap(src_page, true);
872 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
873 	atomic_long_inc(&dst_mm->nr_ptes);
874 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
875 
876 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
877 	pmd = pmd_mkold(pmd_wrprotect(pmd));
878 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
879 
880 	ret = 0;
881 out_unlock:
882 	spin_unlock(src_ptl);
883 	spin_unlock(dst_ptl);
884 out:
885 	return ret;
886 }
887 
888 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
889 {
890 	pmd_t entry;
891 	unsigned long haddr;
892 	bool write = vmf->flags & FAULT_FLAG_WRITE;
893 
894 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
895 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
896 		goto unlock;
897 
898 	entry = pmd_mkyoung(orig_pmd);
899 	if (write)
900 		entry = pmd_mkdirty(entry);
901 	haddr = vmf->address & HPAGE_PMD_MASK;
902 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
903 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
904 
905 unlock:
906 	spin_unlock(vmf->ptl);
907 }
908 
909 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
910 		struct page *page)
911 {
912 	struct vm_area_struct *vma = vmf->vma;
913 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
914 	struct mem_cgroup *memcg;
915 	pgtable_t pgtable;
916 	pmd_t _pmd;
917 	int ret = 0, i;
918 	struct page **pages;
919 	unsigned long mmun_start;	/* For mmu_notifiers */
920 	unsigned long mmun_end;		/* For mmu_notifiers */
921 
922 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
923 			GFP_KERNEL);
924 	if (unlikely(!pages)) {
925 		ret |= VM_FAULT_OOM;
926 		goto out;
927 	}
928 
929 	for (i = 0; i < HPAGE_PMD_NR; i++) {
930 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
931 					       vmf->address, page_to_nid(page));
932 		if (unlikely(!pages[i] ||
933 			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
934 				     GFP_KERNEL, &memcg, false))) {
935 			if (pages[i])
936 				put_page(pages[i]);
937 			while (--i >= 0) {
938 				memcg = (void *)page_private(pages[i]);
939 				set_page_private(pages[i], 0);
940 				mem_cgroup_cancel_charge(pages[i], memcg,
941 						false);
942 				put_page(pages[i]);
943 			}
944 			kfree(pages);
945 			ret |= VM_FAULT_OOM;
946 			goto out;
947 		}
948 		set_page_private(pages[i], (unsigned long)memcg);
949 	}
950 
951 	for (i = 0; i < HPAGE_PMD_NR; i++) {
952 		copy_user_highpage(pages[i], page + i,
953 				   haddr + PAGE_SIZE * i, vma);
954 		__SetPageUptodate(pages[i]);
955 		cond_resched();
956 	}
957 
958 	mmun_start = haddr;
959 	mmun_end   = haddr + HPAGE_PMD_SIZE;
960 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
961 
962 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
963 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
964 		goto out_free_pages;
965 	VM_BUG_ON_PAGE(!PageHead(page), page);
966 
967 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
968 	/* leave pmd empty until pte is filled */
969 
970 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
971 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
972 
973 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
974 		pte_t entry;
975 		entry = mk_pte(pages[i], vma->vm_page_prot);
976 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
977 		memcg = (void *)page_private(pages[i]);
978 		set_page_private(pages[i], 0);
979 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
980 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
981 		lru_cache_add_active_or_unevictable(pages[i], vma);
982 		vmf->pte = pte_offset_map(&_pmd, haddr);
983 		VM_BUG_ON(!pte_none(*vmf->pte));
984 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
985 		pte_unmap(vmf->pte);
986 	}
987 	kfree(pages);
988 
989 	smp_wmb(); /* make pte visible before pmd */
990 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
991 	page_remove_rmap(page, true);
992 	spin_unlock(vmf->ptl);
993 
994 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
995 
996 	ret |= VM_FAULT_WRITE;
997 	put_page(page);
998 
999 out:
1000 	return ret;
1001 
1002 out_free_pages:
1003 	spin_unlock(vmf->ptl);
1004 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1005 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1006 		memcg = (void *)page_private(pages[i]);
1007 		set_page_private(pages[i], 0);
1008 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1009 		put_page(pages[i]);
1010 	}
1011 	kfree(pages);
1012 	goto out;
1013 }
1014 
1015 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1016 {
1017 	struct vm_area_struct *vma = vmf->vma;
1018 	struct page *page = NULL, *new_page;
1019 	struct mem_cgroup *memcg;
1020 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1021 	unsigned long mmun_start;	/* For mmu_notifiers */
1022 	unsigned long mmun_end;		/* For mmu_notifiers */
1023 	gfp_t huge_gfp;			/* for allocation and charge */
1024 	int ret = 0;
1025 
1026 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1027 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1028 	if (is_huge_zero_pmd(orig_pmd))
1029 		goto alloc;
1030 	spin_lock(vmf->ptl);
1031 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1032 		goto out_unlock;
1033 
1034 	page = pmd_page(orig_pmd);
1035 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1036 	/*
1037 	 * We can only reuse the page if nobody else maps the huge page or it's
1038 	 * part.
1039 	 */
1040 	if (page_trans_huge_mapcount(page, NULL) == 1) {
1041 		pmd_t entry;
1042 		entry = pmd_mkyoung(orig_pmd);
1043 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1044 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1045 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1046 		ret |= VM_FAULT_WRITE;
1047 		goto out_unlock;
1048 	}
1049 	get_page(page);
1050 	spin_unlock(vmf->ptl);
1051 alloc:
1052 	if (transparent_hugepage_enabled(vma) &&
1053 	    !transparent_hugepage_debug_cow()) {
1054 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1055 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1056 	} else
1057 		new_page = NULL;
1058 
1059 	if (likely(new_page)) {
1060 		prep_transhuge_page(new_page);
1061 	} else {
1062 		if (!page) {
1063 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1064 			ret |= VM_FAULT_FALLBACK;
1065 		} else {
1066 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1067 			if (ret & VM_FAULT_OOM) {
1068 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1069 				ret |= VM_FAULT_FALLBACK;
1070 			}
1071 			put_page(page);
1072 		}
1073 		count_vm_event(THP_FAULT_FALLBACK);
1074 		goto out;
1075 	}
1076 
1077 	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1078 					huge_gfp, &memcg, true))) {
1079 		put_page(new_page);
1080 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1081 		if (page)
1082 			put_page(page);
1083 		ret |= VM_FAULT_FALLBACK;
1084 		count_vm_event(THP_FAULT_FALLBACK);
1085 		goto out;
1086 	}
1087 
1088 	count_vm_event(THP_FAULT_ALLOC);
1089 
1090 	if (!page)
1091 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1092 	else
1093 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1094 	__SetPageUptodate(new_page);
1095 
1096 	mmun_start = haddr;
1097 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1098 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1099 
1100 	spin_lock(vmf->ptl);
1101 	if (page)
1102 		put_page(page);
1103 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1104 		spin_unlock(vmf->ptl);
1105 		mem_cgroup_cancel_charge(new_page, memcg, true);
1106 		put_page(new_page);
1107 		goto out_mn;
1108 	} else {
1109 		pmd_t entry;
1110 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1111 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1112 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1113 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1114 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1115 		lru_cache_add_active_or_unevictable(new_page, vma);
1116 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1117 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1118 		if (!page) {
1119 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1120 		} else {
1121 			VM_BUG_ON_PAGE(!PageHead(page), page);
1122 			page_remove_rmap(page, true);
1123 			put_page(page);
1124 		}
1125 		ret |= VM_FAULT_WRITE;
1126 	}
1127 	spin_unlock(vmf->ptl);
1128 out_mn:
1129 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1130 out:
1131 	return ret;
1132 out_unlock:
1133 	spin_unlock(vmf->ptl);
1134 	return ret;
1135 }
1136 
1137 /*
1138  * FOLL_FORCE can write to even unwritable pmd's, but only
1139  * after we've gone through a COW cycle and they are dirty.
1140  */
1141 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1142 {
1143 	return pmd_write(pmd) ||
1144 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1145 }
1146 
1147 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1148 				   unsigned long addr,
1149 				   pmd_t *pmd,
1150 				   unsigned int flags)
1151 {
1152 	struct mm_struct *mm = vma->vm_mm;
1153 	struct page *page = NULL;
1154 
1155 	assert_spin_locked(pmd_lockptr(mm, pmd));
1156 
1157 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1158 		goto out;
1159 
1160 	/* Avoid dumping huge zero page */
1161 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1162 		return ERR_PTR(-EFAULT);
1163 
1164 	/* Full NUMA hinting faults to serialise migration in fault paths */
1165 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1166 		goto out;
1167 
1168 	page = pmd_page(*pmd);
1169 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1170 	if (flags & FOLL_TOUCH)
1171 		touch_pmd(vma, addr, pmd);
1172 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1173 		/*
1174 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1175 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1176 		 *
1177 		 * For anon THP:
1178 		 *
1179 		 * In most cases the pmd is the only mapping of the page as we
1180 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1181 		 * writable private mappings in populate_vma_page_range().
1182 		 *
1183 		 * The only scenario when we have the page shared here is if we
1184 		 * mlocking read-only mapping shared over fork(). We skip
1185 		 * mlocking such pages.
1186 		 *
1187 		 * For file THP:
1188 		 *
1189 		 * We can expect PageDoubleMap() to be stable under page lock:
1190 		 * for file pages we set it in page_add_file_rmap(), which
1191 		 * requires page to be locked.
1192 		 */
1193 
1194 		if (PageAnon(page) && compound_mapcount(page) != 1)
1195 			goto skip_mlock;
1196 		if (PageDoubleMap(page) || !page->mapping)
1197 			goto skip_mlock;
1198 		if (!trylock_page(page))
1199 			goto skip_mlock;
1200 		lru_add_drain();
1201 		if (page->mapping && !PageDoubleMap(page))
1202 			mlock_vma_page(page);
1203 		unlock_page(page);
1204 	}
1205 skip_mlock:
1206 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1207 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1208 	if (flags & FOLL_GET)
1209 		get_page(page);
1210 
1211 out:
1212 	return page;
1213 }
1214 
1215 /* NUMA hinting page fault entry point for trans huge pmds */
1216 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1217 {
1218 	struct vm_area_struct *vma = vmf->vma;
1219 	struct anon_vma *anon_vma = NULL;
1220 	struct page *page;
1221 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1222 	int page_nid = -1, this_nid = numa_node_id();
1223 	int target_nid, last_cpupid = -1;
1224 	bool page_locked;
1225 	bool migrated = false;
1226 	bool was_writable;
1227 	int flags = 0;
1228 
1229 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1230 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1231 		goto out_unlock;
1232 
1233 	/*
1234 	 * If there are potential migrations, wait for completion and retry
1235 	 * without disrupting NUMA hinting information. Do not relock and
1236 	 * check_same as the page may no longer be mapped.
1237 	 */
1238 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1239 		page = pmd_page(*vmf->pmd);
1240 		spin_unlock(vmf->ptl);
1241 		wait_on_page_locked(page);
1242 		goto out;
1243 	}
1244 
1245 	page = pmd_page(pmd);
1246 	BUG_ON(is_huge_zero_page(page));
1247 	page_nid = page_to_nid(page);
1248 	last_cpupid = page_cpupid_last(page);
1249 	count_vm_numa_event(NUMA_HINT_FAULTS);
1250 	if (page_nid == this_nid) {
1251 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1252 		flags |= TNF_FAULT_LOCAL;
1253 	}
1254 
1255 	/* See similar comment in do_numa_page for explanation */
1256 	if (!pmd_write(pmd))
1257 		flags |= TNF_NO_GROUP;
1258 
1259 	/*
1260 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1261 	 * page_table_lock if at all possible
1262 	 */
1263 	page_locked = trylock_page(page);
1264 	target_nid = mpol_misplaced(page, vma, haddr);
1265 	if (target_nid == -1) {
1266 		/* If the page was locked, there are no parallel migrations */
1267 		if (page_locked)
1268 			goto clear_pmdnuma;
1269 	}
1270 
1271 	/* Migration could have started since the pmd_trans_migrating check */
1272 	if (!page_locked) {
1273 		spin_unlock(vmf->ptl);
1274 		wait_on_page_locked(page);
1275 		page_nid = -1;
1276 		goto out;
1277 	}
1278 
1279 	/*
1280 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1281 	 * to serialises splits
1282 	 */
1283 	get_page(page);
1284 	spin_unlock(vmf->ptl);
1285 	anon_vma = page_lock_anon_vma_read(page);
1286 
1287 	/* Confirm the PMD did not change while page_table_lock was released */
1288 	spin_lock(vmf->ptl);
1289 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1290 		unlock_page(page);
1291 		put_page(page);
1292 		page_nid = -1;
1293 		goto out_unlock;
1294 	}
1295 
1296 	/* Bail if we fail to protect against THP splits for any reason */
1297 	if (unlikely(!anon_vma)) {
1298 		put_page(page);
1299 		page_nid = -1;
1300 		goto clear_pmdnuma;
1301 	}
1302 
1303 	/*
1304 	 * Migrate the THP to the requested node, returns with page unlocked
1305 	 * and access rights restored.
1306 	 */
1307 	spin_unlock(vmf->ptl);
1308 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1309 				vmf->pmd, pmd, vmf->address, page, target_nid);
1310 	if (migrated) {
1311 		flags |= TNF_MIGRATED;
1312 		page_nid = target_nid;
1313 	} else
1314 		flags |= TNF_MIGRATE_FAIL;
1315 
1316 	goto out;
1317 clear_pmdnuma:
1318 	BUG_ON(!PageLocked(page));
1319 	was_writable = pmd_write(pmd);
1320 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1321 	pmd = pmd_mkyoung(pmd);
1322 	if (was_writable)
1323 		pmd = pmd_mkwrite(pmd);
1324 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1325 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1326 	unlock_page(page);
1327 out_unlock:
1328 	spin_unlock(vmf->ptl);
1329 
1330 out:
1331 	if (anon_vma)
1332 		page_unlock_anon_vma_read(anon_vma);
1333 
1334 	if (page_nid != -1)
1335 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1336 				vmf->flags);
1337 
1338 	return 0;
1339 }
1340 
1341 /*
1342  * Return true if we do MADV_FREE successfully on entire pmd page.
1343  * Otherwise, return false.
1344  */
1345 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1346 		pmd_t *pmd, unsigned long addr, unsigned long next)
1347 {
1348 	spinlock_t *ptl;
1349 	pmd_t orig_pmd;
1350 	struct page *page;
1351 	struct mm_struct *mm = tlb->mm;
1352 	bool ret = false;
1353 
1354 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1355 
1356 	ptl = pmd_trans_huge_lock(pmd, vma);
1357 	if (!ptl)
1358 		goto out_unlocked;
1359 
1360 	orig_pmd = *pmd;
1361 	if (is_huge_zero_pmd(orig_pmd))
1362 		goto out;
1363 
1364 	page = pmd_page(orig_pmd);
1365 	/*
1366 	 * If other processes are mapping this page, we couldn't discard
1367 	 * the page unless they all do MADV_FREE so let's skip the page.
1368 	 */
1369 	if (page_mapcount(page) != 1)
1370 		goto out;
1371 
1372 	if (!trylock_page(page))
1373 		goto out;
1374 
1375 	/*
1376 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1377 	 * will deactivate only them.
1378 	 */
1379 	if (next - addr != HPAGE_PMD_SIZE) {
1380 		get_page(page);
1381 		spin_unlock(ptl);
1382 		split_huge_page(page);
1383 		put_page(page);
1384 		unlock_page(page);
1385 		goto out_unlocked;
1386 	}
1387 
1388 	if (PageDirty(page))
1389 		ClearPageDirty(page);
1390 	unlock_page(page);
1391 
1392 	if (PageActive(page))
1393 		deactivate_page(page);
1394 
1395 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1396 		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1397 			tlb->fullmm);
1398 		orig_pmd = pmd_mkold(orig_pmd);
1399 		orig_pmd = pmd_mkclean(orig_pmd);
1400 
1401 		set_pmd_at(mm, addr, pmd, orig_pmd);
1402 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1403 	}
1404 	ret = true;
1405 out:
1406 	spin_unlock(ptl);
1407 out_unlocked:
1408 	return ret;
1409 }
1410 
1411 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1412 {
1413 	pgtable_t pgtable;
1414 
1415 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1416 	pte_free(mm, pgtable);
1417 	atomic_long_dec(&mm->nr_ptes);
1418 }
1419 
1420 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1421 		 pmd_t *pmd, unsigned long addr)
1422 {
1423 	pmd_t orig_pmd;
1424 	spinlock_t *ptl;
1425 
1426 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1427 
1428 	ptl = __pmd_trans_huge_lock(pmd, vma);
1429 	if (!ptl)
1430 		return 0;
1431 	/*
1432 	 * For architectures like ppc64 we look at deposited pgtable
1433 	 * when calling pmdp_huge_get_and_clear. So do the
1434 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1435 	 * operations.
1436 	 */
1437 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1438 			tlb->fullmm);
1439 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1440 	if (vma_is_dax(vma)) {
1441 		spin_unlock(ptl);
1442 		if (is_huge_zero_pmd(orig_pmd))
1443 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1444 	} else if (is_huge_zero_pmd(orig_pmd)) {
1445 		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1446 		atomic_long_dec(&tlb->mm->nr_ptes);
1447 		spin_unlock(ptl);
1448 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1449 	} else {
1450 		struct page *page = pmd_page(orig_pmd);
1451 		page_remove_rmap(page, true);
1452 		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1453 		VM_BUG_ON_PAGE(!PageHead(page), page);
1454 		if (PageAnon(page)) {
1455 			pgtable_t pgtable;
1456 			pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1457 			pte_free(tlb->mm, pgtable);
1458 			atomic_long_dec(&tlb->mm->nr_ptes);
1459 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1460 		} else {
1461 			if (arch_needs_pgtable_deposit())
1462 				zap_deposited_table(tlb->mm, pmd);
1463 			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1464 		}
1465 		spin_unlock(ptl);
1466 		tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1467 	}
1468 	return 1;
1469 }
1470 
1471 #ifndef pmd_move_must_withdraw
1472 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1473 					 spinlock_t *old_pmd_ptl,
1474 					 struct vm_area_struct *vma)
1475 {
1476 	/*
1477 	 * With split pmd lock we also need to move preallocated
1478 	 * PTE page table if new_pmd is on different PMD page table.
1479 	 *
1480 	 * We also don't deposit and withdraw tables for file pages.
1481 	 */
1482 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1483 }
1484 #endif
1485 
1486 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1487 		  unsigned long new_addr, unsigned long old_end,
1488 		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1489 {
1490 	spinlock_t *old_ptl, *new_ptl;
1491 	pmd_t pmd;
1492 	struct mm_struct *mm = vma->vm_mm;
1493 	bool force_flush = false;
1494 
1495 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1496 	    (new_addr & ~HPAGE_PMD_MASK) ||
1497 	    old_end - old_addr < HPAGE_PMD_SIZE)
1498 		return false;
1499 
1500 	/*
1501 	 * The destination pmd shouldn't be established, free_pgtables()
1502 	 * should have release it.
1503 	 */
1504 	if (WARN_ON(!pmd_none(*new_pmd))) {
1505 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1506 		return false;
1507 	}
1508 
1509 	/*
1510 	 * We don't have to worry about the ordering of src and dst
1511 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1512 	 */
1513 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1514 	if (old_ptl) {
1515 		new_ptl = pmd_lockptr(mm, new_pmd);
1516 		if (new_ptl != old_ptl)
1517 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1518 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1519 		if (pmd_present(pmd) && pmd_dirty(pmd))
1520 			force_flush = true;
1521 		VM_BUG_ON(!pmd_none(*new_pmd));
1522 
1523 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1524 			pgtable_t pgtable;
1525 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1526 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1527 		}
1528 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1529 		if (new_ptl != old_ptl)
1530 			spin_unlock(new_ptl);
1531 		if (force_flush)
1532 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1533 		else
1534 			*need_flush = true;
1535 		spin_unlock(old_ptl);
1536 		return true;
1537 	}
1538 	return false;
1539 }
1540 
1541 /*
1542  * Returns
1543  *  - 0 if PMD could not be locked
1544  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1545  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1546  */
1547 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1548 		unsigned long addr, pgprot_t newprot, int prot_numa)
1549 {
1550 	struct mm_struct *mm = vma->vm_mm;
1551 	spinlock_t *ptl;
1552 	int ret = 0;
1553 
1554 	ptl = __pmd_trans_huge_lock(pmd, vma);
1555 	if (ptl) {
1556 		pmd_t entry;
1557 		bool preserve_write = prot_numa && pmd_write(*pmd);
1558 		ret = 1;
1559 
1560 		/*
1561 		 * Avoid trapping faults against the zero page. The read-only
1562 		 * data is likely to be read-cached on the local CPU and
1563 		 * local/remote hits to the zero page are not interesting.
1564 		 */
1565 		if (prot_numa && is_huge_zero_pmd(*pmd)) {
1566 			spin_unlock(ptl);
1567 			return ret;
1568 		}
1569 
1570 		if (!prot_numa || !pmd_protnone(*pmd)) {
1571 			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1572 			entry = pmd_modify(entry, newprot);
1573 			if (preserve_write)
1574 				entry = pmd_mkwrite(entry);
1575 			ret = HPAGE_PMD_NR;
1576 			set_pmd_at(mm, addr, pmd, entry);
1577 			BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1578 					pmd_write(entry));
1579 		}
1580 		spin_unlock(ptl);
1581 	}
1582 
1583 	return ret;
1584 }
1585 
1586 /*
1587  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1588  *
1589  * Note that if it returns page table lock pointer, this routine returns without
1590  * unlocking page table lock. So callers must unlock it.
1591  */
1592 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1593 {
1594 	spinlock_t *ptl;
1595 	ptl = pmd_lock(vma->vm_mm, pmd);
1596 	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1597 		return ptl;
1598 	spin_unlock(ptl);
1599 	return NULL;
1600 }
1601 
1602 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1603 		unsigned long haddr, pmd_t *pmd)
1604 {
1605 	struct mm_struct *mm = vma->vm_mm;
1606 	pgtable_t pgtable;
1607 	pmd_t _pmd;
1608 	int i;
1609 
1610 	/* leave pmd empty until pte is filled */
1611 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1612 
1613 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1614 	pmd_populate(mm, &_pmd, pgtable);
1615 
1616 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1617 		pte_t *pte, entry;
1618 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1619 		entry = pte_mkspecial(entry);
1620 		pte = pte_offset_map(&_pmd, haddr);
1621 		VM_BUG_ON(!pte_none(*pte));
1622 		set_pte_at(mm, haddr, pte, entry);
1623 		pte_unmap(pte);
1624 	}
1625 	smp_wmb(); /* make pte visible before pmd */
1626 	pmd_populate(mm, pmd, pgtable);
1627 }
1628 
1629 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1630 		unsigned long haddr, bool freeze)
1631 {
1632 	struct mm_struct *mm = vma->vm_mm;
1633 	struct page *page;
1634 	pgtable_t pgtable;
1635 	pmd_t _pmd;
1636 	bool young, write, dirty, soft_dirty;
1637 	unsigned long addr;
1638 	int i;
1639 
1640 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1641 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1642 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1643 	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1644 
1645 	count_vm_event(THP_SPLIT_PMD);
1646 
1647 	if (!vma_is_anonymous(vma)) {
1648 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1649 		/*
1650 		 * We are going to unmap this huge page. So
1651 		 * just go ahead and zap it
1652 		 */
1653 		if (arch_needs_pgtable_deposit())
1654 			zap_deposited_table(mm, pmd);
1655 		if (vma_is_dax(vma))
1656 			return;
1657 		page = pmd_page(_pmd);
1658 		if (!PageReferenced(page) && pmd_young(_pmd))
1659 			SetPageReferenced(page);
1660 		page_remove_rmap(page, true);
1661 		put_page(page);
1662 		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1663 		return;
1664 	} else if (is_huge_zero_pmd(*pmd)) {
1665 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
1666 	}
1667 
1668 	page = pmd_page(*pmd);
1669 	VM_BUG_ON_PAGE(!page_count(page), page);
1670 	page_ref_add(page, HPAGE_PMD_NR - 1);
1671 	write = pmd_write(*pmd);
1672 	young = pmd_young(*pmd);
1673 	dirty = pmd_dirty(*pmd);
1674 	soft_dirty = pmd_soft_dirty(*pmd);
1675 
1676 	pmdp_huge_split_prepare(vma, haddr, pmd);
1677 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1678 	pmd_populate(mm, &_pmd, pgtable);
1679 
1680 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1681 		pte_t entry, *pte;
1682 		/*
1683 		 * Note that NUMA hinting access restrictions are not
1684 		 * transferred to avoid any possibility of altering
1685 		 * permissions across VMAs.
1686 		 */
1687 		if (freeze) {
1688 			swp_entry_t swp_entry;
1689 			swp_entry = make_migration_entry(page + i, write);
1690 			entry = swp_entry_to_pte(swp_entry);
1691 			if (soft_dirty)
1692 				entry = pte_swp_mksoft_dirty(entry);
1693 		} else {
1694 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1695 			entry = maybe_mkwrite(entry, vma);
1696 			if (!write)
1697 				entry = pte_wrprotect(entry);
1698 			if (!young)
1699 				entry = pte_mkold(entry);
1700 			if (soft_dirty)
1701 				entry = pte_mksoft_dirty(entry);
1702 		}
1703 		if (dirty)
1704 			SetPageDirty(page + i);
1705 		pte = pte_offset_map(&_pmd, addr);
1706 		BUG_ON(!pte_none(*pte));
1707 		set_pte_at(mm, addr, pte, entry);
1708 		atomic_inc(&page[i]._mapcount);
1709 		pte_unmap(pte);
1710 	}
1711 
1712 	/*
1713 	 * Set PG_double_map before dropping compound_mapcount to avoid
1714 	 * false-negative page_mapped().
1715 	 */
1716 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1717 		for (i = 0; i < HPAGE_PMD_NR; i++)
1718 			atomic_inc(&page[i]._mapcount);
1719 	}
1720 
1721 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1722 		/* Last compound_mapcount is gone. */
1723 		__dec_node_page_state(page, NR_ANON_THPS);
1724 		if (TestClearPageDoubleMap(page)) {
1725 			/* No need in mapcount reference anymore */
1726 			for (i = 0; i < HPAGE_PMD_NR; i++)
1727 				atomic_dec(&page[i]._mapcount);
1728 		}
1729 	}
1730 
1731 	smp_wmb(); /* make pte visible before pmd */
1732 	/*
1733 	 * Up to this point the pmd is present and huge and userland has the
1734 	 * whole access to the hugepage during the split (which happens in
1735 	 * place). If we overwrite the pmd with the not-huge version pointing
1736 	 * to the pte here (which of course we could if all CPUs were bug
1737 	 * free), userland could trigger a small page size TLB miss on the
1738 	 * small sized TLB while the hugepage TLB entry is still established in
1739 	 * the huge TLB. Some CPU doesn't like that.
1740 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1741 	 * 383 on page 93. Intel should be safe but is also warns that it's
1742 	 * only safe if the permission and cache attributes of the two entries
1743 	 * loaded in the two TLB is identical (which should be the case here).
1744 	 * But it is generally safer to never allow small and huge TLB entries
1745 	 * for the same virtual address to be loaded simultaneously. So instead
1746 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1747 	 * current pmd notpresent (atomically because here the pmd_trans_huge
1748 	 * and pmd_trans_splitting must remain set at all times on the pmd
1749 	 * until the split is complete for this pmd), then we flush the SMP TLB
1750 	 * and finally we write the non-huge version of the pmd entry with
1751 	 * pmd_populate.
1752 	 */
1753 	pmdp_invalidate(vma, haddr, pmd);
1754 	pmd_populate(mm, pmd, pgtable);
1755 
1756 	if (freeze) {
1757 		for (i = 0; i < HPAGE_PMD_NR; i++) {
1758 			page_remove_rmap(page + i, false);
1759 			put_page(page + i);
1760 		}
1761 	}
1762 }
1763 
1764 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1765 		unsigned long address, bool freeze, struct page *page)
1766 {
1767 	spinlock_t *ptl;
1768 	struct mm_struct *mm = vma->vm_mm;
1769 	unsigned long haddr = address & HPAGE_PMD_MASK;
1770 
1771 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1772 	ptl = pmd_lock(mm, pmd);
1773 
1774 	/*
1775 	 * If caller asks to setup a migration entries, we need a page to check
1776 	 * pmd against. Otherwise we can end up replacing wrong page.
1777 	 */
1778 	VM_BUG_ON(freeze && !page);
1779 	if (page && page != pmd_page(*pmd))
1780 	        goto out;
1781 
1782 	if (pmd_trans_huge(*pmd)) {
1783 		page = pmd_page(*pmd);
1784 		if (PageMlocked(page))
1785 			clear_page_mlock(page);
1786 	} else if (!pmd_devmap(*pmd))
1787 		goto out;
1788 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
1789 out:
1790 	spin_unlock(ptl);
1791 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1792 }
1793 
1794 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1795 		bool freeze, struct page *page)
1796 {
1797 	pgd_t *pgd;
1798 	pud_t *pud;
1799 	pmd_t *pmd;
1800 
1801 	pgd = pgd_offset(vma->vm_mm, address);
1802 	if (!pgd_present(*pgd))
1803 		return;
1804 
1805 	pud = pud_offset(pgd, address);
1806 	if (!pud_present(*pud))
1807 		return;
1808 
1809 	pmd = pmd_offset(pud, address);
1810 
1811 	__split_huge_pmd(vma, pmd, address, freeze, page);
1812 }
1813 
1814 void vma_adjust_trans_huge(struct vm_area_struct *vma,
1815 			     unsigned long start,
1816 			     unsigned long end,
1817 			     long adjust_next)
1818 {
1819 	/*
1820 	 * If the new start address isn't hpage aligned and it could
1821 	 * previously contain an hugepage: check if we need to split
1822 	 * an huge pmd.
1823 	 */
1824 	if (start & ~HPAGE_PMD_MASK &&
1825 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1826 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1827 		split_huge_pmd_address(vma, start, false, NULL);
1828 
1829 	/*
1830 	 * If the new end address isn't hpage aligned and it could
1831 	 * previously contain an hugepage: check if we need to split
1832 	 * an huge pmd.
1833 	 */
1834 	if (end & ~HPAGE_PMD_MASK &&
1835 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1836 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1837 		split_huge_pmd_address(vma, end, false, NULL);
1838 
1839 	/*
1840 	 * If we're also updating the vma->vm_next->vm_start, if the new
1841 	 * vm_next->vm_start isn't page aligned and it could previously
1842 	 * contain an hugepage: check if we need to split an huge pmd.
1843 	 */
1844 	if (adjust_next > 0) {
1845 		struct vm_area_struct *next = vma->vm_next;
1846 		unsigned long nstart = next->vm_start;
1847 		nstart += adjust_next << PAGE_SHIFT;
1848 		if (nstart & ~HPAGE_PMD_MASK &&
1849 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1850 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1851 			split_huge_pmd_address(next, nstart, false, NULL);
1852 	}
1853 }
1854 
1855 static void freeze_page(struct page *page)
1856 {
1857 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1858 		TTU_RMAP_LOCKED;
1859 	int i, ret;
1860 
1861 	VM_BUG_ON_PAGE(!PageHead(page), page);
1862 
1863 	if (PageAnon(page))
1864 		ttu_flags |= TTU_MIGRATION;
1865 
1866 	/* We only need TTU_SPLIT_HUGE_PMD once */
1867 	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1868 	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1869 		/* Cut short if the page is unmapped */
1870 		if (page_count(page) == 1)
1871 			return;
1872 
1873 		ret = try_to_unmap(page + i, ttu_flags);
1874 	}
1875 	VM_BUG_ON_PAGE(ret, page + i - 1);
1876 }
1877 
1878 static void unfreeze_page(struct page *page)
1879 {
1880 	int i;
1881 
1882 	for (i = 0; i < HPAGE_PMD_NR; i++)
1883 		remove_migration_ptes(page + i, page + i, true);
1884 }
1885 
1886 static void __split_huge_page_tail(struct page *head, int tail,
1887 		struct lruvec *lruvec, struct list_head *list)
1888 {
1889 	struct page *page_tail = head + tail;
1890 
1891 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1892 	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1893 
1894 	/*
1895 	 * tail_page->_refcount is zero and not changing from under us. But
1896 	 * get_page_unless_zero() may be running from under us on the
1897 	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1898 	 * atomic_add(), we would then run atomic_set() concurrently with
1899 	 * get_page_unless_zero(), and atomic_set() is implemented in C not
1900 	 * using locked ops. spin_unlock on x86 sometime uses locked ops
1901 	 * because of PPro errata 66, 92, so unless somebody can guarantee
1902 	 * atomic_set() here would be safe on all archs (and not only on x86),
1903 	 * it's safer to use atomic_inc()/atomic_add().
1904 	 */
1905 	if (PageAnon(head)) {
1906 		page_ref_inc(page_tail);
1907 	} else {
1908 		/* Additional pin to radix tree */
1909 		page_ref_add(page_tail, 2);
1910 	}
1911 
1912 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1913 	page_tail->flags |= (head->flags &
1914 			((1L << PG_referenced) |
1915 			 (1L << PG_swapbacked) |
1916 			 (1L << PG_mlocked) |
1917 			 (1L << PG_uptodate) |
1918 			 (1L << PG_active) |
1919 			 (1L << PG_locked) |
1920 			 (1L << PG_unevictable) |
1921 			 (1L << PG_dirty)));
1922 
1923 	/*
1924 	 * After clearing PageTail the gup refcount can be released.
1925 	 * Page flags also must be visible before we make the page non-compound.
1926 	 */
1927 	smp_wmb();
1928 
1929 	clear_compound_head(page_tail);
1930 
1931 	if (page_is_young(head))
1932 		set_page_young(page_tail);
1933 	if (page_is_idle(head))
1934 		set_page_idle(page_tail);
1935 
1936 	/* ->mapping in first tail page is compound_mapcount */
1937 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1938 			page_tail);
1939 	page_tail->mapping = head->mapping;
1940 
1941 	page_tail->index = head->index + tail;
1942 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1943 	lru_add_page_tail(head, page_tail, lruvec, list);
1944 }
1945 
1946 static void __split_huge_page(struct page *page, struct list_head *list,
1947 		unsigned long flags)
1948 {
1949 	struct page *head = compound_head(page);
1950 	struct zone *zone = page_zone(head);
1951 	struct lruvec *lruvec;
1952 	pgoff_t end = -1;
1953 	int i;
1954 
1955 	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1956 
1957 	/* complete memcg works before add pages to LRU */
1958 	mem_cgroup_split_huge_fixup(head);
1959 
1960 	if (!PageAnon(page))
1961 		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1962 
1963 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1964 		__split_huge_page_tail(head, i, lruvec, list);
1965 		/* Some pages can be beyond i_size: drop them from page cache */
1966 		if (head[i].index >= end) {
1967 			__ClearPageDirty(head + i);
1968 			__delete_from_page_cache(head + i, NULL);
1969 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1970 				shmem_uncharge(head->mapping->host, 1);
1971 			put_page(head + i);
1972 		}
1973 	}
1974 
1975 	ClearPageCompound(head);
1976 	/* See comment in __split_huge_page_tail() */
1977 	if (PageAnon(head)) {
1978 		page_ref_inc(head);
1979 	} else {
1980 		/* Additional pin to radix tree */
1981 		page_ref_add(head, 2);
1982 		spin_unlock(&head->mapping->tree_lock);
1983 	}
1984 
1985 	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1986 
1987 	unfreeze_page(head);
1988 
1989 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1990 		struct page *subpage = head + i;
1991 		if (subpage == page)
1992 			continue;
1993 		unlock_page(subpage);
1994 
1995 		/*
1996 		 * Subpages may be freed if there wasn't any mapping
1997 		 * like if add_to_swap() is running on a lru page that
1998 		 * had its mapping zapped. And freeing these pages
1999 		 * requires taking the lru_lock so we do the put_page
2000 		 * of the tail pages after the split is complete.
2001 		 */
2002 		put_page(subpage);
2003 	}
2004 }
2005 
2006 int total_mapcount(struct page *page)
2007 {
2008 	int i, compound, ret;
2009 
2010 	VM_BUG_ON_PAGE(PageTail(page), page);
2011 
2012 	if (likely(!PageCompound(page)))
2013 		return atomic_read(&page->_mapcount) + 1;
2014 
2015 	compound = compound_mapcount(page);
2016 	if (PageHuge(page))
2017 		return compound;
2018 	ret = compound;
2019 	for (i = 0; i < HPAGE_PMD_NR; i++)
2020 		ret += atomic_read(&page[i]._mapcount) + 1;
2021 	/* File pages has compound_mapcount included in _mapcount */
2022 	if (!PageAnon(page))
2023 		return ret - compound * HPAGE_PMD_NR;
2024 	if (PageDoubleMap(page))
2025 		ret -= HPAGE_PMD_NR;
2026 	return ret;
2027 }
2028 
2029 /*
2030  * This calculates accurately how many mappings a transparent hugepage
2031  * has (unlike page_mapcount() which isn't fully accurate). This full
2032  * accuracy is primarily needed to know if copy-on-write faults can
2033  * reuse the page and change the mapping to read-write instead of
2034  * copying them. At the same time this returns the total_mapcount too.
2035  *
2036  * The function returns the highest mapcount any one of the subpages
2037  * has. If the return value is one, even if different processes are
2038  * mapping different subpages of the transparent hugepage, they can
2039  * all reuse it, because each process is reusing a different subpage.
2040  *
2041  * The total_mapcount is instead counting all virtual mappings of the
2042  * subpages. If the total_mapcount is equal to "one", it tells the
2043  * caller all mappings belong to the same "mm" and in turn the
2044  * anon_vma of the transparent hugepage can become the vma->anon_vma
2045  * local one as no other process may be mapping any of the subpages.
2046  *
2047  * It would be more accurate to replace page_mapcount() with
2048  * page_trans_huge_mapcount(), however we only use
2049  * page_trans_huge_mapcount() in the copy-on-write faults where we
2050  * need full accuracy to avoid breaking page pinning, because
2051  * page_trans_huge_mapcount() is slower than page_mapcount().
2052  */
2053 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2054 {
2055 	int i, ret, _total_mapcount, mapcount;
2056 
2057 	/* hugetlbfs shouldn't call it */
2058 	VM_BUG_ON_PAGE(PageHuge(page), page);
2059 
2060 	if (likely(!PageTransCompound(page))) {
2061 		mapcount = atomic_read(&page->_mapcount) + 1;
2062 		if (total_mapcount)
2063 			*total_mapcount = mapcount;
2064 		return mapcount;
2065 	}
2066 
2067 	page = compound_head(page);
2068 
2069 	_total_mapcount = ret = 0;
2070 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2071 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2072 		ret = max(ret, mapcount);
2073 		_total_mapcount += mapcount;
2074 	}
2075 	if (PageDoubleMap(page)) {
2076 		ret -= 1;
2077 		_total_mapcount -= HPAGE_PMD_NR;
2078 	}
2079 	mapcount = compound_mapcount(page);
2080 	ret += mapcount;
2081 	_total_mapcount += mapcount;
2082 	if (total_mapcount)
2083 		*total_mapcount = _total_mapcount;
2084 	return ret;
2085 }
2086 
2087 /*
2088  * This function splits huge page into normal pages. @page can point to any
2089  * subpage of huge page to split. Split doesn't change the position of @page.
2090  *
2091  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2092  * The huge page must be locked.
2093  *
2094  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2095  *
2096  * Both head page and tail pages will inherit mapping, flags, and so on from
2097  * the hugepage.
2098  *
2099  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2100  * they are not mapped.
2101  *
2102  * Returns 0 if the hugepage is split successfully.
2103  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2104  * us.
2105  */
2106 int split_huge_page_to_list(struct page *page, struct list_head *list)
2107 {
2108 	struct page *head = compound_head(page);
2109 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2110 	struct anon_vma *anon_vma = NULL;
2111 	struct address_space *mapping = NULL;
2112 	int count, mapcount, extra_pins, ret;
2113 	bool mlocked;
2114 	unsigned long flags;
2115 
2116 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2117 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2118 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2119 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2120 
2121 	if (PageAnon(head)) {
2122 		/*
2123 		 * The caller does not necessarily hold an mmap_sem that would
2124 		 * prevent the anon_vma disappearing so we first we take a
2125 		 * reference to it and then lock the anon_vma for write. This
2126 		 * is similar to page_lock_anon_vma_read except the write lock
2127 		 * is taken to serialise against parallel split or collapse
2128 		 * operations.
2129 		 */
2130 		anon_vma = page_get_anon_vma(head);
2131 		if (!anon_vma) {
2132 			ret = -EBUSY;
2133 			goto out;
2134 		}
2135 		extra_pins = 0;
2136 		mapping = NULL;
2137 		anon_vma_lock_write(anon_vma);
2138 	} else {
2139 		mapping = head->mapping;
2140 
2141 		/* Truncated ? */
2142 		if (!mapping) {
2143 			ret = -EBUSY;
2144 			goto out;
2145 		}
2146 
2147 		/* Addidional pins from radix tree */
2148 		extra_pins = HPAGE_PMD_NR;
2149 		anon_vma = NULL;
2150 		i_mmap_lock_read(mapping);
2151 	}
2152 
2153 	/*
2154 	 * Racy check if we can split the page, before freeze_page() will
2155 	 * split PMDs
2156 	 */
2157 	if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2158 		ret = -EBUSY;
2159 		goto out_unlock;
2160 	}
2161 
2162 	mlocked = PageMlocked(page);
2163 	freeze_page(head);
2164 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2165 
2166 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2167 	if (mlocked)
2168 		lru_add_drain();
2169 
2170 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2171 	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2172 
2173 	if (mapping) {
2174 		void **pslot;
2175 
2176 		spin_lock(&mapping->tree_lock);
2177 		pslot = radix_tree_lookup_slot(&mapping->page_tree,
2178 				page_index(head));
2179 		/*
2180 		 * Check if the head page is present in radix tree.
2181 		 * We assume all tail are present too, if head is there.
2182 		 */
2183 		if (radix_tree_deref_slot_protected(pslot,
2184 					&mapping->tree_lock) != head)
2185 			goto fail;
2186 	}
2187 
2188 	/* Prevent deferred_split_scan() touching ->_refcount */
2189 	spin_lock(&pgdata->split_queue_lock);
2190 	count = page_count(head);
2191 	mapcount = total_mapcount(head);
2192 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2193 		if (!list_empty(page_deferred_list(head))) {
2194 			pgdata->split_queue_len--;
2195 			list_del(page_deferred_list(head));
2196 		}
2197 		if (mapping)
2198 			__dec_node_page_state(page, NR_SHMEM_THPS);
2199 		spin_unlock(&pgdata->split_queue_lock);
2200 		__split_huge_page(page, list, flags);
2201 		ret = 0;
2202 	} else {
2203 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2204 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2205 					mapcount, count);
2206 			if (PageTail(page))
2207 				dump_page(head, NULL);
2208 			dump_page(page, "total_mapcount(head) > 0");
2209 			BUG();
2210 		}
2211 		spin_unlock(&pgdata->split_queue_lock);
2212 fail:		if (mapping)
2213 			spin_unlock(&mapping->tree_lock);
2214 		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2215 		unfreeze_page(head);
2216 		ret = -EBUSY;
2217 	}
2218 
2219 out_unlock:
2220 	if (anon_vma) {
2221 		anon_vma_unlock_write(anon_vma);
2222 		put_anon_vma(anon_vma);
2223 	}
2224 	if (mapping)
2225 		i_mmap_unlock_read(mapping);
2226 out:
2227 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2228 	return ret;
2229 }
2230 
2231 void free_transhuge_page(struct page *page)
2232 {
2233 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2234 	unsigned long flags;
2235 
2236 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2237 	if (!list_empty(page_deferred_list(page))) {
2238 		pgdata->split_queue_len--;
2239 		list_del(page_deferred_list(page));
2240 	}
2241 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2242 	free_compound_page(page);
2243 }
2244 
2245 void deferred_split_huge_page(struct page *page)
2246 {
2247 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2248 	unsigned long flags;
2249 
2250 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2251 
2252 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2253 	if (list_empty(page_deferred_list(page))) {
2254 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2255 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2256 		pgdata->split_queue_len++;
2257 	}
2258 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2259 }
2260 
2261 static unsigned long deferred_split_count(struct shrinker *shrink,
2262 		struct shrink_control *sc)
2263 {
2264 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2265 	return ACCESS_ONCE(pgdata->split_queue_len);
2266 }
2267 
2268 static unsigned long deferred_split_scan(struct shrinker *shrink,
2269 		struct shrink_control *sc)
2270 {
2271 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2272 	unsigned long flags;
2273 	LIST_HEAD(list), *pos, *next;
2274 	struct page *page;
2275 	int split = 0;
2276 
2277 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2278 	/* Take pin on all head pages to avoid freeing them under us */
2279 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2280 		page = list_entry((void *)pos, struct page, mapping);
2281 		page = compound_head(page);
2282 		if (get_page_unless_zero(page)) {
2283 			list_move(page_deferred_list(page), &list);
2284 		} else {
2285 			/* We lost race with put_compound_page() */
2286 			list_del_init(page_deferred_list(page));
2287 			pgdata->split_queue_len--;
2288 		}
2289 		if (!--sc->nr_to_scan)
2290 			break;
2291 	}
2292 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2293 
2294 	list_for_each_safe(pos, next, &list) {
2295 		page = list_entry((void *)pos, struct page, mapping);
2296 		lock_page(page);
2297 		/* split_huge_page() removes page from list on success */
2298 		if (!split_huge_page(page))
2299 			split++;
2300 		unlock_page(page);
2301 		put_page(page);
2302 	}
2303 
2304 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2305 	list_splice_tail(&list, &pgdata->split_queue);
2306 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2307 
2308 	/*
2309 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2310 	 * This can happen if pages were freed under us.
2311 	 */
2312 	if (!split && list_empty(&pgdata->split_queue))
2313 		return SHRINK_STOP;
2314 	return split;
2315 }
2316 
2317 static struct shrinker deferred_split_shrinker = {
2318 	.count_objects = deferred_split_count,
2319 	.scan_objects = deferred_split_scan,
2320 	.seeks = DEFAULT_SEEKS,
2321 	.flags = SHRINKER_NUMA_AWARE,
2322 };
2323 
2324 #ifdef CONFIG_DEBUG_FS
2325 static int split_huge_pages_set(void *data, u64 val)
2326 {
2327 	struct zone *zone;
2328 	struct page *page;
2329 	unsigned long pfn, max_zone_pfn;
2330 	unsigned long total = 0, split = 0;
2331 
2332 	if (val != 1)
2333 		return -EINVAL;
2334 
2335 	for_each_populated_zone(zone) {
2336 		max_zone_pfn = zone_end_pfn(zone);
2337 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2338 			if (!pfn_valid(pfn))
2339 				continue;
2340 
2341 			page = pfn_to_page(pfn);
2342 			if (!get_page_unless_zero(page))
2343 				continue;
2344 
2345 			if (zone != page_zone(page))
2346 				goto next;
2347 
2348 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2349 				goto next;
2350 
2351 			total++;
2352 			lock_page(page);
2353 			if (!split_huge_page(page))
2354 				split++;
2355 			unlock_page(page);
2356 next:
2357 			put_page(page);
2358 		}
2359 	}
2360 
2361 	pr_info("%lu of %lu THP split\n", split, total);
2362 
2363 	return 0;
2364 }
2365 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2366 		"%llu\n");
2367 
2368 static int __init split_huge_pages_debugfs(void)
2369 {
2370 	void *ret;
2371 
2372 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2373 			&split_huge_pages_fops);
2374 	if (!ret)
2375 		pr_warn("Failed to create split_huge_pages in debugfs");
2376 	return 0;
2377 }
2378 late_initcall(split_huge_pages_debugfs);
2379 #endif
2380