1 /* 2 * Copyright (C) 2009 Red Hat, Inc. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/mm.h> 11 #include <linux/sched.h> 12 #include <linux/highmem.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mmu_notifier.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/shrinker.h> 18 #include <linux/mm_inline.h> 19 #include <linux/swapops.h> 20 #include <linux/dax.h> 21 #include <linux/khugepaged.h> 22 #include <linux/freezer.h> 23 #include <linux/pfn_t.h> 24 #include <linux/mman.h> 25 #include <linux/memremap.h> 26 #include <linux/pagemap.h> 27 #include <linux/debugfs.h> 28 #include <linux/migrate.h> 29 #include <linux/hashtable.h> 30 #include <linux/userfaultfd_k.h> 31 #include <linux/page_idle.h> 32 #include <linux/shmem_fs.h> 33 34 #include <asm/tlb.h> 35 #include <asm/pgalloc.h> 36 #include "internal.h" 37 38 /* 39 * By default transparent hugepage support is disabled in order that avoid 40 * to risk increase the memory footprint of applications without a guaranteed 41 * benefit. When transparent hugepage support is enabled, is for all mappings, 42 * and khugepaged scans all mappings. 43 * Defrag is invoked by khugepaged hugepage allocations and by page faults 44 * for all hugepage allocations. 45 */ 46 unsigned long transparent_hugepage_flags __read_mostly = 47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 48 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 49 #endif 50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 52 #endif 53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 56 57 static struct shrinker deferred_split_shrinker; 58 59 static atomic_t huge_zero_refcount; 60 struct page *huge_zero_page __read_mostly; 61 62 static struct page *get_huge_zero_page(void) 63 { 64 struct page *zero_page; 65 retry: 66 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 67 return READ_ONCE(huge_zero_page); 68 69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 70 HPAGE_PMD_ORDER); 71 if (!zero_page) { 72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 73 return NULL; 74 } 75 count_vm_event(THP_ZERO_PAGE_ALLOC); 76 preempt_disable(); 77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 78 preempt_enable(); 79 __free_pages(zero_page, compound_order(zero_page)); 80 goto retry; 81 } 82 83 /* We take additional reference here. It will be put back by shrinker */ 84 atomic_set(&huge_zero_refcount, 2); 85 preempt_enable(); 86 return READ_ONCE(huge_zero_page); 87 } 88 89 static void put_huge_zero_page(void) 90 { 91 /* 92 * Counter should never go to zero here. Only shrinker can put 93 * last reference. 94 */ 95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 96 } 97 98 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 99 { 100 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 101 return READ_ONCE(huge_zero_page); 102 103 if (!get_huge_zero_page()) 104 return NULL; 105 106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 107 put_huge_zero_page(); 108 109 return READ_ONCE(huge_zero_page); 110 } 111 112 void mm_put_huge_zero_page(struct mm_struct *mm) 113 { 114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 115 put_huge_zero_page(); 116 } 117 118 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 119 struct shrink_control *sc) 120 { 121 /* we can free zero page only if last reference remains */ 122 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 123 } 124 125 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 126 struct shrink_control *sc) 127 { 128 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 129 struct page *zero_page = xchg(&huge_zero_page, NULL); 130 BUG_ON(zero_page == NULL); 131 __free_pages(zero_page, compound_order(zero_page)); 132 return HPAGE_PMD_NR; 133 } 134 135 return 0; 136 } 137 138 static struct shrinker huge_zero_page_shrinker = { 139 .count_objects = shrink_huge_zero_page_count, 140 .scan_objects = shrink_huge_zero_page_scan, 141 .seeks = DEFAULT_SEEKS, 142 }; 143 144 #ifdef CONFIG_SYSFS 145 146 static ssize_t triple_flag_store(struct kobject *kobj, 147 struct kobj_attribute *attr, 148 const char *buf, size_t count, 149 enum transparent_hugepage_flag enabled, 150 enum transparent_hugepage_flag deferred, 151 enum transparent_hugepage_flag req_madv) 152 { 153 if (!memcmp("defer", buf, 154 min(sizeof("defer")-1, count))) { 155 if (enabled == deferred) 156 return -EINVAL; 157 clear_bit(enabled, &transparent_hugepage_flags); 158 clear_bit(req_madv, &transparent_hugepage_flags); 159 set_bit(deferred, &transparent_hugepage_flags); 160 } else if (!memcmp("always", buf, 161 min(sizeof("always")-1, count))) { 162 clear_bit(deferred, &transparent_hugepage_flags); 163 clear_bit(req_madv, &transparent_hugepage_flags); 164 set_bit(enabled, &transparent_hugepage_flags); 165 } else if (!memcmp("madvise", buf, 166 min(sizeof("madvise")-1, count))) { 167 clear_bit(enabled, &transparent_hugepage_flags); 168 clear_bit(deferred, &transparent_hugepage_flags); 169 set_bit(req_madv, &transparent_hugepage_flags); 170 } else if (!memcmp("never", buf, 171 min(sizeof("never")-1, count))) { 172 clear_bit(enabled, &transparent_hugepage_flags); 173 clear_bit(req_madv, &transparent_hugepage_flags); 174 clear_bit(deferred, &transparent_hugepage_flags); 175 } else 176 return -EINVAL; 177 178 return count; 179 } 180 181 static ssize_t enabled_show(struct kobject *kobj, 182 struct kobj_attribute *attr, char *buf) 183 { 184 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 185 return sprintf(buf, "[always] madvise never\n"); 186 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) 187 return sprintf(buf, "always [madvise] never\n"); 188 else 189 return sprintf(buf, "always madvise [never]\n"); 190 } 191 192 static ssize_t enabled_store(struct kobject *kobj, 193 struct kobj_attribute *attr, 194 const char *buf, size_t count) 195 { 196 ssize_t ret; 197 198 ret = triple_flag_store(kobj, attr, buf, count, 199 TRANSPARENT_HUGEPAGE_FLAG, 200 TRANSPARENT_HUGEPAGE_FLAG, 201 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); 202 203 if (ret > 0) { 204 int err = start_stop_khugepaged(); 205 if (err) 206 ret = err; 207 } 208 209 return ret; 210 } 211 static struct kobj_attribute enabled_attr = 212 __ATTR(enabled, 0644, enabled_show, enabled_store); 213 214 ssize_t single_hugepage_flag_show(struct kobject *kobj, 215 struct kobj_attribute *attr, char *buf, 216 enum transparent_hugepage_flag flag) 217 { 218 return sprintf(buf, "%d\n", 219 !!test_bit(flag, &transparent_hugepage_flags)); 220 } 221 222 ssize_t single_hugepage_flag_store(struct kobject *kobj, 223 struct kobj_attribute *attr, 224 const char *buf, size_t count, 225 enum transparent_hugepage_flag flag) 226 { 227 unsigned long value; 228 int ret; 229 230 ret = kstrtoul(buf, 10, &value); 231 if (ret < 0) 232 return ret; 233 if (value > 1) 234 return -EINVAL; 235 236 if (value) 237 set_bit(flag, &transparent_hugepage_flags); 238 else 239 clear_bit(flag, &transparent_hugepage_flags); 240 241 return count; 242 } 243 244 /* 245 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind 246 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of 247 * memory just to allocate one more hugepage. 248 */ 249 static ssize_t defrag_show(struct kobject *kobj, 250 struct kobj_attribute *attr, char *buf) 251 { 252 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 253 return sprintf(buf, "[always] defer madvise never\n"); 254 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 255 return sprintf(buf, "always [defer] madvise never\n"); 256 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 257 return sprintf(buf, "always defer [madvise] never\n"); 258 else 259 return sprintf(buf, "always defer madvise [never]\n"); 260 261 } 262 static ssize_t defrag_store(struct kobject *kobj, 263 struct kobj_attribute *attr, 264 const char *buf, size_t count) 265 { 266 return triple_flag_store(kobj, attr, buf, count, 267 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 268 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 269 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); 270 } 271 static struct kobj_attribute defrag_attr = 272 __ATTR(defrag, 0644, defrag_show, defrag_store); 273 274 static ssize_t use_zero_page_show(struct kobject *kobj, 275 struct kobj_attribute *attr, char *buf) 276 { 277 return single_hugepage_flag_show(kobj, attr, buf, 278 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 279 } 280 static ssize_t use_zero_page_store(struct kobject *kobj, 281 struct kobj_attribute *attr, const char *buf, size_t count) 282 { 283 return single_hugepage_flag_store(kobj, attr, buf, count, 284 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 285 } 286 static struct kobj_attribute use_zero_page_attr = 287 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 288 289 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 290 struct kobj_attribute *attr, char *buf) 291 { 292 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE); 293 } 294 static struct kobj_attribute hpage_pmd_size_attr = 295 __ATTR_RO(hpage_pmd_size); 296 297 #ifdef CONFIG_DEBUG_VM 298 static ssize_t debug_cow_show(struct kobject *kobj, 299 struct kobj_attribute *attr, char *buf) 300 { 301 return single_hugepage_flag_show(kobj, attr, buf, 302 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 303 } 304 static ssize_t debug_cow_store(struct kobject *kobj, 305 struct kobj_attribute *attr, 306 const char *buf, size_t count) 307 { 308 return single_hugepage_flag_store(kobj, attr, buf, count, 309 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 310 } 311 static struct kobj_attribute debug_cow_attr = 312 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 313 #endif /* CONFIG_DEBUG_VM */ 314 315 static struct attribute *hugepage_attr[] = { 316 &enabled_attr.attr, 317 &defrag_attr.attr, 318 &use_zero_page_attr.attr, 319 &hpage_pmd_size_attr.attr, 320 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) 321 &shmem_enabled_attr.attr, 322 #endif 323 #ifdef CONFIG_DEBUG_VM 324 &debug_cow_attr.attr, 325 #endif 326 NULL, 327 }; 328 329 static struct attribute_group hugepage_attr_group = { 330 .attrs = hugepage_attr, 331 }; 332 333 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 334 { 335 int err; 336 337 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 338 if (unlikely(!*hugepage_kobj)) { 339 pr_err("failed to create transparent hugepage kobject\n"); 340 return -ENOMEM; 341 } 342 343 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 344 if (err) { 345 pr_err("failed to register transparent hugepage group\n"); 346 goto delete_obj; 347 } 348 349 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 350 if (err) { 351 pr_err("failed to register transparent hugepage group\n"); 352 goto remove_hp_group; 353 } 354 355 return 0; 356 357 remove_hp_group: 358 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 359 delete_obj: 360 kobject_put(*hugepage_kobj); 361 return err; 362 } 363 364 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 365 { 366 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 367 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 368 kobject_put(hugepage_kobj); 369 } 370 #else 371 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 372 { 373 return 0; 374 } 375 376 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 377 { 378 } 379 #endif /* CONFIG_SYSFS */ 380 381 static int __init hugepage_init(void) 382 { 383 int err; 384 struct kobject *hugepage_kobj; 385 386 if (!has_transparent_hugepage()) { 387 transparent_hugepage_flags = 0; 388 return -EINVAL; 389 } 390 391 /* 392 * hugepages can't be allocated by the buddy allocator 393 */ 394 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 395 /* 396 * we use page->mapping and page->index in second tail page 397 * as list_head: assuming THP order >= 2 398 */ 399 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 400 401 err = hugepage_init_sysfs(&hugepage_kobj); 402 if (err) 403 goto err_sysfs; 404 405 err = khugepaged_init(); 406 if (err) 407 goto err_slab; 408 409 err = register_shrinker(&huge_zero_page_shrinker); 410 if (err) 411 goto err_hzp_shrinker; 412 err = register_shrinker(&deferred_split_shrinker); 413 if (err) 414 goto err_split_shrinker; 415 416 /* 417 * By default disable transparent hugepages on smaller systems, 418 * where the extra memory used could hurt more than TLB overhead 419 * is likely to save. The admin can still enable it through /sys. 420 */ 421 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) { 422 transparent_hugepage_flags = 0; 423 return 0; 424 } 425 426 err = start_stop_khugepaged(); 427 if (err) 428 goto err_khugepaged; 429 430 return 0; 431 err_khugepaged: 432 unregister_shrinker(&deferred_split_shrinker); 433 err_split_shrinker: 434 unregister_shrinker(&huge_zero_page_shrinker); 435 err_hzp_shrinker: 436 khugepaged_destroy(); 437 err_slab: 438 hugepage_exit_sysfs(hugepage_kobj); 439 err_sysfs: 440 return err; 441 } 442 subsys_initcall(hugepage_init); 443 444 static int __init setup_transparent_hugepage(char *str) 445 { 446 int ret = 0; 447 if (!str) 448 goto out; 449 if (!strcmp(str, "always")) { 450 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 451 &transparent_hugepage_flags); 452 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 453 &transparent_hugepage_flags); 454 ret = 1; 455 } else if (!strcmp(str, "madvise")) { 456 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 457 &transparent_hugepage_flags); 458 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 459 &transparent_hugepage_flags); 460 ret = 1; 461 } else if (!strcmp(str, "never")) { 462 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 463 &transparent_hugepage_flags); 464 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 465 &transparent_hugepage_flags); 466 ret = 1; 467 } 468 out: 469 if (!ret) 470 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 471 return ret; 472 } 473 __setup("transparent_hugepage=", setup_transparent_hugepage); 474 475 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 476 { 477 if (likely(vma->vm_flags & VM_WRITE)) 478 pmd = pmd_mkwrite(pmd); 479 return pmd; 480 } 481 482 static inline struct list_head *page_deferred_list(struct page *page) 483 { 484 /* 485 * ->lru in the tail pages is occupied by compound_head. 486 * Let's use ->mapping + ->index in the second tail page as list_head. 487 */ 488 return (struct list_head *)&page[2].mapping; 489 } 490 491 void prep_transhuge_page(struct page *page) 492 { 493 /* 494 * we use page->mapping and page->indexlru in second tail page 495 * as list_head: assuming THP order >= 2 496 */ 497 498 INIT_LIST_HEAD(page_deferred_list(page)); 499 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 500 } 501 502 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len, 503 loff_t off, unsigned long flags, unsigned long size) 504 { 505 unsigned long addr; 506 loff_t off_end = off + len; 507 loff_t off_align = round_up(off, size); 508 unsigned long len_pad; 509 510 if (off_end <= off_align || (off_end - off_align) < size) 511 return 0; 512 513 len_pad = len + size; 514 if (len_pad < len || (off + len_pad) < off) 515 return 0; 516 517 addr = current->mm->get_unmapped_area(filp, 0, len_pad, 518 off >> PAGE_SHIFT, flags); 519 if (IS_ERR_VALUE(addr)) 520 return 0; 521 522 addr += (off - addr) & (size - 1); 523 return addr; 524 } 525 526 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 527 unsigned long len, unsigned long pgoff, unsigned long flags) 528 { 529 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 530 531 if (addr) 532 goto out; 533 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) 534 goto out; 535 536 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE); 537 if (addr) 538 return addr; 539 540 out: 541 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 542 } 543 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 544 545 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page, 546 gfp_t gfp) 547 { 548 struct vm_area_struct *vma = vmf->vma; 549 struct mem_cgroup *memcg; 550 pgtable_t pgtable; 551 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 552 553 VM_BUG_ON_PAGE(!PageCompound(page), page); 554 555 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) { 556 put_page(page); 557 count_vm_event(THP_FAULT_FALLBACK); 558 return VM_FAULT_FALLBACK; 559 } 560 561 pgtable = pte_alloc_one(vma->vm_mm, haddr); 562 if (unlikely(!pgtable)) { 563 mem_cgroup_cancel_charge(page, memcg, true); 564 put_page(page); 565 return VM_FAULT_OOM; 566 } 567 568 clear_huge_page(page, haddr, HPAGE_PMD_NR); 569 /* 570 * The memory barrier inside __SetPageUptodate makes sure that 571 * clear_huge_page writes become visible before the set_pmd_at() 572 * write. 573 */ 574 __SetPageUptodate(page); 575 576 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 577 if (unlikely(!pmd_none(*vmf->pmd))) { 578 spin_unlock(vmf->ptl); 579 mem_cgroup_cancel_charge(page, memcg, true); 580 put_page(page); 581 pte_free(vma->vm_mm, pgtable); 582 } else { 583 pmd_t entry; 584 585 /* Deliver the page fault to userland */ 586 if (userfaultfd_missing(vma)) { 587 int ret; 588 589 spin_unlock(vmf->ptl); 590 mem_cgroup_cancel_charge(page, memcg, true); 591 put_page(page); 592 pte_free(vma->vm_mm, pgtable); 593 ret = handle_userfault(vmf, VM_UFFD_MISSING); 594 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 595 return ret; 596 } 597 598 entry = mk_huge_pmd(page, vma->vm_page_prot); 599 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 600 page_add_new_anon_rmap(page, vma, haddr, true); 601 mem_cgroup_commit_charge(page, memcg, false, true); 602 lru_cache_add_active_or_unevictable(page, vma); 603 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 604 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 605 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 606 atomic_long_inc(&vma->vm_mm->nr_ptes); 607 spin_unlock(vmf->ptl); 608 count_vm_event(THP_FAULT_ALLOC); 609 } 610 611 return 0; 612 } 613 614 /* 615 * If THP defrag is set to always then directly reclaim/compact as necessary 616 * If set to defer then do only background reclaim/compact and defer to khugepaged 617 * If set to madvise and the VMA is flagged then directly reclaim/compact 618 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's 619 */ 620 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) 621 { 622 bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); 623 624 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 625 &transparent_hugepage_flags) && vma_madvised) 626 return GFP_TRANSHUGE; 627 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 628 &transparent_hugepage_flags)) 629 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 630 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 631 &transparent_hugepage_flags)) 632 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 633 634 return GFP_TRANSHUGE_LIGHT; 635 } 636 637 /* Caller must hold page table lock. */ 638 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 639 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 640 struct page *zero_page) 641 { 642 pmd_t entry; 643 if (!pmd_none(*pmd)) 644 return false; 645 entry = mk_pmd(zero_page, vma->vm_page_prot); 646 entry = pmd_mkhuge(entry); 647 if (pgtable) 648 pgtable_trans_huge_deposit(mm, pmd, pgtable); 649 set_pmd_at(mm, haddr, pmd, entry); 650 atomic_long_inc(&mm->nr_ptes); 651 return true; 652 } 653 654 int do_huge_pmd_anonymous_page(struct vm_fault *vmf) 655 { 656 struct vm_area_struct *vma = vmf->vma; 657 gfp_t gfp; 658 struct page *page; 659 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 660 661 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 662 return VM_FAULT_FALLBACK; 663 if (unlikely(anon_vma_prepare(vma))) 664 return VM_FAULT_OOM; 665 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 666 return VM_FAULT_OOM; 667 if (!(vmf->flags & FAULT_FLAG_WRITE) && 668 !mm_forbids_zeropage(vma->vm_mm) && 669 transparent_hugepage_use_zero_page()) { 670 pgtable_t pgtable; 671 struct page *zero_page; 672 bool set; 673 int ret; 674 pgtable = pte_alloc_one(vma->vm_mm, haddr); 675 if (unlikely(!pgtable)) 676 return VM_FAULT_OOM; 677 zero_page = mm_get_huge_zero_page(vma->vm_mm); 678 if (unlikely(!zero_page)) { 679 pte_free(vma->vm_mm, pgtable); 680 count_vm_event(THP_FAULT_FALLBACK); 681 return VM_FAULT_FALLBACK; 682 } 683 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 684 ret = 0; 685 set = false; 686 if (pmd_none(*vmf->pmd)) { 687 if (userfaultfd_missing(vma)) { 688 spin_unlock(vmf->ptl); 689 ret = handle_userfault(vmf, VM_UFFD_MISSING); 690 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 691 } else { 692 set_huge_zero_page(pgtable, vma->vm_mm, vma, 693 haddr, vmf->pmd, zero_page); 694 spin_unlock(vmf->ptl); 695 set = true; 696 } 697 } else 698 spin_unlock(vmf->ptl); 699 if (!set) 700 pte_free(vma->vm_mm, pgtable); 701 return ret; 702 } 703 gfp = alloc_hugepage_direct_gfpmask(vma); 704 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 705 if (unlikely(!page)) { 706 count_vm_event(THP_FAULT_FALLBACK); 707 return VM_FAULT_FALLBACK; 708 } 709 prep_transhuge_page(page); 710 return __do_huge_pmd_anonymous_page(vmf, page, gfp); 711 } 712 713 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 714 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write) 715 { 716 struct mm_struct *mm = vma->vm_mm; 717 pmd_t entry; 718 spinlock_t *ptl; 719 720 ptl = pmd_lock(mm, pmd); 721 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 722 if (pfn_t_devmap(pfn)) 723 entry = pmd_mkdevmap(entry); 724 if (write) { 725 entry = pmd_mkyoung(pmd_mkdirty(entry)); 726 entry = maybe_pmd_mkwrite(entry, vma); 727 } 728 set_pmd_at(mm, addr, pmd, entry); 729 update_mmu_cache_pmd(vma, addr, pmd); 730 spin_unlock(ptl); 731 } 732 733 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 734 pmd_t *pmd, pfn_t pfn, bool write) 735 { 736 pgprot_t pgprot = vma->vm_page_prot; 737 /* 738 * If we had pmd_special, we could avoid all these restrictions, 739 * but we need to be consistent with PTEs and architectures that 740 * can't support a 'special' bit. 741 */ 742 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 743 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 744 (VM_PFNMAP|VM_MIXEDMAP)); 745 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 746 BUG_ON(!pfn_t_devmap(pfn)); 747 748 if (addr < vma->vm_start || addr >= vma->vm_end) 749 return VM_FAULT_SIGBUS; 750 751 track_pfn_insert(vma, &pgprot, pfn); 752 753 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write); 754 return VM_FAULT_NOPAGE; 755 } 756 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 757 758 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 759 pmd_t *pmd) 760 { 761 pmd_t _pmd; 762 763 /* 764 * We should set the dirty bit only for FOLL_WRITE but for now 765 * the dirty bit in the pmd is meaningless. And if the dirty 766 * bit will become meaningful and we'll only set it with 767 * FOLL_WRITE, an atomic set_bit will be required on the pmd to 768 * set the young bit, instead of the current set_pmd_at. 769 */ 770 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); 771 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 772 pmd, _pmd, 1)) 773 update_mmu_cache_pmd(vma, addr, pmd); 774 } 775 776 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 777 pmd_t *pmd, int flags) 778 { 779 unsigned long pfn = pmd_pfn(*pmd); 780 struct mm_struct *mm = vma->vm_mm; 781 struct dev_pagemap *pgmap; 782 struct page *page; 783 784 assert_spin_locked(pmd_lockptr(mm, pmd)); 785 786 /* 787 * When we COW a devmap PMD entry, we split it into PTEs, so we should 788 * not be in this function with `flags & FOLL_COW` set. 789 */ 790 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); 791 792 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 793 return NULL; 794 795 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 796 /* pass */; 797 else 798 return NULL; 799 800 if (flags & FOLL_TOUCH) 801 touch_pmd(vma, addr, pmd); 802 803 /* 804 * device mapped pages can only be returned if the 805 * caller will manage the page reference count. 806 */ 807 if (!(flags & FOLL_GET)) 808 return ERR_PTR(-EEXIST); 809 810 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 811 pgmap = get_dev_pagemap(pfn, NULL); 812 if (!pgmap) 813 return ERR_PTR(-EFAULT); 814 page = pfn_to_page(pfn); 815 get_page(page); 816 put_dev_pagemap(pgmap); 817 818 return page; 819 } 820 821 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 822 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 823 struct vm_area_struct *vma) 824 { 825 spinlock_t *dst_ptl, *src_ptl; 826 struct page *src_page; 827 pmd_t pmd; 828 pgtable_t pgtable = NULL; 829 int ret = -ENOMEM; 830 831 /* Skip if can be re-fill on fault */ 832 if (!vma_is_anonymous(vma)) 833 return 0; 834 835 pgtable = pte_alloc_one(dst_mm, addr); 836 if (unlikely(!pgtable)) 837 goto out; 838 839 dst_ptl = pmd_lock(dst_mm, dst_pmd); 840 src_ptl = pmd_lockptr(src_mm, src_pmd); 841 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 842 843 ret = -EAGAIN; 844 pmd = *src_pmd; 845 if (unlikely(!pmd_trans_huge(pmd))) { 846 pte_free(dst_mm, pgtable); 847 goto out_unlock; 848 } 849 /* 850 * When page table lock is held, the huge zero pmd should not be 851 * under splitting since we don't split the page itself, only pmd to 852 * a page table. 853 */ 854 if (is_huge_zero_pmd(pmd)) { 855 struct page *zero_page; 856 /* 857 * get_huge_zero_page() will never allocate a new page here, 858 * since we already have a zero page to copy. It just takes a 859 * reference. 860 */ 861 zero_page = mm_get_huge_zero_page(dst_mm); 862 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 863 zero_page); 864 ret = 0; 865 goto out_unlock; 866 } 867 868 src_page = pmd_page(pmd); 869 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 870 get_page(src_page); 871 page_dup_rmap(src_page, true); 872 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 873 atomic_long_inc(&dst_mm->nr_ptes); 874 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 875 876 pmdp_set_wrprotect(src_mm, addr, src_pmd); 877 pmd = pmd_mkold(pmd_wrprotect(pmd)); 878 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 879 880 ret = 0; 881 out_unlock: 882 spin_unlock(src_ptl); 883 spin_unlock(dst_ptl); 884 out: 885 return ret; 886 } 887 888 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd) 889 { 890 pmd_t entry; 891 unsigned long haddr; 892 bool write = vmf->flags & FAULT_FLAG_WRITE; 893 894 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 895 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 896 goto unlock; 897 898 entry = pmd_mkyoung(orig_pmd); 899 if (write) 900 entry = pmd_mkdirty(entry); 901 haddr = vmf->address & HPAGE_PMD_MASK; 902 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) 903 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); 904 905 unlock: 906 spin_unlock(vmf->ptl); 907 } 908 909 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd, 910 struct page *page) 911 { 912 struct vm_area_struct *vma = vmf->vma; 913 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 914 struct mem_cgroup *memcg; 915 pgtable_t pgtable; 916 pmd_t _pmd; 917 int ret = 0, i; 918 struct page **pages; 919 unsigned long mmun_start; /* For mmu_notifiers */ 920 unsigned long mmun_end; /* For mmu_notifiers */ 921 922 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, 923 GFP_KERNEL); 924 if (unlikely(!pages)) { 925 ret |= VM_FAULT_OOM; 926 goto out; 927 } 928 929 for (i = 0; i < HPAGE_PMD_NR; i++) { 930 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma, 931 vmf->address, page_to_nid(page)); 932 if (unlikely(!pages[i] || 933 mem_cgroup_try_charge(pages[i], vma->vm_mm, 934 GFP_KERNEL, &memcg, false))) { 935 if (pages[i]) 936 put_page(pages[i]); 937 while (--i >= 0) { 938 memcg = (void *)page_private(pages[i]); 939 set_page_private(pages[i], 0); 940 mem_cgroup_cancel_charge(pages[i], memcg, 941 false); 942 put_page(pages[i]); 943 } 944 kfree(pages); 945 ret |= VM_FAULT_OOM; 946 goto out; 947 } 948 set_page_private(pages[i], (unsigned long)memcg); 949 } 950 951 for (i = 0; i < HPAGE_PMD_NR; i++) { 952 copy_user_highpage(pages[i], page + i, 953 haddr + PAGE_SIZE * i, vma); 954 __SetPageUptodate(pages[i]); 955 cond_resched(); 956 } 957 958 mmun_start = haddr; 959 mmun_end = haddr + HPAGE_PMD_SIZE; 960 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 961 962 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 963 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 964 goto out_free_pages; 965 VM_BUG_ON_PAGE(!PageHead(page), page); 966 967 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 968 /* leave pmd empty until pte is filled */ 969 970 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd); 971 pmd_populate(vma->vm_mm, &_pmd, pgtable); 972 973 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 974 pte_t entry; 975 entry = mk_pte(pages[i], vma->vm_page_prot); 976 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 977 memcg = (void *)page_private(pages[i]); 978 set_page_private(pages[i], 0); 979 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false); 980 mem_cgroup_commit_charge(pages[i], memcg, false, false); 981 lru_cache_add_active_or_unevictable(pages[i], vma); 982 vmf->pte = pte_offset_map(&_pmd, haddr); 983 VM_BUG_ON(!pte_none(*vmf->pte)); 984 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry); 985 pte_unmap(vmf->pte); 986 } 987 kfree(pages); 988 989 smp_wmb(); /* make pte visible before pmd */ 990 pmd_populate(vma->vm_mm, vmf->pmd, pgtable); 991 page_remove_rmap(page, true); 992 spin_unlock(vmf->ptl); 993 994 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 995 996 ret |= VM_FAULT_WRITE; 997 put_page(page); 998 999 out: 1000 return ret; 1001 1002 out_free_pages: 1003 spin_unlock(vmf->ptl); 1004 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1005 for (i = 0; i < HPAGE_PMD_NR; i++) { 1006 memcg = (void *)page_private(pages[i]); 1007 set_page_private(pages[i], 0); 1008 mem_cgroup_cancel_charge(pages[i], memcg, false); 1009 put_page(pages[i]); 1010 } 1011 kfree(pages); 1012 goto out; 1013 } 1014 1015 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd) 1016 { 1017 struct vm_area_struct *vma = vmf->vma; 1018 struct page *page = NULL, *new_page; 1019 struct mem_cgroup *memcg; 1020 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1021 unsigned long mmun_start; /* For mmu_notifiers */ 1022 unsigned long mmun_end; /* For mmu_notifiers */ 1023 gfp_t huge_gfp; /* for allocation and charge */ 1024 int ret = 0; 1025 1026 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1027 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1028 if (is_huge_zero_pmd(orig_pmd)) 1029 goto alloc; 1030 spin_lock(vmf->ptl); 1031 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1032 goto out_unlock; 1033 1034 page = pmd_page(orig_pmd); 1035 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 1036 /* 1037 * We can only reuse the page if nobody else maps the huge page or it's 1038 * part. 1039 */ 1040 if (page_trans_huge_mapcount(page, NULL) == 1) { 1041 pmd_t entry; 1042 entry = pmd_mkyoung(orig_pmd); 1043 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1044 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1045 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1046 ret |= VM_FAULT_WRITE; 1047 goto out_unlock; 1048 } 1049 get_page(page); 1050 spin_unlock(vmf->ptl); 1051 alloc: 1052 if (transparent_hugepage_enabled(vma) && 1053 !transparent_hugepage_debug_cow()) { 1054 huge_gfp = alloc_hugepage_direct_gfpmask(vma); 1055 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER); 1056 } else 1057 new_page = NULL; 1058 1059 if (likely(new_page)) { 1060 prep_transhuge_page(new_page); 1061 } else { 1062 if (!page) { 1063 split_huge_pmd(vma, vmf->pmd, vmf->address); 1064 ret |= VM_FAULT_FALLBACK; 1065 } else { 1066 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page); 1067 if (ret & VM_FAULT_OOM) { 1068 split_huge_pmd(vma, vmf->pmd, vmf->address); 1069 ret |= VM_FAULT_FALLBACK; 1070 } 1071 put_page(page); 1072 } 1073 count_vm_event(THP_FAULT_FALLBACK); 1074 goto out; 1075 } 1076 1077 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm, 1078 huge_gfp, &memcg, true))) { 1079 put_page(new_page); 1080 split_huge_pmd(vma, vmf->pmd, vmf->address); 1081 if (page) 1082 put_page(page); 1083 ret |= VM_FAULT_FALLBACK; 1084 count_vm_event(THP_FAULT_FALLBACK); 1085 goto out; 1086 } 1087 1088 count_vm_event(THP_FAULT_ALLOC); 1089 1090 if (!page) 1091 clear_huge_page(new_page, haddr, HPAGE_PMD_NR); 1092 else 1093 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); 1094 __SetPageUptodate(new_page); 1095 1096 mmun_start = haddr; 1097 mmun_end = haddr + HPAGE_PMD_SIZE; 1098 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 1099 1100 spin_lock(vmf->ptl); 1101 if (page) 1102 put_page(page); 1103 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1104 spin_unlock(vmf->ptl); 1105 mem_cgroup_cancel_charge(new_page, memcg, true); 1106 put_page(new_page); 1107 goto out_mn; 1108 } else { 1109 pmd_t entry; 1110 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1111 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1112 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 1113 page_add_new_anon_rmap(new_page, vma, haddr, true); 1114 mem_cgroup_commit_charge(new_page, memcg, false, true); 1115 lru_cache_add_active_or_unevictable(new_page, vma); 1116 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 1117 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1118 if (!page) { 1119 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1120 } else { 1121 VM_BUG_ON_PAGE(!PageHead(page), page); 1122 page_remove_rmap(page, true); 1123 put_page(page); 1124 } 1125 ret |= VM_FAULT_WRITE; 1126 } 1127 spin_unlock(vmf->ptl); 1128 out_mn: 1129 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1130 out: 1131 return ret; 1132 out_unlock: 1133 spin_unlock(vmf->ptl); 1134 return ret; 1135 } 1136 1137 /* 1138 * FOLL_FORCE can write to even unwritable pmd's, but only 1139 * after we've gone through a COW cycle and they are dirty. 1140 */ 1141 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) 1142 { 1143 return pmd_write(pmd) || 1144 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); 1145 } 1146 1147 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1148 unsigned long addr, 1149 pmd_t *pmd, 1150 unsigned int flags) 1151 { 1152 struct mm_struct *mm = vma->vm_mm; 1153 struct page *page = NULL; 1154 1155 assert_spin_locked(pmd_lockptr(mm, pmd)); 1156 1157 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) 1158 goto out; 1159 1160 /* Avoid dumping huge zero page */ 1161 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1162 return ERR_PTR(-EFAULT); 1163 1164 /* Full NUMA hinting faults to serialise migration in fault paths */ 1165 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1166 goto out; 1167 1168 page = pmd_page(*pmd); 1169 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1170 if (flags & FOLL_TOUCH) 1171 touch_pmd(vma, addr, pmd); 1172 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1173 /* 1174 * We don't mlock() pte-mapped THPs. This way we can avoid 1175 * leaking mlocked pages into non-VM_LOCKED VMAs. 1176 * 1177 * For anon THP: 1178 * 1179 * In most cases the pmd is the only mapping of the page as we 1180 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1181 * writable private mappings in populate_vma_page_range(). 1182 * 1183 * The only scenario when we have the page shared here is if we 1184 * mlocking read-only mapping shared over fork(). We skip 1185 * mlocking such pages. 1186 * 1187 * For file THP: 1188 * 1189 * We can expect PageDoubleMap() to be stable under page lock: 1190 * for file pages we set it in page_add_file_rmap(), which 1191 * requires page to be locked. 1192 */ 1193 1194 if (PageAnon(page) && compound_mapcount(page) != 1) 1195 goto skip_mlock; 1196 if (PageDoubleMap(page) || !page->mapping) 1197 goto skip_mlock; 1198 if (!trylock_page(page)) 1199 goto skip_mlock; 1200 lru_add_drain(); 1201 if (page->mapping && !PageDoubleMap(page)) 1202 mlock_vma_page(page); 1203 unlock_page(page); 1204 } 1205 skip_mlock: 1206 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1207 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1208 if (flags & FOLL_GET) 1209 get_page(page); 1210 1211 out: 1212 return page; 1213 } 1214 1215 /* NUMA hinting page fault entry point for trans huge pmds */ 1216 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd) 1217 { 1218 struct vm_area_struct *vma = vmf->vma; 1219 struct anon_vma *anon_vma = NULL; 1220 struct page *page; 1221 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1222 int page_nid = -1, this_nid = numa_node_id(); 1223 int target_nid, last_cpupid = -1; 1224 bool page_locked; 1225 bool migrated = false; 1226 bool was_writable; 1227 int flags = 0; 1228 1229 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1230 if (unlikely(!pmd_same(pmd, *vmf->pmd))) 1231 goto out_unlock; 1232 1233 /* 1234 * If there are potential migrations, wait for completion and retry 1235 * without disrupting NUMA hinting information. Do not relock and 1236 * check_same as the page may no longer be mapped. 1237 */ 1238 if (unlikely(pmd_trans_migrating(*vmf->pmd))) { 1239 page = pmd_page(*vmf->pmd); 1240 spin_unlock(vmf->ptl); 1241 wait_on_page_locked(page); 1242 goto out; 1243 } 1244 1245 page = pmd_page(pmd); 1246 BUG_ON(is_huge_zero_page(page)); 1247 page_nid = page_to_nid(page); 1248 last_cpupid = page_cpupid_last(page); 1249 count_vm_numa_event(NUMA_HINT_FAULTS); 1250 if (page_nid == this_nid) { 1251 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1252 flags |= TNF_FAULT_LOCAL; 1253 } 1254 1255 /* See similar comment in do_numa_page for explanation */ 1256 if (!pmd_write(pmd)) 1257 flags |= TNF_NO_GROUP; 1258 1259 /* 1260 * Acquire the page lock to serialise THP migrations but avoid dropping 1261 * page_table_lock if at all possible 1262 */ 1263 page_locked = trylock_page(page); 1264 target_nid = mpol_misplaced(page, vma, haddr); 1265 if (target_nid == -1) { 1266 /* If the page was locked, there are no parallel migrations */ 1267 if (page_locked) 1268 goto clear_pmdnuma; 1269 } 1270 1271 /* Migration could have started since the pmd_trans_migrating check */ 1272 if (!page_locked) { 1273 spin_unlock(vmf->ptl); 1274 wait_on_page_locked(page); 1275 page_nid = -1; 1276 goto out; 1277 } 1278 1279 /* 1280 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1281 * to serialises splits 1282 */ 1283 get_page(page); 1284 spin_unlock(vmf->ptl); 1285 anon_vma = page_lock_anon_vma_read(page); 1286 1287 /* Confirm the PMD did not change while page_table_lock was released */ 1288 spin_lock(vmf->ptl); 1289 if (unlikely(!pmd_same(pmd, *vmf->pmd))) { 1290 unlock_page(page); 1291 put_page(page); 1292 page_nid = -1; 1293 goto out_unlock; 1294 } 1295 1296 /* Bail if we fail to protect against THP splits for any reason */ 1297 if (unlikely(!anon_vma)) { 1298 put_page(page); 1299 page_nid = -1; 1300 goto clear_pmdnuma; 1301 } 1302 1303 /* 1304 * Migrate the THP to the requested node, returns with page unlocked 1305 * and access rights restored. 1306 */ 1307 spin_unlock(vmf->ptl); 1308 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, 1309 vmf->pmd, pmd, vmf->address, page, target_nid); 1310 if (migrated) { 1311 flags |= TNF_MIGRATED; 1312 page_nid = target_nid; 1313 } else 1314 flags |= TNF_MIGRATE_FAIL; 1315 1316 goto out; 1317 clear_pmdnuma: 1318 BUG_ON(!PageLocked(page)); 1319 was_writable = pmd_write(pmd); 1320 pmd = pmd_modify(pmd, vma->vm_page_prot); 1321 pmd = pmd_mkyoung(pmd); 1322 if (was_writable) 1323 pmd = pmd_mkwrite(pmd); 1324 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1325 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1326 unlock_page(page); 1327 out_unlock: 1328 spin_unlock(vmf->ptl); 1329 1330 out: 1331 if (anon_vma) 1332 page_unlock_anon_vma_read(anon_vma); 1333 1334 if (page_nid != -1) 1335 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1336 vmf->flags); 1337 1338 return 0; 1339 } 1340 1341 /* 1342 * Return true if we do MADV_FREE successfully on entire pmd page. 1343 * Otherwise, return false. 1344 */ 1345 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1346 pmd_t *pmd, unsigned long addr, unsigned long next) 1347 { 1348 spinlock_t *ptl; 1349 pmd_t orig_pmd; 1350 struct page *page; 1351 struct mm_struct *mm = tlb->mm; 1352 bool ret = false; 1353 1354 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); 1355 1356 ptl = pmd_trans_huge_lock(pmd, vma); 1357 if (!ptl) 1358 goto out_unlocked; 1359 1360 orig_pmd = *pmd; 1361 if (is_huge_zero_pmd(orig_pmd)) 1362 goto out; 1363 1364 page = pmd_page(orig_pmd); 1365 /* 1366 * If other processes are mapping this page, we couldn't discard 1367 * the page unless they all do MADV_FREE so let's skip the page. 1368 */ 1369 if (page_mapcount(page) != 1) 1370 goto out; 1371 1372 if (!trylock_page(page)) 1373 goto out; 1374 1375 /* 1376 * If user want to discard part-pages of THP, split it so MADV_FREE 1377 * will deactivate only them. 1378 */ 1379 if (next - addr != HPAGE_PMD_SIZE) { 1380 get_page(page); 1381 spin_unlock(ptl); 1382 split_huge_page(page); 1383 put_page(page); 1384 unlock_page(page); 1385 goto out_unlocked; 1386 } 1387 1388 if (PageDirty(page)) 1389 ClearPageDirty(page); 1390 unlock_page(page); 1391 1392 if (PageActive(page)) 1393 deactivate_page(page); 1394 1395 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1396 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1397 tlb->fullmm); 1398 orig_pmd = pmd_mkold(orig_pmd); 1399 orig_pmd = pmd_mkclean(orig_pmd); 1400 1401 set_pmd_at(mm, addr, pmd, orig_pmd); 1402 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1403 } 1404 ret = true; 1405 out: 1406 spin_unlock(ptl); 1407 out_unlocked: 1408 return ret; 1409 } 1410 1411 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1412 { 1413 pgtable_t pgtable; 1414 1415 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1416 pte_free(mm, pgtable); 1417 atomic_long_dec(&mm->nr_ptes); 1418 } 1419 1420 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1421 pmd_t *pmd, unsigned long addr) 1422 { 1423 pmd_t orig_pmd; 1424 spinlock_t *ptl; 1425 1426 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); 1427 1428 ptl = __pmd_trans_huge_lock(pmd, vma); 1429 if (!ptl) 1430 return 0; 1431 /* 1432 * For architectures like ppc64 we look at deposited pgtable 1433 * when calling pmdp_huge_get_and_clear. So do the 1434 * pgtable_trans_huge_withdraw after finishing pmdp related 1435 * operations. 1436 */ 1437 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1438 tlb->fullmm); 1439 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1440 if (vma_is_dax(vma)) { 1441 spin_unlock(ptl); 1442 if (is_huge_zero_pmd(orig_pmd)) 1443 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1444 } else if (is_huge_zero_pmd(orig_pmd)) { 1445 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd)); 1446 atomic_long_dec(&tlb->mm->nr_ptes); 1447 spin_unlock(ptl); 1448 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1449 } else { 1450 struct page *page = pmd_page(orig_pmd); 1451 page_remove_rmap(page, true); 1452 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1453 VM_BUG_ON_PAGE(!PageHead(page), page); 1454 if (PageAnon(page)) { 1455 pgtable_t pgtable; 1456 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd); 1457 pte_free(tlb->mm, pgtable); 1458 atomic_long_dec(&tlb->mm->nr_ptes); 1459 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1460 } else { 1461 if (arch_needs_pgtable_deposit()) 1462 zap_deposited_table(tlb->mm, pmd); 1463 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1464 } 1465 spin_unlock(ptl); 1466 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1467 } 1468 return 1; 1469 } 1470 1471 #ifndef pmd_move_must_withdraw 1472 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1473 spinlock_t *old_pmd_ptl, 1474 struct vm_area_struct *vma) 1475 { 1476 /* 1477 * With split pmd lock we also need to move preallocated 1478 * PTE page table if new_pmd is on different PMD page table. 1479 * 1480 * We also don't deposit and withdraw tables for file pages. 1481 */ 1482 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1483 } 1484 #endif 1485 1486 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1487 unsigned long new_addr, unsigned long old_end, 1488 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush) 1489 { 1490 spinlock_t *old_ptl, *new_ptl; 1491 pmd_t pmd; 1492 struct mm_struct *mm = vma->vm_mm; 1493 bool force_flush = false; 1494 1495 if ((old_addr & ~HPAGE_PMD_MASK) || 1496 (new_addr & ~HPAGE_PMD_MASK) || 1497 old_end - old_addr < HPAGE_PMD_SIZE) 1498 return false; 1499 1500 /* 1501 * The destination pmd shouldn't be established, free_pgtables() 1502 * should have release it. 1503 */ 1504 if (WARN_ON(!pmd_none(*new_pmd))) { 1505 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1506 return false; 1507 } 1508 1509 /* 1510 * We don't have to worry about the ordering of src and dst 1511 * ptlocks because exclusive mmap_sem prevents deadlock. 1512 */ 1513 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1514 if (old_ptl) { 1515 new_ptl = pmd_lockptr(mm, new_pmd); 1516 if (new_ptl != old_ptl) 1517 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1518 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1519 if (pmd_present(pmd) && pmd_dirty(pmd)) 1520 force_flush = true; 1521 VM_BUG_ON(!pmd_none(*new_pmd)); 1522 1523 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1524 pgtable_t pgtable; 1525 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1526 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1527 } 1528 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); 1529 if (new_ptl != old_ptl) 1530 spin_unlock(new_ptl); 1531 if (force_flush) 1532 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1533 else 1534 *need_flush = true; 1535 spin_unlock(old_ptl); 1536 return true; 1537 } 1538 return false; 1539 } 1540 1541 /* 1542 * Returns 1543 * - 0 if PMD could not be locked 1544 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1545 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1546 */ 1547 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1548 unsigned long addr, pgprot_t newprot, int prot_numa) 1549 { 1550 struct mm_struct *mm = vma->vm_mm; 1551 spinlock_t *ptl; 1552 int ret = 0; 1553 1554 ptl = __pmd_trans_huge_lock(pmd, vma); 1555 if (ptl) { 1556 pmd_t entry; 1557 bool preserve_write = prot_numa && pmd_write(*pmd); 1558 ret = 1; 1559 1560 /* 1561 * Avoid trapping faults against the zero page. The read-only 1562 * data is likely to be read-cached on the local CPU and 1563 * local/remote hits to the zero page are not interesting. 1564 */ 1565 if (prot_numa && is_huge_zero_pmd(*pmd)) { 1566 spin_unlock(ptl); 1567 return ret; 1568 } 1569 1570 if (!prot_numa || !pmd_protnone(*pmd)) { 1571 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd); 1572 entry = pmd_modify(entry, newprot); 1573 if (preserve_write) 1574 entry = pmd_mkwrite(entry); 1575 ret = HPAGE_PMD_NR; 1576 set_pmd_at(mm, addr, pmd, entry); 1577 BUG_ON(vma_is_anonymous(vma) && !preserve_write && 1578 pmd_write(entry)); 1579 } 1580 spin_unlock(ptl); 1581 } 1582 1583 return ret; 1584 } 1585 1586 /* 1587 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1588 * 1589 * Note that if it returns page table lock pointer, this routine returns without 1590 * unlocking page table lock. So callers must unlock it. 1591 */ 1592 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1593 { 1594 spinlock_t *ptl; 1595 ptl = pmd_lock(vma->vm_mm, pmd); 1596 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd))) 1597 return ptl; 1598 spin_unlock(ptl); 1599 return NULL; 1600 } 1601 1602 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1603 unsigned long haddr, pmd_t *pmd) 1604 { 1605 struct mm_struct *mm = vma->vm_mm; 1606 pgtable_t pgtable; 1607 pmd_t _pmd; 1608 int i; 1609 1610 /* leave pmd empty until pte is filled */ 1611 pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1612 1613 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1614 pmd_populate(mm, &_pmd, pgtable); 1615 1616 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1617 pte_t *pte, entry; 1618 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 1619 entry = pte_mkspecial(entry); 1620 pte = pte_offset_map(&_pmd, haddr); 1621 VM_BUG_ON(!pte_none(*pte)); 1622 set_pte_at(mm, haddr, pte, entry); 1623 pte_unmap(pte); 1624 } 1625 smp_wmb(); /* make pte visible before pmd */ 1626 pmd_populate(mm, pmd, pgtable); 1627 } 1628 1629 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 1630 unsigned long haddr, bool freeze) 1631 { 1632 struct mm_struct *mm = vma->vm_mm; 1633 struct page *page; 1634 pgtable_t pgtable; 1635 pmd_t _pmd; 1636 bool young, write, dirty, soft_dirty; 1637 unsigned long addr; 1638 int i; 1639 1640 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 1641 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1642 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 1643 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)); 1644 1645 count_vm_event(THP_SPLIT_PMD); 1646 1647 if (!vma_is_anonymous(vma)) { 1648 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1649 /* 1650 * We are going to unmap this huge page. So 1651 * just go ahead and zap it 1652 */ 1653 if (arch_needs_pgtable_deposit()) 1654 zap_deposited_table(mm, pmd); 1655 if (vma_is_dax(vma)) 1656 return; 1657 page = pmd_page(_pmd); 1658 if (!PageReferenced(page) && pmd_young(_pmd)) 1659 SetPageReferenced(page); 1660 page_remove_rmap(page, true); 1661 put_page(page); 1662 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1663 return; 1664 } else if (is_huge_zero_pmd(*pmd)) { 1665 return __split_huge_zero_page_pmd(vma, haddr, pmd); 1666 } 1667 1668 page = pmd_page(*pmd); 1669 VM_BUG_ON_PAGE(!page_count(page), page); 1670 page_ref_add(page, HPAGE_PMD_NR - 1); 1671 write = pmd_write(*pmd); 1672 young = pmd_young(*pmd); 1673 dirty = pmd_dirty(*pmd); 1674 soft_dirty = pmd_soft_dirty(*pmd); 1675 1676 pmdp_huge_split_prepare(vma, haddr, pmd); 1677 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1678 pmd_populate(mm, &_pmd, pgtable); 1679 1680 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 1681 pte_t entry, *pte; 1682 /* 1683 * Note that NUMA hinting access restrictions are not 1684 * transferred to avoid any possibility of altering 1685 * permissions across VMAs. 1686 */ 1687 if (freeze) { 1688 swp_entry_t swp_entry; 1689 swp_entry = make_migration_entry(page + i, write); 1690 entry = swp_entry_to_pte(swp_entry); 1691 if (soft_dirty) 1692 entry = pte_swp_mksoft_dirty(entry); 1693 } else { 1694 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 1695 entry = maybe_mkwrite(entry, vma); 1696 if (!write) 1697 entry = pte_wrprotect(entry); 1698 if (!young) 1699 entry = pte_mkold(entry); 1700 if (soft_dirty) 1701 entry = pte_mksoft_dirty(entry); 1702 } 1703 if (dirty) 1704 SetPageDirty(page + i); 1705 pte = pte_offset_map(&_pmd, addr); 1706 BUG_ON(!pte_none(*pte)); 1707 set_pte_at(mm, addr, pte, entry); 1708 atomic_inc(&page[i]._mapcount); 1709 pte_unmap(pte); 1710 } 1711 1712 /* 1713 * Set PG_double_map before dropping compound_mapcount to avoid 1714 * false-negative page_mapped(). 1715 */ 1716 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) { 1717 for (i = 0; i < HPAGE_PMD_NR; i++) 1718 atomic_inc(&page[i]._mapcount); 1719 } 1720 1721 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 1722 /* Last compound_mapcount is gone. */ 1723 __dec_node_page_state(page, NR_ANON_THPS); 1724 if (TestClearPageDoubleMap(page)) { 1725 /* No need in mapcount reference anymore */ 1726 for (i = 0; i < HPAGE_PMD_NR; i++) 1727 atomic_dec(&page[i]._mapcount); 1728 } 1729 } 1730 1731 smp_wmb(); /* make pte visible before pmd */ 1732 /* 1733 * Up to this point the pmd is present and huge and userland has the 1734 * whole access to the hugepage during the split (which happens in 1735 * place). If we overwrite the pmd with the not-huge version pointing 1736 * to the pte here (which of course we could if all CPUs were bug 1737 * free), userland could trigger a small page size TLB miss on the 1738 * small sized TLB while the hugepage TLB entry is still established in 1739 * the huge TLB. Some CPU doesn't like that. 1740 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum 1741 * 383 on page 93. Intel should be safe but is also warns that it's 1742 * only safe if the permission and cache attributes of the two entries 1743 * loaded in the two TLB is identical (which should be the case here). 1744 * But it is generally safer to never allow small and huge TLB entries 1745 * for the same virtual address to be loaded simultaneously. So instead 1746 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 1747 * current pmd notpresent (atomically because here the pmd_trans_huge 1748 * and pmd_trans_splitting must remain set at all times on the pmd 1749 * until the split is complete for this pmd), then we flush the SMP TLB 1750 * and finally we write the non-huge version of the pmd entry with 1751 * pmd_populate. 1752 */ 1753 pmdp_invalidate(vma, haddr, pmd); 1754 pmd_populate(mm, pmd, pgtable); 1755 1756 if (freeze) { 1757 for (i = 0; i < HPAGE_PMD_NR; i++) { 1758 page_remove_rmap(page + i, false); 1759 put_page(page + i); 1760 } 1761 } 1762 } 1763 1764 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1765 unsigned long address, bool freeze, struct page *page) 1766 { 1767 spinlock_t *ptl; 1768 struct mm_struct *mm = vma->vm_mm; 1769 unsigned long haddr = address & HPAGE_PMD_MASK; 1770 1771 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE); 1772 ptl = pmd_lock(mm, pmd); 1773 1774 /* 1775 * If caller asks to setup a migration entries, we need a page to check 1776 * pmd against. Otherwise we can end up replacing wrong page. 1777 */ 1778 VM_BUG_ON(freeze && !page); 1779 if (page && page != pmd_page(*pmd)) 1780 goto out; 1781 1782 if (pmd_trans_huge(*pmd)) { 1783 page = pmd_page(*pmd); 1784 if (PageMlocked(page)) 1785 clear_page_mlock(page); 1786 } else if (!pmd_devmap(*pmd)) 1787 goto out; 1788 __split_huge_pmd_locked(vma, pmd, haddr, freeze); 1789 out: 1790 spin_unlock(ptl); 1791 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE); 1792 } 1793 1794 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 1795 bool freeze, struct page *page) 1796 { 1797 pgd_t *pgd; 1798 pud_t *pud; 1799 pmd_t *pmd; 1800 1801 pgd = pgd_offset(vma->vm_mm, address); 1802 if (!pgd_present(*pgd)) 1803 return; 1804 1805 pud = pud_offset(pgd, address); 1806 if (!pud_present(*pud)) 1807 return; 1808 1809 pmd = pmd_offset(pud, address); 1810 1811 __split_huge_pmd(vma, pmd, address, freeze, page); 1812 } 1813 1814 void vma_adjust_trans_huge(struct vm_area_struct *vma, 1815 unsigned long start, 1816 unsigned long end, 1817 long adjust_next) 1818 { 1819 /* 1820 * If the new start address isn't hpage aligned and it could 1821 * previously contain an hugepage: check if we need to split 1822 * an huge pmd. 1823 */ 1824 if (start & ~HPAGE_PMD_MASK && 1825 (start & HPAGE_PMD_MASK) >= vma->vm_start && 1826 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 1827 split_huge_pmd_address(vma, start, false, NULL); 1828 1829 /* 1830 * If the new end address isn't hpage aligned and it could 1831 * previously contain an hugepage: check if we need to split 1832 * an huge pmd. 1833 */ 1834 if (end & ~HPAGE_PMD_MASK && 1835 (end & HPAGE_PMD_MASK) >= vma->vm_start && 1836 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 1837 split_huge_pmd_address(vma, end, false, NULL); 1838 1839 /* 1840 * If we're also updating the vma->vm_next->vm_start, if the new 1841 * vm_next->vm_start isn't page aligned and it could previously 1842 * contain an hugepage: check if we need to split an huge pmd. 1843 */ 1844 if (adjust_next > 0) { 1845 struct vm_area_struct *next = vma->vm_next; 1846 unsigned long nstart = next->vm_start; 1847 nstart += adjust_next << PAGE_SHIFT; 1848 if (nstart & ~HPAGE_PMD_MASK && 1849 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 1850 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 1851 split_huge_pmd_address(next, nstart, false, NULL); 1852 } 1853 } 1854 1855 static void freeze_page(struct page *page) 1856 { 1857 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | 1858 TTU_RMAP_LOCKED; 1859 int i, ret; 1860 1861 VM_BUG_ON_PAGE(!PageHead(page), page); 1862 1863 if (PageAnon(page)) 1864 ttu_flags |= TTU_MIGRATION; 1865 1866 /* We only need TTU_SPLIT_HUGE_PMD once */ 1867 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD); 1868 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) { 1869 /* Cut short if the page is unmapped */ 1870 if (page_count(page) == 1) 1871 return; 1872 1873 ret = try_to_unmap(page + i, ttu_flags); 1874 } 1875 VM_BUG_ON_PAGE(ret, page + i - 1); 1876 } 1877 1878 static void unfreeze_page(struct page *page) 1879 { 1880 int i; 1881 1882 for (i = 0; i < HPAGE_PMD_NR; i++) 1883 remove_migration_ptes(page + i, page + i, true); 1884 } 1885 1886 static void __split_huge_page_tail(struct page *head, int tail, 1887 struct lruvec *lruvec, struct list_head *list) 1888 { 1889 struct page *page_tail = head + tail; 1890 1891 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 1892 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail); 1893 1894 /* 1895 * tail_page->_refcount is zero and not changing from under us. But 1896 * get_page_unless_zero() may be running from under us on the 1897 * tail_page. If we used atomic_set() below instead of atomic_inc() or 1898 * atomic_add(), we would then run atomic_set() concurrently with 1899 * get_page_unless_zero(), and atomic_set() is implemented in C not 1900 * using locked ops. spin_unlock on x86 sometime uses locked ops 1901 * because of PPro errata 66, 92, so unless somebody can guarantee 1902 * atomic_set() here would be safe on all archs (and not only on x86), 1903 * it's safer to use atomic_inc()/atomic_add(). 1904 */ 1905 if (PageAnon(head)) { 1906 page_ref_inc(page_tail); 1907 } else { 1908 /* Additional pin to radix tree */ 1909 page_ref_add(page_tail, 2); 1910 } 1911 1912 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1913 page_tail->flags |= (head->flags & 1914 ((1L << PG_referenced) | 1915 (1L << PG_swapbacked) | 1916 (1L << PG_mlocked) | 1917 (1L << PG_uptodate) | 1918 (1L << PG_active) | 1919 (1L << PG_locked) | 1920 (1L << PG_unevictable) | 1921 (1L << PG_dirty))); 1922 1923 /* 1924 * After clearing PageTail the gup refcount can be released. 1925 * Page flags also must be visible before we make the page non-compound. 1926 */ 1927 smp_wmb(); 1928 1929 clear_compound_head(page_tail); 1930 1931 if (page_is_young(head)) 1932 set_page_young(page_tail); 1933 if (page_is_idle(head)) 1934 set_page_idle(page_tail); 1935 1936 /* ->mapping in first tail page is compound_mapcount */ 1937 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 1938 page_tail); 1939 page_tail->mapping = head->mapping; 1940 1941 page_tail->index = head->index + tail; 1942 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 1943 lru_add_page_tail(head, page_tail, lruvec, list); 1944 } 1945 1946 static void __split_huge_page(struct page *page, struct list_head *list, 1947 unsigned long flags) 1948 { 1949 struct page *head = compound_head(page); 1950 struct zone *zone = page_zone(head); 1951 struct lruvec *lruvec; 1952 pgoff_t end = -1; 1953 int i; 1954 1955 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat); 1956 1957 /* complete memcg works before add pages to LRU */ 1958 mem_cgroup_split_huge_fixup(head); 1959 1960 if (!PageAnon(page)) 1961 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE); 1962 1963 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 1964 __split_huge_page_tail(head, i, lruvec, list); 1965 /* Some pages can be beyond i_size: drop them from page cache */ 1966 if (head[i].index >= end) { 1967 __ClearPageDirty(head + i); 1968 __delete_from_page_cache(head + i, NULL); 1969 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) 1970 shmem_uncharge(head->mapping->host, 1); 1971 put_page(head + i); 1972 } 1973 } 1974 1975 ClearPageCompound(head); 1976 /* See comment in __split_huge_page_tail() */ 1977 if (PageAnon(head)) { 1978 page_ref_inc(head); 1979 } else { 1980 /* Additional pin to radix tree */ 1981 page_ref_add(head, 2); 1982 spin_unlock(&head->mapping->tree_lock); 1983 } 1984 1985 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 1986 1987 unfreeze_page(head); 1988 1989 for (i = 0; i < HPAGE_PMD_NR; i++) { 1990 struct page *subpage = head + i; 1991 if (subpage == page) 1992 continue; 1993 unlock_page(subpage); 1994 1995 /* 1996 * Subpages may be freed if there wasn't any mapping 1997 * like if add_to_swap() is running on a lru page that 1998 * had its mapping zapped. And freeing these pages 1999 * requires taking the lru_lock so we do the put_page 2000 * of the tail pages after the split is complete. 2001 */ 2002 put_page(subpage); 2003 } 2004 } 2005 2006 int total_mapcount(struct page *page) 2007 { 2008 int i, compound, ret; 2009 2010 VM_BUG_ON_PAGE(PageTail(page), page); 2011 2012 if (likely(!PageCompound(page))) 2013 return atomic_read(&page->_mapcount) + 1; 2014 2015 compound = compound_mapcount(page); 2016 if (PageHuge(page)) 2017 return compound; 2018 ret = compound; 2019 for (i = 0; i < HPAGE_PMD_NR; i++) 2020 ret += atomic_read(&page[i]._mapcount) + 1; 2021 /* File pages has compound_mapcount included in _mapcount */ 2022 if (!PageAnon(page)) 2023 return ret - compound * HPAGE_PMD_NR; 2024 if (PageDoubleMap(page)) 2025 ret -= HPAGE_PMD_NR; 2026 return ret; 2027 } 2028 2029 /* 2030 * This calculates accurately how many mappings a transparent hugepage 2031 * has (unlike page_mapcount() which isn't fully accurate). This full 2032 * accuracy is primarily needed to know if copy-on-write faults can 2033 * reuse the page and change the mapping to read-write instead of 2034 * copying them. At the same time this returns the total_mapcount too. 2035 * 2036 * The function returns the highest mapcount any one of the subpages 2037 * has. If the return value is one, even if different processes are 2038 * mapping different subpages of the transparent hugepage, they can 2039 * all reuse it, because each process is reusing a different subpage. 2040 * 2041 * The total_mapcount is instead counting all virtual mappings of the 2042 * subpages. If the total_mapcount is equal to "one", it tells the 2043 * caller all mappings belong to the same "mm" and in turn the 2044 * anon_vma of the transparent hugepage can become the vma->anon_vma 2045 * local one as no other process may be mapping any of the subpages. 2046 * 2047 * It would be more accurate to replace page_mapcount() with 2048 * page_trans_huge_mapcount(), however we only use 2049 * page_trans_huge_mapcount() in the copy-on-write faults where we 2050 * need full accuracy to avoid breaking page pinning, because 2051 * page_trans_huge_mapcount() is slower than page_mapcount(). 2052 */ 2053 int page_trans_huge_mapcount(struct page *page, int *total_mapcount) 2054 { 2055 int i, ret, _total_mapcount, mapcount; 2056 2057 /* hugetlbfs shouldn't call it */ 2058 VM_BUG_ON_PAGE(PageHuge(page), page); 2059 2060 if (likely(!PageTransCompound(page))) { 2061 mapcount = atomic_read(&page->_mapcount) + 1; 2062 if (total_mapcount) 2063 *total_mapcount = mapcount; 2064 return mapcount; 2065 } 2066 2067 page = compound_head(page); 2068 2069 _total_mapcount = ret = 0; 2070 for (i = 0; i < HPAGE_PMD_NR; i++) { 2071 mapcount = atomic_read(&page[i]._mapcount) + 1; 2072 ret = max(ret, mapcount); 2073 _total_mapcount += mapcount; 2074 } 2075 if (PageDoubleMap(page)) { 2076 ret -= 1; 2077 _total_mapcount -= HPAGE_PMD_NR; 2078 } 2079 mapcount = compound_mapcount(page); 2080 ret += mapcount; 2081 _total_mapcount += mapcount; 2082 if (total_mapcount) 2083 *total_mapcount = _total_mapcount; 2084 return ret; 2085 } 2086 2087 /* 2088 * This function splits huge page into normal pages. @page can point to any 2089 * subpage of huge page to split. Split doesn't change the position of @page. 2090 * 2091 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2092 * The huge page must be locked. 2093 * 2094 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2095 * 2096 * Both head page and tail pages will inherit mapping, flags, and so on from 2097 * the hugepage. 2098 * 2099 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2100 * they are not mapped. 2101 * 2102 * Returns 0 if the hugepage is split successfully. 2103 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2104 * us. 2105 */ 2106 int split_huge_page_to_list(struct page *page, struct list_head *list) 2107 { 2108 struct page *head = compound_head(page); 2109 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); 2110 struct anon_vma *anon_vma = NULL; 2111 struct address_space *mapping = NULL; 2112 int count, mapcount, extra_pins, ret; 2113 bool mlocked; 2114 unsigned long flags; 2115 2116 VM_BUG_ON_PAGE(is_huge_zero_page(page), page); 2117 VM_BUG_ON_PAGE(!PageLocked(page), page); 2118 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 2119 VM_BUG_ON_PAGE(!PageCompound(page), page); 2120 2121 if (PageAnon(head)) { 2122 /* 2123 * The caller does not necessarily hold an mmap_sem that would 2124 * prevent the anon_vma disappearing so we first we take a 2125 * reference to it and then lock the anon_vma for write. This 2126 * is similar to page_lock_anon_vma_read except the write lock 2127 * is taken to serialise against parallel split or collapse 2128 * operations. 2129 */ 2130 anon_vma = page_get_anon_vma(head); 2131 if (!anon_vma) { 2132 ret = -EBUSY; 2133 goto out; 2134 } 2135 extra_pins = 0; 2136 mapping = NULL; 2137 anon_vma_lock_write(anon_vma); 2138 } else { 2139 mapping = head->mapping; 2140 2141 /* Truncated ? */ 2142 if (!mapping) { 2143 ret = -EBUSY; 2144 goto out; 2145 } 2146 2147 /* Addidional pins from radix tree */ 2148 extra_pins = HPAGE_PMD_NR; 2149 anon_vma = NULL; 2150 i_mmap_lock_read(mapping); 2151 } 2152 2153 /* 2154 * Racy check if we can split the page, before freeze_page() will 2155 * split PMDs 2156 */ 2157 if (total_mapcount(head) != page_count(head) - extra_pins - 1) { 2158 ret = -EBUSY; 2159 goto out_unlock; 2160 } 2161 2162 mlocked = PageMlocked(page); 2163 freeze_page(head); 2164 VM_BUG_ON_PAGE(compound_mapcount(head), head); 2165 2166 /* Make sure the page is not on per-CPU pagevec as it takes pin */ 2167 if (mlocked) 2168 lru_add_drain(); 2169 2170 /* prevent PageLRU to go away from under us, and freeze lru stats */ 2171 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags); 2172 2173 if (mapping) { 2174 void **pslot; 2175 2176 spin_lock(&mapping->tree_lock); 2177 pslot = radix_tree_lookup_slot(&mapping->page_tree, 2178 page_index(head)); 2179 /* 2180 * Check if the head page is present in radix tree. 2181 * We assume all tail are present too, if head is there. 2182 */ 2183 if (radix_tree_deref_slot_protected(pslot, 2184 &mapping->tree_lock) != head) 2185 goto fail; 2186 } 2187 2188 /* Prevent deferred_split_scan() touching ->_refcount */ 2189 spin_lock(&pgdata->split_queue_lock); 2190 count = page_count(head); 2191 mapcount = total_mapcount(head); 2192 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { 2193 if (!list_empty(page_deferred_list(head))) { 2194 pgdata->split_queue_len--; 2195 list_del(page_deferred_list(head)); 2196 } 2197 if (mapping) 2198 __dec_node_page_state(page, NR_SHMEM_THPS); 2199 spin_unlock(&pgdata->split_queue_lock); 2200 __split_huge_page(page, list, flags); 2201 ret = 0; 2202 } else { 2203 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { 2204 pr_alert("total_mapcount: %u, page_count(): %u\n", 2205 mapcount, count); 2206 if (PageTail(page)) 2207 dump_page(head, NULL); 2208 dump_page(page, "total_mapcount(head) > 0"); 2209 BUG(); 2210 } 2211 spin_unlock(&pgdata->split_queue_lock); 2212 fail: if (mapping) 2213 spin_unlock(&mapping->tree_lock); 2214 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 2215 unfreeze_page(head); 2216 ret = -EBUSY; 2217 } 2218 2219 out_unlock: 2220 if (anon_vma) { 2221 anon_vma_unlock_write(anon_vma); 2222 put_anon_vma(anon_vma); 2223 } 2224 if (mapping) 2225 i_mmap_unlock_read(mapping); 2226 out: 2227 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2228 return ret; 2229 } 2230 2231 void free_transhuge_page(struct page *page) 2232 { 2233 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2234 unsigned long flags; 2235 2236 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2237 if (!list_empty(page_deferred_list(page))) { 2238 pgdata->split_queue_len--; 2239 list_del(page_deferred_list(page)); 2240 } 2241 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2242 free_compound_page(page); 2243 } 2244 2245 void deferred_split_huge_page(struct page *page) 2246 { 2247 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2248 unsigned long flags; 2249 2250 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2251 2252 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2253 if (list_empty(page_deferred_list(page))) { 2254 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2255 list_add_tail(page_deferred_list(page), &pgdata->split_queue); 2256 pgdata->split_queue_len++; 2257 } 2258 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2259 } 2260 2261 static unsigned long deferred_split_count(struct shrinker *shrink, 2262 struct shrink_control *sc) 2263 { 2264 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2265 return ACCESS_ONCE(pgdata->split_queue_len); 2266 } 2267 2268 static unsigned long deferred_split_scan(struct shrinker *shrink, 2269 struct shrink_control *sc) 2270 { 2271 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2272 unsigned long flags; 2273 LIST_HEAD(list), *pos, *next; 2274 struct page *page; 2275 int split = 0; 2276 2277 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2278 /* Take pin on all head pages to avoid freeing them under us */ 2279 list_for_each_safe(pos, next, &pgdata->split_queue) { 2280 page = list_entry((void *)pos, struct page, mapping); 2281 page = compound_head(page); 2282 if (get_page_unless_zero(page)) { 2283 list_move(page_deferred_list(page), &list); 2284 } else { 2285 /* We lost race with put_compound_page() */ 2286 list_del_init(page_deferred_list(page)); 2287 pgdata->split_queue_len--; 2288 } 2289 if (!--sc->nr_to_scan) 2290 break; 2291 } 2292 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2293 2294 list_for_each_safe(pos, next, &list) { 2295 page = list_entry((void *)pos, struct page, mapping); 2296 lock_page(page); 2297 /* split_huge_page() removes page from list on success */ 2298 if (!split_huge_page(page)) 2299 split++; 2300 unlock_page(page); 2301 put_page(page); 2302 } 2303 2304 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2305 list_splice_tail(&list, &pgdata->split_queue); 2306 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2307 2308 /* 2309 * Stop shrinker if we didn't split any page, but the queue is empty. 2310 * This can happen if pages were freed under us. 2311 */ 2312 if (!split && list_empty(&pgdata->split_queue)) 2313 return SHRINK_STOP; 2314 return split; 2315 } 2316 2317 static struct shrinker deferred_split_shrinker = { 2318 .count_objects = deferred_split_count, 2319 .scan_objects = deferred_split_scan, 2320 .seeks = DEFAULT_SEEKS, 2321 .flags = SHRINKER_NUMA_AWARE, 2322 }; 2323 2324 #ifdef CONFIG_DEBUG_FS 2325 static int split_huge_pages_set(void *data, u64 val) 2326 { 2327 struct zone *zone; 2328 struct page *page; 2329 unsigned long pfn, max_zone_pfn; 2330 unsigned long total = 0, split = 0; 2331 2332 if (val != 1) 2333 return -EINVAL; 2334 2335 for_each_populated_zone(zone) { 2336 max_zone_pfn = zone_end_pfn(zone); 2337 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2338 if (!pfn_valid(pfn)) 2339 continue; 2340 2341 page = pfn_to_page(pfn); 2342 if (!get_page_unless_zero(page)) 2343 continue; 2344 2345 if (zone != page_zone(page)) 2346 goto next; 2347 2348 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2349 goto next; 2350 2351 total++; 2352 lock_page(page); 2353 if (!split_huge_page(page)) 2354 split++; 2355 unlock_page(page); 2356 next: 2357 put_page(page); 2358 } 2359 } 2360 2361 pr_info("%lu of %lu THP split\n", split, total); 2362 2363 return 0; 2364 } 2365 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, 2366 "%llu\n"); 2367 2368 static int __init split_huge_pages_debugfs(void) 2369 { 2370 void *ret; 2371 2372 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 2373 &split_huge_pages_fops); 2374 if (!ret) 2375 pr_warn("Failed to create split_huge_pages in debugfs"); 2376 return 0; 2377 } 2378 late_initcall(split_huge_pages_debugfs); 2379 #endif 2380