1 /* 2 * Copyright (C) 2009 Red Hat, Inc. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/highmem.h> 11 #include <linux/hugetlb.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/rmap.h> 14 #include <linux/swap.h> 15 #include <linux/shrinker.h> 16 #include <linux/mm_inline.h> 17 #include <linux/kthread.h> 18 #include <linux/khugepaged.h> 19 #include <linux/freezer.h> 20 #include <linux/mman.h> 21 #include <linux/pagemap.h> 22 #include <linux/migrate.h> 23 #include <linux/hashtable.h> 24 25 #include <asm/tlb.h> 26 #include <asm/pgalloc.h> 27 #include "internal.h" 28 29 /* 30 * By default transparent hugepage support is enabled for all mappings 31 * and khugepaged scans all mappings. Defrag is only invoked by 32 * khugepaged hugepage allocations and by page faults inside 33 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived 34 * allocations. 35 */ 36 unsigned long transparent_hugepage_flags __read_mostly = 37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 38 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 39 #endif 40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 41 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 42 #endif 43 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)| 44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 45 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 46 47 /* default scan 8*512 pte (or vmas) every 30 second */ 48 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8; 49 static unsigned int khugepaged_pages_collapsed; 50 static unsigned int khugepaged_full_scans; 51 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 52 /* during fragmentation poll the hugepage allocator once every minute */ 53 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 54 static struct task_struct *khugepaged_thread __read_mostly; 55 static DEFINE_MUTEX(khugepaged_mutex); 56 static DEFINE_SPINLOCK(khugepaged_mm_lock); 57 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 58 /* 59 * default collapse hugepages if there is at least one pte mapped like 60 * it would have happened if the vma was large enough during page 61 * fault. 62 */ 63 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1; 64 65 static int khugepaged(void *none); 66 static int khugepaged_slab_init(void); 67 68 #define MM_SLOTS_HASH_BITS 10 69 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 70 71 static struct kmem_cache *mm_slot_cache __read_mostly; 72 73 /** 74 * struct mm_slot - hash lookup from mm to mm_slot 75 * @hash: hash collision list 76 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head 77 * @mm: the mm that this information is valid for 78 */ 79 struct mm_slot { 80 struct hlist_node hash; 81 struct list_head mm_node; 82 struct mm_struct *mm; 83 }; 84 85 /** 86 * struct khugepaged_scan - cursor for scanning 87 * @mm_head: the head of the mm list to scan 88 * @mm_slot: the current mm_slot we are scanning 89 * @address: the next address inside that to be scanned 90 * 91 * There is only the one khugepaged_scan instance of this cursor structure. 92 */ 93 struct khugepaged_scan { 94 struct list_head mm_head; 95 struct mm_slot *mm_slot; 96 unsigned long address; 97 }; 98 static struct khugepaged_scan khugepaged_scan = { 99 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 100 }; 101 102 103 static int set_recommended_min_free_kbytes(void) 104 { 105 struct zone *zone; 106 int nr_zones = 0; 107 unsigned long recommended_min; 108 109 if (!khugepaged_enabled()) 110 return 0; 111 112 for_each_populated_zone(zone) 113 nr_zones++; 114 115 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */ 116 recommended_min = pageblock_nr_pages * nr_zones * 2; 117 118 /* 119 * Make sure that on average at least two pageblocks are almost free 120 * of another type, one for a migratetype to fall back to and a 121 * second to avoid subsequent fallbacks of other types There are 3 122 * MIGRATE_TYPES we care about. 123 */ 124 recommended_min += pageblock_nr_pages * nr_zones * 125 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 126 127 /* don't ever allow to reserve more than 5% of the lowmem */ 128 recommended_min = min(recommended_min, 129 (unsigned long) nr_free_buffer_pages() / 20); 130 recommended_min <<= (PAGE_SHIFT-10); 131 132 if (recommended_min > min_free_kbytes) 133 min_free_kbytes = recommended_min; 134 setup_per_zone_wmarks(); 135 return 0; 136 } 137 late_initcall(set_recommended_min_free_kbytes); 138 139 static int start_khugepaged(void) 140 { 141 int err = 0; 142 if (khugepaged_enabled()) { 143 if (!khugepaged_thread) 144 khugepaged_thread = kthread_run(khugepaged, NULL, 145 "khugepaged"); 146 if (unlikely(IS_ERR(khugepaged_thread))) { 147 printk(KERN_ERR 148 "khugepaged: kthread_run(khugepaged) failed\n"); 149 err = PTR_ERR(khugepaged_thread); 150 khugepaged_thread = NULL; 151 } 152 153 if (!list_empty(&khugepaged_scan.mm_head)) 154 wake_up_interruptible(&khugepaged_wait); 155 156 set_recommended_min_free_kbytes(); 157 } else if (khugepaged_thread) { 158 kthread_stop(khugepaged_thread); 159 khugepaged_thread = NULL; 160 } 161 162 return err; 163 } 164 165 static atomic_t huge_zero_refcount; 166 static struct page *huge_zero_page __read_mostly; 167 168 static inline bool is_huge_zero_page(struct page *page) 169 { 170 return ACCESS_ONCE(huge_zero_page) == page; 171 } 172 173 static inline bool is_huge_zero_pmd(pmd_t pmd) 174 { 175 return is_huge_zero_page(pmd_page(pmd)); 176 } 177 178 static struct page *get_huge_zero_page(void) 179 { 180 struct page *zero_page; 181 retry: 182 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 183 return ACCESS_ONCE(huge_zero_page); 184 185 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 186 HPAGE_PMD_ORDER); 187 if (!zero_page) { 188 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 189 return NULL; 190 } 191 count_vm_event(THP_ZERO_PAGE_ALLOC); 192 preempt_disable(); 193 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 194 preempt_enable(); 195 __free_page(zero_page); 196 goto retry; 197 } 198 199 /* We take additional reference here. It will be put back by shrinker */ 200 atomic_set(&huge_zero_refcount, 2); 201 preempt_enable(); 202 return ACCESS_ONCE(huge_zero_page); 203 } 204 205 static void put_huge_zero_page(void) 206 { 207 /* 208 * Counter should never go to zero here. Only shrinker can put 209 * last reference. 210 */ 211 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 212 } 213 214 static int shrink_huge_zero_page(struct shrinker *shrink, 215 struct shrink_control *sc) 216 { 217 if (!sc->nr_to_scan) 218 /* we can free zero page only if last reference remains */ 219 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 220 221 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 222 struct page *zero_page = xchg(&huge_zero_page, NULL); 223 BUG_ON(zero_page == NULL); 224 __free_page(zero_page); 225 } 226 227 return 0; 228 } 229 230 static struct shrinker huge_zero_page_shrinker = { 231 .shrink = shrink_huge_zero_page, 232 .seeks = DEFAULT_SEEKS, 233 }; 234 235 #ifdef CONFIG_SYSFS 236 237 static ssize_t double_flag_show(struct kobject *kobj, 238 struct kobj_attribute *attr, char *buf, 239 enum transparent_hugepage_flag enabled, 240 enum transparent_hugepage_flag req_madv) 241 { 242 if (test_bit(enabled, &transparent_hugepage_flags)) { 243 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags)); 244 return sprintf(buf, "[always] madvise never\n"); 245 } else if (test_bit(req_madv, &transparent_hugepage_flags)) 246 return sprintf(buf, "always [madvise] never\n"); 247 else 248 return sprintf(buf, "always madvise [never]\n"); 249 } 250 static ssize_t double_flag_store(struct kobject *kobj, 251 struct kobj_attribute *attr, 252 const char *buf, size_t count, 253 enum transparent_hugepage_flag enabled, 254 enum transparent_hugepage_flag req_madv) 255 { 256 if (!memcmp("always", buf, 257 min(sizeof("always")-1, count))) { 258 set_bit(enabled, &transparent_hugepage_flags); 259 clear_bit(req_madv, &transparent_hugepage_flags); 260 } else if (!memcmp("madvise", buf, 261 min(sizeof("madvise")-1, count))) { 262 clear_bit(enabled, &transparent_hugepage_flags); 263 set_bit(req_madv, &transparent_hugepage_flags); 264 } else if (!memcmp("never", buf, 265 min(sizeof("never")-1, count))) { 266 clear_bit(enabled, &transparent_hugepage_flags); 267 clear_bit(req_madv, &transparent_hugepage_flags); 268 } else 269 return -EINVAL; 270 271 return count; 272 } 273 274 static ssize_t enabled_show(struct kobject *kobj, 275 struct kobj_attribute *attr, char *buf) 276 { 277 return double_flag_show(kobj, attr, buf, 278 TRANSPARENT_HUGEPAGE_FLAG, 279 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); 280 } 281 static ssize_t enabled_store(struct kobject *kobj, 282 struct kobj_attribute *attr, 283 const char *buf, size_t count) 284 { 285 ssize_t ret; 286 287 ret = double_flag_store(kobj, attr, buf, count, 288 TRANSPARENT_HUGEPAGE_FLAG, 289 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); 290 291 if (ret > 0) { 292 int err; 293 294 mutex_lock(&khugepaged_mutex); 295 err = start_khugepaged(); 296 mutex_unlock(&khugepaged_mutex); 297 298 if (err) 299 ret = err; 300 } 301 302 return ret; 303 } 304 static struct kobj_attribute enabled_attr = 305 __ATTR(enabled, 0644, enabled_show, enabled_store); 306 307 static ssize_t single_flag_show(struct kobject *kobj, 308 struct kobj_attribute *attr, char *buf, 309 enum transparent_hugepage_flag flag) 310 { 311 return sprintf(buf, "%d\n", 312 !!test_bit(flag, &transparent_hugepage_flags)); 313 } 314 315 static ssize_t single_flag_store(struct kobject *kobj, 316 struct kobj_attribute *attr, 317 const char *buf, size_t count, 318 enum transparent_hugepage_flag flag) 319 { 320 unsigned long value; 321 int ret; 322 323 ret = kstrtoul(buf, 10, &value); 324 if (ret < 0) 325 return ret; 326 if (value > 1) 327 return -EINVAL; 328 329 if (value) 330 set_bit(flag, &transparent_hugepage_flags); 331 else 332 clear_bit(flag, &transparent_hugepage_flags); 333 334 return count; 335 } 336 337 /* 338 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind 339 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of 340 * memory just to allocate one more hugepage. 341 */ 342 static ssize_t defrag_show(struct kobject *kobj, 343 struct kobj_attribute *attr, char *buf) 344 { 345 return double_flag_show(kobj, attr, buf, 346 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, 347 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); 348 } 349 static ssize_t defrag_store(struct kobject *kobj, 350 struct kobj_attribute *attr, 351 const char *buf, size_t count) 352 { 353 return double_flag_store(kobj, attr, buf, count, 354 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, 355 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); 356 } 357 static struct kobj_attribute defrag_attr = 358 __ATTR(defrag, 0644, defrag_show, defrag_store); 359 360 static ssize_t use_zero_page_show(struct kobject *kobj, 361 struct kobj_attribute *attr, char *buf) 362 { 363 return single_flag_show(kobj, attr, buf, 364 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 365 } 366 static ssize_t use_zero_page_store(struct kobject *kobj, 367 struct kobj_attribute *attr, const char *buf, size_t count) 368 { 369 return single_flag_store(kobj, attr, buf, count, 370 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 371 } 372 static struct kobj_attribute use_zero_page_attr = 373 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 374 #ifdef CONFIG_DEBUG_VM 375 static ssize_t debug_cow_show(struct kobject *kobj, 376 struct kobj_attribute *attr, char *buf) 377 { 378 return single_flag_show(kobj, attr, buf, 379 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 380 } 381 static ssize_t debug_cow_store(struct kobject *kobj, 382 struct kobj_attribute *attr, 383 const char *buf, size_t count) 384 { 385 return single_flag_store(kobj, attr, buf, count, 386 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 387 } 388 static struct kobj_attribute debug_cow_attr = 389 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 390 #endif /* CONFIG_DEBUG_VM */ 391 392 static struct attribute *hugepage_attr[] = { 393 &enabled_attr.attr, 394 &defrag_attr.attr, 395 &use_zero_page_attr.attr, 396 #ifdef CONFIG_DEBUG_VM 397 &debug_cow_attr.attr, 398 #endif 399 NULL, 400 }; 401 402 static struct attribute_group hugepage_attr_group = { 403 .attrs = hugepage_attr, 404 }; 405 406 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 407 struct kobj_attribute *attr, 408 char *buf) 409 { 410 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs); 411 } 412 413 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 414 struct kobj_attribute *attr, 415 const char *buf, size_t count) 416 { 417 unsigned long msecs; 418 int err; 419 420 err = strict_strtoul(buf, 10, &msecs); 421 if (err || msecs > UINT_MAX) 422 return -EINVAL; 423 424 khugepaged_scan_sleep_millisecs = msecs; 425 wake_up_interruptible(&khugepaged_wait); 426 427 return count; 428 } 429 static struct kobj_attribute scan_sleep_millisecs_attr = 430 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, 431 scan_sleep_millisecs_store); 432 433 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 434 struct kobj_attribute *attr, 435 char *buf) 436 { 437 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 438 } 439 440 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 441 struct kobj_attribute *attr, 442 const char *buf, size_t count) 443 { 444 unsigned long msecs; 445 int err; 446 447 err = strict_strtoul(buf, 10, &msecs); 448 if (err || msecs > UINT_MAX) 449 return -EINVAL; 450 451 khugepaged_alloc_sleep_millisecs = msecs; 452 wake_up_interruptible(&khugepaged_wait); 453 454 return count; 455 } 456 static struct kobj_attribute alloc_sleep_millisecs_attr = 457 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, 458 alloc_sleep_millisecs_store); 459 460 static ssize_t pages_to_scan_show(struct kobject *kobj, 461 struct kobj_attribute *attr, 462 char *buf) 463 { 464 return sprintf(buf, "%u\n", khugepaged_pages_to_scan); 465 } 466 static ssize_t pages_to_scan_store(struct kobject *kobj, 467 struct kobj_attribute *attr, 468 const char *buf, size_t count) 469 { 470 int err; 471 unsigned long pages; 472 473 err = strict_strtoul(buf, 10, &pages); 474 if (err || !pages || pages > UINT_MAX) 475 return -EINVAL; 476 477 khugepaged_pages_to_scan = pages; 478 479 return count; 480 } 481 static struct kobj_attribute pages_to_scan_attr = 482 __ATTR(pages_to_scan, 0644, pages_to_scan_show, 483 pages_to_scan_store); 484 485 static ssize_t pages_collapsed_show(struct kobject *kobj, 486 struct kobj_attribute *attr, 487 char *buf) 488 { 489 return sprintf(buf, "%u\n", khugepaged_pages_collapsed); 490 } 491 static struct kobj_attribute pages_collapsed_attr = 492 __ATTR_RO(pages_collapsed); 493 494 static ssize_t full_scans_show(struct kobject *kobj, 495 struct kobj_attribute *attr, 496 char *buf) 497 { 498 return sprintf(buf, "%u\n", khugepaged_full_scans); 499 } 500 static struct kobj_attribute full_scans_attr = 501 __ATTR_RO(full_scans); 502 503 static ssize_t khugepaged_defrag_show(struct kobject *kobj, 504 struct kobj_attribute *attr, char *buf) 505 { 506 return single_flag_show(kobj, attr, buf, 507 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 508 } 509 static ssize_t khugepaged_defrag_store(struct kobject *kobj, 510 struct kobj_attribute *attr, 511 const char *buf, size_t count) 512 { 513 return single_flag_store(kobj, attr, buf, count, 514 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 515 } 516 static struct kobj_attribute khugepaged_defrag_attr = 517 __ATTR(defrag, 0644, khugepaged_defrag_show, 518 khugepaged_defrag_store); 519 520 /* 521 * max_ptes_none controls if khugepaged should collapse hugepages over 522 * any unmapped ptes in turn potentially increasing the memory 523 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 524 * reduce the available free memory in the system as it 525 * runs. Increasing max_ptes_none will instead potentially reduce the 526 * free memory in the system during the khugepaged scan. 527 */ 528 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, 529 struct kobj_attribute *attr, 530 char *buf) 531 { 532 return sprintf(buf, "%u\n", khugepaged_max_ptes_none); 533 } 534 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, 535 struct kobj_attribute *attr, 536 const char *buf, size_t count) 537 { 538 int err; 539 unsigned long max_ptes_none; 540 541 err = strict_strtoul(buf, 10, &max_ptes_none); 542 if (err || max_ptes_none > HPAGE_PMD_NR-1) 543 return -EINVAL; 544 545 khugepaged_max_ptes_none = max_ptes_none; 546 547 return count; 548 } 549 static struct kobj_attribute khugepaged_max_ptes_none_attr = 550 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, 551 khugepaged_max_ptes_none_store); 552 553 static struct attribute *khugepaged_attr[] = { 554 &khugepaged_defrag_attr.attr, 555 &khugepaged_max_ptes_none_attr.attr, 556 &pages_to_scan_attr.attr, 557 &pages_collapsed_attr.attr, 558 &full_scans_attr.attr, 559 &scan_sleep_millisecs_attr.attr, 560 &alloc_sleep_millisecs_attr.attr, 561 NULL, 562 }; 563 564 static struct attribute_group khugepaged_attr_group = { 565 .attrs = khugepaged_attr, 566 .name = "khugepaged", 567 }; 568 569 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 570 { 571 int err; 572 573 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 574 if (unlikely(!*hugepage_kobj)) { 575 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n"); 576 return -ENOMEM; 577 } 578 579 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 580 if (err) { 581 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n"); 582 goto delete_obj; 583 } 584 585 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 586 if (err) { 587 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n"); 588 goto remove_hp_group; 589 } 590 591 return 0; 592 593 remove_hp_group: 594 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 595 delete_obj: 596 kobject_put(*hugepage_kobj); 597 return err; 598 } 599 600 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 601 { 602 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 603 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 604 kobject_put(hugepage_kobj); 605 } 606 #else 607 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 608 { 609 return 0; 610 } 611 612 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 613 { 614 } 615 #endif /* CONFIG_SYSFS */ 616 617 static int __init hugepage_init(void) 618 { 619 int err; 620 struct kobject *hugepage_kobj; 621 622 if (!has_transparent_hugepage()) { 623 transparent_hugepage_flags = 0; 624 return -EINVAL; 625 } 626 627 err = hugepage_init_sysfs(&hugepage_kobj); 628 if (err) 629 return err; 630 631 err = khugepaged_slab_init(); 632 if (err) 633 goto out; 634 635 register_shrinker(&huge_zero_page_shrinker); 636 637 /* 638 * By default disable transparent hugepages on smaller systems, 639 * where the extra memory used could hurt more than TLB overhead 640 * is likely to save. The admin can still enable it through /sys. 641 */ 642 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) 643 transparent_hugepage_flags = 0; 644 645 start_khugepaged(); 646 647 return 0; 648 out: 649 hugepage_exit_sysfs(hugepage_kobj); 650 return err; 651 } 652 module_init(hugepage_init) 653 654 static int __init setup_transparent_hugepage(char *str) 655 { 656 int ret = 0; 657 if (!str) 658 goto out; 659 if (!strcmp(str, "always")) { 660 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 661 &transparent_hugepage_flags); 662 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 663 &transparent_hugepage_flags); 664 ret = 1; 665 } else if (!strcmp(str, "madvise")) { 666 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 667 &transparent_hugepage_flags); 668 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 669 &transparent_hugepage_flags); 670 ret = 1; 671 } else if (!strcmp(str, "never")) { 672 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 673 &transparent_hugepage_flags); 674 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 675 &transparent_hugepage_flags); 676 ret = 1; 677 } 678 out: 679 if (!ret) 680 printk(KERN_WARNING 681 "transparent_hugepage= cannot parse, ignored\n"); 682 return ret; 683 } 684 __setup("transparent_hugepage=", setup_transparent_hugepage); 685 686 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 687 { 688 if (likely(vma->vm_flags & VM_WRITE)) 689 pmd = pmd_mkwrite(pmd); 690 return pmd; 691 } 692 693 static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma) 694 { 695 pmd_t entry; 696 entry = mk_pmd(page, vma->vm_page_prot); 697 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 698 entry = pmd_mkhuge(entry); 699 return entry; 700 } 701 702 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, 703 struct vm_area_struct *vma, 704 unsigned long haddr, pmd_t *pmd, 705 struct page *page) 706 { 707 pgtable_t pgtable; 708 709 VM_BUG_ON(!PageCompound(page)); 710 pgtable = pte_alloc_one(mm, haddr); 711 if (unlikely(!pgtable)) 712 return VM_FAULT_OOM; 713 714 clear_huge_page(page, haddr, HPAGE_PMD_NR); 715 /* 716 * The memory barrier inside __SetPageUptodate makes sure that 717 * clear_huge_page writes become visible before the set_pmd_at() 718 * write. 719 */ 720 __SetPageUptodate(page); 721 722 spin_lock(&mm->page_table_lock); 723 if (unlikely(!pmd_none(*pmd))) { 724 spin_unlock(&mm->page_table_lock); 725 mem_cgroup_uncharge_page(page); 726 put_page(page); 727 pte_free(mm, pgtable); 728 } else { 729 pmd_t entry; 730 entry = mk_huge_pmd(page, vma); 731 page_add_new_anon_rmap(page, vma, haddr); 732 set_pmd_at(mm, haddr, pmd, entry); 733 pgtable_trans_huge_deposit(mm, pgtable); 734 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); 735 mm->nr_ptes++; 736 spin_unlock(&mm->page_table_lock); 737 } 738 739 return 0; 740 } 741 742 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp) 743 { 744 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp; 745 } 746 747 static inline struct page *alloc_hugepage_vma(int defrag, 748 struct vm_area_struct *vma, 749 unsigned long haddr, int nd, 750 gfp_t extra_gfp) 751 { 752 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp), 753 HPAGE_PMD_ORDER, vma, haddr, nd); 754 } 755 756 #ifndef CONFIG_NUMA 757 static inline struct page *alloc_hugepage(int defrag) 758 { 759 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0), 760 HPAGE_PMD_ORDER); 761 } 762 #endif 763 764 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 765 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 766 struct page *zero_page) 767 { 768 pmd_t entry; 769 if (!pmd_none(*pmd)) 770 return false; 771 entry = mk_pmd(zero_page, vma->vm_page_prot); 772 entry = pmd_wrprotect(entry); 773 entry = pmd_mkhuge(entry); 774 set_pmd_at(mm, haddr, pmd, entry); 775 pgtable_trans_huge_deposit(mm, pgtable); 776 mm->nr_ptes++; 777 return true; 778 } 779 780 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 781 unsigned long address, pmd_t *pmd, 782 unsigned int flags) 783 { 784 struct page *page; 785 unsigned long haddr = address & HPAGE_PMD_MASK; 786 pte_t *pte; 787 788 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) { 789 if (unlikely(anon_vma_prepare(vma))) 790 return VM_FAULT_OOM; 791 if (unlikely(khugepaged_enter(vma))) 792 return VM_FAULT_OOM; 793 if (!(flags & FAULT_FLAG_WRITE) && 794 transparent_hugepage_use_zero_page()) { 795 pgtable_t pgtable; 796 struct page *zero_page; 797 bool set; 798 pgtable = pte_alloc_one(mm, haddr); 799 if (unlikely(!pgtable)) 800 return VM_FAULT_OOM; 801 zero_page = get_huge_zero_page(); 802 if (unlikely(!zero_page)) { 803 pte_free(mm, pgtable); 804 count_vm_event(THP_FAULT_FALLBACK); 805 goto out; 806 } 807 spin_lock(&mm->page_table_lock); 808 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd, 809 zero_page); 810 spin_unlock(&mm->page_table_lock); 811 if (!set) { 812 pte_free(mm, pgtable); 813 put_huge_zero_page(); 814 } 815 return 0; 816 } 817 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), 818 vma, haddr, numa_node_id(), 0); 819 if (unlikely(!page)) { 820 count_vm_event(THP_FAULT_FALLBACK); 821 goto out; 822 } 823 count_vm_event(THP_FAULT_ALLOC); 824 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) { 825 put_page(page); 826 goto out; 827 } 828 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, 829 page))) { 830 mem_cgroup_uncharge_page(page); 831 put_page(page); 832 goto out; 833 } 834 835 return 0; 836 } 837 out: 838 /* 839 * Use __pte_alloc instead of pte_alloc_map, because we can't 840 * run pte_offset_map on the pmd, if an huge pmd could 841 * materialize from under us from a different thread. 842 */ 843 if (unlikely(pmd_none(*pmd)) && 844 unlikely(__pte_alloc(mm, vma, pmd, address))) 845 return VM_FAULT_OOM; 846 /* if an huge pmd materialized from under us just retry later */ 847 if (unlikely(pmd_trans_huge(*pmd))) 848 return 0; 849 /* 850 * A regular pmd is established and it can't morph into a huge pmd 851 * from under us anymore at this point because we hold the mmap_sem 852 * read mode and khugepaged takes it in write mode. So now it's 853 * safe to run pte_offset_map(). 854 */ 855 pte = pte_offset_map(pmd, address); 856 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 857 } 858 859 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 860 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 861 struct vm_area_struct *vma) 862 { 863 struct page *src_page; 864 pmd_t pmd; 865 pgtable_t pgtable; 866 int ret; 867 868 ret = -ENOMEM; 869 pgtable = pte_alloc_one(dst_mm, addr); 870 if (unlikely(!pgtable)) 871 goto out; 872 873 spin_lock(&dst_mm->page_table_lock); 874 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING); 875 876 ret = -EAGAIN; 877 pmd = *src_pmd; 878 if (unlikely(!pmd_trans_huge(pmd))) { 879 pte_free(dst_mm, pgtable); 880 goto out_unlock; 881 } 882 /* 883 * mm->page_table_lock is enough to be sure that huge zero pmd is not 884 * under splitting since we don't split the page itself, only pmd to 885 * a page table. 886 */ 887 if (is_huge_zero_pmd(pmd)) { 888 struct page *zero_page; 889 bool set; 890 /* 891 * get_huge_zero_page() will never allocate a new page here, 892 * since we already have a zero page to copy. It just takes a 893 * reference. 894 */ 895 zero_page = get_huge_zero_page(); 896 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 897 zero_page); 898 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */ 899 ret = 0; 900 goto out_unlock; 901 } 902 if (unlikely(pmd_trans_splitting(pmd))) { 903 /* split huge page running from under us */ 904 spin_unlock(&src_mm->page_table_lock); 905 spin_unlock(&dst_mm->page_table_lock); 906 pte_free(dst_mm, pgtable); 907 908 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */ 909 goto out; 910 } 911 src_page = pmd_page(pmd); 912 VM_BUG_ON(!PageHead(src_page)); 913 get_page(src_page); 914 page_dup_rmap(src_page); 915 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 916 917 pmdp_set_wrprotect(src_mm, addr, src_pmd); 918 pmd = pmd_mkold(pmd_wrprotect(pmd)); 919 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 920 pgtable_trans_huge_deposit(dst_mm, pgtable); 921 dst_mm->nr_ptes++; 922 923 ret = 0; 924 out_unlock: 925 spin_unlock(&src_mm->page_table_lock); 926 spin_unlock(&dst_mm->page_table_lock); 927 out: 928 return ret; 929 } 930 931 void huge_pmd_set_accessed(struct mm_struct *mm, 932 struct vm_area_struct *vma, 933 unsigned long address, 934 pmd_t *pmd, pmd_t orig_pmd, 935 int dirty) 936 { 937 pmd_t entry; 938 unsigned long haddr; 939 940 spin_lock(&mm->page_table_lock); 941 if (unlikely(!pmd_same(*pmd, orig_pmd))) 942 goto unlock; 943 944 entry = pmd_mkyoung(orig_pmd); 945 haddr = address & HPAGE_PMD_MASK; 946 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty)) 947 update_mmu_cache_pmd(vma, address, pmd); 948 949 unlock: 950 spin_unlock(&mm->page_table_lock); 951 } 952 953 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm, 954 struct vm_area_struct *vma, unsigned long address, 955 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr) 956 { 957 pgtable_t pgtable; 958 pmd_t _pmd; 959 struct page *page; 960 int i, ret = 0; 961 unsigned long mmun_start; /* For mmu_notifiers */ 962 unsigned long mmun_end; /* For mmu_notifiers */ 963 964 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 965 if (!page) { 966 ret |= VM_FAULT_OOM; 967 goto out; 968 } 969 970 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { 971 put_page(page); 972 ret |= VM_FAULT_OOM; 973 goto out; 974 } 975 976 clear_user_highpage(page, address); 977 __SetPageUptodate(page); 978 979 mmun_start = haddr; 980 mmun_end = haddr + HPAGE_PMD_SIZE; 981 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 982 983 spin_lock(&mm->page_table_lock); 984 if (unlikely(!pmd_same(*pmd, orig_pmd))) 985 goto out_free_page; 986 987 pmdp_clear_flush(vma, haddr, pmd); 988 /* leave pmd empty until pte is filled */ 989 990 pgtable = pgtable_trans_huge_withdraw(mm); 991 pmd_populate(mm, &_pmd, pgtable); 992 993 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 994 pte_t *pte, entry; 995 if (haddr == (address & PAGE_MASK)) { 996 entry = mk_pte(page, vma->vm_page_prot); 997 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 998 page_add_new_anon_rmap(page, vma, haddr); 999 } else { 1000 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 1001 entry = pte_mkspecial(entry); 1002 } 1003 pte = pte_offset_map(&_pmd, haddr); 1004 VM_BUG_ON(!pte_none(*pte)); 1005 set_pte_at(mm, haddr, pte, entry); 1006 pte_unmap(pte); 1007 } 1008 smp_wmb(); /* make pte visible before pmd */ 1009 pmd_populate(mm, pmd, pgtable); 1010 spin_unlock(&mm->page_table_lock); 1011 put_huge_zero_page(); 1012 inc_mm_counter(mm, MM_ANONPAGES); 1013 1014 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1015 1016 ret |= VM_FAULT_WRITE; 1017 out: 1018 return ret; 1019 out_free_page: 1020 spin_unlock(&mm->page_table_lock); 1021 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1022 mem_cgroup_uncharge_page(page); 1023 put_page(page); 1024 goto out; 1025 } 1026 1027 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm, 1028 struct vm_area_struct *vma, 1029 unsigned long address, 1030 pmd_t *pmd, pmd_t orig_pmd, 1031 struct page *page, 1032 unsigned long haddr) 1033 { 1034 pgtable_t pgtable; 1035 pmd_t _pmd; 1036 int ret = 0, i; 1037 struct page **pages; 1038 unsigned long mmun_start; /* For mmu_notifiers */ 1039 unsigned long mmun_end; /* For mmu_notifiers */ 1040 1041 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, 1042 GFP_KERNEL); 1043 if (unlikely(!pages)) { 1044 ret |= VM_FAULT_OOM; 1045 goto out; 1046 } 1047 1048 for (i = 0; i < HPAGE_PMD_NR; i++) { 1049 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | 1050 __GFP_OTHER_NODE, 1051 vma, address, page_to_nid(page)); 1052 if (unlikely(!pages[i] || 1053 mem_cgroup_newpage_charge(pages[i], mm, 1054 GFP_KERNEL))) { 1055 if (pages[i]) 1056 put_page(pages[i]); 1057 mem_cgroup_uncharge_start(); 1058 while (--i >= 0) { 1059 mem_cgroup_uncharge_page(pages[i]); 1060 put_page(pages[i]); 1061 } 1062 mem_cgroup_uncharge_end(); 1063 kfree(pages); 1064 ret |= VM_FAULT_OOM; 1065 goto out; 1066 } 1067 } 1068 1069 for (i = 0; i < HPAGE_PMD_NR; i++) { 1070 copy_user_highpage(pages[i], page + i, 1071 haddr + PAGE_SIZE * i, vma); 1072 __SetPageUptodate(pages[i]); 1073 cond_resched(); 1074 } 1075 1076 mmun_start = haddr; 1077 mmun_end = haddr + HPAGE_PMD_SIZE; 1078 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1079 1080 spin_lock(&mm->page_table_lock); 1081 if (unlikely(!pmd_same(*pmd, orig_pmd))) 1082 goto out_free_pages; 1083 VM_BUG_ON(!PageHead(page)); 1084 1085 pmdp_clear_flush(vma, haddr, pmd); 1086 /* leave pmd empty until pte is filled */ 1087 1088 pgtable = pgtable_trans_huge_withdraw(mm); 1089 pmd_populate(mm, &_pmd, pgtable); 1090 1091 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1092 pte_t *pte, entry; 1093 entry = mk_pte(pages[i], vma->vm_page_prot); 1094 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1095 page_add_new_anon_rmap(pages[i], vma, haddr); 1096 pte = pte_offset_map(&_pmd, haddr); 1097 VM_BUG_ON(!pte_none(*pte)); 1098 set_pte_at(mm, haddr, pte, entry); 1099 pte_unmap(pte); 1100 } 1101 kfree(pages); 1102 1103 smp_wmb(); /* make pte visible before pmd */ 1104 pmd_populate(mm, pmd, pgtable); 1105 page_remove_rmap(page); 1106 spin_unlock(&mm->page_table_lock); 1107 1108 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1109 1110 ret |= VM_FAULT_WRITE; 1111 put_page(page); 1112 1113 out: 1114 return ret; 1115 1116 out_free_pages: 1117 spin_unlock(&mm->page_table_lock); 1118 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1119 mem_cgroup_uncharge_start(); 1120 for (i = 0; i < HPAGE_PMD_NR; i++) { 1121 mem_cgroup_uncharge_page(pages[i]); 1122 put_page(pages[i]); 1123 } 1124 mem_cgroup_uncharge_end(); 1125 kfree(pages); 1126 goto out; 1127 } 1128 1129 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1130 unsigned long address, pmd_t *pmd, pmd_t orig_pmd) 1131 { 1132 int ret = 0; 1133 struct page *page = NULL, *new_page; 1134 unsigned long haddr; 1135 unsigned long mmun_start; /* For mmu_notifiers */ 1136 unsigned long mmun_end; /* For mmu_notifiers */ 1137 1138 VM_BUG_ON(!vma->anon_vma); 1139 haddr = address & HPAGE_PMD_MASK; 1140 if (is_huge_zero_pmd(orig_pmd)) 1141 goto alloc; 1142 spin_lock(&mm->page_table_lock); 1143 if (unlikely(!pmd_same(*pmd, orig_pmd))) 1144 goto out_unlock; 1145 1146 page = pmd_page(orig_pmd); 1147 VM_BUG_ON(!PageCompound(page) || !PageHead(page)); 1148 if (page_mapcount(page) == 1) { 1149 pmd_t entry; 1150 entry = pmd_mkyoung(orig_pmd); 1151 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1152 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1)) 1153 update_mmu_cache_pmd(vma, address, pmd); 1154 ret |= VM_FAULT_WRITE; 1155 goto out_unlock; 1156 } 1157 get_page(page); 1158 spin_unlock(&mm->page_table_lock); 1159 alloc: 1160 if (transparent_hugepage_enabled(vma) && 1161 !transparent_hugepage_debug_cow()) 1162 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), 1163 vma, haddr, numa_node_id(), 0); 1164 else 1165 new_page = NULL; 1166 1167 if (unlikely(!new_page)) { 1168 count_vm_event(THP_FAULT_FALLBACK); 1169 if (is_huge_zero_pmd(orig_pmd)) { 1170 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma, 1171 address, pmd, orig_pmd, haddr); 1172 } else { 1173 ret = do_huge_pmd_wp_page_fallback(mm, vma, address, 1174 pmd, orig_pmd, page, haddr); 1175 if (ret & VM_FAULT_OOM) 1176 split_huge_page(page); 1177 put_page(page); 1178 } 1179 goto out; 1180 } 1181 count_vm_event(THP_FAULT_ALLOC); 1182 1183 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) { 1184 put_page(new_page); 1185 if (page) { 1186 split_huge_page(page); 1187 put_page(page); 1188 } 1189 ret |= VM_FAULT_OOM; 1190 goto out; 1191 } 1192 1193 if (is_huge_zero_pmd(orig_pmd)) 1194 clear_huge_page(new_page, haddr, HPAGE_PMD_NR); 1195 else 1196 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); 1197 __SetPageUptodate(new_page); 1198 1199 mmun_start = haddr; 1200 mmun_end = haddr + HPAGE_PMD_SIZE; 1201 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1202 1203 spin_lock(&mm->page_table_lock); 1204 if (page) 1205 put_page(page); 1206 if (unlikely(!pmd_same(*pmd, orig_pmd))) { 1207 spin_unlock(&mm->page_table_lock); 1208 mem_cgroup_uncharge_page(new_page); 1209 put_page(new_page); 1210 goto out_mn; 1211 } else { 1212 pmd_t entry; 1213 entry = mk_huge_pmd(new_page, vma); 1214 pmdp_clear_flush(vma, haddr, pmd); 1215 page_add_new_anon_rmap(new_page, vma, haddr); 1216 set_pmd_at(mm, haddr, pmd, entry); 1217 update_mmu_cache_pmd(vma, address, pmd); 1218 if (is_huge_zero_pmd(orig_pmd)) { 1219 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); 1220 put_huge_zero_page(); 1221 } else { 1222 VM_BUG_ON(!PageHead(page)); 1223 page_remove_rmap(page); 1224 put_page(page); 1225 } 1226 ret |= VM_FAULT_WRITE; 1227 } 1228 spin_unlock(&mm->page_table_lock); 1229 out_mn: 1230 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1231 out: 1232 return ret; 1233 out_unlock: 1234 spin_unlock(&mm->page_table_lock); 1235 return ret; 1236 } 1237 1238 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1239 unsigned long addr, 1240 pmd_t *pmd, 1241 unsigned int flags) 1242 { 1243 struct mm_struct *mm = vma->vm_mm; 1244 struct page *page = NULL; 1245 1246 assert_spin_locked(&mm->page_table_lock); 1247 1248 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1249 goto out; 1250 1251 /* Avoid dumping huge zero page */ 1252 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1253 return ERR_PTR(-EFAULT); 1254 1255 page = pmd_page(*pmd); 1256 VM_BUG_ON(!PageHead(page)); 1257 if (flags & FOLL_TOUCH) { 1258 pmd_t _pmd; 1259 /* 1260 * We should set the dirty bit only for FOLL_WRITE but 1261 * for now the dirty bit in the pmd is meaningless. 1262 * And if the dirty bit will become meaningful and 1263 * we'll only set it with FOLL_WRITE, an atomic 1264 * set_bit will be required on the pmd to set the 1265 * young bit, instead of the current set_pmd_at. 1266 */ 1267 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); 1268 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd); 1269 } 1270 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1271 if (page->mapping && trylock_page(page)) { 1272 lru_add_drain(); 1273 if (page->mapping) 1274 mlock_vma_page(page); 1275 unlock_page(page); 1276 } 1277 } 1278 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1279 VM_BUG_ON(!PageCompound(page)); 1280 if (flags & FOLL_GET) 1281 get_page_foll(page); 1282 1283 out: 1284 return page; 1285 } 1286 1287 /* NUMA hinting page fault entry point for trans huge pmds */ 1288 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 1289 unsigned long addr, pmd_t pmd, pmd_t *pmdp) 1290 { 1291 struct page *page; 1292 unsigned long haddr = addr & HPAGE_PMD_MASK; 1293 int target_nid; 1294 int current_nid = -1; 1295 bool migrated; 1296 1297 spin_lock(&mm->page_table_lock); 1298 if (unlikely(!pmd_same(pmd, *pmdp))) 1299 goto out_unlock; 1300 1301 page = pmd_page(pmd); 1302 get_page(page); 1303 current_nid = page_to_nid(page); 1304 count_vm_numa_event(NUMA_HINT_FAULTS); 1305 if (current_nid == numa_node_id()) 1306 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1307 1308 target_nid = mpol_misplaced(page, vma, haddr); 1309 if (target_nid == -1) { 1310 put_page(page); 1311 goto clear_pmdnuma; 1312 } 1313 1314 /* Acquire the page lock to serialise THP migrations */ 1315 spin_unlock(&mm->page_table_lock); 1316 lock_page(page); 1317 1318 /* Confirm the PTE did not while locked */ 1319 spin_lock(&mm->page_table_lock); 1320 if (unlikely(!pmd_same(pmd, *pmdp))) { 1321 unlock_page(page); 1322 put_page(page); 1323 goto out_unlock; 1324 } 1325 spin_unlock(&mm->page_table_lock); 1326 1327 /* Migrate the THP to the requested node */ 1328 migrated = migrate_misplaced_transhuge_page(mm, vma, 1329 pmdp, pmd, addr, page, target_nid); 1330 if (!migrated) 1331 goto check_same; 1332 1333 task_numa_fault(target_nid, HPAGE_PMD_NR, true); 1334 return 0; 1335 1336 check_same: 1337 spin_lock(&mm->page_table_lock); 1338 if (unlikely(!pmd_same(pmd, *pmdp))) 1339 goto out_unlock; 1340 clear_pmdnuma: 1341 pmd = pmd_mknonnuma(pmd); 1342 set_pmd_at(mm, haddr, pmdp, pmd); 1343 VM_BUG_ON(pmd_numa(*pmdp)); 1344 update_mmu_cache_pmd(vma, addr, pmdp); 1345 out_unlock: 1346 spin_unlock(&mm->page_table_lock); 1347 if (current_nid != -1) 1348 task_numa_fault(current_nid, HPAGE_PMD_NR, false); 1349 return 0; 1350 } 1351 1352 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1353 pmd_t *pmd, unsigned long addr) 1354 { 1355 int ret = 0; 1356 1357 if (__pmd_trans_huge_lock(pmd, vma) == 1) { 1358 struct page *page; 1359 pgtable_t pgtable; 1360 pmd_t orig_pmd; 1361 pgtable = pgtable_trans_huge_withdraw(tlb->mm); 1362 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd); 1363 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1364 if (is_huge_zero_pmd(orig_pmd)) { 1365 tlb->mm->nr_ptes--; 1366 spin_unlock(&tlb->mm->page_table_lock); 1367 put_huge_zero_page(); 1368 } else { 1369 page = pmd_page(orig_pmd); 1370 page_remove_rmap(page); 1371 VM_BUG_ON(page_mapcount(page) < 0); 1372 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1373 VM_BUG_ON(!PageHead(page)); 1374 tlb->mm->nr_ptes--; 1375 spin_unlock(&tlb->mm->page_table_lock); 1376 tlb_remove_page(tlb, page); 1377 } 1378 pte_free(tlb->mm, pgtable); 1379 ret = 1; 1380 } 1381 return ret; 1382 } 1383 1384 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1385 unsigned long addr, unsigned long end, 1386 unsigned char *vec) 1387 { 1388 int ret = 0; 1389 1390 if (__pmd_trans_huge_lock(pmd, vma) == 1) { 1391 /* 1392 * All logical pages in the range are present 1393 * if backed by a huge page. 1394 */ 1395 spin_unlock(&vma->vm_mm->page_table_lock); 1396 memset(vec, 1, (end - addr) >> PAGE_SHIFT); 1397 ret = 1; 1398 } 1399 1400 return ret; 1401 } 1402 1403 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma, 1404 unsigned long old_addr, 1405 unsigned long new_addr, unsigned long old_end, 1406 pmd_t *old_pmd, pmd_t *new_pmd) 1407 { 1408 int ret = 0; 1409 pmd_t pmd; 1410 1411 struct mm_struct *mm = vma->vm_mm; 1412 1413 if ((old_addr & ~HPAGE_PMD_MASK) || 1414 (new_addr & ~HPAGE_PMD_MASK) || 1415 old_end - old_addr < HPAGE_PMD_SIZE || 1416 (new_vma->vm_flags & VM_NOHUGEPAGE)) 1417 goto out; 1418 1419 /* 1420 * The destination pmd shouldn't be established, free_pgtables() 1421 * should have release it. 1422 */ 1423 if (WARN_ON(!pmd_none(*new_pmd))) { 1424 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1425 goto out; 1426 } 1427 1428 ret = __pmd_trans_huge_lock(old_pmd, vma); 1429 if (ret == 1) { 1430 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd); 1431 VM_BUG_ON(!pmd_none(*new_pmd)); 1432 set_pmd_at(mm, new_addr, new_pmd, pmd); 1433 spin_unlock(&mm->page_table_lock); 1434 } 1435 out: 1436 return ret; 1437 } 1438 1439 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1440 unsigned long addr, pgprot_t newprot, int prot_numa) 1441 { 1442 struct mm_struct *mm = vma->vm_mm; 1443 int ret = 0; 1444 1445 if (__pmd_trans_huge_lock(pmd, vma) == 1) { 1446 pmd_t entry; 1447 entry = pmdp_get_and_clear(mm, addr, pmd); 1448 if (!prot_numa) { 1449 entry = pmd_modify(entry, newprot); 1450 BUG_ON(pmd_write(entry)); 1451 } else { 1452 struct page *page = pmd_page(*pmd); 1453 1454 /* only check non-shared pages */ 1455 if (page_mapcount(page) == 1 && 1456 !pmd_numa(*pmd)) { 1457 entry = pmd_mknuma(entry); 1458 } 1459 } 1460 set_pmd_at(mm, addr, pmd, entry); 1461 spin_unlock(&vma->vm_mm->page_table_lock); 1462 ret = 1; 1463 } 1464 1465 return ret; 1466 } 1467 1468 /* 1469 * Returns 1 if a given pmd maps a stable (not under splitting) thp. 1470 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise. 1471 * 1472 * Note that if it returns 1, this routine returns without unlocking page 1473 * table locks. So callers must unlock them. 1474 */ 1475 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1476 { 1477 spin_lock(&vma->vm_mm->page_table_lock); 1478 if (likely(pmd_trans_huge(*pmd))) { 1479 if (unlikely(pmd_trans_splitting(*pmd))) { 1480 spin_unlock(&vma->vm_mm->page_table_lock); 1481 wait_split_huge_page(vma->anon_vma, pmd); 1482 return -1; 1483 } else { 1484 /* Thp mapped by 'pmd' is stable, so we can 1485 * handle it as it is. */ 1486 return 1; 1487 } 1488 } 1489 spin_unlock(&vma->vm_mm->page_table_lock); 1490 return 0; 1491 } 1492 1493 pmd_t *page_check_address_pmd(struct page *page, 1494 struct mm_struct *mm, 1495 unsigned long address, 1496 enum page_check_address_pmd_flag flag) 1497 { 1498 pmd_t *pmd, *ret = NULL; 1499 1500 if (address & ~HPAGE_PMD_MASK) 1501 goto out; 1502 1503 pmd = mm_find_pmd(mm, address); 1504 if (!pmd) 1505 goto out; 1506 if (pmd_none(*pmd)) 1507 goto out; 1508 if (pmd_page(*pmd) != page) 1509 goto out; 1510 /* 1511 * split_vma() may create temporary aliased mappings. There is 1512 * no risk as long as all huge pmd are found and have their 1513 * splitting bit set before __split_huge_page_refcount 1514 * runs. Finding the same huge pmd more than once during the 1515 * same rmap walk is not a problem. 1516 */ 1517 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG && 1518 pmd_trans_splitting(*pmd)) 1519 goto out; 1520 if (pmd_trans_huge(*pmd)) { 1521 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG && 1522 !pmd_trans_splitting(*pmd)); 1523 ret = pmd; 1524 } 1525 out: 1526 return ret; 1527 } 1528 1529 static int __split_huge_page_splitting(struct page *page, 1530 struct vm_area_struct *vma, 1531 unsigned long address) 1532 { 1533 struct mm_struct *mm = vma->vm_mm; 1534 pmd_t *pmd; 1535 int ret = 0; 1536 /* For mmu_notifiers */ 1537 const unsigned long mmun_start = address; 1538 const unsigned long mmun_end = address + HPAGE_PMD_SIZE; 1539 1540 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1541 spin_lock(&mm->page_table_lock); 1542 pmd = page_check_address_pmd(page, mm, address, 1543 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG); 1544 if (pmd) { 1545 /* 1546 * We can't temporarily set the pmd to null in order 1547 * to split it, the pmd must remain marked huge at all 1548 * times or the VM won't take the pmd_trans_huge paths 1549 * and it won't wait on the anon_vma->root->rwsem to 1550 * serialize against split_huge_page*. 1551 */ 1552 pmdp_splitting_flush(vma, address, pmd); 1553 ret = 1; 1554 } 1555 spin_unlock(&mm->page_table_lock); 1556 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1557 1558 return ret; 1559 } 1560 1561 static void __split_huge_page_refcount(struct page *page, 1562 struct list_head *list) 1563 { 1564 int i; 1565 struct zone *zone = page_zone(page); 1566 struct lruvec *lruvec; 1567 int tail_count = 0; 1568 1569 /* prevent PageLRU to go away from under us, and freeze lru stats */ 1570 spin_lock_irq(&zone->lru_lock); 1571 lruvec = mem_cgroup_page_lruvec(page, zone); 1572 1573 compound_lock(page); 1574 /* complete memcg works before add pages to LRU */ 1575 mem_cgroup_split_huge_fixup(page); 1576 1577 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 1578 struct page *page_tail = page + i; 1579 1580 /* tail_page->_mapcount cannot change */ 1581 BUG_ON(page_mapcount(page_tail) < 0); 1582 tail_count += page_mapcount(page_tail); 1583 /* check for overflow */ 1584 BUG_ON(tail_count < 0); 1585 BUG_ON(atomic_read(&page_tail->_count) != 0); 1586 /* 1587 * tail_page->_count is zero and not changing from 1588 * under us. But get_page_unless_zero() may be running 1589 * from under us on the tail_page. If we used 1590 * atomic_set() below instead of atomic_add(), we 1591 * would then run atomic_set() concurrently with 1592 * get_page_unless_zero(), and atomic_set() is 1593 * implemented in C not using locked ops. spin_unlock 1594 * on x86 sometime uses locked ops because of PPro 1595 * errata 66, 92, so unless somebody can guarantee 1596 * atomic_set() here would be safe on all archs (and 1597 * not only on x86), it's safer to use atomic_add(). 1598 */ 1599 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1, 1600 &page_tail->_count); 1601 1602 /* after clearing PageTail the gup refcount can be released */ 1603 smp_mb(); 1604 1605 /* 1606 * retain hwpoison flag of the poisoned tail page: 1607 * fix for the unsuitable process killed on Guest Machine(KVM) 1608 * by the memory-failure. 1609 */ 1610 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON; 1611 page_tail->flags |= (page->flags & 1612 ((1L << PG_referenced) | 1613 (1L << PG_swapbacked) | 1614 (1L << PG_mlocked) | 1615 (1L << PG_uptodate))); 1616 page_tail->flags |= (1L << PG_dirty); 1617 1618 /* clear PageTail before overwriting first_page */ 1619 smp_wmb(); 1620 1621 /* 1622 * __split_huge_page_splitting() already set the 1623 * splitting bit in all pmd that could map this 1624 * hugepage, that will ensure no CPU can alter the 1625 * mapcount on the head page. The mapcount is only 1626 * accounted in the head page and it has to be 1627 * transferred to all tail pages in the below code. So 1628 * for this code to be safe, the split the mapcount 1629 * can't change. But that doesn't mean userland can't 1630 * keep changing and reading the page contents while 1631 * we transfer the mapcount, so the pmd splitting 1632 * status is achieved setting a reserved bit in the 1633 * pmd, not by clearing the present bit. 1634 */ 1635 page_tail->_mapcount = page->_mapcount; 1636 1637 BUG_ON(page_tail->mapping); 1638 page_tail->mapping = page->mapping; 1639 1640 page_tail->index = page->index + i; 1641 page_nid_xchg_last(page_tail, page_nid_last(page)); 1642 1643 BUG_ON(!PageAnon(page_tail)); 1644 BUG_ON(!PageUptodate(page_tail)); 1645 BUG_ON(!PageDirty(page_tail)); 1646 BUG_ON(!PageSwapBacked(page_tail)); 1647 1648 lru_add_page_tail(page, page_tail, lruvec, list); 1649 } 1650 atomic_sub(tail_count, &page->_count); 1651 BUG_ON(atomic_read(&page->_count) <= 0); 1652 1653 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1); 1654 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR); 1655 1656 ClearPageCompound(page); 1657 compound_unlock(page); 1658 spin_unlock_irq(&zone->lru_lock); 1659 1660 for (i = 1; i < HPAGE_PMD_NR; i++) { 1661 struct page *page_tail = page + i; 1662 BUG_ON(page_count(page_tail) <= 0); 1663 /* 1664 * Tail pages may be freed if there wasn't any mapping 1665 * like if add_to_swap() is running on a lru page that 1666 * had its mapping zapped. And freeing these pages 1667 * requires taking the lru_lock so we do the put_page 1668 * of the tail pages after the split is complete. 1669 */ 1670 put_page(page_tail); 1671 } 1672 1673 /* 1674 * Only the head page (now become a regular page) is required 1675 * to be pinned by the caller. 1676 */ 1677 BUG_ON(page_count(page) <= 0); 1678 } 1679 1680 static int __split_huge_page_map(struct page *page, 1681 struct vm_area_struct *vma, 1682 unsigned long address) 1683 { 1684 struct mm_struct *mm = vma->vm_mm; 1685 pmd_t *pmd, _pmd; 1686 int ret = 0, i; 1687 pgtable_t pgtable; 1688 unsigned long haddr; 1689 1690 spin_lock(&mm->page_table_lock); 1691 pmd = page_check_address_pmd(page, mm, address, 1692 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG); 1693 if (pmd) { 1694 pgtable = pgtable_trans_huge_withdraw(mm); 1695 pmd_populate(mm, &_pmd, pgtable); 1696 1697 haddr = address; 1698 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1699 pte_t *pte, entry; 1700 BUG_ON(PageCompound(page+i)); 1701 entry = mk_pte(page + i, vma->vm_page_prot); 1702 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1703 if (!pmd_write(*pmd)) 1704 entry = pte_wrprotect(entry); 1705 else 1706 BUG_ON(page_mapcount(page) != 1); 1707 if (!pmd_young(*pmd)) 1708 entry = pte_mkold(entry); 1709 if (pmd_numa(*pmd)) 1710 entry = pte_mknuma(entry); 1711 pte = pte_offset_map(&_pmd, haddr); 1712 BUG_ON(!pte_none(*pte)); 1713 set_pte_at(mm, haddr, pte, entry); 1714 pte_unmap(pte); 1715 } 1716 1717 smp_wmb(); /* make pte visible before pmd */ 1718 /* 1719 * Up to this point the pmd is present and huge and 1720 * userland has the whole access to the hugepage 1721 * during the split (which happens in place). If we 1722 * overwrite the pmd with the not-huge version 1723 * pointing to the pte here (which of course we could 1724 * if all CPUs were bug free), userland could trigger 1725 * a small page size TLB miss on the small sized TLB 1726 * while the hugepage TLB entry is still established 1727 * in the huge TLB. Some CPU doesn't like that. See 1728 * http://support.amd.com/us/Processor_TechDocs/41322.pdf, 1729 * Erratum 383 on page 93. Intel should be safe but is 1730 * also warns that it's only safe if the permission 1731 * and cache attributes of the two entries loaded in 1732 * the two TLB is identical (which should be the case 1733 * here). But it is generally safer to never allow 1734 * small and huge TLB entries for the same virtual 1735 * address to be loaded simultaneously. So instead of 1736 * doing "pmd_populate(); flush_tlb_range();" we first 1737 * mark the current pmd notpresent (atomically because 1738 * here the pmd_trans_huge and pmd_trans_splitting 1739 * must remain set at all times on the pmd until the 1740 * split is complete for this pmd), then we flush the 1741 * SMP TLB and finally we write the non-huge version 1742 * of the pmd entry with pmd_populate. 1743 */ 1744 pmdp_invalidate(vma, address, pmd); 1745 pmd_populate(mm, pmd, pgtable); 1746 ret = 1; 1747 } 1748 spin_unlock(&mm->page_table_lock); 1749 1750 return ret; 1751 } 1752 1753 /* must be called with anon_vma->root->rwsem held */ 1754 static void __split_huge_page(struct page *page, 1755 struct anon_vma *anon_vma, 1756 struct list_head *list) 1757 { 1758 int mapcount, mapcount2; 1759 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1760 struct anon_vma_chain *avc; 1761 1762 BUG_ON(!PageHead(page)); 1763 BUG_ON(PageTail(page)); 1764 1765 mapcount = 0; 1766 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1767 struct vm_area_struct *vma = avc->vma; 1768 unsigned long addr = vma_address(page, vma); 1769 BUG_ON(is_vma_temporary_stack(vma)); 1770 mapcount += __split_huge_page_splitting(page, vma, addr); 1771 } 1772 /* 1773 * It is critical that new vmas are added to the tail of the 1774 * anon_vma list. This guarantes that if copy_huge_pmd() runs 1775 * and establishes a child pmd before 1776 * __split_huge_page_splitting() freezes the parent pmd (so if 1777 * we fail to prevent copy_huge_pmd() from running until the 1778 * whole __split_huge_page() is complete), we will still see 1779 * the newly established pmd of the child later during the 1780 * walk, to be able to set it as pmd_trans_splitting too. 1781 */ 1782 if (mapcount != page_mapcount(page)) 1783 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1784 mapcount, page_mapcount(page)); 1785 BUG_ON(mapcount != page_mapcount(page)); 1786 1787 __split_huge_page_refcount(page, list); 1788 1789 mapcount2 = 0; 1790 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1791 struct vm_area_struct *vma = avc->vma; 1792 unsigned long addr = vma_address(page, vma); 1793 BUG_ON(is_vma_temporary_stack(vma)); 1794 mapcount2 += __split_huge_page_map(page, vma, addr); 1795 } 1796 if (mapcount != mapcount2) 1797 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n", 1798 mapcount, mapcount2, page_mapcount(page)); 1799 BUG_ON(mapcount != mapcount2); 1800 } 1801 1802 /* 1803 * Split a hugepage into normal pages. This doesn't change the position of head 1804 * page. If @list is null, tail pages will be added to LRU list, otherwise, to 1805 * @list. Both head page and tail pages will inherit mapping, flags, and so on 1806 * from the hugepage. 1807 * Return 0 if the hugepage is split successfully otherwise return 1. 1808 */ 1809 int split_huge_page_to_list(struct page *page, struct list_head *list) 1810 { 1811 struct anon_vma *anon_vma; 1812 int ret = 1; 1813 1814 BUG_ON(is_huge_zero_page(page)); 1815 BUG_ON(!PageAnon(page)); 1816 1817 /* 1818 * The caller does not necessarily hold an mmap_sem that would prevent 1819 * the anon_vma disappearing so we first we take a reference to it 1820 * and then lock the anon_vma for write. This is similar to 1821 * page_lock_anon_vma_read except the write lock is taken to serialise 1822 * against parallel split or collapse operations. 1823 */ 1824 anon_vma = page_get_anon_vma(page); 1825 if (!anon_vma) 1826 goto out; 1827 anon_vma_lock_write(anon_vma); 1828 1829 ret = 0; 1830 if (!PageCompound(page)) 1831 goto out_unlock; 1832 1833 BUG_ON(!PageSwapBacked(page)); 1834 __split_huge_page(page, anon_vma, list); 1835 count_vm_event(THP_SPLIT); 1836 1837 BUG_ON(PageCompound(page)); 1838 out_unlock: 1839 anon_vma_unlock_write(anon_vma); 1840 put_anon_vma(anon_vma); 1841 out: 1842 return ret; 1843 } 1844 1845 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE) 1846 1847 int hugepage_madvise(struct vm_area_struct *vma, 1848 unsigned long *vm_flags, int advice) 1849 { 1850 struct mm_struct *mm = vma->vm_mm; 1851 1852 switch (advice) { 1853 case MADV_HUGEPAGE: 1854 /* 1855 * Be somewhat over-protective like KSM for now! 1856 */ 1857 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP)) 1858 return -EINVAL; 1859 if (mm->def_flags & VM_NOHUGEPAGE) 1860 return -EINVAL; 1861 *vm_flags &= ~VM_NOHUGEPAGE; 1862 *vm_flags |= VM_HUGEPAGE; 1863 /* 1864 * If the vma become good for khugepaged to scan, 1865 * register it here without waiting a page fault that 1866 * may not happen any time soon. 1867 */ 1868 if (unlikely(khugepaged_enter_vma_merge(vma))) 1869 return -ENOMEM; 1870 break; 1871 case MADV_NOHUGEPAGE: 1872 /* 1873 * Be somewhat over-protective like KSM for now! 1874 */ 1875 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP)) 1876 return -EINVAL; 1877 *vm_flags &= ~VM_HUGEPAGE; 1878 *vm_flags |= VM_NOHUGEPAGE; 1879 /* 1880 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 1881 * this vma even if we leave the mm registered in khugepaged if 1882 * it got registered before VM_NOHUGEPAGE was set. 1883 */ 1884 break; 1885 } 1886 1887 return 0; 1888 } 1889 1890 static int __init khugepaged_slab_init(void) 1891 { 1892 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 1893 sizeof(struct mm_slot), 1894 __alignof__(struct mm_slot), 0, NULL); 1895 if (!mm_slot_cache) 1896 return -ENOMEM; 1897 1898 return 0; 1899 } 1900 1901 static inline struct mm_slot *alloc_mm_slot(void) 1902 { 1903 if (!mm_slot_cache) /* initialization failed */ 1904 return NULL; 1905 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 1906 } 1907 1908 static inline void free_mm_slot(struct mm_slot *mm_slot) 1909 { 1910 kmem_cache_free(mm_slot_cache, mm_slot); 1911 } 1912 1913 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 1914 { 1915 struct mm_slot *mm_slot; 1916 1917 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) 1918 if (mm == mm_slot->mm) 1919 return mm_slot; 1920 1921 return NULL; 1922 } 1923 1924 static void insert_to_mm_slots_hash(struct mm_struct *mm, 1925 struct mm_slot *mm_slot) 1926 { 1927 mm_slot->mm = mm; 1928 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); 1929 } 1930 1931 static inline int khugepaged_test_exit(struct mm_struct *mm) 1932 { 1933 return atomic_read(&mm->mm_users) == 0; 1934 } 1935 1936 int __khugepaged_enter(struct mm_struct *mm) 1937 { 1938 struct mm_slot *mm_slot; 1939 int wakeup; 1940 1941 mm_slot = alloc_mm_slot(); 1942 if (!mm_slot) 1943 return -ENOMEM; 1944 1945 /* __khugepaged_exit() must not run from under us */ 1946 VM_BUG_ON(khugepaged_test_exit(mm)); 1947 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 1948 free_mm_slot(mm_slot); 1949 return 0; 1950 } 1951 1952 spin_lock(&khugepaged_mm_lock); 1953 insert_to_mm_slots_hash(mm, mm_slot); 1954 /* 1955 * Insert just behind the scanning cursor, to let the area settle 1956 * down a little. 1957 */ 1958 wakeup = list_empty(&khugepaged_scan.mm_head); 1959 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); 1960 spin_unlock(&khugepaged_mm_lock); 1961 1962 atomic_inc(&mm->mm_count); 1963 if (wakeup) 1964 wake_up_interruptible(&khugepaged_wait); 1965 1966 return 0; 1967 } 1968 1969 int khugepaged_enter_vma_merge(struct vm_area_struct *vma) 1970 { 1971 unsigned long hstart, hend; 1972 if (!vma->anon_vma) 1973 /* 1974 * Not yet faulted in so we will register later in the 1975 * page fault if needed. 1976 */ 1977 return 0; 1978 if (vma->vm_ops) 1979 /* khugepaged not yet working on file or special mappings */ 1980 return 0; 1981 VM_BUG_ON(vma->vm_flags & VM_NO_THP); 1982 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 1983 hend = vma->vm_end & HPAGE_PMD_MASK; 1984 if (hstart < hend) 1985 return khugepaged_enter(vma); 1986 return 0; 1987 } 1988 1989 void __khugepaged_exit(struct mm_struct *mm) 1990 { 1991 struct mm_slot *mm_slot; 1992 int free = 0; 1993 1994 spin_lock(&khugepaged_mm_lock); 1995 mm_slot = get_mm_slot(mm); 1996 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 1997 hash_del(&mm_slot->hash); 1998 list_del(&mm_slot->mm_node); 1999 free = 1; 2000 } 2001 spin_unlock(&khugepaged_mm_lock); 2002 2003 if (free) { 2004 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 2005 free_mm_slot(mm_slot); 2006 mmdrop(mm); 2007 } else if (mm_slot) { 2008 /* 2009 * This is required to serialize against 2010 * khugepaged_test_exit() (which is guaranteed to run 2011 * under mmap sem read mode). Stop here (after we 2012 * return all pagetables will be destroyed) until 2013 * khugepaged has finished working on the pagetables 2014 * under the mmap_sem. 2015 */ 2016 down_write(&mm->mmap_sem); 2017 up_write(&mm->mmap_sem); 2018 } 2019 } 2020 2021 static void release_pte_page(struct page *page) 2022 { 2023 /* 0 stands for page_is_file_cache(page) == false */ 2024 dec_zone_page_state(page, NR_ISOLATED_ANON + 0); 2025 unlock_page(page); 2026 putback_lru_page(page); 2027 } 2028 2029 static void release_pte_pages(pte_t *pte, pte_t *_pte) 2030 { 2031 while (--_pte >= pte) { 2032 pte_t pteval = *_pte; 2033 if (!pte_none(pteval)) 2034 release_pte_page(pte_page(pteval)); 2035 } 2036 } 2037 2038 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 2039 unsigned long address, 2040 pte_t *pte) 2041 { 2042 struct page *page; 2043 pte_t *_pte; 2044 int referenced = 0, none = 0; 2045 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; 2046 _pte++, address += PAGE_SIZE) { 2047 pte_t pteval = *_pte; 2048 if (pte_none(pteval)) { 2049 if (++none <= khugepaged_max_ptes_none) 2050 continue; 2051 else 2052 goto out; 2053 } 2054 if (!pte_present(pteval) || !pte_write(pteval)) 2055 goto out; 2056 page = vm_normal_page(vma, address, pteval); 2057 if (unlikely(!page)) 2058 goto out; 2059 2060 VM_BUG_ON(PageCompound(page)); 2061 BUG_ON(!PageAnon(page)); 2062 VM_BUG_ON(!PageSwapBacked(page)); 2063 2064 /* cannot use mapcount: can't collapse if there's a gup pin */ 2065 if (page_count(page) != 1) 2066 goto out; 2067 /* 2068 * We can do it before isolate_lru_page because the 2069 * page can't be freed from under us. NOTE: PG_lock 2070 * is needed to serialize against split_huge_page 2071 * when invoked from the VM. 2072 */ 2073 if (!trylock_page(page)) 2074 goto out; 2075 /* 2076 * Isolate the page to avoid collapsing an hugepage 2077 * currently in use by the VM. 2078 */ 2079 if (isolate_lru_page(page)) { 2080 unlock_page(page); 2081 goto out; 2082 } 2083 /* 0 stands for page_is_file_cache(page) == false */ 2084 inc_zone_page_state(page, NR_ISOLATED_ANON + 0); 2085 VM_BUG_ON(!PageLocked(page)); 2086 VM_BUG_ON(PageLRU(page)); 2087 2088 /* If there is no mapped pte young don't collapse the page */ 2089 if (pte_young(pteval) || PageReferenced(page) || 2090 mmu_notifier_test_young(vma->vm_mm, address)) 2091 referenced = 1; 2092 } 2093 if (likely(referenced)) 2094 return 1; 2095 out: 2096 release_pte_pages(pte, _pte); 2097 return 0; 2098 } 2099 2100 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 2101 struct vm_area_struct *vma, 2102 unsigned long address, 2103 spinlock_t *ptl) 2104 { 2105 pte_t *_pte; 2106 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) { 2107 pte_t pteval = *_pte; 2108 struct page *src_page; 2109 2110 if (pte_none(pteval)) { 2111 clear_user_highpage(page, address); 2112 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 2113 } else { 2114 src_page = pte_page(pteval); 2115 copy_user_highpage(page, src_page, address, vma); 2116 VM_BUG_ON(page_mapcount(src_page) != 1); 2117 release_pte_page(src_page); 2118 /* 2119 * ptl mostly unnecessary, but preempt has to 2120 * be disabled to update the per-cpu stats 2121 * inside page_remove_rmap(). 2122 */ 2123 spin_lock(ptl); 2124 /* 2125 * paravirt calls inside pte_clear here are 2126 * superfluous. 2127 */ 2128 pte_clear(vma->vm_mm, address, _pte); 2129 page_remove_rmap(src_page); 2130 spin_unlock(ptl); 2131 free_page_and_swap_cache(src_page); 2132 } 2133 2134 address += PAGE_SIZE; 2135 page++; 2136 } 2137 } 2138 2139 static void khugepaged_alloc_sleep(void) 2140 { 2141 wait_event_freezable_timeout(khugepaged_wait, false, 2142 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 2143 } 2144 2145 #ifdef CONFIG_NUMA 2146 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 2147 { 2148 if (IS_ERR(*hpage)) { 2149 if (!*wait) 2150 return false; 2151 2152 *wait = false; 2153 *hpage = NULL; 2154 khugepaged_alloc_sleep(); 2155 } else if (*hpage) { 2156 put_page(*hpage); 2157 *hpage = NULL; 2158 } 2159 2160 return true; 2161 } 2162 2163 static struct page 2164 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm, 2165 struct vm_area_struct *vma, unsigned long address, 2166 int node) 2167 { 2168 VM_BUG_ON(*hpage); 2169 /* 2170 * Allocate the page while the vma is still valid and under 2171 * the mmap_sem read mode so there is no memory allocation 2172 * later when we take the mmap_sem in write mode. This is more 2173 * friendly behavior (OTOH it may actually hide bugs) to 2174 * filesystems in userland with daemons allocating memory in 2175 * the userland I/O paths. Allocating memory with the 2176 * mmap_sem in read mode is good idea also to allow greater 2177 * scalability. 2178 */ 2179 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address, 2180 node, __GFP_OTHER_NODE); 2181 2182 /* 2183 * After allocating the hugepage, release the mmap_sem read lock in 2184 * preparation for taking it in write mode. 2185 */ 2186 up_read(&mm->mmap_sem); 2187 if (unlikely(!*hpage)) { 2188 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 2189 *hpage = ERR_PTR(-ENOMEM); 2190 return NULL; 2191 } 2192 2193 count_vm_event(THP_COLLAPSE_ALLOC); 2194 return *hpage; 2195 } 2196 #else 2197 static struct page *khugepaged_alloc_hugepage(bool *wait) 2198 { 2199 struct page *hpage; 2200 2201 do { 2202 hpage = alloc_hugepage(khugepaged_defrag()); 2203 if (!hpage) { 2204 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 2205 if (!*wait) 2206 return NULL; 2207 2208 *wait = false; 2209 khugepaged_alloc_sleep(); 2210 } else 2211 count_vm_event(THP_COLLAPSE_ALLOC); 2212 } while (unlikely(!hpage) && likely(khugepaged_enabled())); 2213 2214 return hpage; 2215 } 2216 2217 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 2218 { 2219 if (!*hpage) 2220 *hpage = khugepaged_alloc_hugepage(wait); 2221 2222 if (unlikely(!*hpage)) 2223 return false; 2224 2225 return true; 2226 } 2227 2228 static struct page 2229 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm, 2230 struct vm_area_struct *vma, unsigned long address, 2231 int node) 2232 { 2233 up_read(&mm->mmap_sem); 2234 VM_BUG_ON(!*hpage); 2235 return *hpage; 2236 } 2237 #endif 2238 2239 static bool hugepage_vma_check(struct vm_area_struct *vma) 2240 { 2241 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || 2242 (vma->vm_flags & VM_NOHUGEPAGE)) 2243 return false; 2244 2245 if (!vma->anon_vma || vma->vm_ops) 2246 return false; 2247 if (is_vma_temporary_stack(vma)) 2248 return false; 2249 VM_BUG_ON(vma->vm_flags & VM_NO_THP); 2250 return true; 2251 } 2252 2253 static void collapse_huge_page(struct mm_struct *mm, 2254 unsigned long address, 2255 struct page **hpage, 2256 struct vm_area_struct *vma, 2257 int node) 2258 { 2259 pmd_t *pmd, _pmd; 2260 pte_t *pte; 2261 pgtable_t pgtable; 2262 struct page *new_page; 2263 spinlock_t *ptl; 2264 int isolated; 2265 unsigned long hstart, hend; 2266 unsigned long mmun_start; /* For mmu_notifiers */ 2267 unsigned long mmun_end; /* For mmu_notifiers */ 2268 2269 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 2270 2271 /* release the mmap_sem read lock. */ 2272 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node); 2273 if (!new_page) 2274 return; 2275 2276 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) 2277 return; 2278 2279 /* 2280 * Prevent all access to pagetables with the exception of 2281 * gup_fast later hanlded by the ptep_clear_flush and the VM 2282 * handled by the anon_vma lock + PG_lock. 2283 */ 2284 down_write(&mm->mmap_sem); 2285 if (unlikely(khugepaged_test_exit(mm))) 2286 goto out; 2287 2288 vma = find_vma(mm, address); 2289 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2290 hend = vma->vm_end & HPAGE_PMD_MASK; 2291 if (address < hstart || address + HPAGE_PMD_SIZE > hend) 2292 goto out; 2293 if (!hugepage_vma_check(vma)) 2294 goto out; 2295 pmd = mm_find_pmd(mm, address); 2296 if (!pmd) 2297 goto out; 2298 if (pmd_trans_huge(*pmd)) 2299 goto out; 2300 2301 anon_vma_lock_write(vma->anon_vma); 2302 2303 pte = pte_offset_map(pmd, address); 2304 ptl = pte_lockptr(mm, pmd); 2305 2306 mmun_start = address; 2307 mmun_end = address + HPAGE_PMD_SIZE; 2308 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2309 spin_lock(&mm->page_table_lock); /* probably unnecessary */ 2310 /* 2311 * After this gup_fast can't run anymore. This also removes 2312 * any huge TLB entry from the CPU so we won't allow 2313 * huge and small TLB entries for the same virtual address 2314 * to avoid the risk of CPU bugs in that area. 2315 */ 2316 _pmd = pmdp_clear_flush(vma, address, pmd); 2317 spin_unlock(&mm->page_table_lock); 2318 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2319 2320 spin_lock(ptl); 2321 isolated = __collapse_huge_page_isolate(vma, address, pte); 2322 spin_unlock(ptl); 2323 2324 if (unlikely(!isolated)) { 2325 pte_unmap(pte); 2326 spin_lock(&mm->page_table_lock); 2327 BUG_ON(!pmd_none(*pmd)); 2328 /* 2329 * We can only use set_pmd_at when establishing 2330 * hugepmds and never for establishing regular pmds that 2331 * points to regular pagetables. Use pmd_populate for that 2332 */ 2333 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 2334 spin_unlock(&mm->page_table_lock); 2335 anon_vma_unlock_write(vma->anon_vma); 2336 goto out; 2337 } 2338 2339 /* 2340 * All pages are isolated and locked so anon_vma rmap 2341 * can't run anymore. 2342 */ 2343 anon_vma_unlock_write(vma->anon_vma); 2344 2345 __collapse_huge_page_copy(pte, new_page, vma, address, ptl); 2346 pte_unmap(pte); 2347 __SetPageUptodate(new_page); 2348 pgtable = pmd_pgtable(_pmd); 2349 2350 _pmd = mk_huge_pmd(new_page, vma); 2351 2352 /* 2353 * spin_lock() below is not the equivalent of smp_wmb(), so 2354 * this is needed to avoid the copy_huge_page writes to become 2355 * visible after the set_pmd_at() write. 2356 */ 2357 smp_wmb(); 2358 2359 spin_lock(&mm->page_table_lock); 2360 BUG_ON(!pmd_none(*pmd)); 2361 page_add_new_anon_rmap(new_page, vma, address); 2362 set_pmd_at(mm, address, pmd, _pmd); 2363 update_mmu_cache_pmd(vma, address, pmd); 2364 pgtable_trans_huge_deposit(mm, pgtable); 2365 spin_unlock(&mm->page_table_lock); 2366 2367 *hpage = NULL; 2368 2369 khugepaged_pages_collapsed++; 2370 out_up_write: 2371 up_write(&mm->mmap_sem); 2372 return; 2373 2374 out: 2375 mem_cgroup_uncharge_page(new_page); 2376 goto out_up_write; 2377 } 2378 2379 static int khugepaged_scan_pmd(struct mm_struct *mm, 2380 struct vm_area_struct *vma, 2381 unsigned long address, 2382 struct page **hpage) 2383 { 2384 pmd_t *pmd; 2385 pte_t *pte, *_pte; 2386 int ret = 0, referenced = 0, none = 0; 2387 struct page *page; 2388 unsigned long _address; 2389 spinlock_t *ptl; 2390 int node = NUMA_NO_NODE; 2391 2392 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 2393 2394 pmd = mm_find_pmd(mm, address); 2395 if (!pmd) 2396 goto out; 2397 if (pmd_trans_huge(*pmd)) 2398 goto out; 2399 2400 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2401 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; 2402 _pte++, _address += PAGE_SIZE) { 2403 pte_t pteval = *_pte; 2404 if (pte_none(pteval)) { 2405 if (++none <= khugepaged_max_ptes_none) 2406 continue; 2407 else 2408 goto out_unmap; 2409 } 2410 if (!pte_present(pteval) || !pte_write(pteval)) 2411 goto out_unmap; 2412 page = vm_normal_page(vma, _address, pteval); 2413 if (unlikely(!page)) 2414 goto out_unmap; 2415 /* 2416 * Chose the node of the first page. This could 2417 * be more sophisticated and look at more pages, 2418 * but isn't for now. 2419 */ 2420 if (node == NUMA_NO_NODE) 2421 node = page_to_nid(page); 2422 VM_BUG_ON(PageCompound(page)); 2423 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page)) 2424 goto out_unmap; 2425 /* cannot use mapcount: can't collapse if there's a gup pin */ 2426 if (page_count(page) != 1) 2427 goto out_unmap; 2428 if (pte_young(pteval) || PageReferenced(page) || 2429 mmu_notifier_test_young(vma->vm_mm, address)) 2430 referenced = 1; 2431 } 2432 if (referenced) 2433 ret = 1; 2434 out_unmap: 2435 pte_unmap_unlock(pte, ptl); 2436 if (ret) 2437 /* collapse_huge_page will return with the mmap_sem released */ 2438 collapse_huge_page(mm, address, hpage, vma, node); 2439 out: 2440 return ret; 2441 } 2442 2443 static void collect_mm_slot(struct mm_slot *mm_slot) 2444 { 2445 struct mm_struct *mm = mm_slot->mm; 2446 2447 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); 2448 2449 if (khugepaged_test_exit(mm)) { 2450 /* free mm_slot */ 2451 hash_del(&mm_slot->hash); 2452 list_del(&mm_slot->mm_node); 2453 2454 /* 2455 * Not strictly needed because the mm exited already. 2456 * 2457 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 2458 */ 2459 2460 /* khugepaged_mm_lock actually not necessary for the below */ 2461 free_mm_slot(mm_slot); 2462 mmdrop(mm); 2463 } 2464 } 2465 2466 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, 2467 struct page **hpage) 2468 __releases(&khugepaged_mm_lock) 2469 __acquires(&khugepaged_mm_lock) 2470 { 2471 struct mm_slot *mm_slot; 2472 struct mm_struct *mm; 2473 struct vm_area_struct *vma; 2474 int progress = 0; 2475 2476 VM_BUG_ON(!pages); 2477 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); 2478 2479 if (khugepaged_scan.mm_slot) 2480 mm_slot = khugepaged_scan.mm_slot; 2481 else { 2482 mm_slot = list_entry(khugepaged_scan.mm_head.next, 2483 struct mm_slot, mm_node); 2484 khugepaged_scan.address = 0; 2485 khugepaged_scan.mm_slot = mm_slot; 2486 } 2487 spin_unlock(&khugepaged_mm_lock); 2488 2489 mm = mm_slot->mm; 2490 down_read(&mm->mmap_sem); 2491 if (unlikely(khugepaged_test_exit(mm))) 2492 vma = NULL; 2493 else 2494 vma = find_vma(mm, khugepaged_scan.address); 2495 2496 progress++; 2497 for (; vma; vma = vma->vm_next) { 2498 unsigned long hstart, hend; 2499 2500 cond_resched(); 2501 if (unlikely(khugepaged_test_exit(mm))) { 2502 progress++; 2503 break; 2504 } 2505 if (!hugepage_vma_check(vma)) { 2506 skip: 2507 progress++; 2508 continue; 2509 } 2510 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2511 hend = vma->vm_end & HPAGE_PMD_MASK; 2512 if (hstart >= hend) 2513 goto skip; 2514 if (khugepaged_scan.address > hend) 2515 goto skip; 2516 if (khugepaged_scan.address < hstart) 2517 khugepaged_scan.address = hstart; 2518 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2519 2520 while (khugepaged_scan.address < hend) { 2521 int ret; 2522 cond_resched(); 2523 if (unlikely(khugepaged_test_exit(mm))) 2524 goto breakouterloop; 2525 2526 VM_BUG_ON(khugepaged_scan.address < hstart || 2527 khugepaged_scan.address + HPAGE_PMD_SIZE > 2528 hend); 2529 ret = khugepaged_scan_pmd(mm, vma, 2530 khugepaged_scan.address, 2531 hpage); 2532 /* move to next address */ 2533 khugepaged_scan.address += HPAGE_PMD_SIZE; 2534 progress += HPAGE_PMD_NR; 2535 if (ret) 2536 /* we released mmap_sem so break loop */ 2537 goto breakouterloop_mmap_sem; 2538 if (progress >= pages) 2539 goto breakouterloop; 2540 } 2541 } 2542 breakouterloop: 2543 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */ 2544 breakouterloop_mmap_sem: 2545 2546 spin_lock(&khugepaged_mm_lock); 2547 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2548 /* 2549 * Release the current mm_slot if this mm is about to die, or 2550 * if we scanned all vmas of this mm. 2551 */ 2552 if (khugepaged_test_exit(mm) || !vma) { 2553 /* 2554 * Make sure that if mm_users is reaching zero while 2555 * khugepaged runs here, khugepaged_exit will find 2556 * mm_slot not pointing to the exiting mm. 2557 */ 2558 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { 2559 khugepaged_scan.mm_slot = list_entry( 2560 mm_slot->mm_node.next, 2561 struct mm_slot, mm_node); 2562 khugepaged_scan.address = 0; 2563 } else { 2564 khugepaged_scan.mm_slot = NULL; 2565 khugepaged_full_scans++; 2566 } 2567 2568 collect_mm_slot(mm_slot); 2569 } 2570 2571 return progress; 2572 } 2573 2574 static int khugepaged_has_work(void) 2575 { 2576 return !list_empty(&khugepaged_scan.mm_head) && 2577 khugepaged_enabled(); 2578 } 2579 2580 static int khugepaged_wait_event(void) 2581 { 2582 return !list_empty(&khugepaged_scan.mm_head) || 2583 kthread_should_stop(); 2584 } 2585 2586 static void khugepaged_do_scan(void) 2587 { 2588 struct page *hpage = NULL; 2589 unsigned int progress = 0, pass_through_head = 0; 2590 unsigned int pages = khugepaged_pages_to_scan; 2591 bool wait = true; 2592 2593 barrier(); /* write khugepaged_pages_to_scan to local stack */ 2594 2595 while (progress < pages) { 2596 if (!khugepaged_prealloc_page(&hpage, &wait)) 2597 break; 2598 2599 cond_resched(); 2600 2601 if (unlikely(kthread_should_stop() || freezing(current))) 2602 break; 2603 2604 spin_lock(&khugepaged_mm_lock); 2605 if (!khugepaged_scan.mm_slot) 2606 pass_through_head++; 2607 if (khugepaged_has_work() && 2608 pass_through_head < 2) 2609 progress += khugepaged_scan_mm_slot(pages - progress, 2610 &hpage); 2611 else 2612 progress = pages; 2613 spin_unlock(&khugepaged_mm_lock); 2614 } 2615 2616 if (!IS_ERR_OR_NULL(hpage)) 2617 put_page(hpage); 2618 } 2619 2620 static void khugepaged_wait_work(void) 2621 { 2622 try_to_freeze(); 2623 2624 if (khugepaged_has_work()) { 2625 if (!khugepaged_scan_sleep_millisecs) 2626 return; 2627 2628 wait_event_freezable_timeout(khugepaged_wait, 2629 kthread_should_stop(), 2630 msecs_to_jiffies(khugepaged_scan_sleep_millisecs)); 2631 return; 2632 } 2633 2634 if (khugepaged_enabled()) 2635 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2636 } 2637 2638 static int khugepaged(void *none) 2639 { 2640 struct mm_slot *mm_slot; 2641 2642 set_freezable(); 2643 set_user_nice(current, 19); 2644 2645 while (!kthread_should_stop()) { 2646 khugepaged_do_scan(); 2647 khugepaged_wait_work(); 2648 } 2649 2650 spin_lock(&khugepaged_mm_lock); 2651 mm_slot = khugepaged_scan.mm_slot; 2652 khugepaged_scan.mm_slot = NULL; 2653 if (mm_slot) 2654 collect_mm_slot(mm_slot); 2655 spin_unlock(&khugepaged_mm_lock); 2656 return 0; 2657 } 2658 2659 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2660 unsigned long haddr, pmd_t *pmd) 2661 { 2662 struct mm_struct *mm = vma->vm_mm; 2663 pgtable_t pgtable; 2664 pmd_t _pmd; 2665 int i; 2666 2667 pmdp_clear_flush(vma, haddr, pmd); 2668 /* leave pmd empty until pte is filled */ 2669 2670 pgtable = pgtable_trans_huge_withdraw(mm); 2671 pmd_populate(mm, &_pmd, pgtable); 2672 2673 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 2674 pte_t *pte, entry; 2675 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 2676 entry = pte_mkspecial(entry); 2677 pte = pte_offset_map(&_pmd, haddr); 2678 VM_BUG_ON(!pte_none(*pte)); 2679 set_pte_at(mm, haddr, pte, entry); 2680 pte_unmap(pte); 2681 } 2682 smp_wmb(); /* make pte visible before pmd */ 2683 pmd_populate(mm, pmd, pgtable); 2684 put_huge_zero_page(); 2685 } 2686 2687 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address, 2688 pmd_t *pmd) 2689 { 2690 struct page *page; 2691 struct mm_struct *mm = vma->vm_mm; 2692 unsigned long haddr = address & HPAGE_PMD_MASK; 2693 unsigned long mmun_start; /* For mmu_notifiers */ 2694 unsigned long mmun_end; /* For mmu_notifiers */ 2695 2696 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE); 2697 2698 mmun_start = haddr; 2699 mmun_end = haddr + HPAGE_PMD_SIZE; 2700 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2701 spin_lock(&mm->page_table_lock); 2702 if (unlikely(!pmd_trans_huge(*pmd))) { 2703 spin_unlock(&mm->page_table_lock); 2704 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2705 return; 2706 } 2707 if (is_huge_zero_pmd(*pmd)) { 2708 __split_huge_zero_page_pmd(vma, haddr, pmd); 2709 spin_unlock(&mm->page_table_lock); 2710 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2711 return; 2712 } 2713 page = pmd_page(*pmd); 2714 VM_BUG_ON(!page_count(page)); 2715 get_page(page); 2716 spin_unlock(&mm->page_table_lock); 2717 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2718 2719 split_huge_page(page); 2720 2721 put_page(page); 2722 BUG_ON(pmd_trans_huge(*pmd)); 2723 } 2724 2725 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address, 2726 pmd_t *pmd) 2727 { 2728 struct vm_area_struct *vma; 2729 2730 vma = find_vma(mm, address); 2731 BUG_ON(vma == NULL); 2732 split_huge_page_pmd(vma, address, pmd); 2733 } 2734 2735 static void split_huge_page_address(struct mm_struct *mm, 2736 unsigned long address) 2737 { 2738 pmd_t *pmd; 2739 2740 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK)); 2741 2742 pmd = mm_find_pmd(mm, address); 2743 if (!pmd) 2744 return; 2745 /* 2746 * Caller holds the mmap_sem write mode, so a huge pmd cannot 2747 * materialize from under us. 2748 */ 2749 split_huge_page_pmd_mm(mm, address, pmd); 2750 } 2751 2752 void __vma_adjust_trans_huge(struct vm_area_struct *vma, 2753 unsigned long start, 2754 unsigned long end, 2755 long adjust_next) 2756 { 2757 /* 2758 * If the new start address isn't hpage aligned and it could 2759 * previously contain an hugepage: check if we need to split 2760 * an huge pmd. 2761 */ 2762 if (start & ~HPAGE_PMD_MASK && 2763 (start & HPAGE_PMD_MASK) >= vma->vm_start && 2764 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2765 split_huge_page_address(vma->vm_mm, start); 2766 2767 /* 2768 * If the new end address isn't hpage aligned and it could 2769 * previously contain an hugepage: check if we need to split 2770 * an huge pmd. 2771 */ 2772 if (end & ~HPAGE_PMD_MASK && 2773 (end & HPAGE_PMD_MASK) >= vma->vm_start && 2774 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2775 split_huge_page_address(vma->vm_mm, end); 2776 2777 /* 2778 * If we're also updating the vma->vm_next->vm_start, if the new 2779 * vm_next->vm_start isn't page aligned and it could previously 2780 * contain an hugepage: check if we need to split an huge pmd. 2781 */ 2782 if (adjust_next > 0) { 2783 struct vm_area_struct *next = vma->vm_next; 2784 unsigned long nstart = next->vm_start; 2785 nstart += adjust_next << PAGE_SHIFT; 2786 if (nstart & ~HPAGE_PMD_MASK && 2787 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 2788 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 2789 split_huge_page_address(next->vm_mm, nstart); 2790 } 2791 } 2792