xref: /openbmc/linux/mm/huge_memory.c (revision 37be287c)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
24 
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28 
29 /*
30  * By default transparent hugepage support is disabled in order that avoid
31  * to risk increase the memory footprint of applications without a guaranteed
32  * benefit. When transparent hugepage support is enabled, is for all mappings,
33  * and khugepaged scans all mappings.
34  * Defrag is invoked by khugepaged hugepage allocations and by page faults
35  * for all hugepage allocations.
36  */
37 unsigned long transparent_hugepage_flags __read_mostly =
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
39 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
40 #endif
41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
43 #endif
44 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
45 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
46 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
47 
48 /* default scan 8*512 pte (or vmas) every 30 second */
49 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
50 static unsigned int khugepaged_pages_collapsed;
51 static unsigned int khugepaged_full_scans;
52 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
53 /* during fragmentation poll the hugepage allocator once every minute */
54 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
55 static struct task_struct *khugepaged_thread __read_mostly;
56 static DEFINE_MUTEX(khugepaged_mutex);
57 static DEFINE_SPINLOCK(khugepaged_mm_lock);
58 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
59 /*
60  * default collapse hugepages if there is at least one pte mapped like
61  * it would have happened if the vma was large enough during page
62  * fault.
63  */
64 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
65 
66 static int khugepaged(void *none);
67 static int khugepaged_slab_init(void);
68 
69 #define MM_SLOTS_HASH_BITS 10
70 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
71 
72 static struct kmem_cache *mm_slot_cache __read_mostly;
73 
74 /**
75  * struct mm_slot - hash lookup from mm to mm_slot
76  * @hash: hash collision list
77  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78  * @mm: the mm that this information is valid for
79  */
80 struct mm_slot {
81 	struct hlist_node hash;
82 	struct list_head mm_node;
83 	struct mm_struct *mm;
84 };
85 
86 /**
87  * struct khugepaged_scan - cursor for scanning
88  * @mm_head: the head of the mm list to scan
89  * @mm_slot: the current mm_slot we are scanning
90  * @address: the next address inside that to be scanned
91  *
92  * There is only the one khugepaged_scan instance of this cursor structure.
93  */
94 struct khugepaged_scan {
95 	struct list_head mm_head;
96 	struct mm_slot *mm_slot;
97 	unsigned long address;
98 };
99 static struct khugepaged_scan khugepaged_scan = {
100 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
101 };
102 
103 
104 static int set_recommended_min_free_kbytes(void)
105 {
106 	struct zone *zone;
107 	int nr_zones = 0;
108 	unsigned long recommended_min;
109 
110 	if (!khugepaged_enabled())
111 		return 0;
112 
113 	for_each_populated_zone(zone)
114 		nr_zones++;
115 
116 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 	recommended_min = pageblock_nr_pages * nr_zones * 2;
118 
119 	/*
120 	 * Make sure that on average at least two pageblocks are almost free
121 	 * of another type, one for a migratetype to fall back to and a
122 	 * second to avoid subsequent fallbacks of other types There are 3
123 	 * MIGRATE_TYPES we care about.
124 	 */
125 	recommended_min += pageblock_nr_pages * nr_zones *
126 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
127 
128 	/* don't ever allow to reserve more than 5% of the lowmem */
129 	recommended_min = min(recommended_min,
130 			      (unsigned long) nr_free_buffer_pages() / 20);
131 	recommended_min <<= (PAGE_SHIFT-10);
132 
133 	if (recommended_min > min_free_kbytes) {
134 		if (user_min_free_kbytes >= 0)
135 			pr_info("raising min_free_kbytes from %d to %lu "
136 				"to help transparent hugepage allocations\n",
137 				min_free_kbytes, recommended_min);
138 
139 		min_free_kbytes = recommended_min;
140 	}
141 	setup_per_zone_wmarks();
142 	return 0;
143 }
144 late_initcall(set_recommended_min_free_kbytes);
145 
146 static int start_khugepaged(void)
147 {
148 	int err = 0;
149 	if (khugepaged_enabled()) {
150 		if (!khugepaged_thread)
151 			khugepaged_thread = kthread_run(khugepaged, NULL,
152 							"khugepaged");
153 		if (unlikely(IS_ERR(khugepaged_thread))) {
154 			printk(KERN_ERR
155 			       "khugepaged: kthread_run(khugepaged) failed\n");
156 			err = PTR_ERR(khugepaged_thread);
157 			khugepaged_thread = NULL;
158 		}
159 
160 		if (!list_empty(&khugepaged_scan.mm_head))
161 			wake_up_interruptible(&khugepaged_wait);
162 
163 		set_recommended_min_free_kbytes();
164 	} else if (khugepaged_thread) {
165 		kthread_stop(khugepaged_thread);
166 		khugepaged_thread = NULL;
167 	}
168 
169 	return err;
170 }
171 
172 static atomic_t huge_zero_refcount;
173 static struct page *huge_zero_page __read_mostly;
174 
175 static inline bool is_huge_zero_page(struct page *page)
176 {
177 	return ACCESS_ONCE(huge_zero_page) == page;
178 }
179 
180 static inline bool is_huge_zero_pmd(pmd_t pmd)
181 {
182 	return is_huge_zero_page(pmd_page(pmd));
183 }
184 
185 static struct page *get_huge_zero_page(void)
186 {
187 	struct page *zero_page;
188 retry:
189 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
190 		return ACCESS_ONCE(huge_zero_page);
191 
192 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
193 			HPAGE_PMD_ORDER);
194 	if (!zero_page) {
195 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
196 		return NULL;
197 	}
198 	count_vm_event(THP_ZERO_PAGE_ALLOC);
199 	preempt_disable();
200 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
201 		preempt_enable();
202 		__free_page(zero_page);
203 		goto retry;
204 	}
205 
206 	/* We take additional reference here. It will be put back by shrinker */
207 	atomic_set(&huge_zero_refcount, 2);
208 	preempt_enable();
209 	return ACCESS_ONCE(huge_zero_page);
210 }
211 
212 static void put_huge_zero_page(void)
213 {
214 	/*
215 	 * Counter should never go to zero here. Only shrinker can put
216 	 * last reference.
217 	 */
218 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
219 }
220 
221 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
222 					struct shrink_control *sc)
223 {
224 	/* we can free zero page only if last reference remains */
225 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
226 }
227 
228 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
229 				       struct shrink_control *sc)
230 {
231 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
232 		struct page *zero_page = xchg(&huge_zero_page, NULL);
233 		BUG_ON(zero_page == NULL);
234 		__free_page(zero_page);
235 		return HPAGE_PMD_NR;
236 	}
237 
238 	return 0;
239 }
240 
241 static struct shrinker huge_zero_page_shrinker = {
242 	.count_objects = shrink_huge_zero_page_count,
243 	.scan_objects = shrink_huge_zero_page_scan,
244 	.seeks = DEFAULT_SEEKS,
245 };
246 
247 #ifdef CONFIG_SYSFS
248 
249 static ssize_t double_flag_show(struct kobject *kobj,
250 				struct kobj_attribute *attr, char *buf,
251 				enum transparent_hugepage_flag enabled,
252 				enum transparent_hugepage_flag req_madv)
253 {
254 	if (test_bit(enabled, &transparent_hugepage_flags)) {
255 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
256 		return sprintf(buf, "[always] madvise never\n");
257 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
258 		return sprintf(buf, "always [madvise] never\n");
259 	else
260 		return sprintf(buf, "always madvise [never]\n");
261 }
262 static ssize_t double_flag_store(struct kobject *kobj,
263 				 struct kobj_attribute *attr,
264 				 const char *buf, size_t count,
265 				 enum transparent_hugepage_flag enabled,
266 				 enum transparent_hugepage_flag req_madv)
267 {
268 	if (!memcmp("always", buf,
269 		    min(sizeof("always")-1, count))) {
270 		set_bit(enabled, &transparent_hugepage_flags);
271 		clear_bit(req_madv, &transparent_hugepage_flags);
272 	} else if (!memcmp("madvise", buf,
273 			   min(sizeof("madvise")-1, count))) {
274 		clear_bit(enabled, &transparent_hugepage_flags);
275 		set_bit(req_madv, &transparent_hugepage_flags);
276 	} else if (!memcmp("never", buf,
277 			   min(sizeof("never")-1, count))) {
278 		clear_bit(enabled, &transparent_hugepage_flags);
279 		clear_bit(req_madv, &transparent_hugepage_flags);
280 	} else
281 		return -EINVAL;
282 
283 	return count;
284 }
285 
286 static ssize_t enabled_show(struct kobject *kobj,
287 			    struct kobj_attribute *attr, char *buf)
288 {
289 	return double_flag_show(kobj, attr, buf,
290 				TRANSPARENT_HUGEPAGE_FLAG,
291 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
292 }
293 static ssize_t enabled_store(struct kobject *kobj,
294 			     struct kobj_attribute *attr,
295 			     const char *buf, size_t count)
296 {
297 	ssize_t ret;
298 
299 	ret = double_flag_store(kobj, attr, buf, count,
300 				TRANSPARENT_HUGEPAGE_FLAG,
301 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
302 
303 	if (ret > 0) {
304 		int err;
305 
306 		mutex_lock(&khugepaged_mutex);
307 		err = start_khugepaged();
308 		mutex_unlock(&khugepaged_mutex);
309 
310 		if (err)
311 			ret = err;
312 	}
313 
314 	return ret;
315 }
316 static struct kobj_attribute enabled_attr =
317 	__ATTR(enabled, 0644, enabled_show, enabled_store);
318 
319 static ssize_t single_flag_show(struct kobject *kobj,
320 				struct kobj_attribute *attr, char *buf,
321 				enum transparent_hugepage_flag flag)
322 {
323 	return sprintf(buf, "%d\n",
324 		       !!test_bit(flag, &transparent_hugepage_flags));
325 }
326 
327 static ssize_t single_flag_store(struct kobject *kobj,
328 				 struct kobj_attribute *attr,
329 				 const char *buf, size_t count,
330 				 enum transparent_hugepage_flag flag)
331 {
332 	unsigned long value;
333 	int ret;
334 
335 	ret = kstrtoul(buf, 10, &value);
336 	if (ret < 0)
337 		return ret;
338 	if (value > 1)
339 		return -EINVAL;
340 
341 	if (value)
342 		set_bit(flag, &transparent_hugepage_flags);
343 	else
344 		clear_bit(flag, &transparent_hugepage_flags);
345 
346 	return count;
347 }
348 
349 /*
350  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
351  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
352  * memory just to allocate one more hugepage.
353  */
354 static ssize_t defrag_show(struct kobject *kobj,
355 			   struct kobj_attribute *attr, char *buf)
356 {
357 	return double_flag_show(kobj, attr, buf,
358 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
359 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
360 }
361 static ssize_t defrag_store(struct kobject *kobj,
362 			    struct kobj_attribute *attr,
363 			    const char *buf, size_t count)
364 {
365 	return double_flag_store(kobj, attr, buf, count,
366 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
367 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
368 }
369 static struct kobj_attribute defrag_attr =
370 	__ATTR(defrag, 0644, defrag_show, defrag_store);
371 
372 static ssize_t use_zero_page_show(struct kobject *kobj,
373 		struct kobj_attribute *attr, char *buf)
374 {
375 	return single_flag_show(kobj, attr, buf,
376 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static ssize_t use_zero_page_store(struct kobject *kobj,
379 		struct kobj_attribute *attr, const char *buf, size_t count)
380 {
381 	return single_flag_store(kobj, attr, buf, count,
382 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383 }
384 static struct kobj_attribute use_zero_page_attr =
385 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
386 #ifdef CONFIG_DEBUG_VM
387 static ssize_t debug_cow_show(struct kobject *kobj,
388 				struct kobj_attribute *attr, char *buf)
389 {
390 	return single_flag_show(kobj, attr, buf,
391 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
392 }
393 static ssize_t debug_cow_store(struct kobject *kobj,
394 			       struct kobj_attribute *attr,
395 			       const char *buf, size_t count)
396 {
397 	return single_flag_store(kobj, attr, buf, count,
398 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
399 }
400 static struct kobj_attribute debug_cow_attr =
401 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
402 #endif /* CONFIG_DEBUG_VM */
403 
404 static struct attribute *hugepage_attr[] = {
405 	&enabled_attr.attr,
406 	&defrag_attr.attr,
407 	&use_zero_page_attr.attr,
408 #ifdef CONFIG_DEBUG_VM
409 	&debug_cow_attr.attr,
410 #endif
411 	NULL,
412 };
413 
414 static struct attribute_group hugepage_attr_group = {
415 	.attrs = hugepage_attr,
416 };
417 
418 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
419 					 struct kobj_attribute *attr,
420 					 char *buf)
421 {
422 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
423 }
424 
425 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
426 					  struct kobj_attribute *attr,
427 					  const char *buf, size_t count)
428 {
429 	unsigned long msecs;
430 	int err;
431 
432 	err = kstrtoul(buf, 10, &msecs);
433 	if (err || msecs > UINT_MAX)
434 		return -EINVAL;
435 
436 	khugepaged_scan_sleep_millisecs = msecs;
437 	wake_up_interruptible(&khugepaged_wait);
438 
439 	return count;
440 }
441 static struct kobj_attribute scan_sleep_millisecs_attr =
442 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
443 	       scan_sleep_millisecs_store);
444 
445 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
446 					  struct kobj_attribute *attr,
447 					  char *buf)
448 {
449 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
450 }
451 
452 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
453 					   struct kobj_attribute *attr,
454 					   const char *buf, size_t count)
455 {
456 	unsigned long msecs;
457 	int err;
458 
459 	err = kstrtoul(buf, 10, &msecs);
460 	if (err || msecs > UINT_MAX)
461 		return -EINVAL;
462 
463 	khugepaged_alloc_sleep_millisecs = msecs;
464 	wake_up_interruptible(&khugepaged_wait);
465 
466 	return count;
467 }
468 static struct kobj_attribute alloc_sleep_millisecs_attr =
469 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
470 	       alloc_sleep_millisecs_store);
471 
472 static ssize_t pages_to_scan_show(struct kobject *kobj,
473 				  struct kobj_attribute *attr,
474 				  char *buf)
475 {
476 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
477 }
478 static ssize_t pages_to_scan_store(struct kobject *kobj,
479 				   struct kobj_attribute *attr,
480 				   const char *buf, size_t count)
481 {
482 	int err;
483 	unsigned long pages;
484 
485 	err = kstrtoul(buf, 10, &pages);
486 	if (err || !pages || pages > UINT_MAX)
487 		return -EINVAL;
488 
489 	khugepaged_pages_to_scan = pages;
490 
491 	return count;
492 }
493 static struct kobj_attribute pages_to_scan_attr =
494 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
495 	       pages_to_scan_store);
496 
497 static ssize_t pages_collapsed_show(struct kobject *kobj,
498 				    struct kobj_attribute *attr,
499 				    char *buf)
500 {
501 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
502 }
503 static struct kobj_attribute pages_collapsed_attr =
504 	__ATTR_RO(pages_collapsed);
505 
506 static ssize_t full_scans_show(struct kobject *kobj,
507 			       struct kobj_attribute *attr,
508 			       char *buf)
509 {
510 	return sprintf(buf, "%u\n", khugepaged_full_scans);
511 }
512 static struct kobj_attribute full_scans_attr =
513 	__ATTR_RO(full_scans);
514 
515 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
516 				      struct kobj_attribute *attr, char *buf)
517 {
518 	return single_flag_show(kobj, attr, buf,
519 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
520 }
521 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
522 				       struct kobj_attribute *attr,
523 				       const char *buf, size_t count)
524 {
525 	return single_flag_store(kobj, attr, buf, count,
526 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
527 }
528 static struct kobj_attribute khugepaged_defrag_attr =
529 	__ATTR(defrag, 0644, khugepaged_defrag_show,
530 	       khugepaged_defrag_store);
531 
532 /*
533  * max_ptes_none controls if khugepaged should collapse hugepages over
534  * any unmapped ptes in turn potentially increasing the memory
535  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
536  * reduce the available free memory in the system as it
537  * runs. Increasing max_ptes_none will instead potentially reduce the
538  * free memory in the system during the khugepaged scan.
539  */
540 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
541 					     struct kobj_attribute *attr,
542 					     char *buf)
543 {
544 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
545 }
546 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
547 					      struct kobj_attribute *attr,
548 					      const char *buf, size_t count)
549 {
550 	int err;
551 	unsigned long max_ptes_none;
552 
553 	err = kstrtoul(buf, 10, &max_ptes_none);
554 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
555 		return -EINVAL;
556 
557 	khugepaged_max_ptes_none = max_ptes_none;
558 
559 	return count;
560 }
561 static struct kobj_attribute khugepaged_max_ptes_none_attr =
562 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
563 	       khugepaged_max_ptes_none_store);
564 
565 static struct attribute *khugepaged_attr[] = {
566 	&khugepaged_defrag_attr.attr,
567 	&khugepaged_max_ptes_none_attr.attr,
568 	&pages_to_scan_attr.attr,
569 	&pages_collapsed_attr.attr,
570 	&full_scans_attr.attr,
571 	&scan_sleep_millisecs_attr.attr,
572 	&alloc_sleep_millisecs_attr.attr,
573 	NULL,
574 };
575 
576 static struct attribute_group khugepaged_attr_group = {
577 	.attrs = khugepaged_attr,
578 	.name = "khugepaged",
579 };
580 
581 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
582 {
583 	int err;
584 
585 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
586 	if (unlikely(!*hugepage_kobj)) {
587 		printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
588 		return -ENOMEM;
589 	}
590 
591 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
592 	if (err) {
593 		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
594 		goto delete_obj;
595 	}
596 
597 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
598 	if (err) {
599 		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
600 		goto remove_hp_group;
601 	}
602 
603 	return 0;
604 
605 remove_hp_group:
606 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
607 delete_obj:
608 	kobject_put(*hugepage_kobj);
609 	return err;
610 }
611 
612 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
613 {
614 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
615 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
616 	kobject_put(hugepage_kobj);
617 }
618 #else
619 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
620 {
621 	return 0;
622 }
623 
624 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
625 {
626 }
627 #endif /* CONFIG_SYSFS */
628 
629 static int __init hugepage_init(void)
630 {
631 	int err;
632 	struct kobject *hugepage_kobj;
633 
634 	if (!has_transparent_hugepage()) {
635 		transparent_hugepage_flags = 0;
636 		return -EINVAL;
637 	}
638 
639 	err = hugepage_init_sysfs(&hugepage_kobj);
640 	if (err)
641 		return err;
642 
643 	err = khugepaged_slab_init();
644 	if (err)
645 		goto out;
646 
647 	register_shrinker(&huge_zero_page_shrinker);
648 
649 	/*
650 	 * By default disable transparent hugepages on smaller systems,
651 	 * where the extra memory used could hurt more than TLB overhead
652 	 * is likely to save.  The admin can still enable it through /sys.
653 	 */
654 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
655 		transparent_hugepage_flags = 0;
656 
657 	start_khugepaged();
658 
659 	return 0;
660 out:
661 	hugepage_exit_sysfs(hugepage_kobj);
662 	return err;
663 }
664 subsys_initcall(hugepage_init);
665 
666 static int __init setup_transparent_hugepage(char *str)
667 {
668 	int ret = 0;
669 	if (!str)
670 		goto out;
671 	if (!strcmp(str, "always")) {
672 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 			&transparent_hugepage_flags);
674 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 			  &transparent_hugepage_flags);
676 		ret = 1;
677 	} else if (!strcmp(str, "madvise")) {
678 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 			  &transparent_hugepage_flags);
680 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 			&transparent_hugepage_flags);
682 		ret = 1;
683 	} else if (!strcmp(str, "never")) {
684 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
685 			  &transparent_hugepage_flags);
686 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
687 			  &transparent_hugepage_flags);
688 		ret = 1;
689 	}
690 out:
691 	if (!ret)
692 		printk(KERN_WARNING
693 		       "transparent_hugepage= cannot parse, ignored\n");
694 	return ret;
695 }
696 __setup("transparent_hugepage=", setup_transparent_hugepage);
697 
698 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
699 {
700 	if (likely(vma->vm_flags & VM_WRITE))
701 		pmd = pmd_mkwrite(pmd);
702 	return pmd;
703 }
704 
705 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
706 {
707 	pmd_t entry;
708 	entry = mk_pmd(page, prot);
709 	entry = pmd_mkhuge(entry);
710 	return entry;
711 }
712 
713 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
714 					struct vm_area_struct *vma,
715 					unsigned long haddr, pmd_t *pmd,
716 					struct page *page)
717 {
718 	pgtable_t pgtable;
719 	spinlock_t *ptl;
720 
721 	VM_BUG_ON_PAGE(!PageCompound(page), page);
722 	pgtable = pte_alloc_one(mm, haddr);
723 	if (unlikely(!pgtable))
724 		return VM_FAULT_OOM;
725 
726 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
727 	/*
728 	 * The memory barrier inside __SetPageUptodate makes sure that
729 	 * clear_huge_page writes become visible before the set_pmd_at()
730 	 * write.
731 	 */
732 	__SetPageUptodate(page);
733 
734 	ptl = pmd_lock(mm, pmd);
735 	if (unlikely(!pmd_none(*pmd))) {
736 		spin_unlock(ptl);
737 		mem_cgroup_uncharge_page(page);
738 		put_page(page);
739 		pte_free(mm, pgtable);
740 	} else {
741 		pmd_t entry;
742 		entry = mk_huge_pmd(page, vma->vm_page_prot);
743 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
744 		page_add_new_anon_rmap(page, vma, haddr);
745 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
746 		set_pmd_at(mm, haddr, pmd, entry);
747 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
748 		atomic_long_inc(&mm->nr_ptes);
749 		spin_unlock(ptl);
750 	}
751 
752 	return 0;
753 }
754 
755 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
756 {
757 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
758 }
759 
760 static inline struct page *alloc_hugepage_vma(int defrag,
761 					      struct vm_area_struct *vma,
762 					      unsigned long haddr, int nd,
763 					      gfp_t extra_gfp)
764 {
765 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
766 			       HPAGE_PMD_ORDER, vma, haddr, nd);
767 }
768 
769 /* Caller must hold page table lock. */
770 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
771 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
772 		struct page *zero_page)
773 {
774 	pmd_t entry;
775 	if (!pmd_none(*pmd))
776 		return false;
777 	entry = mk_pmd(zero_page, vma->vm_page_prot);
778 	entry = pmd_wrprotect(entry);
779 	entry = pmd_mkhuge(entry);
780 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
781 	set_pmd_at(mm, haddr, pmd, entry);
782 	atomic_long_inc(&mm->nr_ptes);
783 	return true;
784 }
785 
786 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
787 			       unsigned long address, pmd_t *pmd,
788 			       unsigned int flags)
789 {
790 	struct page *page;
791 	unsigned long haddr = address & HPAGE_PMD_MASK;
792 
793 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
794 		return VM_FAULT_FALLBACK;
795 	if (unlikely(anon_vma_prepare(vma)))
796 		return VM_FAULT_OOM;
797 	if (unlikely(khugepaged_enter(vma)))
798 		return VM_FAULT_OOM;
799 	if (!(flags & FAULT_FLAG_WRITE) &&
800 			transparent_hugepage_use_zero_page()) {
801 		spinlock_t *ptl;
802 		pgtable_t pgtable;
803 		struct page *zero_page;
804 		bool set;
805 		pgtable = pte_alloc_one(mm, haddr);
806 		if (unlikely(!pgtable))
807 			return VM_FAULT_OOM;
808 		zero_page = get_huge_zero_page();
809 		if (unlikely(!zero_page)) {
810 			pte_free(mm, pgtable);
811 			count_vm_event(THP_FAULT_FALLBACK);
812 			return VM_FAULT_FALLBACK;
813 		}
814 		ptl = pmd_lock(mm, pmd);
815 		set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
816 				zero_page);
817 		spin_unlock(ptl);
818 		if (!set) {
819 			pte_free(mm, pgtable);
820 			put_huge_zero_page();
821 		}
822 		return 0;
823 	}
824 	page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
825 			vma, haddr, numa_node_id(), 0);
826 	if (unlikely(!page)) {
827 		count_vm_event(THP_FAULT_FALLBACK);
828 		return VM_FAULT_FALLBACK;
829 	}
830 	if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
831 		put_page(page);
832 		count_vm_event(THP_FAULT_FALLBACK);
833 		return VM_FAULT_FALLBACK;
834 	}
835 	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
836 		mem_cgroup_uncharge_page(page);
837 		put_page(page);
838 		count_vm_event(THP_FAULT_FALLBACK);
839 		return VM_FAULT_FALLBACK;
840 	}
841 
842 	count_vm_event(THP_FAULT_ALLOC);
843 	return 0;
844 }
845 
846 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
847 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
848 		  struct vm_area_struct *vma)
849 {
850 	spinlock_t *dst_ptl, *src_ptl;
851 	struct page *src_page;
852 	pmd_t pmd;
853 	pgtable_t pgtable;
854 	int ret;
855 
856 	ret = -ENOMEM;
857 	pgtable = pte_alloc_one(dst_mm, addr);
858 	if (unlikely(!pgtable))
859 		goto out;
860 
861 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
862 	src_ptl = pmd_lockptr(src_mm, src_pmd);
863 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
864 
865 	ret = -EAGAIN;
866 	pmd = *src_pmd;
867 	if (unlikely(!pmd_trans_huge(pmd))) {
868 		pte_free(dst_mm, pgtable);
869 		goto out_unlock;
870 	}
871 	/*
872 	 * When page table lock is held, the huge zero pmd should not be
873 	 * under splitting since we don't split the page itself, only pmd to
874 	 * a page table.
875 	 */
876 	if (is_huge_zero_pmd(pmd)) {
877 		struct page *zero_page;
878 		bool set;
879 		/*
880 		 * get_huge_zero_page() will never allocate a new page here,
881 		 * since we already have a zero page to copy. It just takes a
882 		 * reference.
883 		 */
884 		zero_page = get_huge_zero_page();
885 		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
886 				zero_page);
887 		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
888 		ret = 0;
889 		goto out_unlock;
890 	}
891 
892 	if (unlikely(pmd_trans_splitting(pmd))) {
893 		/* split huge page running from under us */
894 		spin_unlock(src_ptl);
895 		spin_unlock(dst_ptl);
896 		pte_free(dst_mm, pgtable);
897 
898 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
899 		goto out;
900 	}
901 	src_page = pmd_page(pmd);
902 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
903 	get_page(src_page);
904 	page_dup_rmap(src_page);
905 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
906 
907 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
908 	pmd = pmd_mkold(pmd_wrprotect(pmd));
909 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
910 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
911 	atomic_long_inc(&dst_mm->nr_ptes);
912 
913 	ret = 0;
914 out_unlock:
915 	spin_unlock(src_ptl);
916 	spin_unlock(dst_ptl);
917 out:
918 	return ret;
919 }
920 
921 void huge_pmd_set_accessed(struct mm_struct *mm,
922 			   struct vm_area_struct *vma,
923 			   unsigned long address,
924 			   pmd_t *pmd, pmd_t orig_pmd,
925 			   int dirty)
926 {
927 	spinlock_t *ptl;
928 	pmd_t entry;
929 	unsigned long haddr;
930 
931 	ptl = pmd_lock(mm, pmd);
932 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
933 		goto unlock;
934 
935 	entry = pmd_mkyoung(orig_pmd);
936 	haddr = address & HPAGE_PMD_MASK;
937 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
938 		update_mmu_cache_pmd(vma, address, pmd);
939 
940 unlock:
941 	spin_unlock(ptl);
942 }
943 
944 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
945 		struct vm_area_struct *vma, unsigned long address,
946 		pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
947 {
948 	spinlock_t *ptl;
949 	pgtable_t pgtable;
950 	pmd_t _pmd;
951 	struct page *page;
952 	int i, ret = 0;
953 	unsigned long mmun_start;	/* For mmu_notifiers */
954 	unsigned long mmun_end;		/* For mmu_notifiers */
955 
956 	page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
957 	if (!page) {
958 		ret |= VM_FAULT_OOM;
959 		goto out;
960 	}
961 
962 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
963 		put_page(page);
964 		ret |= VM_FAULT_OOM;
965 		goto out;
966 	}
967 
968 	clear_user_highpage(page, address);
969 	__SetPageUptodate(page);
970 
971 	mmun_start = haddr;
972 	mmun_end   = haddr + HPAGE_PMD_SIZE;
973 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
974 
975 	ptl = pmd_lock(mm, pmd);
976 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
977 		goto out_free_page;
978 
979 	pmdp_clear_flush(vma, haddr, pmd);
980 	/* leave pmd empty until pte is filled */
981 
982 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
983 	pmd_populate(mm, &_pmd, pgtable);
984 
985 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
986 		pte_t *pte, entry;
987 		if (haddr == (address & PAGE_MASK)) {
988 			entry = mk_pte(page, vma->vm_page_prot);
989 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
990 			page_add_new_anon_rmap(page, vma, haddr);
991 		} else {
992 			entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
993 			entry = pte_mkspecial(entry);
994 		}
995 		pte = pte_offset_map(&_pmd, haddr);
996 		VM_BUG_ON(!pte_none(*pte));
997 		set_pte_at(mm, haddr, pte, entry);
998 		pte_unmap(pte);
999 	}
1000 	smp_wmb(); /* make pte visible before pmd */
1001 	pmd_populate(mm, pmd, pgtable);
1002 	spin_unlock(ptl);
1003 	put_huge_zero_page();
1004 	inc_mm_counter(mm, MM_ANONPAGES);
1005 
1006 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1007 
1008 	ret |= VM_FAULT_WRITE;
1009 out:
1010 	return ret;
1011 out_free_page:
1012 	spin_unlock(ptl);
1013 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1014 	mem_cgroup_uncharge_page(page);
1015 	put_page(page);
1016 	goto out;
1017 }
1018 
1019 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1020 					struct vm_area_struct *vma,
1021 					unsigned long address,
1022 					pmd_t *pmd, pmd_t orig_pmd,
1023 					struct page *page,
1024 					unsigned long haddr)
1025 {
1026 	spinlock_t *ptl;
1027 	pgtable_t pgtable;
1028 	pmd_t _pmd;
1029 	int ret = 0, i;
1030 	struct page **pages;
1031 	unsigned long mmun_start;	/* For mmu_notifiers */
1032 	unsigned long mmun_end;		/* For mmu_notifiers */
1033 
1034 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1035 			GFP_KERNEL);
1036 	if (unlikely(!pages)) {
1037 		ret |= VM_FAULT_OOM;
1038 		goto out;
1039 	}
1040 
1041 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1042 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1043 					       __GFP_OTHER_NODE,
1044 					       vma, address, page_to_nid(page));
1045 		if (unlikely(!pages[i] ||
1046 			     mem_cgroup_newpage_charge(pages[i], mm,
1047 						       GFP_KERNEL))) {
1048 			if (pages[i])
1049 				put_page(pages[i]);
1050 			mem_cgroup_uncharge_start();
1051 			while (--i >= 0) {
1052 				mem_cgroup_uncharge_page(pages[i]);
1053 				put_page(pages[i]);
1054 			}
1055 			mem_cgroup_uncharge_end();
1056 			kfree(pages);
1057 			ret |= VM_FAULT_OOM;
1058 			goto out;
1059 		}
1060 	}
1061 
1062 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1063 		copy_user_highpage(pages[i], page + i,
1064 				   haddr + PAGE_SIZE * i, vma);
1065 		__SetPageUptodate(pages[i]);
1066 		cond_resched();
1067 	}
1068 
1069 	mmun_start = haddr;
1070 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1071 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1072 
1073 	ptl = pmd_lock(mm, pmd);
1074 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1075 		goto out_free_pages;
1076 	VM_BUG_ON_PAGE(!PageHead(page), page);
1077 
1078 	pmdp_clear_flush(vma, haddr, pmd);
1079 	/* leave pmd empty until pte is filled */
1080 
1081 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1082 	pmd_populate(mm, &_pmd, pgtable);
1083 
1084 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1085 		pte_t *pte, entry;
1086 		entry = mk_pte(pages[i], vma->vm_page_prot);
1087 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1088 		page_add_new_anon_rmap(pages[i], vma, haddr);
1089 		pte = pte_offset_map(&_pmd, haddr);
1090 		VM_BUG_ON(!pte_none(*pte));
1091 		set_pte_at(mm, haddr, pte, entry);
1092 		pte_unmap(pte);
1093 	}
1094 	kfree(pages);
1095 
1096 	smp_wmb(); /* make pte visible before pmd */
1097 	pmd_populate(mm, pmd, pgtable);
1098 	page_remove_rmap(page);
1099 	spin_unlock(ptl);
1100 
1101 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1102 
1103 	ret |= VM_FAULT_WRITE;
1104 	put_page(page);
1105 
1106 out:
1107 	return ret;
1108 
1109 out_free_pages:
1110 	spin_unlock(ptl);
1111 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1112 	mem_cgroup_uncharge_start();
1113 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1114 		mem_cgroup_uncharge_page(pages[i]);
1115 		put_page(pages[i]);
1116 	}
1117 	mem_cgroup_uncharge_end();
1118 	kfree(pages);
1119 	goto out;
1120 }
1121 
1122 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1123 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1124 {
1125 	spinlock_t *ptl;
1126 	int ret = 0;
1127 	struct page *page = NULL, *new_page;
1128 	unsigned long haddr;
1129 	unsigned long mmun_start;	/* For mmu_notifiers */
1130 	unsigned long mmun_end;		/* For mmu_notifiers */
1131 
1132 	ptl = pmd_lockptr(mm, pmd);
1133 	VM_BUG_ON(!vma->anon_vma);
1134 	haddr = address & HPAGE_PMD_MASK;
1135 	if (is_huge_zero_pmd(orig_pmd))
1136 		goto alloc;
1137 	spin_lock(ptl);
1138 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1139 		goto out_unlock;
1140 
1141 	page = pmd_page(orig_pmd);
1142 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1143 	if (page_mapcount(page) == 1) {
1144 		pmd_t entry;
1145 		entry = pmd_mkyoung(orig_pmd);
1146 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1147 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1148 			update_mmu_cache_pmd(vma, address, pmd);
1149 		ret |= VM_FAULT_WRITE;
1150 		goto out_unlock;
1151 	}
1152 	get_page(page);
1153 	spin_unlock(ptl);
1154 alloc:
1155 	if (transparent_hugepage_enabled(vma) &&
1156 	    !transparent_hugepage_debug_cow())
1157 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1158 					      vma, haddr, numa_node_id(), 0);
1159 	else
1160 		new_page = NULL;
1161 
1162 	if (unlikely(!new_page)) {
1163 		if (!page) {
1164 			ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1165 					address, pmd, orig_pmd, haddr);
1166 		} else {
1167 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1168 					pmd, orig_pmd, page, haddr);
1169 			if (ret & VM_FAULT_OOM)
1170 				split_huge_page(page);
1171 			put_page(page);
1172 		}
1173 		count_vm_event(THP_FAULT_FALLBACK);
1174 		goto out;
1175 	}
1176 
1177 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1178 		put_page(new_page);
1179 		if (page) {
1180 			split_huge_page(page);
1181 			put_page(page);
1182 		}
1183 		count_vm_event(THP_FAULT_FALLBACK);
1184 		ret |= VM_FAULT_OOM;
1185 		goto out;
1186 	}
1187 
1188 	count_vm_event(THP_FAULT_ALLOC);
1189 
1190 	if (!page)
1191 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1192 	else
1193 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1194 	__SetPageUptodate(new_page);
1195 
1196 	mmun_start = haddr;
1197 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1198 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1199 
1200 	spin_lock(ptl);
1201 	if (page)
1202 		put_page(page);
1203 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1204 		spin_unlock(ptl);
1205 		mem_cgroup_uncharge_page(new_page);
1206 		put_page(new_page);
1207 		goto out_mn;
1208 	} else {
1209 		pmd_t entry;
1210 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1211 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1212 		pmdp_clear_flush(vma, haddr, pmd);
1213 		page_add_new_anon_rmap(new_page, vma, haddr);
1214 		set_pmd_at(mm, haddr, pmd, entry);
1215 		update_mmu_cache_pmd(vma, address, pmd);
1216 		if (!page) {
1217 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1218 			put_huge_zero_page();
1219 		} else {
1220 			VM_BUG_ON_PAGE(!PageHead(page), page);
1221 			page_remove_rmap(page);
1222 			put_page(page);
1223 		}
1224 		ret |= VM_FAULT_WRITE;
1225 	}
1226 	spin_unlock(ptl);
1227 out_mn:
1228 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1229 out:
1230 	return ret;
1231 out_unlock:
1232 	spin_unlock(ptl);
1233 	return ret;
1234 }
1235 
1236 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1237 				   unsigned long addr,
1238 				   pmd_t *pmd,
1239 				   unsigned int flags)
1240 {
1241 	struct mm_struct *mm = vma->vm_mm;
1242 	struct page *page = NULL;
1243 
1244 	assert_spin_locked(pmd_lockptr(mm, pmd));
1245 
1246 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1247 		goto out;
1248 
1249 	/* Avoid dumping huge zero page */
1250 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1251 		return ERR_PTR(-EFAULT);
1252 
1253 	/* Full NUMA hinting faults to serialise migration in fault paths */
1254 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1255 		goto out;
1256 
1257 	page = pmd_page(*pmd);
1258 	VM_BUG_ON_PAGE(!PageHead(page), page);
1259 	if (flags & FOLL_TOUCH) {
1260 		pmd_t _pmd;
1261 		/*
1262 		 * We should set the dirty bit only for FOLL_WRITE but
1263 		 * for now the dirty bit in the pmd is meaningless.
1264 		 * And if the dirty bit will become meaningful and
1265 		 * we'll only set it with FOLL_WRITE, an atomic
1266 		 * set_bit will be required on the pmd to set the
1267 		 * young bit, instead of the current set_pmd_at.
1268 		 */
1269 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1270 		if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1271 					  pmd, _pmd,  1))
1272 			update_mmu_cache_pmd(vma, addr, pmd);
1273 	}
1274 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1275 		if (page->mapping && trylock_page(page)) {
1276 			lru_add_drain();
1277 			if (page->mapping)
1278 				mlock_vma_page(page);
1279 			unlock_page(page);
1280 		}
1281 	}
1282 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1283 	VM_BUG_ON_PAGE(!PageCompound(page), page);
1284 	if (flags & FOLL_GET)
1285 		get_page_foll(page);
1286 
1287 out:
1288 	return page;
1289 }
1290 
1291 /* NUMA hinting page fault entry point for trans huge pmds */
1292 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1293 				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1294 {
1295 	spinlock_t *ptl;
1296 	struct anon_vma *anon_vma = NULL;
1297 	struct page *page;
1298 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1299 	int page_nid = -1, this_nid = numa_node_id();
1300 	int target_nid, last_cpupid = -1;
1301 	bool page_locked;
1302 	bool migrated = false;
1303 	int flags = 0;
1304 
1305 	ptl = pmd_lock(mm, pmdp);
1306 	if (unlikely(!pmd_same(pmd, *pmdp)))
1307 		goto out_unlock;
1308 
1309 	/*
1310 	 * If there are potential migrations, wait for completion and retry
1311 	 * without disrupting NUMA hinting information. Do not relock and
1312 	 * check_same as the page may no longer be mapped.
1313 	 */
1314 	if (unlikely(pmd_trans_migrating(*pmdp))) {
1315 		spin_unlock(ptl);
1316 		wait_migrate_huge_page(vma->anon_vma, pmdp);
1317 		goto out;
1318 	}
1319 
1320 	page = pmd_page(pmd);
1321 	BUG_ON(is_huge_zero_page(page));
1322 	page_nid = page_to_nid(page);
1323 	last_cpupid = page_cpupid_last(page);
1324 	count_vm_numa_event(NUMA_HINT_FAULTS);
1325 	if (page_nid == this_nid) {
1326 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1327 		flags |= TNF_FAULT_LOCAL;
1328 	}
1329 
1330 	/*
1331 	 * Avoid grouping on DSO/COW pages in specific and RO pages
1332 	 * in general, RO pages shouldn't hurt as much anyway since
1333 	 * they can be in shared cache state.
1334 	 */
1335 	if (!pmd_write(pmd))
1336 		flags |= TNF_NO_GROUP;
1337 
1338 	/*
1339 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1340 	 * page_table_lock if at all possible
1341 	 */
1342 	page_locked = trylock_page(page);
1343 	target_nid = mpol_misplaced(page, vma, haddr);
1344 	if (target_nid == -1) {
1345 		/* If the page was locked, there are no parallel migrations */
1346 		if (page_locked)
1347 			goto clear_pmdnuma;
1348 	}
1349 
1350 	/* Migration could have started since the pmd_trans_migrating check */
1351 	if (!page_locked) {
1352 		spin_unlock(ptl);
1353 		wait_on_page_locked(page);
1354 		page_nid = -1;
1355 		goto out;
1356 	}
1357 
1358 	/*
1359 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1360 	 * to serialises splits
1361 	 */
1362 	get_page(page);
1363 	spin_unlock(ptl);
1364 	anon_vma = page_lock_anon_vma_read(page);
1365 
1366 	/* Confirm the PMD did not change while page_table_lock was released */
1367 	spin_lock(ptl);
1368 	if (unlikely(!pmd_same(pmd, *pmdp))) {
1369 		unlock_page(page);
1370 		put_page(page);
1371 		page_nid = -1;
1372 		goto out_unlock;
1373 	}
1374 
1375 	/* Bail if we fail to protect against THP splits for any reason */
1376 	if (unlikely(!anon_vma)) {
1377 		put_page(page);
1378 		page_nid = -1;
1379 		goto clear_pmdnuma;
1380 	}
1381 
1382 	/*
1383 	 * Migrate the THP to the requested node, returns with page unlocked
1384 	 * and pmd_numa cleared.
1385 	 */
1386 	spin_unlock(ptl);
1387 	migrated = migrate_misplaced_transhuge_page(mm, vma,
1388 				pmdp, pmd, addr, page, target_nid);
1389 	if (migrated) {
1390 		flags |= TNF_MIGRATED;
1391 		page_nid = target_nid;
1392 	}
1393 
1394 	goto out;
1395 clear_pmdnuma:
1396 	BUG_ON(!PageLocked(page));
1397 	pmd = pmd_mknonnuma(pmd);
1398 	set_pmd_at(mm, haddr, pmdp, pmd);
1399 	VM_BUG_ON(pmd_numa(*pmdp));
1400 	update_mmu_cache_pmd(vma, addr, pmdp);
1401 	unlock_page(page);
1402 out_unlock:
1403 	spin_unlock(ptl);
1404 
1405 out:
1406 	if (anon_vma)
1407 		page_unlock_anon_vma_read(anon_vma);
1408 
1409 	if (page_nid != -1)
1410 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1411 
1412 	return 0;
1413 }
1414 
1415 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1416 		 pmd_t *pmd, unsigned long addr)
1417 {
1418 	spinlock_t *ptl;
1419 	int ret = 0;
1420 
1421 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1422 		struct page *page;
1423 		pgtable_t pgtable;
1424 		pmd_t orig_pmd;
1425 		/*
1426 		 * For architectures like ppc64 we look at deposited pgtable
1427 		 * when calling pmdp_get_and_clear. So do the
1428 		 * pgtable_trans_huge_withdraw after finishing pmdp related
1429 		 * operations.
1430 		 */
1431 		orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1432 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1433 		pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1434 		if (is_huge_zero_pmd(orig_pmd)) {
1435 			atomic_long_dec(&tlb->mm->nr_ptes);
1436 			spin_unlock(ptl);
1437 			put_huge_zero_page();
1438 		} else {
1439 			page = pmd_page(orig_pmd);
1440 			page_remove_rmap(page);
1441 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1442 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1443 			VM_BUG_ON_PAGE(!PageHead(page), page);
1444 			atomic_long_dec(&tlb->mm->nr_ptes);
1445 			spin_unlock(ptl);
1446 			tlb_remove_page(tlb, page);
1447 		}
1448 		pte_free(tlb->mm, pgtable);
1449 		ret = 1;
1450 	}
1451 	return ret;
1452 }
1453 
1454 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1455 		unsigned long addr, unsigned long end,
1456 		unsigned char *vec)
1457 {
1458 	spinlock_t *ptl;
1459 	int ret = 0;
1460 
1461 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1462 		/*
1463 		 * All logical pages in the range are present
1464 		 * if backed by a huge page.
1465 		 */
1466 		spin_unlock(ptl);
1467 		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1468 		ret = 1;
1469 	}
1470 
1471 	return ret;
1472 }
1473 
1474 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1475 		  unsigned long old_addr,
1476 		  unsigned long new_addr, unsigned long old_end,
1477 		  pmd_t *old_pmd, pmd_t *new_pmd)
1478 {
1479 	spinlock_t *old_ptl, *new_ptl;
1480 	int ret = 0;
1481 	pmd_t pmd;
1482 
1483 	struct mm_struct *mm = vma->vm_mm;
1484 
1485 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1486 	    (new_addr & ~HPAGE_PMD_MASK) ||
1487 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1488 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1489 		goto out;
1490 
1491 	/*
1492 	 * The destination pmd shouldn't be established, free_pgtables()
1493 	 * should have release it.
1494 	 */
1495 	if (WARN_ON(!pmd_none(*new_pmd))) {
1496 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1497 		goto out;
1498 	}
1499 
1500 	/*
1501 	 * We don't have to worry about the ordering of src and dst
1502 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1503 	 */
1504 	ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1505 	if (ret == 1) {
1506 		new_ptl = pmd_lockptr(mm, new_pmd);
1507 		if (new_ptl != old_ptl)
1508 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1509 		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1510 		VM_BUG_ON(!pmd_none(*new_pmd));
1511 
1512 		if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1513 			pgtable_t pgtable;
1514 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1515 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1516 		}
1517 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1518 		if (new_ptl != old_ptl)
1519 			spin_unlock(new_ptl);
1520 		spin_unlock(old_ptl);
1521 	}
1522 out:
1523 	return ret;
1524 }
1525 
1526 /*
1527  * Returns
1528  *  - 0 if PMD could not be locked
1529  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1530  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1531  */
1532 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1533 		unsigned long addr, pgprot_t newprot, int prot_numa)
1534 {
1535 	struct mm_struct *mm = vma->vm_mm;
1536 	spinlock_t *ptl;
1537 	int ret = 0;
1538 
1539 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1540 		pmd_t entry;
1541 		ret = 1;
1542 		if (!prot_numa) {
1543 			entry = pmdp_get_and_clear(mm, addr, pmd);
1544 			if (pmd_numa(entry))
1545 				entry = pmd_mknonnuma(entry);
1546 			entry = pmd_modify(entry, newprot);
1547 			ret = HPAGE_PMD_NR;
1548 			BUG_ON(pmd_write(entry));
1549 		} else {
1550 			struct page *page = pmd_page(*pmd);
1551 
1552 			/*
1553 			 * Do not trap faults against the zero page. The
1554 			 * read-only data is likely to be read-cached on the
1555 			 * local CPU cache and it is less useful to know about
1556 			 * local vs remote hits on the zero page.
1557 			 */
1558 			if (!is_huge_zero_page(page) &&
1559 			    !pmd_numa(*pmd)) {
1560 				entry = *pmd;
1561 				entry = pmd_mknuma(entry);
1562 				ret = HPAGE_PMD_NR;
1563 			}
1564 		}
1565 
1566 		/* Set PMD if cleared earlier */
1567 		if (ret == HPAGE_PMD_NR)
1568 			set_pmd_at(mm, addr, pmd, entry);
1569 
1570 		spin_unlock(ptl);
1571 	}
1572 
1573 	return ret;
1574 }
1575 
1576 /*
1577  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1578  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1579  *
1580  * Note that if it returns 1, this routine returns without unlocking page
1581  * table locks. So callers must unlock them.
1582  */
1583 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1584 		spinlock_t **ptl)
1585 {
1586 	*ptl = pmd_lock(vma->vm_mm, pmd);
1587 	if (likely(pmd_trans_huge(*pmd))) {
1588 		if (unlikely(pmd_trans_splitting(*pmd))) {
1589 			spin_unlock(*ptl);
1590 			wait_split_huge_page(vma->anon_vma, pmd);
1591 			return -1;
1592 		} else {
1593 			/* Thp mapped by 'pmd' is stable, so we can
1594 			 * handle it as it is. */
1595 			return 1;
1596 		}
1597 	}
1598 	spin_unlock(*ptl);
1599 	return 0;
1600 }
1601 
1602 /*
1603  * This function returns whether a given @page is mapped onto the @address
1604  * in the virtual space of @mm.
1605  *
1606  * When it's true, this function returns *pmd with holding the page table lock
1607  * and passing it back to the caller via @ptl.
1608  * If it's false, returns NULL without holding the page table lock.
1609  */
1610 pmd_t *page_check_address_pmd(struct page *page,
1611 			      struct mm_struct *mm,
1612 			      unsigned long address,
1613 			      enum page_check_address_pmd_flag flag,
1614 			      spinlock_t **ptl)
1615 {
1616 	pmd_t *pmd;
1617 
1618 	if (address & ~HPAGE_PMD_MASK)
1619 		return NULL;
1620 
1621 	pmd = mm_find_pmd(mm, address);
1622 	if (!pmd)
1623 		return NULL;
1624 	*ptl = pmd_lock(mm, pmd);
1625 	if (pmd_none(*pmd))
1626 		goto unlock;
1627 	if (pmd_page(*pmd) != page)
1628 		goto unlock;
1629 	/*
1630 	 * split_vma() may create temporary aliased mappings. There is
1631 	 * no risk as long as all huge pmd are found and have their
1632 	 * splitting bit set before __split_huge_page_refcount
1633 	 * runs. Finding the same huge pmd more than once during the
1634 	 * same rmap walk is not a problem.
1635 	 */
1636 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1637 	    pmd_trans_splitting(*pmd))
1638 		goto unlock;
1639 	if (pmd_trans_huge(*pmd)) {
1640 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1641 			  !pmd_trans_splitting(*pmd));
1642 		return pmd;
1643 	}
1644 unlock:
1645 	spin_unlock(*ptl);
1646 	return NULL;
1647 }
1648 
1649 static int __split_huge_page_splitting(struct page *page,
1650 				       struct vm_area_struct *vma,
1651 				       unsigned long address)
1652 {
1653 	struct mm_struct *mm = vma->vm_mm;
1654 	spinlock_t *ptl;
1655 	pmd_t *pmd;
1656 	int ret = 0;
1657 	/* For mmu_notifiers */
1658 	const unsigned long mmun_start = address;
1659 	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1660 
1661 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1662 	pmd = page_check_address_pmd(page, mm, address,
1663 			PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1664 	if (pmd) {
1665 		/*
1666 		 * We can't temporarily set the pmd to null in order
1667 		 * to split it, the pmd must remain marked huge at all
1668 		 * times or the VM won't take the pmd_trans_huge paths
1669 		 * and it won't wait on the anon_vma->root->rwsem to
1670 		 * serialize against split_huge_page*.
1671 		 */
1672 		pmdp_splitting_flush(vma, address, pmd);
1673 		ret = 1;
1674 		spin_unlock(ptl);
1675 	}
1676 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1677 
1678 	return ret;
1679 }
1680 
1681 static void __split_huge_page_refcount(struct page *page,
1682 				       struct list_head *list)
1683 {
1684 	int i;
1685 	struct zone *zone = page_zone(page);
1686 	struct lruvec *lruvec;
1687 	int tail_count = 0;
1688 
1689 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1690 	spin_lock_irq(&zone->lru_lock);
1691 	lruvec = mem_cgroup_page_lruvec(page, zone);
1692 
1693 	compound_lock(page);
1694 	/* complete memcg works before add pages to LRU */
1695 	mem_cgroup_split_huge_fixup(page);
1696 
1697 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1698 		struct page *page_tail = page + i;
1699 
1700 		/* tail_page->_mapcount cannot change */
1701 		BUG_ON(page_mapcount(page_tail) < 0);
1702 		tail_count += page_mapcount(page_tail);
1703 		/* check for overflow */
1704 		BUG_ON(tail_count < 0);
1705 		BUG_ON(atomic_read(&page_tail->_count) != 0);
1706 		/*
1707 		 * tail_page->_count is zero and not changing from
1708 		 * under us. But get_page_unless_zero() may be running
1709 		 * from under us on the tail_page. If we used
1710 		 * atomic_set() below instead of atomic_add(), we
1711 		 * would then run atomic_set() concurrently with
1712 		 * get_page_unless_zero(), and atomic_set() is
1713 		 * implemented in C not using locked ops. spin_unlock
1714 		 * on x86 sometime uses locked ops because of PPro
1715 		 * errata 66, 92, so unless somebody can guarantee
1716 		 * atomic_set() here would be safe on all archs (and
1717 		 * not only on x86), it's safer to use atomic_add().
1718 		 */
1719 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1720 			   &page_tail->_count);
1721 
1722 		/* after clearing PageTail the gup refcount can be released */
1723 		smp_mb();
1724 
1725 		/*
1726 		 * retain hwpoison flag of the poisoned tail page:
1727 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1728 		 *   by the memory-failure.
1729 		 */
1730 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1731 		page_tail->flags |= (page->flags &
1732 				     ((1L << PG_referenced) |
1733 				      (1L << PG_swapbacked) |
1734 				      (1L << PG_mlocked) |
1735 				      (1L << PG_uptodate) |
1736 				      (1L << PG_active) |
1737 				      (1L << PG_unevictable)));
1738 		page_tail->flags |= (1L << PG_dirty);
1739 
1740 		/* clear PageTail before overwriting first_page */
1741 		smp_wmb();
1742 
1743 		/*
1744 		 * __split_huge_page_splitting() already set the
1745 		 * splitting bit in all pmd that could map this
1746 		 * hugepage, that will ensure no CPU can alter the
1747 		 * mapcount on the head page. The mapcount is only
1748 		 * accounted in the head page and it has to be
1749 		 * transferred to all tail pages in the below code. So
1750 		 * for this code to be safe, the split the mapcount
1751 		 * can't change. But that doesn't mean userland can't
1752 		 * keep changing and reading the page contents while
1753 		 * we transfer the mapcount, so the pmd splitting
1754 		 * status is achieved setting a reserved bit in the
1755 		 * pmd, not by clearing the present bit.
1756 		*/
1757 		page_tail->_mapcount = page->_mapcount;
1758 
1759 		BUG_ON(page_tail->mapping);
1760 		page_tail->mapping = page->mapping;
1761 
1762 		page_tail->index = page->index + i;
1763 		page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1764 
1765 		BUG_ON(!PageAnon(page_tail));
1766 		BUG_ON(!PageUptodate(page_tail));
1767 		BUG_ON(!PageDirty(page_tail));
1768 		BUG_ON(!PageSwapBacked(page_tail));
1769 
1770 		lru_add_page_tail(page, page_tail, lruvec, list);
1771 	}
1772 	atomic_sub(tail_count, &page->_count);
1773 	BUG_ON(atomic_read(&page->_count) <= 0);
1774 
1775 	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1776 
1777 	ClearPageCompound(page);
1778 	compound_unlock(page);
1779 	spin_unlock_irq(&zone->lru_lock);
1780 
1781 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1782 		struct page *page_tail = page + i;
1783 		BUG_ON(page_count(page_tail) <= 0);
1784 		/*
1785 		 * Tail pages may be freed if there wasn't any mapping
1786 		 * like if add_to_swap() is running on a lru page that
1787 		 * had its mapping zapped. And freeing these pages
1788 		 * requires taking the lru_lock so we do the put_page
1789 		 * of the tail pages after the split is complete.
1790 		 */
1791 		put_page(page_tail);
1792 	}
1793 
1794 	/*
1795 	 * Only the head page (now become a regular page) is required
1796 	 * to be pinned by the caller.
1797 	 */
1798 	BUG_ON(page_count(page) <= 0);
1799 }
1800 
1801 static int __split_huge_page_map(struct page *page,
1802 				 struct vm_area_struct *vma,
1803 				 unsigned long address)
1804 {
1805 	struct mm_struct *mm = vma->vm_mm;
1806 	spinlock_t *ptl;
1807 	pmd_t *pmd, _pmd;
1808 	int ret = 0, i;
1809 	pgtable_t pgtable;
1810 	unsigned long haddr;
1811 
1812 	pmd = page_check_address_pmd(page, mm, address,
1813 			PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1814 	if (pmd) {
1815 		pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1816 		pmd_populate(mm, &_pmd, pgtable);
1817 
1818 		haddr = address;
1819 		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1820 			pte_t *pte, entry;
1821 			BUG_ON(PageCompound(page+i));
1822 			entry = mk_pte(page + i, vma->vm_page_prot);
1823 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1824 			if (!pmd_write(*pmd))
1825 				entry = pte_wrprotect(entry);
1826 			else
1827 				BUG_ON(page_mapcount(page) != 1);
1828 			if (!pmd_young(*pmd))
1829 				entry = pte_mkold(entry);
1830 			if (pmd_numa(*pmd))
1831 				entry = pte_mknuma(entry);
1832 			pte = pte_offset_map(&_pmd, haddr);
1833 			BUG_ON(!pte_none(*pte));
1834 			set_pte_at(mm, haddr, pte, entry);
1835 			pte_unmap(pte);
1836 		}
1837 
1838 		smp_wmb(); /* make pte visible before pmd */
1839 		/*
1840 		 * Up to this point the pmd is present and huge and
1841 		 * userland has the whole access to the hugepage
1842 		 * during the split (which happens in place). If we
1843 		 * overwrite the pmd with the not-huge version
1844 		 * pointing to the pte here (which of course we could
1845 		 * if all CPUs were bug free), userland could trigger
1846 		 * a small page size TLB miss on the small sized TLB
1847 		 * while the hugepage TLB entry is still established
1848 		 * in the huge TLB. Some CPU doesn't like that. See
1849 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1850 		 * Erratum 383 on page 93. Intel should be safe but is
1851 		 * also warns that it's only safe if the permission
1852 		 * and cache attributes of the two entries loaded in
1853 		 * the two TLB is identical (which should be the case
1854 		 * here). But it is generally safer to never allow
1855 		 * small and huge TLB entries for the same virtual
1856 		 * address to be loaded simultaneously. So instead of
1857 		 * doing "pmd_populate(); flush_tlb_range();" we first
1858 		 * mark the current pmd notpresent (atomically because
1859 		 * here the pmd_trans_huge and pmd_trans_splitting
1860 		 * must remain set at all times on the pmd until the
1861 		 * split is complete for this pmd), then we flush the
1862 		 * SMP TLB and finally we write the non-huge version
1863 		 * of the pmd entry with pmd_populate.
1864 		 */
1865 		pmdp_invalidate(vma, address, pmd);
1866 		pmd_populate(mm, pmd, pgtable);
1867 		ret = 1;
1868 		spin_unlock(ptl);
1869 	}
1870 
1871 	return ret;
1872 }
1873 
1874 /* must be called with anon_vma->root->rwsem held */
1875 static void __split_huge_page(struct page *page,
1876 			      struct anon_vma *anon_vma,
1877 			      struct list_head *list)
1878 {
1879 	int mapcount, mapcount2;
1880 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1881 	struct anon_vma_chain *avc;
1882 
1883 	BUG_ON(!PageHead(page));
1884 	BUG_ON(PageTail(page));
1885 
1886 	mapcount = 0;
1887 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1888 		struct vm_area_struct *vma = avc->vma;
1889 		unsigned long addr = vma_address(page, vma);
1890 		BUG_ON(is_vma_temporary_stack(vma));
1891 		mapcount += __split_huge_page_splitting(page, vma, addr);
1892 	}
1893 	/*
1894 	 * It is critical that new vmas are added to the tail of the
1895 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1896 	 * and establishes a child pmd before
1897 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1898 	 * we fail to prevent copy_huge_pmd() from running until the
1899 	 * whole __split_huge_page() is complete), we will still see
1900 	 * the newly established pmd of the child later during the
1901 	 * walk, to be able to set it as pmd_trans_splitting too.
1902 	 */
1903 	if (mapcount != page_mapcount(page))
1904 		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1905 		       mapcount, page_mapcount(page));
1906 	BUG_ON(mapcount != page_mapcount(page));
1907 
1908 	__split_huge_page_refcount(page, list);
1909 
1910 	mapcount2 = 0;
1911 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1912 		struct vm_area_struct *vma = avc->vma;
1913 		unsigned long addr = vma_address(page, vma);
1914 		BUG_ON(is_vma_temporary_stack(vma));
1915 		mapcount2 += __split_huge_page_map(page, vma, addr);
1916 	}
1917 	if (mapcount != mapcount2)
1918 		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1919 		       mapcount, mapcount2, page_mapcount(page));
1920 	BUG_ON(mapcount != mapcount2);
1921 }
1922 
1923 /*
1924  * Split a hugepage into normal pages. This doesn't change the position of head
1925  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1926  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1927  * from the hugepage.
1928  * Return 0 if the hugepage is split successfully otherwise return 1.
1929  */
1930 int split_huge_page_to_list(struct page *page, struct list_head *list)
1931 {
1932 	struct anon_vma *anon_vma;
1933 	int ret = 1;
1934 
1935 	BUG_ON(is_huge_zero_page(page));
1936 	BUG_ON(!PageAnon(page));
1937 
1938 	/*
1939 	 * The caller does not necessarily hold an mmap_sem that would prevent
1940 	 * the anon_vma disappearing so we first we take a reference to it
1941 	 * and then lock the anon_vma for write. This is similar to
1942 	 * page_lock_anon_vma_read except the write lock is taken to serialise
1943 	 * against parallel split or collapse operations.
1944 	 */
1945 	anon_vma = page_get_anon_vma(page);
1946 	if (!anon_vma)
1947 		goto out;
1948 	anon_vma_lock_write(anon_vma);
1949 
1950 	ret = 0;
1951 	if (!PageCompound(page))
1952 		goto out_unlock;
1953 
1954 	BUG_ON(!PageSwapBacked(page));
1955 	__split_huge_page(page, anon_vma, list);
1956 	count_vm_event(THP_SPLIT);
1957 
1958 	BUG_ON(PageCompound(page));
1959 out_unlock:
1960 	anon_vma_unlock_write(anon_vma);
1961 	put_anon_vma(anon_vma);
1962 out:
1963 	return ret;
1964 }
1965 
1966 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1967 
1968 int hugepage_madvise(struct vm_area_struct *vma,
1969 		     unsigned long *vm_flags, int advice)
1970 {
1971 	struct mm_struct *mm = vma->vm_mm;
1972 
1973 	switch (advice) {
1974 	case MADV_HUGEPAGE:
1975 		/*
1976 		 * Be somewhat over-protective like KSM for now!
1977 		 */
1978 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1979 			return -EINVAL;
1980 		if (mm->def_flags & VM_NOHUGEPAGE)
1981 			return -EINVAL;
1982 		*vm_flags &= ~VM_NOHUGEPAGE;
1983 		*vm_flags |= VM_HUGEPAGE;
1984 		/*
1985 		 * If the vma become good for khugepaged to scan,
1986 		 * register it here without waiting a page fault that
1987 		 * may not happen any time soon.
1988 		 */
1989 		if (unlikely(khugepaged_enter_vma_merge(vma)))
1990 			return -ENOMEM;
1991 		break;
1992 	case MADV_NOHUGEPAGE:
1993 		/*
1994 		 * Be somewhat over-protective like KSM for now!
1995 		 */
1996 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1997 			return -EINVAL;
1998 		*vm_flags &= ~VM_HUGEPAGE;
1999 		*vm_flags |= VM_NOHUGEPAGE;
2000 		/*
2001 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2002 		 * this vma even if we leave the mm registered in khugepaged if
2003 		 * it got registered before VM_NOHUGEPAGE was set.
2004 		 */
2005 		break;
2006 	}
2007 
2008 	return 0;
2009 }
2010 
2011 static int __init khugepaged_slab_init(void)
2012 {
2013 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2014 					  sizeof(struct mm_slot),
2015 					  __alignof__(struct mm_slot), 0, NULL);
2016 	if (!mm_slot_cache)
2017 		return -ENOMEM;
2018 
2019 	return 0;
2020 }
2021 
2022 static inline struct mm_slot *alloc_mm_slot(void)
2023 {
2024 	if (!mm_slot_cache)	/* initialization failed */
2025 		return NULL;
2026 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2027 }
2028 
2029 static inline void free_mm_slot(struct mm_slot *mm_slot)
2030 {
2031 	kmem_cache_free(mm_slot_cache, mm_slot);
2032 }
2033 
2034 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2035 {
2036 	struct mm_slot *mm_slot;
2037 
2038 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2039 		if (mm == mm_slot->mm)
2040 			return mm_slot;
2041 
2042 	return NULL;
2043 }
2044 
2045 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2046 				    struct mm_slot *mm_slot)
2047 {
2048 	mm_slot->mm = mm;
2049 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2050 }
2051 
2052 static inline int khugepaged_test_exit(struct mm_struct *mm)
2053 {
2054 	return atomic_read(&mm->mm_users) == 0;
2055 }
2056 
2057 int __khugepaged_enter(struct mm_struct *mm)
2058 {
2059 	struct mm_slot *mm_slot;
2060 	int wakeup;
2061 
2062 	mm_slot = alloc_mm_slot();
2063 	if (!mm_slot)
2064 		return -ENOMEM;
2065 
2066 	/* __khugepaged_exit() must not run from under us */
2067 	VM_BUG_ON(khugepaged_test_exit(mm));
2068 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2069 		free_mm_slot(mm_slot);
2070 		return 0;
2071 	}
2072 
2073 	spin_lock(&khugepaged_mm_lock);
2074 	insert_to_mm_slots_hash(mm, mm_slot);
2075 	/*
2076 	 * Insert just behind the scanning cursor, to let the area settle
2077 	 * down a little.
2078 	 */
2079 	wakeup = list_empty(&khugepaged_scan.mm_head);
2080 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2081 	spin_unlock(&khugepaged_mm_lock);
2082 
2083 	atomic_inc(&mm->mm_count);
2084 	if (wakeup)
2085 		wake_up_interruptible(&khugepaged_wait);
2086 
2087 	return 0;
2088 }
2089 
2090 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2091 {
2092 	unsigned long hstart, hend;
2093 	if (!vma->anon_vma)
2094 		/*
2095 		 * Not yet faulted in so we will register later in the
2096 		 * page fault if needed.
2097 		 */
2098 		return 0;
2099 	if (vma->vm_ops)
2100 		/* khugepaged not yet working on file or special mappings */
2101 		return 0;
2102 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2103 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2104 	hend = vma->vm_end & HPAGE_PMD_MASK;
2105 	if (hstart < hend)
2106 		return khugepaged_enter(vma);
2107 	return 0;
2108 }
2109 
2110 void __khugepaged_exit(struct mm_struct *mm)
2111 {
2112 	struct mm_slot *mm_slot;
2113 	int free = 0;
2114 
2115 	spin_lock(&khugepaged_mm_lock);
2116 	mm_slot = get_mm_slot(mm);
2117 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2118 		hash_del(&mm_slot->hash);
2119 		list_del(&mm_slot->mm_node);
2120 		free = 1;
2121 	}
2122 	spin_unlock(&khugepaged_mm_lock);
2123 
2124 	if (free) {
2125 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2126 		free_mm_slot(mm_slot);
2127 		mmdrop(mm);
2128 	} else if (mm_slot) {
2129 		/*
2130 		 * This is required to serialize against
2131 		 * khugepaged_test_exit() (which is guaranteed to run
2132 		 * under mmap sem read mode). Stop here (after we
2133 		 * return all pagetables will be destroyed) until
2134 		 * khugepaged has finished working on the pagetables
2135 		 * under the mmap_sem.
2136 		 */
2137 		down_write(&mm->mmap_sem);
2138 		up_write(&mm->mmap_sem);
2139 	}
2140 }
2141 
2142 static void release_pte_page(struct page *page)
2143 {
2144 	/* 0 stands for page_is_file_cache(page) == false */
2145 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2146 	unlock_page(page);
2147 	putback_lru_page(page);
2148 }
2149 
2150 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2151 {
2152 	while (--_pte >= pte) {
2153 		pte_t pteval = *_pte;
2154 		if (!pte_none(pteval))
2155 			release_pte_page(pte_page(pteval));
2156 	}
2157 }
2158 
2159 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2160 					unsigned long address,
2161 					pte_t *pte)
2162 {
2163 	struct page *page;
2164 	pte_t *_pte;
2165 	int referenced = 0, none = 0;
2166 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2167 	     _pte++, address += PAGE_SIZE) {
2168 		pte_t pteval = *_pte;
2169 		if (pte_none(pteval)) {
2170 			if (++none <= khugepaged_max_ptes_none)
2171 				continue;
2172 			else
2173 				goto out;
2174 		}
2175 		if (!pte_present(pteval) || !pte_write(pteval))
2176 			goto out;
2177 		page = vm_normal_page(vma, address, pteval);
2178 		if (unlikely(!page))
2179 			goto out;
2180 
2181 		VM_BUG_ON_PAGE(PageCompound(page), page);
2182 		VM_BUG_ON_PAGE(!PageAnon(page), page);
2183 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2184 
2185 		/* cannot use mapcount: can't collapse if there's a gup pin */
2186 		if (page_count(page) != 1)
2187 			goto out;
2188 		/*
2189 		 * We can do it before isolate_lru_page because the
2190 		 * page can't be freed from under us. NOTE: PG_lock
2191 		 * is needed to serialize against split_huge_page
2192 		 * when invoked from the VM.
2193 		 */
2194 		if (!trylock_page(page))
2195 			goto out;
2196 		/*
2197 		 * Isolate the page to avoid collapsing an hugepage
2198 		 * currently in use by the VM.
2199 		 */
2200 		if (isolate_lru_page(page)) {
2201 			unlock_page(page);
2202 			goto out;
2203 		}
2204 		/* 0 stands for page_is_file_cache(page) == false */
2205 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2206 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2207 		VM_BUG_ON_PAGE(PageLRU(page), page);
2208 
2209 		/* If there is no mapped pte young don't collapse the page */
2210 		if (pte_young(pteval) || PageReferenced(page) ||
2211 		    mmu_notifier_test_young(vma->vm_mm, address))
2212 			referenced = 1;
2213 	}
2214 	if (likely(referenced))
2215 		return 1;
2216 out:
2217 	release_pte_pages(pte, _pte);
2218 	return 0;
2219 }
2220 
2221 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2222 				      struct vm_area_struct *vma,
2223 				      unsigned long address,
2224 				      spinlock_t *ptl)
2225 {
2226 	pte_t *_pte;
2227 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2228 		pte_t pteval = *_pte;
2229 		struct page *src_page;
2230 
2231 		if (pte_none(pteval)) {
2232 			clear_user_highpage(page, address);
2233 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2234 		} else {
2235 			src_page = pte_page(pteval);
2236 			copy_user_highpage(page, src_page, address, vma);
2237 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2238 			release_pte_page(src_page);
2239 			/*
2240 			 * ptl mostly unnecessary, but preempt has to
2241 			 * be disabled to update the per-cpu stats
2242 			 * inside page_remove_rmap().
2243 			 */
2244 			spin_lock(ptl);
2245 			/*
2246 			 * paravirt calls inside pte_clear here are
2247 			 * superfluous.
2248 			 */
2249 			pte_clear(vma->vm_mm, address, _pte);
2250 			page_remove_rmap(src_page);
2251 			spin_unlock(ptl);
2252 			free_page_and_swap_cache(src_page);
2253 		}
2254 
2255 		address += PAGE_SIZE;
2256 		page++;
2257 	}
2258 }
2259 
2260 static void khugepaged_alloc_sleep(void)
2261 {
2262 	wait_event_freezable_timeout(khugepaged_wait, false,
2263 			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2264 }
2265 
2266 static int khugepaged_node_load[MAX_NUMNODES];
2267 
2268 #ifdef CONFIG_NUMA
2269 static int khugepaged_find_target_node(void)
2270 {
2271 	static int last_khugepaged_target_node = NUMA_NO_NODE;
2272 	int nid, target_node = 0, max_value = 0;
2273 
2274 	/* find first node with max normal pages hit */
2275 	for (nid = 0; nid < MAX_NUMNODES; nid++)
2276 		if (khugepaged_node_load[nid] > max_value) {
2277 			max_value = khugepaged_node_load[nid];
2278 			target_node = nid;
2279 		}
2280 
2281 	/* do some balance if several nodes have the same hit record */
2282 	if (target_node <= last_khugepaged_target_node)
2283 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2284 				nid++)
2285 			if (max_value == khugepaged_node_load[nid]) {
2286 				target_node = nid;
2287 				break;
2288 			}
2289 
2290 	last_khugepaged_target_node = target_node;
2291 	return target_node;
2292 }
2293 
2294 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2295 {
2296 	if (IS_ERR(*hpage)) {
2297 		if (!*wait)
2298 			return false;
2299 
2300 		*wait = false;
2301 		*hpage = NULL;
2302 		khugepaged_alloc_sleep();
2303 	} else if (*hpage) {
2304 		put_page(*hpage);
2305 		*hpage = NULL;
2306 	}
2307 
2308 	return true;
2309 }
2310 
2311 static struct page
2312 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2313 		       struct vm_area_struct *vma, unsigned long address,
2314 		       int node)
2315 {
2316 	VM_BUG_ON_PAGE(*hpage, *hpage);
2317 	/*
2318 	 * Allocate the page while the vma is still valid and under
2319 	 * the mmap_sem read mode so there is no memory allocation
2320 	 * later when we take the mmap_sem in write mode. This is more
2321 	 * friendly behavior (OTOH it may actually hide bugs) to
2322 	 * filesystems in userland with daemons allocating memory in
2323 	 * the userland I/O paths.  Allocating memory with the
2324 	 * mmap_sem in read mode is good idea also to allow greater
2325 	 * scalability.
2326 	 */
2327 	*hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2328 		khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2329 	/*
2330 	 * After allocating the hugepage, release the mmap_sem read lock in
2331 	 * preparation for taking it in write mode.
2332 	 */
2333 	up_read(&mm->mmap_sem);
2334 	if (unlikely(!*hpage)) {
2335 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2336 		*hpage = ERR_PTR(-ENOMEM);
2337 		return NULL;
2338 	}
2339 
2340 	count_vm_event(THP_COLLAPSE_ALLOC);
2341 	return *hpage;
2342 }
2343 #else
2344 static int khugepaged_find_target_node(void)
2345 {
2346 	return 0;
2347 }
2348 
2349 static inline struct page *alloc_hugepage(int defrag)
2350 {
2351 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2352 			   HPAGE_PMD_ORDER);
2353 }
2354 
2355 static struct page *khugepaged_alloc_hugepage(bool *wait)
2356 {
2357 	struct page *hpage;
2358 
2359 	do {
2360 		hpage = alloc_hugepage(khugepaged_defrag());
2361 		if (!hpage) {
2362 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2363 			if (!*wait)
2364 				return NULL;
2365 
2366 			*wait = false;
2367 			khugepaged_alloc_sleep();
2368 		} else
2369 			count_vm_event(THP_COLLAPSE_ALLOC);
2370 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2371 
2372 	return hpage;
2373 }
2374 
2375 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2376 {
2377 	if (!*hpage)
2378 		*hpage = khugepaged_alloc_hugepage(wait);
2379 
2380 	if (unlikely(!*hpage))
2381 		return false;
2382 
2383 	return true;
2384 }
2385 
2386 static struct page
2387 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2388 		       struct vm_area_struct *vma, unsigned long address,
2389 		       int node)
2390 {
2391 	up_read(&mm->mmap_sem);
2392 	VM_BUG_ON(!*hpage);
2393 	return  *hpage;
2394 }
2395 #endif
2396 
2397 static bool hugepage_vma_check(struct vm_area_struct *vma)
2398 {
2399 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2400 	    (vma->vm_flags & VM_NOHUGEPAGE))
2401 		return false;
2402 
2403 	if (!vma->anon_vma || vma->vm_ops)
2404 		return false;
2405 	if (is_vma_temporary_stack(vma))
2406 		return false;
2407 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2408 	return true;
2409 }
2410 
2411 static void collapse_huge_page(struct mm_struct *mm,
2412 				   unsigned long address,
2413 				   struct page **hpage,
2414 				   struct vm_area_struct *vma,
2415 				   int node)
2416 {
2417 	pmd_t *pmd, _pmd;
2418 	pte_t *pte;
2419 	pgtable_t pgtable;
2420 	struct page *new_page;
2421 	spinlock_t *pmd_ptl, *pte_ptl;
2422 	int isolated;
2423 	unsigned long hstart, hend;
2424 	unsigned long mmun_start;	/* For mmu_notifiers */
2425 	unsigned long mmun_end;		/* For mmu_notifiers */
2426 
2427 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2428 
2429 	/* release the mmap_sem read lock. */
2430 	new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2431 	if (!new_page)
2432 		return;
2433 
2434 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2435 		return;
2436 
2437 	/*
2438 	 * Prevent all access to pagetables with the exception of
2439 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2440 	 * handled by the anon_vma lock + PG_lock.
2441 	 */
2442 	down_write(&mm->mmap_sem);
2443 	if (unlikely(khugepaged_test_exit(mm)))
2444 		goto out;
2445 
2446 	vma = find_vma(mm, address);
2447 	if (!vma)
2448 		goto out;
2449 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2450 	hend = vma->vm_end & HPAGE_PMD_MASK;
2451 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2452 		goto out;
2453 	if (!hugepage_vma_check(vma))
2454 		goto out;
2455 	pmd = mm_find_pmd(mm, address);
2456 	if (!pmd)
2457 		goto out;
2458 	if (pmd_trans_huge(*pmd))
2459 		goto out;
2460 
2461 	anon_vma_lock_write(vma->anon_vma);
2462 
2463 	pte = pte_offset_map(pmd, address);
2464 	pte_ptl = pte_lockptr(mm, pmd);
2465 
2466 	mmun_start = address;
2467 	mmun_end   = address + HPAGE_PMD_SIZE;
2468 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2469 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2470 	/*
2471 	 * After this gup_fast can't run anymore. This also removes
2472 	 * any huge TLB entry from the CPU so we won't allow
2473 	 * huge and small TLB entries for the same virtual address
2474 	 * to avoid the risk of CPU bugs in that area.
2475 	 */
2476 	_pmd = pmdp_clear_flush(vma, address, pmd);
2477 	spin_unlock(pmd_ptl);
2478 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2479 
2480 	spin_lock(pte_ptl);
2481 	isolated = __collapse_huge_page_isolate(vma, address, pte);
2482 	spin_unlock(pte_ptl);
2483 
2484 	if (unlikely(!isolated)) {
2485 		pte_unmap(pte);
2486 		spin_lock(pmd_ptl);
2487 		BUG_ON(!pmd_none(*pmd));
2488 		/*
2489 		 * We can only use set_pmd_at when establishing
2490 		 * hugepmds and never for establishing regular pmds that
2491 		 * points to regular pagetables. Use pmd_populate for that
2492 		 */
2493 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2494 		spin_unlock(pmd_ptl);
2495 		anon_vma_unlock_write(vma->anon_vma);
2496 		goto out;
2497 	}
2498 
2499 	/*
2500 	 * All pages are isolated and locked so anon_vma rmap
2501 	 * can't run anymore.
2502 	 */
2503 	anon_vma_unlock_write(vma->anon_vma);
2504 
2505 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2506 	pte_unmap(pte);
2507 	__SetPageUptodate(new_page);
2508 	pgtable = pmd_pgtable(_pmd);
2509 
2510 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2511 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2512 
2513 	/*
2514 	 * spin_lock() below is not the equivalent of smp_wmb(), so
2515 	 * this is needed to avoid the copy_huge_page writes to become
2516 	 * visible after the set_pmd_at() write.
2517 	 */
2518 	smp_wmb();
2519 
2520 	spin_lock(pmd_ptl);
2521 	BUG_ON(!pmd_none(*pmd));
2522 	page_add_new_anon_rmap(new_page, vma, address);
2523 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2524 	set_pmd_at(mm, address, pmd, _pmd);
2525 	update_mmu_cache_pmd(vma, address, pmd);
2526 	spin_unlock(pmd_ptl);
2527 
2528 	*hpage = NULL;
2529 
2530 	khugepaged_pages_collapsed++;
2531 out_up_write:
2532 	up_write(&mm->mmap_sem);
2533 	return;
2534 
2535 out:
2536 	mem_cgroup_uncharge_page(new_page);
2537 	goto out_up_write;
2538 }
2539 
2540 static int khugepaged_scan_pmd(struct mm_struct *mm,
2541 			       struct vm_area_struct *vma,
2542 			       unsigned long address,
2543 			       struct page **hpage)
2544 {
2545 	pmd_t *pmd;
2546 	pte_t *pte, *_pte;
2547 	int ret = 0, referenced = 0, none = 0;
2548 	struct page *page;
2549 	unsigned long _address;
2550 	spinlock_t *ptl;
2551 	int node = NUMA_NO_NODE;
2552 
2553 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2554 
2555 	pmd = mm_find_pmd(mm, address);
2556 	if (!pmd)
2557 		goto out;
2558 	if (pmd_trans_huge(*pmd))
2559 		goto out;
2560 
2561 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2562 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2563 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2564 	     _pte++, _address += PAGE_SIZE) {
2565 		pte_t pteval = *_pte;
2566 		if (pte_none(pteval)) {
2567 			if (++none <= khugepaged_max_ptes_none)
2568 				continue;
2569 			else
2570 				goto out_unmap;
2571 		}
2572 		if (!pte_present(pteval) || !pte_write(pteval))
2573 			goto out_unmap;
2574 		page = vm_normal_page(vma, _address, pteval);
2575 		if (unlikely(!page))
2576 			goto out_unmap;
2577 		/*
2578 		 * Record which node the original page is from and save this
2579 		 * information to khugepaged_node_load[].
2580 		 * Khupaged will allocate hugepage from the node has the max
2581 		 * hit record.
2582 		 */
2583 		node = page_to_nid(page);
2584 		khugepaged_node_load[node]++;
2585 		VM_BUG_ON_PAGE(PageCompound(page), page);
2586 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2587 			goto out_unmap;
2588 		/* cannot use mapcount: can't collapse if there's a gup pin */
2589 		if (page_count(page) != 1)
2590 			goto out_unmap;
2591 		if (pte_young(pteval) || PageReferenced(page) ||
2592 		    mmu_notifier_test_young(vma->vm_mm, address))
2593 			referenced = 1;
2594 	}
2595 	if (referenced)
2596 		ret = 1;
2597 out_unmap:
2598 	pte_unmap_unlock(pte, ptl);
2599 	if (ret) {
2600 		node = khugepaged_find_target_node();
2601 		/* collapse_huge_page will return with the mmap_sem released */
2602 		collapse_huge_page(mm, address, hpage, vma, node);
2603 	}
2604 out:
2605 	return ret;
2606 }
2607 
2608 static void collect_mm_slot(struct mm_slot *mm_slot)
2609 {
2610 	struct mm_struct *mm = mm_slot->mm;
2611 
2612 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2613 
2614 	if (khugepaged_test_exit(mm)) {
2615 		/* free mm_slot */
2616 		hash_del(&mm_slot->hash);
2617 		list_del(&mm_slot->mm_node);
2618 
2619 		/*
2620 		 * Not strictly needed because the mm exited already.
2621 		 *
2622 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2623 		 */
2624 
2625 		/* khugepaged_mm_lock actually not necessary for the below */
2626 		free_mm_slot(mm_slot);
2627 		mmdrop(mm);
2628 	}
2629 }
2630 
2631 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2632 					    struct page **hpage)
2633 	__releases(&khugepaged_mm_lock)
2634 	__acquires(&khugepaged_mm_lock)
2635 {
2636 	struct mm_slot *mm_slot;
2637 	struct mm_struct *mm;
2638 	struct vm_area_struct *vma;
2639 	int progress = 0;
2640 
2641 	VM_BUG_ON(!pages);
2642 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2643 
2644 	if (khugepaged_scan.mm_slot)
2645 		mm_slot = khugepaged_scan.mm_slot;
2646 	else {
2647 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2648 				     struct mm_slot, mm_node);
2649 		khugepaged_scan.address = 0;
2650 		khugepaged_scan.mm_slot = mm_slot;
2651 	}
2652 	spin_unlock(&khugepaged_mm_lock);
2653 
2654 	mm = mm_slot->mm;
2655 	down_read(&mm->mmap_sem);
2656 	if (unlikely(khugepaged_test_exit(mm)))
2657 		vma = NULL;
2658 	else
2659 		vma = find_vma(mm, khugepaged_scan.address);
2660 
2661 	progress++;
2662 	for (; vma; vma = vma->vm_next) {
2663 		unsigned long hstart, hend;
2664 
2665 		cond_resched();
2666 		if (unlikely(khugepaged_test_exit(mm))) {
2667 			progress++;
2668 			break;
2669 		}
2670 		if (!hugepage_vma_check(vma)) {
2671 skip:
2672 			progress++;
2673 			continue;
2674 		}
2675 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2676 		hend = vma->vm_end & HPAGE_PMD_MASK;
2677 		if (hstart >= hend)
2678 			goto skip;
2679 		if (khugepaged_scan.address > hend)
2680 			goto skip;
2681 		if (khugepaged_scan.address < hstart)
2682 			khugepaged_scan.address = hstart;
2683 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2684 
2685 		while (khugepaged_scan.address < hend) {
2686 			int ret;
2687 			cond_resched();
2688 			if (unlikely(khugepaged_test_exit(mm)))
2689 				goto breakouterloop;
2690 
2691 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2692 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2693 				  hend);
2694 			ret = khugepaged_scan_pmd(mm, vma,
2695 						  khugepaged_scan.address,
2696 						  hpage);
2697 			/* move to next address */
2698 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2699 			progress += HPAGE_PMD_NR;
2700 			if (ret)
2701 				/* we released mmap_sem so break loop */
2702 				goto breakouterloop_mmap_sem;
2703 			if (progress >= pages)
2704 				goto breakouterloop;
2705 		}
2706 	}
2707 breakouterloop:
2708 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2709 breakouterloop_mmap_sem:
2710 
2711 	spin_lock(&khugepaged_mm_lock);
2712 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2713 	/*
2714 	 * Release the current mm_slot if this mm is about to die, or
2715 	 * if we scanned all vmas of this mm.
2716 	 */
2717 	if (khugepaged_test_exit(mm) || !vma) {
2718 		/*
2719 		 * Make sure that if mm_users is reaching zero while
2720 		 * khugepaged runs here, khugepaged_exit will find
2721 		 * mm_slot not pointing to the exiting mm.
2722 		 */
2723 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2724 			khugepaged_scan.mm_slot = list_entry(
2725 				mm_slot->mm_node.next,
2726 				struct mm_slot, mm_node);
2727 			khugepaged_scan.address = 0;
2728 		} else {
2729 			khugepaged_scan.mm_slot = NULL;
2730 			khugepaged_full_scans++;
2731 		}
2732 
2733 		collect_mm_slot(mm_slot);
2734 	}
2735 
2736 	return progress;
2737 }
2738 
2739 static int khugepaged_has_work(void)
2740 {
2741 	return !list_empty(&khugepaged_scan.mm_head) &&
2742 		khugepaged_enabled();
2743 }
2744 
2745 static int khugepaged_wait_event(void)
2746 {
2747 	return !list_empty(&khugepaged_scan.mm_head) ||
2748 		kthread_should_stop();
2749 }
2750 
2751 static void khugepaged_do_scan(void)
2752 {
2753 	struct page *hpage = NULL;
2754 	unsigned int progress = 0, pass_through_head = 0;
2755 	unsigned int pages = khugepaged_pages_to_scan;
2756 	bool wait = true;
2757 
2758 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2759 
2760 	while (progress < pages) {
2761 		if (!khugepaged_prealloc_page(&hpage, &wait))
2762 			break;
2763 
2764 		cond_resched();
2765 
2766 		if (unlikely(kthread_should_stop() || freezing(current)))
2767 			break;
2768 
2769 		spin_lock(&khugepaged_mm_lock);
2770 		if (!khugepaged_scan.mm_slot)
2771 			pass_through_head++;
2772 		if (khugepaged_has_work() &&
2773 		    pass_through_head < 2)
2774 			progress += khugepaged_scan_mm_slot(pages - progress,
2775 							    &hpage);
2776 		else
2777 			progress = pages;
2778 		spin_unlock(&khugepaged_mm_lock);
2779 	}
2780 
2781 	if (!IS_ERR_OR_NULL(hpage))
2782 		put_page(hpage);
2783 }
2784 
2785 static void khugepaged_wait_work(void)
2786 {
2787 	try_to_freeze();
2788 
2789 	if (khugepaged_has_work()) {
2790 		if (!khugepaged_scan_sleep_millisecs)
2791 			return;
2792 
2793 		wait_event_freezable_timeout(khugepaged_wait,
2794 					     kthread_should_stop(),
2795 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2796 		return;
2797 	}
2798 
2799 	if (khugepaged_enabled())
2800 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2801 }
2802 
2803 static int khugepaged(void *none)
2804 {
2805 	struct mm_slot *mm_slot;
2806 
2807 	set_freezable();
2808 	set_user_nice(current, 19);
2809 
2810 	while (!kthread_should_stop()) {
2811 		khugepaged_do_scan();
2812 		khugepaged_wait_work();
2813 	}
2814 
2815 	spin_lock(&khugepaged_mm_lock);
2816 	mm_slot = khugepaged_scan.mm_slot;
2817 	khugepaged_scan.mm_slot = NULL;
2818 	if (mm_slot)
2819 		collect_mm_slot(mm_slot);
2820 	spin_unlock(&khugepaged_mm_lock);
2821 	return 0;
2822 }
2823 
2824 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2825 		unsigned long haddr, pmd_t *pmd)
2826 {
2827 	struct mm_struct *mm = vma->vm_mm;
2828 	pgtable_t pgtable;
2829 	pmd_t _pmd;
2830 	int i;
2831 
2832 	pmdp_clear_flush(vma, haddr, pmd);
2833 	/* leave pmd empty until pte is filled */
2834 
2835 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2836 	pmd_populate(mm, &_pmd, pgtable);
2837 
2838 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2839 		pte_t *pte, entry;
2840 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2841 		entry = pte_mkspecial(entry);
2842 		pte = pte_offset_map(&_pmd, haddr);
2843 		VM_BUG_ON(!pte_none(*pte));
2844 		set_pte_at(mm, haddr, pte, entry);
2845 		pte_unmap(pte);
2846 	}
2847 	smp_wmb(); /* make pte visible before pmd */
2848 	pmd_populate(mm, pmd, pgtable);
2849 	put_huge_zero_page();
2850 }
2851 
2852 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2853 		pmd_t *pmd)
2854 {
2855 	spinlock_t *ptl;
2856 	struct page *page;
2857 	struct mm_struct *mm = vma->vm_mm;
2858 	unsigned long haddr = address & HPAGE_PMD_MASK;
2859 	unsigned long mmun_start;	/* For mmu_notifiers */
2860 	unsigned long mmun_end;		/* For mmu_notifiers */
2861 
2862 	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2863 
2864 	mmun_start = haddr;
2865 	mmun_end   = haddr + HPAGE_PMD_SIZE;
2866 again:
2867 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2868 	ptl = pmd_lock(mm, pmd);
2869 	if (unlikely(!pmd_trans_huge(*pmd))) {
2870 		spin_unlock(ptl);
2871 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2872 		return;
2873 	}
2874 	if (is_huge_zero_pmd(*pmd)) {
2875 		__split_huge_zero_page_pmd(vma, haddr, pmd);
2876 		spin_unlock(ptl);
2877 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2878 		return;
2879 	}
2880 	page = pmd_page(*pmd);
2881 	VM_BUG_ON_PAGE(!page_count(page), page);
2882 	get_page(page);
2883 	spin_unlock(ptl);
2884 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2885 
2886 	split_huge_page(page);
2887 
2888 	put_page(page);
2889 
2890 	/*
2891 	 * We don't always have down_write of mmap_sem here: a racing
2892 	 * do_huge_pmd_wp_page() might have copied-on-write to another
2893 	 * huge page before our split_huge_page() got the anon_vma lock.
2894 	 */
2895 	if (unlikely(pmd_trans_huge(*pmd)))
2896 		goto again;
2897 }
2898 
2899 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2900 		pmd_t *pmd)
2901 {
2902 	struct vm_area_struct *vma;
2903 
2904 	vma = find_vma(mm, address);
2905 	BUG_ON(vma == NULL);
2906 	split_huge_page_pmd(vma, address, pmd);
2907 }
2908 
2909 static void split_huge_page_address(struct mm_struct *mm,
2910 				    unsigned long address)
2911 {
2912 	pmd_t *pmd;
2913 
2914 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2915 
2916 	pmd = mm_find_pmd(mm, address);
2917 	if (!pmd)
2918 		return;
2919 	/*
2920 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2921 	 * materialize from under us.
2922 	 */
2923 	split_huge_page_pmd_mm(mm, address, pmd);
2924 }
2925 
2926 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2927 			     unsigned long start,
2928 			     unsigned long end,
2929 			     long adjust_next)
2930 {
2931 	/*
2932 	 * If the new start address isn't hpage aligned and it could
2933 	 * previously contain an hugepage: check if we need to split
2934 	 * an huge pmd.
2935 	 */
2936 	if (start & ~HPAGE_PMD_MASK &&
2937 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2938 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2939 		split_huge_page_address(vma->vm_mm, start);
2940 
2941 	/*
2942 	 * If the new end address isn't hpage aligned and it could
2943 	 * previously contain an hugepage: check if we need to split
2944 	 * an huge pmd.
2945 	 */
2946 	if (end & ~HPAGE_PMD_MASK &&
2947 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2948 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2949 		split_huge_page_address(vma->vm_mm, end);
2950 
2951 	/*
2952 	 * If we're also updating the vma->vm_next->vm_start, if the new
2953 	 * vm_next->vm_start isn't page aligned and it could previously
2954 	 * contain an hugepage: check if we need to split an huge pmd.
2955 	 */
2956 	if (adjust_next > 0) {
2957 		struct vm_area_struct *next = vma->vm_next;
2958 		unsigned long nstart = next->vm_start;
2959 		nstart += adjust_next << PAGE_SHIFT;
2960 		if (nstart & ~HPAGE_PMD_MASK &&
2961 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2962 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2963 			split_huge_page_address(next->vm_mm, nstart);
2964 	}
2965 }
2966