1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/coredump.h> 12 #include <linux/sched/numa_balancing.h> 13 #include <linux/highmem.h> 14 #include <linux/hugetlb.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/rmap.h> 17 #include <linux/swap.h> 18 #include <linux/shrinker.h> 19 #include <linux/mm_inline.h> 20 #include <linux/swapops.h> 21 #include <linux/backing-dev.h> 22 #include <linux/dax.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/oom.h> 36 #include <linux/numa.h> 37 #include <linux/page_owner.h> 38 #include <linux/sched/sysctl.h> 39 #include <linux/memory-tiers.h> 40 41 #include <asm/tlb.h> 42 #include <asm/pgalloc.h> 43 #include "internal.h" 44 #include "swap.h" 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/thp.h> 48 49 /* 50 * By default, transparent hugepage support is disabled in order to avoid 51 * risking an increased memory footprint for applications that are not 52 * guaranteed to benefit from it. When transparent hugepage support is 53 * enabled, it is for all mappings, and khugepaged scans all mappings. 54 * Defrag is invoked by khugepaged hugepage allocations and by page faults 55 * for all hugepage allocations. 56 */ 57 unsigned long transparent_hugepage_flags __read_mostly = 58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 59 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 60 #endif 61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 62 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 63 #endif 64 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 66 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 67 68 static struct shrinker deferred_split_shrinker; 69 70 static atomic_t huge_zero_refcount; 71 struct page *huge_zero_page __read_mostly; 72 unsigned long huge_zero_pfn __read_mostly = ~0UL; 73 74 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags, 75 bool smaps, bool in_pf, bool enforce_sysfs) 76 { 77 if (!vma->vm_mm) /* vdso */ 78 return false; 79 80 /* 81 * Explicitly disabled through madvise or prctl, or some 82 * architectures may disable THP for some mappings, for 83 * example, s390 kvm. 84 * */ 85 if ((vm_flags & VM_NOHUGEPAGE) || 86 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 87 return false; 88 /* 89 * If the hardware/firmware marked hugepage support disabled. 90 */ 91 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX)) 92 return false; 93 94 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ 95 if (vma_is_dax(vma)) 96 return in_pf; 97 98 /* 99 * Special VMA and hugetlb VMA. 100 * Must be checked after dax since some dax mappings may have 101 * VM_MIXEDMAP set. 102 */ 103 if (vm_flags & VM_NO_KHUGEPAGED) 104 return false; 105 106 /* 107 * Check alignment for file vma and size for both file and anon vma. 108 * 109 * Skip the check for page fault. Huge fault does the check in fault 110 * handlers. And this check is not suitable for huge PUD fault. 111 */ 112 if (!in_pf && 113 !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE))) 114 return false; 115 116 /* 117 * Enabled via shmem mount options or sysfs settings. 118 * Must be done before hugepage flags check since shmem has its 119 * own flags. 120 */ 121 if (!in_pf && shmem_file(vma->vm_file)) 122 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff, 123 !enforce_sysfs, vma->vm_mm, vm_flags); 124 125 /* Enforce sysfs THP requirements as necessary */ 126 if (enforce_sysfs && 127 (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) && 128 !hugepage_flags_always()))) 129 return false; 130 131 /* Only regular file is valid */ 132 if (!in_pf && file_thp_enabled(vma)) 133 return true; 134 135 if (!vma_is_anonymous(vma)) 136 return false; 137 138 if (vma_is_temporary_stack(vma)) 139 return false; 140 141 /* 142 * THPeligible bit of smaps should show 1 for proper VMAs even 143 * though anon_vma is not initialized yet. 144 * 145 * Allow page fault since anon_vma may be not initialized until 146 * the first page fault. 147 */ 148 if (!vma->anon_vma) 149 return (smaps || in_pf); 150 151 return true; 152 } 153 154 static bool get_huge_zero_page(void) 155 { 156 struct page *zero_page; 157 retry: 158 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 159 return true; 160 161 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 162 HPAGE_PMD_ORDER); 163 if (!zero_page) { 164 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 165 return false; 166 } 167 preempt_disable(); 168 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 169 preempt_enable(); 170 __free_pages(zero_page, compound_order(zero_page)); 171 goto retry; 172 } 173 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page)); 174 175 /* We take additional reference here. It will be put back by shrinker */ 176 atomic_set(&huge_zero_refcount, 2); 177 preempt_enable(); 178 count_vm_event(THP_ZERO_PAGE_ALLOC); 179 return true; 180 } 181 182 static void put_huge_zero_page(void) 183 { 184 /* 185 * Counter should never go to zero here. Only shrinker can put 186 * last reference. 187 */ 188 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 189 } 190 191 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 192 { 193 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 194 return READ_ONCE(huge_zero_page); 195 196 if (!get_huge_zero_page()) 197 return NULL; 198 199 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 200 put_huge_zero_page(); 201 202 return READ_ONCE(huge_zero_page); 203 } 204 205 void mm_put_huge_zero_page(struct mm_struct *mm) 206 { 207 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 208 put_huge_zero_page(); 209 } 210 211 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 212 struct shrink_control *sc) 213 { 214 /* we can free zero page only if last reference remains */ 215 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 216 } 217 218 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 219 struct shrink_control *sc) 220 { 221 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 222 struct page *zero_page = xchg(&huge_zero_page, NULL); 223 BUG_ON(zero_page == NULL); 224 WRITE_ONCE(huge_zero_pfn, ~0UL); 225 __free_pages(zero_page, compound_order(zero_page)); 226 return HPAGE_PMD_NR; 227 } 228 229 return 0; 230 } 231 232 static struct shrinker huge_zero_page_shrinker = { 233 .count_objects = shrink_huge_zero_page_count, 234 .scan_objects = shrink_huge_zero_page_scan, 235 .seeks = DEFAULT_SEEKS, 236 }; 237 238 #ifdef CONFIG_SYSFS 239 static ssize_t enabled_show(struct kobject *kobj, 240 struct kobj_attribute *attr, char *buf) 241 { 242 const char *output; 243 244 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 245 output = "[always] madvise never"; 246 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 247 &transparent_hugepage_flags)) 248 output = "always [madvise] never"; 249 else 250 output = "always madvise [never]"; 251 252 return sysfs_emit(buf, "%s\n", output); 253 } 254 255 static ssize_t enabled_store(struct kobject *kobj, 256 struct kobj_attribute *attr, 257 const char *buf, size_t count) 258 { 259 ssize_t ret = count; 260 261 if (sysfs_streq(buf, "always")) { 262 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 263 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 264 } else if (sysfs_streq(buf, "madvise")) { 265 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 266 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 267 } else if (sysfs_streq(buf, "never")) { 268 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 269 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 270 } else 271 ret = -EINVAL; 272 273 if (ret > 0) { 274 int err = start_stop_khugepaged(); 275 if (err) 276 ret = err; 277 } 278 return ret; 279 } 280 281 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); 282 283 ssize_t single_hugepage_flag_show(struct kobject *kobj, 284 struct kobj_attribute *attr, char *buf, 285 enum transparent_hugepage_flag flag) 286 { 287 return sysfs_emit(buf, "%d\n", 288 !!test_bit(flag, &transparent_hugepage_flags)); 289 } 290 291 ssize_t single_hugepage_flag_store(struct kobject *kobj, 292 struct kobj_attribute *attr, 293 const char *buf, size_t count, 294 enum transparent_hugepage_flag flag) 295 { 296 unsigned long value; 297 int ret; 298 299 ret = kstrtoul(buf, 10, &value); 300 if (ret < 0) 301 return ret; 302 if (value > 1) 303 return -EINVAL; 304 305 if (value) 306 set_bit(flag, &transparent_hugepage_flags); 307 else 308 clear_bit(flag, &transparent_hugepage_flags); 309 310 return count; 311 } 312 313 static ssize_t defrag_show(struct kobject *kobj, 314 struct kobj_attribute *attr, char *buf) 315 { 316 const char *output; 317 318 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 319 &transparent_hugepage_flags)) 320 output = "[always] defer defer+madvise madvise never"; 321 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 322 &transparent_hugepage_flags)) 323 output = "always [defer] defer+madvise madvise never"; 324 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 325 &transparent_hugepage_flags)) 326 output = "always defer [defer+madvise] madvise never"; 327 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 328 &transparent_hugepage_flags)) 329 output = "always defer defer+madvise [madvise] never"; 330 else 331 output = "always defer defer+madvise madvise [never]"; 332 333 return sysfs_emit(buf, "%s\n", output); 334 } 335 336 static ssize_t defrag_store(struct kobject *kobj, 337 struct kobj_attribute *attr, 338 const char *buf, size_t count) 339 { 340 if (sysfs_streq(buf, "always")) { 341 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 342 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 343 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 344 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 345 } else if (sysfs_streq(buf, "defer+madvise")) { 346 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 347 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 348 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 349 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 350 } else if (sysfs_streq(buf, "defer")) { 351 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 352 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 353 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 354 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 355 } else if (sysfs_streq(buf, "madvise")) { 356 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 357 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 358 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 359 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 360 } else if (sysfs_streq(buf, "never")) { 361 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 362 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 363 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 364 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 365 } else 366 return -EINVAL; 367 368 return count; 369 } 370 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); 371 372 static ssize_t use_zero_page_show(struct kobject *kobj, 373 struct kobj_attribute *attr, char *buf) 374 { 375 return single_hugepage_flag_show(kobj, attr, buf, 376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 377 } 378 static ssize_t use_zero_page_store(struct kobject *kobj, 379 struct kobj_attribute *attr, const char *buf, size_t count) 380 { 381 return single_hugepage_flag_store(kobj, attr, buf, count, 382 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 383 } 384 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); 385 386 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 387 struct kobj_attribute *attr, char *buf) 388 { 389 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 390 } 391 static struct kobj_attribute hpage_pmd_size_attr = 392 __ATTR_RO(hpage_pmd_size); 393 394 static struct attribute *hugepage_attr[] = { 395 &enabled_attr.attr, 396 &defrag_attr.attr, 397 &use_zero_page_attr.attr, 398 &hpage_pmd_size_attr.attr, 399 #ifdef CONFIG_SHMEM 400 &shmem_enabled_attr.attr, 401 #endif 402 NULL, 403 }; 404 405 static const struct attribute_group hugepage_attr_group = { 406 .attrs = hugepage_attr, 407 }; 408 409 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 410 { 411 int err; 412 413 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 414 if (unlikely(!*hugepage_kobj)) { 415 pr_err("failed to create transparent hugepage kobject\n"); 416 return -ENOMEM; 417 } 418 419 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 420 if (err) { 421 pr_err("failed to register transparent hugepage group\n"); 422 goto delete_obj; 423 } 424 425 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 426 if (err) { 427 pr_err("failed to register transparent hugepage group\n"); 428 goto remove_hp_group; 429 } 430 431 return 0; 432 433 remove_hp_group: 434 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 435 delete_obj: 436 kobject_put(*hugepage_kobj); 437 return err; 438 } 439 440 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 441 { 442 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 443 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 444 kobject_put(hugepage_kobj); 445 } 446 #else 447 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 448 { 449 return 0; 450 } 451 452 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 453 { 454 } 455 #endif /* CONFIG_SYSFS */ 456 457 static int __init hugepage_init(void) 458 { 459 int err; 460 struct kobject *hugepage_kobj; 461 462 if (!has_transparent_hugepage()) { 463 /* 464 * Hardware doesn't support hugepages, hence disable 465 * DAX PMD support. 466 */ 467 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX; 468 return -EINVAL; 469 } 470 471 /* 472 * hugepages can't be allocated by the buddy allocator 473 */ 474 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 475 /* 476 * we use page->mapping and page->index in second tail page 477 * as list_head: assuming THP order >= 2 478 */ 479 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 480 481 err = hugepage_init_sysfs(&hugepage_kobj); 482 if (err) 483 goto err_sysfs; 484 485 err = khugepaged_init(); 486 if (err) 487 goto err_slab; 488 489 err = register_shrinker(&huge_zero_page_shrinker, "thp-zero"); 490 if (err) 491 goto err_hzp_shrinker; 492 err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split"); 493 if (err) 494 goto err_split_shrinker; 495 496 /* 497 * By default disable transparent hugepages on smaller systems, 498 * where the extra memory used could hurt more than TLB overhead 499 * is likely to save. The admin can still enable it through /sys. 500 */ 501 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 502 transparent_hugepage_flags = 0; 503 return 0; 504 } 505 506 err = start_stop_khugepaged(); 507 if (err) 508 goto err_khugepaged; 509 510 return 0; 511 err_khugepaged: 512 unregister_shrinker(&deferred_split_shrinker); 513 err_split_shrinker: 514 unregister_shrinker(&huge_zero_page_shrinker); 515 err_hzp_shrinker: 516 khugepaged_destroy(); 517 err_slab: 518 hugepage_exit_sysfs(hugepage_kobj); 519 err_sysfs: 520 return err; 521 } 522 subsys_initcall(hugepage_init); 523 524 static int __init setup_transparent_hugepage(char *str) 525 { 526 int ret = 0; 527 if (!str) 528 goto out; 529 if (!strcmp(str, "always")) { 530 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 531 &transparent_hugepage_flags); 532 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 533 &transparent_hugepage_flags); 534 ret = 1; 535 } else if (!strcmp(str, "madvise")) { 536 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 537 &transparent_hugepage_flags); 538 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 539 &transparent_hugepage_flags); 540 ret = 1; 541 } else if (!strcmp(str, "never")) { 542 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 543 &transparent_hugepage_flags); 544 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 545 &transparent_hugepage_flags); 546 ret = 1; 547 } 548 out: 549 if (!ret) 550 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 551 return ret; 552 } 553 __setup("transparent_hugepage=", setup_transparent_hugepage); 554 555 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 556 { 557 if (likely(vma->vm_flags & VM_WRITE)) 558 pmd = pmd_mkwrite(pmd); 559 return pmd; 560 } 561 562 #ifdef CONFIG_MEMCG 563 static inline 564 struct deferred_split *get_deferred_split_queue(struct folio *folio) 565 { 566 struct mem_cgroup *memcg = folio_memcg(folio); 567 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 568 569 if (memcg) 570 return &memcg->deferred_split_queue; 571 else 572 return &pgdat->deferred_split_queue; 573 } 574 #else 575 static inline 576 struct deferred_split *get_deferred_split_queue(struct folio *folio) 577 { 578 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 579 580 return &pgdat->deferred_split_queue; 581 } 582 #endif 583 584 void prep_transhuge_page(struct page *page) 585 { 586 struct folio *folio = (struct folio *)page; 587 588 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio); 589 INIT_LIST_HEAD(&folio->_deferred_list); 590 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 591 } 592 593 static inline bool is_transparent_hugepage(struct page *page) 594 { 595 struct folio *folio; 596 597 if (!PageCompound(page)) 598 return false; 599 600 folio = page_folio(page); 601 return is_huge_zero_page(&folio->page) || 602 folio->_folio_dtor == TRANSHUGE_PAGE_DTOR; 603 } 604 605 static unsigned long __thp_get_unmapped_area(struct file *filp, 606 unsigned long addr, unsigned long len, 607 loff_t off, unsigned long flags, unsigned long size) 608 { 609 loff_t off_end = off + len; 610 loff_t off_align = round_up(off, size); 611 unsigned long len_pad, ret; 612 613 if (off_end <= off_align || (off_end - off_align) < size) 614 return 0; 615 616 len_pad = len + size; 617 if (len_pad < len || (off + len_pad) < off) 618 return 0; 619 620 ret = current->mm->get_unmapped_area(filp, addr, len_pad, 621 off >> PAGE_SHIFT, flags); 622 623 /* 624 * The failure might be due to length padding. The caller will retry 625 * without the padding. 626 */ 627 if (IS_ERR_VALUE(ret)) 628 return 0; 629 630 /* 631 * Do not try to align to THP boundary if allocation at the address 632 * hint succeeds. 633 */ 634 if (ret == addr) 635 return addr; 636 637 ret += (off - ret) & (size - 1); 638 return ret; 639 } 640 641 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 642 unsigned long len, unsigned long pgoff, unsigned long flags) 643 { 644 unsigned long ret; 645 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 646 647 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); 648 if (ret) 649 return ret; 650 651 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 652 } 653 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 654 655 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 656 struct page *page, gfp_t gfp) 657 { 658 struct vm_area_struct *vma = vmf->vma; 659 pgtable_t pgtable; 660 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 661 vm_fault_t ret = 0; 662 663 VM_BUG_ON_PAGE(!PageCompound(page), page); 664 665 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) { 666 put_page(page); 667 count_vm_event(THP_FAULT_FALLBACK); 668 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 669 return VM_FAULT_FALLBACK; 670 } 671 cgroup_throttle_swaprate(page, gfp); 672 673 pgtable = pte_alloc_one(vma->vm_mm); 674 if (unlikely(!pgtable)) { 675 ret = VM_FAULT_OOM; 676 goto release; 677 } 678 679 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 680 /* 681 * The memory barrier inside __SetPageUptodate makes sure that 682 * clear_huge_page writes become visible before the set_pmd_at() 683 * write. 684 */ 685 __SetPageUptodate(page); 686 687 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 688 if (unlikely(!pmd_none(*vmf->pmd))) { 689 goto unlock_release; 690 } else { 691 pmd_t entry; 692 693 ret = check_stable_address_space(vma->vm_mm); 694 if (ret) 695 goto unlock_release; 696 697 /* Deliver the page fault to userland */ 698 if (userfaultfd_missing(vma)) { 699 spin_unlock(vmf->ptl); 700 put_page(page); 701 pte_free(vma->vm_mm, pgtable); 702 ret = handle_userfault(vmf, VM_UFFD_MISSING); 703 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 704 return ret; 705 } 706 707 entry = mk_huge_pmd(page, vma->vm_page_prot); 708 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 709 page_add_new_anon_rmap(page, vma, haddr); 710 lru_cache_add_inactive_or_unevictable(page, vma); 711 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 712 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 713 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 714 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 715 mm_inc_nr_ptes(vma->vm_mm); 716 spin_unlock(vmf->ptl); 717 count_vm_event(THP_FAULT_ALLOC); 718 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 719 } 720 721 return 0; 722 unlock_release: 723 spin_unlock(vmf->ptl); 724 release: 725 if (pgtable) 726 pte_free(vma->vm_mm, pgtable); 727 put_page(page); 728 return ret; 729 730 } 731 732 /* 733 * always: directly stall for all thp allocations 734 * defer: wake kswapd and fail if not immediately available 735 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 736 * fail if not immediately available 737 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 738 * available 739 * never: never stall for any thp allocation 740 */ 741 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 742 { 743 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 744 745 /* Always do synchronous compaction */ 746 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 747 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 748 749 /* Kick kcompactd and fail quickly */ 750 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 751 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 752 753 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 754 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 755 return GFP_TRANSHUGE_LIGHT | 756 (vma_madvised ? __GFP_DIRECT_RECLAIM : 757 __GFP_KSWAPD_RECLAIM); 758 759 /* Only do synchronous compaction if madvised */ 760 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 761 return GFP_TRANSHUGE_LIGHT | 762 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 763 764 return GFP_TRANSHUGE_LIGHT; 765 } 766 767 /* Caller must hold page table lock. */ 768 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 769 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 770 struct page *zero_page) 771 { 772 pmd_t entry; 773 if (!pmd_none(*pmd)) 774 return; 775 entry = mk_pmd(zero_page, vma->vm_page_prot); 776 entry = pmd_mkhuge(entry); 777 pgtable_trans_huge_deposit(mm, pmd, pgtable); 778 set_pmd_at(mm, haddr, pmd, entry); 779 mm_inc_nr_ptes(mm); 780 } 781 782 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 783 { 784 struct vm_area_struct *vma = vmf->vma; 785 gfp_t gfp; 786 struct folio *folio; 787 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 788 789 if (!transhuge_vma_suitable(vma, haddr)) 790 return VM_FAULT_FALLBACK; 791 if (unlikely(anon_vma_prepare(vma))) 792 return VM_FAULT_OOM; 793 khugepaged_enter_vma(vma, vma->vm_flags); 794 795 if (!(vmf->flags & FAULT_FLAG_WRITE) && 796 !mm_forbids_zeropage(vma->vm_mm) && 797 transparent_hugepage_use_zero_page()) { 798 pgtable_t pgtable; 799 struct page *zero_page; 800 vm_fault_t ret; 801 pgtable = pte_alloc_one(vma->vm_mm); 802 if (unlikely(!pgtable)) 803 return VM_FAULT_OOM; 804 zero_page = mm_get_huge_zero_page(vma->vm_mm); 805 if (unlikely(!zero_page)) { 806 pte_free(vma->vm_mm, pgtable); 807 count_vm_event(THP_FAULT_FALLBACK); 808 return VM_FAULT_FALLBACK; 809 } 810 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 811 ret = 0; 812 if (pmd_none(*vmf->pmd)) { 813 ret = check_stable_address_space(vma->vm_mm); 814 if (ret) { 815 spin_unlock(vmf->ptl); 816 pte_free(vma->vm_mm, pgtable); 817 } else if (userfaultfd_missing(vma)) { 818 spin_unlock(vmf->ptl); 819 pte_free(vma->vm_mm, pgtable); 820 ret = handle_userfault(vmf, VM_UFFD_MISSING); 821 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 822 } else { 823 set_huge_zero_page(pgtable, vma->vm_mm, vma, 824 haddr, vmf->pmd, zero_page); 825 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 826 spin_unlock(vmf->ptl); 827 } 828 } else { 829 spin_unlock(vmf->ptl); 830 pte_free(vma->vm_mm, pgtable); 831 } 832 return ret; 833 } 834 gfp = vma_thp_gfp_mask(vma); 835 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true); 836 if (unlikely(!folio)) { 837 count_vm_event(THP_FAULT_FALLBACK); 838 return VM_FAULT_FALLBACK; 839 } 840 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp); 841 } 842 843 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 844 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 845 pgtable_t pgtable) 846 { 847 struct mm_struct *mm = vma->vm_mm; 848 pmd_t entry; 849 spinlock_t *ptl; 850 851 ptl = pmd_lock(mm, pmd); 852 if (!pmd_none(*pmd)) { 853 if (write) { 854 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 855 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 856 goto out_unlock; 857 } 858 entry = pmd_mkyoung(*pmd); 859 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 860 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 861 update_mmu_cache_pmd(vma, addr, pmd); 862 } 863 864 goto out_unlock; 865 } 866 867 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 868 if (pfn_t_devmap(pfn)) 869 entry = pmd_mkdevmap(entry); 870 if (write) { 871 entry = pmd_mkyoung(pmd_mkdirty(entry)); 872 entry = maybe_pmd_mkwrite(entry, vma); 873 } 874 875 if (pgtable) { 876 pgtable_trans_huge_deposit(mm, pmd, pgtable); 877 mm_inc_nr_ptes(mm); 878 pgtable = NULL; 879 } 880 881 set_pmd_at(mm, addr, pmd, entry); 882 update_mmu_cache_pmd(vma, addr, pmd); 883 884 out_unlock: 885 spin_unlock(ptl); 886 if (pgtable) 887 pte_free(mm, pgtable); 888 } 889 890 /** 891 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn 892 * @vmf: Structure describing the fault 893 * @pfn: pfn to insert 894 * @pgprot: page protection to use 895 * @write: whether it's a write fault 896 * 897 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and 898 * also consult the vmf_insert_mixed_prot() documentation when 899 * @pgprot != @vmf->vma->vm_page_prot. 900 * 901 * Return: vm_fault_t value. 902 */ 903 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn, 904 pgprot_t pgprot, bool write) 905 { 906 unsigned long addr = vmf->address & PMD_MASK; 907 struct vm_area_struct *vma = vmf->vma; 908 pgtable_t pgtable = NULL; 909 910 /* 911 * If we had pmd_special, we could avoid all these restrictions, 912 * but we need to be consistent with PTEs and architectures that 913 * can't support a 'special' bit. 914 */ 915 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 916 !pfn_t_devmap(pfn)); 917 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 918 (VM_PFNMAP|VM_MIXEDMAP)); 919 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 920 921 if (addr < vma->vm_start || addr >= vma->vm_end) 922 return VM_FAULT_SIGBUS; 923 924 if (arch_needs_pgtable_deposit()) { 925 pgtable = pte_alloc_one(vma->vm_mm); 926 if (!pgtable) 927 return VM_FAULT_OOM; 928 } 929 930 track_pfn_insert(vma, &pgprot, pfn); 931 932 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 933 return VM_FAULT_NOPAGE; 934 } 935 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot); 936 937 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 938 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 939 { 940 if (likely(vma->vm_flags & VM_WRITE)) 941 pud = pud_mkwrite(pud); 942 return pud; 943 } 944 945 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 946 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 947 { 948 struct mm_struct *mm = vma->vm_mm; 949 pud_t entry; 950 spinlock_t *ptl; 951 952 ptl = pud_lock(mm, pud); 953 if (!pud_none(*pud)) { 954 if (write) { 955 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 956 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 957 goto out_unlock; 958 } 959 entry = pud_mkyoung(*pud); 960 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 961 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 962 update_mmu_cache_pud(vma, addr, pud); 963 } 964 goto out_unlock; 965 } 966 967 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 968 if (pfn_t_devmap(pfn)) 969 entry = pud_mkdevmap(entry); 970 if (write) { 971 entry = pud_mkyoung(pud_mkdirty(entry)); 972 entry = maybe_pud_mkwrite(entry, vma); 973 } 974 set_pud_at(mm, addr, pud, entry); 975 update_mmu_cache_pud(vma, addr, pud); 976 977 out_unlock: 978 spin_unlock(ptl); 979 } 980 981 /** 982 * vmf_insert_pfn_pud_prot - insert a pud size pfn 983 * @vmf: Structure describing the fault 984 * @pfn: pfn to insert 985 * @pgprot: page protection to use 986 * @write: whether it's a write fault 987 * 988 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and 989 * also consult the vmf_insert_mixed_prot() documentation when 990 * @pgprot != @vmf->vma->vm_page_prot. 991 * 992 * Return: vm_fault_t value. 993 */ 994 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn, 995 pgprot_t pgprot, bool write) 996 { 997 unsigned long addr = vmf->address & PUD_MASK; 998 struct vm_area_struct *vma = vmf->vma; 999 1000 /* 1001 * If we had pud_special, we could avoid all these restrictions, 1002 * but we need to be consistent with PTEs and architectures that 1003 * can't support a 'special' bit. 1004 */ 1005 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1006 !pfn_t_devmap(pfn)); 1007 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1008 (VM_PFNMAP|VM_MIXEDMAP)); 1009 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1010 1011 if (addr < vma->vm_start || addr >= vma->vm_end) 1012 return VM_FAULT_SIGBUS; 1013 1014 track_pfn_insert(vma, &pgprot, pfn); 1015 1016 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write); 1017 return VM_FAULT_NOPAGE; 1018 } 1019 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot); 1020 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1021 1022 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1023 pmd_t *pmd, bool write) 1024 { 1025 pmd_t _pmd; 1026 1027 _pmd = pmd_mkyoung(*pmd); 1028 if (write) 1029 _pmd = pmd_mkdirty(_pmd); 1030 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1031 pmd, _pmd, write)) 1032 update_mmu_cache_pmd(vma, addr, pmd); 1033 } 1034 1035 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 1036 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 1037 { 1038 unsigned long pfn = pmd_pfn(*pmd); 1039 struct mm_struct *mm = vma->vm_mm; 1040 struct page *page; 1041 int ret; 1042 1043 assert_spin_locked(pmd_lockptr(mm, pmd)); 1044 1045 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1046 return NULL; 1047 1048 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1049 /* pass */; 1050 else 1051 return NULL; 1052 1053 if (flags & FOLL_TOUCH) 1054 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1055 1056 /* 1057 * device mapped pages can only be returned if the 1058 * caller will manage the page reference count. 1059 */ 1060 if (!(flags & (FOLL_GET | FOLL_PIN))) 1061 return ERR_PTR(-EEXIST); 1062 1063 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1064 *pgmap = get_dev_pagemap(pfn, *pgmap); 1065 if (!*pgmap) 1066 return ERR_PTR(-EFAULT); 1067 page = pfn_to_page(pfn); 1068 ret = try_grab_page(page, flags); 1069 if (ret) 1070 page = ERR_PTR(ret); 1071 1072 return page; 1073 } 1074 1075 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1076 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1077 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1078 { 1079 spinlock_t *dst_ptl, *src_ptl; 1080 struct page *src_page; 1081 pmd_t pmd; 1082 pgtable_t pgtable = NULL; 1083 int ret = -ENOMEM; 1084 1085 /* Skip if can be re-fill on fault */ 1086 if (!vma_is_anonymous(dst_vma)) 1087 return 0; 1088 1089 pgtable = pte_alloc_one(dst_mm); 1090 if (unlikely(!pgtable)) 1091 goto out; 1092 1093 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1094 src_ptl = pmd_lockptr(src_mm, src_pmd); 1095 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1096 1097 ret = -EAGAIN; 1098 pmd = *src_pmd; 1099 1100 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1101 if (unlikely(is_swap_pmd(pmd))) { 1102 swp_entry_t entry = pmd_to_swp_entry(pmd); 1103 1104 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1105 if (!is_readable_migration_entry(entry)) { 1106 entry = make_readable_migration_entry( 1107 swp_offset(entry)); 1108 pmd = swp_entry_to_pmd(entry); 1109 if (pmd_swp_soft_dirty(*src_pmd)) 1110 pmd = pmd_swp_mksoft_dirty(pmd); 1111 if (pmd_swp_uffd_wp(*src_pmd)) 1112 pmd = pmd_swp_mkuffd_wp(pmd); 1113 set_pmd_at(src_mm, addr, src_pmd, pmd); 1114 } 1115 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1116 mm_inc_nr_ptes(dst_mm); 1117 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1118 if (!userfaultfd_wp(dst_vma)) 1119 pmd = pmd_swp_clear_uffd_wp(pmd); 1120 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1121 ret = 0; 1122 goto out_unlock; 1123 } 1124 #endif 1125 1126 if (unlikely(!pmd_trans_huge(pmd))) { 1127 pte_free(dst_mm, pgtable); 1128 goto out_unlock; 1129 } 1130 /* 1131 * When page table lock is held, the huge zero pmd should not be 1132 * under splitting since we don't split the page itself, only pmd to 1133 * a page table. 1134 */ 1135 if (is_huge_zero_pmd(pmd)) { 1136 /* 1137 * get_huge_zero_page() will never allocate a new page here, 1138 * since we already have a zero page to copy. It just takes a 1139 * reference. 1140 */ 1141 mm_get_huge_zero_page(dst_mm); 1142 goto out_zero_page; 1143 } 1144 1145 src_page = pmd_page(pmd); 1146 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1147 1148 get_page(src_page); 1149 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) { 1150 /* Page maybe pinned: split and retry the fault on PTEs. */ 1151 put_page(src_page); 1152 pte_free(dst_mm, pgtable); 1153 spin_unlock(src_ptl); 1154 spin_unlock(dst_ptl); 1155 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1156 return -EAGAIN; 1157 } 1158 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1159 out_zero_page: 1160 mm_inc_nr_ptes(dst_mm); 1161 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1162 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1163 if (!userfaultfd_wp(dst_vma)) 1164 pmd = pmd_clear_uffd_wp(pmd); 1165 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1166 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1167 1168 ret = 0; 1169 out_unlock: 1170 spin_unlock(src_ptl); 1171 spin_unlock(dst_ptl); 1172 out: 1173 return ret; 1174 } 1175 1176 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1177 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1178 pud_t *pud, bool write) 1179 { 1180 pud_t _pud; 1181 1182 _pud = pud_mkyoung(*pud); 1183 if (write) 1184 _pud = pud_mkdirty(_pud); 1185 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1186 pud, _pud, write)) 1187 update_mmu_cache_pud(vma, addr, pud); 1188 } 1189 1190 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1191 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1192 { 1193 unsigned long pfn = pud_pfn(*pud); 1194 struct mm_struct *mm = vma->vm_mm; 1195 struct page *page; 1196 int ret; 1197 1198 assert_spin_locked(pud_lockptr(mm, pud)); 1199 1200 if (flags & FOLL_WRITE && !pud_write(*pud)) 1201 return NULL; 1202 1203 if (pud_present(*pud) && pud_devmap(*pud)) 1204 /* pass */; 1205 else 1206 return NULL; 1207 1208 if (flags & FOLL_TOUCH) 1209 touch_pud(vma, addr, pud, flags & FOLL_WRITE); 1210 1211 /* 1212 * device mapped pages can only be returned if the 1213 * caller will manage the page reference count. 1214 * 1215 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: 1216 */ 1217 if (!(flags & (FOLL_GET | FOLL_PIN))) 1218 return ERR_PTR(-EEXIST); 1219 1220 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1221 *pgmap = get_dev_pagemap(pfn, *pgmap); 1222 if (!*pgmap) 1223 return ERR_PTR(-EFAULT); 1224 page = pfn_to_page(pfn); 1225 1226 ret = try_grab_page(page, flags); 1227 if (ret) 1228 page = ERR_PTR(ret); 1229 1230 return page; 1231 } 1232 1233 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1234 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1235 struct vm_area_struct *vma) 1236 { 1237 spinlock_t *dst_ptl, *src_ptl; 1238 pud_t pud; 1239 int ret; 1240 1241 dst_ptl = pud_lock(dst_mm, dst_pud); 1242 src_ptl = pud_lockptr(src_mm, src_pud); 1243 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1244 1245 ret = -EAGAIN; 1246 pud = *src_pud; 1247 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1248 goto out_unlock; 1249 1250 /* 1251 * When page table lock is held, the huge zero pud should not be 1252 * under splitting since we don't split the page itself, only pud to 1253 * a page table. 1254 */ 1255 if (is_huge_zero_pud(pud)) { 1256 /* No huge zero pud yet */ 1257 } 1258 1259 /* 1260 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap() 1261 * and split if duplicating fails. 1262 */ 1263 pudp_set_wrprotect(src_mm, addr, src_pud); 1264 pud = pud_mkold(pud_wrprotect(pud)); 1265 set_pud_at(dst_mm, addr, dst_pud, pud); 1266 1267 ret = 0; 1268 out_unlock: 1269 spin_unlock(src_ptl); 1270 spin_unlock(dst_ptl); 1271 return ret; 1272 } 1273 1274 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1275 { 1276 bool write = vmf->flags & FAULT_FLAG_WRITE; 1277 1278 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1279 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1280 goto unlock; 1281 1282 touch_pud(vmf->vma, vmf->address, vmf->pud, write); 1283 unlock: 1284 spin_unlock(vmf->ptl); 1285 } 1286 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1287 1288 void huge_pmd_set_accessed(struct vm_fault *vmf) 1289 { 1290 bool write = vmf->flags & FAULT_FLAG_WRITE; 1291 1292 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1293 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) 1294 goto unlock; 1295 1296 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); 1297 1298 unlock: 1299 spin_unlock(vmf->ptl); 1300 } 1301 1302 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1303 { 1304 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 1305 struct vm_area_struct *vma = vmf->vma; 1306 struct folio *folio; 1307 struct page *page; 1308 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1309 pmd_t orig_pmd = vmf->orig_pmd; 1310 1311 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1312 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1313 1314 if (is_huge_zero_pmd(orig_pmd)) 1315 goto fallback; 1316 1317 spin_lock(vmf->ptl); 1318 1319 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1320 spin_unlock(vmf->ptl); 1321 return 0; 1322 } 1323 1324 page = pmd_page(orig_pmd); 1325 folio = page_folio(page); 1326 VM_BUG_ON_PAGE(!PageHead(page), page); 1327 1328 /* Early check when only holding the PT lock. */ 1329 if (PageAnonExclusive(page)) 1330 goto reuse; 1331 1332 if (!folio_trylock(folio)) { 1333 folio_get(folio); 1334 spin_unlock(vmf->ptl); 1335 folio_lock(folio); 1336 spin_lock(vmf->ptl); 1337 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1338 spin_unlock(vmf->ptl); 1339 folio_unlock(folio); 1340 folio_put(folio); 1341 return 0; 1342 } 1343 folio_put(folio); 1344 } 1345 1346 /* Recheck after temporarily dropping the PT lock. */ 1347 if (PageAnonExclusive(page)) { 1348 folio_unlock(folio); 1349 goto reuse; 1350 } 1351 1352 /* 1353 * See do_wp_page(): we can only reuse the folio exclusively if 1354 * there are no additional references. Note that we always drain 1355 * the LRU pagevecs immediately after adding a THP. 1356 */ 1357 if (folio_ref_count(folio) > 1358 1 + folio_test_swapcache(folio) * folio_nr_pages(folio)) 1359 goto unlock_fallback; 1360 if (folio_test_swapcache(folio)) 1361 folio_free_swap(folio); 1362 if (folio_ref_count(folio) == 1) { 1363 pmd_t entry; 1364 1365 page_move_anon_rmap(page, vma); 1366 folio_unlock(folio); 1367 reuse: 1368 if (unlikely(unshare)) { 1369 spin_unlock(vmf->ptl); 1370 return 0; 1371 } 1372 entry = pmd_mkyoung(orig_pmd); 1373 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1374 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1375 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1376 spin_unlock(vmf->ptl); 1377 return 0; 1378 } 1379 1380 unlock_fallback: 1381 folio_unlock(folio); 1382 spin_unlock(vmf->ptl); 1383 fallback: 1384 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1385 return VM_FAULT_FALLBACK; 1386 } 1387 1388 static inline bool can_change_pmd_writable(struct vm_area_struct *vma, 1389 unsigned long addr, pmd_t pmd) 1390 { 1391 struct page *page; 1392 1393 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) 1394 return false; 1395 1396 /* Don't touch entries that are not even readable (NUMA hinting). */ 1397 if (pmd_protnone(pmd)) 1398 return false; 1399 1400 /* Do we need write faults for softdirty tracking? */ 1401 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 1402 return false; 1403 1404 /* Do we need write faults for uffd-wp tracking? */ 1405 if (userfaultfd_huge_pmd_wp(vma, pmd)) 1406 return false; 1407 1408 if (!(vma->vm_flags & VM_SHARED)) { 1409 /* See can_change_pte_writable(). */ 1410 page = vm_normal_page_pmd(vma, addr, pmd); 1411 return page && PageAnon(page) && PageAnonExclusive(page); 1412 } 1413 1414 /* See can_change_pte_writable(). */ 1415 return pmd_dirty(pmd); 1416 } 1417 1418 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 1419 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 1420 struct vm_area_struct *vma, 1421 unsigned int flags) 1422 { 1423 /* If the pmd is writable, we can write to the page. */ 1424 if (pmd_write(pmd)) 1425 return true; 1426 1427 /* Maybe FOLL_FORCE is set to override it? */ 1428 if (!(flags & FOLL_FORCE)) 1429 return false; 1430 1431 /* But FOLL_FORCE has no effect on shared mappings */ 1432 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 1433 return false; 1434 1435 /* ... or read-only private ones */ 1436 if (!(vma->vm_flags & VM_MAYWRITE)) 1437 return false; 1438 1439 /* ... or already writable ones that just need to take a write fault */ 1440 if (vma->vm_flags & VM_WRITE) 1441 return false; 1442 1443 /* 1444 * See can_change_pte_writable(): we broke COW and could map the page 1445 * writable if we have an exclusive anonymous page ... 1446 */ 1447 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 1448 return false; 1449 1450 /* ... and a write-fault isn't required for other reasons. */ 1451 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 1452 return false; 1453 return !userfaultfd_huge_pmd_wp(vma, pmd); 1454 } 1455 1456 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1457 unsigned long addr, 1458 pmd_t *pmd, 1459 unsigned int flags) 1460 { 1461 struct mm_struct *mm = vma->vm_mm; 1462 struct page *page; 1463 int ret; 1464 1465 assert_spin_locked(pmd_lockptr(mm, pmd)); 1466 1467 page = pmd_page(*pmd); 1468 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1469 1470 if ((flags & FOLL_WRITE) && 1471 !can_follow_write_pmd(*pmd, page, vma, flags)) 1472 return NULL; 1473 1474 /* Avoid dumping huge zero page */ 1475 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1476 return ERR_PTR(-EFAULT); 1477 1478 /* Full NUMA hinting faults to serialise migration in fault paths */ 1479 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags)) 1480 return NULL; 1481 1482 if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page)) 1483 return ERR_PTR(-EMLINK); 1484 1485 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 1486 !PageAnonExclusive(page), page); 1487 1488 ret = try_grab_page(page, flags); 1489 if (ret) 1490 return ERR_PTR(ret); 1491 1492 if (flags & FOLL_TOUCH) 1493 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1494 1495 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1496 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1497 1498 return page; 1499 } 1500 1501 /* NUMA hinting page fault entry point for trans huge pmds */ 1502 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1503 { 1504 struct vm_area_struct *vma = vmf->vma; 1505 pmd_t oldpmd = vmf->orig_pmd; 1506 pmd_t pmd; 1507 struct page *page; 1508 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1509 int page_nid = NUMA_NO_NODE; 1510 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK); 1511 bool migrated = false, writable = false; 1512 int flags = 0; 1513 1514 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1515 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1516 spin_unlock(vmf->ptl); 1517 goto out; 1518 } 1519 1520 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1521 1522 /* 1523 * Detect now whether the PMD could be writable; this information 1524 * is only valid while holding the PT lock. 1525 */ 1526 writable = pmd_write(pmd); 1527 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 1528 can_change_pmd_writable(vma, vmf->address, pmd)) 1529 writable = true; 1530 1531 page = vm_normal_page_pmd(vma, haddr, pmd); 1532 if (!page) 1533 goto out_map; 1534 1535 /* See similar comment in do_numa_page for explanation */ 1536 if (!writable) 1537 flags |= TNF_NO_GROUP; 1538 1539 page_nid = page_to_nid(page); 1540 /* 1541 * For memory tiering mode, cpupid of slow memory page is used 1542 * to record page access time. So use default value. 1543 */ 1544 if (node_is_toptier(page_nid)) 1545 last_cpupid = page_cpupid_last(page); 1546 target_nid = numa_migrate_prep(page, vma, haddr, page_nid, 1547 &flags); 1548 1549 if (target_nid == NUMA_NO_NODE) { 1550 put_page(page); 1551 goto out_map; 1552 } 1553 1554 spin_unlock(vmf->ptl); 1555 writable = false; 1556 1557 migrated = migrate_misplaced_page(page, vma, target_nid); 1558 if (migrated) { 1559 flags |= TNF_MIGRATED; 1560 page_nid = target_nid; 1561 } else { 1562 flags |= TNF_MIGRATE_FAIL; 1563 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1564 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1565 spin_unlock(vmf->ptl); 1566 goto out; 1567 } 1568 goto out_map; 1569 } 1570 1571 out: 1572 if (page_nid != NUMA_NO_NODE) 1573 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1574 flags); 1575 1576 return 0; 1577 1578 out_map: 1579 /* Restore the PMD */ 1580 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1581 pmd = pmd_mkyoung(pmd); 1582 if (writable) 1583 pmd = pmd_mkwrite(pmd); 1584 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1585 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1586 spin_unlock(vmf->ptl); 1587 goto out; 1588 } 1589 1590 /* 1591 * Return true if we do MADV_FREE successfully on entire pmd page. 1592 * Otherwise, return false. 1593 */ 1594 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1595 pmd_t *pmd, unsigned long addr, unsigned long next) 1596 { 1597 spinlock_t *ptl; 1598 pmd_t orig_pmd; 1599 struct folio *folio; 1600 struct mm_struct *mm = tlb->mm; 1601 bool ret = false; 1602 1603 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1604 1605 ptl = pmd_trans_huge_lock(pmd, vma); 1606 if (!ptl) 1607 goto out_unlocked; 1608 1609 orig_pmd = *pmd; 1610 if (is_huge_zero_pmd(orig_pmd)) 1611 goto out; 1612 1613 if (unlikely(!pmd_present(orig_pmd))) { 1614 VM_BUG_ON(thp_migration_supported() && 1615 !is_pmd_migration_entry(orig_pmd)); 1616 goto out; 1617 } 1618 1619 folio = pfn_folio(pmd_pfn(orig_pmd)); 1620 /* 1621 * If other processes are mapping this folio, we couldn't discard 1622 * the folio unless they all do MADV_FREE so let's skip the folio. 1623 */ 1624 if (folio_mapcount(folio) != 1) 1625 goto out; 1626 1627 if (!folio_trylock(folio)) 1628 goto out; 1629 1630 /* 1631 * If user want to discard part-pages of THP, split it so MADV_FREE 1632 * will deactivate only them. 1633 */ 1634 if (next - addr != HPAGE_PMD_SIZE) { 1635 folio_get(folio); 1636 spin_unlock(ptl); 1637 split_folio(folio); 1638 folio_unlock(folio); 1639 folio_put(folio); 1640 goto out_unlocked; 1641 } 1642 1643 if (folio_test_dirty(folio)) 1644 folio_clear_dirty(folio); 1645 folio_unlock(folio); 1646 1647 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1648 pmdp_invalidate(vma, addr, pmd); 1649 orig_pmd = pmd_mkold(orig_pmd); 1650 orig_pmd = pmd_mkclean(orig_pmd); 1651 1652 set_pmd_at(mm, addr, pmd, orig_pmd); 1653 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1654 } 1655 1656 folio_mark_lazyfree(folio); 1657 ret = true; 1658 out: 1659 spin_unlock(ptl); 1660 out_unlocked: 1661 return ret; 1662 } 1663 1664 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1665 { 1666 pgtable_t pgtable; 1667 1668 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1669 pte_free(mm, pgtable); 1670 mm_dec_nr_ptes(mm); 1671 } 1672 1673 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1674 pmd_t *pmd, unsigned long addr) 1675 { 1676 pmd_t orig_pmd; 1677 spinlock_t *ptl; 1678 1679 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1680 1681 ptl = __pmd_trans_huge_lock(pmd, vma); 1682 if (!ptl) 1683 return 0; 1684 /* 1685 * For architectures like ppc64 we look at deposited pgtable 1686 * when calling pmdp_huge_get_and_clear. So do the 1687 * pgtable_trans_huge_withdraw after finishing pmdp related 1688 * operations. 1689 */ 1690 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1691 tlb->fullmm); 1692 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1693 if (vma_is_special_huge(vma)) { 1694 if (arch_needs_pgtable_deposit()) 1695 zap_deposited_table(tlb->mm, pmd); 1696 spin_unlock(ptl); 1697 } else if (is_huge_zero_pmd(orig_pmd)) { 1698 zap_deposited_table(tlb->mm, pmd); 1699 spin_unlock(ptl); 1700 } else { 1701 struct page *page = NULL; 1702 int flush_needed = 1; 1703 1704 if (pmd_present(orig_pmd)) { 1705 page = pmd_page(orig_pmd); 1706 page_remove_rmap(page, vma, true); 1707 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1708 VM_BUG_ON_PAGE(!PageHead(page), page); 1709 } else if (thp_migration_supported()) { 1710 swp_entry_t entry; 1711 1712 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1713 entry = pmd_to_swp_entry(orig_pmd); 1714 page = pfn_swap_entry_to_page(entry); 1715 flush_needed = 0; 1716 } else 1717 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1718 1719 if (PageAnon(page)) { 1720 zap_deposited_table(tlb->mm, pmd); 1721 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1722 } else { 1723 if (arch_needs_pgtable_deposit()) 1724 zap_deposited_table(tlb->mm, pmd); 1725 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR); 1726 } 1727 1728 spin_unlock(ptl); 1729 if (flush_needed) 1730 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1731 } 1732 return 1; 1733 } 1734 1735 #ifndef pmd_move_must_withdraw 1736 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1737 spinlock_t *old_pmd_ptl, 1738 struct vm_area_struct *vma) 1739 { 1740 /* 1741 * With split pmd lock we also need to move preallocated 1742 * PTE page table if new_pmd is on different PMD page table. 1743 * 1744 * We also don't deposit and withdraw tables for file pages. 1745 */ 1746 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1747 } 1748 #endif 1749 1750 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1751 { 1752 #ifdef CONFIG_MEM_SOFT_DIRTY 1753 if (unlikely(is_pmd_migration_entry(pmd))) 1754 pmd = pmd_swp_mksoft_dirty(pmd); 1755 else if (pmd_present(pmd)) 1756 pmd = pmd_mksoft_dirty(pmd); 1757 #endif 1758 return pmd; 1759 } 1760 1761 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1762 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1763 { 1764 spinlock_t *old_ptl, *new_ptl; 1765 pmd_t pmd; 1766 struct mm_struct *mm = vma->vm_mm; 1767 bool force_flush = false; 1768 1769 /* 1770 * The destination pmd shouldn't be established, free_pgtables() 1771 * should have release it. 1772 */ 1773 if (WARN_ON(!pmd_none(*new_pmd))) { 1774 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1775 return false; 1776 } 1777 1778 /* 1779 * We don't have to worry about the ordering of src and dst 1780 * ptlocks because exclusive mmap_lock prevents deadlock. 1781 */ 1782 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1783 if (old_ptl) { 1784 new_ptl = pmd_lockptr(mm, new_pmd); 1785 if (new_ptl != old_ptl) 1786 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1787 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1788 if (pmd_present(pmd)) 1789 force_flush = true; 1790 VM_BUG_ON(!pmd_none(*new_pmd)); 1791 1792 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1793 pgtable_t pgtable; 1794 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1795 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1796 } 1797 pmd = move_soft_dirty_pmd(pmd); 1798 set_pmd_at(mm, new_addr, new_pmd, pmd); 1799 if (force_flush) 1800 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1801 if (new_ptl != old_ptl) 1802 spin_unlock(new_ptl); 1803 spin_unlock(old_ptl); 1804 return true; 1805 } 1806 return false; 1807 } 1808 1809 /* 1810 * Returns 1811 * - 0 if PMD could not be locked 1812 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 1813 * or if prot_numa but THP migration is not supported 1814 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 1815 */ 1816 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1817 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 1818 unsigned long cp_flags) 1819 { 1820 struct mm_struct *mm = vma->vm_mm; 1821 spinlock_t *ptl; 1822 pmd_t oldpmd, entry; 1823 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 1824 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 1825 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 1826 int ret = 1; 1827 1828 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1829 1830 if (prot_numa && !thp_migration_supported()) 1831 return 1; 1832 1833 ptl = __pmd_trans_huge_lock(pmd, vma); 1834 if (!ptl) 1835 return 0; 1836 1837 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1838 if (is_swap_pmd(*pmd)) { 1839 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1840 struct page *page = pfn_swap_entry_to_page(entry); 1841 pmd_t newpmd; 1842 1843 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 1844 if (is_writable_migration_entry(entry)) { 1845 /* 1846 * A protection check is difficult so 1847 * just be safe and disable write 1848 */ 1849 if (PageAnon(page)) 1850 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 1851 else 1852 entry = make_readable_migration_entry(swp_offset(entry)); 1853 newpmd = swp_entry_to_pmd(entry); 1854 if (pmd_swp_soft_dirty(*pmd)) 1855 newpmd = pmd_swp_mksoft_dirty(newpmd); 1856 if (pmd_swp_uffd_wp(*pmd)) 1857 newpmd = pmd_swp_mkuffd_wp(newpmd); 1858 } else { 1859 newpmd = *pmd; 1860 } 1861 1862 if (uffd_wp) 1863 newpmd = pmd_swp_mkuffd_wp(newpmd); 1864 else if (uffd_wp_resolve) 1865 newpmd = pmd_swp_clear_uffd_wp(newpmd); 1866 if (!pmd_same(*pmd, newpmd)) 1867 set_pmd_at(mm, addr, pmd, newpmd); 1868 goto unlock; 1869 } 1870 #endif 1871 1872 if (prot_numa) { 1873 struct page *page; 1874 bool toptier; 1875 /* 1876 * Avoid trapping faults against the zero page. The read-only 1877 * data is likely to be read-cached on the local CPU and 1878 * local/remote hits to the zero page are not interesting. 1879 */ 1880 if (is_huge_zero_pmd(*pmd)) 1881 goto unlock; 1882 1883 if (pmd_protnone(*pmd)) 1884 goto unlock; 1885 1886 page = pmd_page(*pmd); 1887 toptier = node_is_toptier(page_to_nid(page)); 1888 /* 1889 * Skip scanning top tier node if normal numa 1890 * balancing is disabled 1891 */ 1892 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 1893 toptier) 1894 goto unlock; 1895 1896 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1897 !toptier) 1898 xchg_page_access_time(page, jiffies_to_msecs(jiffies)); 1899 } 1900 /* 1901 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 1902 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 1903 * which is also under mmap_read_lock(mm): 1904 * 1905 * CPU0: CPU1: 1906 * change_huge_pmd(prot_numa=1) 1907 * pmdp_huge_get_and_clear_notify() 1908 * madvise_dontneed() 1909 * zap_pmd_range() 1910 * pmd_trans_huge(*pmd) == 0 (without ptl) 1911 * // skip the pmd 1912 * set_pmd_at(); 1913 * // pmd is re-established 1914 * 1915 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 1916 * which may break userspace. 1917 * 1918 * pmdp_invalidate_ad() is required to make sure we don't miss 1919 * dirty/young flags set by hardware. 1920 */ 1921 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 1922 1923 entry = pmd_modify(oldpmd, newprot); 1924 if (uffd_wp) 1925 entry = pmd_mkuffd_wp(entry); 1926 else if (uffd_wp_resolve) 1927 /* 1928 * Leave the write bit to be handled by PF interrupt 1929 * handler, then things like COW could be properly 1930 * handled. 1931 */ 1932 entry = pmd_clear_uffd_wp(entry); 1933 1934 /* See change_pte_range(). */ 1935 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) && 1936 can_change_pmd_writable(vma, addr, entry)) 1937 entry = pmd_mkwrite(entry); 1938 1939 ret = HPAGE_PMD_NR; 1940 set_pmd_at(mm, addr, pmd, entry); 1941 1942 if (huge_pmd_needs_flush(oldpmd, entry)) 1943 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 1944 unlock: 1945 spin_unlock(ptl); 1946 return ret; 1947 } 1948 1949 /* 1950 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1951 * 1952 * Note that if it returns page table lock pointer, this routine returns without 1953 * unlocking page table lock. So callers must unlock it. 1954 */ 1955 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1956 { 1957 spinlock_t *ptl; 1958 ptl = pmd_lock(vma->vm_mm, pmd); 1959 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 1960 pmd_devmap(*pmd))) 1961 return ptl; 1962 spin_unlock(ptl); 1963 return NULL; 1964 } 1965 1966 /* 1967 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. 1968 * 1969 * Note that if it returns page table lock pointer, this routine returns without 1970 * unlocking page table lock. So callers must unlock it. 1971 */ 1972 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1973 { 1974 spinlock_t *ptl; 1975 1976 ptl = pud_lock(vma->vm_mm, pud); 1977 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1978 return ptl; 1979 spin_unlock(ptl); 1980 return NULL; 1981 } 1982 1983 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1984 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1985 pud_t *pud, unsigned long addr) 1986 { 1987 spinlock_t *ptl; 1988 1989 ptl = __pud_trans_huge_lock(pud, vma); 1990 if (!ptl) 1991 return 0; 1992 1993 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm); 1994 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1995 if (vma_is_special_huge(vma)) { 1996 spin_unlock(ptl); 1997 /* No zero page support yet */ 1998 } else { 1999 /* No support for anonymous PUD pages yet */ 2000 BUG(); 2001 } 2002 return 1; 2003 } 2004 2005 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 2006 unsigned long haddr) 2007 { 2008 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 2009 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2010 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2011 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 2012 2013 count_vm_event(THP_SPLIT_PUD); 2014 2015 pudp_huge_clear_flush_notify(vma, haddr, pud); 2016 } 2017 2018 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2019 unsigned long address) 2020 { 2021 spinlock_t *ptl; 2022 struct mmu_notifier_range range; 2023 2024 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2025 address & HPAGE_PUD_MASK, 2026 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2027 mmu_notifier_invalidate_range_start(&range); 2028 ptl = pud_lock(vma->vm_mm, pud); 2029 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 2030 goto out; 2031 __split_huge_pud_locked(vma, pud, range.start); 2032 2033 out: 2034 spin_unlock(ptl); 2035 /* 2036 * No need to double call mmu_notifier->invalidate_range() callback as 2037 * the above pudp_huge_clear_flush_notify() did already call it. 2038 */ 2039 mmu_notifier_invalidate_range_only_end(&range); 2040 } 2041 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2042 2043 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2044 unsigned long haddr, pmd_t *pmd) 2045 { 2046 struct mm_struct *mm = vma->vm_mm; 2047 pgtable_t pgtable; 2048 pmd_t _pmd, old_pmd; 2049 int i; 2050 2051 /* 2052 * Leave pmd empty until pte is filled note that it is fine to delay 2053 * notification until mmu_notifier_invalidate_range_end() as we are 2054 * replacing a zero pmd write protected page with a zero pte write 2055 * protected page. 2056 * 2057 * See Documentation/mm/mmu_notifier.rst 2058 */ 2059 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2060 2061 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2062 pmd_populate(mm, &_pmd, pgtable); 2063 2064 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 2065 pte_t *pte, entry; 2066 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 2067 entry = pte_mkspecial(entry); 2068 if (pmd_uffd_wp(old_pmd)) 2069 entry = pte_mkuffd_wp(entry); 2070 pte = pte_offset_map(&_pmd, haddr); 2071 VM_BUG_ON(!pte_none(*pte)); 2072 set_pte_at(mm, haddr, pte, entry); 2073 pte_unmap(pte); 2074 } 2075 smp_wmb(); /* make pte visible before pmd */ 2076 pmd_populate(mm, pmd, pgtable); 2077 } 2078 2079 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2080 unsigned long haddr, bool freeze) 2081 { 2082 struct mm_struct *mm = vma->vm_mm; 2083 struct page *page; 2084 pgtable_t pgtable; 2085 pmd_t old_pmd, _pmd; 2086 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2087 bool anon_exclusive = false, dirty = false; 2088 unsigned long addr; 2089 int i; 2090 2091 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2092 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2093 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2094 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2095 && !pmd_devmap(*pmd)); 2096 2097 count_vm_event(THP_SPLIT_PMD); 2098 2099 if (!vma_is_anonymous(vma)) { 2100 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 2101 /* 2102 * We are going to unmap this huge page. So 2103 * just go ahead and zap it 2104 */ 2105 if (arch_needs_pgtable_deposit()) 2106 zap_deposited_table(mm, pmd); 2107 if (vma_is_special_huge(vma)) 2108 return; 2109 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2110 swp_entry_t entry; 2111 2112 entry = pmd_to_swp_entry(old_pmd); 2113 page = pfn_swap_entry_to_page(entry); 2114 } else { 2115 page = pmd_page(old_pmd); 2116 if (!PageDirty(page) && pmd_dirty(old_pmd)) 2117 set_page_dirty(page); 2118 if (!PageReferenced(page) && pmd_young(old_pmd)) 2119 SetPageReferenced(page); 2120 page_remove_rmap(page, vma, true); 2121 put_page(page); 2122 } 2123 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR); 2124 return; 2125 } 2126 2127 if (is_huge_zero_pmd(*pmd)) { 2128 /* 2129 * FIXME: Do we want to invalidate secondary mmu by calling 2130 * mmu_notifier_invalidate_range() see comments below inside 2131 * __split_huge_pmd() ? 2132 * 2133 * We are going from a zero huge page write protected to zero 2134 * small page also write protected so it does not seems useful 2135 * to invalidate secondary mmu at this time. 2136 */ 2137 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2138 } 2139 2140 /* 2141 * Up to this point the pmd is present and huge and userland has the 2142 * whole access to the hugepage during the split (which happens in 2143 * place). If we overwrite the pmd with the not-huge version pointing 2144 * to the pte here (which of course we could if all CPUs were bug 2145 * free), userland could trigger a small page size TLB miss on the 2146 * small sized TLB while the hugepage TLB entry is still established in 2147 * the huge TLB. Some CPU doesn't like that. 2148 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2149 * 383 on page 105. Intel should be safe but is also warns that it's 2150 * only safe if the permission and cache attributes of the two entries 2151 * loaded in the two TLB is identical (which should be the case here). 2152 * But it is generally safer to never allow small and huge TLB entries 2153 * for the same virtual address to be loaded simultaneously. So instead 2154 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2155 * current pmd notpresent (atomically because here the pmd_trans_huge 2156 * must remain set at all times on the pmd until the split is complete 2157 * for this pmd), then we flush the SMP TLB and finally we write the 2158 * non-huge version of the pmd entry with pmd_populate. 2159 */ 2160 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2161 2162 pmd_migration = is_pmd_migration_entry(old_pmd); 2163 if (unlikely(pmd_migration)) { 2164 swp_entry_t entry; 2165 2166 entry = pmd_to_swp_entry(old_pmd); 2167 page = pfn_swap_entry_to_page(entry); 2168 write = is_writable_migration_entry(entry); 2169 if (PageAnon(page)) 2170 anon_exclusive = is_readable_exclusive_migration_entry(entry); 2171 young = is_migration_entry_young(entry); 2172 dirty = is_migration_entry_dirty(entry); 2173 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2174 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2175 } else { 2176 page = pmd_page(old_pmd); 2177 if (pmd_dirty(old_pmd)) { 2178 dirty = true; 2179 SetPageDirty(page); 2180 } 2181 write = pmd_write(old_pmd); 2182 young = pmd_young(old_pmd); 2183 soft_dirty = pmd_soft_dirty(old_pmd); 2184 uffd_wp = pmd_uffd_wp(old_pmd); 2185 2186 VM_BUG_ON_PAGE(!page_count(page), page); 2187 2188 /* 2189 * Without "freeze", we'll simply split the PMD, propagating the 2190 * PageAnonExclusive() flag for each PTE by setting it for 2191 * each subpage -- no need to (temporarily) clear. 2192 * 2193 * With "freeze" we want to replace mapped pages by 2194 * migration entries right away. This is only possible if we 2195 * managed to clear PageAnonExclusive() -- see 2196 * set_pmd_migration_entry(). 2197 * 2198 * In case we cannot clear PageAnonExclusive(), split the PMD 2199 * only and let try_to_migrate_one() fail later. 2200 * 2201 * See page_try_share_anon_rmap(): invalidate PMD first. 2202 */ 2203 anon_exclusive = PageAnon(page) && PageAnonExclusive(page); 2204 if (freeze && anon_exclusive && page_try_share_anon_rmap(page)) 2205 freeze = false; 2206 if (!freeze) 2207 page_ref_add(page, HPAGE_PMD_NR - 1); 2208 } 2209 2210 /* 2211 * Withdraw the table only after we mark the pmd entry invalid. 2212 * This's critical for some architectures (Power). 2213 */ 2214 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2215 pmd_populate(mm, &_pmd, pgtable); 2216 2217 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2218 pte_t entry, *pte; 2219 /* 2220 * Note that NUMA hinting access restrictions are not 2221 * transferred to avoid any possibility of altering 2222 * permissions across VMAs. 2223 */ 2224 if (freeze || pmd_migration) { 2225 swp_entry_t swp_entry; 2226 if (write) 2227 swp_entry = make_writable_migration_entry( 2228 page_to_pfn(page + i)); 2229 else if (anon_exclusive) 2230 swp_entry = make_readable_exclusive_migration_entry( 2231 page_to_pfn(page + i)); 2232 else 2233 swp_entry = make_readable_migration_entry( 2234 page_to_pfn(page + i)); 2235 if (young) 2236 swp_entry = make_migration_entry_young(swp_entry); 2237 if (dirty) 2238 swp_entry = make_migration_entry_dirty(swp_entry); 2239 entry = swp_entry_to_pte(swp_entry); 2240 if (soft_dirty) 2241 entry = pte_swp_mksoft_dirty(entry); 2242 if (uffd_wp) 2243 entry = pte_swp_mkuffd_wp(entry); 2244 } else { 2245 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2246 entry = maybe_mkwrite(entry, vma); 2247 if (anon_exclusive) 2248 SetPageAnonExclusive(page + i); 2249 if (!young) 2250 entry = pte_mkold(entry); 2251 /* NOTE: this may set soft-dirty too on some archs */ 2252 if (dirty) 2253 entry = pte_mkdirty(entry); 2254 /* 2255 * NOTE: this needs to happen after pte_mkdirty, 2256 * because some archs (sparc64, loongarch) could 2257 * set hw write bit when mkdirty. 2258 */ 2259 if (!write) 2260 entry = pte_wrprotect(entry); 2261 if (soft_dirty) 2262 entry = pte_mksoft_dirty(entry); 2263 if (uffd_wp) 2264 entry = pte_mkuffd_wp(entry); 2265 page_add_anon_rmap(page + i, vma, addr, false); 2266 } 2267 pte = pte_offset_map(&_pmd, addr); 2268 BUG_ON(!pte_none(*pte)); 2269 set_pte_at(mm, addr, pte, entry); 2270 pte_unmap(pte); 2271 } 2272 2273 if (!pmd_migration) 2274 page_remove_rmap(page, vma, true); 2275 if (freeze) 2276 put_page(page); 2277 2278 smp_wmb(); /* make pte visible before pmd */ 2279 pmd_populate(mm, pmd, pgtable); 2280 } 2281 2282 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2283 unsigned long address, bool freeze, struct folio *folio) 2284 { 2285 spinlock_t *ptl; 2286 struct mmu_notifier_range range; 2287 2288 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2289 address & HPAGE_PMD_MASK, 2290 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2291 mmu_notifier_invalidate_range_start(&range); 2292 ptl = pmd_lock(vma->vm_mm, pmd); 2293 2294 /* 2295 * If caller asks to setup a migration entry, we need a folio to check 2296 * pmd against. Otherwise we can end up replacing wrong folio. 2297 */ 2298 VM_BUG_ON(freeze && !folio); 2299 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio)); 2300 2301 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || 2302 is_pmd_migration_entry(*pmd)) { 2303 /* 2304 * It's safe to call pmd_page when folio is set because it's 2305 * guaranteed that pmd is present. 2306 */ 2307 if (folio && folio != page_folio(pmd_page(*pmd))) 2308 goto out; 2309 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2310 } 2311 2312 out: 2313 spin_unlock(ptl); 2314 /* 2315 * No need to double call mmu_notifier->invalidate_range() callback. 2316 * They are 3 cases to consider inside __split_huge_pmd_locked(): 2317 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious 2318 * 2) __split_huge_zero_page_pmd() read only zero page and any write 2319 * fault will trigger a flush_notify before pointing to a new page 2320 * (it is fine if the secondary mmu keeps pointing to the old zero 2321 * page in the meantime) 2322 * 3) Split a huge pmd into pte pointing to the same page. No need 2323 * to invalidate secondary tlb entry they are all still valid. 2324 * any further changes to individual pte will notify. So no need 2325 * to call mmu_notifier->invalidate_range() 2326 */ 2327 mmu_notifier_invalidate_range_only_end(&range); 2328 } 2329 2330 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2331 bool freeze, struct folio *folio) 2332 { 2333 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address); 2334 2335 if (!pmd) 2336 return; 2337 2338 __split_huge_pmd(vma, pmd, address, freeze, folio); 2339 } 2340 2341 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2342 { 2343 /* 2344 * If the new address isn't hpage aligned and it could previously 2345 * contain an hugepage: check if we need to split an huge pmd. 2346 */ 2347 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2348 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2349 ALIGN(address, HPAGE_PMD_SIZE))) 2350 split_huge_pmd_address(vma, address, false, NULL); 2351 } 2352 2353 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2354 unsigned long start, 2355 unsigned long end, 2356 long adjust_next) 2357 { 2358 /* Check if we need to split start first. */ 2359 split_huge_pmd_if_needed(vma, start); 2360 2361 /* Check if we need to split end next. */ 2362 split_huge_pmd_if_needed(vma, end); 2363 2364 /* 2365 * If we're also updating the next vma vm_start, 2366 * check if we need to split it. 2367 */ 2368 if (adjust_next > 0) { 2369 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end); 2370 unsigned long nstart = next->vm_start; 2371 nstart += adjust_next; 2372 split_huge_pmd_if_needed(next, nstart); 2373 } 2374 } 2375 2376 static void unmap_folio(struct folio *folio) 2377 { 2378 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2379 TTU_SYNC; 2380 2381 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 2382 2383 /* 2384 * Anon pages need migration entries to preserve them, but file 2385 * pages can simply be left unmapped, then faulted back on demand. 2386 * If that is ever changed (perhaps for mlock), update remap_page(). 2387 */ 2388 if (folio_test_anon(folio)) 2389 try_to_migrate(folio, ttu_flags); 2390 else 2391 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 2392 } 2393 2394 static void remap_page(struct folio *folio, unsigned long nr) 2395 { 2396 int i = 0; 2397 2398 /* If unmap_folio() uses try_to_migrate() on file, remove this check */ 2399 if (!folio_test_anon(folio)) 2400 return; 2401 for (;;) { 2402 remove_migration_ptes(folio, folio, true); 2403 i += folio_nr_pages(folio); 2404 if (i >= nr) 2405 break; 2406 folio = folio_next(folio); 2407 } 2408 } 2409 2410 static void lru_add_page_tail(struct page *head, struct page *tail, 2411 struct lruvec *lruvec, struct list_head *list) 2412 { 2413 VM_BUG_ON_PAGE(!PageHead(head), head); 2414 VM_BUG_ON_PAGE(PageCompound(tail), head); 2415 VM_BUG_ON_PAGE(PageLRU(tail), head); 2416 lockdep_assert_held(&lruvec->lru_lock); 2417 2418 if (list) { 2419 /* page reclaim is reclaiming a huge page */ 2420 VM_WARN_ON(PageLRU(head)); 2421 get_page(tail); 2422 list_add_tail(&tail->lru, list); 2423 } else { 2424 /* head is still on lru (and we have it frozen) */ 2425 VM_WARN_ON(!PageLRU(head)); 2426 if (PageUnevictable(tail)) 2427 tail->mlock_count = 0; 2428 else 2429 list_add_tail(&tail->lru, &head->lru); 2430 SetPageLRU(tail); 2431 } 2432 } 2433 2434 static void __split_huge_page_tail(struct page *head, int tail, 2435 struct lruvec *lruvec, struct list_head *list) 2436 { 2437 struct page *page_tail = head + tail; 2438 2439 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2440 2441 /* 2442 * Clone page flags before unfreezing refcount. 2443 * 2444 * After successful get_page_unless_zero() might follow flags change, 2445 * for example lock_page() which set PG_waiters. 2446 * 2447 * Note that for mapped sub-pages of an anonymous THP, 2448 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in 2449 * the migration entry instead from where remap_page() will restore it. 2450 * We can still have PG_anon_exclusive set on effectively unmapped and 2451 * unreferenced sub-pages of an anonymous THP: we can simply drop 2452 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 2453 */ 2454 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2455 page_tail->flags |= (head->flags & 2456 ((1L << PG_referenced) | 2457 (1L << PG_swapbacked) | 2458 (1L << PG_swapcache) | 2459 (1L << PG_mlocked) | 2460 (1L << PG_uptodate) | 2461 (1L << PG_active) | 2462 (1L << PG_workingset) | 2463 (1L << PG_locked) | 2464 (1L << PG_unevictable) | 2465 #ifdef CONFIG_ARCH_USES_PG_ARCH_X 2466 (1L << PG_arch_2) | 2467 (1L << PG_arch_3) | 2468 #endif 2469 (1L << PG_dirty) | 2470 LRU_GEN_MASK | LRU_REFS_MASK)); 2471 2472 /* ->mapping in first and second tail page is replaced by other uses */ 2473 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2474 page_tail); 2475 page_tail->mapping = head->mapping; 2476 page_tail->index = head->index + tail; 2477 2478 /* 2479 * page->private should not be set in tail pages with the exception 2480 * of swap cache pages that store the swp_entry_t in tail pages. 2481 * Fix up and warn once if private is unexpectedly set. 2482 * 2483 * What of 32-bit systems, on which folio->_pincount overlays 2484 * head[1].private? No problem: THP_SWAP is not enabled on 32-bit, and 2485 * pincount must be 0 for folio_ref_freeze() to have succeeded. 2486 */ 2487 if (!folio_test_swapcache(page_folio(head))) { 2488 VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail); 2489 page_tail->private = 0; 2490 } 2491 2492 /* Page flags must be visible before we make the page non-compound. */ 2493 smp_wmb(); 2494 2495 /* 2496 * Clear PageTail before unfreezing page refcount. 2497 * 2498 * After successful get_page_unless_zero() might follow put_page() 2499 * which needs correct compound_head(). 2500 */ 2501 clear_compound_head(page_tail); 2502 2503 /* Finally unfreeze refcount. Additional reference from page cache. */ 2504 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || 2505 PageSwapCache(head))); 2506 2507 if (page_is_young(head)) 2508 set_page_young(page_tail); 2509 if (page_is_idle(head)) 2510 set_page_idle(page_tail); 2511 2512 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2513 2514 /* 2515 * always add to the tail because some iterators expect new 2516 * pages to show after the currently processed elements - e.g. 2517 * migrate_pages 2518 */ 2519 lru_add_page_tail(head, page_tail, lruvec, list); 2520 } 2521 2522 static void __split_huge_page(struct page *page, struct list_head *list, 2523 pgoff_t end) 2524 { 2525 struct folio *folio = page_folio(page); 2526 struct page *head = &folio->page; 2527 struct lruvec *lruvec; 2528 struct address_space *swap_cache = NULL; 2529 unsigned long offset = 0; 2530 unsigned int nr = thp_nr_pages(head); 2531 int i; 2532 2533 /* complete memcg works before add pages to LRU */ 2534 split_page_memcg(head, nr); 2535 2536 if (PageAnon(head) && PageSwapCache(head)) { 2537 swp_entry_t entry = { .val = page_private(head) }; 2538 2539 offset = swp_offset(entry); 2540 swap_cache = swap_address_space(entry); 2541 xa_lock(&swap_cache->i_pages); 2542 } 2543 2544 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 2545 lruvec = folio_lruvec_lock(folio); 2546 2547 ClearPageHasHWPoisoned(head); 2548 2549 for (i = nr - 1; i >= 1; i--) { 2550 __split_huge_page_tail(head, i, lruvec, list); 2551 /* Some pages can be beyond EOF: drop them from page cache */ 2552 if (head[i].index >= end) { 2553 struct folio *tail = page_folio(head + i); 2554 2555 if (shmem_mapping(head->mapping)) 2556 shmem_uncharge(head->mapping->host, 1); 2557 else if (folio_test_clear_dirty(tail)) 2558 folio_account_cleaned(tail, 2559 inode_to_wb(folio->mapping->host)); 2560 __filemap_remove_folio(tail, NULL); 2561 folio_put(tail); 2562 } else if (!PageAnon(page)) { 2563 __xa_store(&head->mapping->i_pages, head[i].index, 2564 head + i, 0); 2565 } else if (swap_cache) { 2566 __xa_store(&swap_cache->i_pages, offset + i, 2567 head + i, 0); 2568 } 2569 } 2570 2571 ClearPageCompound(head); 2572 unlock_page_lruvec(lruvec); 2573 /* Caller disabled irqs, so they are still disabled here */ 2574 2575 split_page_owner(head, nr); 2576 2577 /* See comment in __split_huge_page_tail() */ 2578 if (PageAnon(head)) { 2579 /* Additional pin to swap cache */ 2580 if (PageSwapCache(head)) { 2581 page_ref_add(head, 2); 2582 xa_unlock(&swap_cache->i_pages); 2583 } else { 2584 page_ref_inc(head); 2585 } 2586 } else { 2587 /* Additional pin to page cache */ 2588 page_ref_add(head, 2); 2589 xa_unlock(&head->mapping->i_pages); 2590 } 2591 local_irq_enable(); 2592 2593 remap_page(folio, nr); 2594 2595 if (PageSwapCache(head)) { 2596 swp_entry_t entry = { .val = page_private(head) }; 2597 2598 split_swap_cluster(entry); 2599 } 2600 2601 for (i = 0; i < nr; i++) { 2602 struct page *subpage = head + i; 2603 if (subpage == page) 2604 continue; 2605 unlock_page(subpage); 2606 2607 /* 2608 * Subpages may be freed if there wasn't any mapping 2609 * like if add_to_swap() is running on a lru page that 2610 * had its mapping zapped. And freeing these pages 2611 * requires taking the lru_lock so we do the put_page 2612 * of the tail pages after the split is complete. 2613 */ 2614 free_page_and_swap_cache(subpage); 2615 } 2616 } 2617 2618 /* Racy check whether the huge page can be split */ 2619 bool can_split_folio(struct folio *folio, int *pextra_pins) 2620 { 2621 int extra_pins; 2622 2623 /* Additional pins from page cache */ 2624 if (folio_test_anon(folio)) 2625 extra_pins = folio_test_swapcache(folio) ? 2626 folio_nr_pages(folio) : 0; 2627 else 2628 extra_pins = folio_nr_pages(folio); 2629 if (pextra_pins) 2630 *pextra_pins = extra_pins; 2631 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1; 2632 } 2633 2634 /* 2635 * This function splits huge page into normal pages. @page can point to any 2636 * subpage of huge page to split. Split doesn't change the position of @page. 2637 * 2638 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2639 * The huge page must be locked. 2640 * 2641 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2642 * 2643 * Both head page and tail pages will inherit mapping, flags, and so on from 2644 * the hugepage. 2645 * 2646 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2647 * they are not mapped. 2648 * 2649 * Returns 0 if the hugepage is split successfully. 2650 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2651 * us. 2652 */ 2653 int split_huge_page_to_list(struct page *page, struct list_head *list) 2654 { 2655 struct folio *folio = page_folio(page); 2656 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 2657 XA_STATE(xas, &folio->mapping->i_pages, folio->index); 2658 struct anon_vma *anon_vma = NULL; 2659 struct address_space *mapping = NULL; 2660 int extra_pins, ret; 2661 pgoff_t end; 2662 bool is_hzp; 2663 2664 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2665 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 2666 2667 is_hzp = is_huge_zero_page(&folio->page); 2668 if (is_hzp) { 2669 pr_warn_ratelimited("Called split_huge_page for huge zero page\n"); 2670 return -EBUSY; 2671 } 2672 2673 if (folio_test_writeback(folio)) 2674 return -EBUSY; 2675 2676 if (folio_test_anon(folio)) { 2677 /* 2678 * The caller does not necessarily hold an mmap_lock that would 2679 * prevent the anon_vma disappearing so we first we take a 2680 * reference to it and then lock the anon_vma for write. This 2681 * is similar to folio_lock_anon_vma_read except the write lock 2682 * is taken to serialise against parallel split or collapse 2683 * operations. 2684 */ 2685 anon_vma = folio_get_anon_vma(folio); 2686 if (!anon_vma) { 2687 ret = -EBUSY; 2688 goto out; 2689 } 2690 end = -1; 2691 mapping = NULL; 2692 anon_vma_lock_write(anon_vma); 2693 } else { 2694 gfp_t gfp; 2695 2696 mapping = folio->mapping; 2697 2698 /* Truncated ? */ 2699 if (!mapping) { 2700 ret = -EBUSY; 2701 goto out; 2702 } 2703 2704 gfp = current_gfp_context(mapping_gfp_mask(mapping) & 2705 GFP_RECLAIM_MASK); 2706 2707 if (folio_test_private(folio) && 2708 !filemap_release_folio(folio, gfp)) { 2709 ret = -EBUSY; 2710 goto out; 2711 } 2712 2713 xas_split_alloc(&xas, folio, folio_order(folio), gfp); 2714 if (xas_error(&xas)) { 2715 ret = xas_error(&xas); 2716 goto out; 2717 } 2718 2719 anon_vma = NULL; 2720 i_mmap_lock_read(mapping); 2721 2722 /* 2723 *__split_huge_page() may need to trim off pages beyond EOF: 2724 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 2725 * which cannot be nested inside the page tree lock. So note 2726 * end now: i_size itself may be changed at any moment, but 2727 * folio lock is good enough to serialize the trimming. 2728 */ 2729 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2730 if (shmem_mapping(mapping)) 2731 end = shmem_fallocend(mapping->host, end); 2732 } 2733 2734 /* 2735 * Racy check if we can split the page, before unmap_folio() will 2736 * split PMDs 2737 */ 2738 if (!can_split_folio(folio, &extra_pins)) { 2739 ret = -EAGAIN; 2740 goto out_unlock; 2741 } 2742 2743 unmap_folio(folio); 2744 2745 /* block interrupt reentry in xa_lock and spinlock */ 2746 local_irq_disable(); 2747 if (mapping) { 2748 /* 2749 * Check if the folio is present in page cache. 2750 * We assume all tail are present too, if folio is there. 2751 */ 2752 xas_lock(&xas); 2753 xas_reset(&xas); 2754 if (xas_load(&xas) != folio) 2755 goto fail; 2756 } 2757 2758 /* Prevent deferred_split_scan() touching ->_refcount */ 2759 spin_lock(&ds_queue->split_queue_lock); 2760 if (folio_ref_freeze(folio, 1 + extra_pins)) { 2761 if (!list_empty(&folio->_deferred_list)) { 2762 ds_queue->split_queue_len--; 2763 list_del(&folio->_deferred_list); 2764 } 2765 spin_unlock(&ds_queue->split_queue_lock); 2766 if (mapping) { 2767 int nr = folio_nr_pages(folio); 2768 2769 xas_split(&xas, folio, folio_order(folio)); 2770 if (folio_test_swapbacked(folio)) { 2771 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, 2772 -nr); 2773 } else { 2774 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, 2775 -nr); 2776 filemap_nr_thps_dec(mapping); 2777 } 2778 } 2779 2780 __split_huge_page(page, list, end); 2781 ret = 0; 2782 } else { 2783 spin_unlock(&ds_queue->split_queue_lock); 2784 fail: 2785 if (mapping) 2786 xas_unlock(&xas); 2787 local_irq_enable(); 2788 remap_page(folio, folio_nr_pages(folio)); 2789 ret = -EAGAIN; 2790 } 2791 2792 out_unlock: 2793 if (anon_vma) { 2794 anon_vma_unlock_write(anon_vma); 2795 put_anon_vma(anon_vma); 2796 } 2797 if (mapping) 2798 i_mmap_unlock_read(mapping); 2799 out: 2800 xas_destroy(&xas); 2801 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2802 return ret; 2803 } 2804 2805 void free_transhuge_page(struct page *page) 2806 { 2807 struct folio *folio = (struct folio *)page; 2808 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 2809 unsigned long flags; 2810 2811 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2812 if (!list_empty(&folio->_deferred_list)) { 2813 ds_queue->split_queue_len--; 2814 list_del(&folio->_deferred_list); 2815 } 2816 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2817 free_compound_page(page); 2818 } 2819 2820 void deferred_split_folio(struct folio *folio) 2821 { 2822 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 2823 #ifdef CONFIG_MEMCG 2824 struct mem_cgroup *memcg = folio_memcg(folio); 2825 #endif 2826 unsigned long flags; 2827 2828 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio); 2829 2830 /* 2831 * The try_to_unmap() in page reclaim path might reach here too, 2832 * this may cause a race condition to corrupt deferred split queue. 2833 * And, if page reclaim is already handling the same folio, it is 2834 * unnecessary to handle it again in shrinker. 2835 * 2836 * Check the swapcache flag to determine if the folio is being 2837 * handled by page reclaim since THP swap would add the folio into 2838 * swap cache before calling try_to_unmap(). 2839 */ 2840 if (folio_test_swapcache(folio)) 2841 return; 2842 2843 if (!list_empty(&folio->_deferred_list)) 2844 return; 2845 2846 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2847 if (list_empty(&folio->_deferred_list)) { 2848 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2849 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue); 2850 ds_queue->split_queue_len++; 2851 #ifdef CONFIG_MEMCG 2852 if (memcg) 2853 set_shrinker_bit(memcg, folio_nid(folio), 2854 deferred_split_shrinker.id); 2855 #endif 2856 } 2857 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2858 } 2859 2860 static unsigned long deferred_split_count(struct shrinker *shrink, 2861 struct shrink_control *sc) 2862 { 2863 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2864 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2865 2866 #ifdef CONFIG_MEMCG 2867 if (sc->memcg) 2868 ds_queue = &sc->memcg->deferred_split_queue; 2869 #endif 2870 return READ_ONCE(ds_queue->split_queue_len); 2871 } 2872 2873 static unsigned long deferred_split_scan(struct shrinker *shrink, 2874 struct shrink_control *sc) 2875 { 2876 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2877 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2878 unsigned long flags; 2879 LIST_HEAD(list); 2880 struct folio *folio, *next; 2881 int split = 0; 2882 2883 #ifdef CONFIG_MEMCG 2884 if (sc->memcg) 2885 ds_queue = &sc->memcg->deferred_split_queue; 2886 #endif 2887 2888 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2889 /* Take pin on all head pages to avoid freeing them under us */ 2890 list_for_each_entry_safe(folio, next, &ds_queue->split_queue, 2891 _deferred_list) { 2892 if (folio_try_get(folio)) { 2893 list_move(&folio->_deferred_list, &list); 2894 } else { 2895 /* We lost race with folio_put() */ 2896 list_del_init(&folio->_deferred_list); 2897 ds_queue->split_queue_len--; 2898 } 2899 if (!--sc->nr_to_scan) 2900 break; 2901 } 2902 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2903 2904 list_for_each_entry_safe(folio, next, &list, _deferred_list) { 2905 if (!folio_trylock(folio)) 2906 goto next; 2907 /* split_huge_page() removes page from list on success */ 2908 if (!split_folio(folio)) 2909 split++; 2910 folio_unlock(folio); 2911 next: 2912 folio_put(folio); 2913 } 2914 2915 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2916 list_splice_tail(&list, &ds_queue->split_queue); 2917 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2918 2919 /* 2920 * Stop shrinker if we didn't split any page, but the queue is empty. 2921 * This can happen if pages were freed under us. 2922 */ 2923 if (!split && list_empty(&ds_queue->split_queue)) 2924 return SHRINK_STOP; 2925 return split; 2926 } 2927 2928 static struct shrinker deferred_split_shrinker = { 2929 .count_objects = deferred_split_count, 2930 .scan_objects = deferred_split_scan, 2931 .seeks = DEFAULT_SEEKS, 2932 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE | 2933 SHRINKER_NONSLAB, 2934 }; 2935 2936 #ifdef CONFIG_DEBUG_FS 2937 static void split_huge_pages_all(void) 2938 { 2939 struct zone *zone; 2940 struct page *page; 2941 struct folio *folio; 2942 unsigned long pfn, max_zone_pfn; 2943 unsigned long total = 0, split = 0; 2944 2945 pr_debug("Split all THPs\n"); 2946 for_each_zone(zone) { 2947 if (!managed_zone(zone)) 2948 continue; 2949 max_zone_pfn = zone_end_pfn(zone); 2950 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2951 int nr_pages; 2952 2953 page = pfn_to_online_page(pfn); 2954 if (!page || PageTail(page)) 2955 continue; 2956 folio = page_folio(page); 2957 if (!folio_try_get(folio)) 2958 continue; 2959 2960 if (unlikely(page_folio(page) != folio)) 2961 goto next; 2962 2963 if (zone != folio_zone(folio)) 2964 goto next; 2965 2966 if (!folio_test_large(folio) 2967 || folio_test_hugetlb(folio) 2968 || !folio_test_lru(folio)) 2969 goto next; 2970 2971 total++; 2972 folio_lock(folio); 2973 nr_pages = folio_nr_pages(folio); 2974 if (!split_folio(folio)) 2975 split++; 2976 pfn += nr_pages - 1; 2977 folio_unlock(folio); 2978 next: 2979 folio_put(folio); 2980 cond_resched(); 2981 } 2982 } 2983 2984 pr_debug("%lu of %lu THP split\n", split, total); 2985 } 2986 2987 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 2988 { 2989 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 2990 is_vm_hugetlb_page(vma); 2991 } 2992 2993 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 2994 unsigned long vaddr_end) 2995 { 2996 int ret = 0; 2997 struct task_struct *task; 2998 struct mm_struct *mm; 2999 unsigned long total = 0, split = 0; 3000 unsigned long addr; 3001 3002 vaddr_start &= PAGE_MASK; 3003 vaddr_end &= PAGE_MASK; 3004 3005 /* Find the task_struct from pid */ 3006 rcu_read_lock(); 3007 task = find_task_by_vpid(pid); 3008 if (!task) { 3009 rcu_read_unlock(); 3010 ret = -ESRCH; 3011 goto out; 3012 } 3013 get_task_struct(task); 3014 rcu_read_unlock(); 3015 3016 /* Find the mm_struct */ 3017 mm = get_task_mm(task); 3018 put_task_struct(task); 3019 3020 if (!mm) { 3021 ret = -EINVAL; 3022 goto out; 3023 } 3024 3025 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 3026 pid, vaddr_start, vaddr_end); 3027 3028 mmap_read_lock(mm); 3029 /* 3030 * always increase addr by PAGE_SIZE, since we could have a PTE page 3031 * table filled with PTE-mapped THPs, each of which is distinct. 3032 */ 3033 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 3034 struct vm_area_struct *vma = vma_lookup(mm, addr); 3035 struct page *page; 3036 3037 if (!vma) 3038 break; 3039 3040 /* skip special VMA and hugetlb VMA */ 3041 if (vma_not_suitable_for_thp_split(vma)) { 3042 addr = vma->vm_end; 3043 continue; 3044 } 3045 3046 /* FOLL_DUMP to ignore special (like zero) pages */ 3047 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 3048 3049 if (IS_ERR_OR_NULL(page)) 3050 continue; 3051 3052 if (!is_transparent_hugepage(page)) 3053 goto next; 3054 3055 total++; 3056 if (!can_split_folio(page_folio(page), NULL)) 3057 goto next; 3058 3059 if (!trylock_page(page)) 3060 goto next; 3061 3062 if (!split_huge_page(page)) 3063 split++; 3064 3065 unlock_page(page); 3066 next: 3067 put_page(page); 3068 cond_resched(); 3069 } 3070 mmap_read_unlock(mm); 3071 mmput(mm); 3072 3073 pr_debug("%lu of %lu THP split\n", split, total); 3074 3075 out: 3076 return ret; 3077 } 3078 3079 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 3080 pgoff_t off_end) 3081 { 3082 struct filename *file; 3083 struct file *candidate; 3084 struct address_space *mapping; 3085 int ret = -EINVAL; 3086 pgoff_t index; 3087 int nr_pages = 1; 3088 unsigned long total = 0, split = 0; 3089 3090 file = getname_kernel(file_path); 3091 if (IS_ERR(file)) 3092 return ret; 3093 3094 candidate = file_open_name(file, O_RDONLY, 0); 3095 if (IS_ERR(candidate)) 3096 goto out; 3097 3098 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 3099 file_path, off_start, off_end); 3100 3101 mapping = candidate->f_mapping; 3102 3103 for (index = off_start; index < off_end; index += nr_pages) { 3104 struct folio *folio = __filemap_get_folio(mapping, index, 3105 FGP_ENTRY, 0); 3106 3107 nr_pages = 1; 3108 if (xa_is_value(folio) || !folio) 3109 continue; 3110 3111 if (!folio_test_large(folio)) 3112 goto next; 3113 3114 total++; 3115 nr_pages = folio_nr_pages(folio); 3116 3117 if (!folio_trylock(folio)) 3118 goto next; 3119 3120 if (!split_folio(folio)) 3121 split++; 3122 3123 folio_unlock(folio); 3124 next: 3125 folio_put(folio); 3126 cond_resched(); 3127 } 3128 3129 filp_close(candidate, NULL); 3130 ret = 0; 3131 3132 pr_debug("%lu of %lu file-backed THP split\n", split, total); 3133 out: 3134 putname(file); 3135 return ret; 3136 } 3137 3138 #define MAX_INPUT_BUF_SZ 255 3139 3140 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 3141 size_t count, loff_t *ppops) 3142 { 3143 static DEFINE_MUTEX(split_debug_mutex); 3144 ssize_t ret; 3145 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */ 3146 char input_buf[MAX_INPUT_BUF_SZ]; 3147 int pid; 3148 unsigned long vaddr_start, vaddr_end; 3149 3150 ret = mutex_lock_interruptible(&split_debug_mutex); 3151 if (ret) 3152 return ret; 3153 3154 ret = -EFAULT; 3155 3156 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 3157 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 3158 goto out; 3159 3160 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 3161 3162 if (input_buf[0] == '/') { 3163 char *tok; 3164 char *buf = input_buf; 3165 char file_path[MAX_INPUT_BUF_SZ]; 3166 pgoff_t off_start = 0, off_end = 0; 3167 size_t input_len = strlen(input_buf); 3168 3169 tok = strsep(&buf, ","); 3170 if (tok) { 3171 strcpy(file_path, tok); 3172 } else { 3173 ret = -EINVAL; 3174 goto out; 3175 } 3176 3177 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end); 3178 if (ret != 2) { 3179 ret = -EINVAL; 3180 goto out; 3181 } 3182 ret = split_huge_pages_in_file(file_path, off_start, off_end); 3183 if (!ret) 3184 ret = input_len; 3185 3186 goto out; 3187 } 3188 3189 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end); 3190 if (ret == 1 && pid == 1) { 3191 split_huge_pages_all(); 3192 ret = strlen(input_buf); 3193 goto out; 3194 } else if (ret != 3) { 3195 ret = -EINVAL; 3196 goto out; 3197 } 3198 3199 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end); 3200 if (!ret) 3201 ret = strlen(input_buf); 3202 out: 3203 mutex_unlock(&split_debug_mutex); 3204 return ret; 3205 3206 } 3207 3208 static const struct file_operations split_huge_pages_fops = { 3209 .owner = THIS_MODULE, 3210 .write = split_huge_pages_write, 3211 .llseek = no_llseek, 3212 }; 3213 3214 static int __init split_huge_pages_debugfs(void) 3215 { 3216 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3217 &split_huge_pages_fops); 3218 return 0; 3219 } 3220 late_initcall(split_huge_pages_debugfs); 3221 #endif 3222 3223 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3224 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3225 struct page *page) 3226 { 3227 struct vm_area_struct *vma = pvmw->vma; 3228 struct mm_struct *mm = vma->vm_mm; 3229 unsigned long address = pvmw->address; 3230 bool anon_exclusive; 3231 pmd_t pmdval; 3232 swp_entry_t entry; 3233 pmd_t pmdswp; 3234 3235 if (!(pvmw->pmd && !pvmw->pte)) 3236 return 0; 3237 3238 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3239 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3240 3241 /* See page_try_share_anon_rmap(): invalidate PMD first. */ 3242 anon_exclusive = PageAnon(page) && PageAnonExclusive(page); 3243 if (anon_exclusive && page_try_share_anon_rmap(page)) { 3244 set_pmd_at(mm, address, pvmw->pmd, pmdval); 3245 return -EBUSY; 3246 } 3247 3248 if (pmd_dirty(pmdval)) 3249 set_page_dirty(page); 3250 if (pmd_write(pmdval)) 3251 entry = make_writable_migration_entry(page_to_pfn(page)); 3252 else if (anon_exclusive) 3253 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 3254 else 3255 entry = make_readable_migration_entry(page_to_pfn(page)); 3256 if (pmd_young(pmdval)) 3257 entry = make_migration_entry_young(entry); 3258 if (pmd_dirty(pmdval)) 3259 entry = make_migration_entry_dirty(entry); 3260 pmdswp = swp_entry_to_pmd(entry); 3261 if (pmd_soft_dirty(pmdval)) 3262 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3263 if (pmd_uffd_wp(pmdval)) 3264 pmdswp = pmd_swp_mkuffd_wp(pmdswp); 3265 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3266 page_remove_rmap(page, vma, true); 3267 put_page(page); 3268 trace_set_migration_pmd(address, pmd_val(pmdswp)); 3269 3270 return 0; 3271 } 3272 3273 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3274 { 3275 struct vm_area_struct *vma = pvmw->vma; 3276 struct mm_struct *mm = vma->vm_mm; 3277 unsigned long address = pvmw->address; 3278 unsigned long haddr = address & HPAGE_PMD_MASK; 3279 pmd_t pmde; 3280 swp_entry_t entry; 3281 3282 if (!(pvmw->pmd && !pvmw->pte)) 3283 return; 3284 3285 entry = pmd_to_swp_entry(*pvmw->pmd); 3286 get_page(new); 3287 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)); 3288 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3289 pmde = pmd_mksoft_dirty(pmde); 3290 if (pmd_swp_uffd_wp(*pvmw->pmd)) 3291 pmde = pmd_mkuffd_wp(pmde); 3292 if (!is_migration_entry_young(entry)) 3293 pmde = pmd_mkold(pmde); 3294 /* NOTE: this may contain setting soft-dirty on some archs */ 3295 if (PageDirty(new) && is_migration_entry_dirty(entry)) 3296 pmde = pmd_mkdirty(pmde); 3297 if (is_writable_migration_entry(entry)) 3298 pmde = maybe_pmd_mkwrite(pmde, vma); 3299 else 3300 pmde = pmd_wrprotect(pmde); 3301 3302 if (PageAnon(new)) { 3303 rmap_t rmap_flags = RMAP_COMPOUND; 3304 3305 if (!is_readable_migration_entry(entry)) 3306 rmap_flags |= RMAP_EXCLUSIVE; 3307 3308 page_add_anon_rmap(new, vma, haddr, rmap_flags); 3309 } else { 3310 page_add_file_rmap(new, vma, true); 3311 } 3312 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new)); 3313 set_pmd_at(mm, haddr, pvmw->pmd, pmde); 3314 3315 /* No need to invalidate - it was non-present before */ 3316 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3317 trace_remove_migration_pmd(address, pmd_val(pmde)); 3318 } 3319 #endif 3320