1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/coredump.h> 12 #include <linux/sched/numa_balancing.h> 13 #include <linux/highmem.h> 14 #include <linux/hugetlb.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/rmap.h> 17 #include <linux/swap.h> 18 #include <linux/shrinker.h> 19 #include <linux/mm_inline.h> 20 #include <linux/swapops.h> 21 #include <linux/dax.h> 22 #include <linux/khugepaged.h> 23 #include <linux/freezer.h> 24 #include <linux/pfn_t.h> 25 #include <linux/mman.h> 26 #include <linux/memremap.h> 27 #include <linux/pagemap.h> 28 #include <linux/debugfs.h> 29 #include <linux/migrate.h> 30 #include <linux/hashtable.h> 31 #include <linux/userfaultfd_k.h> 32 #include <linux/page_idle.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/oom.h> 35 #include <linux/numa.h> 36 #include <linux/page_owner.h> 37 38 #include <asm/tlb.h> 39 #include <asm/pgalloc.h> 40 #include "internal.h" 41 42 /* 43 * By default, transparent hugepage support is disabled in order to avoid 44 * risking an increased memory footprint for applications that are not 45 * guaranteed to benefit from it. When transparent hugepage support is 46 * enabled, it is for all mappings, and khugepaged scans all mappings. 47 * Defrag is invoked by khugepaged hugepage allocations and by page faults 48 * for all hugepage allocations. 49 */ 50 unsigned long transparent_hugepage_flags __read_mostly = 51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 52 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 53 #endif 54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 56 #endif 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 60 61 static struct shrinker deferred_split_shrinker; 62 63 static atomic_t huge_zero_refcount; 64 struct page *huge_zero_page __read_mostly; 65 unsigned long huge_zero_pfn __read_mostly = ~0UL; 66 67 static inline bool file_thp_enabled(struct vm_area_struct *vma) 68 { 69 return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file && 70 !inode_is_open_for_write(vma->vm_file->f_inode) && 71 (vma->vm_flags & VM_EXEC); 72 } 73 74 bool transparent_hugepage_active(struct vm_area_struct *vma) 75 { 76 /* The addr is used to check if the vma size fits */ 77 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE; 78 79 if (!transhuge_vma_suitable(vma, addr)) 80 return false; 81 if (vma_is_anonymous(vma)) 82 return __transparent_hugepage_enabled(vma); 83 if (vma_is_shmem(vma)) 84 return shmem_huge_enabled(vma); 85 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS)) 86 return file_thp_enabled(vma); 87 88 return false; 89 } 90 91 static bool get_huge_zero_page(void) 92 { 93 struct page *zero_page; 94 retry: 95 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 96 return true; 97 98 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 99 HPAGE_PMD_ORDER); 100 if (!zero_page) { 101 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 102 return false; 103 } 104 count_vm_event(THP_ZERO_PAGE_ALLOC); 105 preempt_disable(); 106 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 107 preempt_enable(); 108 __free_pages(zero_page, compound_order(zero_page)); 109 goto retry; 110 } 111 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page)); 112 113 /* We take additional reference here. It will be put back by shrinker */ 114 atomic_set(&huge_zero_refcount, 2); 115 preempt_enable(); 116 return true; 117 } 118 119 static void put_huge_zero_page(void) 120 { 121 /* 122 * Counter should never go to zero here. Only shrinker can put 123 * last reference. 124 */ 125 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 126 } 127 128 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 129 { 130 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 131 return READ_ONCE(huge_zero_page); 132 133 if (!get_huge_zero_page()) 134 return NULL; 135 136 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 137 put_huge_zero_page(); 138 139 return READ_ONCE(huge_zero_page); 140 } 141 142 void mm_put_huge_zero_page(struct mm_struct *mm) 143 { 144 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 145 put_huge_zero_page(); 146 } 147 148 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 149 struct shrink_control *sc) 150 { 151 /* we can free zero page only if last reference remains */ 152 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 153 } 154 155 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 156 struct shrink_control *sc) 157 { 158 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 159 struct page *zero_page = xchg(&huge_zero_page, NULL); 160 BUG_ON(zero_page == NULL); 161 WRITE_ONCE(huge_zero_pfn, ~0UL); 162 __free_pages(zero_page, compound_order(zero_page)); 163 return HPAGE_PMD_NR; 164 } 165 166 return 0; 167 } 168 169 static struct shrinker huge_zero_page_shrinker = { 170 .count_objects = shrink_huge_zero_page_count, 171 .scan_objects = shrink_huge_zero_page_scan, 172 .seeks = DEFAULT_SEEKS, 173 }; 174 175 #ifdef CONFIG_SYSFS 176 static ssize_t enabled_show(struct kobject *kobj, 177 struct kobj_attribute *attr, char *buf) 178 { 179 const char *output; 180 181 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 182 output = "[always] madvise never"; 183 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 184 &transparent_hugepage_flags)) 185 output = "always [madvise] never"; 186 else 187 output = "always madvise [never]"; 188 189 return sysfs_emit(buf, "%s\n", output); 190 } 191 192 static ssize_t enabled_store(struct kobject *kobj, 193 struct kobj_attribute *attr, 194 const char *buf, size_t count) 195 { 196 ssize_t ret = count; 197 198 if (sysfs_streq(buf, "always")) { 199 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 200 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 201 } else if (sysfs_streq(buf, "madvise")) { 202 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 203 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 204 } else if (sysfs_streq(buf, "never")) { 205 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 206 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 207 } else 208 ret = -EINVAL; 209 210 if (ret > 0) { 211 int err = start_stop_khugepaged(); 212 if (err) 213 ret = err; 214 } 215 return ret; 216 } 217 static struct kobj_attribute enabled_attr = 218 __ATTR(enabled, 0644, enabled_show, enabled_store); 219 220 ssize_t single_hugepage_flag_show(struct kobject *kobj, 221 struct kobj_attribute *attr, char *buf, 222 enum transparent_hugepage_flag flag) 223 { 224 return sysfs_emit(buf, "%d\n", 225 !!test_bit(flag, &transparent_hugepage_flags)); 226 } 227 228 ssize_t single_hugepage_flag_store(struct kobject *kobj, 229 struct kobj_attribute *attr, 230 const char *buf, size_t count, 231 enum transparent_hugepage_flag flag) 232 { 233 unsigned long value; 234 int ret; 235 236 ret = kstrtoul(buf, 10, &value); 237 if (ret < 0) 238 return ret; 239 if (value > 1) 240 return -EINVAL; 241 242 if (value) 243 set_bit(flag, &transparent_hugepage_flags); 244 else 245 clear_bit(flag, &transparent_hugepage_flags); 246 247 return count; 248 } 249 250 static ssize_t defrag_show(struct kobject *kobj, 251 struct kobj_attribute *attr, char *buf) 252 { 253 const char *output; 254 255 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 256 &transparent_hugepage_flags)) 257 output = "[always] defer defer+madvise madvise never"; 258 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 259 &transparent_hugepage_flags)) 260 output = "always [defer] defer+madvise madvise never"; 261 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 262 &transparent_hugepage_flags)) 263 output = "always defer [defer+madvise] madvise never"; 264 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 265 &transparent_hugepage_flags)) 266 output = "always defer defer+madvise [madvise] never"; 267 else 268 output = "always defer defer+madvise madvise [never]"; 269 270 return sysfs_emit(buf, "%s\n", output); 271 } 272 273 static ssize_t defrag_store(struct kobject *kobj, 274 struct kobj_attribute *attr, 275 const char *buf, size_t count) 276 { 277 if (sysfs_streq(buf, "always")) { 278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 281 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 282 } else if (sysfs_streq(buf, "defer+madvise")) { 283 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 284 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 286 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 287 } else if (sysfs_streq(buf, "defer")) { 288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 289 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 290 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 291 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 292 } else if (sysfs_streq(buf, "madvise")) { 293 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 294 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 295 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 296 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 297 } else if (sysfs_streq(buf, "never")) { 298 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 299 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 300 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 301 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 302 } else 303 return -EINVAL; 304 305 return count; 306 } 307 static struct kobj_attribute defrag_attr = 308 __ATTR(defrag, 0644, defrag_show, defrag_store); 309 310 static ssize_t use_zero_page_show(struct kobject *kobj, 311 struct kobj_attribute *attr, char *buf) 312 { 313 return single_hugepage_flag_show(kobj, attr, buf, 314 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 315 } 316 static ssize_t use_zero_page_store(struct kobject *kobj, 317 struct kobj_attribute *attr, const char *buf, size_t count) 318 { 319 return single_hugepage_flag_store(kobj, attr, buf, count, 320 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 321 } 322 static struct kobj_attribute use_zero_page_attr = 323 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 324 325 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 326 struct kobj_attribute *attr, char *buf) 327 { 328 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 329 } 330 static struct kobj_attribute hpage_pmd_size_attr = 331 __ATTR_RO(hpage_pmd_size); 332 333 static struct attribute *hugepage_attr[] = { 334 &enabled_attr.attr, 335 &defrag_attr.attr, 336 &use_zero_page_attr.attr, 337 &hpage_pmd_size_attr.attr, 338 #ifdef CONFIG_SHMEM 339 &shmem_enabled_attr.attr, 340 #endif 341 NULL, 342 }; 343 344 static const struct attribute_group hugepage_attr_group = { 345 .attrs = hugepage_attr, 346 }; 347 348 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 349 { 350 int err; 351 352 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 353 if (unlikely(!*hugepage_kobj)) { 354 pr_err("failed to create transparent hugepage kobject\n"); 355 return -ENOMEM; 356 } 357 358 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 359 if (err) { 360 pr_err("failed to register transparent hugepage group\n"); 361 goto delete_obj; 362 } 363 364 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 365 if (err) { 366 pr_err("failed to register transparent hugepage group\n"); 367 goto remove_hp_group; 368 } 369 370 return 0; 371 372 remove_hp_group: 373 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 374 delete_obj: 375 kobject_put(*hugepage_kobj); 376 return err; 377 } 378 379 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 380 { 381 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 382 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 383 kobject_put(hugepage_kobj); 384 } 385 #else 386 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 387 { 388 return 0; 389 } 390 391 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 392 { 393 } 394 #endif /* CONFIG_SYSFS */ 395 396 static int __init hugepage_init(void) 397 { 398 int err; 399 struct kobject *hugepage_kobj; 400 401 if (!has_transparent_hugepage()) { 402 /* 403 * Hardware doesn't support hugepages, hence disable 404 * DAX PMD support. 405 */ 406 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX; 407 return -EINVAL; 408 } 409 410 /* 411 * hugepages can't be allocated by the buddy allocator 412 */ 413 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 414 /* 415 * we use page->mapping and page->index in second tail page 416 * as list_head: assuming THP order >= 2 417 */ 418 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 419 420 err = hugepage_init_sysfs(&hugepage_kobj); 421 if (err) 422 goto err_sysfs; 423 424 err = khugepaged_init(); 425 if (err) 426 goto err_slab; 427 428 err = register_shrinker(&huge_zero_page_shrinker); 429 if (err) 430 goto err_hzp_shrinker; 431 err = register_shrinker(&deferred_split_shrinker); 432 if (err) 433 goto err_split_shrinker; 434 435 /* 436 * By default disable transparent hugepages on smaller systems, 437 * where the extra memory used could hurt more than TLB overhead 438 * is likely to save. The admin can still enable it through /sys. 439 */ 440 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 441 transparent_hugepage_flags = 0; 442 return 0; 443 } 444 445 err = start_stop_khugepaged(); 446 if (err) 447 goto err_khugepaged; 448 449 return 0; 450 err_khugepaged: 451 unregister_shrinker(&deferred_split_shrinker); 452 err_split_shrinker: 453 unregister_shrinker(&huge_zero_page_shrinker); 454 err_hzp_shrinker: 455 khugepaged_destroy(); 456 err_slab: 457 hugepage_exit_sysfs(hugepage_kobj); 458 err_sysfs: 459 return err; 460 } 461 subsys_initcall(hugepage_init); 462 463 static int __init setup_transparent_hugepage(char *str) 464 { 465 int ret = 0; 466 if (!str) 467 goto out; 468 if (!strcmp(str, "always")) { 469 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 470 &transparent_hugepage_flags); 471 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 472 &transparent_hugepage_flags); 473 ret = 1; 474 } else if (!strcmp(str, "madvise")) { 475 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 476 &transparent_hugepage_flags); 477 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 478 &transparent_hugepage_flags); 479 ret = 1; 480 } else if (!strcmp(str, "never")) { 481 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 482 &transparent_hugepage_flags); 483 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 484 &transparent_hugepage_flags); 485 ret = 1; 486 } 487 out: 488 if (!ret) 489 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 490 return ret; 491 } 492 __setup("transparent_hugepage=", setup_transparent_hugepage); 493 494 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 495 { 496 if (likely(vma->vm_flags & VM_WRITE)) 497 pmd = pmd_mkwrite(pmd); 498 return pmd; 499 } 500 501 #ifdef CONFIG_MEMCG 502 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 503 { 504 struct mem_cgroup *memcg = page_memcg(compound_head(page)); 505 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 506 507 if (memcg) 508 return &memcg->deferred_split_queue; 509 else 510 return &pgdat->deferred_split_queue; 511 } 512 #else 513 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 514 { 515 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 516 517 return &pgdat->deferred_split_queue; 518 } 519 #endif 520 521 void prep_transhuge_page(struct page *page) 522 { 523 /* 524 * we use page->mapping and page->indexlru in second tail page 525 * as list_head: assuming THP order >= 2 526 */ 527 528 INIT_LIST_HEAD(page_deferred_list(page)); 529 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 530 } 531 532 bool is_transparent_hugepage(struct page *page) 533 { 534 if (!PageCompound(page)) 535 return false; 536 537 page = compound_head(page); 538 return is_huge_zero_page(page) || 539 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR; 540 } 541 EXPORT_SYMBOL_GPL(is_transparent_hugepage); 542 543 static unsigned long __thp_get_unmapped_area(struct file *filp, 544 unsigned long addr, unsigned long len, 545 loff_t off, unsigned long flags, unsigned long size) 546 { 547 loff_t off_end = off + len; 548 loff_t off_align = round_up(off, size); 549 unsigned long len_pad, ret; 550 551 if (off_end <= off_align || (off_end - off_align) < size) 552 return 0; 553 554 len_pad = len + size; 555 if (len_pad < len || (off + len_pad) < off) 556 return 0; 557 558 ret = current->mm->get_unmapped_area(filp, addr, len_pad, 559 off >> PAGE_SHIFT, flags); 560 561 /* 562 * The failure might be due to length padding. The caller will retry 563 * without the padding. 564 */ 565 if (IS_ERR_VALUE(ret)) 566 return 0; 567 568 /* 569 * Do not try to align to THP boundary if allocation at the address 570 * hint succeeds. 571 */ 572 if (ret == addr) 573 return addr; 574 575 ret += (off - ret) & (size - 1); 576 return ret; 577 } 578 579 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 580 unsigned long len, unsigned long pgoff, unsigned long flags) 581 { 582 unsigned long ret; 583 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 584 585 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) 586 goto out; 587 588 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); 589 if (ret) 590 return ret; 591 out: 592 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 593 } 594 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 595 596 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 597 struct page *page, gfp_t gfp) 598 { 599 struct vm_area_struct *vma = vmf->vma; 600 pgtable_t pgtable; 601 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 602 vm_fault_t ret = 0; 603 604 VM_BUG_ON_PAGE(!PageCompound(page), page); 605 606 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) { 607 put_page(page); 608 count_vm_event(THP_FAULT_FALLBACK); 609 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 610 return VM_FAULT_FALLBACK; 611 } 612 cgroup_throttle_swaprate(page, gfp); 613 614 pgtable = pte_alloc_one(vma->vm_mm); 615 if (unlikely(!pgtable)) { 616 ret = VM_FAULT_OOM; 617 goto release; 618 } 619 620 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 621 /* 622 * The memory barrier inside __SetPageUptodate makes sure that 623 * clear_huge_page writes become visible before the set_pmd_at() 624 * write. 625 */ 626 __SetPageUptodate(page); 627 628 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 629 if (unlikely(!pmd_none(*vmf->pmd))) { 630 goto unlock_release; 631 } else { 632 pmd_t entry; 633 634 ret = check_stable_address_space(vma->vm_mm); 635 if (ret) 636 goto unlock_release; 637 638 /* Deliver the page fault to userland */ 639 if (userfaultfd_missing(vma)) { 640 spin_unlock(vmf->ptl); 641 put_page(page); 642 pte_free(vma->vm_mm, pgtable); 643 ret = handle_userfault(vmf, VM_UFFD_MISSING); 644 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 645 return ret; 646 } 647 648 entry = mk_huge_pmd(page, vma->vm_page_prot); 649 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 650 page_add_new_anon_rmap(page, vma, haddr, true); 651 lru_cache_add_inactive_or_unevictable(page, vma); 652 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 653 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 654 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 655 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 656 mm_inc_nr_ptes(vma->vm_mm); 657 spin_unlock(vmf->ptl); 658 count_vm_event(THP_FAULT_ALLOC); 659 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 660 } 661 662 return 0; 663 unlock_release: 664 spin_unlock(vmf->ptl); 665 release: 666 if (pgtable) 667 pte_free(vma->vm_mm, pgtable); 668 put_page(page); 669 return ret; 670 671 } 672 673 /* 674 * always: directly stall for all thp allocations 675 * defer: wake kswapd and fail if not immediately available 676 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 677 * fail if not immediately available 678 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 679 * available 680 * never: never stall for any thp allocation 681 */ 682 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 683 { 684 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 685 686 /* Always do synchronous compaction */ 687 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 688 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 689 690 /* Kick kcompactd and fail quickly */ 691 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 692 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 693 694 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 695 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 696 return GFP_TRANSHUGE_LIGHT | 697 (vma_madvised ? __GFP_DIRECT_RECLAIM : 698 __GFP_KSWAPD_RECLAIM); 699 700 /* Only do synchronous compaction if madvised */ 701 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 702 return GFP_TRANSHUGE_LIGHT | 703 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 704 705 return GFP_TRANSHUGE_LIGHT; 706 } 707 708 /* Caller must hold page table lock. */ 709 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 710 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 711 struct page *zero_page) 712 { 713 pmd_t entry; 714 if (!pmd_none(*pmd)) 715 return; 716 entry = mk_pmd(zero_page, vma->vm_page_prot); 717 entry = pmd_mkhuge(entry); 718 if (pgtable) 719 pgtable_trans_huge_deposit(mm, pmd, pgtable); 720 set_pmd_at(mm, haddr, pmd, entry); 721 mm_inc_nr_ptes(mm); 722 } 723 724 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 725 { 726 struct vm_area_struct *vma = vmf->vma; 727 gfp_t gfp; 728 struct page *page; 729 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 730 731 if (!transhuge_vma_suitable(vma, haddr)) 732 return VM_FAULT_FALLBACK; 733 if (unlikely(anon_vma_prepare(vma))) 734 return VM_FAULT_OOM; 735 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 736 return VM_FAULT_OOM; 737 if (!(vmf->flags & FAULT_FLAG_WRITE) && 738 !mm_forbids_zeropage(vma->vm_mm) && 739 transparent_hugepage_use_zero_page()) { 740 pgtable_t pgtable; 741 struct page *zero_page; 742 vm_fault_t ret; 743 pgtable = pte_alloc_one(vma->vm_mm); 744 if (unlikely(!pgtable)) 745 return VM_FAULT_OOM; 746 zero_page = mm_get_huge_zero_page(vma->vm_mm); 747 if (unlikely(!zero_page)) { 748 pte_free(vma->vm_mm, pgtable); 749 count_vm_event(THP_FAULT_FALLBACK); 750 return VM_FAULT_FALLBACK; 751 } 752 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 753 ret = 0; 754 if (pmd_none(*vmf->pmd)) { 755 ret = check_stable_address_space(vma->vm_mm); 756 if (ret) { 757 spin_unlock(vmf->ptl); 758 pte_free(vma->vm_mm, pgtable); 759 } else if (userfaultfd_missing(vma)) { 760 spin_unlock(vmf->ptl); 761 pte_free(vma->vm_mm, pgtable); 762 ret = handle_userfault(vmf, VM_UFFD_MISSING); 763 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 764 } else { 765 set_huge_zero_page(pgtable, vma->vm_mm, vma, 766 haddr, vmf->pmd, zero_page); 767 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 768 spin_unlock(vmf->ptl); 769 } 770 } else { 771 spin_unlock(vmf->ptl); 772 pte_free(vma->vm_mm, pgtable); 773 } 774 return ret; 775 } 776 gfp = vma_thp_gfp_mask(vma); 777 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 778 if (unlikely(!page)) { 779 count_vm_event(THP_FAULT_FALLBACK); 780 return VM_FAULT_FALLBACK; 781 } 782 prep_transhuge_page(page); 783 return __do_huge_pmd_anonymous_page(vmf, page, gfp); 784 } 785 786 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 787 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 788 pgtable_t pgtable) 789 { 790 struct mm_struct *mm = vma->vm_mm; 791 pmd_t entry; 792 spinlock_t *ptl; 793 794 ptl = pmd_lock(mm, pmd); 795 if (!pmd_none(*pmd)) { 796 if (write) { 797 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 798 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 799 goto out_unlock; 800 } 801 entry = pmd_mkyoung(*pmd); 802 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 803 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 804 update_mmu_cache_pmd(vma, addr, pmd); 805 } 806 807 goto out_unlock; 808 } 809 810 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 811 if (pfn_t_devmap(pfn)) 812 entry = pmd_mkdevmap(entry); 813 if (write) { 814 entry = pmd_mkyoung(pmd_mkdirty(entry)); 815 entry = maybe_pmd_mkwrite(entry, vma); 816 } 817 818 if (pgtable) { 819 pgtable_trans_huge_deposit(mm, pmd, pgtable); 820 mm_inc_nr_ptes(mm); 821 pgtable = NULL; 822 } 823 824 set_pmd_at(mm, addr, pmd, entry); 825 update_mmu_cache_pmd(vma, addr, pmd); 826 827 out_unlock: 828 spin_unlock(ptl); 829 if (pgtable) 830 pte_free(mm, pgtable); 831 } 832 833 /** 834 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn 835 * @vmf: Structure describing the fault 836 * @pfn: pfn to insert 837 * @pgprot: page protection to use 838 * @write: whether it's a write fault 839 * 840 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and 841 * also consult the vmf_insert_mixed_prot() documentation when 842 * @pgprot != @vmf->vma->vm_page_prot. 843 * 844 * Return: vm_fault_t value. 845 */ 846 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn, 847 pgprot_t pgprot, bool write) 848 { 849 unsigned long addr = vmf->address & PMD_MASK; 850 struct vm_area_struct *vma = vmf->vma; 851 pgtable_t pgtable = NULL; 852 853 /* 854 * If we had pmd_special, we could avoid all these restrictions, 855 * but we need to be consistent with PTEs and architectures that 856 * can't support a 'special' bit. 857 */ 858 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 859 !pfn_t_devmap(pfn)); 860 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 861 (VM_PFNMAP|VM_MIXEDMAP)); 862 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 863 864 if (addr < vma->vm_start || addr >= vma->vm_end) 865 return VM_FAULT_SIGBUS; 866 867 if (arch_needs_pgtable_deposit()) { 868 pgtable = pte_alloc_one(vma->vm_mm); 869 if (!pgtable) 870 return VM_FAULT_OOM; 871 } 872 873 track_pfn_insert(vma, &pgprot, pfn); 874 875 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 876 return VM_FAULT_NOPAGE; 877 } 878 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot); 879 880 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 881 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 882 { 883 if (likely(vma->vm_flags & VM_WRITE)) 884 pud = pud_mkwrite(pud); 885 return pud; 886 } 887 888 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 889 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 890 { 891 struct mm_struct *mm = vma->vm_mm; 892 pud_t entry; 893 spinlock_t *ptl; 894 895 ptl = pud_lock(mm, pud); 896 if (!pud_none(*pud)) { 897 if (write) { 898 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 899 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 900 goto out_unlock; 901 } 902 entry = pud_mkyoung(*pud); 903 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 904 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 905 update_mmu_cache_pud(vma, addr, pud); 906 } 907 goto out_unlock; 908 } 909 910 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 911 if (pfn_t_devmap(pfn)) 912 entry = pud_mkdevmap(entry); 913 if (write) { 914 entry = pud_mkyoung(pud_mkdirty(entry)); 915 entry = maybe_pud_mkwrite(entry, vma); 916 } 917 set_pud_at(mm, addr, pud, entry); 918 update_mmu_cache_pud(vma, addr, pud); 919 920 out_unlock: 921 spin_unlock(ptl); 922 } 923 924 /** 925 * vmf_insert_pfn_pud_prot - insert a pud size pfn 926 * @vmf: Structure describing the fault 927 * @pfn: pfn to insert 928 * @pgprot: page protection to use 929 * @write: whether it's a write fault 930 * 931 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and 932 * also consult the vmf_insert_mixed_prot() documentation when 933 * @pgprot != @vmf->vma->vm_page_prot. 934 * 935 * Return: vm_fault_t value. 936 */ 937 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn, 938 pgprot_t pgprot, bool write) 939 { 940 unsigned long addr = vmf->address & PUD_MASK; 941 struct vm_area_struct *vma = vmf->vma; 942 943 /* 944 * If we had pud_special, we could avoid all these restrictions, 945 * but we need to be consistent with PTEs and architectures that 946 * can't support a 'special' bit. 947 */ 948 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 949 !pfn_t_devmap(pfn)); 950 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 951 (VM_PFNMAP|VM_MIXEDMAP)); 952 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 953 954 if (addr < vma->vm_start || addr >= vma->vm_end) 955 return VM_FAULT_SIGBUS; 956 957 track_pfn_insert(vma, &pgprot, pfn); 958 959 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write); 960 return VM_FAULT_NOPAGE; 961 } 962 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot); 963 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 964 965 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 966 pmd_t *pmd, int flags) 967 { 968 pmd_t _pmd; 969 970 _pmd = pmd_mkyoung(*pmd); 971 if (flags & FOLL_WRITE) 972 _pmd = pmd_mkdirty(_pmd); 973 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 974 pmd, _pmd, flags & FOLL_WRITE)) 975 update_mmu_cache_pmd(vma, addr, pmd); 976 } 977 978 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 979 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 980 { 981 unsigned long pfn = pmd_pfn(*pmd); 982 struct mm_struct *mm = vma->vm_mm; 983 struct page *page; 984 985 assert_spin_locked(pmd_lockptr(mm, pmd)); 986 987 /* 988 * When we COW a devmap PMD entry, we split it into PTEs, so we should 989 * not be in this function with `flags & FOLL_COW` set. 990 */ 991 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); 992 993 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 994 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 995 (FOLL_PIN | FOLL_GET))) 996 return NULL; 997 998 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 999 return NULL; 1000 1001 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1002 /* pass */; 1003 else 1004 return NULL; 1005 1006 if (flags & FOLL_TOUCH) 1007 touch_pmd(vma, addr, pmd, flags); 1008 1009 /* 1010 * device mapped pages can only be returned if the 1011 * caller will manage the page reference count. 1012 */ 1013 if (!(flags & (FOLL_GET | FOLL_PIN))) 1014 return ERR_PTR(-EEXIST); 1015 1016 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1017 *pgmap = get_dev_pagemap(pfn, *pgmap); 1018 if (!*pgmap) 1019 return ERR_PTR(-EFAULT); 1020 page = pfn_to_page(pfn); 1021 if (!try_grab_page(page, flags)) 1022 page = ERR_PTR(-ENOMEM); 1023 1024 return page; 1025 } 1026 1027 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1028 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1029 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1030 { 1031 spinlock_t *dst_ptl, *src_ptl; 1032 struct page *src_page; 1033 pmd_t pmd; 1034 pgtable_t pgtable = NULL; 1035 int ret = -ENOMEM; 1036 1037 /* Skip if can be re-fill on fault */ 1038 if (!vma_is_anonymous(dst_vma)) 1039 return 0; 1040 1041 pgtable = pte_alloc_one(dst_mm); 1042 if (unlikely(!pgtable)) 1043 goto out; 1044 1045 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1046 src_ptl = pmd_lockptr(src_mm, src_pmd); 1047 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1048 1049 ret = -EAGAIN; 1050 pmd = *src_pmd; 1051 1052 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1053 if (unlikely(is_swap_pmd(pmd))) { 1054 swp_entry_t entry = pmd_to_swp_entry(pmd); 1055 1056 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1057 if (is_writable_migration_entry(entry)) { 1058 entry = make_readable_migration_entry( 1059 swp_offset(entry)); 1060 pmd = swp_entry_to_pmd(entry); 1061 if (pmd_swp_soft_dirty(*src_pmd)) 1062 pmd = pmd_swp_mksoft_dirty(pmd); 1063 if (pmd_swp_uffd_wp(*src_pmd)) 1064 pmd = pmd_swp_mkuffd_wp(pmd); 1065 set_pmd_at(src_mm, addr, src_pmd, pmd); 1066 } 1067 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1068 mm_inc_nr_ptes(dst_mm); 1069 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1070 if (!userfaultfd_wp(dst_vma)) 1071 pmd = pmd_swp_clear_uffd_wp(pmd); 1072 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1073 ret = 0; 1074 goto out_unlock; 1075 } 1076 #endif 1077 1078 if (unlikely(!pmd_trans_huge(pmd))) { 1079 pte_free(dst_mm, pgtable); 1080 goto out_unlock; 1081 } 1082 /* 1083 * When page table lock is held, the huge zero pmd should not be 1084 * under splitting since we don't split the page itself, only pmd to 1085 * a page table. 1086 */ 1087 if (is_huge_zero_pmd(pmd)) { 1088 /* 1089 * get_huge_zero_page() will never allocate a new page here, 1090 * since we already have a zero page to copy. It just takes a 1091 * reference. 1092 */ 1093 mm_get_huge_zero_page(dst_mm); 1094 goto out_zero_page; 1095 } 1096 1097 src_page = pmd_page(pmd); 1098 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1099 1100 /* 1101 * If this page is a potentially pinned page, split and retry the fault 1102 * with smaller page size. Normally this should not happen because the 1103 * userspace should use MADV_DONTFORK upon pinned regions. This is a 1104 * best effort that the pinned pages won't be replaced by another 1105 * random page during the coming copy-on-write. 1106 */ 1107 if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) { 1108 pte_free(dst_mm, pgtable); 1109 spin_unlock(src_ptl); 1110 spin_unlock(dst_ptl); 1111 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1112 return -EAGAIN; 1113 } 1114 1115 get_page(src_page); 1116 page_dup_rmap(src_page, true); 1117 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1118 out_zero_page: 1119 mm_inc_nr_ptes(dst_mm); 1120 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1121 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1122 if (!userfaultfd_wp(dst_vma)) 1123 pmd = pmd_clear_uffd_wp(pmd); 1124 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1125 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1126 1127 ret = 0; 1128 out_unlock: 1129 spin_unlock(src_ptl); 1130 spin_unlock(dst_ptl); 1131 out: 1132 return ret; 1133 } 1134 1135 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1136 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1137 pud_t *pud, int flags) 1138 { 1139 pud_t _pud; 1140 1141 _pud = pud_mkyoung(*pud); 1142 if (flags & FOLL_WRITE) 1143 _pud = pud_mkdirty(_pud); 1144 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1145 pud, _pud, flags & FOLL_WRITE)) 1146 update_mmu_cache_pud(vma, addr, pud); 1147 } 1148 1149 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1150 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1151 { 1152 unsigned long pfn = pud_pfn(*pud); 1153 struct mm_struct *mm = vma->vm_mm; 1154 struct page *page; 1155 1156 assert_spin_locked(pud_lockptr(mm, pud)); 1157 1158 if (flags & FOLL_WRITE && !pud_write(*pud)) 1159 return NULL; 1160 1161 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 1162 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 1163 (FOLL_PIN | FOLL_GET))) 1164 return NULL; 1165 1166 if (pud_present(*pud) && pud_devmap(*pud)) 1167 /* pass */; 1168 else 1169 return NULL; 1170 1171 if (flags & FOLL_TOUCH) 1172 touch_pud(vma, addr, pud, flags); 1173 1174 /* 1175 * device mapped pages can only be returned if the 1176 * caller will manage the page reference count. 1177 * 1178 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: 1179 */ 1180 if (!(flags & (FOLL_GET | FOLL_PIN))) 1181 return ERR_PTR(-EEXIST); 1182 1183 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1184 *pgmap = get_dev_pagemap(pfn, *pgmap); 1185 if (!*pgmap) 1186 return ERR_PTR(-EFAULT); 1187 page = pfn_to_page(pfn); 1188 if (!try_grab_page(page, flags)) 1189 page = ERR_PTR(-ENOMEM); 1190 1191 return page; 1192 } 1193 1194 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1195 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1196 struct vm_area_struct *vma) 1197 { 1198 spinlock_t *dst_ptl, *src_ptl; 1199 pud_t pud; 1200 int ret; 1201 1202 dst_ptl = pud_lock(dst_mm, dst_pud); 1203 src_ptl = pud_lockptr(src_mm, src_pud); 1204 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1205 1206 ret = -EAGAIN; 1207 pud = *src_pud; 1208 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1209 goto out_unlock; 1210 1211 /* 1212 * When page table lock is held, the huge zero pud should not be 1213 * under splitting since we don't split the page itself, only pud to 1214 * a page table. 1215 */ 1216 if (is_huge_zero_pud(pud)) { 1217 /* No huge zero pud yet */ 1218 } 1219 1220 /* Please refer to comments in copy_huge_pmd() */ 1221 if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) { 1222 spin_unlock(src_ptl); 1223 spin_unlock(dst_ptl); 1224 __split_huge_pud(vma, src_pud, addr); 1225 return -EAGAIN; 1226 } 1227 1228 pudp_set_wrprotect(src_mm, addr, src_pud); 1229 pud = pud_mkold(pud_wrprotect(pud)); 1230 set_pud_at(dst_mm, addr, dst_pud, pud); 1231 1232 ret = 0; 1233 out_unlock: 1234 spin_unlock(src_ptl); 1235 spin_unlock(dst_ptl); 1236 return ret; 1237 } 1238 1239 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1240 { 1241 pud_t entry; 1242 unsigned long haddr; 1243 bool write = vmf->flags & FAULT_FLAG_WRITE; 1244 1245 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1246 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1247 goto unlock; 1248 1249 entry = pud_mkyoung(orig_pud); 1250 if (write) 1251 entry = pud_mkdirty(entry); 1252 haddr = vmf->address & HPAGE_PUD_MASK; 1253 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write)) 1254 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud); 1255 1256 unlock: 1257 spin_unlock(vmf->ptl); 1258 } 1259 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1260 1261 void huge_pmd_set_accessed(struct vm_fault *vmf) 1262 { 1263 pmd_t entry; 1264 unsigned long haddr; 1265 bool write = vmf->flags & FAULT_FLAG_WRITE; 1266 pmd_t orig_pmd = vmf->orig_pmd; 1267 1268 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1269 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1270 goto unlock; 1271 1272 entry = pmd_mkyoung(orig_pmd); 1273 if (write) 1274 entry = pmd_mkdirty(entry); 1275 haddr = vmf->address & HPAGE_PMD_MASK; 1276 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) 1277 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); 1278 1279 unlock: 1280 spin_unlock(vmf->ptl); 1281 } 1282 1283 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1284 { 1285 struct vm_area_struct *vma = vmf->vma; 1286 struct page *page; 1287 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1288 pmd_t orig_pmd = vmf->orig_pmd; 1289 1290 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1291 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1292 1293 if (is_huge_zero_pmd(orig_pmd)) 1294 goto fallback; 1295 1296 spin_lock(vmf->ptl); 1297 1298 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1299 spin_unlock(vmf->ptl); 1300 return 0; 1301 } 1302 1303 page = pmd_page(orig_pmd); 1304 VM_BUG_ON_PAGE(!PageHead(page), page); 1305 1306 /* Lock page for reuse_swap_page() */ 1307 if (!trylock_page(page)) { 1308 get_page(page); 1309 spin_unlock(vmf->ptl); 1310 lock_page(page); 1311 spin_lock(vmf->ptl); 1312 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1313 spin_unlock(vmf->ptl); 1314 unlock_page(page); 1315 put_page(page); 1316 return 0; 1317 } 1318 put_page(page); 1319 } 1320 1321 /* 1322 * We can only reuse the page if nobody else maps the huge page or it's 1323 * part. 1324 */ 1325 if (reuse_swap_page(page, NULL)) { 1326 pmd_t entry; 1327 entry = pmd_mkyoung(orig_pmd); 1328 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1329 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1330 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1331 unlock_page(page); 1332 spin_unlock(vmf->ptl); 1333 return VM_FAULT_WRITE; 1334 } 1335 1336 unlock_page(page); 1337 spin_unlock(vmf->ptl); 1338 fallback: 1339 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1340 return VM_FAULT_FALLBACK; 1341 } 1342 1343 /* 1344 * FOLL_FORCE can write to even unwritable pmd's, but only 1345 * after we've gone through a COW cycle and they are dirty. 1346 */ 1347 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) 1348 { 1349 return pmd_write(pmd) || 1350 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); 1351 } 1352 1353 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1354 unsigned long addr, 1355 pmd_t *pmd, 1356 unsigned int flags) 1357 { 1358 struct mm_struct *mm = vma->vm_mm; 1359 struct page *page = NULL; 1360 1361 assert_spin_locked(pmd_lockptr(mm, pmd)); 1362 1363 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) 1364 goto out; 1365 1366 /* Avoid dumping huge zero page */ 1367 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1368 return ERR_PTR(-EFAULT); 1369 1370 /* Full NUMA hinting faults to serialise migration in fault paths */ 1371 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1372 goto out; 1373 1374 page = pmd_page(*pmd); 1375 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1376 1377 if (!try_grab_page(page, flags)) 1378 return ERR_PTR(-ENOMEM); 1379 1380 if (flags & FOLL_TOUCH) 1381 touch_pmd(vma, addr, pmd, flags); 1382 1383 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1384 /* 1385 * We don't mlock() pte-mapped THPs. This way we can avoid 1386 * leaking mlocked pages into non-VM_LOCKED VMAs. 1387 * 1388 * For anon THP: 1389 * 1390 * In most cases the pmd is the only mapping of the page as we 1391 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1392 * writable private mappings in populate_vma_page_range(). 1393 * 1394 * The only scenario when we have the page shared here is if we 1395 * mlocking read-only mapping shared over fork(). We skip 1396 * mlocking such pages. 1397 * 1398 * For file THP: 1399 * 1400 * We can expect PageDoubleMap() to be stable under page lock: 1401 * for file pages we set it in page_add_file_rmap(), which 1402 * requires page to be locked. 1403 */ 1404 1405 if (PageAnon(page) && compound_mapcount(page) != 1) 1406 goto skip_mlock; 1407 if (PageDoubleMap(page) || !page->mapping) 1408 goto skip_mlock; 1409 if (!trylock_page(page)) 1410 goto skip_mlock; 1411 if (page->mapping && !PageDoubleMap(page)) 1412 mlock_vma_page(page); 1413 unlock_page(page); 1414 } 1415 skip_mlock: 1416 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1417 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1418 1419 out: 1420 return page; 1421 } 1422 1423 /* NUMA hinting page fault entry point for trans huge pmds */ 1424 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1425 { 1426 struct vm_area_struct *vma = vmf->vma; 1427 pmd_t oldpmd = vmf->orig_pmd; 1428 pmd_t pmd; 1429 struct page *page; 1430 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1431 int page_nid = NUMA_NO_NODE; 1432 int target_nid, last_cpupid = -1; 1433 bool migrated = false; 1434 bool was_writable = pmd_savedwrite(oldpmd); 1435 int flags = 0; 1436 1437 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1438 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1439 spin_unlock(vmf->ptl); 1440 goto out; 1441 } 1442 1443 /* 1444 * Since we took the NUMA fault, we must have observed the !accessible 1445 * bit. Make sure all other CPUs agree with that, to avoid them 1446 * modifying the page we're about to migrate. 1447 * 1448 * Must be done under PTL such that we'll observe the relevant 1449 * inc_tlb_flush_pending(). 1450 * 1451 * We are not sure a pending tlb flush here is for a huge page 1452 * mapping or not. Hence use the tlb range variant 1453 */ 1454 if (mm_tlb_flush_pending(vma->vm_mm)) { 1455 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE); 1456 /* 1457 * change_huge_pmd() released the pmd lock before 1458 * invalidating the secondary MMUs sharing the primary 1459 * MMU pagetables (with ->invalidate_range()). The 1460 * mmu_notifier_invalidate_range_end() (which 1461 * internally calls ->invalidate_range()) in 1462 * change_pmd_range() will run after us, so we can't 1463 * rely on it here and we need an explicit invalidate. 1464 */ 1465 mmu_notifier_invalidate_range(vma->vm_mm, haddr, 1466 haddr + HPAGE_PMD_SIZE); 1467 } 1468 1469 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1470 page = vm_normal_page_pmd(vma, haddr, pmd); 1471 if (!page) 1472 goto out_map; 1473 1474 /* See similar comment in do_numa_page for explanation */ 1475 if (!was_writable) 1476 flags |= TNF_NO_GROUP; 1477 1478 page_nid = page_to_nid(page); 1479 last_cpupid = page_cpupid_last(page); 1480 target_nid = numa_migrate_prep(page, vma, haddr, page_nid, 1481 &flags); 1482 1483 if (target_nid == NUMA_NO_NODE) { 1484 put_page(page); 1485 goto out_map; 1486 } 1487 1488 spin_unlock(vmf->ptl); 1489 1490 migrated = migrate_misplaced_page(page, vma, target_nid); 1491 if (migrated) { 1492 flags |= TNF_MIGRATED; 1493 page_nid = target_nid; 1494 } else { 1495 flags |= TNF_MIGRATE_FAIL; 1496 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1497 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1498 spin_unlock(vmf->ptl); 1499 goto out; 1500 } 1501 goto out_map; 1502 } 1503 1504 out: 1505 if (page_nid != NUMA_NO_NODE) 1506 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1507 flags); 1508 1509 return 0; 1510 1511 out_map: 1512 /* Restore the PMD */ 1513 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1514 pmd = pmd_mkyoung(pmd); 1515 if (was_writable) 1516 pmd = pmd_mkwrite(pmd); 1517 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1518 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1519 spin_unlock(vmf->ptl); 1520 goto out; 1521 } 1522 1523 /* 1524 * Return true if we do MADV_FREE successfully on entire pmd page. 1525 * Otherwise, return false. 1526 */ 1527 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1528 pmd_t *pmd, unsigned long addr, unsigned long next) 1529 { 1530 spinlock_t *ptl; 1531 pmd_t orig_pmd; 1532 struct page *page; 1533 struct mm_struct *mm = tlb->mm; 1534 bool ret = false; 1535 1536 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1537 1538 ptl = pmd_trans_huge_lock(pmd, vma); 1539 if (!ptl) 1540 goto out_unlocked; 1541 1542 orig_pmd = *pmd; 1543 if (is_huge_zero_pmd(orig_pmd)) 1544 goto out; 1545 1546 if (unlikely(!pmd_present(orig_pmd))) { 1547 VM_BUG_ON(thp_migration_supported() && 1548 !is_pmd_migration_entry(orig_pmd)); 1549 goto out; 1550 } 1551 1552 page = pmd_page(orig_pmd); 1553 /* 1554 * If other processes are mapping this page, we couldn't discard 1555 * the page unless they all do MADV_FREE so let's skip the page. 1556 */ 1557 if (total_mapcount(page) != 1) 1558 goto out; 1559 1560 if (!trylock_page(page)) 1561 goto out; 1562 1563 /* 1564 * If user want to discard part-pages of THP, split it so MADV_FREE 1565 * will deactivate only them. 1566 */ 1567 if (next - addr != HPAGE_PMD_SIZE) { 1568 get_page(page); 1569 spin_unlock(ptl); 1570 split_huge_page(page); 1571 unlock_page(page); 1572 put_page(page); 1573 goto out_unlocked; 1574 } 1575 1576 if (PageDirty(page)) 1577 ClearPageDirty(page); 1578 unlock_page(page); 1579 1580 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1581 pmdp_invalidate(vma, addr, pmd); 1582 orig_pmd = pmd_mkold(orig_pmd); 1583 orig_pmd = pmd_mkclean(orig_pmd); 1584 1585 set_pmd_at(mm, addr, pmd, orig_pmd); 1586 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1587 } 1588 1589 mark_page_lazyfree(page); 1590 ret = true; 1591 out: 1592 spin_unlock(ptl); 1593 out_unlocked: 1594 return ret; 1595 } 1596 1597 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1598 { 1599 pgtable_t pgtable; 1600 1601 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1602 pte_free(mm, pgtable); 1603 mm_dec_nr_ptes(mm); 1604 } 1605 1606 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1607 pmd_t *pmd, unsigned long addr) 1608 { 1609 pmd_t orig_pmd; 1610 spinlock_t *ptl; 1611 1612 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1613 1614 ptl = __pmd_trans_huge_lock(pmd, vma); 1615 if (!ptl) 1616 return 0; 1617 /* 1618 * For architectures like ppc64 we look at deposited pgtable 1619 * when calling pmdp_huge_get_and_clear. So do the 1620 * pgtable_trans_huge_withdraw after finishing pmdp related 1621 * operations. 1622 */ 1623 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1624 tlb->fullmm); 1625 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1626 if (vma_is_special_huge(vma)) { 1627 if (arch_needs_pgtable_deposit()) 1628 zap_deposited_table(tlb->mm, pmd); 1629 spin_unlock(ptl); 1630 } else if (is_huge_zero_pmd(orig_pmd)) { 1631 zap_deposited_table(tlb->mm, pmd); 1632 spin_unlock(ptl); 1633 } else { 1634 struct page *page = NULL; 1635 int flush_needed = 1; 1636 1637 if (pmd_present(orig_pmd)) { 1638 page = pmd_page(orig_pmd); 1639 page_remove_rmap(page, true); 1640 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1641 VM_BUG_ON_PAGE(!PageHead(page), page); 1642 } else if (thp_migration_supported()) { 1643 swp_entry_t entry; 1644 1645 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1646 entry = pmd_to_swp_entry(orig_pmd); 1647 page = pfn_swap_entry_to_page(entry); 1648 flush_needed = 0; 1649 } else 1650 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1651 1652 if (PageAnon(page)) { 1653 zap_deposited_table(tlb->mm, pmd); 1654 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1655 } else { 1656 if (arch_needs_pgtable_deposit()) 1657 zap_deposited_table(tlb->mm, pmd); 1658 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR); 1659 } 1660 1661 spin_unlock(ptl); 1662 if (flush_needed) 1663 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1664 } 1665 return 1; 1666 } 1667 1668 #ifndef pmd_move_must_withdraw 1669 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1670 spinlock_t *old_pmd_ptl, 1671 struct vm_area_struct *vma) 1672 { 1673 /* 1674 * With split pmd lock we also need to move preallocated 1675 * PTE page table if new_pmd is on different PMD page table. 1676 * 1677 * We also don't deposit and withdraw tables for file pages. 1678 */ 1679 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1680 } 1681 #endif 1682 1683 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1684 { 1685 #ifdef CONFIG_MEM_SOFT_DIRTY 1686 if (unlikely(is_pmd_migration_entry(pmd))) 1687 pmd = pmd_swp_mksoft_dirty(pmd); 1688 else if (pmd_present(pmd)) 1689 pmd = pmd_mksoft_dirty(pmd); 1690 #endif 1691 return pmd; 1692 } 1693 1694 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1695 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1696 { 1697 spinlock_t *old_ptl, *new_ptl; 1698 pmd_t pmd; 1699 struct mm_struct *mm = vma->vm_mm; 1700 bool force_flush = false; 1701 1702 /* 1703 * The destination pmd shouldn't be established, free_pgtables() 1704 * should have release it. 1705 */ 1706 if (WARN_ON(!pmd_none(*new_pmd))) { 1707 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1708 return false; 1709 } 1710 1711 /* 1712 * We don't have to worry about the ordering of src and dst 1713 * ptlocks because exclusive mmap_lock prevents deadlock. 1714 */ 1715 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1716 if (old_ptl) { 1717 new_ptl = pmd_lockptr(mm, new_pmd); 1718 if (new_ptl != old_ptl) 1719 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1720 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1721 if (pmd_present(pmd)) 1722 force_flush = true; 1723 VM_BUG_ON(!pmd_none(*new_pmd)); 1724 1725 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1726 pgtable_t pgtable; 1727 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1728 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1729 } 1730 pmd = move_soft_dirty_pmd(pmd); 1731 set_pmd_at(mm, new_addr, new_pmd, pmd); 1732 if (force_flush) 1733 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1734 if (new_ptl != old_ptl) 1735 spin_unlock(new_ptl); 1736 spin_unlock(old_ptl); 1737 return true; 1738 } 1739 return false; 1740 } 1741 1742 /* 1743 * Returns 1744 * - 0 if PMD could not be locked 1745 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 1746 * or if prot_numa but THP migration is not supported 1747 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 1748 */ 1749 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1750 unsigned long addr, pgprot_t newprot, unsigned long cp_flags) 1751 { 1752 struct mm_struct *mm = vma->vm_mm; 1753 spinlock_t *ptl; 1754 pmd_t entry; 1755 bool preserve_write; 1756 int ret; 1757 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 1758 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 1759 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 1760 1761 if (prot_numa && !thp_migration_supported()) 1762 return 1; 1763 1764 ptl = __pmd_trans_huge_lock(pmd, vma); 1765 if (!ptl) 1766 return 0; 1767 1768 preserve_write = prot_numa && pmd_write(*pmd); 1769 ret = 1; 1770 1771 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1772 if (is_swap_pmd(*pmd)) { 1773 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1774 1775 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 1776 if (is_writable_migration_entry(entry)) { 1777 pmd_t newpmd; 1778 /* 1779 * A protection check is difficult so 1780 * just be safe and disable write 1781 */ 1782 entry = make_readable_migration_entry( 1783 swp_offset(entry)); 1784 newpmd = swp_entry_to_pmd(entry); 1785 if (pmd_swp_soft_dirty(*pmd)) 1786 newpmd = pmd_swp_mksoft_dirty(newpmd); 1787 if (pmd_swp_uffd_wp(*pmd)) 1788 newpmd = pmd_swp_mkuffd_wp(newpmd); 1789 set_pmd_at(mm, addr, pmd, newpmd); 1790 } 1791 goto unlock; 1792 } 1793 #endif 1794 1795 /* 1796 * Avoid trapping faults against the zero page. The read-only 1797 * data is likely to be read-cached on the local CPU and 1798 * local/remote hits to the zero page are not interesting. 1799 */ 1800 if (prot_numa && is_huge_zero_pmd(*pmd)) 1801 goto unlock; 1802 1803 if (prot_numa && pmd_protnone(*pmd)) 1804 goto unlock; 1805 1806 /* 1807 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 1808 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 1809 * which is also under mmap_read_lock(mm): 1810 * 1811 * CPU0: CPU1: 1812 * change_huge_pmd(prot_numa=1) 1813 * pmdp_huge_get_and_clear_notify() 1814 * madvise_dontneed() 1815 * zap_pmd_range() 1816 * pmd_trans_huge(*pmd) == 0 (without ptl) 1817 * // skip the pmd 1818 * set_pmd_at(); 1819 * // pmd is re-established 1820 * 1821 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 1822 * which may break userspace. 1823 * 1824 * pmdp_invalidate() is required to make sure we don't miss 1825 * dirty/young flags set by hardware. 1826 */ 1827 entry = pmdp_invalidate(vma, addr, pmd); 1828 1829 entry = pmd_modify(entry, newprot); 1830 if (preserve_write) 1831 entry = pmd_mk_savedwrite(entry); 1832 if (uffd_wp) { 1833 entry = pmd_wrprotect(entry); 1834 entry = pmd_mkuffd_wp(entry); 1835 } else if (uffd_wp_resolve) { 1836 /* 1837 * Leave the write bit to be handled by PF interrupt 1838 * handler, then things like COW could be properly 1839 * handled. 1840 */ 1841 entry = pmd_clear_uffd_wp(entry); 1842 } 1843 ret = HPAGE_PMD_NR; 1844 set_pmd_at(mm, addr, pmd, entry); 1845 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry)); 1846 unlock: 1847 spin_unlock(ptl); 1848 return ret; 1849 } 1850 1851 /* 1852 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1853 * 1854 * Note that if it returns page table lock pointer, this routine returns without 1855 * unlocking page table lock. So callers must unlock it. 1856 */ 1857 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1858 { 1859 spinlock_t *ptl; 1860 ptl = pmd_lock(vma->vm_mm, pmd); 1861 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 1862 pmd_devmap(*pmd))) 1863 return ptl; 1864 spin_unlock(ptl); 1865 return NULL; 1866 } 1867 1868 /* 1869 * Returns true if a given pud maps a thp, false otherwise. 1870 * 1871 * Note that if it returns true, this routine returns without unlocking page 1872 * table lock. So callers must unlock it. 1873 */ 1874 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1875 { 1876 spinlock_t *ptl; 1877 1878 ptl = pud_lock(vma->vm_mm, pud); 1879 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1880 return ptl; 1881 spin_unlock(ptl); 1882 return NULL; 1883 } 1884 1885 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1886 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1887 pud_t *pud, unsigned long addr) 1888 { 1889 spinlock_t *ptl; 1890 1891 ptl = __pud_trans_huge_lock(pud, vma); 1892 if (!ptl) 1893 return 0; 1894 /* 1895 * For architectures like ppc64 we look at deposited pgtable 1896 * when calling pudp_huge_get_and_clear. So do the 1897 * pgtable_trans_huge_withdraw after finishing pudp related 1898 * operations. 1899 */ 1900 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm); 1901 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1902 if (vma_is_special_huge(vma)) { 1903 spin_unlock(ptl); 1904 /* No zero page support yet */ 1905 } else { 1906 /* No support for anonymous PUD pages yet */ 1907 BUG(); 1908 } 1909 return 1; 1910 } 1911 1912 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 1913 unsigned long haddr) 1914 { 1915 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 1916 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1917 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 1918 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 1919 1920 count_vm_event(THP_SPLIT_PUD); 1921 1922 pudp_huge_clear_flush_notify(vma, haddr, pud); 1923 } 1924 1925 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 1926 unsigned long address) 1927 { 1928 spinlock_t *ptl; 1929 struct mmu_notifier_range range; 1930 1931 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1932 address & HPAGE_PUD_MASK, 1933 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 1934 mmu_notifier_invalidate_range_start(&range); 1935 ptl = pud_lock(vma->vm_mm, pud); 1936 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 1937 goto out; 1938 __split_huge_pud_locked(vma, pud, range.start); 1939 1940 out: 1941 spin_unlock(ptl); 1942 /* 1943 * No need to double call mmu_notifier->invalidate_range() callback as 1944 * the above pudp_huge_clear_flush_notify() did already call it. 1945 */ 1946 mmu_notifier_invalidate_range_only_end(&range); 1947 } 1948 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1949 1950 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1951 unsigned long haddr, pmd_t *pmd) 1952 { 1953 struct mm_struct *mm = vma->vm_mm; 1954 pgtable_t pgtable; 1955 pmd_t _pmd; 1956 int i; 1957 1958 /* 1959 * Leave pmd empty until pte is filled note that it is fine to delay 1960 * notification until mmu_notifier_invalidate_range_end() as we are 1961 * replacing a zero pmd write protected page with a zero pte write 1962 * protected page. 1963 * 1964 * See Documentation/vm/mmu_notifier.rst 1965 */ 1966 pmdp_huge_clear_flush(vma, haddr, pmd); 1967 1968 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1969 pmd_populate(mm, &_pmd, pgtable); 1970 1971 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1972 pte_t *pte, entry; 1973 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 1974 entry = pte_mkspecial(entry); 1975 pte = pte_offset_map(&_pmd, haddr); 1976 VM_BUG_ON(!pte_none(*pte)); 1977 set_pte_at(mm, haddr, pte, entry); 1978 pte_unmap(pte); 1979 } 1980 smp_wmb(); /* make pte visible before pmd */ 1981 pmd_populate(mm, pmd, pgtable); 1982 } 1983 1984 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 1985 unsigned long haddr, bool freeze) 1986 { 1987 struct mm_struct *mm = vma->vm_mm; 1988 struct page *page; 1989 pgtable_t pgtable; 1990 pmd_t old_pmd, _pmd; 1991 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 1992 unsigned long addr; 1993 int i; 1994 1995 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 1996 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1997 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 1998 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 1999 && !pmd_devmap(*pmd)); 2000 2001 count_vm_event(THP_SPLIT_PMD); 2002 2003 if (!vma_is_anonymous(vma)) { 2004 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 2005 /* 2006 * We are going to unmap this huge page. So 2007 * just go ahead and zap it 2008 */ 2009 if (arch_needs_pgtable_deposit()) 2010 zap_deposited_table(mm, pmd); 2011 if (vma_is_special_huge(vma)) 2012 return; 2013 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2014 swp_entry_t entry; 2015 2016 entry = pmd_to_swp_entry(old_pmd); 2017 page = pfn_swap_entry_to_page(entry); 2018 } else { 2019 page = pmd_page(old_pmd); 2020 if (!PageDirty(page) && pmd_dirty(old_pmd)) 2021 set_page_dirty(page); 2022 if (!PageReferenced(page) && pmd_young(old_pmd)) 2023 SetPageReferenced(page); 2024 page_remove_rmap(page, true); 2025 put_page(page); 2026 } 2027 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR); 2028 return; 2029 } 2030 2031 if (is_huge_zero_pmd(*pmd)) { 2032 /* 2033 * FIXME: Do we want to invalidate secondary mmu by calling 2034 * mmu_notifier_invalidate_range() see comments below inside 2035 * __split_huge_pmd() ? 2036 * 2037 * We are going from a zero huge page write protected to zero 2038 * small page also write protected so it does not seems useful 2039 * to invalidate secondary mmu at this time. 2040 */ 2041 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2042 } 2043 2044 /* 2045 * Up to this point the pmd is present and huge and userland has the 2046 * whole access to the hugepage during the split (which happens in 2047 * place). If we overwrite the pmd with the not-huge version pointing 2048 * to the pte here (which of course we could if all CPUs were bug 2049 * free), userland could trigger a small page size TLB miss on the 2050 * small sized TLB while the hugepage TLB entry is still established in 2051 * the huge TLB. Some CPU doesn't like that. 2052 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2053 * 383 on page 105. Intel should be safe but is also warns that it's 2054 * only safe if the permission and cache attributes of the two entries 2055 * loaded in the two TLB is identical (which should be the case here). 2056 * But it is generally safer to never allow small and huge TLB entries 2057 * for the same virtual address to be loaded simultaneously. So instead 2058 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2059 * current pmd notpresent (atomically because here the pmd_trans_huge 2060 * must remain set at all times on the pmd until the split is complete 2061 * for this pmd), then we flush the SMP TLB and finally we write the 2062 * non-huge version of the pmd entry with pmd_populate. 2063 */ 2064 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2065 2066 pmd_migration = is_pmd_migration_entry(old_pmd); 2067 if (unlikely(pmd_migration)) { 2068 swp_entry_t entry; 2069 2070 entry = pmd_to_swp_entry(old_pmd); 2071 page = pfn_swap_entry_to_page(entry); 2072 write = is_writable_migration_entry(entry); 2073 young = false; 2074 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2075 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2076 } else { 2077 page = pmd_page(old_pmd); 2078 if (pmd_dirty(old_pmd)) 2079 SetPageDirty(page); 2080 write = pmd_write(old_pmd); 2081 young = pmd_young(old_pmd); 2082 soft_dirty = pmd_soft_dirty(old_pmd); 2083 uffd_wp = pmd_uffd_wp(old_pmd); 2084 } 2085 VM_BUG_ON_PAGE(!page_count(page), page); 2086 page_ref_add(page, HPAGE_PMD_NR - 1); 2087 2088 /* 2089 * Withdraw the table only after we mark the pmd entry invalid. 2090 * This's critical for some architectures (Power). 2091 */ 2092 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2093 pmd_populate(mm, &_pmd, pgtable); 2094 2095 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2096 pte_t entry, *pte; 2097 /* 2098 * Note that NUMA hinting access restrictions are not 2099 * transferred to avoid any possibility of altering 2100 * permissions across VMAs. 2101 */ 2102 if (freeze || pmd_migration) { 2103 swp_entry_t swp_entry; 2104 if (write) 2105 swp_entry = make_writable_migration_entry( 2106 page_to_pfn(page + i)); 2107 else 2108 swp_entry = make_readable_migration_entry( 2109 page_to_pfn(page + i)); 2110 entry = swp_entry_to_pte(swp_entry); 2111 if (soft_dirty) 2112 entry = pte_swp_mksoft_dirty(entry); 2113 if (uffd_wp) 2114 entry = pte_swp_mkuffd_wp(entry); 2115 } else { 2116 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2117 entry = maybe_mkwrite(entry, vma); 2118 if (!write) 2119 entry = pte_wrprotect(entry); 2120 if (!young) 2121 entry = pte_mkold(entry); 2122 if (soft_dirty) 2123 entry = pte_mksoft_dirty(entry); 2124 if (uffd_wp) 2125 entry = pte_mkuffd_wp(entry); 2126 } 2127 pte = pte_offset_map(&_pmd, addr); 2128 BUG_ON(!pte_none(*pte)); 2129 set_pte_at(mm, addr, pte, entry); 2130 if (!pmd_migration) 2131 atomic_inc(&page[i]._mapcount); 2132 pte_unmap(pte); 2133 } 2134 2135 if (!pmd_migration) { 2136 /* 2137 * Set PG_double_map before dropping compound_mapcount to avoid 2138 * false-negative page_mapped(). 2139 */ 2140 if (compound_mapcount(page) > 1 && 2141 !TestSetPageDoubleMap(page)) { 2142 for (i = 0; i < HPAGE_PMD_NR; i++) 2143 atomic_inc(&page[i]._mapcount); 2144 } 2145 2146 lock_page_memcg(page); 2147 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 2148 /* Last compound_mapcount is gone. */ 2149 __mod_lruvec_page_state(page, NR_ANON_THPS, 2150 -HPAGE_PMD_NR); 2151 if (TestClearPageDoubleMap(page)) { 2152 /* No need in mapcount reference anymore */ 2153 for (i = 0; i < HPAGE_PMD_NR; i++) 2154 atomic_dec(&page[i]._mapcount); 2155 } 2156 } 2157 unlock_page_memcg(page); 2158 } 2159 2160 smp_wmb(); /* make pte visible before pmd */ 2161 pmd_populate(mm, pmd, pgtable); 2162 2163 if (freeze) { 2164 for (i = 0; i < HPAGE_PMD_NR; i++) { 2165 page_remove_rmap(page + i, false); 2166 put_page(page + i); 2167 } 2168 } 2169 } 2170 2171 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2172 unsigned long address, bool freeze, struct page *page) 2173 { 2174 spinlock_t *ptl; 2175 struct mmu_notifier_range range; 2176 bool do_unlock_page = false; 2177 pmd_t _pmd; 2178 2179 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 2180 address & HPAGE_PMD_MASK, 2181 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2182 mmu_notifier_invalidate_range_start(&range); 2183 ptl = pmd_lock(vma->vm_mm, pmd); 2184 2185 /* 2186 * If caller asks to setup a migration entries, we need a page to check 2187 * pmd against. Otherwise we can end up replacing wrong page. 2188 */ 2189 VM_BUG_ON(freeze && !page); 2190 if (page) { 2191 VM_WARN_ON_ONCE(!PageLocked(page)); 2192 if (page != pmd_page(*pmd)) 2193 goto out; 2194 } 2195 2196 repeat: 2197 if (pmd_trans_huge(*pmd)) { 2198 if (!page) { 2199 page = pmd_page(*pmd); 2200 /* 2201 * An anonymous page must be locked, to ensure that a 2202 * concurrent reuse_swap_page() sees stable mapcount; 2203 * but reuse_swap_page() is not used on shmem or file, 2204 * and page lock must not be taken when zap_pmd_range() 2205 * calls __split_huge_pmd() while i_mmap_lock is held. 2206 */ 2207 if (PageAnon(page)) { 2208 if (unlikely(!trylock_page(page))) { 2209 get_page(page); 2210 _pmd = *pmd; 2211 spin_unlock(ptl); 2212 lock_page(page); 2213 spin_lock(ptl); 2214 if (unlikely(!pmd_same(*pmd, _pmd))) { 2215 unlock_page(page); 2216 put_page(page); 2217 page = NULL; 2218 goto repeat; 2219 } 2220 put_page(page); 2221 } 2222 do_unlock_page = true; 2223 } 2224 } 2225 if (PageMlocked(page)) 2226 clear_page_mlock(page); 2227 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd))) 2228 goto out; 2229 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2230 out: 2231 spin_unlock(ptl); 2232 if (do_unlock_page) 2233 unlock_page(page); 2234 /* 2235 * No need to double call mmu_notifier->invalidate_range() callback. 2236 * They are 3 cases to consider inside __split_huge_pmd_locked(): 2237 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious 2238 * 2) __split_huge_zero_page_pmd() read only zero page and any write 2239 * fault will trigger a flush_notify before pointing to a new page 2240 * (it is fine if the secondary mmu keeps pointing to the old zero 2241 * page in the meantime) 2242 * 3) Split a huge pmd into pte pointing to the same page. No need 2243 * to invalidate secondary tlb entry they are all still valid. 2244 * any further changes to individual pte will notify. So no need 2245 * to call mmu_notifier->invalidate_range() 2246 */ 2247 mmu_notifier_invalidate_range_only_end(&range); 2248 } 2249 2250 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2251 bool freeze, struct page *page) 2252 { 2253 pgd_t *pgd; 2254 p4d_t *p4d; 2255 pud_t *pud; 2256 pmd_t *pmd; 2257 2258 pgd = pgd_offset(vma->vm_mm, address); 2259 if (!pgd_present(*pgd)) 2260 return; 2261 2262 p4d = p4d_offset(pgd, address); 2263 if (!p4d_present(*p4d)) 2264 return; 2265 2266 pud = pud_offset(p4d, address); 2267 if (!pud_present(*pud)) 2268 return; 2269 2270 pmd = pmd_offset(pud, address); 2271 2272 __split_huge_pmd(vma, pmd, address, freeze, page); 2273 } 2274 2275 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2276 { 2277 /* 2278 * If the new address isn't hpage aligned and it could previously 2279 * contain an hugepage: check if we need to split an huge pmd. 2280 */ 2281 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2282 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2283 ALIGN(address, HPAGE_PMD_SIZE))) 2284 split_huge_pmd_address(vma, address, false, NULL); 2285 } 2286 2287 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2288 unsigned long start, 2289 unsigned long end, 2290 long adjust_next) 2291 { 2292 /* Check if we need to split start first. */ 2293 split_huge_pmd_if_needed(vma, start); 2294 2295 /* Check if we need to split end next. */ 2296 split_huge_pmd_if_needed(vma, end); 2297 2298 /* 2299 * If we're also updating the vma->vm_next->vm_start, 2300 * check if we need to split it. 2301 */ 2302 if (adjust_next > 0) { 2303 struct vm_area_struct *next = vma->vm_next; 2304 unsigned long nstart = next->vm_start; 2305 nstart += adjust_next; 2306 split_huge_pmd_if_needed(next, nstart); 2307 } 2308 } 2309 2310 static void unmap_page(struct page *page) 2311 { 2312 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2313 TTU_SYNC; 2314 2315 VM_BUG_ON_PAGE(!PageHead(page), page); 2316 2317 /* 2318 * Anon pages need migration entries to preserve them, but file 2319 * pages can simply be left unmapped, then faulted back on demand. 2320 * If that is ever changed (perhaps for mlock), update remap_page(). 2321 */ 2322 if (PageAnon(page)) 2323 try_to_migrate(page, ttu_flags); 2324 else 2325 try_to_unmap(page, ttu_flags | TTU_IGNORE_MLOCK); 2326 2327 VM_WARN_ON_ONCE_PAGE(page_mapped(page), page); 2328 } 2329 2330 static void remap_page(struct page *page, unsigned int nr) 2331 { 2332 int i; 2333 2334 /* If unmap_page() uses try_to_migrate() on file, remove this check */ 2335 if (!PageAnon(page)) 2336 return; 2337 if (PageTransHuge(page)) { 2338 remove_migration_ptes(page, page, true); 2339 } else { 2340 for (i = 0; i < nr; i++) 2341 remove_migration_ptes(page + i, page + i, true); 2342 } 2343 } 2344 2345 static void lru_add_page_tail(struct page *head, struct page *tail, 2346 struct lruvec *lruvec, struct list_head *list) 2347 { 2348 VM_BUG_ON_PAGE(!PageHead(head), head); 2349 VM_BUG_ON_PAGE(PageCompound(tail), head); 2350 VM_BUG_ON_PAGE(PageLRU(tail), head); 2351 lockdep_assert_held(&lruvec->lru_lock); 2352 2353 if (list) { 2354 /* page reclaim is reclaiming a huge page */ 2355 VM_WARN_ON(PageLRU(head)); 2356 get_page(tail); 2357 list_add_tail(&tail->lru, list); 2358 } else { 2359 /* head is still on lru (and we have it frozen) */ 2360 VM_WARN_ON(!PageLRU(head)); 2361 SetPageLRU(tail); 2362 list_add_tail(&tail->lru, &head->lru); 2363 } 2364 } 2365 2366 static void __split_huge_page_tail(struct page *head, int tail, 2367 struct lruvec *lruvec, struct list_head *list) 2368 { 2369 struct page *page_tail = head + tail; 2370 2371 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2372 2373 /* 2374 * Clone page flags before unfreezing refcount. 2375 * 2376 * After successful get_page_unless_zero() might follow flags change, 2377 * for example lock_page() which set PG_waiters. 2378 */ 2379 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2380 page_tail->flags |= (head->flags & 2381 ((1L << PG_referenced) | 2382 (1L << PG_swapbacked) | 2383 (1L << PG_swapcache) | 2384 (1L << PG_mlocked) | 2385 (1L << PG_uptodate) | 2386 (1L << PG_active) | 2387 (1L << PG_workingset) | 2388 (1L << PG_locked) | 2389 (1L << PG_unevictable) | 2390 #ifdef CONFIG_64BIT 2391 (1L << PG_arch_2) | 2392 #endif 2393 (1L << PG_dirty))); 2394 2395 /* ->mapping in first tail page is compound_mapcount */ 2396 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2397 page_tail); 2398 page_tail->mapping = head->mapping; 2399 page_tail->index = head->index + tail; 2400 2401 /* Page flags must be visible before we make the page non-compound. */ 2402 smp_wmb(); 2403 2404 /* 2405 * Clear PageTail before unfreezing page refcount. 2406 * 2407 * After successful get_page_unless_zero() might follow put_page() 2408 * which needs correct compound_head(). 2409 */ 2410 clear_compound_head(page_tail); 2411 2412 /* Finally unfreeze refcount. Additional reference from page cache. */ 2413 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || 2414 PageSwapCache(head))); 2415 2416 if (page_is_young(head)) 2417 set_page_young(page_tail); 2418 if (page_is_idle(head)) 2419 set_page_idle(page_tail); 2420 2421 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2422 2423 /* 2424 * always add to the tail because some iterators expect new 2425 * pages to show after the currently processed elements - e.g. 2426 * migrate_pages 2427 */ 2428 lru_add_page_tail(head, page_tail, lruvec, list); 2429 } 2430 2431 static void __split_huge_page(struct page *page, struct list_head *list, 2432 pgoff_t end) 2433 { 2434 struct page *head = compound_head(page); 2435 struct lruvec *lruvec; 2436 struct address_space *swap_cache = NULL; 2437 unsigned long offset = 0; 2438 unsigned int nr = thp_nr_pages(head); 2439 int i; 2440 2441 /* complete memcg works before add pages to LRU */ 2442 split_page_memcg(head, nr); 2443 2444 if (PageAnon(head) && PageSwapCache(head)) { 2445 swp_entry_t entry = { .val = page_private(head) }; 2446 2447 offset = swp_offset(entry); 2448 swap_cache = swap_address_space(entry); 2449 xa_lock(&swap_cache->i_pages); 2450 } 2451 2452 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 2453 lruvec = lock_page_lruvec(head); 2454 2455 for (i = nr - 1; i >= 1; i--) { 2456 __split_huge_page_tail(head, i, lruvec, list); 2457 /* Some pages can be beyond i_size: drop them from page cache */ 2458 if (head[i].index >= end) { 2459 ClearPageDirty(head + i); 2460 __delete_from_page_cache(head + i, NULL); 2461 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) 2462 shmem_uncharge(head->mapping->host, 1); 2463 put_page(head + i); 2464 } else if (!PageAnon(page)) { 2465 __xa_store(&head->mapping->i_pages, head[i].index, 2466 head + i, 0); 2467 } else if (swap_cache) { 2468 __xa_store(&swap_cache->i_pages, offset + i, 2469 head + i, 0); 2470 } 2471 } 2472 2473 ClearPageCompound(head); 2474 unlock_page_lruvec(lruvec); 2475 /* Caller disabled irqs, so they are still disabled here */ 2476 2477 split_page_owner(head, nr); 2478 2479 /* See comment in __split_huge_page_tail() */ 2480 if (PageAnon(head)) { 2481 /* Additional pin to swap cache */ 2482 if (PageSwapCache(head)) { 2483 page_ref_add(head, 2); 2484 xa_unlock(&swap_cache->i_pages); 2485 } else { 2486 page_ref_inc(head); 2487 } 2488 } else { 2489 /* Additional pin to page cache */ 2490 page_ref_add(head, 2); 2491 xa_unlock(&head->mapping->i_pages); 2492 } 2493 local_irq_enable(); 2494 2495 remap_page(head, nr); 2496 2497 if (PageSwapCache(head)) { 2498 swp_entry_t entry = { .val = page_private(head) }; 2499 2500 split_swap_cluster(entry); 2501 } 2502 2503 for (i = 0; i < nr; i++) { 2504 struct page *subpage = head + i; 2505 if (subpage == page) 2506 continue; 2507 unlock_page(subpage); 2508 2509 /* 2510 * Subpages may be freed if there wasn't any mapping 2511 * like if add_to_swap() is running on a lru page that 2512 * had its mapping zapped. And freeing these pages 2513 * requires taking the lru_lock so we do the put_page 2514 * of the tail pages after the split is complete. 2515 */ 2516 put_page(subpage); 2517 } 2518 } 2519 2520 int total_mapcount(struct page *page) 2521 { 2522 int i, compound, nr, ret; 2523 2524 VM_BUG_ON_PAGE(PageTail(page), page); 2525 2526 if (likely(!PageCompound(page))) 2527 return atomic_read(&page->_mapcount) + 1; 2528 2529 compound = compound_mapcount(page); 2530 nr = compound_nr(page); 2531 if (PageHuge(page)) 2532 return compound; 2533 ret = compound; 2534 for (i = 0; i < nr; i++) 2535 ret += atomic_read(&page[i]._mapcount) + 1; 2536 /* File pages has compound_mapcount included in _mapcount */ 2537 if (!PageAnon(page)) 2538 return ret - compound * nr; 2539 if (PageDoubleMap(page)) 2540 ret -= nr; 2541 return ret; 2542 } 2543 2544 /* 2545 * This calculates accurately how many mappings a transparent hugepage 2546 * has (unlike page_mapcount() which isn't fully accurate). This full 2547 * accuracy is primarily needed to know if copy-on-write faults can 2548 * reuse the page and change the mapping to read-write instead of 2549 * copying them. At the same time this returns the total_mapcount too. 2550 * 2551 * The function returns the highest mapcount any one of the subpages 2552 * has. If the return value is one, even if different processes are 2553 * mapping different subpages of the transparent hugepage, they can 2554 * all reuse it, because each process is reusing a different subpage. 2555 * 2556 * The total_mapcount is instead counting all virtual mappings of the 2557 * subpages. If the total_mapcount is equal to "one", it tells the 2558 * caller all mappings belong to the same "mm" and in turn the 2559 * anon_vma of the transparent hugepage can become the vma->anon_vma 2560 * local one as no other process may be mapping any of the subpages. 2561 * 2562 * It would be more accurate to replace page_mapcount() with 2563 * page_trans_huge_mapcount(), however we only use 2564 * page_trans_huge_mapcount() in the copy-on-write faults where we 2565 * need full accuracy to avoid breaking page pinning, because 2566 * page_trans_huge_mapcount() is slower than page_mapcount(). 2567 */ 2568 int page_trans_huge_mapcount(struct page *page, int *total_mapcount) 2569 { 2570 int i, ret, _total_mapcount, mapcount; 2571 2572 /* hugetlbfs shouldn't call it */ 2573 VM_BUG_ON_PAGE(PageHuge(page), page); 2574 2575 if (likely(!PageTransCompound(page))) { 2576 mapcount = atomic_read(&page->_mapcount) + 1; 2577 if (total_mapcount) 2578 *total_mapcount = mapcount; 2579 return mapcount; 2580 } 2581 2582 page = compound_head(page); 2583 2584 _total_mapcount = ret = 0; 2585 for (i = 0; i < thp_nr_pages(page); i++) { 2586 mapcount = atomic_read(&page[i]._mapcount) + 1; 2587 ret = max(ret, mapcount); 2588 _total_mapcount += mapcount; 2589 } 2590 if (PageDoubleMap(page)) { 2591 ret -= 1; 2592 _total_mapcount -= thp_nr_pages(page); 2593 } 2594 mapcount = compound_mapcount(page); 2595 ret += mapcount; 2596 _total_mapcount += mapcount; 2597 if (total_mapcount) 2598 *total_mapcount = _total_mapcount; 2599 return ret; 2600 } 2601 2602 /* Racy check whether the huge page can be split */ 2603 bool can_split_huge_page(struct page *page, int *pextra_pins) 2604 { 2605 int extra_pins; 2606 2607 /* Additional pins from page cache */ 2608 if (PageAnon(page)) 2609 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0; 2610 else 2611 extra_pins = thp_nr_pages(page); 2612 if (pextra_pins) 2613 *pextra_pins = extra_pins; 2614 return total_mapcount(page) == page_count(page) - extra_pins - 1; 2615 } 2616 2617 /* 2618 * This function splits huge page into normal pages. @page can point to any 2619 * subpage of huge page to split. Split doesn't change the position of @page. 2620 * 2621 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2622 * The huge page must be locked. 2623 * 2624 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2625 * 2626 * Both head page and tail pages will inherit mapping, flags, and so on from 2627 * the hugepage. 2628 * 2629 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2630 * they are not mapped. 2631 * 2632 * Returns 0 if the hugepage is split successfully. 2633 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2634 * us. 2635 */ 2636 int split_huge_page_to_list(struct page *page, struct list_head *list) 2637 { 2638 struct page *head = compound_head(page); 2639 struct deferred_split *ds_queue = get_deferred_split_queue(head); 2640 struct anon_vma *anon_vma = NULL; 2641 struct address_space *mapping = NULL; 2642 int extra_pins, ret; 2643 pgoff_t end; 2644 2645 VM_BUG_ON_PAGE(is_huge_zero_page(head), head); 2646 VM_BUG_ON_PAGE(!PageLocked(head), head); 2647 VM_BUG_ON_PAGE(!PageCompound(head), head); 2648 2649 if (PageWriteback(head)) 2650 return -EBUSY; 2651 2652 if (PageAnon(head)) { 2653 /* 2654 * The caller does not necessarily hold an mmap_lock that would 2655 * prevent the anon_vma disappearing so we first we take a 2656 * reference to it and then lock the anon_vma for write. This 2657 * is similar to page_lock_anon_vma_read except the write lock 2658 * is taken to serialise against parallel split or collapse 2659 * operations. 2660 */ 2661 anon_vma = page_get_anon_vma(head); 2662 if (!anon_vma) { 2663 ret = -EBUSY; 2664 goto out; 2665 } 2666 end = -1; 2667 mapping = NULL; 2668 anon_vma_lock_write(anon_vma); 2669 } else { 2670 mapping = head->mapping; 2671 2672 /* Truncated ? */ 2673 if (!mapping) { 2674 ret = -EBUSY; 2675 goto out; 2676 } 2677 2678 anon_vma = NULL; 2679 i_mmap_lock_read(mapping); 2680 2681 /* 2682 *__split_huge_page() may need to trim off pages beyond EOF: 2683 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 2684 * which cannot be nested inside the page tree lock. So note 2685 * end now: i_size itself may be changed at any moment, but 2686 * head page lock is good enough to serialize the trimming. 2687 */ 2688 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2689 } 2690 2691 /* 2692 * Racy check if we can split the page, before unmap_page() will 2693 * split PMDs 2694 */ 2695 if (!can_split_huge_page(head, &extra_pins)) { 2696 ret = -EBUSY; 2697 goto out_unlock; 2698 } 2699 2700 unmap_page(head); 2701 2702 /* block interrupt reentry in xa_lock and spinlock */ 2703 local_irq_disable(); 2704 if (mapping) { 2705 XA_STATE(xas, &mapping->i_pages, page_index(head)); 2706 2707 /* 2708 * Check if the head page is present in page cache. 2709 * We assume all tail are present too, if head is there. 2710 */ 2711 xa_lock(&mapping->i_pages); 2712 if (xas_load(&xas) != head) 2713 goto fail; 2714 } 2715 2716 /* Prevent deferred_split_scan() touching ->_refcount */ 2717 spin_lock(&ds_queue->split_queue_lock); 2718 if (page_ref_freeze(head, 1 + extra_pins)) { 2719 if (!list_empty(page_deferred_list(head))) { 2720 ds_queue->split_queue_len--; 2721 list_del(page_deferred_list(head)); 2722 } 2723 spin_unlock(&ds_queue->split_queue_lock); 2724 if (mapping) { 2725 int nr = thp_nr_pages(head); 2726 2727 if (PageSwapBacked(head)) 2728 __mod_lruvec_page_state(head, NR_SHMEM_THPS, 2729 -nr); 2730 else 2731 __mod_lruvec_page_state(head, NR_FILE_THPS, 2732 -nr); 2733 } 2734 2735 __split_huge_page(page, list, end); 2736 ret = 0; 2737 } else { 2738 spin_unlock(&ds_queue->split_queue_lock); 2739 fail: 2740 if (mapping) 2741 xa_unlock(&mapping->i_pages); 2742 local_irq_enable(); 2743 remap_page(head, thp_nr_pages(head)); 2744 ret = -EBUSY; 2745 } 2746 2747 out_unlock: 2748 if (anon_vma) { 2749 anon_vma_unlock_write(anon_vma); 2750 put_anon_vma(anon_vma); 2751 } 2752 if (mapping) 2753 i_mmap_unlock_read(mapping); 2754 out: 2755 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2756 return ret; 2757 } 2758 2759 void free_transhuge_page(struct page *page) 2760 { 2761 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2762 unsigned long flags; 2763 2764 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2765 if (!list_empty(page_deferred_list(page))) { 2766 ds_queue->split_queue_len--; 2767 list_del(page_deferred_list(page)); 2768 } 2769 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2770 free_compound_page(page); 2771 } 2772 2773 void deferred_split_huge_page(struct page *page) 2774 { 2775 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2776 #ifdef CONFIG_MEMCG 2777 struct mem_cgroup *memcg = page_memcg(compound_head(page)); 2778 #endif 2779 unsigned long flags; 2780 2781 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2782 2783 /* 2784 * The try_to_unmap() in page reclaim path might reach here too, 2785 * this may cause a race condition to corrupt deferred split queue. 2786 * And, if page reclaim is already handling the same page, it is 2787 * unnecessary to handle it again in shrinker. 2788 * 2789 * Check PageSwapCache to determine if the page is being 2790 * handled by page reclaim since THP swap would add the page into 2791 * swap cache before calling try_to_unmap(). 2792 */ 2793 if (PageSwapCache(page)) 2794 return; 2795 2796 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2797 if (list_empty(page_deferred_list(page))) { 2798 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2799 list_add_tail(page_deferred_list(page), &ds_queue->split_queue); 2800 ds_queue->split_queue_len++; 2801 #ifdef CONFIG_MEMCG 2802 if (memcg) 2803 set_shrinker_bit(memcg, page_to_nid(page), 2804 deferred_split_shrinker.id); 2805 #endif 2806 } 2807 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2808 } 2809 2810 static unsigned long deferred_split_count(struct shrinker *shrink, 2811 struct shrink_control *sc) 2812 { 2813 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2814 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2815 2816 #ifdef CONFIG_MEMCG 2817 if (sc->memcg) 2818 ds_queue = &sc->memcg->deferred_split_queue; 2819 #endif 2820 return READ_ONCE(ds_queue->split_queue_len); 2821 } 2822 2823 static unsigned long deferred_split_scan(struct shrinker *shrink, 2824 struct shrink_control *sc) 2825 { 2826 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2827 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2828 unsigned long flags; 2829 LIST_HEAD(list), *pos, *next; 2830 struct page *page; 2831 int split = 0; 2832 2833 #ifdef CONFIG_MEMCG 2834 if (sc->memcg) 2835 ds_queue = &sc->memcg->deferred_split_queue; 2836 #endif 2837 2838 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2839 /* Take pin on all head pages to avoid freeing them under us */ 2840 list_for_each_safe(pos, next, &ds_queue->split_queue) { 2841 page = list_entry((void *)pos, struct page, deferred_list); 2842 page = compound_head(page); 2843 if (get_page_unless_zero(page)) { 2844 list_move(page_deferred_list(page), &list); 2845 } else { 2846 /* We lost race with put_compound_page() */ 2847 list_del_init(page_deferred_list(page)); 2848 ds_queue->split_queue_len--; 2849 } 2850 if (!--sc->nr_to_scan) 2851 break; 2852 } 2853 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2854 2855 list_for_each_safe(pos, next, &list) { 2856 page = list_entry((void *)pos, struct page, deferred_list); 2857 if (!trylock_page(page)) 2858 goto next; 2859 /* split_huge_page() removes page from list on success */ 2860 if (!split_huge_page(page)) 2861 split++; 2862 unlock_page(page); 2863 next: 2864 put_page(page); 2865 } 2866 2867 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2868 list_splice_tail(&list, &ds_queue->split_queue); 2869 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2870 2871 /* 2872 * Stop shrinker if we didn't split any page, but the queue is empty. 2873 * This can happen if pages were freed under us. 2874 */ 2875 if (!split && list_empty(&ds_queue->split_queue)) 2876 return SHRINK_STOP; 2877 return split; 2878 } 2879 2880 static struct shrinker deferred_split_shrinker = { 2881 .count_objects = deferred_split_count, 2882 .scan_objects = deferred_split_scan, 2883 .seeks = DEFAULT_SEEKS, 2884 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE | 2885 SHRINKER_NONSLAB, 2886 }; 2887 2888 #ifdef CONFIG_DEBUG_FS 2889 static void split_huge_pages_all(void) 2890 { 2891 struct zone *zone; 2892 struct page *page; 2893 unsigned long pfn, max_zone_pfn; 2894 unsigned long total = 0, split = 0; 2895 2896 pr_debug("Split all THPs\n"); 2897 for_each_populated_zone(zone) { 2898 max_zone_pfn = zone_end_pfn(zone); 2899 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2900 if (!pfn_valid(pfn)) 2901 continue; 2902 2903 page = pfn_to_page(pfn); 2904 if (!get_page_unless_zero(page)) 2905 continue; 2906 2907 if (zone != page_zone(page)) 2908 goto next; 2909 2910 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2911 goto next; 2912 2913 total++; 2914 lock_page(page); 2915 if (!split_huge_page(page)) 2916 split++; 2917 unlock_page(page); 2918 next: 2919 put_page(page); 2920 cond_resched(); 2921 } 2922 } 2923 2924 pr_debug("%lu of %lu THP split\n", split, total); 2925 } 2926 2927 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 2928 { 2929 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 2930 is_vm_hugetlb_page(vma); 2931 } 2932 2933 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 2934 unsigned long vaddr_end) 2935 { 2936 int ret = 0; 2937 struct task_struct *task; 2938 struct mm_struct *mm; 2939 unsigned long total = 0, split = 0; 2940 unsigned long addr; 2941 2942 vaddr_start &= PAGE_MASK; 2943 vaddr_end &= PAGE_MASK; 2944 2945 /* Find the task_struct from pid */ 2946 rcu_read_lock(); 2947 task = find_task_by_vpid(pid); 2948 if (!task) { 2949 rcu_read_unlock(); 2950 ret = -ESRCH; 2951 goto out; 2952 } 2953 get_task_struct(task); 2954 rcu_read_unlock(); 2955 2956 /* Find the mm_struct */ 2957 mm = get_task_mm(task); 2958 put_task_struct(task); 2959 2960 if (!mm) { 2961 ret = -EINVAL; 2962 goto out; 2963 } 2964 2965 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 2966 pid, vaddr_start, vaddr_end); 2967 2968 mmap_read_lock(mm); 2969 /* 2970 * always increase addr by PAGE_SIZE, since we could have a PTE page 2971 * table filled with PTE-mapped THPs, each of which is distinct. 2972 */ 2973 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 2974 struct vm_area_struct *vma = find_vma(mm, addr); 2975 unsigned int follflags; 2976 struct page *page; 2977 2978 if (!vma || addr < vma->vm_start) 2979 break; 2980 2981 /* skip special VMA and hugetlb VMA */ 2982 if (vma_not_suitable_for_thp_split(vma)) { 2983 addr = vma->vm_end; 2984 continue; 2985 } 2986 2987 /* FOLL_DUMP to ignore special (like zero) pages */ 2988 follflags = FOLL_GET | FOLL_DUMP; 2989 page = follow_page(vma, addr, follflags); 2990 2991 if (IS_ERR(page)) 2992 continue; 2993 if (!page) 2994 continue; 2995 2996 if (!is_transparent_hugepage(page)) 2997 goto next; 2998 2999 total++; 3000 if (!can_split_huge_page(compound_head(page), NULL)) 3001 goto next; 3002 3003 if (!trylock_page(page)) 3004 goto next; 3005 3006 if (!split_huge_page(page)) 3007 split++; 3008 3009 unlock_page(page); 3010 next: 3011 put_page(page); 3012 cond_resched(); 3013 } 3014 mmap_read_unlock(mm); 3015 mmput(mm); 3016 3017 pr_debug("%lu of %lu THP split\n", split, total); 3018 3019 out: 3020 return ret; 3021 } 3022 3023 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 3024 pgoff_t off_end) 3025 { 3026 struct filename *file; 3027 struct file *candidate; 3028 struct address_space *mapping; 3029 int ret = -EINVAL; 3030 pgoff_t index; 3031 int nr_pages = 1; 3032 unsigned long total = 0, split = 0; 3033 3034 file = getname_kernel(file_path); 3035 if (IS_ERR(file)) 3036 return ret; 3037 3038 candidate = file_open_name(file, O_RDONLY, 0); 3039 if (IS_ERR(candidate)) 3040 goto out; 3041 3042 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 3043 file_path, off_start, off_end); 3044 3045 mapping = candidate->f_mapping; 3046 3047 for (index = off_start; index < off_end; index += nr_pages) { 3048 struct page *fpage = pagecache_get_page(mapping, index, 3049 FGP_ENTRY | FGP_HEAD, 0); 3050 3051 nr_pages = 1; 3052 if (xa_is_value(fpage) || !fpage) 3053 continue; 3054 3055 if (!is_transparent_hugepage(fpage)) 3056 goto next; 3057 3058 total++; 3059 nr_pages = thp_nr_pages(fpage); 3060 3061 if (!trylock_page(fpage)) 3062 goto next; 3063 3064 if (!split_huge_page(fpage)) 3065 split++; 3066 3067 unlock_page(fpage); 3068 next: 3069 put_page(fpage); 3070 cond_resched(); 3071 } 3072 3073 filp_close(candidate, NULL); 3074 ret = 0; 3075 3076 pr_debug("%lu of %lu file-backed THP split\n", split, total); 3077 out: 3078 putname(file); 3079 return ret; 3080 } 3081 3082 #define MAX_INPUT_BUF_SZ 255 3083 3084 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 3085 size_t count, loff_t *ppops) 3086 { 3087 static DEFINE_MUTEX(split_debug_mutex); 3088 ssize_t ret; 3089 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */ 3090 char input_buf[MAX_INPUT_BUF_SZ]; 3091 int pid; 3092 unsigned long vaddr_start, vaddr_end; 3093 3094 ret = mutex_lock_interruptible(&split_debug_mutex); 3095 if (ret) 3096 return ret; 3097 3098 ret = -EFAULT; 3099 3100 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 3101 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 3102 goto out; 3103 3104 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 3105 3106 if (input_buf[0] == '/') { 3107 char *tok; 3108 char *buf = input_buf; 3109 char file_path[MAX_INPUT_BUF_SZ]; 3110 pgoff_t off_start = 0, off_end = 0; 3111 size_t input_len = strlen(input_buf); 3112 3113 tok = strsep(&buf, ","); 3114 if (tok) { 3115 strcpy(file_path, tok); 3116 } else { 3117 ret = -EINVAL; 3118 goto out; 3119 } 3120 3121 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end); 3122 if (ret != 2) { 3123 ret = -EINVAL; 3124 goto out; 3125 } 3126 ret = split_huge_pages_in_file(file_path, off_start, off_end); 3127 if (!ret) 3128 ret = input_len; 3129 3130 goto out; 3131 } 3132 3133 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end); 3134 if (ret == 1 && pid == 1) { 3135 split_huge_pages_all(); 3136 ret = strlen(input_buf); 3137 goto out; 3138 } else if (ret != 3) { 3139 ret = -EINVAL; 3140 goto out; 3141 } 3142 3143 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end); 3144 if (!ret) 3145 ret = strlen(input_buf); 3146 out: 3147 mutex_unlock(&split_debug_mutex); 3148 return ret; 3149 3150 } 3151 3152 static const struct file_operations split_huge_pages_fops = { 3153 .owner = THIS_MODULE, 3154 .write = split_huge_pages_write, 3155 .llseek = no_llseek, 3156 }; 3157 3158 static int __init split_huge_pages_debugfs(void) 3159 { 3160 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3161 &split_huge_pages_fops); 3162 return 0; 3163 } 3164 late_initcall(split_huge_pages_debugfs); 3165 #endif 3166 3167 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3168 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3169 struct page *page) 3170 { 3171 struct vm_area_struct *vma = pvmw->vma; 3172 struct mm_struct *mm = vma->vm_mm; 3173 unsigned long address = pvmw->address; 3174 pmd_t pmdval; 3175 swp_entry_t entry; 3176 pmd_t pmdswp; 3177 3178 if (!(pvmw->pmd && !pvmw->pte)) 3179 return; 3180 3181 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3182 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3183 if (pmd_dirty(pmdval)) 3184 set_page_dirty(page); 3185 if (pmd_write(pmdval)) 3186 entry = make_writable_migration_entry(page_to_pfn(page)); 3187 else 3188 entry = make_readable_migration_entry(page_to_pfn(page)); 3189 pmdswp = swp_entry_to_pmd(entry); 3190 if (pmd_soft_dirty(pmdval)) 3191 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3192 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3193 page_remove_rmap(page, true); 3194 put_page(page); 3195 } 3196 3197 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3198 { 3199 struct vm_area_struct *vma = pvmw->vma; 3200 struct mm_struct *mm = vma->vm_mm; 3201 unsigned long address = pvmw->address; 3202 unsigned long mmun_start = address & HPAGE_PMD_MASK; 3203 pmd_t pmde; 3204 swp_entry_t entry; 3205 3206 if (!(pvmw->pmd && !pvmw->pte)) 3207 return; 3208 3209 entry = pmd_to_swp_entry(*pvmw->pmd); 3210 get_page(new); 3211 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot)); 3212 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3213 pmde = pmd_mksoft_dirty(pmde); 3214 if (is_writable_migration_entry(entry)) 3215 pmde = maybe_pmd_mkwrite(pmde, vma); 3216 if (pmd_swp_uffd_wp(*pvmw->pmd)) 3217 pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde)); 3218 3219 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE); 3220 if (PageAnon(new)) 3221 page_add_anon_rmap(new, vma, mmun_start, true); 3222 else 3223 page_add_file_rmap(new, true); 3224 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde); 3225 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new)) 3226 mlock_vma_page(new); 3227 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3228 } 3229 #endif 3230