xref: /openbmc/linux/mm/huge_memory.c (revision 3213486f)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 
38 #include <asm/tlb.h>
39 #include <asm/pgalloc.h>
40 #include "internal.h"
41 
42 /*
43  * By default, transparent hugepage support is disabled in order to avoid
44  * risking an increased memory footprint for applications that are not
45  * guaranteed to benefit from it. When transparent hugepage support is
46  * enabled, it is for all mappings, and khugepaged scans all mappings.
47  * Defrag is invoked by khugepaged hugepage allocations and by page faults
48  * for all hugepage allocations.
49  */
50 unsigned long transparent_hugepage_flags __read_mostly =
51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
52 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 #endif
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56 #endif
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 
61 static struct shrinker deferred_split_shrinker;
62 
63 static atomic_t huge_zero_refcount;
64 struct page *huge_zero_page __read_mostly;
65 
66 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67 {
68 	if (vma_is_anonymous(vma))
69 		return __transparent_hugepage_enabled(vma);
70 	if (vma_is_shmem(vma) && shmem_huge_enabled(vma))
71 		return __transparent_hugepage_enabled(vma);
72 
73 	return false;
74 }
75 
76 static struct page *get_huge_zero_page(void)
77 {
78 	struct page *zero_page;
79 retry:
80 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
81 		return READ_ONCE(huge_zero_page);
82 
83 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
84 			HPAGE_PMD_ORDER);
85 	if (!zero_page) {
86 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
87 		return NULL;
88 	}
89 	count_vm_event(THP_ZERO_PAGE_ALLOC);
90 	preempt_disable();
91 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
92 		preempt_enable();
93 		__free_pages(zero_page, compound_order(zero_page));
94 		goto retry;
95 	}
96 
97 	/* We take additional reference here. It will be put back by shrinker */
98 	atomic_set(&huge_zero_refcount, 2);
99 	preempt_enable();
100 	return READ_ONCE(huge_zero_page);
101 }
102 
103 static void put_huge_zero_page(void)
104 {
105 	/*
106 	 * Counter should never go to zero here. Only shrinker can put
107 	 * last reference.
108 	 */
109 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
110 }
111 
112 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
113 {
114 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 		return READ_ONCE(huge_zero_page);
116 
117 	if (!get_huge_zero_page())
118 		return NULL;
119 
120 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
121 		put_huge_zero_page();
122 
123 	return READ_ONCE(huge_zero_page);
124 }
125 
126 void mm_put_huge_zero_page(struct mm_struct *mm)
127 {
128 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
129 		put_huge_zero_page();
130 }
131 
132 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
133 					struct shrink_control *sc)
134 {
135 	/* we can free zero page only if last reference remains */
136 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
137 }
138 
139 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
140 				       struct shrink_control *sc)
141 {
142 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
143 		struct page *zero_page = xchg(&huge_zero_page, NULL);
144 		BUG_ON(zero_page == NULL);
145 		__free_pages(zero_page, compound_order(zero_page));
146 		return HPAGE_PMD_NR;
147 	}
148 
149 	return 0;
150 }
151 
152 static struct shrinker huge_zero_page_shrinker = {
153 	.count_objects = shrink_huge_zero_page_count,
154 	.scan_objects = shrink_huge_zero_page_scan,
155 	.seeks = DEFAULT_SEEKS,
156 };
157 
158 #ifdef CONFIG_SYSFS
159 static ssize_t enabled_show(struct kobject *kobj,
160 			    struct kobj_attribute *attr, char *buf)
161 {
162 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
163 		return sprintf(buf, "[always] madvise never\n");
164 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
165 		return sprintf(buf, "always [madvise] never\n");
166 	else
167 		return sprintf(buf, "always madvise [never]\n");
168 }
169 
170 static ssize_t enabled_store(struct kobject *kobj,
171 			     struct kobj_attribute *attr,
172 			     const char *buf, size_t count)
173 {
174 	ssize_t ret = count;
175 
176 	if (!memcmp("always", buf,
177 		    min(sizeof("always")-1, count))) {
178 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
179 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
180 	} else if (!memcmp("madvise", buf,
181 			   min(sizeof("madvise")-1, count))) {
182 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
184 	} else if (!memcmp("never", buf,
185 			   min(sizeof("never")-1, count))) {
186 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
187 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
188 	} else
189 		ret = -EINVAL;
190 
191 	if (ret > 0) {
192 		int err = start_stop_khugepaged();
193 		if (err)
194 			ret = err;
195 	}
196 	return ret;
197 }
198 static struct kobj_attribute enabled_attr =
199 	__ATTR(enabled, 0644, enabled_show, enabled_store);
200 
201 ssize_t single_hugepage_flag_show(struct kobject *kobj,
202 				struct kobj_attribute *attr, char *buf,
203 				enum transparent_hugepage_flag flag)
204 {
205 	return sprintf(buf, "%d\n",
206 		       !!test_bit(flag, &transparent_hugepage_flags));
207 }
208 
209 ssize_t single_hugepage_flag_store(struct kobject *kobj,
210 				 struct kobj_attribute *attr,
211 				 const char *buf, size_t count,
212 				 enum transparent_hugepage_flag flag)
213 {
214 	unsigned long value;
215 	int ret;
216 
217 	ret = kstrtoul(buf, 10, &value);
218 	if (ret < 0)
219 		return ret;
220 	if (value > 1)
221 		return -EINVAL;
222 
223 	if (value)
224 		set_bit(flag, &transparent_hugepage_flags);
225 	else
226 		clear_bit(flag, &transparent_hugepage_flags);
227 
228 	return count;
229 }
230 
231 static ssize_t defrag_show(struct kobject *kobj,
232 			   struct kobj_attribute *attr, char *buf)
233 {
234 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
235 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
236 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
237 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
238 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
239 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
240 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
241 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
242 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
243 }
244 
245 static ssize_t defrag_store(struct kobject *kobj,
246 			    struct kobj_attribute *attr,
247 			    const char *buf, size_t count)
248 {
249 	if (!memcmp("always", buf,
250 		    min(sizeof("always")-1, count))) {
251 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255 	} else if (!memcmp("defer+madvise", buf,
256 		    min(sizeof("defer+madvise")-1, count))) {
257 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
259 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
260 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 	} else if (!memcmp("defer", buf,
262 		    min(sizeof("defer")-1, count))) {
263 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
264 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
266 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
267 	} else if (!memcmp("madvise", buf,
268 			   min(sizeof("madvise")-1, count))) {
269 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
270 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
272 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 	} else if (!memcmp("never", buf,
274 			   min(sizeof("never")-1, count))) {
275 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
277 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
278 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
279 	} else
280 		return -EINVAL;
281 
282 	return count;
283 }
284 static struct kobj_attribute defrag_attr =
285 	__ATTR(defrag, 0644, defrag_show, defrag_store);
286 
287 static ssize_t use_zero_page_show(struct kobject *kobj,
288 		struct kobj_attribute *attr, char *buf)
289 {
290 	return single_hugepage_flag_show(kobj, attr, buf,
291 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
292 }
293 static ssize_t use_zero_page_store(struct kobject *kobj,
294 		struct kobj_attribute *attr, const char *buf, size_t count)
295 {
296 	return single_hugepage_flag_store(kobj, attr, buf, count,
297 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
298 }
299 static struct kobj_attribute use_zero_page_attr =
300 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
301 
302 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
303 		struct kobj_attribute *attr, char *buf)
304 {
305 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
306 }
307 static struct kobj_attribute hpage_pmd_size_attr =
308 	__ATTR_RO(hpage_pmd_size);
309 
310 #ifdef CONFIG_DEBUG_VM
311 static ssize_t debug_cow_show(struct kobject *kobj,
312 				struct kobj_attribute *attr, char *buf)
313 {
314 	return single_hugepage_flag_show(kobj, attr, buf,
315 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
316 }
317 static ssize_t debug_cow_store(struct kobject *kobj,
318 			       struct kobj_attribute *attr,
319 			       const char *buf, size_t count)
320 {
321 	return single_hugepage_flag_store(kobj, attr, buf, count,
322 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
323 }
324 static struct kobj_attribute debug_cow_attr =
325 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
326 #endif /* CONFIG_DEBUG_VM */
327 
328 static struct attribute *hugepage_attr[] = {
329 	&enabled_attr.attr,
330 	&defrag_attr.attr,
331 	&use_zero_page_attr.attr,
332 	&hpage_pmd_size_attr.attr,
333 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
334 	&shmem_enabled_attr.attr,
335 #endif
336 #ifdef CONFIG_DEBUG_VM
337 	&debug_cow_attr.attr,
338 #endif
339 	NULL,
340 };
341 
342 static const struct attribute_group hugepage_attr_group = {
343 	.attrs = hugepage_attr,
344 };
345 
346 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
347 {
348 	int err;
349 
350 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
351 	if (unlikely(!*hugepage_kobj)) {
352 		pr_err("failed to create transparent hugepage kobject\n");
353 		return -ENOMEM;
354 	}
355 
356 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
357 	if (err) {
358 		pr_err("failed to register transparent hugepage group\n");
359 		goto delete_obj;
360 	}
361 
362 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
363 	if (err) {
364 		pr_err("failed to register transparent hugepage group\n");
365 		goto remove_hp_group;
366 	}
367 
368 	return 0;
369 
370 remove_hp_group:
371 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
372 delete_obj:
373 	kobject_put(*hugepage_kobj);
374 	return err;
375 }
376 
377 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
378 {
379 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
380 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
381 	kobject_put(hugepage_kobj);
382 }
383 #else
384 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
385 {
386 	return 0;
387 }
388 
389 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
390 {
391 }
392 #endif /* CONFIG_SYSFS */
393 
394 static int __init hugepage_init(void)
395 {
396 	int err;
397 	struct kobject *hugepage_kobj;
398 
399 	if (!has_transparent_hugepage()) {
400 		transparent_hugepage_flags = 0;
401 		return -EINVAL;
402 	}
403 
404 	/*
405 	 * hugepages can't be allocated by the buddy allocator
406 	 */
407 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
408 	/*
409 	 * we use page->mapping and page->index in second tail page
410 	 * as list_head: assuming THP order >= 2
411 	 */
412 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
413 
414 	err = hugepage_init_sysfs(&hugepage_kobj);
415 	if (err)
416 		goto err_sysfs;
417 
418 	err = khugepaged_init();
419 	if (err)
420 		goto err_slab;
421 
422 	err = register_shrinker(&huge_zero_page_shrinker);
423 	if (err)
424 		goto err_hzp_shrinker;
425 	err = register_shrinker(&deferred_split_shrinker);
426 	if (err)
427 		goto err_split_shrinker;
428 
429 	/*
430 	 * By default disable transparent hugepages on smaller systems,
431 	 * where the extra memory used could hurt more than TLB overhead
432 	 * is likely to save.  The admin can still enable it through /sys.
433 	 */
434 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
435 		transparent_hugepage_flags = 0;
436 		return 0;
437 	}
438 
439 	err = start_stop_khugepaged();
440 	if (err)
441 		goto err_khugepaged;
442 
443 	return 0;
444 err_khugepaged:
445 	unregister_shrinker(&deferred_split_shrinker);
446 err_split_shrinker:
447 	unregister_shrinker(&huge_zero_page_shrinker);
448 err_hzp_shrinker:
449 	khugepaged_destroy();
450 err_slab:
451 	hugepage_exit_sysfs(hugepage_kobj);
452 err_sysfs:
453 	return err;
454 }
455 subsys_initcall(hugepage_init);
456 
457 static int __init setup_transparent_hugepage(char *str)
458 {
459 	int ret = 0;
460 	if (!str)
461 		goto out;
462 	if (!strcmp(str, "always")) {
463 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
464 			&transparent_hugepage_flags);
465 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
466 			  &transparent_hugepage_flags);
467 		ret = 1;
468 	} else if (!strcmp(str, "madvise")) {
469 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
470 			  &transparent_hugepage_flags);
471 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
472 			&transparent_hugepage_flags);
473 		ret = 1;
474 	} else if (!strcmp(str, "never")) {
475 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
476 			  &transparent_hugepage_flags);
477 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
478 			  &transparent_hugepage_flags);
479 		ret = 1;
480 	}
481 out:
482 	if (!ret)
483 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
484 	return ret;
485 }
486 __setup("transparent_hugepage=", setup_transparent_hugepage);
487 
488 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
489 {
490 	if (likely(vma->vm_flags & VM_WRITE))
491 		pmd = pmd_mkwrite(pmd);
492 	return pmd;
493 }
494 
495 static inline struct list_head *page_deferred_list(struct page *page)
496 {
497 	/* ->lru in the tail pages is occupied by compound_head. */
498 	return &page[2].deferred_list;
499 }
500 
501 void prep_transhuge_page(struct page *page)
502 {
503 	/*
504 	 * we use page->mapping and page->indexlru in second tail page
505 	 * as list_head: assuming THP order >= 2
506 	 */
507 
508 	INIT_LIST_HEAD(page_deferred_list(page));
509 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
510 }
511 
512 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
513 		loff_t off, unsigned long flags, unsigned long size)
514 {
515 	unsigned long addr;
516 	loff_t off_end = off + len;
517 	loff_t off_align = round_up(off, size);
518 	unsigned long len_pad;
519 
520 	if (off_end <= off_align || (off_end - off_align) < size)
521 		return 0;
522 
523 	len_pad = len + size;
524 	if (len_pad < len || (off + len_pad) < off)
525 		return 0;
526 
527 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
528 					      off >> PAGE_SHIFT, flags);
529 	if (IS_ERR_VALUE(addr))
530 		return 0;
531 
532 	addr += (off - addr) & (size - 1);
533 	return addr;
534 }
535 
536 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
537 		unsigned long len, unsigned long pgoff, unsigned long flags)
538 {
539 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
540 
541 	if (addr)
542 		goto out;
543 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
544 		goto out;
545 
546 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
547 	if (addr)
548 		return addr;
549 
550  out:
551 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
552 }
553 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
554 
555 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
556 			struct page *page, gfp_t gfp)
557 {
558 	struct vm_area_struct *vma = vmf->vma;
559 	struct mem_cgroup *memcg;
560 	pgtable_t pgtable;
561 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
562 	vm_fault_t ret = 0;
563 
564 	VM_BUG_ON_PAGE(!PageCompound(page), page);
565 
566 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
567 		put_page(page);
568 		count_vm_event(THP_FAULT_FALLBACK);
569 		return VM_FAULT_FALLBACK;
570 	}
571 
572 	pgtable = pte_alloc_one(vma->vm_mm);
573 	if (unlikely(!pgtable)) {
574 		ret = VM_FAULT_OOM;
575 		goto release;
576 	}
577 
578 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
579 	/*
580 	 * The memory barrier inside __SetPageUptodate makes sure that
581 	 * clear_huge_page writes become visible before the set_pmd_at()
582 	 * write.
583 	 */
584 	__SetPageUptodate(page);
585 
586 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
587 	if (unlikely(!pmd_none(*vmf->pmd))) {
588 		goto unlock_release;
589 	} else {
590 		pmd_t entry;
591 
592 		ret = check_stable_address_space(vma->vm_mm);
593 		if (ret)
594 			goto unlock_release;
595 
596 		/* Deliver the page fault to userland */
597 		if (userfaultfd_missing(vma)) {
598 			vm_fault_t ret2;
599 
600 			spin_unlock(vmf->ptl);
601 			mem_cgroup_cancel_charge(page, memcg, true);
602 			put_page(page);
603 			pte_free(vma->vm_mm, pgtable);
604 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
605 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
606 			return ret2;
607 		}
608 
609 		entry = mk_huge_pmd(page, vma->vm_page_prot);
610 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
611 		page_add_new_anon_rmap(page, vma, haddr, true);
612 		mem_cgroup_commit_charge(page, memcg, false, true);
613 		lru_cache_add_active_or_unevictable(page, vma);
614 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
615 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
616 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
617 		mm_inc_nr_ptes(vma->vm_mm);
618 		spin_unlock(vmf->ptl);
619 		count_vm_event(THP_FAULT_ALLOC);
620 		count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
621 	}
622 
623 	return 0;
624 unlock_release:
625 	spin_unlock(vmf->ptl);
626 release:
627 	if (pgtable)
628 		pte_free(vma->vm_mm, pgtable);
629 	mem_cgroup_cancel_charge(page, memcg, true);
630 	put_page(page);
631 	return ret;
632 
633 }
634 
635 /*
636  * always: directly stall for all thp allocations
637  * defer: wake kswapd and fail if not immediately available
638  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
639  *		  fail if not immediately available
640  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
641  *	    available
642  * never: never stall for any thp allocation
643  */
644 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
645 {
646 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
647 
648 	/* Always do synchronous compaction */
649 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
650 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
651 
652 	/* Kick kcompactd and fail quickly */
653 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
654 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
655 
656 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
657 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
658 		return GFP_TRANSHUGE_LIGHT |
659 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
660 					__GFP_KSWAPD_RECLAIM);
661 
662 	/* Only do synchronous compaction if madvised */
663 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
664 		return GFP_TRANSHUGE_LIGHT |
665 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
666 
667 	return GFP_TRANSHUGE_LIGHT;
668 }
669 
670 /* Caller must hold page table lock. */
671 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
672 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
673 		struct page *zero_page)
674 {
675 	pmd_t entry;
676 	if (!pmd_none(*pmd))
677 		return false;
678 	entry = mk_pmd(zero_page, vma->vm_page_prot);
679 	entry = pmd_mkhuge(entry);
680 	if (pgtable)
681 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
682 	set_pmd_at(mm, haddr, pmd, entry);
683 	mm_inc_nr_ptes(mm);
684 	return true;
685 }
686 
687 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
688 {
689 	struct vm_area_struct *vma = vmf->vma;
690 	gfp_t gfp;
691 	struct page *page;
692 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
693 
694 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
695 		return VM_FAULT_FALLBACK;
696 	if (unlikely(anon_vma_prepare(vma)))
697 		return VM_FAULT_OOM;
698 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
699 		return VM_FAULT_OOM;
700 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
701 			!mm_forbids_zeropage(vma->vm_mm) &&
702 			transparent_hugepage_use_zero_page()) {
703 		pgtable_t pgtable;
704 		struct page *zero_page;
705 		bool set;
706 		vm_fault_t ret;
707 		pgtable = pte_alloc_one(vma->vm_mm);
708 		if (unlikely(!pgtable))
709 			return VM_FAULT_OOM;
710 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
711 		if (unlikely(!zero_page)) {
712 			pte_free(vma->vm_mm, pgtable);
713 			count_vm_event(THP_FAULT_FALLBACK);
714 			return VM_FAULT_FALLBACK;
715 		}
716 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
717 		ret = 0;
718 		set = false;
719 		if (pmd_none(*vmf->pmd)) {
720 			ret = check_stable_address_space(vma->vm_mm);
721 			if (ret) {
722 				spin_unlock(vmf->ptl);
723 			} else if (userfaultfd_missing(vma)) {
724 				spin_unlock(vmf->ptl);
725 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
726 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
727 			} else {
728 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
729 						   haddr, vmf->pmd, zero_page);
730 				spin_unlock(vmf->ptl);
731 				set = true;
732 			}
733 		} else
734 			spin_unlock(vmf->ptl);
735 		if (!set)
736 			pte_free(vma->vm_mm, pgtable);
737 		return ret;
738 	}
739 	gfp = alloc_hugepage_direct_gfpmask(vma);
740 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
741 	if (unlikely(!page)) {
742 		count_vm_event(THP_FAULT_FALLBACK);
743 		return VM_FAULT_FALLBACK;
744 	}
745 	prep_transhuge_page(page);
746 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
747 }
748 
749 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
750 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
751 		pgtable_t pgtable)
752 {
753 	struct mm_struct *mm = vma->vm_mm;
754 	pmd_t entry;
755 	spinlock_t *ptl;
756 
757 	ptl = pmd_lock(mm, pmd);
758 	if (!pmd_none(*pmd)) {
759 		if (write) {
760 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
761 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
762 				goto out_unlock;
763 			}
764 			entry = pmd_mkyoung(*pmd);
765 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
766 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
767 				update_mmu_cache_pmd(vma, addr, pmd);
768 		}
769 
770 		goto out_unlock;
771 	}
772 
773 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
774 	if (pfn_t_devmap(pfn))
775 		entry = pmd_mkdevmap(entry);
776 	if (write) {
777 		entry = pmd_mkyoung(pmd_mkdirty(entry));
778 		entry = maybe_pmd_mkwrite(entry, vma);
779 	}
780 
781 	if (pgtable) {
782 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
783 		mm_inc_nr_ptes(mm);
784 		pgtable = NULL;
785 	}
786 
787 	set_pmd_at(mm, addr, pmd, entry);
788 	update_mmu_cache_pmd(vma, addr, pmd);
789 
790 out_unlock:
791 	spin_unlock(ptl);
792 	if (pgtable)
793 		pte_free(mm, pgtable);
794 }
795 
796 vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
797 			pmd_t *pmd, pfn_t pfn, bool write)
798 {
799 	pgprot_t pgprot = vma->vm_page_prot;
800 	pgtable_t pgtable = NULL;
801 	/*
802 	 * If we had pmd_special, we could avoid all these restrictions,
803 	 * but we need to be consistent with PTEs and architectures that
804 	 * can't support a 'special' bit.
805 	 */
806 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
807 			!pfn_t_devmap(pfn));
808 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
809 						(VM_PFNMAP|VM_MIXEDMAP));
810 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
811 
812 	if (addr < vma->vm_start || addr >= vma->vm_end)
813 		return VM_FAULT_SIGBUS;
814 
815 	if (arch_needs_pgtable_deposit()) {
816 		pgtable = pte_alloc_one(vma->vm_mm);
817 		if (!pgtable)
818 			return VM_FAULT_OOM;
819 	}
820 
821 	track_pfn_insert(vma, &pgprot, pfn);
822 
823 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
824 	return VM_FAULT_NOPAGE;
825 }
826 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
827 
828 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
829 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
830 {
831 	if (likely(vma->vm_flags & VM_WRITE))
832 		pud = pud_mkwrite(pud);
833 	return pud;
834 }
835 
836 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
837 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
838 {
839 	struct mm_struct *mm = vma->vm_mm;
840 	pud_t entry;
841 	spinlock_t *ptl;
842 
843 	ptl = pud_lock(mm, pud);
844 	if (!pud_none(*pud)) {
845 		if (write) {
846 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
847 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
848 				goto out_unlock;
849 			}
850 			entry = pud_mkyoung(*pud);
851 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
852 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
853 				update_mmu_cache_pud(vma, addr, pud);
854 		}
855 		goto out_unlock;
856 	}
857 
858 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
859 	if (pfn_t_devmap(pfn))
860 		entry = pud_mkdevmap(entry);
861 	if (write) {
862 		entry = pud_mkyoung(pud_mkdirty(entry));
863 		entry = maybe_pud_mkwrite(entry, vma);
864 	}
865 	set_pud_at(mm, addr, pud, entry);
866 	update_mmu_cache_pud(vma, addr, pud);
867 
868 out_unlock:
869 	spin_unlock(ptl);
870 }
871 
872 vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
873 			pud_t *pud, pfn_t pfn, bool write)
874 {
875 	pgprot_t pgprot = vma->vm_page_prot;
876 	/*
877 	 * If we had pud_special, we could avoid all these restrictions,
878 	 * but we need to be consistent with PTEs and architectures that
879 	 * can't support a 'special' bit.
880 	 */
881 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
882 			!pfn_t_devmap(pfn));
883 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
884 						(VM_PFNMAP|VM_MIXEDMAP));
885 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
886 
887 	if (addr < vma->vm_start || addr >= vma->vm_end)
888 		return VM_FAULT_SIGBUS;
889 
890 	track_pfn_insert(vma, &pgprot, pfn);
891 
892 	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
893 	return VM_FAULT_NOPAGE;
894 }
895 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
896 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
897 
898 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
899 		pmd_t *pmd, int flags)
900 {
901 	pmd_t _pmd;
902 
903 	_pmd = pmd_mkyoung(*pmd);
904 	if (flags & FOLL_WRITE)
905 		_pmd = pmd_mkdirty(_pmd);
906 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
907 				pmd, _pmd, flags & FOLL_WRITE))
908 		update_mmu_cache_pmd(vma, addr, pmd);
909 }
910 
911 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
912 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
913 {
914 	unsigned long pfn = pmd_pfn(*pmd);
915 	struct mm_struct *mm = vma->vm_mm;
916 	struct page *page;
917 
918 	assert_spin_locked(pmd_lockptr(mm, pmd));
919 
920 	/*
921 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
922 	 * not be in this function with `flags & FOLL_COW` set.
923 	 */
924 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
925 
926 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
927 		return NULL;
928 
929 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
930 		/* pass */;
931 	else
932 		return NULL;
933 
934 	if (flags & FOLL_TOUCH)
935 		touch_pmd(vma, addr, pmd, flags);
936 
937 	/*
938 	 * device mapped pages can only be returned if the
939 	 * caller will manage the page reference count.
940 	 */
941 	if (!(flags & FOLL_GET))
942 		return ERR_PTR(-EEXIST);
943 
944 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
945 	*pgmap = get_dev_pagemap(pfn, *pgmap);
946 	if (!*pgmap)
947 		return ERR_PTR(-EFAULT);
948 	page = pfn_to_page(pfn);
949 	get_page(page);
950 
951 	return page;
952 }
953 
954 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
955 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
956 		  struct vm_area_struct *vma)
957 {
958 	spinlock_t *dst_ptl, *src_ptl;
959 	struct page *src_page;
960 	pmd_t pmd;
961 	pgtable_t pgtable = NULL;
962 	int ret = -ENOMEM;
963 
964 	/* Skip if can be re-fill on fault */
965 	if (!vma_is_anonymous(vma))
966 		return 0;
967 
968 	pgtable = pte_alloc_one(dst_mm);
969 	if (unlikely(!pgtable))
970 		goto out;
971 
972 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
973 	src_ptl = pmd_lockptr(src_mm, src_pmd);
974 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
975 
976 	ret = -EAGAIN;
977 	pmd = *src_pmd;
978 
979 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
980 	if (unlikely(is_swap_pmd(pmd))) {
981 		swp_entry_t entry = pmd_to_swp_entry(pmd);
982 
983 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
984 		if (is_write_migration_entry(entry)) {
985 			make_migration_entry_read(&entry);
986 			pmd = swp_entry_to_pmd(entry);
987 			if (pmd_swp_soft_dirty(*src_pmd))
988 				pmd = pmd_swp_mksoft_dirty(pmd);
989 			set_pmd_at(src_mm, addr, src_pmd, pmd);
990 		}
991 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
992 		mm_inc_nr_ptes(dst_mm);
993 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
994 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
995 		ret = 0;
996 		goto out_unlock;
997 	}
998 #endif
999 
1000 	if (unlikely(!pmd_trans_huge(pmd))) {
1001 		pte_free(dst_mm, pgtable);
1002 		goto out_unlock;
1003 	}
1004 	/*
1005 	 * When page table lock is held, the huge zero pmd should not be
1006 	 * under splitting since we don't split the page itself, only pmd to
1007 	 * a page table.
1008 	 */
1009 	if (is_huge_zero_pmd(pmd)) {
1010 		struct page *zero_page;
1011 		/*
1012 		 * get_huge_zero_page() will never allocate a new page here,
1013 		 * since we already have a zero page to copy. It just takes a
1014 		 * reference.
1015 		 */
1016 		zero_page = mm_get_huge_zero_page(dst_mm);
1017 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1018 				zero_page);
1019 		ret = 0;
1020 		goto out_unlock;
1021 	}
1022 
1023 	src_page = pmd_page(pmd);
1024 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1025 	get_page(src_page);
1026 	page_dup_rmap(src_page, true);
1027 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1028 	mm_inc_nr_ptes(dst_mm);
1029 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1030 
1031 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1032 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1033 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1034 
1035 	ret = 0;
1036 out_unlock:
1037 	spin_unlock(src_ptl);
1038 	spin_unlock(dst_ptl);
1039 out:
1040 	return ret;
1041 }
1042 
1043 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1044 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1045 		pud_t *pud, int flags)
1046 {
1047 	pud_t _pud;
1048 
1049 	_pud = pud_mkyoung(*pud);
1050 	if (flags & FOLL_WRITE)
1051 		_pud = pud_mkdirty(_pud);
1052 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1053 				pud, _pud, flags & FOLL_WRITE))
1054 		update_mmu_cache_pud(vma, addr, pud);
1055 }
1056 
1057 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1058 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1059 {
1060 	unsigned long pfn = pud_pfn(*pud);
1061 	struct mm_struct *mm = vma->vm_mm;
1062 	struct page *page;
1063 
1064 	assert_spin_locked(pud_lockptr(mm, pud));
1065 
1066 	if (flags & FOLL_WRITE && !pud_write(*pud))
1067 		return NULL;
1068 
1069 	if (pud_present(*pud) && pud_devmap(*pud))
1070 		/* pass */;
1071 	else
1072 		return NULL;
1073 
1074 	if (flags & FOLL_TOUCH)
1075 		touch_pud(vma, addr, pud, flags);
1076 
1077 	/*
1078 	 * device mapped pages can only be returned if the
1079 	 * caller will manage the page reference count.
1080 	 */
1081 	if (!(flags & FOLL_GET))
1082 		return ERR_PTR(-EEXIST);
1083 
1084 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1085 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1086 	if (!*pgmap)
1087 		return ERR_PTR(-EFAULT);
1088 	page = pfn_to_page(pfn);
1089 	get_page(page);
1090 
1091 	return page;
1092 }
1093 
1094 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1095 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1096 		  struct vm_area_struct *vma)
1097 {
1098 	spinlock_t *dst_ptl, *src_ptl;
1099 	pud_t pud;
1100 	int ret;
1101 
1102 	dst_ptl = pud_lock(dst_mm, dst_pud);
1103 	src_ptl = pud_lockptr(src_mm, src_pud);
1104 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1105 
1106 	ret = -EAGAIN;
1107 	pud = *src_pud;
1108 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1109 		goto out_unlock;
1110 
1111 	/*
1112 	 * When page table lock is held, the huge zero pud should not be
1113 	 * under splitting since we don't split the page itself, only pud to
1114 	 * a page table.
1115 	 */
1116 	if (is_huge_zero_pud(pud)) {
1117 		/* No huge zero pud yet */
1118 	}
1119 
1120 	pudp_set_wrprotect(src_mm, addr, src_pud);
1121 	pud = pud_mkold(pud_wrprotect(pud));
1122 	set_pud_at(dst_mm, addr, dst_pud, pud);
1123 
1124 	ret = 0;
1125 out_unlock:
1126 	spin_unlock(src_ptl);
1127 	spin_unlock(dst_ptl);
1128 	return ret;
1129 }
1130 
1131 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1132 {
1133 	pud_t entry;
1134 	unsigned long haddr;
1135 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1136 
1137 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1138 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1139 		goto unlock;
1140 
1141 	entry = pud_mkyoung(orig_pud);
1142 	if (write)
1143 		entry = pud_mkdirty(entry);
1144 	haddr = vmf->address & HPAGE_PUD_MASK;
1145 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1146 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1147 
1148 unlock:
1149 	spin_unlock(vmf->ptl);
1150 }
1151 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1152 
1153 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1154 {
1155 	pmd_t entry;
1156 	unsigned long haddr;
1157 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1158 
1159 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1160 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1161 		goto unlock;
1162 
1163 	entry = pmd_mkyoung(orig_pmd);
1164 	if (write)
1165 		entry = pmd_mkdirty(entry);
1166 	haddr = vmf->address & HPAGE_PMD_MASK;
1167 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1168 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1169 
1170 unlock:
1171 	spin_unlock(vmf->ptl);
1172 }
1173 
1174 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1175 			pmd_t orig_pmd, struct page *page)
1176 {
1177 	struct vm_area_struct *vma = vmf->vma;
1178 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1179 	struct mem_cgroup *memcg;
1180 	pgtable_t pgtable;
1181 	pmd_t _pmd;
1182 	int i;
1183 	vm_fault_t ret = 0;
1184 	struct page **pages;
1185 	struct mmu_notifier_range range;
1186 
1187 	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1188 			      GFP_KERNEL);
1189 	if (unlikely(!pages)) {
1190 		ret |= VM_FAULT_OOM;
1191 		goto out;
1192 	}
1193 
1194 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1195 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1196 					       vmf->address, page_to_nid(page));
1197 		if (unlikely(!pages[i] ||
1198 			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1199 				     GFP_KERNEL, &memcg, false))) {
1200 			if (pages[i])
1201 				put_page(pages[i]);
1202 			while (--i >= 0) {
1203 				memcg = (void *)page_private(pages[i]);
1204 				set_page_private(pages[i], 0);
1205 				mem_cgroup_cancel_charge(pages[i], memcg,
1206 						false);
1207 				put_page(pages[i]);
1208 			}
1209 			kfree(pages);
1210 			ret |= VM_FAULT_OOM;
1211 			goto out;
1212 		}
1213 		set_page_private(pages[i], (unsigned long)memcg);
1214 	}
1215 
1216 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1217 		copy_user_highpage(pages[i], page + i,
1218 				   haddr + PAGE_SIZE * i, vma);
1219 		__SetPageUptodate(pages[i]);
1220 		cond_resched();
1221 	}
1222 
1223 	mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1224 				haddr + HPAGE_PMD_SIZE);
1225 	mmu_notifier_invalidate_range_start(&range);
1226 
1227 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1228 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1229 		goto out_free_pages;
1230 	VM_BUG_ON_PAGE(!PageHead(page), page);
1231 
1232 	/*
1233 	 * Leave pmd empty until pte is filled note we must notify here as
1234 	 * concurrent CPU thread might write to new page before the call to
1235 	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1236 	 * device seeing memory write in different order than CPU.
1237 	 *
1238 	 * See Documentation/vm/mmu_notifier.rst
1239 	 */
1240 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1241 
1242 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1243 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1244 
1245 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1246 		pte_t entry;
1247 		entry = mk_pte(pages[i], vma->vm_page_prot);
1248 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1249 		memcg = (void *)page_private(pages[i]);
1250 		set_page_private(pages[i], 0);
1251 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1252 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1253 		lru_cache_add_active_or_unevictable(pages[i], vma);
1254 		vmf->pte = pte_offset_map(&_pmd, haddr);
1255 		VM_BUG_ON(!pte_none(*vmf->pte));
1256 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1257 		pte_unmap(vmf->pte);
1258 	}
1259 	kfree(pages);
1260 
1261 	smp_wmb(); /* make pte visible before pmd */
1262 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1263 	page_remove_rmap(page, true);
1264 	spin_unlock(vmf->ptl);
1265 
1266 	/*
1267 	 * No need to double call mmu_notifier->invalidate_range() callback as
1268 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1269 	 */
1270 	mmu_notifier_invalidate_range_only_end(&range);
1271 
1272 	ret |= VM_FAULT_WRITE;
1273 	put_page(page);
1274 
1275 out:
1276 	return ret;
1277 
1278 out_free_pages:
1279 	spin_unlock(vmf->ptl);
1280 	mmu_notifier_invalidate_range_end(&range);
1281 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1282 		memcg = (void *)page_private(pages[i]);
1283 		set_page_private(pages[i], 0);
1284 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1285 		put_page(pages[i]);
1286 	}
1287 	kfree(pages);
1288 	goto out;
1289 }
1290 
1291 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1292 {
1293 	struct vm_area_struct *vma = vmf->vma;
1294 	struct page *page = NULL, *new_page;
1295 	struct mem_cgroup *memcg;
1296 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1297 	struct mmu_notifier_range range;
1298 	gfp_t huge_gfp;			/* for allocation and charge */
1299 	vm_fault_t ret = 0;
1300 
1301 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1302 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1303 	if (is_huge_zero_pmd(orig_pmd))
1304 		goto alloc;
1305 	spin_lock(vmf->ptl);
1306 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1307 		goto out_unlock;
1308 
1309 	page = pmd_page(orig_pmd);
1310 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1311 	/*
1312 	 * We can only reuse the page if nobody else maps the huge page or it's
1313 	 * part.
1314 	 */
1315 	if (!trylock_page(page)) {
1316 		get_page(page);
1317 		spin_unlock(vmf->ptl);
1318 		lock_page(page);
1319 		spin_lock(vmf->ptl);
1320 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1321 			unlock_page(page);
1322 			put_page(page);
1323 			goto out_unlock;
1324 		}
1325 		put_page(page);
1326 	}
1327 	if (reuse_swap_page(page, NULL)) {
1328 		pmd_t entry;
1329 		entry = pmd_mkyoung(orig_pmd);
1330 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1331 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1332 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1333 		ret |= VM_FAULT_WRITE;
1334 		unlock_page(page);
1335 		goto out_unlock;
1336 	}
1337 	unlock_page(page);
1338 	get_page(page);
1339 	spin_unlock(vmf->ptl);
1340 alloc:
1341 	if (__transparent_hugepage_enabled(vma) &&
1342 	    !transparent_hugepage_debug_cow()) {
1343 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1344 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1345 	} else
1346 		new_page = NULL;
1347 
1348 	if (likely(new_page)) {
1349 		prep_transhuge_page(new_page);
1350 	} else {
1351 		if (!page) {
1352 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1353 			ret |= VM_FAULT_FALLBACK;
1354 		} else {
1355 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1356 			if (ret & VM_FAULT_OOM) {
1357 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1358 				ret |= VM_FAULT_FALLBACK;
1359 			}
1360 			put_page(page);
1361 		}
1362 		count_vm_event(THP_FAULT_FALLBACK);
1363 		goto out;
1364 	}
1365 
1366 	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1367 					huge_gfp, &memcg, true))) {
1368 		put_page(new_page);
1369 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1370 		if (page)
1371 			put_page(page);
1372 		ret |= VM_FAULT_FALLBACK;
1373 		count_vm_event(THP_FAULT_FALLBACK);
1374 		goto out;
1375 	}
1376 
1377 	count_vm_event(THP_FAULT_ALLOC);
1378 	count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1379 
1380 	if (!page)
1381 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1382 	else
1383 		copy_user_huge_page(new_page, page, vmf->address,
1384 				    vma, HPAGE_PMD_NR);
1385 	__SetPageUptodate(new_page);
1386 
1387 	mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1388 				haddr + HPAGE_PMD_SIZE);
1389 	mmu_notifier_invalidate_range_start(&range);
1390 
1391 	spin_lock(vmf->ptl);
1392 	if (page)
1393 		put_page(page);
1394 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1395 		spin_unlock(vmf->ptl);
1396 		mem_cgroup_cancel_charge(new_page, memcg, true);
1397 		put_page(new_page);
1398 		goto out_mn;
1399 	} else {
1400 		pmd_t entry;
1401 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1402 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1403 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1404 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1405 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1406 		lru_cache_add_active_or_unevictable(new_page, vma);
1407 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1408 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1409 		if (!page) {
1410 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1411 		} else {
1412 			VM_BUG_ON_PAGE(!PageHead(page), page);
1413 			page_remove_rmap(page, true);
1414 			put_page(page);
1415 		}
1416 		ret |= VM_FAULT_WRITE;
1417 	}
1418 	spin_unlock(vmf->ptl);
1419 out_mn:
1420 	/*
1421 	 * No need to double call mmu_notifier->invalidate_range() callback as
1422 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1423 	 */
1424 	mmu_notifier_invalidate_range_only_end(&range);
1425 out:
1426 	return ret;
1427 out_unlock:
1428 	spin_unlock(vmf->ptl);
1429 	return ret;
1430 }
1431 
1432 /*
1433  * FOLL_FORCE can write to even unwritable pmd's, but only
1434  * after we've gone through a COW cycle and they are dirty.
1435  */
1436 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1437 {
1438 	return pmd_write(pmd) ||
1439 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1440 }
1441 
1442 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1443 				   unsigned long addr,
1444 				   pmd_t *pmd,
1445 				   unsigned int flags)
1446 {
1447 	struct mm_struct *mm = vma->vm_mm;
1448 	struct page *page = NULL;
1449 
1450 	assert_spin_locked(pmd_lockptr(mm, pmd));
1451 
1452 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1453 		goto out;
1454 
1455 	/* Avoid dumping huge zero page */
1456 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1457 		return ERR_PTR(-EFAULT);
1458 
1459 	/* Full NUMA hinting faults to serialise migration in fault paths */
1460 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1461 		goto out;
1462 
1463 	page = pmd_page(*pmd);
1464 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1465 	if (flags & FOLL_TOUCH)
1466 		touch_pmd(vma, addr, pmd, flags);
1467 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1468 		/*
1469 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1470 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1471 		 *
1472 		 * For anon THP:
1473 		 *
1474 		 * In most cases the pmd is the only mapping of the page as we
1475 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1476 		 * writable private mappings in populate_vma_page_range().
1477 		 *
1478 		 * The only scenario when we have the page shared here is if we
1479 		 * mlocking read-only mapping shared over fork(). We skip
1480 		 * mlocking such pages.
1481 		 *
1482 		 * For file THP:
1483 		 *
1484 		 * We can expect PageDoubleMap() to be stable under page lock:
1485 		 * for file pages we set it in page_add_file_rmap(), which
1486 		 * requires page to be locked.
1487 		 */
1488 
1489 		if (PageAnon(page) && compound_mapcount(page) != 1)
1490 			goto skip_mlock;
1491 		if (PageDoubleMap(page) || !page->mapping)
1492 			goto skip_mlock;
1493 		if (!trylock_page(page))
1494 			goto skip_mlock;
1495 		lru_add_drain();
1496 		if (page->mapping && !PageDoubleMap(page))
1497 			mlock_vma_page(page);
1498 		unlock_page(page);
1499 	}
1500 skip_mlock:
1501 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1502 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1503 	if (flags & FOLL_GET)
1504 		get_page(page);
1505 
1506 out:
1507 	return page;
1508 }
1509 
1510 /* NUMA hinting page fault entry point for trans huge pmds */
1511 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1512 {
1513 	struct vm_area_struct *vma = vmf->vma;
1514 	struct anon_vma *anon_vma = NULL;
1515 	struct page *page;
1516 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1517 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1518 	int target_nid, last_cpupid = -1;
1519 	bool page_locked;
1520 	bool migrated = false;
1521 	bool was_writable;
1522 	int flags = 0;
1523 
1524 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1525 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1526 		goto out_unlock;
1527 
1528 	/*
1529 	 * If there are potential migrations, wait for completion and retry
1530 	 * without disrupting NUMA hinting information. Do not relock and
1531 	 * check_same as the page may no longer be mapped.
1532 	 */
1533 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1534 		page = pmd_page(*vmf->pmd);
1535 		if (!get_page_unless_zero(page))
1536 			goto out_unlock;
1537 		spin_unlock(vmf->ptl);
1538 		put_and_wait_on_page_locked(page);
1539 		goto out;
1540 	}
1541 
1542 	page = pmd_page(pmd);
1543 	BUG_ON(is_huge_zero_page(page));
1544 	page_nid = page_to_nid(page);
1545 	last_cpupid = page_cpupid_last(page);
1546 	count_vm_numa_event(NUMA_HINT_FAULTS);
1547 	if (page_nid == this_nid) {
1548 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1549 		flags |= TNF_FAULT_LOCAL;
1550 	}
1551 
1552 	/* See similar comment in do_numa_page for explanation */
1553 	if (!pmd_savedwrite(pmd))
1554 		flags |= TNF_NO_GROUP;
1555 
1556 	/*
1557 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1558 	 * page_table_lock if at all possible
1559 	 */
1560 	page_locked = trylock_page(page);
1561 	target_nid = mpol_misplaced(page, vma, haddr);
1562 	if (target_nid == NUMA_NO_NODE) {
1563 		/* If the page was locked, there are no parallel migrations */
1564 		if (page_locked)
1565 			goto clear_pmdnuma;
1566 	}
1567 
1568 	/* Migration could have started since the pmd_trans_migrating check */
1569 	if (!page_locked) {
1570 		page_nid = NUMA_NO_NODE;
1571 		if (!get_page_unless_zero(page))
1572 			goto out_unlock;
1573 		spin_unlock(vmf->ptl);
1574 		put_and_wait_on_page_locked(page);
1575 		goto out;
1576 	}
1577 
1578 	/*
1579 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1580 	 * to serialises splits
1581 	 */
1582 	get_page(page);
1583 	spin_unlock(vmf->ptl);
1584 	anon_vma = page_lock_anon_vma_read(page);
1585 
1586 	/* Confirm the PMD did not change while page_table_lock was released */
1587 	spin_lock(vmf->ptl);
1588 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1589 		unlock_page(page);
1590 		put_page(page);
1591 		page_nid = NUMA_NO_NODE;
1592 		goto out_unlock;
1593 	}
1594 
1595 	/* Bail if we fail to protect against THP splits for any reason */
1596 	if (unlikely(!anon_vma)) {
1597 		put_page(page);
1598 		page_nid = NUMA_NO_NODE;
1599 		goto clear_pmdnuma;
1600 	}
1601 
1602 	/*
1603 	 * Since we took the NUMA fault, we must have observed the !accessible
1604 	 * bit. Make sure all other CPUs agree with that, to avoid them
1605 	 * modifying the page we're about to migrate.
1606 	 *
1607 	 * Must be done under PTL such that we'll observe the relevant
1608 	 * inc_tlb_flush_pending().
1609 	 *
1610 	 * We are not sure a pending tlb flush here is for a huge page
1611 	 * mapping or not. Hence use the tlb range variant
1612 	 */
1613 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1614 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1615 		/*
1616 		 * change_huge_pmd() released the pmd lock before
1617 		 * invalidating the secondary MMUs sharing the primary
1618 		 * MMU pagetables (with ->invalidate_range()). The
1619 		 * mmu_notifier_invalidate_range_end() (which
1620 		 * internally calls ->invalidate_range()) in
1621 		 * change_pmd_range() will run after us, so we can't
1622 		 * rely on it here and we need an explicit invalidate.
1623 		 */
1624 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1625 					      haddr + HPAGE_PMD_SIZE);
1626 	}
1627 
1628 	/*
1629 	 * Migrate the THP to the requested node, returns with page unlocked
1630 	 * and access rights restored.
1631 	 */
1632 	spin_unlock(vmf->ptl);
1633 
1634 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1635 				vmf->pmd, pmd, vmf->address, page, target_nid);
1636 	if (migrated) {
1637 		flags |= TNF_MIGRATED;
1638 		page_nid = target_nid;
1639 	} else
1640 		flags |= TNF_MIGRATE_FAIL;
1641 
1642 	goto out;
1643 clear_pmdnuma:
1644 	BUG_ON(!PageLocked(page));
1645 	was_writable = pmd_savedwrite(pmd);
1646 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1647 	pmd = pmd_mkyoung(pmd);
1648 	if (was_writable)
1649 		pmd = pmd_mkwrite(pmd);
1650 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1651 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1652 	unlock_page(page);
1653 out_unlock:
1654 	spin_unlock(vmf->ptl);
1655 
1656 out:
1657 	if (anon_vma)
1658 		page_unlock_anon_vma_read(anon_vma);
1659 
1660 	if (page_nid != NUMA_NO_NODE)
1661 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1662 				flags);
1663 
1664 	return 0;
1665 }
1666 
1667 /*
1668  * Return true if we do MADV_FREE successfully on entire pmd page.
1669  * Otherwise, return false.
1670  */
1671 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1672 		pmd_t *pmd, unsigned long addr, unsigned long next)
1673 {
1674 	spinlock_t *ptl;
1675 	pmd_t orig_pmd;
1676 	struct page *page;
1677 	struct mm_struct *mm = tlb->mm;
1678 	bool ret = false;
1679 
1680 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1681 
1682 	ptl = pmd_trans_huge_lock(pmd, vma);
1683 	if (!ptl)
1684 		goto out_unlocked;
1685 
1686 	orig_pmd = *pmd;
1687 	if (is_huge_zero_pmd(orig_pmd))
1688 		goto out;
1689 
1690 	if (unlikely(!pmd_present(orig_pmd))) {
1691 		VM_BUG_ON(thp_migration_supported() &&
1692 				  !is_pmd_migration_entry(orig_pmd));
1693 		goto out;
1694 	}
1695 
1696 	page = pmd_page(orig_pmd);
1697 	/*
1698 	 * If other processes are mapping this page, we couldn't discard
1699 	 * the page unless they all do MADV_FREE so let's skip the page.
1700 	 */
1701 	if (page_mapcount(page) != 1)
1702 		goto out;
1703 
1704 	if (!trylock_page(page))
1705 		goto out;
1706 
1707 	/*
1708 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1709 	 * will deactivate only them.
1710 	 */
1711 	if (next - addr != HPAGE_PMD_SIZE) {
1712 		get_page(page);
1713 		spin_unlock(ptl);
1714 		split_huge_page(page);
1715 		unlock_page(page);
1716 		put_page(page);
1717 		goto out_unlocked;
1718 	}
1719 
1720 	if (PageDirty(page))
1721 		ClearPageDirty(page);
1722 	unlock_page(page);
1723 
1724 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1725 		pmdp_invalidate(vma, addr, pmd);
1726 		orig_pmd = pmd_mkold(orig_pmd);
1727 		orig_pmd = pmd_mkclean(orig_pmd);
1728 
1729 		set_pmd_at(mm, addr, pmd, orig_pmd);
1730 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1731 	}
1732 
1733 	mark_page_lazyfree(page);
1734 	ret = true;
1735 out:
1736 	spin_unlock(ptl);
1737 out_unlocked:
1738 	return ret;
1739 }
1740 
1741 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1742 {
1743 	pgtable_t pgtable;
1744 
1745 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1746 	pte_free(mm, pgtable);
1747 	mm_dec_nr_ptes(mm);
1748 }
1749 
1750 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1751 		 pmd_t *pmd, unsigned long addr)
1752 {
1753 	pmd_t orig_pmd;
1754 	spinlock_t *ptl;
1755 
1756 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1757 
1758 	ptl = __pmd_trans_huge_lock(pmd, vma);
1759 	if (!ptl)
1760 		return 0;
1761 	/*
1762 	 * For architectures like ppc64 we look at deposited pgtable
1763 	 * when calling pmdp_huge_get_and_clear. So do the
1764 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1765 	 * operations.
1766 	 */
1767 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1768 			tlb->fullmm);
1769 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1770 	if (vma_is_dax(vma)) {
1771 		if (arch_needs_pgtable_deposit())
1772 			zap_deposited_table(tlb->mm, pmd);
1773 		spin_unlock(ptl);
1774 		if (is_huge_zero_pmd(orig_pmd))
1775 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1776 	} else if (is_huge_zero_pmd(orig_pmd)) {
1777 		zap_deposited_table(tlb->mm, pmd);
1778 		spin_unlock(ptl);
1779 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1780 	} else {
1781 		struct page *page = NULL;
1782 		int flush_needed = 1;
1783 
1784 		if (pmd_present(orig_pmd)) {
1785 			page = pmd_page(orig_pmd);
1786 			page_remove_rmap(page, true);
1787 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1788 			VM_BUG_ON_PAGE(!PageHead(page), page);
1789 		} else if (thp_migration_supported()) {
1790 			swp_entry_t entry;
1791 
1792 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1793 			entry = pmd_to_swp_entry(orig_pmd);
1794 			page = pfn_to_page(swp_offset(entry));
1795 			flush_needed = 0;
1796 		} else
1797 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1798 
1799 		if (PageAnon(page)) {
1800 			zap_deposited_table(tlb->mm, pmd);
1801 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1802 		} else {
1803 			if (arch_needs_pgtable_deposit())
1804 				zap_deposited_table(tlb->mm, pmd);
1805 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1806 		}
1807 
1808 		spin_unlock(ptl);
1809 		if (flush_needed)
1810 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1811 	}
1812 	return 1;
1813 }
1814 
1815 #ifndef pmd_move_must_withdraw
1816 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1817 					 spinlock_t *old_pmd_ptl,
1818 					 struct vm_area_struct *vma)
1819 {
1820 	/*
1821 	 * With split pmd lock we also need to move preallocated
1822 	 * PTE page table if new_pmd is on different PMD page table.
1823 	 *
1824 	 * We also don't deposit and withdraw tables for file pages.
1825 	 */
1826 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1827 }
1828 #endif
1829 
1830 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1831 {
1832 #ifdef CONFIG_MEM_SOFT_DIRTY
1833 	if (unlikely(is_pmd_migration_entry(pmd)))
1834 		pmd = pmd_swp_mksoft_dirty(pmd);
1835 	else if (pmd_present(pmd))
1836 		pmd = pmd_mksoft_dirty(pmd);
1837 #endif
1838 	return pmd;
1839 }
1840 
1841 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1842 		  unsigned long new_addr, unsigned long old_end,
1843 		  pmd_t *old_pmd, pmd_t *new_pmd)
1844 {
1845 	spinlock_t *old_ptl, *new_ptl;
1846 	pmd_t pmd;
1847 	struct mm_struct *mm = vma->vm_mm;
1848 	bool force_flush = false;
1849 
1850 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1851 	    (new_addr & ~HPAGE_PMD_MASK) ||
1852 	    old_end - old_addr < HPAGE_PMD_SIZE)
1853 		return false;
1854 
1855 	/*
1856 	 * The destination pmd shouldn't be established, free_pgtables()
1857 	 * should have release it.
1858 	 */
1859 	if (WARN_ON(!pmd_none(*new_pmd))) {
1860 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1861 		return false;
1862 	}
1863 
1864 	/*
1865 	 * We don't have to worry about the ordering of src and dst
1866 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1867 	 */
1868 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1869 	if (old_ptl) {
1870 		new_ptl = pmd_lockptr(mm, new_pmd);
1871 		if (new_ptl != old_ptl)
1872 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1873 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1874 		if (pmd_present(pmd))
1875 			force_flush = true;
1876 		VM_BUG_ON(!pmd_none(*new_pmd));
1877 
1878 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1879 			pgtable_t pgtable;
1880 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1881 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1882 		}
1883 		pmd = move_soft_dirty_pmd(pmd);
1884 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1885 		if (force_flush)
1886 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1887 		if (new_ptl != old_ptl)
1888 			spin_unlock(new_ptl);
1889 		spin_unlock(old_ptl);
1890 		return true;
1891 	}
1892 	return false;
1893 }
1894 
1895 /*
1896  * Returns
1897  *  - 0 if PMD could not be locked
1898  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1899  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1900  */
1901 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1902 		unsigned long addr, pgprot_t newprot, int prot_numa)
1903 {
1904 	struct mm_struct *mm = vma->vm_mm;
1905 	spinlock_t *ptl;
1906 	pmd_t entry;
1907 	bool preserve_write;
1908 	int ret;
1909 
1910 	ptl = __pmd_trans_huge_lock(pmd, vma);
1911 	if (!ptl)
1912 		return 0;
1913 
1914 	preserve_write = prot_numa && pmd_write(*pmd);
1915 	ret = 1;
1916 
1917 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1918 	if (is_swap_pmd(*pmd)) {
1919 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1920 
1921 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1922 		if (is_write_migration_entry(entry)) {
1923 			pmd_t newpmd;
1924 			/*
1925 			 * A protection check is difficult so
1926 			 * just be safe and disable write
1927 			 */
1928 			make_migration_entry_read(&entry);
1929 			newpmd = swp_entry_to_pmd(entry);
1930 			if (pmd_swp_soft_dirty(*pmd))
1931 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1932 			set_pmd_at(mm, addr, pmd, newpmd);
1933 		}
1934 		goto unlock;
1935 	}
1936 #endif
1937 
1938 	/*
1939 	 * Avoid trapping faults against the zero page. The read-only
1940 	 * data is likely to be read-cached on the local CPU and
1941 	 * local/remote hits to the zero page are not interesting.
1942 	 */
1943 	if (prot_numa && is_huge_zero_pmd(*pmd))
1944 		goto unlock;
1945 
1946 	if (prot_numa && pmd_protnone(*pmd))
1947 		goto unlock;
1948 
1949 	/*
1950 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1951 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1952 	 * which is also under down_read(mmap_sem):
1953 	 *
1954 	 *	CPU0:				CPU1:
1955 	 *				change_huge_pmd(prot_numa=1)
1956 	 *				 pmdp_huge_get_and_clear_notify()
1957 	 * madvise_dontneed()
1958 	 *  zap_pmd_range()
1959 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1960 	 *   // skip the pmd
1961 	 *				 set_pmd_at();
1962 	 *				 // pmd is re-established
1963 	 *
1964 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1965 	 * which may break userspace.
1966 	 *
1967 	 * pmdp_invalidate() is required to make sure we don't miss
1968 	 * dirty/young flags set by hardware.
1969 	 */
1970 	entry = pmdp_invalidate(vma, addr, pmd);
1971 
1972 	entry = pmd_modify(entry, newprot);
1973 	if (preserve_write)
1974 		entry = pmd_mk_savedwrite(entry);
1975 	ret = HPAGE_PMD_NR;
1976 	set_pmd_at(mm, addr, pmd, entry);
1977 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1978 unlock:
1979 	spin_unlock(ptl);
1980 	return ret;
1981 }
1982 
1983 /*
1984  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1985  *
1986  * Note that if it returns page table lock pointer, this routine returns without
1987  * unlocking page table lock. So callers must unlock it.
1988  */
1989 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1990 {
1991 	spinlock_t *ptl;
1992 	ptl = pmd_lock(vma->vm_mm, pmd);
1993 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1994 			pmd_devmap(*pmd)))
1995 		return ptl;
1996 	spin_unlock(ptl);
1997 	return NULL;
1998 }
1999 
2000 /*
2001  * Returns true if a given pud maps a thp, false otherwise.
2002  *
2003  * Note that if it returns true, this routine returns without unlocking page
2004  * table lock. So callers must unlock it.
2005  */
2006 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2007 {
2008 	spinlock_t *ptl;
2009 
2010 	ptl = pud_lock(vma->vm_mm, pud);
2011 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2012 		return ptl;
2013 	spin_unlock(ptl);
2014 	return NULL;
2015 }
2016 
2017 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2018 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2019 		 pud_t *pud, unsigned long addr)
2020 {
2021 	spinlock_t *ptl;
2022 
2023 	ptl = __pud_trans_huge_lock(pud, vma);
2024 	if (!ptl)
2025 		return 0;
2026 	/*
2027 	 * For architectures like ppc64 we look at deposited pgtable
2028 	 * when calling pudp_huge_get_and_clear. So do the
2029 	 * pgtable_trans_huge_withdraw after finishing pudp related
2030 	 * operations.
2031 	 */
2032 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2033 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2034 	if (vma_is_dax(vma)) {
2035 		spin_unlock(ptl);
2036 		/* No zero page support yet */
2037 	} else {
2038 		/* No support for anonymous PUD pages yet */
2039 		BUG();
2040 	}
2041 	return 1;
2042 }
2043 
2044 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2045 		unsigned long haddr)
2046 {
2047 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2048 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2049 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2050 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2051 
2052 	count_vm_event(THP_SPLIT_PUD);
2053 
2054 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2055 }
2056 
2057 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2058 		unsigned long address)
2059 {
2060 	spinlock_t *ptl;
2061 	struct mmu_notifier_range range;
2062 
2063 	mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PUD_MASK,
2064 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2065 	mmu_notifier_invalidate_range_start(&range);
2066 	ptl = pud_lock(vma->vm_mm, pud);
2067 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2068 		goto out;
2069 	__split_huge_pud_locked(vma, pud, range.start);
2070 
2071 out:
2072 	spin_unlock(ptl);
2073 	/*
2074 	 * No need to double call mmu_notifier->invalidate_range() callback as
2075 	 * the above pudp_huge_clear_flush_notify() did already call it.
2076 	 */
2077 	mmu_notifier_invalidate_range_only_end(&range);
2078 }
2079 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2080 
2081 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2082 		unsigned long haddr, pmd_t *pmd)
2083 {
2084 	struct mm_struct *mm = vma->vm_mm;
2085 	pgtable_t pgtable;
2086 	pmd_t _pmd;
2087 	int i;
2088 
2089 	/*
2090 	 * Leave pmd empty until pte is filled note that it is fine to delay
2091 	 * notification until mmu_notifier_invalidate_range_end() as we are
2092 	 * replacing a zero pmd write protected page with a zero pte write
2093 	 * protected page.
2094 	 *
2095 	 * See Documentation/vm/mmu_notifier.rst
2096 	 */
2097 	pmdp_huge_clear_flush(vma, haddr, pmd);
2098 
2099 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2100 	pmd_populate(mm, &_pmd, pgtable);
2101 
2102 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2103 		pte_t *pte, entry;
2104 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2105 		entry = pte_mkspecial(entry);
2106 		pte = pte_offset_map(&_pmd, haddr);
2107 		VM_BUG_ON(!pte_none(*pte));
2108 		set_pte_at(mm, haddr, pte, entry);
2109 		pte_unmap(pte);
2110 	}
2111 	smp_wmb(); /* make pte visible before pmd */
2112 	pmd_populate(mm, pmd, pgtable);
2113 }
2114 
2115 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2116 		unsigned long haddr, bool freeze)
2117 {
2118 	struct mm_struct *mm = vma->vm_mm;
2119 	struct page *page;
2120 	pgtable_t pgtable;
2121 	pmd_t old_pmd, _pmd;
2122 	bool young, write, soft_dirty, pmd_migration = false;
2123 	unsigned long addr;
2124 	int i;
2125 
2126 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2127 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2128 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2129 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2130 				&& !pmd_devmap(*pmd));
2131 
2132 	count_vm_event(THP_SPLIT_PMD);
2133 
2134 	if (!vma_is_anonymous(vma)) {
2135 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2136 		/*
2137 		 * We are going to unmap this huge page. So
2138 		 * just go ahead and zap it
2139 		 */
2140 		if (arch_needs_pgtable_deposit())
2141 			zap_deposited_table(mm, pmd);
2142 		if (vma_is_dax(vma))
2143 			return;
2144 		page = pmd_page(_pmd);
2145 		if (!PageDirty(page) && pmd_dirty(_pmd))
2146 			set_page_dirty(page);
2147 		if (!PageReferenced(page) && pmd_young(_pmd))
2148 			SetPageReferenced(page);
2149 		page_remove_rmap(page, true);
2150 		put_page(page);
2151 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2152 		return;
2153 	} else if (is_huge_zero_pmd(*pmd)) {
2154 		/*
2155 		 * FIXME: Do we want to invalidate secondary mmu by calling
2156 		 * mmu_notifier_invalidate_range() see comments below inside
2157 		 * __split_huge_pmd() ?
2158 		 *
2159 		 * We are going from a zero huge page write protected to zero
2160 		 * small page also write protected so it does not seems useful
2161 		 * to invalidate secondary mmu at this time.
2162 		 */
2163 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2164 	}
2165 
2166 	/*
2167 	 * Up to this point the pmd is present and huge and userland has the
2168 	 * whole access to the hugepage during the split (which happens in
2169 	 * place). If we overwrite the pmd with the not-huge version pointing
2170 	 * to the pte here (which of course we could if all CPUs were bug
2171 	 * free), userland could trigger a small page size TLB miss on the
2172 	 * small sized TLB while the hugepage TLB entry is still established in
2173 	 * the huge TLB. Some CPU doesn't like that.
2174 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2175 	 * 383 on page 93. Intel should be safe but is also warns that it's
2176 	 * only safe if the permission and cache attributes of the two entries
2177 	 * loaded in the two TLB is identical (which should be the case here).
2178 	 * But it is generally safer to never allow small and huge TLB entries
2179 	 * for the same virtual address to be loaded simultaneously. So instead
2180 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2181 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2182 	 * must remain set at all times on the pmd until the split is complete
2183 	 * for this pmd), then we flush the SMP TLB and finally we write the
2184 	 * non-huge version of the pmd entry with pmd_populate.
2185 	 */
2186 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2187 
2188 	pmd_migration = is_pmd_migration_entry(old_pmd);
2189 	if (unlikely(pmd_migration)) {
2190 		swp_entry_t entry;
2191 
2192 		entry = pmd_to_swp_entry(old_pmd);
2193 		page = pfn_to_page(swp_offset(entry));
2194 		write = is_write_migration_entry(entry);
2195 		young = false;
2196 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2197 	} else {
2198 		page = pmd_page(old_pmd);
2199 		if (pmd_dirty(old_pmd))
2200 			SetPageDirty(page);
2201 		write = pmd_write(old_pmd);
2202 		young = pmd_young(old_pmd);
2203 		soft_dirty = pmd_soft_dirty(old_pmd);
2204 	}
2205 	VM_BUG_ON_PAGE(!page_count(page), page);
2206 	page_ref_add(page, HPAGE_PMD_NR - 1);
2207 
2208 	/*
2209 	 * Withdraw the table only after we mark the pmd entry invalid.
2210 	 * This's critical for some architectures (Power).
2211 	 */
2212 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2213 	pmd_populate(mm, &_pmd, pgtable);
2214 
2215 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2216 		pte_t entry, *pte;
2217 		/*
2218 		 * Note that NUMA hinting access restrictions are not
2219 		 * transferred to avoid any possibility of altering
2220 		 * permissions across VMAs.
2221 		 */
2222 		if (freeze || pmd_migration) {
2223 			swp_entry_t swp_entry;
2224 			swp_entry = make_migration_entry(page + i, write);
2225 			entry = swp_entry_to_pte(swp_entry);
2226 			if (soft_dirty)
2227 				entry = pte_swp_mksoft_dirty(entry);
2228 		} else {
2229 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2230 			entry = maybe_mkwrite(entry, vma);
2231 			if (!write)
2232 				entry = pte_wrprotect(entry);
2233 			if (!young)
2234 				entry = pte_mkold(entry);
2235 			if (soft_dirty)
2236 				entry = pte_mksoft_dirty(entry);
2237 		}
2238 		pte = pte_offset_map(&_pmd, addr);
2239 		BUG_ON(!pte_none(*pte));
2240 		set_pte_at(mm, addr, pte, entry);
2241 		atomic_inc(&page[i]._mapcount);
2242 		pte_unmap(pte);
2243 	}
2244 
2245 	/*
2246 	 * Set PG_double_map before dropping compound_mapcount to avoid
2247 	 * false-negative page_mapped().
2248 	 */
2249 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2250 		for (i = 0; i < HPAGE_PMD_NR; i++)
2251 			atomic_inc(&page[i]._mapcount);
2252 	}
2253 
2254 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2255 		/* Last compound_mapcount is gone. */
2256 		__dec_node_page_state(page, NR_ANON_THPS);
2257 		if (TestClearPageDoubleMap(page)) {
2258 			/* No need in mapcount reference anymore */
2259 			for (i = 0; i < HPAGE_PMD_NR; i++)
2260 				atomic_dec(&page[i]._mapcount);
2261 		}
2262 	}
2263 
2264 	smp_wmb(); /* make pte visible before pmd */
2265 	pmd_populate(mm, pmd, pgtable);
2266 
2267 	if (freeze) {
2268 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2269 			page_remove_rmap(page + i, false);
2270 			put_page(page + i);
2271 		}
2272 	}
2273 }
2274 
2275 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2276 		unsigned long address, bool freeze, struct page *page)
2277 {
2278 	spinlock_t *ptl;
2279 	struct mmu_notifier_range range;
2280 
2281 	mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PMD_MASK,
2282 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2283 	mmu_notifier_invalidate_range_start(&range);
2284 	ptl = pmd_lock(vma->vm_mm, pmd);
2285 
2286 	/*
2287 	 * If caller asks to setup a migration entries, we need a page to check
2288 	 * pmd against. Otherwise we can end up replacing wrong page.
2289 	 */
2290 	VM_BUG_ON(freeze && !page);
2291 	if (page && page != pmd_page(*pmd))
2292 	        goto out;
2293 
2294 	if (pmd_trans_huge(*pmd)) {
2295 		page = pmd_page(*pmd);
2296 		if (PageMlocked(page))
2297 			clear_page_mlock(page);
2298 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2299 		goto out;
2300 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2301 out:
2302 	spin_unlock(ptl);
2303 	/*
2304 	 * No need to double call mmu_notifier->invalidate_range() callback.
2305 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2306 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2307 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2308 	 *    fault will trigger a flush_notify before pointing to a new page
2309 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2310 	 *    page in the meantime)
2311 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2312 	 *     to invalidate secondary tlb entry they are all still valid.
2313 	 *     any further changes to individual pte will notify. So no need
2314 	 *     to call mmu_notifier->invalidate_range()
2315 	 */
2316 	mmu_notifier_invalidate_range_only_end(&range);
2317 }
2318 
2319 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2320 		bool freeze, struct page *page)
2321 {
2322 	pgd_t *pgd;
2323 	p4d_t *p4d;
2324 	pud_t *pud;
2325 	pmd_t *pmd;
2326 
2327 	pgd = pgd_offset(vma->vm_mm, address);
2328 	if (!pgd_present(*pgd))
2329 		return;
2330 
2331 	p4d = p4d_offset(pgd, address);
2332 	if (!p4d_present(*p4d))
2333 		return;
2334 
2335 	pud = pud_offset(p4d, address);
2336 	if (!pud_present(*pud))
2337 		return;
2338 
2339 	pmd = pmd_offset(pud, address);
2340 
2341 	__split_huge_pmd(vma, pmd, address, freeze, page);
2342 }
2343 
2344 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2345 			     unsigned long start,
2346 			     unsigned long end,
2347 			     long adjust_next)
2348 {
2349 	/*
2350 	 * If the new start address isn't hpage aligned and it could
2351 	 * previously contain an hugepage: check if we need to split
2352 	 * an huge pmd.
2353 	 */
2354 	if (start & ~HPAGE_PMD_MASK &&
2355 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2356 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2357 		split_huge_pmd_address(vma, start, false, NULL);
2358 
2359 	/*
2360 	 * If the new end address isn't hpage aligned and it could
2361 	 * previously contain an hugepage: check if we need to split
2362 	 * an huge pmd.
2363 	 */
2364 	if (end & ~HPAGE_PMD_MASK &&
2365 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2366 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2367 		split_huge_pmd_address(vma, end, false, NULL);
2368 
2369 	/*
2370 	 * If we're also updating the vma->vm_next->vm_start, if the new
2371 	 * vm_next->vm_start isn't page aligned and it could previously
2372 	 * contain an hugepage: check if we need to split an huge pmd.
2373 	 */
2374 	if (adjust_next > 0) {
2375 		struct vm_area_struct *next = vma->vm_next;
2376 		unsigned long nstart = next->vm_start;
2377 		nstart += adjust_next << PAGE_SHIFT;
2378 		if (nstart & ~HPAGE_PMD_MASK &&
2379 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2380 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2381 			split_huge_pmd_address(next, nstart, false, NULL);
2382 	}
2383 }
2384 
2385 static void unmap_page(struct page *page)
2386 {
2387 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2388 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2389 	bool unmap_success;
2390 
2391 	VM_BUG_ON_PAGE(!PageHead(page), page);
2392 
2393 	if (PageAnon(page))
2394 		ttu_flags |= TTU_SPLIT_FREEZE;
2395 
2396 	unmap_success = try_to_unmap(page, ttu_flags);
2397 	VM_BUG_ON_PAGE(!unmap_success, page);
2398 }
2399 
2400 static void remap_page(struct page *page)
2401 {
2402 	int i;
2403 	if (PageTransHuge(page)) {
2404 		remove_migration_ptes(page, page, true);
2405 	} else {
2406 		for (i = 0; i < HPAGE_PMD_NR; i++)
2407 			remove_migration_ptes(page + i, page + i, true);
2408 	}
2409 }
2410 
2411 static void __split_huge_page_tail(struct page *head, int tail,
2412 		struct lruvec *lruvec, struct list_head *list)
2413 {
2414 	struct page *page_tail = head + tail;
2415 
2416 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2417 
2418 	/*
2419 	 * Clone page flags before unfreezing refcount.
2420 	 *
2421 	 * After successful get_page_unless_zero() might follow flags change,
2422 	 * for exmaple lock_page() which set PG_waiters.
2423 	 */
2424 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2425 	page_tail->flags |= (head->flags &
2426 			((1L << PG_referenced) |
2427 			 (1L << PG_swapbacked) |
2428 			 (1L << PG_swapcache) |
2429 			 (1L << PG_mlocked) |
2430 			 (1L << PG_uptodate) |
2431 			 (1L << PG_active) |
2432 			 (1L << PG_workingset) |
2433 			 (1L << PG_locked) |
2434 			 (1L << PG_unevictable) |
2435 			 (1L << PG_dirty)));
2436 
2437 	/* ->mapping in first tail page is compound_mapcount */
2438 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2439 			page_tail);
2440 	page_tail->mapping = head->mapping;
2441 	page_tail->index = head->index + tail;
2442 
2443 	/* Page flags must be visible before we make the page non-compound. */
2444 	smp_wmb();
2445 
2446 	/*
2447 	 * Clear PageTail before unfreezing page refcount.
2448 	 *
2449 	 * After successful get_page_unless_zero() might follow put_page()
2450 	 * which needs correct compound_head().
2451 	 */
2452 	clear_compound_head(page_tail);
2453 
2454 	/* Finally unfreeze refcount. Additional reference from page cache. */
2455 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2456 					  PageSwapCache(head)));
2457 
2458 	if (page_is_young(head))
2459 		set_page_young(page_tail);
2460 	if (page_is_idle(head))
2461 		set_page_idle(page_tail);
2462 
2463 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2464 
2465 	/*
2466 	 * always add to the tail because some iterators expect new
2467 	 * pages to show after the currently processed elements - e.g.
2468 	 * migrate_pages
2469 	 */
2470 	lru_add_page_tail(head, page_tail, lruvec, list);
2471 }
2472 
2473 static void __split_huge_page(struct page *page, struct list_head *list,
2474 		pgoff_t end, unsigned long flags)
2475 {
2476 	struct page *head = compound_head(page);
2477 	pg_data_t *pgdat = page_pgdat(head);
2478 	struct lruvec *lruvec;
2479 	int i;
2480 
2481 	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2482 
2483 	/* complete memcg works before add pages to LRU */
2484 	mem_cgroup_split_huge_fixup(head);
2485 
2486 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2487 		__split_huge_page_tail(head, i, lruvec, list);
2488 		/* Some pages can be beyond i_size: drop them from page cache */
2489 		if (head[i].index >= end) {
2490 			ClearPageDirty(head + i);
2491 			__delete_from_page_cache(head + i, NULL);
2492 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2493 				shmem_uncharge(head->mapping->host, 1);
2494 			put_page(head + i);
2495 		}
2496 	}
2497 
2498 	ClearPageCompound(head);
2499 	/* See comment in __split_huge_page_tail() */
2500 	if (PageAnon(head)) {
2501 		/* Additional pin to swap cache */
2502 		if (PageSwapCache(head))
2503 			page_ref_add(head, 2);
2504 		else
2505 			page_ref_inc(head);
2506 	} else {
2507 		/* Additional pin to page cache */
2508 		page_ref_add(head, 2);
2509 		xa_unlock(&head->mapping->i_pages);
2510 	}
2511 
2512 	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2513 
2514 	remap_page(head);
2515 
2516 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2517 		struct page *subpage = head + i;
2518 		if (subpage == page)
2519 			continue;
2520 		unlock_page(subpage);
2521 
2522 		/*
2523 		 * Subpages may be freed if there wasn't any mapping
2524 		 * like if add_to_swap() is running on a lru page that
2525 		 * had its mapping zapped. And freeing these pages
2526 		 * requires taking the lru_lock so we do the put_page
2527 		 * of the tail pages after the split is complete.
2528 		 */
2529 		put_page(subpage);
2530 	}
2531 }
2532 
2533 int total_mapcount(struct page *page)
2534 {
2535 	int i, compound, ret;
2536 
2537 	VM_BUG_ON_PAGE(PageTail(page), page);
2538 
2539 	if (likely(!PageCompound(page)))
2540 		return atomic_read(&page->_mapcount) + 1;
2541 
2542 	compound = compound_mapcount(page);
2543 	if (PageHuge(page))
2544 		return compound;
2545 	ret = compound;
2546 	for (i = 0; i < HPAGE_PMD_NR; i++)
2547 		ret += atomic_read(&page[i]._mapcount) + 1;
2548 	/* File pages has compound_mapcount included in _mapcount */
2549 	if (!PageAnon(page))
2550 		return ret - compound * HPAGE_PMD_NR;
2551 	if (PageDoubleMap(page))
2552 		ret -= HPAGE_PMD_NR;
2553 	return ret;
2554 }
2555 
2556 /*
2557  * This calculates accurately how many mappings a transparent hugepage
2558  * has (unlike page_mapcount() which isn't fully accurate). This full
2559  * accuracy is primarily needed to know if copy-on-write faults can
2560  * reuse the page and change the mapping to read-write instead of
2561  * copying them. At the same time this returns the total_mapcount too.
2562  *
2563  * The function returns the highest mapcount any one of the subpages
2564  * has. If the return value is one, even if different processes are
2565  * mapping different subpages of the transparent hugepage, they can
2566  * all reuse it, because each process is reusing a different subpage.
2567  *
2568  * The total_mapcount is instead counting all virtual mappings of the
2569  * subpages. If the total_mapcount is equal to "one", it tells the
2570  * caller all mappings belong to the same "mm" and in turn the
2571  * anon_vma of the transparent hugepage can become the vma->anon_vma
2572  * local one as no other process may be mapping any of the subpages.
2573  *
2574  * It would be more accurate to replace page_mapcount() with
2575  * page_trans_huge_mapcount(), however we only use
2576  * page_trans_huge_mapcount() in the copy-on-write faults where we
2577  * need full accuracy to avoid breaking page pinning, because
2578  * page_trans_huge_mapcount() is slower than page_mapcount().
2579  */
2580 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2581 {
2582 	int i, ret, _total_mapcount, mapcount;
2583 
2584 	/* hugetlbfs shouldn't call it */
2585 	VM_BUG_ON_PAGE(PageHuge(page), page);
2586 
2587 	if (likely(!PageTransCompound(page))) {
2588 		mapcount = atomic_read(&page->_mapcount) + 1;
2589 		if (total_mapcount)
2590 			*total_mapcount = mapcount;
2591 		return mapcount;
2592 	}
2593 
2594 	page = compound_head(page);
2595 
2596 	_total_mapcount = ret = 0;
2597 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2598 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2599 		ret = max(ret, mapcount);
2600 		_total_mapcount += mapcount;
2601 	}
2602 	if (PageDoubleMap(page)) {
2603 		ret -= 1;
2604 		_total_mapcount -= HPAGE_PMD_NR;
2605 	}
2606 	mapcount = compound_mapcount(page);
2607 	ret += mapcount;
2608 	_total_mapcount += mapcount;
2609 	if (total_mapcount)
2610 		*total_mapcount = _total_mapcount;
2611 	return ret;
2612 }
2613 
2614 /* Racy check whether the huge page can be split */
2615 bool can_split_huge_page(struct page *page, int *pextra_pins)
2616 {
2617 	int extra_pins;
2618 
2619 	/* Additional pins from page cache */
2620 	if (PageAnon(page))
2621 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2622 	else
2623 		extra_pins = HPAGE_PMD_NR;
2624 	if (pextra_pins)
2625 		*pextra_pins = extra_pins;
2626 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2627 }
2628 
2629 /*
2630  * This function splits huge page into normal pages. @page can point to any
2631  * subpage of huge page to split. Split doesn't change the position of @page.
2632  *
2633  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2634  * The huge page must be locked.
2635  *
2636  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2637  *
2638  * Both head page and tail pages will inherit mapping, flags, and so on from
2639  * the hugepage.
2640  *
2641  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2642  * they are not mapped.
2643  *
2644  * Returns 0 if the hugepage is split successfully.
2645  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2646  * us.
2647  */
2648 int split_huge_page_to_list(struct page *page, struct list_head *list)
2649 {
2650 	struct page *head = compound_head(page);
2651 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2652 	struct anon_vma *anon_vma = NULL;
2653 	struct address_space *mapping = NULL;
2654 	int count, mapcount, extra_pins, ret;
2655 	bool mlocked;
2656 	unsigned long flags;
2657 	pgoff_t end;
2658 
2659 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2660 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2661 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2662 
2663 	if (PageWriteback(page))
2664 		return -EBUSY;
2665 
2666 	if (PageAnon(head)) {
2667 		/*
2668 		 * The caller does not necessarily hold an mmap_sem that would
2669 		 * prevent the anon_vma disappearing so we first we take a
2670 		 * reference to it and then lock the anon_vma for write. This
2671 		 * is similar to page_lock_anon_vma_read except the write lock
2672 		 * is taken to serialise against parallel split or collapse
2673 		 * operations.
2674 		 */
2675 		anon_vma = page_get_anon_vma(head);
2676 		if (!anon_vma) {
2677 			ret = -EBUSY;
2678 			goto out;
2679 		}
2680 		end = -1;
2681 		mapping = NULL;
2682 		anon_vma_lock_write(anon_vma);
2683 	} else {
2684 		mapping = head->mapping;
2685 
2686 		/* Truncated ? */
2687 		if (!mapping) {
2688 			ret = -EBUSY;
2689 			goto out;
2690 		}
2691 
2692 		anon_vma = NULL;
2693 		i_mmap_lock_read(mapping);
2694 
2695 		/*
2696 		 *__split_huge_page() may need to trim off pages beyond EOF:
2697 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2698 		 * which cannot be nested inside the page tree lock. So note
2699 		 * end now: i_size itself may be changed at any moment, but
2700 		 * head page lock is good enough to serialize the trimming.
2701 		 */
2702 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2703 	}
2704 
2705 	/*
2706 	 * Racy check if we can split the page, before unmap_page() will
2707 	 * split PMDs
2708 	 */
2709 	if (!can_split_huge_page(head, &extra_pins)) {
2710 		ret = -EBUSY;
2711 		goto out_unlock;
2712 	}
2713 
2714 	mlocked = PageMlocked(page);
2715 	unmap_page(head);
2716 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2717 
2718 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2719 	if (mlocked)
2720 		lru_add_drain();
2721 
2722 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2723 	spin_lock_irqsave(&pgdata->lru_lock, flags);
2724 
2725 	if (mapping) {
2726 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2727 
2728 		/*
2729 		 * Check if the head page is present in page cache.
2730 		 * We assume all tail are present too, if head is there.
2731 		 */
2732 		xa_lock(&mapping->i_pages);
2733 		if (xas_load(&xas) != head)
2734 			goto fail;
2735 	}
2736 
2737 	/* Prevent deferred_split_scan() touching ->_refcount */
2738 	spin_lock(&pgdata->split_queue_lock);
2739 	count = page_count(head);
2740 	mapcount = total_mapcount(head);
2741 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2742 		if (!list_empty(page_deferred_list(head))) {
2743 			pgdata->split_queue_len--;
2744 			list_del(page_deferred_list(head));
2745 		}
2746 		if (mapping)
2747 			__dec_node_page_state(page, NR_SHMEM_THPS);
2748 		spin_unlock(&pgdata->split_queue_lock);
2749 		__split_huge_page(page, list, end, flags);
2750 		if (PageSwapCache(head)) {
2751 			swp_entry_t entry = { .val = page_private(head) };
2752 
2753 			ret = split_swap_cluster(entry);
2754 		} else
2755 			ret = 0;
2756 	} else {
2757 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2758 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2759 					mapcount, count);
2760 			if (PageTail(page))
2761 				dump_page(head, NULL);
2762 			dump_page(page, "total_mapcount(head) > 0");
2763 			BUG();
2764 		}
2765 		spin_unlock(&pgdata->split_queue_lock);
2766 fail:		if (mapping)
2767 			xa_unlock(&mapping->i_pages);
2768 		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2769 		remap_page(head);
2770 		ret = -EBUSY;
2771 	}
2772 
2773 out_unlock:
2774 	if (anon_vma) {
2775 		anon_vma_unlock_write(anon_vma);
2776 		put_anon_vma(anon_vma);
2777 	}
2778 	if (mapping)
2779 		i_mmap_unlock_read(mapping);
2780 out:
2781 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2782 	return ret;
2783 }
2784 
2785 void free_transhuge_page(struct page *page)
2786 {
2787 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2788 	unsigned long flags;
2789 
2790 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2791 	if (!list_empty(page_deferred_list(page))) {
2792 		pgdata->split_queue_len--;
2793 		list_del(page_deferred_list(page));
2794 	}
2795 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2796 	free_compound_page(page);
2797 }
2798 
2799 void deferred_split_huge_page(struct page *page)
2800 {
2801 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2802 	unsigned long flags;
2803 
2804 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2805 
2806 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2807 	if (list_empty(page_deferred_list(page))) {
2808 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2809 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2810 		pgdata->split_queue_len++;
2811 	}
2812 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2813 }
2814 
2815 static unsigned long deferred_split_count(struct shrinker *shrink,
2816 		struct shrink_control *sc)
2817 {
2818 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2819 	return READ_ONCE(pgdata->split_queue_len);
2820 }
2821 
2822 static unsigned long deferred_split_scan(struct shrinker *shrink,
2823 		struct shrink_control *sc)
2824 {
2825 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2826 	unsigned long flags;
2827 	LIST_HEAD(list), *pos, *next;
2828 	struct page *page;
2829 	int split = 0;
2830 
2831 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2832 	/* Take pin on all head pages to avoid freeing them under us */
2833 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2834 		page = list_entry((void *)pos, struct page, mapping);
2835 		page = compound_head(page);
2836 		if (get_page_unless_zero(page)) {
2837 			list_move(page_deferred_list(page), &list);
2838 		} else {
2839 			/* We lost race with put_compound_page() */
2840 			list_del_init(page_deferred_list(page));
2841 			pgdata->split_queue_len--;
2842 		}
2843 		if (!--sc->nr_to_scan)
2844 			break;
2845 	}
2846 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2847 
2848 	list_for_each_safe(pos, next, &list) {
2849 		page = list_entry((void *)pos, struct page, mapping);
2850 		if (!trylock_page(page))
2851 			goto next;
2852 		/* split_huge_page() removes page from list on success */
2853 		if (!split_huge_page(page))
2854 			split++;
2855 		unlock_page(page);
2856 next:
2857 		put_page(page);
2858 	}
2859 
2860 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2861 	list_splice_tail(&list, &pgdata->split_queue);
2862 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2863 
2864 	/*
2865 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2866 	 * This can happen if pages were freed under us.
2867 	 */
2868 	if (!split && list_empty(&pgdata->split_queue))
2869 		return SHRINK_STOP;
2870 	return split;
2871 }
2872 
2873 static struct shrinker deferred_split_shrinker = {
2874 	.count_objects = deferred_split_count,
2875 	.scan_objects = deferred_split_scan,
2876 	.seeks = DEFAULT_SEEKS,
2877 	.flags = SHRINKER_NUMA_AWARE,
2878 };
2879 
2880 #ifdef CONFIG_DEBUG_FS
2881 static int split_huge_pages_set(void *data, u64 val)
2882 {
2883 	struct zone *zone;
2884 	struct page *page;
2885 	unsigned long pfn, max_zone_pfn;
2886 	unsigned long total = 0, split = 0;
2887 
2888 	if (val != 1)
2889 		return -EINVAL;
2890 
2891 	for_each_populated_zone(zone) {
2892 		max_zone_pfn = zone_end_pfn(zone);
2893 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2894 			if (!pfn_valid(pfn))
2895 				continue;
2896 
2897 			page = pfn_to_page(pfn);
2898 			if (!get_page_unless_zero(page))
2899 				continue;
2900 
2901 			if (zone != page_zone(page))
2902 				goto next;
2903 
2904 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2905 				goto next;
2906 
2907 			total++;
2908 			lock_page(page);
2909 			if (!split_huge_page(page))
2910 				split++;
2911 			unlock_page(page);
2912 next:
2913 			put_page(page);
2914 		}
2915 	}
2916 
2917 	pr_info("%lu of %lu THP split\n", split, total);
2918 
2919 	return 0;
2920 }
2921 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2922 		"%llu\n");
2923 
2924 static int __init split_huge_pages_debugfs(void)
2925 {
2926 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2927 			    &split_huge_pages_fops);
2928 	return 0;
2929 }
2930 late_initcall(split_huge_pages_debugfs);
2931 #endif
2932 
2933 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2934 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2935 		struct page *page)
2936 {
2937 	struct vm_area_struct *vma = pvmw->vma;
2938 	struct mm_struct *mm = vma->vm_mm;
2939 	unsigned long address = pvmw->address;
2940 	pmd_t pmdval;
2941 	swp_entry_t entry;
2942 	pmd_t pmdswp;
2943 
2944 	if (!(pvmw->pmd && !pvmw->pte))
2945 		return;
2946 
2947 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2948 	pmdval = *pvmw->pmd;
2949 	pmdp_invalidate(vma, address, pvmw->pmd);
2950 	if (pmd_dirty(pmdval))
2951 		set_page_dirty(page);
2952 	entry = make_migration_entry(page, pmd_write(pmdval));
2953 	pmdswp = swp_entry_to_pmd(entry);
2954 	if (pmd_soft_dirty(pmdval))
2955 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2956 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2957 	page_remove_rmap(page, true);
2958 	put_page(page);
2959 }
2960 
2961 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2962 {
2963 	struct vm_area_struct *vma = pvmw->vma;
2964 	struct mm_struct *mm = vma->vm_mm;
2965 	unsigned long address = pvmw->address;
2966 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2967 	pmd_t pmde;
2968 	swp_entry_t entry;
2969 
2970 	if (!(pvmw->pmd && !pvmw->pte))
2971 		return;
2972 
2973 	entry = pmd_to_swp_entry(*pvmw->pmd);
2974 	get_page(new);
2975 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2976 	if (pmd_swp_soft_dirty(*pvmw->pmd))
2977 		pmde = pmd_mksoft_dirty(pmde);
2978 	if (is_write_migration_entry(entry))
2979 		pmde = maybe_pmd_mkwrite(pmde, vma);
2980 
2981 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2982 	if (PageAnon(new))
2983 		page_add_anon_rmap(new, vma, mmun_start, true);
2984 	else
2985 		page_add_file_rmap(new, true);
2986 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2987 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2988 		mlock_vma_page(new);
2989 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2990 }
2991 #endif
2992