xref: /openbmc/linux/mm/huge_memory.c (revision 2bad466c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 
41 #include <asm/tlb.h>
42 #include <asm/pgalloc.h>
43 #include "internal.h"
44 #include "swap.h"
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/thp.h>
48 
49 /*
50  * By default, transparent hugepage support is disabled in order to avoid
51  * risking an increased memory footprint for applications that are not
52  * guaranteed to benefit from it. When transparent hugepage support is
53  * enabled, it is for all mappings, and khugepaged scans all mappings.
54  * Defrag is invoked by khugepaged hugepage allocations and by page faults
55  * for all hugepage allocations.
56  */
57 unsigned long transparent_hugepage_flags __read_mostly =
58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
59 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
60 #endif
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
62 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
63 #endif
64 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
65 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
66 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
67 
68 static struct shrinker deferred_split_shrinker;
69 
70 static atomic_t huge_zero_refcount;
71 struct page *huge_zero_page __read_mostly;
72 unsigned long huge_zero_pfn __read_mostly = ~0UL;
73 
74 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
75 			bool smaps, bool in_pf, bool enforce_sysfs)
76 {
77 	if (!vma->vm_mm)		/* vdso */
78 		return false;
79 
80 	/*
81 	 * Explicitly disabled through madvise or prctl, or some
82 	 * architectures may disable THP for some mappings, for
83 	 * example, s390 kvm.
84 	 * */
85 	if ((vm_flags & VM_NOHUGEPAGE) ||
86 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
87 		return false;
88 	/*
89 	 * If the hardware/firmware marked hugepage support disabled.
90 	 */
91 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
92 		return false;
93 
94 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
95 	if (vma_is_dax(vma))
96 		return in_pf;
97 
98 	/*
99 	 * Special VMA and hugetlb VMA.
100 	 * Must be checked after dax since some dax mappings may have
101 	 * VM_MIXEDMAP set.
102 	 */
103 	if (vm_flags & VM_NO_KHUGEPAGED)
104 		return false;
105 
106 	/*
107 	 * Check alignment for file vma and size for both file and anon vma.
108 	 *
109 	 * Skip the check for page fault. Huge fault does the check in fault
110 	 * handlers. And this check is not suitable for huge PUD fault.
111 	 */
112 	if (!in_pf &&
113 	    !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
114 		return false;
115 
116 	/*
117 	 * Enabled via shmem mount options or sysfs settings.
118 	 * Must be done before hugepage flags check since shmem has its
119 	 * own flags.
120 	 */
121 	if (!in_pf && shmem_file(vma->vm_file))
122 		return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
123 				     !enforce_sysfs, vma->vm_mm, vm_flags);
124 
125 	/* Enforce sysfs THP requirements as necessary */
126 	if (enforce_sysfs &&
127 	    (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
128 					   !hugepage_flags_always())))
129 		return false;
130 
131 	/* Only regular file is valid */
132 	if (!in_pf && file_thp_enabled(vma))
133 		return true;
134 
135 	if (!vma_is_anonymous(vma))
136 		return false;
137 
138 	if (vma_is_temporary_stack(vma))
139 		return false;
140 
141 	/*
142 	 * THPeligible bit of smaps should show 1 for proper VMAs even
143 	 * though anon_vma is not initialized yet.
144 	 *
145 	 * Allow page fault since anon_vma may be not initialized until
146 	 * the first page fault.
147 	 */
148 	if (!vma->anon_vma)
149 		return (smaps || in_pf);
150 
151 	return true;
152 }
153 
154 static bool get_huge_zero_page(void)
155 {
156 	struct page *zero_page;
157 retry:
158 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
159 		return true;
160 
161 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
162 			HPAGE_PMD_ORDER);
163 	if (!zero_page) {
164 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
165 		return false;
166 	}
167 	preempt_disable();
168 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
169 		preempt_enable();
170 		__free_pages(zero_page, compound_order(zero_page));
171 		goto retry;
172 	}
173 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
174 
175 	/* We take additional reference here. It will be put back by shrinker */
176 	atomic_set(&huge_zero_refcount, 2);
177 	preempt_enable();
178 	count_vm_event(THP_ZERO_PAGE_ALLOC);
179 	return true;
180 }
181 
182 static void put_huge_zero_page(void)
183 {
184 	/*
185 	 * Counter should never go to zero here. Only shrinker can put
186 	 * last reference.
187 	 */
188 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
189 }
190 
191 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
192 {
193 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
194 		return READ_ONCE(huge_zero_page);
195 
196 	if (!get_huge_zero_page())
197 		return NULL;
198 
199 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
200 		put_huge_zero_page();
201 
202 	return READ_ONCE(huge_zero_page);
203 }
204 
205 void mm_put_huge_zero_page(struct mm_struct *mm)
206 {
207 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
208 		put_huge_zero_page();
209 }
210 
211 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
212 					struct shrink_control *sc)
213 {
214 	/* we can free zero page only if last reference remains */
215 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
216 }
217 
218 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
219 				       struct shrink_control *sc)
220 {
221 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
222 		struct page *zero_page = xchg(&huge_zero_page, NULL);
223 		BUG_ON(zero_page == NULL);
224 		WRITE_ONCE(huge_zero_pfn, ~0UL);
225 		__free_pages(zero_page, compound_order(zero_page));
226 		return HPAGE_PMD_NR;
227 	}
228 
229 	return 0;
230 }
231 
232 static struct shrinker huge_zero_page_shrinker = {
233 	.count_objects = shrink_huge_zero_page_count,
234 	.scan_objects = shrink_huge_zero_page_scan,
235 	.seeks = DEFAULT_SEEKS,
236 };
237 
238 #ifdef CONFIG_SYSFS
239 static ssize_t enabled_show(struct kobject *kobj,
240 			    struct kobj_attribute *attr, char *buf)
241 {
242 	const char *output;
243 
244 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
245 		output = "[always] madvise never";
246 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
247 			  &transparent_hugepage_flags))
248 		output = "always [madvise] never";
249 	else
250 		output = "always madvise [never]";
251 
252 	return sysfs_emit(buf, "%s\n", output);
253 }
254 
255 static ssize_t enabled_store(struct kobject *kobj,
256 			     struct kobj_attribute *attr,
257 			     const char *buf, size_t count)
258 {
259 	ssize_t ret = count;
260 
261 	if (sysfs_streq(buf, "always")) {
262 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
264 	} else if (sysfs_streq(buf, "madvise")) {
265 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
266 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
267 	} else if (sysfs_streq(buf, "never")) {
268 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
269 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 	} else
271 		ret = -EINVAL;
272 
273 	if (ret > 0) {
274 		int err = start_stop_khugepaged();
275 		if (err)
276 			ret = err;
277 	}
278 	return ret;
279 }
280 
281 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
282 
283 ssize_t single_hugepage_flag_show(struct kobject *kobj,
284 				  struct kobj_attribute *attr, char *buf,
285 				  enum transparent_hugepage_flag flag)
286 {
287 	return sysfs_emit(buf, "%d\n",
288 			  !!test_bit(flag, &transparent_hugepage_flags));
289 }
290 
291 ssize_t single_hugepage_flag_store(struct kobject *kobj,
292 				 struct kobj_attribute *attr,
293 				 const char *buf, size_t count,
294 				 enum transparent_hugepage_flag flag)
295 {
296 	unsigned long value;
297 	int ret;
298 
299 	ret = kstrtoul(buf, 10, &value);
300 	if (ret < 0)
301 		return ret;
302 	if (value > 1)
303 		return -EINVAL;
304 
305 	if (value)
306 		set_bit(flag, &transparent_hugepage_flags);
307 	else
308 		clear_bit(flag, &transparent_hugepage_flags);
309 
310 	return count;
311 }
312 
313 static ssize_t defrag_show(struct kobject *kobj,
314 			   struct kobj_attribute *attr, char *buf)
315 {
316 	const char *output;
317 
318 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
319 		     &transparent_hugepage_flags))
320 		output = "[always] defer defer+madvise madvise never";
321 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
322 			  &transparent_hugepage_flags))
323 		output = "always [defer] defer+madvise madvise never";
324 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
325 			  &transparent_hugepage_flags))
326 		output = "always defer [defer+madvise] madvise never";
327 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
328 			  &transparent_hugepage_flags))
329 		output = "always defer defer+madvise [madvise] never";
330 	else
331 		output = "always defer defer+madvise madvise [never]";
332 
333 	return sysfs_emit(buf, "%s\n", output);
334 }
335 
336 static ssize_t defrag_store(struct kobject *kobj,
337 			    struct kobj_attribute *attr,
338 			    const char *buf, size_t count)
339 {
340 	if (sysfs_streq(buf, "always")) {
341 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
342 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
343 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
344 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
345 	} else if (sysfs_streq(buf, "defer+madvise")) {
346 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
347 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
348 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
349 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
350 	} else if (sysfs_streq(buf, "defer")) {
351 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
352 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
353 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
354 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
355 	} else if (sysfs_streq(buf, "madvise")) {
356 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
357 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
358 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
359 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
360 	} else if (sysfs_streq(buf, "never")) {
361 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
362 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
363 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
364 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
365 	} else
366 		return -EINVAL;
367 
368 	return count;
369 }
370 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
371 
372 static ssize_t use_zero_page_show(struct kobject *kobj,
373 				  struct kobj_attribute *attr, char *buf)
374 {
375 	return single_hugepage_flag_show(kobj, attr, buf,
376 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static ssize_t use_zero_page_store(struct kobject *kobj,
379 		struct kobj_attribute *attr, const char *buf, size_t count)
380 {
381 	return single_hugepage_flag_store(kobj, attr, buf, count,
382 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383 }
384 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
385 
386 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
387 				   struct kobj_attribute *attr, char *buf)
388 {
389 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
390 }
391 static struct kobj_attribute hpage_pmd_size_attr =
392 	__ATTR_RO(hpage_pmd_size);
393 
394 static struct attribute *hugepage_attr[] = {
395 	&enabled_attr.attr,
396 	&defrag_attr.attr,
397 	&use_zero_page_attr.attr,
398 	&hpage_pmd_size_attr.attr,
399 #ifdef CONFIG_SHMEM
400 	&shmem_enabled_attr.attr,
401 #endif
402 	NULL,
403 };
404 
405 static const struct attribute_group hugepage_attr_group = {
406 	.attrs = hugepage_attr,
407 };
408 
409 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
410 {
411 	int err;
412 
413 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
414 	if (unlikely(!*hugepage_kobj)) {
415 		pr_err("failed to create transparent hugepage kobject\n");
416 		return -ENOMEM;
417 	}
418 
419 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
420 	if (err) {
421 		pr_err("failed to register transparent hugepage group\n");
422 		goto delete_obj;
423 	}
424 
425 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
426 	if (err) {
427 		pr_err("failed to register transparent hugepage group\n");
428 		goto remove_hp_group;
429 	}
430 
431 	return 0;
432 
433 remove_hp_group:
434 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
435 delete_obj:
436 	kobject_put(*hugepage_kobj);
437 	return err;
438 }
439 
440 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
441 {
442 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
443 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
444 	kobject_put(hugepage_kobj);
445 }
446 #else
447 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
448 {
449 	return 0;
450 }
451 
452 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
453 {
454 }
455 #endif /* CONFIG_SYSFS */
456 
457 static int __init hugepage_init(void)
458 {
459 	int err;
460 	struct kobject *hugepage_kobj;
461 
462 	if (!has_transparent_hugepage()) {
463 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
464 		return -EINVAL;
465 	}
466 
467 	/*
468 	 * hugepages can't be allocated by the buddy allocator
469 	 */
470 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
471 	/*
472 	 * we use page->mapping and page->index in second tail page
473 	 * as list_head: assuming THP order >= 2
474 	 */
475 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
476 
477 	err = hugepage_init_sysfs(&hugepage_kobj);
478 	if (err)
479 		goto err_sysfs;
480 
481 	err = khugepaged_init();
482 	if (err)
483 		goto err_slab;
484 
485 	err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
486 	if (err)
487 		goto err_hzp_shrinker;
488 	err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
489 	if (err)
490 		goto err_split_shrinker;
491 
492 	/*
493 	 * By default disable transparent hugepages on smaller systems,
494 	 * where the extra memory used could hurt more than TLB overhead
495 	 * is likely to save.  The admin can still enable it through /sys.
496 	 */
497 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
498 		transparent_hugepage_flags = 0;
499 		return 0;
500 	}
501 
502 	err = start_stop_khugepaged();
503 	if (err)
504 		goto err_khugepaged;
505 
506 	return 0;
507 err_khugepaged:
508 	unregister_shrinker(&deferred_split_shrinker);
509 err_split_shrinker:
510 	unregister_shrinker(&huge_zero_page_shrinker);
511 err_hzp_shrinker:
512 	khugepaged_destroy();
513 err_slab:
514 	hugepage_exit_sysfs(hugepage_kobj);
515 err_sysfs:
516 	return err;
517 }
518 subsys_initcall(hugepage_init);
519 
520 static int __init setup_transparent_hugepage(char *str)
521 {
522 	int ret = 0;
523 	if (!str)
524 		goto out;
525 	if (!strcmp(str, "always")) {
526 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
527 			&transparent_hugepage_flags);
528 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
529 			  &transparent_hugepage_flags);
530 		ret = 1;
531 	} else if (!strcmp(str, "madvise")) {
532 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
533 			  &transparent_hugepage_flags);
534 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
535 			&transparent_hugepage_flags);
536 		ret = 1;
537 	} else if (!strcmp(str, "never")) {
538 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
539 			  &transparent_hugepage_flags);
540 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
541 			  &transparent_hugepage_flags);
542 		ret = 1;
543 	}
544 out:
545 	if (!ret)
546 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
547 	return ret;
548 }
549 __setup("transparent_hugepage=", setup_transparent_hugepage);
550 
551 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
552 {
553 	if (likely(vma->vm_flags & VM_WRITE))
554 		pmd = pmd_mkwrite(pmd);
555 	return pmd;
556 }
557 
558 #ifdef CONFIG_MEMCG
559 static inline
560 struct deferred_split *get_deferred_split_queue(struct folio *folio)
561 {
562 	struct mem_cgroup *memcg = folio_memcg(folio);
563 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
564 
565 	if (memcg)
566 		return &memcg->deferred_split_queue;
567 	else
568 		return &pgdat->deferred_split_queue;
569 }
570 #else
571 static inline
572 struct deferred_split *get_deferred_split_queue(struct folio *folio)
573 {
574 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
575 
576 	return &pgdat->deferred_split_queue;
577 }
578 #endif
579 
580 void prep_transhuge_page(struct page *page)
581 {
582 	struct folio *folio = (struct folio *)page;
583 
584 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
585 	INIT_LIST_HEAD(&folio->_deferred_list);
586 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
587 }
588 
589 static inline bool is_transparent_hugepage(struct page *page)
590 {
591 	struct folio *folio;
592 
593 	if (!PageCompound(page))
594 		return false;
595 
596 	folio = page_folio(page);
597 	return is_huge_zero_page(&folio->page) ||
598 	       folio->_folio_dtor == TRANSHUGE_PAGE_DTOR;
599 }
600 
601 static unsigned long __thp_get_unmapped_area(struct file *filp,
602 		unsigned long addr, unsigned long len,
603 		loff_t off, unsigned long flags, unsigned long size)
604 {
605 	loff_t off_end = off + len;
606 	loff_t off_align = round_up(off, size);
607 	unsigned long len_pad, ret;
608 
609 	if (off_end <= off_align || (off_end - off_align) < size)
610 		return 0;
611 
612 	len_pad = len + size;
613 	if (len_pad < len || (off + len_pad) < off)
614 		return 0;
615 
616 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
617 					      off >> PAGE_SHIFT, flags);
618 
619 	/*
620 	 * The failure might be due to length padding. The caller will retry
621 	 * without the padding.
622 	 */
623 	if (IS_ERR_VALUE(ret))
624 		return 0;
625 
626 	/*
627 	 * Do not try to align to THP boundary if allocation at the address
628 	 * hint succeeds.
629 	 */
630 	if (ret == addr)
631 		return addr;
632 
633 	ret += (off - ret) & (size - 1);
634 	return ret;
635 }
636 
637 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
638 		unsigned long len, unsigned long pgoff, unsigned long flags)
639 {
640 	unsigned long ret;
641 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
642 
643 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
644 	if (ret)
645 		return ret;
646 
647 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
648 }
649 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
650 
651 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
652 			struct page *page, gfp_t gfp)
653 {
654 	struct vm_area_struct *vma = vmf->vma;
655 	struct folio *folio = page_folio(page);
656 	pgtable_t pgtable;
657 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
658 	vm_fault_t ret = 0;
659 
660 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
661 
662 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
663 		folio_put(folio);
664 		count_vm_event(THP_FAULT_FALLBACK);
665 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
666 		return VM_FAULT_FALLBACK;
667 	}
668 	folio_throttle_swaprate(folio, gfp);
669 
670 	pgtable = pte_alloc_one(vma->vm_mm);
671 	if (unlikely(!pgtable)) {
672 		ret = VM_FAULT_OOM;
673 		goto release;
674 	}
675 
676 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
677 	/*
678 	 * The memory barrier inside __folio_mark_uptodate makes sure that
679 	 * clear_huge_page writes become visible before the set_pmd_at()
680 	 * write.
681 	 */
682 	__folio_mark_uptodate(folio);
683 
684 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
685 	if (unlikely(!pmd_none(*vmf->pmd))) {
686 		goto unlock_release;
687 	} else {
688 		pmd_t entry;
689 
690 		ret = check_stable_address_space(vma->vm_mm);
691 		if (ret)
692 			goto unlock_release;
693 
694 		/* Deliver the page fault to userland */
695 		if (userfaultfd_missing(vma)) {
696 			spin_unlock(vmf->ptl);
697 			folio_put(folio);
698 			pte_free(vma->vm_mm, pgtable);
699 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
700 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
701 			return ret;
702 		}
703 
704 		entry = mk_huge_pmd(page, vma->vm_page_prot);
705 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
706 		folio_add_new_anon_rmap(folio, vma, haddr);
707 		folio_add_lru_vma(folio, vma);
708 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
709 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
710 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
711 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
712 		mm_inc_nr_ptes(vma->vm_mm);
713 		spin_unlock(vmf->ptl);
714 		count_vm_event(THP_FAULT_ALLOC);
715 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
716 	}
717 
718 	return 0;
719 unlock_release:
720 	spin_unlock(vmf->ptl);
721 release:
722 	if (pgtable)
723 		pte_free(vma->vm_mm, pgtable);
724 	folio_put(folio);
725 	return ret;
726 
727 }
728 
729 /*
730  * always: directly stall for all thp allocations
731  * defer: wake kswapd and fail if not immediately available
732  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
733  *		  fail if not immediately available
734  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
735  *	    available
736  * never: never stall for any thp allocation
737  */
738 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
739 {
740 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
741 
742 	/* Always do synchronous compaction */
743 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
744 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
745 
746 	/* Kick kcompactd and fail quickly */
747 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
748 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
749 
750 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
751 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
752 		return GFP_TRANSHUGE_LIGHT |
753 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
754 					__GFP_KSWAPD_RECLAIM);
755 
756 	/* Only do synchronous compaction if madvised */
757 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
758 		return GFP_TRANSHUGE_LIGHT |
759 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
760 
761 	return GFP_TRANSHUGE_LIGHT;
762 }
763 
764 /* Caller must hold page table lock. */
765 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
766 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
767 		struct page *zero_page)
768 {
769 	pmd_t entry;
770 	if (!pmd_none(*pmd))
771 		return;
772 	entry = mk_pmd(zero_page, vma->vm_page_prot);
773 	entry = pmd_mkhuge(entry);
774 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 	set_pmd_at(mm, haddr, pmd, entry);
776 	mm_inc_nr_ptes(mm);
777 }
778 
779 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
780 {
781 	struct vm_area_struct *vma = vmf->vma;
782 	gfp_t gfp;
783 	struct folio *folio;
784 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
785 
786 	if (!transhuge_vma_suitable(vma, haddr))
787 		return VM_FAULT_FALLBACK;
788 	if (unlikely(anon_vma_prepare(vma)))
789 		return VM_FAULT_OOM;
790 	khugepaged_enter_vma(vma, vma->vm_flags);
791 
792 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
793 			!mm_forbids_zeropage(vma->vm_mm) &&
794 			transparent_hugepage_use_zero_page()) {
795 		pgtable_t pgtable;
796 		struct page *zero_page;
797 		vm_fault_t ret;
798 		pgtable = pte_alloc_one(vma->vm_mm);
799 		if (unlikely(!pgtable))
800 			return VM_FAULT_OOM;
801 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
802 		if (unlikely(!zero_page)) {
803 			pte_free(vma->vm_mm, pgtable);
804 			count_vm_event(THP_FAULT_FALLBACK);
805 			return VM_FAULT_FALLBACK;
806 		}
807 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
808 		ret = 0;
809 		if (pmd_none(*vmf->pmd)) {
810 			ret = check_stable_address_space(vma->vm_mm);
811 			if (ret) {
812 				spin_unlock(vmf->ptl);
813 				pte_free(vma->vm_mm, pgtable);
814 			} else if (userfaultfd_missing(vma)) {
815 				spin_unlock(vmf->ptl);
816 				pte_free(vma->vm_mm, pgtable);
817 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
818 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
819 			} else {
820 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
821 						   haddr, vmf->pmd, zero_page);
822 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
823 				spin_unlock(vmf->ptl);
824 			}
825 		} else {
826 			spin_unlock(vmf->ptl);
827 			pte_free(vma->vm_mm, pgtable);
828 		}
829 		return ret;
830 	}
831 	gfp = vma_thp_gfp_mask(vma);
832 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
833 	if (unlikely(!folio)) {
834 		count_vm_event(THP_FAULT_FALLBACK);
835 		return VM_FAULT_FALLBACK;
836 	}
837 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
838 }
839 
840 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
841 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
842 		pgtable_t pgtable)
843 {
844 	struct mm_struct *mm = vma->vm_mm;
845 	pmd_t entry;
846 	spinlock_t *ptl;
847 
848 	ptl = pmd_lock(mm, pmd);
849 	if (!pmd_none(*pmd)) {
850 		if (write) {
851 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
852 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
853 				goto out_unlock;
854 			}
855 			entry = pmd_mkyoung(*pmd);
856 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
857 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
858 				update_mmu_cache_pmd(vma, addr, pmd);
859 		}
860 
861 		goto out_unlock;
862 	}
863 
864 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
865 	if (pfn_t_devmap(pfn))
866 		entry = pmd_mkdevmap(entry);
867 	if (write) {
868 		entry = pmd_mkyoung(pmd_mkdirty(entry));
869 		entry = maybe_pmd_mkwrite(entry, vma);
870 	}
871 
872 	if (pgtable) {
873 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
874 		mm_inc_nr_ptes(mm);
875 		pgtable = NULL;
876 	}
877 
878 	set_pmd_at(mm, addr, pmd, entry);
879 	update_mmu_cache_pmd(vma, addr, pmd);
880 
881 out_unlock:
882 	spin_unlock(ptl);
883 	if (pgtable)
884 		pte_free(mm, pgtable);
885 }
886 
887 /**
888  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
889  * @vmf: Structure describing the fault
890  * @pfn: pfn to insert
891  * @pgprot: page protection to use
892  * @write: whether it's a write fault
893  *
894  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
895  * also consult the vmf_insert_mixed_prot() documentation when
896  * @pgprot != @vmf->vma->vm_page_prot.
897  *
898  * Return: vm_fault_t value.
899  */
900 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
901 				   pgprot_t pgprot, bool write)
902 {
903 	unsigned long addr = vmf->address & PMD_MASK;
904 	struct vm_area_struct *vma = vmf->vma;
905 	pgtable_t pgtable = NULL;
906 
907 	/*
908 	 * If we had pmd_special, we could avoid all these restrictions,
909 	 * but we need to be consistent with PTEs and architectures that
910 	 * can't support a 'special' bit.
911 	 */
912 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
913 			!pfn_t_devmap(pfn));
914 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
915 						(VM_PFNMAP|VM_MIXEDMAP));
916 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
917 
918 	if (addr < vma->vm_start || addr >= vma->vm_end)
919 		return VM_FAULT_SIGBUS;
920 
921 	if (arch_needs_pgtable_deposit()) {
922 		pgtable = pte_alloc_one(vma->vm_mm);
923 		if (!pgtable)
924 			return VM_FAULT_OOM;
925 	}
926 
927 	track_pfn_insert(vma, &pgprot, pfn);
928 
929 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
930 	return VM_FAULT_NOPAGE;
931 }
932 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
933 
934 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
935 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
936 {
937 	if (likely(vma->vm_flags & VM_WRITE))
938 		pud = pud_mkwrite(pud);
939 	return pud;
940 }
941 
942 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
943 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
944 {
945 	struct mm_struct *mm = vma->vm_mm;
946 	pud_t entry;
947 	spinlock_t *ptl;
948 
949 	ptl = pud_lock(mm, pud);
950 	if (!pud_none(*pud)) {
951 		if (write) {
952 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
953 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
954 				goto out_unlock;
955 			}
956 			entry = pud_mkyoung(*pud);
957 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
958 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
959 				update_mmu_cache_pud(vma, addr, pud);
960 		}
961 		goto out_unlock;
962 	}
963 
964 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
965 	if (pfn_t_devmap(pfn))
966 		entry = pud_mkdevmap(entry);
967 	if (write) {
968 		entry = pud_mkyoung(pud_mkdirty(entry));
969 		entry = maybe_pud_mkwrite(entry, vma);
970 	}
971 	set_pud_at(mm, addr, pud, entry);
972 	update_mmu_cache_pud(vma, addr, pud);
973 
974 out_unlock:
975 	spin_unlock(ptl);
976 }
977 
978 /**
979  * vmf_insert_pfn_pud_prot - insert a pud size pfn
980  * @vmf: Structure describing the fault
981  * @pfn: pfn to insert
982  * @pgprot: page protection to use
983  * @write: whether it's a write fault
984  *
985  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
986  * also consult the vmf_insert_mixed_prot() documentation when
987  * @pgprot != @vmf->vma->vm_page_prot.
988  *
989  * Return: vm_fault_t value.
990  */
991 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
992 				   pgprot_t pgprot, bool write)
993 {
994 	unsigned long addr = vmf->address & PUD_MASK;
995 	struct vm_area_struct *vma = vmf->vma;
996 
997 	/*
998 	 * If we had pud_special, we could avoid all these restrictions,
999 	 * but we need to be consistent with PTEs and architectures that
1000 	 * can't support a 'special' bit.
1001 	 */
1002 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1003 			!pfn_t_devmap(pfn));
1004 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005 						(VM_PFNMAP|VM_MIXEDMAP));
1006 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1007 
1008 	if (addr < vma->vm_start || addr >= vma->vm_end)
1009 		return VM_FAULT_SIGBUS;
1010 
1011 	track_pfn_insert(vma, &pgprot, pfn);
1012 
1013 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
1014 	return VM_FAULT_NOPAGE;
1015 }
1016 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
1017 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1018 
1019 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1020 		      pmd_t *pmd, bool write)
1021 {
1022 	pmd_t _pmd;
1023 
1024 	_pmd = pmd_mkyoung(*pmd);
1025 	if (write)
1026 		_pmd = pmd_mkdirty(_pmd);
1027 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1028 				  pmd, _pmd, write))
1029 		update_mmu_cache_pmd(vma, addr, pmd);
1030 }
1031 
1032 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1033 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1034 {
1035 	unsigned long pfn = pmd_pfn(*pmd);
1036 	struct mm_struct *mm = vma->vm_mm;
1037 	struct page *page;
1038 	int ret;
1039 
1040 	assert_spin_locked(pmd_lockptr(mm, pmd));
1041 
1042 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1043 		return NULL;
1044 
1045 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1046 		/* pass */;
1047 	else
1048 		return NULL;
1049 
1050 	if (flags & FOLL_TOUCH)
1051 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1052 
1053 	/*
1054 	 * device mapped pages can only be returned if the
1055 	 * caller will manage the page reference count.
1056 	 */
1057 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1058 		return ERR_PTR(-EEXIST);
1059 
1060 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1061 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1062 	if (!*pgmap)
1063 		return ERR_PTR(-EFAULT);
1064 	page = pfn_to_page(pfn);
1065 	ret = try_grab_page(page, flags);
1066 	if (ret)
1067 		page = ERR_PTR(ret);
1068 
1069 	return page;
1070 }
1071 
1072 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1073 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1074 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1075 {
1076 	spinlock_t *dst_ptl, *src_ptl;
1077 	struct page *src_page;
1078 	pmd_t pmd;
1079 	pgtable_t pgtable = NULL;
1080 	int ret = -ENOMEM;
1081 
1082 	/* Skip if can be re-fill on fault */
1083 	if (!vma_is_anonymous(dst_vma))
1084 		return 0;
1085 
1086 	pgtable = pte_alloc_one(dst_mm);
1087 	if (unlikely(!pgtable))
1088 		goto out;
1089 
1090 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1091 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1092 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1093 
1094 	ret = -EAGAIN;
1095 	pmd = *src_pmd;
1096 
1097 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1098 	if (unlikely(is_swap_pmd(pmd))) {
1099 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1100 
1101 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1102 		if (!is_readable_migration_entry(entry)) {
1103 			entry = make_readable_migration_entry(
1104 							swp_offset(entry));
1105 			pmd = swp_entry_to_pmd(entry);
1106 			if (pmd_swp_soft_dirty(*src_pmd))
1107 				pmd = pmd_swp_mksoft_dirty(pmd);
1108 			if (pmd_swp_uffd_wp(*src_pmd))
1109 				pmd = pmd_swp_mkuffd_wp(pmd);
1110 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1111 		}
1112 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1113 		mm_inc_nr_ptes(dst_mm);
1114 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1115 		if (!userfaultfd_wp(dst_vma))
1116 			pmd = pmd_swp_clear_uffd_wp(pmd);
1117 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1118 		ret = 0;
1119 		goto out_unlock;
1120 	}
1121 #endif
1122 
1123 	if (unlikely(!pmd_trans_huge(pmd))) {
1124 		pte_free(dst_mm, pgtable);
1125 		goto out_unlock;
1126 	}
1127 	/*
1128 	 * When page table lock is held, the huge zero pmd should not be
1129 	 * under splitting since we don't split the page itself, only pmd to
1130 	 * a page table.
1131 	 */
1132 	if (is_huge_zero_pmd(pmd)) {
1133 		/*
1134 		 * get_huge_zero_page() will never allocate a new page here,
1135 		 * since we already have a zero page to copy. It just takes a
1136 		 * reference.
1137 		 */
1138 		mm_get_huge_zero_page(dst_mm);
1139 		goto out_zero_page;
1140 	}
1141 
1142 	src_page = pmd_page(pmd);
1143 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1144 
1145 	get_page(src_page);
1146 	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1147 		/* Page maybe pinned: split and retry the fault on PTEs. */
1148 		put_page(src_page);
1149 		pte_free(dst_mm, pgtable);
1150 		spin_unlock(src_ptl);
1151 		spin_unlock(dst_ptl);
1152 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1153 		return -EAGAIN;
1154 	}
1155 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1156 out_zero_page:
1157 	mm_inc_nr_ptes(dst_mm);
1158 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1159 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1160 	if (!userfaultfd_wp(dst_vma))
1161 		pmd = pmd_clear_uffd_wp(pmd);
1162 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1163 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1164 
1165 	ret = 0;
1166 out_unlock:
1167 	spin_unlock(src_ptl);
1168 	spin_unlock(dst_ptl);
1169 out:
1170 	return ret;
1171 }
1172 
1173 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1174 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1175 		      pud_t *pud, bool write)
1176 {
1177 	pud_t _pud;
1178 
1179 	_pud = pud_mkyoung(*pud);
1180 	if (write)
1181 		_pud = pud_mkdirty(_pud);
1182 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1183 				  pud, _pud, write))
1184 		update_mmu_cache_pud(vma, addr, pud);
1185 }
1186 
1187 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1188 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1189 {
1190 	unsigned long pfn = pud_pfn(*pud);
1191 	struct mm_struct *mm = vma->vm_mm;
1192 	struct page *page;
1193 	int ret;
1194 
1195 	assert_spin_locked(pud_lockptr(mm, pud));
1196 
1197 	if (flags & FOLL_WRITE && !pud_write(*pud))
1198 		return NULL;
1199 
1200 	if (pud_present(*pud) && pud_devmap(*pud))
1201 		/* pass */;
1202 	else
1203 		return NULL;
1204 
1205 	if (flags & FOLL_TOUCH)
1206 		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1207 
1208 	/*
1209 	 * device mapped pages can only be returned if the
1210 	 * caller will manage the page reference count.
1211 	 *
1212 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1213 	 */
1214 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1215 		return ERR_PTR(-EEXIST);
1216 
1217 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1218 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1219 	if (!*pgmap)
1220 		return ERR_PTR(-EFAULT);
1221 	page = pfn_to_page(pfn);
1222 
1223 	ret = try_grab_page(page, flags);
1224 	if (ret)
1225 		page = ERR_PTR(ret);
1226 
1227 	return page;
1228 }
1229 
1230 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1231 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1232 		  struct vm_area_struct *vma)
1233 {
1234 	spinlock_t *dst_ptl, *src_ptl;
1235 	pud_t pud;
1236 	int ret;
1237 
1238 	dst_ptl = pud_lock(dst_mm, dst_pud);
1239 	src_ptl = pud_lockptr(src_mm, src_pud);
1240 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1241 
1242 	ret = -EAGAIN;
1243 	pud = *src_pud;
1244 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1245 		goto out_unlock;
1246 
1247 	/*
1248 	 * When page table lock is held, the huge zero pud should not be
1249 	 * under splitting since we don't split the page itself, only pud to
1250 	 * a page table.
1251 	 */
1252 	if (is_huge_zero_pud(pud)) {
1253 		/* No huge zero pud yet */
1254 	}
1255 
1256 	/*
1257 	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1258 	 * and split if duplicating fails.
1259 	 */
1260 	pudp_set_wrprotect(src_mm, addr, src_pud);
1261 	pud = pud_mkold(pud_wrprotect(pud));
1262 	set_pud_at(dst_mm, addr, dst_pud, pud);
1263 
1264 	ret = 0;
1265 out_unlock:
1266 	spin_unlock(src_ptl);
1267 	spin_unlock(dst_ptl);
1268 	return ret;
1269 }
1270 
1271 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1272 {
1273 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1274 
1275 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1276 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1277 		goto unlock;
1278 
1279 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1280 unlock:
1281 	spin_unlock(vmf->ptl);
1282 }
1283 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1284 
1285 void huge_pmd_set_accessed(struct vm_fault *vmf)
1286 {
1287 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1288 
1289 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1290 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1291 		goto unlock;
1292 
1293 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1294 
1295 unlock:
1296 	spin_unlock(vmf->ptl);
1297 }
1298 
1299 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1300 {
1301 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1302 	struct vm_area_struct *vma = vmf->vma;
1303 	struct folio *folio;
1304 	struct page *page;
1305 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1306 	pmd_t orig_pmd = vmf->orig_pmd;
1307 
1308 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1309 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1310 
1311 	if (is_huge_zero_pmd(orig_pmd))
1312 		goto fallback;
1313 
1314 	spin_lock(vmf->ptl);
1315 
1316 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1317 		spin_unlock(vmf->ptl);
1318 		return 0;
1319 	}
1320 
1321 	page = pmd_page(orig_pmd);
1322 	folio = page_folio(page);
1323 	VM_BUG_ON_PAGE(!PageHead(page), page);
1324 
1325 	/* Early check when only holding the PT lock. */
1326 	if (PageAnonExclusive(page))
1327 		goto reuse;
1328 
1329 	if (!folio_trylock(folio)) {
1330 		folio_get(folio);
1331 		spin_unlock(vmf->ptl);
1332 		folio_lock(folio);
1333 		spin_lock(vmf->ptl);
1334 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1335 			spin_unlock(vmf->ptl);
1336 			folio_unlock(folio);
1337 			folio_put(folio);
1338 			return 0;
1339 		}
1340 		folio_put(folio);
1341 	}
1342 
1343 	/* Recheck after temporarily dropping the PT lock. */
1344 	if (PageAnonExclusive(page)) {
1345 		folio_unlock(folio);
1346 		goto reuse;
1347 	}
1348 
1349 	/*
1350 	 * See do_wp_page(): we can only reuse the folio exclusively if
1351 	 * there are no additional references. Note that we always drain
1352 	 * the LRU pagevecs immediately after adding a THP.
1353 	 */
1354 	if (folio_ref_count(folio) >
1355 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1356 		goto unlock_fallback;
1357 	if (folio_test_swapcache(folio))
1358 		folio_free_swap(folio);
1359 	if (folio_ref_count(folio) == 1) {
1360 		pmd_t entry;
1361 
1362 		page_move_anon_rmap(page, vma);
1363 		folio_unlock(folio);
1364 reuse:
1365 		if (unlikely(unshare)) {
1366 			spin_unlock(vmf->ptl);
1367 			return 0;
1368 		}
1369 		entry = pmd_mkyoung(orig_pmd);
1370 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1371 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1372 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1373 		spin_unlock(vmf->ptl);
1374 		return 0;
1375 	}
1376 
1377 unlock_fallback:
1378 	folio_unlock(folio);
1379 	spin_unlock(vmf->ptl);
1380 fallback:
1381 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1382 	return VM_FAULT_FALLBACK;
1383 }
1384 
1385 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1386 					   unsigned long addr, pmd_t pmd)
1387 {
1388 	struct page *page;
1389 
1390 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1391 		return false;
1392 
1393 	/* Don't touch entries that are not even readable (NUMA hinting). */
1394 	if (pmd_protnone(pmd))
1395 		return false;
1396 
1397 	/* Do we need write faults for softdirty tracking? */
1398 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1399 		return false;
1400 
1401 	/* Do we need write faults for uffd-wp tracking? */
1402 	if (userfaultfd_huge_pmd_wp(vma, pmd))
1403 		return false;
1404 
1405 	if (!(vma->vm_flags & VM_SHARED)) {
1406 		/* See can_change_pte_writable(). */
1407 		page = vm_normal_page_pmd(vma, addr, pmd);
1408 		return page && PageAnon(page) && PageAnonExclusive(page);
1409 	}
1410 
1411 	/* See can_change_pte_writable(). */
1412 	return pmd_dirty(pmd);
1413 }
1414 
1415 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1416 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1417 					struct vm_area_struct *vma,
1418 					unsigned int flags)
1419 {
1420 	/* If the pmd is writable, we can write to the page. */
1421 	if (pmd_write(pmd))
1422 		return true;
1423 
1424 	/* Maybe FOLL_FORCE is set to override it? */
1425 	if (!(flags & FOLL_FORCE))
1426 		return false;
1427 
1428 	/* But FOLL_FORCE has no effect on shared mappings */
1429 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1430 		return false;
1431 
1432 	/* ... or read-only private ones */
1433 	if (!(vma->vm_flags & VM_MAYWRITE))
1434 		return false;
1435 
1436 	/* ... or already writable ones that just need to take a write fault */
1437 	if (vma->vm_flags & VM_WRITE)
1438 		return false;
1439 
1440 	/*
1441 	 * See can_change_pte_writable(): we broke COW and could map the page
1442 	 * writable if we have an exclusive anonymous page ...
1443 	 */
1444 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1445 		return false;
1446 
1447 	/* ... and a write-fault isn't required for other reasons. */
1448 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1449 		return false;
1450 	return !userfaultfd_huge_pmd_wp(vma, pmd);
1451 }
1452 
1453 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1454 				   unsigned long addr,
1455 				   pmd_t *pmd,
1456 				   unsigned int flags)
1457 {
1458 	struct mm_struct *mm = vma->vm_mm;
1459 	struct page *page;
1460 	int ret;
1461 
1462 	assert_spin_locked(pmd_lockptr(mm, pmd));
1463 
1464 	page = pmd_page(*pmd);
1465 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1466 
1467 	if ((flags & FOLL_WRITE) &&
1468 	    !can_follow_write_pmd(*pmd, page, vma, flags))
1469 		return NULL;
1470 
1471 	/* Avoid dumping huge zero page */
1472 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1473 		return ERR_PTR(-EFAULT);
1474 
1475 	/* Full NUMA hinting faults to serialise migration in fault paths */
1476 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags))
1477 		return NULL;
1478 
1479 	if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1480 		return ERR_PTR(-EMLINK);
1481 
1482 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1483 			!PageAnonExclusive(page), page);
1484 
1485 	ret = try_grab_page(page, flags);
1486 	if (ret)
1487 		return ERR_PTR(ret);
1488 
1489 	if (flags & FOLL_TOUCH)
1490 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1491 
1492 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1493 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1494 
1495 	return page;
1496 }
1497 
1498 /* NUMA hinting page fault entry point for trans huge pmds */
1499 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1500 {
1501 	struct vm_area_struct *vma = vmf->vma;
1502 	pmd_t oldpmd = vmf->orig_pmd;
1503 	pmd_t pmd;
1504 	struct page *page;
1505 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1506 	int page_nid = NUMA_NO_NODE;
1507 	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1508 	bool migrated = false, writable = false;
1509 	int flags = 0;
1510 
1511 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1512 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1513 		spin_unlock(vmf->ptl);
1514 		goto out;
1515 	}
1516 
1517 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1518 
1519 	/*
1520 	 * Detect now whether the PMD could be writable; this information
1521 	 * is only valid while holding the PT lock.
1522 	 */
1523 	writable = pmd_write(pmd);
1524 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1525 	    can_change_pmd_writable(vma, vmf->address, pmd))
1526 		writable = true;
1527 
1528 	page = vm_normal_page_pmd(vma, haddr, pmd);
1529 	if (!page)
1530 		goto out_map;
1531 
1532 	/* See similar comment in do_numa_page for explanation */
1533 	if (!writable)
1534 		flags |= TNF_NO_GROUP;
1535 
1536 	page_nid = page_to_nid(page);
1537 	/*
1538 	 * For memory tiering mode, cpupid of slow memory page is used
1539 	 * to record page access time.  So use default value.
1540 	 */
1541 	if (node_is_toptier(page_nid))
1542 		last_cpupid = page_cpupid_last(page);
1543 	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1544 				       &flags);
1545 
1546 	if (target_nid == NUMA_NO_NODE) {
1547 		put_page(page);
1548 		goto out_map;
1549 	}
1550 
1551 	spin_unlock(vmf->ptl);
1552 	writable = false;
1553 
1554 	migrated = migrate_misplaced_page(page, vma, target_nid);
1555 	if (migrated) {
1556 		flags |= TNF_MIGRATED;
1557 		page_nid = target_nid;
1558 	} else {
1559 		flags |= TNF_MIGRATE_FAIL;
1560 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1561 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1562 			spin_unlock(vmf->ptl);
1563 			goto out;
1564 		}
1565 		goto out_map;
1566 	}
1567 
1568 out:
1569 	if (page_nid != NUMA_NO_NODE)
1570 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1571 				flags);
1572 
1573 	return 0;
1574 
1575 out_map:
1576 	/* Restore the PMD */
1577 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1578 	pmd = pmd_mkyoung(pmd);
1579 	if (writable)
1580 		pmd = pmd_mkwrite(pmd);
1581 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1582 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1583 	spin_unlock(vmf->ptl);
1584 	goto out;
1585 }
1586 
1587 /*
1588  * Return true if we do MADV_FREE successfully on entire pmd page.
1589  * Otherwise, return false.
1590  */
1591 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1592 		pmd_t *pmd, unsigned long addr, unsigned long next)
1593 {
1594 	spinlock_t *ptl;
1595 	pmd_t orig_pmd;
1596 	struct folio *folio;
1597 	struct mm_struct *mm = tlb->mm;
1598 	bool ret = false;
1599 
1600 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1601 
1602 	ptl = pmd_trans_huge_lock(pmd, vma);
1603 	if (!ptl)
1604 		goto out_unlocked;
1605 
1606 	orig_pmd = *pmd;
1607 	if (is_huge_zero_pmd(orig_pmd))
1608 		goto out;
1609 
1610 	if (unlikely(!pmd_present(orig_pmd))) {
1611 		VM_BUG_ON(thp_migration_supported() &&
1612 				  !is_pmd_migration_entry(orig_pmd));
1613 		goto out;
1614 	}
1615 
1616 	folio = pfn_folio(pmd_pfn(orig_pmd));
1617 	/*
1618 	 * If other processes are mapping this folio, we couldn't discard
1619 	 * the folio unless they all do MADV_FREE so let's skip the folio.
1620 	 */
1621 	if (folio_mapcount(folio) != 1)
1622 		goto out;
1623 
1624 	if (!folio_trylock(folio))
1625 		goto out;
1626 
1627 	/*
1628 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1629 	 * will deactivate only them.
1630 	 */
1631 	if (next - addr != HPAGE_PMD_SIZE) {
1632 		folio_get(folio);
1633 		spin_unlock(ptl);
1634 		split_folio(folio);
1635 		folio_unlock(folio);
1636 		folio_put(folio);
1637 		goto out_unlocked;
1638 	}
1639 
1640 	if (folio_test_dirty(folio))
1641 		folio_clear_dirty(folio);
1642 	folio_unlock(folio);
1643 
1644 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1645 		pmdp_invalidate(vma, addr, pmd);
1646 		orig_pmd = pmd_mkold(orig_pmd);
1647 		orig_pmd = pmd_mkclean(orig_pmd);
1648 
1649 		set_pmd_at(mm, addr, pmd, orig_pmd);
1650 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1651 	}
1652 
1653 	folio_mark_lazyfree(folio);
1654 	ret = true;
1655 out:
1656 	spin_unlock(ptl);
1657 out_unlocked:
1658 	return ret;
1659 }
1660 
1661 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1662 {
1663 	pgtable_t pgtable;
1664 
1665 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1666 	pte_free(mm, pgtable);
1667 	mm_dec_nr_ptes(mm);
1668 }
1669 
1670 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1671 		 pmd_t *pmd, unsigned long addr)
1672 {
1673 	pmd_t orig_pmd;
1674 	spinlock_t *ptl;
1675 
1676 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1677 
1678 	ptl = __pmd_trans_huge_lock(pmd, vma);
1679 	if (!ptl)
1680 		return 0;
1681 	/*
1682 	 * For architectures like ppc64 we look at deposited pgtable
1683 	 * when calling pmdp_huge_get_and_clear. So do the
1684 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1685 	 * operations.
1686 	 */
1687 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1688 						tlb->fullmm);
1689 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1690 	if (vma_is_special_huge(vma)) {
1691 		if (arch_needs_pgtable_deposit())
1692 			zap_deposited_table(tlb->mm, pmd);
1693 		spin_unlock(ptl);
1694 	} else if (is_huge_zero_pmd(orig_pmd)) {
1695 		zap_deposited_table(tlb->mm, pmd);
1696 		spin_unlock(ptl);
1697 	} else {
1698 		struct page *page = NULL;
1699 		int flush_needed = 1;
1700 
1701 		if (pmd_present(orig_pmd)) {
1702 			page = pmd_page(orig_pmd);
1703 			page_remove_rmap(page, vma, true);
1704 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1705 			VM_BUG_ON_PAGE(!PageHead(page), page);
1706 		} else if (thp_migration_supported()) {
1707 			swp_entry_t entry;
1708 
1709 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1710 			entry = pmd_to_swp_entry(orig_pmd);
1711 			page = pfn_swap_entry_to_page(entry);
1712 			flush_needed = 0;
1713 		} else
1714 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1715 
1716 		if (PageAnon(page)) {
1717 			zap_deposited_table(tlb->mm, pmd);
1718 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1719 		} else {
1720 			if (arch_needs_pgtable_deposit())
1721 				zap_deposited_table(tlb->mm, pmd);
1722 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1723 		}
1724 
1725 		spin_unlock(ptl);
1726 		if (flush_needed)
1727 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1728 	}
1729 	return 1;
1730 }
1731 
1732 #ifndef pmd_move_must_withdraw
1733 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1734 					 spinlock_t *old_pmd_ptl,
1735 					 struct vm_area_struct *vma)
1736 {
1737 	/*
1738 	 * With split pmd lock we also need to move preallocated
1739 	 * PTE page table if new_pmd is on different PMD page table.
1740 	 *
1741 	 * We also don't deposit and withdraw tables for file pages.
1742 	 */
1743 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1744 }
1745 #endif
1746 
1747 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1748 {
1749 #ifdef CONFIG_MEM_SOFT_DIRTY
1750 	if (unlikely(is_pmd_migration_entry(pmd)))
1751 		pmd = pmd_swp_mksoft_dirty(pmd);
1752 	else if (pmd_present(pmd))
1753 		pmd = pmd_mksoft_dirty(pmd);
1754 #endif
1755 	return pmd;
1756 }
1757 
1758 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1759 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1760 {
1761 	spinlock_t *old_ptl, *new_ptl;
1762 	pmd_t pmd;
1763 	struct mm_struct *mm = vma->vm_mm;
1764 	bool force_flush = false;
1765 
1766 	/*
1767 	 * The destination pmd shouldn't be established, free_pgtables()
1768 	 * should have release it.
1769 	 */
1770 	if (WARN_ON(!pmd_none(*new_pmd))) {
1771 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1772 		return false;
1773 	}
1774 
1775 	/*
1776 	 * We don't have to worry about the ordering of src and dst
1777 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1778 	 */
1779 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1780 	if (old_ptl) {
1781 		new_ptl = pmd_lockptr(mm, new_pmd);
1782 		if (new_ptl != old_ptl)
1783 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1784 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1785 		if (pmd_present(pmd))
1786 			force_flush = true;
1787 		VM_BUG_ON(!pmd_none(*new_pmd));
1788 
1789 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1790 			pgtable_t pgtable;
1791 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1792 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1793 		}
1794 		pmd = move_soft_dirty_pmd(pmd);
1795 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1796 		if (force_flush)
1797 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1798 		if (new_ptl != old_ptl)
1799 			spin_unlock(new_ptl);
1800 		spin_unlock(old_ptl);
1801 		return true;
1802 	}
1803 	return false;
1804 }
1805 
1806 /*
1807  * Returns
1808  *  - 0 if PMD could not be locked
1809  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1810  *      or if prot_numa but THP migration is not supported
1811  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1812  */
1813 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1814 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1815 		    unsigned long cp_flags)
1816 {
1817 	struct mm_struct *mm = vma->vm_mm;
1818 	spinlock_t *ptl;
1819 	pmd_t oldpmd, entry;
1820 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1821 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1822 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1823 	int ret = 1;
1824 
1825 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1826 
1827 	if (prot_numa && !thp_migration_supported())
1828 		return 1;
1829 
1830 	ptl = __pmd_trans_huge_lock(pmd, vma);
1831 	if (!ptl)
1832 		return 0;
1833 
1834 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1835 	if (is_swap_pmd(*pmd)) {
1836 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1837 		struct page *page = pfn_swap_entry_to_page(entry);
1838 
1839 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1840 		if (is_writable_migration_entry(entry)) {
1841 			pmd_t newpmd;
1842 			/*
1843 			 * A protection check is difficult so
1844 			 * just be safe and disable write
1845 			 */
1846 			if (PageAnon(page))
1847 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1848 			else
1849 				entry = make_readable_migration_entry(swp_offset(entry));
1850 			newpmd = swp_entry_to_pmd(entry);
1851 			if (pmd_swp_soft_dirty(*pmd))
1852 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1853 			if (pmd_swp_uffd_wp(*pmd))
1854 				newpmd = pmd_swp_mkuffd_wp(newpmd);
1855 			set_pmd_at(mm, addr, pmd, newpmd);
1856 		}
1857 		goto unlock;
1858 	}
1859 #endif
1860 
1861 	if (prot_numa) {
1862 		struct page *page;
1863 		bool toptier;
1864 		/*
1865 		 * Avoid trapping faults against the zero page. The read-only
1866 		 * data is likely to be read-cached on the local CPU and
1867 		 * local/remote hits to the zero page are not interesting.
1868 		 */
1869 		if (is_huge_zero_pmd(*pmd))
1870 			goto unlock;
1871 
1872 		if (pmd_protnone(*pmd))
1873 			goto unlock;
1874 
1875 		page = pmd_page(*pmd);
1876 		toptier = node_is_toptier(page_to_nid(page));
1877 		/*
1878 		 * Skip scanning top tier node if normal numa
1879 		 * balancing is disabled
1880 		 */
1881 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1882 		    toptier)
1883 			goto unlock;
1884 
1885 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1886 		    !toptier)
1887 			xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1888 	}
1889 	/*
1890 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1891 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1892 	 * which is also under mmap_read_lock(mm):
1893 	 *
1894 	 *	CPU0:				CPU1:
1895 	 *				change_huge_pmd(prot_numa=1)
1896 	 *				 pmdp_huge_get_and_clear_notify()
1897 	 * madvise_dontneed()
1898 	 *  zap_pmd_range()
1899 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1900 	 *   // skip the pmd
1901 	 *				 set_pmd_at();
1902 	 *				 // pmd is re-established
1903 	 *
1904 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1905 	 * which may break userspace.
1906 	 *
1907 	 * pmdp_invalidate_ad() is required to make sure we don't miss
1908 	 * dirty/young flags set by hardware.
1909 	 */
1910 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1911 
1912 	entry = pmd_modify(oldpmd, newprot);
1913 	if (uffd_wp)
1914 		entry = pmd_mkuffd_wp(entry);
1915 	else if (uffd_wp_resolve)
1916 		/*
1917 		 * Leave the write bit to be handled by PF interrupt
1918 		 * handler, then things like COW could be properly
1919 		 * handled.
1920 		 */
1921 		entry = pmd_clear_uffd_wp(entry);
1922 
1923 	/* See change_pte_range(). */
1924 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1925 	    can_change_pmd_writable(vma, addr, entry))
1926 		entry = pmd_mkwrite(entry);
1927 
1928 	ret = HPAGE_PMD_NR;
1929 	set_pmd_at(mm, addr, pmd, entry);
1930 
1931 	if (huge_pmd_needs_flush(oldpmd, entry))
1932 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1933 unlock:
1934 	spin_unlock(ptl);
1935 	return ret;
1936 }
1937 
1938 /*
1939  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1940  *
1941  * Note that if it returns page table lock pointer, this routine returns without
1942  * unlocking page table lock. So callers must unlock it.
1943  */
1944 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1945 {
1946 	spinlock_t *ptl;
1947 	ptl = pmd_lock(vma->vm_mm, pmd);
1948 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1949 			pmd_devmap(*pmd)))
1950 		return ptl;
1951 	spin_unlock(ptl);
1952 	return NULL;
1953 }
1954 
1955 /*
1956  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1957  *
1958  * Note that if it returns page table lock pointer, this routine returns without
1959  * unlocking page table lock. So callers must unlock it.
1960  */
1961 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1962 {
1963 	spinlock_t *ptl;
1964 
1965 	ptl = pud_lock(vma->vm_mm, pud);
1966 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1967 		return ptl;
1968 	spin_unlock(ptl);
1969 	return NULL;
1970 }
1971 
1972 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1973 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1974 		 pud_t *pud, unsigned long addr)
1975 {
1976 	spinlock_t *ptl;
1977 
1978 	ptl = __pud_trans_huge_lock(pud, vma);
1979 	if (!ptl)
1980 		return 0;
1981 
1982 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1983 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1984 	if (vma_is_special_huge(vma)) {
1985 		spin_unlock(ptl);
1986 		/* No zero page support yet */
1987 	} else {
1988 		/* No support for anonymous PUD pages yet */
1989 		BUG();
1990 	}
1991 	return 1;
1992 }
1993 
1994 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1995 		unsigned long haddr)
1996 {
1997 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1998 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1999 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2000 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2001 
2002 	count_vm_event(THP_SPLIT_PUD);
2003 
2004 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2005 }
2006 
2007 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2008 		unsigned long address)
2009 {
2010 	spinlock_t *ptl;
2011 	struct mmu_notifier_range range;
2012 
2013 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2014 				address & HPAGE_PUD_MASK,
2015 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2016 	mmu_notifier_invalidate_range_start(&range);
2017 	ptl = pud_lock(vma->vm_mm, pud);
2018 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2019 		goto out;
2020 	__split_huge_pud_locked(vma, pud, range.start);
2021 
2022 out:
2023 	spin_unlock(ptl);
2024 	/*
2025 	 * No need to double call mmu_notifier->invalidate_range() callback as
2026 	 * the above pudp_huge_clear_flush_notify() did already call it.
2027 	 */
2028 	mmu_notifier_invalidate_range_only_end(&range);
2029 }
2030 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2031 
2032 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2033 		unsigned long haddr, pmd_t *pmd)
2034 {
2035 	struct mm_struct *mm = vma->vm_mm;
2036 	pgtable_t pgtable;
2037 	pmd_t _pmd, old_pmd;
2038 	int i;
2039 
2040 	/*
2041 	 * Leave pmd empty until pte is filled note that it is fine to delay
2042 	 * notification until mmu_notifier_invalidate_range_end() as we are
2043 	 * replacing a zero pmd write protected page with a zero pte write
2044 	 * protected page.
2045 	 *
2046 	 * See Documentation/mm/mmu_notifier.rst
2047 	 */
2048 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2049 
2050 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2051 	pmd_populate(mm, &_pmd, pgtable);
2052 
2053 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2054 		pte_t *pte, entry;
2055 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2056 		entry = pte_mkspecial(entry);
2057 		if (pmd_uffd_wp(old_pmd))
2058 			entry = pte_mkuffd_wp(entry);
2059 		pte = pte_offset_map(&_pmd, haddr);
2060 		VM_BUG_ON(!pte_none(*pte));
2061 		set_pte_at(mm, haddr, pte, entry);
2062 		pte_unmap(pte);
2063 	}
2064 	smp_wmb(); /* make pte visible before pmd */
2065 	pmd_populate(mm, pmd, pgtable);
2066 }
2067 
2068 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2069 		unsigned long haddr, bool freeze)
2070 {
2071 	struct mm_struct *mm = vma->vm_mm;
2072 	struct page *page;
2073 	pgtable_t pgtable;
2074 	pmd_t old_pmd, _pmd;
2075 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2076 	bool anon_exclusive = false, dirty = false;
2077 	unsigned long addr;
2078 	int i;
2079 
2080 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2081 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2082 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2083 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2084 				&& !pmd_devmap(*pmd));
2085 
2086 	count_vm_event(THP_SPLIT_PMD);
2087 
2088 	if (!vma_is_anonymous(vma)) {
2089 		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2090 		/*
2091 		 * We are going to unmap this huge page. So
2092 		 * just go ahead and zap it
2093 		 */
2094 		if (arch_needs_pgtable_deposit())
2095 			zap_deposited_table(mm, pmd);
2096 		if (vma_is_special_huge(vma))
2097 			return;
2098 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2099 			swp_entry_t entry;
2100 
2101 			entry = pmd_to_swp_entry(old_pmd);
2102 			page = pfn_swap_entry_to_page(entry);
2103 		} else {
2104 			page = pmd_page(old_pmd);
2105 			if (!PageDirty(page) && pmd_dirty(old_pmd))
2106 				set_page_dirty(page);
2107 			if (!PageReferenced(page) && pmd_young(old_pmd))
2108 				SetPageReferenced(page);
2109 			page_remove_rmap(page, vma, true);
2110 			put_page(page);
2111 		}
2112 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2113 		return;
2114 	}
2115 
2116 	if (is_huge_zero_pmd(*pmd)) {
2117 		/*
2118 		 * FIXME: Do we want to invalidate secondary mmu by calling
2119 		 * mmu_notifier_invalidate_range() see comments below inside
2120 		 * __split_huge_pmd() ?
2121 		 *
2122 		 * We are going from a zero huge page write protected to zero
2123 		 * small page also write protected so it does not seems useful
2124 		 * to invalidate secondary mmu at this time.
2125 		 */
2126 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2127 	}
2128 
2129 	/*
2130 	 * Up to this point the pmd is present and huge and userland has the
2131 	 * whole access to the hugepage during the split (which happens in
2132 	 * place). If we overwrite the pmd with the not-huge version pointing
2133 	 * to the pte here (which of course we could if all CPUs were bug
2134 	 * free), userland could trigger a small page size TLB miss on the
2135 	 * small sized TLB while the hugepage TLB entry is still established in
2136 	 * the huge TLB. Some CPU doesn't like that.
2137 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2138 	 * 383 on page 105. Intel should be safe but is also warns that it's
2139 	 * only safe if the permission and cache attributes of the two entries
2140 	 * loaded in the two TLB is identical (which should be the case here).
2141 	 * But it is generally safer to never allow small and huge TLB entries
2142 	 * for the same virtual address to be loaded simultaneously. So instead
2143 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2144 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2145 	 * must remain set at all times on the pmd until the split is complete
2146 	 * for this pmd), then we flush the SMP TLB and finally we write the
2147 	 * non-huge version of the pmd entry with pmd_populate.
2148 	 */
2149 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2150 
2151 	pmd_migration = is_pmd_migration_entry(old_pmd);
2152 	if (unlikely(pmd_migration)) {
2153 		swp_entry_t entry;
2154 
2155 		entry = pmd_to_swp_entry(old_pmd);
2156 		page = pfn_swap_entry_to_page(entry);
2157 		write = is_writable_migration_entry(entry);
2158 		if (PageAnon(page))
2159 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2160 		young = is_migration_entry_young(entry);
2161 		dirty = is_migration_entry_dirty(entry);
2162 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2163 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2164 	} else {
2165 		page = pmd_page(old_pmd);
2166 		if (pmd_dirty(old_pmd)) {
2167 			dirty = true;
2168 			SetPageDirty(page);
2169 		}
2170 		write = pmd_write(old_pmd);
2171 		young = pmd_young(old_pmd);
2172 		soft_dirty = pmd_soft_dirty(old_pmd);
2173 		uffd_wp = pmd_uffd_wp(old_pmd);
2174 
2175 		VM_BUG_ON_PAGE(!page_count(page), page);
2176 
2177 		/*
2178 		 * Without "freeze", we'll simply split the PMD, propagating the
2179 		 * PageAnonExclusive() flag for each PTE by setting it for
2180 		 * each subpage -- no need to (temporarily) clear.
2181 		 *
2182 		 * With "freeze" we want to replace mapped pages by
2183 		 * migration entries right away. This is only possible if we
2184 		 * managed to clear PageAnonExclusive() -- see
2185 		 * set_pmd_migration_entry().
2186 		 *
2187 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2188 		 * only and let try_to_migrate_one() fail later.
2189 		 *
2190 		 * See page_try_share_anon_rmap(): invalidate PMD first.
2191 		 */
2192 		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2193 		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2194 			freeze = false;
2195 		if (!freeze)
2196 			page_ref_add(page, HPAGE_PMD_NR - 1);
2197 	}
2198 
2199 	/*
2200 	 * Withdraw the table only after we mark the pmd entry invalid.
2201 	 * This's critical for some architectures (Power).
2202 	 */
2203 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2204 	pmd_populate(mm, &_pmd, pgtable);
2205 
2206 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2207 		pte_t entry, *pte;
2208 		/*
2209 		 * Note that NUMA hinting access restrictions are not
2210 		 * transferred to avoid any possibility of altering
2211 		 * permissions across VMAs.
2212 		 */
2213 		if (freeze || pmd_migration) {
2214 			swp_entry_t swp_entry;
2215 			if (write)
2216 				swp_entry = make_writable_migration_entry(
2217 							page_to_pfn(page + i));
2218 			else if (anon_exclusive)
2219 				swp_entry = make_readable_exclusive_migration_entry(
2220 							page_to_pfn(page + i));
2221 			else
2222 				swp_entry = make_readable_migration_entry(
2223 							page_to_pfn(page + i));
2224 			if (young)
2225 				swp_entry = make_migration_entry_young(swp_entry);
2226 			if (dirty)
2227 				swp_entry = make_migration_entry_dirty(swp_entry);
2228 			entry = swp_entry_to_pte(swp_entry);
2229 			if (soft_dirty)
2230 				entry = pte_swp_mksoft_dirty(entry);
2231 			if (uffd_wp)
2232 				entry = pte_swp_mkuffd_wp(entry);
2233 		} else {
2234 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2235 			entry = maybe_mkwrite(entry, vma);
2236 			if (anon_exclusive)
2237 				SetPageAnonExclusive(page + i);
2238 			if (!young)
2239 				entry = pte_mkold(entry);
2240 			/* NOTE: this may set soft-dirty too on some archs */
2241 			if (dirty)
2242 				entry = pte_mkdirty(entry);
2243 			/*
2244 			 * NOTE: this needs to happen after pte_mkdirty,
2245 			 * because some archs (sparc64, loongarch) could
2246 			 * set hw write bit when mkdirty.
2247 			 */
2248 			if (!write)
2249 				entry = pte_wrprotect(entry);
2250 			if (soft_dirty)
2251 				entry = pte_mksoft_dirty(entry);
2252 			if (uffd_wp)
2253 				entry = pte_mkuffd_wp(entry);
2254 			page_add_anon_rmap(page + i, vma, addr, false);
2255 		}
2256 		pte = pte_offset_map(&_pmd, addr);
2257 		BUG_ON(!pte_none(*pte));
2258 		set_pte_at(mm, addr, pte, entry);
2259 		pte_unmap(pte);
2260 	}
2261 
2262 	if (!pmd_migration)
2263 		page_remove_rmap(page, vma, true);
2264 	if (freeze)
2265 		put_page(page);
2266 
2267 	smp_wmb(); /* make pte visible before pmd */
2268 	pmd_populate(mm, pmd, pgtable);
2269 }
2270 
2271 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2272 		unsigned long address, bool freeze, struct folio *folio)
2273 {
2274 	spinlock_t *ptl;
2275 	struct mmu_notifier_range range;
2276 
2277 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2278 				address & HPAGE_PMD_MASK,
2279 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2280 	mmu_notifier_invalidate_range_start(&range);
2281 	ptl = pmd_lock(vma->vm_mm, pmd);
2282 
2283 	/*
2284 	 * If caller asks to setup a migration entry, we need a folio to check
2285 	 * pmd against. Otherwise we can end up replacing wrong folio.
2286 	 */
2287 	VM_BUG_ON(freeze && !folio);
2288 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2289 
2290 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2291 	    is_pmd_migration_entry(*pmd)) {
2292 		/*
2293 		 * It's safe to call pmd_page when folio is set because it's
2294 		 * guaranteed that pmd is present.
2295 		 */
2296 		if (folio && folio != page_folio(pmd_page(*pmd)))
2297 			goto out;
2298 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2299 	}
2300 
2301 out:
2302 	spin_unlock(ptl);
2303 	/*
2304 	 * No need to double call mmu_notifier->invalidate_range() callback.
2305 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2306 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2307 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2308 	 *    fault will trigger a flush_notify before pointing to a new page
2309 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2310 	 *    page in the meantime)
2311 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2312 	 *     to invalidate secondary tlb entry they are all still valid.
2313 	 *     any further changes to individual pte will notify. So no need
2314 	 *     to call mmu_notifier->invalidate_range()
2315 	 */
2316 	mmu_notifier_invalidate_range_only_end(&range);
2317 }
2318 
2319 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2320 		bool freeze, struct folio *folio)
2321 {
2322 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2323 
2324 	if (!pmd)
2325 		return;
2326 
2327 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2328 }
2329 
2330 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2331 {
2332 	/*
2333 	 * If the new address isn't hpage aligned and it could previously
2334 	 * contain an hugepage: check if we need to split an huge pmd.
2335 	 */
2336 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2337 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2338 			 ALIGN(address, HPAGE_PMD_SIZE)))
2339 		split_huge_pmd_address(vma, address, false, NULL);
2340 }
2341 
2342 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2343 			     unsigned long start,
2344 			     unsigned long end,
2345 			     long adjust_next)
2346 {
2347 	/* Check if we need to split start first. */
2348 	split_huge_pmd_if_needed(vma, start);
2349 
2350 	/* Check if we need to split end next. */
2351 	split_huge_pmd_if_needed(vma, end);
2352 
2353 	/*
2354 	 * If we're also updating the next vma vm_start,
2355 	 * check if we need to split it.
2356 	 */
2357 	if (adjust_next > 0) {
2358 		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2359 		unsigned long nstart = next->vm_start;
2360 		nstart += adjust_next;
2361 		split_huge_pmd_if_needed(next, nstart);
2362 	}
2363 }
2364 
2365 static void unmap_folio(struct folio *folio)
2366 {
2367 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2368 		TTU_SYNC;
2369 
2370 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2371 
2372 	/*
2373 	 * Anon pages need migration entries to preserve them, but file
2374 	 * pages can simply be left unmapped, then faulted back on demand.
2375 	 * If that is ever changed (perhaps for mlock), update remap_page().
2376 	 */
2377 	if (folio_test_anon(folio))
2378 		try_to_migrate(folio, ttu_flags);
2379 	else
2380 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2381 }
2382 
2383 static void remap_page(struct folio *folio, unsigned long nr)
2384 {
2385 	int i = 0;
2386 
2387 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2388 	if (!folio_test_anon(folio))
2389 		return;
2390 	for (;;) {
2391 		remove_migration_ptes(folio, folio, true);
2392 		i += folio_nr_pages(folio);
2393 		if (i >= nr)
2394 			break;
2395 		folio = folio_next(folio);
2396 	}
2397 }
2398 
2399 static void lru_add_page_tail(struct page *head, struct page *tail,
2400 		struct lruvec *lruvec, struct list_head *list)
2401 {
2402 	VM_BUG_ON_PAGE(!PageHead(head), head);
2403 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2404 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2405 	lockdep_assert_held(&lruvec->lru_lock);
2406 
2407 	if (list) {
2408 		/* page reclaim is reclaiming a huge page */
2409 		VM_WARN_ON(PageLRU(head));
2410 		get_page(tail);
2411 		list_add_tail(&tail->lru, list);
2412 	} else {
2413 		/* head is still on lru (and we have it frozen) */
2414 		VM_WARN_ON(!PageLRU(head));
2415 		if (PageUnevictable(tail))
2416 			tail->mlock_count = 0;
2417 		else
2418 			list_add_tail(&tail->lru, &head->lru);
2419 		SetPageLRU(tail);
2420 	}
2421 }
2422 
2423 static void __split_huge_page_tail(struct page *head, int tail,
2424 		struct lruvec *lruvec, struct list_head *list)
2425 {
2426 	struct page *page_tail = head + tail;
2427 
2428 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2429 
2430 	/*
2431 	 * Clone page flags before unfreezing refcount.
2432 	 *
2433 	 * After successful get_page_unless_zero() might follow flags change,
2434 	 * for example lock_page() which set PG_waiters.
2435 	 *
2436 	 * Note that for mapped sub-pages of an anonymous THP,
2437 	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2438 	 * the migration entry instead from where remap_page() will restore it.
2439 	 * We can still have PG_anon_exclusive set on effectively unmapped and
2440 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2441 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2442 	 */
2443 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2444 	page_tail->flags |= (head->flags &
2445 			((1L << PG_referenced) |
2446 			 (1L << PG_swapbacked) |
2447 			 (1L << PG_swapcache) |
2448 			 (1L << PG_mlocked) |
2449 			 (1L << PG_uptodate) |
2450 			 (1L << PG_active) |
2451 			 (1L << PG_workingset) |
2452 			 (1L << PG_locked) |
2453 			 (1L << PG_unevictable) |
2454 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2455 			 (1L << PG_arch_2) |
2456 			 (1L << PG_arch_3) |
2457 #endif
2458 			 (1L << PG_dirty) |
2459 			 LRU_GEN_MASK | LRU_REFS_MASK));
2460 
2461 	/* ->mapping in first and second tail page is replaced by other uses */
2462 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2463 			page_tail);
2464 	page_tail->mapping = head->mapping;
2465 	page_tail->index = head->index + tail;
2466 
2467 	/*
2468 	 * page->private should not be set in tail pages with the exception
2469 	 * of swap cache pages that store the swp_entry_t in tail pages.
2470 	 * Fix up and warn once if private is unexpectedly set.
2471 	 *
2472 	 * What of 32-bit systems, on which folio->_pincount overlays
2473 	 * head[1].private?  No problem: THP_SWAP is not enabled on 32-bit, and
2474 	 * pincount must be 0 for folio_ref_freeze() to have succeeded.
2475 	 */
2476 	if (!folio_test_swapcache(page_folio(head))) {
2477 		VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail);
2478 		page_tail->private = 0;
2479 	}
2480 
2481 	/* Page flags must be visible before we make the page non-compound. */
2482 	smp_wmb();
2483 
2484 	/*
2485 	 * Clear PageTail before unfreezing page refcount.
2486 	 *
2487 	 * After successful get_page_unless_zero() might follow put_page()
2488 	 * which needs correct compound_head().
2489 	 */
2490 	clear_compound_head(page_tail);
2491 
2492 	/* Finally unfreeze refcount. Additional reference from page cache. */
2493 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2494 					  PageSwapCache(head)));
2495 
2496 	if (page_is_young(head))
2497 		set_page_young(page_tail);
2498 	if (page_is_idle(head))
2499 		set_page_idle(page_tail);
2500 
2501 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2502 
2503 	/*
2504 	 * always add to the tail because some iterators expect new
2505 	 * pages to show after the currently processed elements - e.g.
2506 	 * migrate_pages
2507 	 */
2508 	lru_add_page_tail(head, page_tail, lruvec, list);
2509 }
2510 
2511 static void __split_huge_page(struct page *page, struct list_head *list,
2512 		pgoff_t end)
2513 {
2514 	struct folio *folio = page_folio(page);
2515 	struct page *head = &folio->page;
2516 	struct lruvec *lruvec;
2517 	struct address_space *swap_cache = NULL;
2518 	unsigned long offset = 0;
2519 	unsigned int nr = thp_nr_pages(head);
2520 	int i;
2521 
2522 	/* complete memcg works before add pages to LRU */
2523 	split_page_memcg(head, nr);
2524 
2525 	if (PageAnon(head) && PageSwapCache(head)) {
2526 		swp_entry_t entry = { .val = page_private(head) };
2527 
2528 		offset = swp_offset(entry);
2529 		swap_cache = swap_address_space(entry);
2530 		xa_lock(&swap_cache->i_pages);
2531 	}
2532 
2533 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2534 	lruvec = folio_lruvec_lock(folio);
2535 
2536 	ClearPageHasHWPoisoned(head);
2537 
2538 	for (i = nr - 1; i >= 1; i--) {
2539 		__split_huge_page_tail(head, i, lruvec, list);
2540 		/* Some pages can be beyond EOF: drop them from page cache */
2541 		if (head[i].index >= end) {
2542 			struct folio *tail = page_folio(head + i);
2543 
2544 			if (shmem_mapping(head->mapping))
2545 				shmem_uncharge(head->mapping->host, 1);
2546 			else if (folio_test_clear_dirty(tail))
2547 				folio_account_cleaned(tail,
2548 					inode_to_wb(folio->mapping->host));
2549 			__filemap_remove_folio(tail, NULL);
2550 			folio_put(tail);
2551 		} else if (!PageAnon(page)) {
2552 			__xa_store(&head->mapping->i_pages, head[i].index,
2553 					head + i, 0);
2554 		} else if (swap_cache) {
2555 			__xa_store(&swap_cache->i_pages, offset + i,
2556 					head + i, 0);
2557 		}
2558 	}
2559 
2560 	ClearPageCompound(head);
2561 	unlock_page_lruvec(lruvec);
2562 	/* Caller disabled irqs, so they are still disabled here */
2563 
2564 	split_page_owner(head, nr);
2565 
2566 	/* See comment in __split_huge_page_tail() */
2567 	if (PageAnon(head)) {
2568 		/* Additional pin to swap cache */
2569 		if (PageSwapCache(head)) {
2570 			page_ref_add(head, 2);
2571 			xa_unlock(&swap_cache->i_pages);
2572 		} else {
2573 			page_ref_inc(head);
2574 		}
2575 	} else {
2576 		/* Additional pin to page cache */
2577 		page_ref_add(head, 2);
2578 		xa_unlock(&head->mapping->i_pages);
2579 	}
2580 	local_irq_enable();
2581 
2582 	remap_page(folio, nr);
2583 
2584 	if (PageSwapCache(head)) {
2585 		swp_entry_t entry = { .val = page_private(head) };
2586 
2587 		split_swap_cluster(entry);
2588 	}
2589 
2590 	for (i = 0; i < nr; i++) {
2591 		struct page *subpage = head + i;
2592 		if (subpage == page)
2593 			continue;
2594 		unlock_page(subpage);
2595 
2596 		/*
2597 		 * Subpages may be freed if there wasn't any mapping
2598 		 * like if add_to_swap() is running on a lru page that
2599 		 * had its mapping zapped. And freeing these pages
2600 		 * requires taking the lru_lock so we do the put_page
2601 		 * of the tail pages after the split is complete.
2602 		 */
2603 		free_page_and_swap_cache(subpage);
2604 	}
2605 }
2606 
2607 /* Racy check whether the huge page can be split */
2608 bool can_split_folio(struct folio *folio, int *pextra_pins)
2609 {
2610 	int extra_pins;
2611 
2612 	/* Additional pins from page cache */
2613 	if (folio_test_anon(folio))
2614 		extra_pins = folio_test_swapcache(folio) ?
2615 				folio_nr_pages(folio) : 0;
2616 	else
2617 		extra_pins = folio_nr_pages(folio);
2618 	if (pextra_pins)
2619 		*pextra_pins = extra_pins;
2620 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2621 }
2622 
2623 /*
2624  * This function splits huge page into normal pages. @page can point to any
2625  * subpage of huge page to split. Split doesn't change the position of @page.
2626  *
2627  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2628  * The huge page must be locked.
2629  *
2630  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2631  *
2632  * Both head page and tail pages will inherit mapping, flags, and so on from
2633  * the hugepage.
2634  *
2635  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2636  * they are not mapped.
2637  *
2638  * Returns 0 if the hugepage is split successfully.
2639  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2640  * us.
2641  */
2642 int split_huge_page_to_list(struct page *page, struct list_head *list)
2643 {
2644 	struct folio *folio = page_folio(page);
2645 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2646 	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2647 	struct anon_vma *anon_vma = NULL;
2648 	struct address_space *mapping = NULL;
2649 	int extra_pins, ret;
2650 	pgoff_t end;
2651 	bool is_hzp;
2652 
2653 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2654 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2655 
2656 	is_hzp = is_huge_zero_page(&folio->page);
2657 	VM_WARN_ON_ONCE_FOLIO(is_hzp, folio);
2658 	if (is_hzp)
2659 		return -EBUSY;
2660 
2661 	if (folio_test_writeback(folio))
2662 		return -EBUSY;
2663 
2664 	if (folio_test_anon(folio)) {
2665 		/*
2666 		 * The caller does not necessarily hold an mmap_lock that would
2667 		 * prevent the anon_vma disappearing so we first we take a
2668 		 * reference to it and then lock the anon_vma for write. This
2669 		 * is similar to folio_lock_anon_vma_read except the write lock
2670 		 * is taken to serialise against parallel split or collapse
2671 		 * operations.
2672 		 */
2673 		anon_vma = folio_get_anon_vma(folio);
2674 		if (!anon_vma) {
2675 			ret = -EBUSY;
2676 			goto out;
2677 		}
2678 		end = -1;
2679 		mapping = NULL;
2680 		anon_vma_lock_write(anon_vma);
2681 	} else {
2682 		gfp_t gfp;
2683 
2684 		mapping = folio->mapping;
2685 
2686 		/* Truncated ? */
2687 		if (!mapping) {
2688 			ret = -EBUSY;
2689 			goto out;
2690 		}
2691 
2692 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2693 							GFP_RECLAIM_MASK);
2694 
2695 		if (folio_test_private(folio) &&
2696 				!filemap_release_folio(folio, gfp)) {
2697 			ret = -EBUSY;
2698 			goto out;
2699 		}
2700 
2701 		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2702 		if (xas_error(&xas)) {
2703 			ret = xas_error(&xas);
2704 			goto out;
2705 		}
2706 
2707 		anon_vma = NULL;
2708 		i_mmap_lock_read(mapping);
2709 
2710 		/*
2711 		 *__split_huge_page() may need to trim off pages beyond EOF:
2712 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2713 		 * which cannot be nested inside the page tree lock. So note
2714 		 * end now: i_size itself may be changed at any moment, but
2715 		 * folio lock is good enough to serialize the trimming.
2716 		 */
2717 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2718 		if (shmem_mapping(mapping))
2719 			end = shmem_fallocend(mapping->host, end);
2720 	}
2721 
2722 	/*
2723 	 * Racy check if we can split the page, before unmap_folio() will
2724 	 * split PMDs
2725 	 */
2726 	if (!can_split_folio(folio, &extra_pins)) {
2727 		ret = -EAGAIN;
2728 		goto out_unlock;
2729 	}
2730 
2731 	unmap_folio(folio);
2732 
2733 	/* block interrupt reentry in xa_lock and spinlock */
2734 	local_irq_disable();
2735 	if (mapping) {
2736 		/*
2737 		 * Check if the folio is present in page cache.
2738 		 * We assume all tail are present too, if folio is there.
2739 		 */
2740 		xas_lock(&xas);
2741 		xas_reset(&xas);
2742 		if (xas_load(&xas) != folio)
2743 			goto fail;
2744 	}
2745 
2746 	/* Prevent deferred_split_scan() touching ->_refcount */
2747 	spin_lock(&ds_queue->split_queue_lock);
2748 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
2749 		if (!list_empty(&folio->_deferred_list)) {
2750 			ds_queue->split_queue_len--;
2751 			list_del(&folio->_deferred_list);
2752 		}
2753 		spin_unlock(&ds_queue->split_queue_lock);
2754 		if (mapping) {
2755 			int nr = folio_nr_pages(folio);
2756 
2757 			xas_split(&xas, folio, folio_order(folio));
2758 			if (folio_test_swapbacked(folio)) {
2759 				__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS,
2760 							-nr);
2761 			} else {
2762 				__lruvec_stat_mod_folio(folio, NR_FILE_THPS,
2763 							-nr);
2764 				filemap_nr_thps_dec(mapping);
2765 			}
2766 		}
2767 
2768 		__split_huge_page(page, list, end);
2769 		ret = 0;
2770 	} else {
2771 		spin_unlock(&ds_queue->split_queue_lock);
2772 fail:
2773 		if (mapping)
2774 			xas_unlock(&xas);
2775 		local_irq_enable();
2776 		remap_page(folio, folio_nr_pages(folio));
2777 		ret = -EAGAIN;
2778 	}
2779 
2780 out_unlock:
2781 	if (anon_vma) {
2782 		anon_vma_unlock_write(anon_vma);
2783 		put_anon_vma(anon_vma);
2784 	}
2785 	if (mapping)
2786 		i_mmap_unlock_read(mapping);
2787 out:
2788 	xas_destroy(&xas);
2789 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2790 	return ret;
2791 }
2792 
2793 void free_transhuge_page(struct page *page)
2794 {
2795 	struct folio *folio = (struct folio *)page;
2796 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2797 	unsigned long flags;
2798 
2799 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2800 	if (!list_empty(&folio->_deferred_list)) {
2801 		ds_queue->split_queue_len--;
2802 		list_del(&folio->_deferred_list);
2803 	}
2804 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2805 	free_compound_page(page);
2806 }
2807 
2808 void deferred_split_folio(struct folio *folio)
2809 {
2810 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2811 #ifdef CONFIG_MEMCG
2812 	struct mem_cgroup *memcg = folio_memcg(folio);
2813 #endif
2814 	unsigned long flags;
2815 
2816 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
2817 
2818 	/*
2819 	 * The try_to_unmap() in page reclaim path might reach here too,
2820 	 * this may cause a race condition to corrupt deferred split queue.
2821 	 * And, if page reclaim is already handling the same folio, it is
2822 	 * unnecessary to handle it again in shrinker.
2823 	 *
2824 	 * Check the swapcache flag to determine if the folio is being
2825 	 * handled by page reclaim since THP swap would add the folio into
2826 	 * swap cache before calling try_to_unmap().
2827 	 */
2828 	if (folio_test_swapcache(folio))
2829 		return;
2830 
2831 	if (!list_empty(&folio->_deferred_list))
2832 		return;
2833 
2834 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2835 	if (list_empty(&folio->_deferred_list)) {
2836 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2837 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
2838 		ds_queue->split_queue_len++;
2839 #ifdef CONFIG_MEMCG
2840 		if (memcg)
2841 			set_shrinker_bit(memcg, folio_nid(folio),
2842 					 deferred_split_shrinker.id);
2843 #endif
2844 	}
2845 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2846 }
2847 
2848 static unsigned long deferred_split_count(struct shrinker *shrink,
2849 		struct shrink_control *sc)
2850 {
2851 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2852 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2853 
2854 #ifdef CONFIG_MEMCG
2855 	if (sc->memcg)
2856 		ds_queue = &sc->memcg->deferred_split_queue;
2857 #endif
2858 	return READ_ONCE(ds_queue->split_queue_len);
2859 }
2860 
2861 static unsigned long deferred_split_scan(struct shrinker *shrink,
2862 		struct shrink_control *sc)
2863 {
2864 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2865 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2866 	unsigned long flags;
2867 	LIST_HEAD(list);
2868 	struct folio *folio, *next;
2869 	int split = 0;
2870 
2871 #ifdef CONFIG_MEMCG
2872 	if (sc->memcg)
2873 		ds_queue = &sc->memcg->deferred_split_queue;
2874 #endif
2875 
2876 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2877 	/* Take pin on all head pages to avoid freeing them under us */
2878 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
2879 							_deferred_list) {
2880 		if (folio_try_get(folio)) {
2881 			list_move(&folio->_deferred_list, &list);
2882 		} else {
2883 			/* We lost race with folio_put() */
2884 			list_del_init(&folio->_deferred_list);
2885 			ds_queue->split_queue_len--;
2886 		}
2887 		if (!--sc->nr_to_scan)
2888 			break;
2889 	}
2890 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2891 
2892 	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
2893 		if (!folio_trylock(folio))
2894 			goto next;
2895 		/* split_huge_page() removes page from list on success */
2896 		if (!split_folio(folio))
2897 			split++;
2898 		folio_unlock(folio);
2899 next:
2900 		folio_put(folio);
2901 	}
2902 
2903 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2904 	list_splice_tail(&list, &ds_queue->split_queue);
2905 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2906 
2907 	/*
2908 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2909 	 * This can happen if pages were freed under us.
2910 	 */
2911 	if (!split && list_empty(&ds_queue->split_queue))
2912 		return SHRINK_STOP;
2913 	return split;
2914 }
2915 
2916 static struct shrinker deferred_split_shrinker = {
2917 	.count_objects = deferred_split_count,
2918 	.scan_objects = deferred_split_scan,
2919 	.seeks = DEFAULT_SEEKS,
2920 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2921 		 SHRINKER_NONSLAB,
2922 };
2923 
2924 #ifdef CONFIG_DEBUG_FS
2925 static void split_huge_pages_all(void)
2926 {
2927 	struct zone *zone;
2928 	struct page *page;
2929 	struct folio *folio;
2930 	unsigned long pfn, max_zone_pfn;
2931 	unsigned long total = 0, split = 0;
2932 
2933 	pr_debug("Split all THPs\n");
2934 	for_each_zone(zone) {
2935 		if (!managed_zone(zone))
2936 			continue;
2937 		max_zone_pfn = zone_end_pfn(zone);
2938 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2939 			int nr_pages;
2940 
2941 			page = pfn_to_online_page(pfn);
2942 			if (!page || PageTail(page))
2943 				continue;
2944 			folio = page_folio(page);
2945 			if (!folio_try_get(folio))
2946 				continue;
2947 
2948 			if (unlikely(page_folio(page) != folio))
2949 				goto next;
2950 
2951 			if (zone != folio_zone(folio))
2952 				goto next;
2953 
2954 			if (!folio_test_large(folio)
2955 				|| folio_test_hugetlb(folio)
2956 				|| !folio_test_lru(folio))
2957 				goto next;
2958 
2959 			total++;
2960 			folio_lock(folio);
2961 			nr_pages = folio_nr_pages(folio);
2962 			if (!split_folio(folio))
2963 				split++;
2964 			pfn += nr_pages - 1;
2965 			folio_unlock(folio);
2966 next:
2967 			folio_put(folio);
2968 			cond_resched();
2969 		}
2970 	}
2971 
2972 	pr_debug("%lu of %lu THP split\n", split, total);
2973 }
2974 
2975 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2976 {
2977 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2978 		    is_vm_hugetlb_page(vma);
2979 }
2980 
2981 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2982 				unsigned long vaddr_end)
2983 {
2984 	int ret = 0;
2985 	struct task_struct *task;
2986 	struct mm_struct *mm;
2987 	unsigned long total = 0, split = 0;
2988 	unsigned long addr;
2989 
2990 	vaddr_start &= PAGE_MASK;
2991 	vaddr_end &= PAGE_MASK;
2992 
2993 	/* Find the task_struct from pid */
2994 	rcu_read_lock();
2995 	task = find_task_by_vpid(pid);
2996 	if (!task) {
2997 		rcu_read_unlock();
2998 		ret = -ESRCH;
2999 		goto out;
3000 	}
3001 	get_task_struct(task);
3002 	rcu_read_unlock();
3003 
3004 	/* Find the mm_struct */
3005 	mm = get_task_mm(task);
3006 	put_task_struct(task);
3007 
3008 	if (!mm) {
3009 		ret = -EINVAL;
3010 		goto out;
3011 	}
3012 
3013 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3014 		 pid, vaddr_start, vaddr_end);
3015 
3016 	mmap_read_lock(mm);
3017 	/*
3018 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3019 	 * table filled with PTE-mapped THPs, each of which is distinct.
3020 	 */
3021 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3022 		struct vm_area_struct *vma = vma_lookup(mm, addr);
3023 		struct page *page;
3024 
3025 		if (!vma)
3026 			break;
3027 
3028 		/* skip special VMA and hugetlb VMA */
3029 		if (vma_not_suitable_for_thp_split(vma)) {
3030 			addr = vma->vm_end;
3031 			continue;
3032 		}
3033 
3034 		/* FOLL_DUMP to ignore special (like zero) pages */
3035 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3036 
3037 		if (IS_ERR_OR_NULL(page))
3038 			continue;
3039 
3040 		if (!is_transparent_hugepage(page))
3041 			goto next;
3042 
3043 		total++;
3044 		if (!can_split_folio(page_folio(page), NULL))
3045 			goto next;
3046 
3047 		if (!trylock_page(page))
3048 			goto next;
3049 
3050 		if (!split_huge_page(page))
3051 			split++;
3052 
3053 		unlock_page(page);
3054 next:
3055 		put_page(page);
3056 		cond_resched();
3057 	}
3058 	mmap_read_unlock(mm);
3059 	mmput(mm);
3060 
3061 	pr_debug("%lu of %lu THP split\n", split, total);
3062 
3063 out:
3064 	return ret;
3065 }
3066 
3067 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3068 				pgoff_t off_end)
3069 {
3070 	struct filename *file;
3071 	struct file *candidate;
3072 	struct address_space *mapping;
3073 	int ret = -EINVAL;
3074 	pgoff_t index;
3075 	int nr_pages = 1;
3076 	unsigned long total = 0, split = 0;
3077 
3078 	file = getname_kernel(file_path);
3079 	if (IS_ERR(file))
3080 		return ret;
3081 
3082 	candidate = file_open_name(file, O_RDONLY, 0);
3083 	if (IS_ERR(candidate))
3084 		goto out;
3085 
3086 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3087 		 file_path, off_start, off_end);
3088 
3089 	mapping = candidate->f_mapping;
3090 
3091 	for (index = off_start; index < off_end; index += nr_pages) {
3092 		struct folio *folio = filemap_get_folio(mapping, index);
3093 
3094 		nr_pages = 1;
3095 		if (IS_ERR(folio))
3096 			continue;
3097 
3098 		if (!folio_test_large(folio))
3099 			goto next;
3100 
3101 		total++;
3102 		nr_pages = folio_nr_pages(folio);
3103 
3104 		if (!folio_trylock(folio))
3105 			goto next;
3106 
3107 		if (!split_folio(folio))
3108 			split++;
3109 
3110 		folio_unlock(folio);
3111 next:
3112 		folio_put(folio);
3113 		cond_resched();
3114 	}
3115 
3116 	filp_close(candidate, NULL);
3117 	ret = 0;
3118 
3119 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3120 out:
3121 	putname(file);
3122 	return ret;
3123 }
3124 
3125 #define MAX_INPUT_BUF_SZ 255
3126 
3127 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3128 				size_t count, loff_t *ppops)
3129 {
3130 	static DEFINE_MUTEX(split_debug_mutex);
3131 	ssize_t ret;
3132 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3133 	char input_buf[MAX_INPUT_BUF_SZ];
3134 	int pid;
3135 	unsigned long vaddr_start, vaddr_end;
3136 
3137 	ret = mutex_lock_interruptible(&split_debug_mutex);
3138 	if (ret)
3139 		return ret;
3140 
3141 	ret = -EFAULT;
3142 
3143 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3144 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3145 		goto out;
3146 
3147 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3148 
3149 	if (input_buf[0] == '/') {
3150 		char *tok;
3151 		char *buf = input_buf;
3152 		char file_path[MAX_INPUT_BUF_SZ];
3153 		pgoff_t off_start = 0, off_end = 0;
3154 		size_t input_len = strlen(input_buf);
3155 
3156 		tok = strsep(&buf, ",");
3157 		if (tok) {
3158 			strcpy(file_path, tok);
3159 		} else {
3160 			ret = -EINVAL;
3161 			goto out;
3162 		}
3163 
3164 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3165 		if (ret != 2) {
3166 			ret = -EINVAL;
3167 			goto out;
3168 		}
3169 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3170 		if (!ret)
3171 			ret = input_len;
3172 
3173 		goto out;
3174 	}
3175 
3176 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3177 	if (ret == 1 && pid == 1) {
3178 		split_huge_pages_all();
3179 		ret = strlen(input_buf);
3180 		goto out;
3181 	} else if (ret != 3) {
3182 		ret = -EINVAL;
3183 		goto out;
3184 	}
3185 
3186 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3187 	if (!ret)
3188 		ret = strlen(input_buf);
3189 out:
3190 	mutex_unlock(&split_debug_mutex);
3191 	return ret;
3192 
3193 }
3194 
3195 static const struct file_operations split_huge_pages_fops = {
3196 	.owner	 = THIS_MODULE,
3197 	.write	 = split_huge_pages_write,
3198 	.llseek  = no_llseek,
3199 };
3200 
3201 static int __init split_huge_pages_debugfs(void)
3202 {
3203 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3204 			    &split_huge_pages_fops);
3205 	return 0;
3206 }
3207 late_initcall(split_huge_pages_debugfs);
3208 #endif
3209 
3210 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3211 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3212 		struct page *page)
3213 {
3214 	struct vm_area_struct *vma = pvmw->vma;
3215 	struct mm_struct *mm = vma->vm_mm;
3216 	unsigned long address = pvmw->address;
3217 	bool anon_exclusive;
3218 	pmd_t pmdval;
3219 	swp_entry_t entry;
3220 	pmd_t pmdswp;
3221 
3222 	if (!(pvmw->pmd && !pvmw->pte))
3223 		return 0;
3224 
3225 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3226 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3227 
3228 	/* See page_try_share_anon_rmap(): invalidate PMD first. */
3229 	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3230 	if (anon_exclusive && page_try_share_anon_rmap(page)) {
3231 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3232 		return -EBUSY;
3233 	}
3234 
3235 	if (pmd_dirty(pmdval))
3236 		set_page_dirty(page);
3237 	if (pmd_write(pmdval))
3238 		entry = make_writable_migration_entry(page_to_pfn(page));
3239 	else if (anon_exclusive)
3240 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3241 	else
3242 		entry = make_readable_migration_entry(page_to_pfn(page));
3243 	if (pmd_young(pmdval))
3244 		entry = make_migration_entry_young(entry);
3245 	if (pmd_dirty(pmdval))
3246 		entry = make_migration_entry_dirty(entry);
3247 	pmdswp = swp_entry_to_pmd(entry);
3248 	if (pmd_soft_dirty(pmdval))
3249 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3250 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3251 	page_remove_rmap(page, vma, true);
3252 	put_page(page);
3253 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3254 
3255 	return 0;
3256 }
3257 
3258 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3259 {
3260 	struct vm_area_struct *vma = pvmw->vma;
3261 	struct mm_struct *mm = vma->vm_mm;
3262 	unsigned long address = pvmw->address;
3263 	unsigned long haddr = address & HPAGE_PMD_MASK;
3264 	pmd_t pmde;
3265 	swp_entry_t entry;
3266 
3267 	if (!(pvmw->pmd && !pvmw->pte))
3268 		return;
3269 
3270 	entry = pmd_to_swp_entry(*pvmw->pmd);
3271 	get_page(new);
3272 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3273 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3274 		pmde = pmd_mksoft_dirty(pmde);
3275 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3276 		pmde = pmd_mkuffd_wp(pmde);
3277 	if (!is_migration_entry_young(entry))
3278 		pmde = pmd_mkold(pmde);
3279 	/* NOTE: this may contain setting soft-dirty on some archs */
3280 	if (PageDirty(new) && is_migration_entry_dirty(entry))
3281 		pmde = pmd_mkdirty(pmde);
3282 	if (is_writable_migration_entry(entry))
3283 		pmde = maybe_pmd_mkwrite(pmde, vma);
3284 	else
3285 		pmde = pmd_wrprotect(pmde);
3286 
3287 	if (PageAnon(new)) {
3288 		rmap_t rmap_flags = RMAP_COMPOUND;
3289 
3290 		if (!is_readable_migration_entry(entry))
3291 			rmap_flags |= RMAP_EXCLUSIVE;
3292 
3293 		page_add_anon_rmap(new, vma, haddr, rmap_flags);
3294 	} else {
3295 		page_add_file_rmap(new, vma, true);
3296 	}
3297 	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3298 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3299 
3300 	/* No need to invalidate - it was non-present before */
3301 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3302 	trace_remove_migration_pmd(address, pmd_val(pmde));
3303 }
3304 #endif
3305