1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/coredump.h> 12 #include <linux/sched/numa_balancing.h> 13 #include <linux/highmem.h> 14 #include <linux/hugetlb.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/rmap.h> 17 #include <linux/swap.h> 18 #include <linux/shrinker.h> 19 #include <linux/mm_inline.h> 20 #include <linux/swapops.h> 21 #include <linux/backing-dev.h> 22 #include <linux/dax.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/oom.h> 36 #include <linux/numa.h> 37 #include <linux/page_owner.h> 38 #include <linux/sched/sysctl.h> 39 #include <linux/memory-tiers.h> 40 41 #include <asm/tlb.h> 42 #include <asm/pgalloc.h> 43 #include "internal.h" 44 #include "swap.h" 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/thp.h> 48 49 /* 50 * By default, transparent hugepage support is disabled in order to avoid 51 * risking an increased memory footprint for applications that are not 52 * guaranteed to benefit from it. When transparent hugepage support is 53 * enabled, it is for all mappings, and khugepaged scans all mappings. 54 * Defrag is invoked by khugepaged hugepage allocations and by page faults 55 * for all hugepage allocations. 56 */ 57 unsigned long transparent_hugepage_flags __read_mostly = 58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 59 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 60 #endif 61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 62 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 63 #endif 64 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 66 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 67 68 static struct shrinker deferred_split_shrinker; 69 70 static atomic_t huge_zero_refcount; 71 struct page *huge_zero_page __read_mostly; 72 unsigned long huge_zero_pfn __read_mostly = ~0UL; 73 74 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags, 75 bool smaps, bool in_pf, bool enforce_sysfs) 76 { 77 if (!vma->vm_mm) /* vdso */ 78 return false; 79 80 /* 81 * Explicitly disabled through madvise or prctl, or some 82 * architectures may disable THP for some mappings, for 83 * example, s390 kvm. 84 * */ 85 if ((vm_flags & VM_NOHUGEPAGE) || 86 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 87 return false; 88 /* 89 * If the hardware/firmware marked hugepage support disabled. 90 */ 91 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED)) 92 return false; 93 94 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ 95 if (vma_is_dax(vma)) 96 return in_pf; 97 98 /* 99 * Special VMA and hugetlb VMA. 100 * Must be checked after dax since some dax mappings may have 101 * VM_MIXEDMAP set. 102 */ 103 if (vm_flags & VM_NO_KHUGEPAGED) 104 return false; 105 106 /* 107 * Check alignment for file vma and size for both file and anon vma. 108 * 109 * Skip the check for page fault. Huge fault does the check in fault 110 * handlers. And this check is not suitable for huge PUD fault. 111 */ 112 if (!in_pf && 113 !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE))) 114 return false; 115 116 /* 117 * Enabled via shmem mount options or sysfs settings. 118 * Must be done before hugepage flags check since shmem has its 119 * own flags. 120 */ 121 if (!in_pf && shmem_file(vma->vm_file)) 122 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff, 123 !enforce_sysfs, vma->vm_mm, vm_flags); 124 125 /* Enforce sysfs THP requirements as necessary */ 126 if (enforce_sysfs && 127 (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) && 128 !hugepage_flags_always()))) 129 return false; 130 131 /* Only regular file is valid */ 132 if (!in_pf && file_thp_enabled(vma)) 133 return true; 134 135 if (!vma_is_anonymous(vma)) 136 return false; 137 138 if (vma_is_temporary_stack(vma)) 139 return false; 140 141 /* 142 * THPeligible bit of smaps should show 1 for proper VMAs even 143 * though anon_vma is not initialized yet. 144 * 145 * Allow page fault since anon_vma may be not initialized until 146 * the first page fault. 147 */ 148 if (!vma->anon_vma) 149 return (smaps || in_pf); 150 151 return true; 152 } 153 154 static bool get_huge_zero_page(void) 155 { 156 struct page *zero_page; 157 retry: 158 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 159 return true; 160 161 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 162 HPAGE_PMD_ORDER); 163 if (!zero_page) { 164 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 165 return false; 166 } 167 preempt_disable(); 168 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 169 preempt_enable(); 170 __free_pages(zero_page, compound_order(zero_page)); 171 goto retry; 172 } 173 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page)); 174 175 /* We take additional reference here. It will be put back by shrinker */ 176 atomic_set(&huge_zero_refcount, 2); 177 preempt_enable(); 178 count_vm_event(THP_ZERO_PAGE_ALLOC); 179 return true; 180 } 181 182 static void put_huge_zero_page(void) 183 { 184 /* 185 * Counter should never go to zero here. Only shrinker can put 186 * last reference. 187 */ 188 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 189 } 190 191 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 192 { 193 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 194 return READ_ONCE(huge_zero_page); 195 196 if (!get_huge_zero_page()) 197 return NULL; 198 199 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 200 put_huge_zero_page(); 201 202 return READ_ONCE(huge_zero_page); 203 } 204 205 void mm_put_huge_zero_page(struct mm_struct *mm) 206 { 207 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 208 put_huge_zero_page(); 209 } 210 211 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 212 struct shrink_control *sc) 213 { 214 /* we can free zero page only if last reference remains */ 215 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 216 } 217 218 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 219 struct shrink_control *sc) 220 { 221 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 222 struct page *zero_page = xchg(&huge_zero_page, NULL); 223 BUG_ON(zero_page == NULL); 224 WRITE_ONCE(huge_zero_pfn, ~0UL); 225 __free_pages(zero_page, compound_order(zero_page)); 226 return HPAGE_PMD_NR; 227 } 228 229 return 0; 230 } 231 232 static struct shrinker huge_zero_page_shrinker = { 233 .count_objects = shrink_huge_zero_page_count, 234 .scan_objects = shrink_huge_zero_page_scan, 235 .seeks = DEFAULT_SEEKS, 236 }; 237 238 #ifdef CONFIG_SYSFS 239 static ssize_t enabled_show(struct kobject *kobj, 240 struct kobj_attribute *attr, char *buf) 241 { 242 const char *output; 243 244 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 245 output = "[always] madvise never"; 246 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 247 &transparent_hugepage_flags)) 248 output = "always [madvise] never"; 249 else 250 output = "always madvise [never]"; 251 252 return sysfs_emit(buf, "%s\n", output); 253 } 254 255 static ssize_t enabled_store(struct kobject *kobj, 256 struct kobj_attribute *attr, 257 const char *buf, size_t count) 258 { 259 ssize_t ret = count; 260 261 if (sysfs_streq(buf, "always")) { 262 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 263 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 264 } else if (sysfs_streq(buf, "madvise")) { 265 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 266 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 267 } else if (sysfs_streq(buf, "never")) { 268 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 269 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 270 } else 271 ret = -EINVAL; 272 273 if (ret > 0) { 274 int err = start_stop_khugepaged(); 275 if (err) 276 ret = err; 277 } 278 return ret; 279 } 280 281 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); 282 283 ssize_t single_hugepage_flag_show(struct kobject *kobj, 284 struct kobj_attribute *attr, char *buf, 285 enum transparent_hugepage_flag flag) 286 { 287 return sysfs_emit(buf, "%d\n", 288 !!test_bit(flag, &transparent_hugepage_flags)); 289 } 290 291 ssize_t single_hugepage_flag_store(struct kobject *kobj, 292 struct kobj_attribute *attr, 293 const char *buf, size_t count, 294 enum transparent_hugepage_flag flag) 295 { 296 unsigned long value; 297 int ret; 298 299 ret = kstrtoul(buf, 10, &value); 300 if (ret < 0) 301 return ret; 302 if (value > 1) 303 return -EINVAL; 304 305 if (value) 306 set_bit(flag, &transparent_hugepage_flags); 307 else 308 clear_bit(flag, &transparent_hugepage_flags); 309 310 return count; 311 } 312 313 static ssize_t defrag_show(struct kobject *kobj, 314 struct kobj_attribute *attr, char *buf) 315 { 316 const char *output; 317 318 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 319 &transparent_hugepage_flags)) 320 output = "[always] defer defer+madvise madvise never"; 321 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 322 &transparent_hugepage_flags)) 323 output = "always [defer] defer+madvise madvise never"; 324 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 325 &transparent_hugepage_flags)) 326 output = "always defer [defer+madvise] madvise never"; 327 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 328 &transparent_hugepage_flags)) 329 output = "always defer defer+madvise [madvise] never"; 330 else 331 output = "always defer defer+madvise madvise [never]"; 332 333 return sysfs_emit(buf, "%s\n", output); 334 } 335 336 static ssize_t defrag_store(struct kobject *kobj, 337 struct kobj_attribute *attr, 338 const char *buf, size_t count) 339 { 340 if (sysfs_streq(buf, "always")) { 341 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 342 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 343 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 344 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 345 } else if (sysfs_streq(buf, "defer+madvise")) { 346 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 347 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 348 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 349 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 350 } else if (sysfs_streq(buf, "defer")) { 351 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 352 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 353 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 354 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 355 } else if (sysfs_streq(buf, "madvise")) { 356 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 357 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 358 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 359 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 360 } else if (sysfs_streq(buf, "never")) { 361 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 362 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 363 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 364 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 365 } else 366 return -EINVAL; 367 368 return count; 369 } 370 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); 371 372 static ssize_t use_zero_page_show(struct kobject *kobj, 373 struct kobj_attribute *attr, char *buf) 374 { 375 return single_hugepage_flag_show(kobj, attr, buf, 376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 377 } 378 static ssize_t use_zero_page_store(struct kobject *kobj, 379 struct kobj_attribute *attr, const char *buf, size_t count) 380 { 381 return single_hugepage_flag_store(kobj, attr, buf, count, 382 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 383 } 384 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); 385 386 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 387 struct kobj_attribute *attr, char *buf) 388 { 389 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 390 } 391 static struct kobj_attribute hpage_pmd_size_attr = 392 __ATTR_RO(hpage_pmd_size); 393 394 static struct attribute *hugepage_attr[] = { 395 &enabled_attr.attr, 396 &defrag_attr.attr, 397 &use_zero_page_attr.attr, 398 &hpage_pmd_size_attr.attr, 399 #ifdef CONFIG_SHMEM 400 &shmem_enabled_attr.attr, 401 #endif 402 NULL, 403 }; 404 405 static const struct attribute_group hugepage_attr_group = { 406 .attrs = hugepage_attr, 407 }; 408 409 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 410 { 411 int err; 412 413 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 414 if (unlikely(!*hugepage_kobj)) { 415 pr_err("failed to create transparent hugepage kobject\n"); 416 return -ENOMEM; 417 } 418 419 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 420 if (err) { 421 pr_err("failed to register transparent hugepage group\n"); 422 goto delete_obj; 423 } 424 425 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 426 if (err) { 427 pr_err("failed to register transparent hugepage group\n"); 428 goto remove_hp_group; 429 } 430 431 return 0; 432 433 remove_hp_group: 434 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 435 delete_obj: 436 kobject_put(*hugepage_kobj); 437 return err; 438 } 439 440 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 441 { 442 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 443 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 444 kobject_put(hugepage_kobj); 445 } 446 #else 447 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 448 { 449 return 0; 450 } 451 452 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 453 { 454 } 455 #endif /* CONFIG_SYSFS */ 456 457 static int __init hugepage_init(void) 458 { 459 int err; 460 struct kobject *hugepage_kobj; 461 462 if (!has_transparent_hugepage()) { 463 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED; 464 return -EINVAL; 465 } 466 467 /* 468 * hugepages can't be allocated by the buddy allocator 469 */ 470 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 471 /* 472 * we use page->mapping and page->index in second tail page 473 * as list_head: assuming THP order >= 2 474 */ 475 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 476 477 err = hugepage_init_sysfs(&hugepage_kobj); 478 if (err) 479 goto err_sysfs; 480 481 err = khugepaged_init(); 482 if (err) 483 goto err_slab; 484 485 err = register_shrinker(&huge_zero_page_shrinker, "thp-zero"); 486 if (err) 487 goto err_hzp_shrinker; 488 err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split"); 489 if (err) 490 goto err_split_shrinker; 491 492 /* 493 * By default disable transparent hugepages on smaller systems, 494 * where the extra memory used could hurt more than TLB overhead 495 * is likely to save. The admin can still enable it through /sys. 496 */ 497 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 498 transparent_hugepage_flags = 0; 499 return 0; 500 } 501 502 err = start_stop_khugepaged(); 503 if (err) 504 goto err_khugepaged; 505 506 return 0; 507 err_khugepaged: 508 unregister_shrinker(&deferred_split_shrinker); 509 err_split_shrinker: 510 unregister_shrinker(&huge_zero_page_shrinker); 511 err_hzp_shrinker: 512 khugepaged_destroy(); 513 err_slab: 514 hugepage_exit_sysfs(hugepage_kobj); 515 err_sysfs: 516 return err; 517 } 518 subsys_initcall(hugepage_init); 519 520 static int __init setup_transparent_hugepage(char *str) 521 { 522 int ret = 0; 523 if (!str) 524 goto out; 525 if (!strcmp(str, "always")) { 526 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 527 &transparent_hugepage_flags); 528 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 529 &transparent_hugepage_flags); 530 ret = 1; 531 } else if (!strcmp(str, "madvise")) { 532 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 533 &transparent_hugepage_flags); 534 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 535 &transparent_hugepage_flags); 536 ret = 1; 537 } else if (!strcmp(str, "never")) { 538 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 539 &transparent_hugepage_flags); 540 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 541 &transparent_hugepage_flags); 542 ret = 1; 543 } 544 out: 545 if (!ret) 546 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 547 return ret; 548 } 549 __setup("transparent_hugepage=", setup_transparent_hugepage); 550 551 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 552 { 553 if (likely(vma->vm_flags & VM_WRITE)) 554 pmd = pmd_mkwrite(pmd); 555 return pmd; 556 } 557 558 #ifdef CONFIG_MEMCG 559 static inline 560 struct deferred_split *get_deferred_split_queue(struct folio *folio) 561 { 562 struct mem_cgroup *memcg = folio_memcg(folio); 563 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 564 565 if (memcg) 566 return &memcg->deferred_split_queue; 567 else 568 return &pgdat->deferred_split_queue; 569 } 570 #else 571 static inline 572 struct deferred_split *get_deferred_split_queue(struct folio *folio) 573 { 574 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 575 576 return &pgdat->deferred_split_queue; 577 } 578 #endif 579 580 void prep_transhuge_page(struct page *page) 581 { 582 struct folio *folio = (struct folio *)page; 583 584 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio); 585 INIT_LIST_HEAD(&folio->_deferred_list); 586 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 587 } 588 589 static inline bool is_transparent_hugepage(struct page *page) 590 { 591 struct folio *folio; 592 593 if (!PageCompound(page)) 594 return false; 595 596 folio = page_folio(page); 597 return is_huge_zero_page(&folio->page) || 598 folio->_folio_dtor == TRANSHUGE_PAGE_DTOR; 599 } 600 601 static unsigned long __thp_get_unmapped_area(struct file *filp, 602 unsigned long addr, unsigned long len, 603 loff_t off, unsigned long flags, unsigned long size) 604 { 605 loff_t off_end = off + len; 606 loff_t off_align = round_up(off, size); 607 unsigned long len_pad, ret; 608 609 if (off_end <= off_align || (off_end - off_align) < size) 610 return 0; 611 612 len_pad = len + size; 613 if (len_pad < len || (off + len_pad) < off) 614 return 0; 615 616 ret = current->mm->get_unmapped_area(filp, addr, len_pad, 617 off >> PAGE_SHIFT, flags); 618 619 /* 620 * The failure might be due to length padding. The caller will retry 621 * without the padding. 622 */ 623 if (IS_ERR_VALUE(ret)) 624 return 0; 625 626 /* 627 * Do not try to align to THP boundary if allocation at the address 628 * hint succeeds. 629 */ 630 if (ret == addr) 631 return addr; 632 633 ret += (off - ret) & (size - 1); 634 return ret; 635 } 636 637 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 638 unsigned long len, unsigned long pgoff, unsigned long flags) 639 { 640 unsigned long ret; 641 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 642 643 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); 644 if (ret) 645 return ret; 646 647 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 648 } 649 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 650 651 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 652 struct page *page, gfp_t gfp) 653 { 654 struct vm_area_struct *vma = vmf->vma; 655 struct folio *folio = page_folio(page); 656 pgtable_t pgtable; 657 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 658 vm_fault_t ret = 0; 659 660 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 661 662 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 663 folio_put(folio); 664 count_vm_event(THP_FAULT_FALLBACK); 665 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 666 return VM_FAULT_FALLBACK; 667 } 668 folio_throttle_swaprate(folio, gfp); 669 670 pgtable = pte_alloc_one(vma->vm_mm); 671 if (unlikely(!pgtable)) { 672 ret = VM_FAULT_OOM; 673 goto release; 674 } 675 676 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 677 /* 678 * The memory barrier inside __folio_mark_uptodate makes sure that 679 * clear_huge_page writes become visible before the set_pmd_at() 680 * write. 681 */ 682 __folio_mark_uptodate(folio); 683 684 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 685 if (unlikely(!pmd_none(*vmf->pmd))) { 686 goto unlock_release; 687 } else { 688 pmd_t entry; 689 690 ret = check_stable_address_space(vma->vm_mm); 691 if (ret) 692 goto unlock_release; 693 694 /* Deliver the page fault to userland */ 695 if (userfaultfd_missing(vma)) { 696 spin_unlock(vmf->ptl); 697 folio_put(folio); 698 pte_free(vma->vm_mm, pgtable); 699 ret = handle_userfault(vmf, VM_UFFD_MISSING); 700 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 701 return ret; 702 } 703 704 entry = mk_huge_pmd(page, vma->vm_page_prot); 705 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 706 folio_add_new_anon_rmap(folio, vma, haddr); 707 folio_add_lru_vma(folio, vma); 708 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 709 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 710 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 711 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 712 mm_inc_nr_ptes(vma->vm_mm); 713 spin_unlock(vmf->ptl); 714 count_vm_event(THP_FAULT_ALLOC); 715 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 716 } 717 718 return 0; 719 unlock_release: 720 spin_unlock(vmf->ptl); 721 release: 722 if (pgtable) 723 pte_free(vma->vm_mm, pgtable); 724 folio_put(folio); 725 return ret; 726 727 } 728 729 /* 730 * always: directly stall for all thp allocations 731 * defer: wake kswapd and fail if not immediately available 732 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 733 * fail if not immediately available 734 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 735 * available 736 * never: never stall for any thp allocation 737 */ 738 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 739 { 740 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 741 742 /* Always do synchronous compaction */ 743 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 744 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 745 746 /* Kick kcompactd and fail quickly */ 747 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 748 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 749 750 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 751 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 752 return GFP_TRANSHUGE_LIGHT | 753 (vma_madvised ? __GFP_DIRECT_RECLAIM : 754 __GFP_KSWAPD_RECLAIM); 755 756 /* Only do synchronous compaction if madvised */ 757 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 758 return GFP_TRANSHUGE_LIGHT | 759 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 760 761 return GFP_TRANSHUGE_LIGHT; 762 } 763 764 /* Caller must hold page table lock. */ 765 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 766 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 767 struct page *zero_page) 768 { 769 pmd_t entry; 770 if (!pmd_none(*pmd)) 771 return; 772 entry = mk_pmd(zero_page, vma->vm_page_prot); 773 entry = pmd_mkhuge(entry); 774 pgtable_trans_huge_deposit(mm, pmd, pgtable); 775 set_pmd_at(mm, haddr, pmd, entry); 776 mm_inc_nr_ptes(mm); 777 } 778 779 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 780 { 781 struct vm_area_struct *vma = vmf->vma; 782 gfp_t gfp; 783 struct folio *folio; 784 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 785 786 if (!transhuge_vma_suitable(vma, haddr)) 787 return VM_FAULT_FALLBACK; 788 if (unlikely(anon_vma_prepare(vma))) 789 return VM_FAULT_OOM; 790 khugepaged_enter_vma(vma, vma->vm_flags); 791 792 if (!(vmf->flags & FAULT_FLAG_WRITE) && 793 !mm_forbids_zeropage(vma->vm_mm) && 794 transparent_hugepage_use_zero_page()) { 795 pgtable_t pgtable; 796 struct page *zero_page; 797 vm_fault_t ret; 798 pgtable = pte_alloc_one(vma->vm_mm); 799 if (unlikely(!pgtable)) 800 return VM_FAULT_OOM; 801 zero_page = mm_get_huge_zero_page(vma->vm_mm); 802 if (unlikely(!zero_page)) { 803 pte_free(vma->vm_mm, pgtable); 804 count_vm_event(THP_FAULT_FALLBACK); 805 return VM_FAULT_FALLBACK; 806 } 807 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 808 ret = 0; 809 if (pmd_none(*vmf->pmd)) { 810 ret = check_stable_address_space(vma->vm_mm); 811 if (ret) { 812 spin_unlock(vmf->ptl); 813 pte_free(vma->vm_mm, pgtable); 814 } else if (userfaultfd_missing(vma)) { 815 spin_unlock(vmf->ptl); 816 pte_free(vma->vm_mm, pgtable); 817 ret = handle_userfault(vmf, VM_UFFD_MISSING); 818 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 819 } else { 820 set_huge_zero_page(pgtable, vma->vm_mm, vma, 821 haddr, vmf->pmd, zero_page); 822 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 823 spin_unlock(vmf->ptl); 824 } 825 } else { 826 spin_unlock(vmf->ptl); 827 pte_free(vma->vm_mm, pgtable); 828 } 829 return ret; 830 } 831 gfp = vma_thp_gfp_mask(vma); 832 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true); 833 if (unlikely(!folio)) { 834 count_vm_event(THP_FAULT_FALLBACK); 835 return VM_FAULT_FALLBACK; 836 } 837 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp); 838 } 839 840 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 841 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 842 pgtable_t pgtable) 843 { 844 struct mm_struct *mm = vma->vm_mm; 845 pmd_t entry; 846 spinlock_t *ptl; 847 848 ptl = pmd_lock(mm, pmd); 849 if (!pmd_none(*pmd)) { 850 if (write) { 851 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 852 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 853 goto out_unlock; 854 } 855 entry = pmd_mkyoung(*pmd); 856 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 857 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 858 update_mmu_cache_pmd(vma, addr, pmd); 859 } 860 861 goto out_unlock; 862 } 863 864 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 865 if (pfn_t_devmap(pfn)) 866 entry = pmd_mkdevmap(entry); 867 if (write) { 868 entry = pmd_mkyoung(pmd_mkdirty(entry)); 869 entry = maybe_pmd_mkwrite(entry, vma); 870 } 871 872 if (pgtable) { 873 pgtable_trans_huge_deposit(mm, pmd, pgtable); 874 mm_inc_nr_ptes(mm); 875 pgtable = NULL; 876 } 877 878 set_pmd_at(mm, addr, pmd, entry); 879 update_mmu_cache_pmd(vma, addr, pmd); 880 881 out_unlock: 882 spin_unlock(ptl); 883 if (pgtable) 884 pte_free(mm, pgtable); 885 } 886 887 /** 888 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn 889 * @vmf: Structure describing the fault 890 * @pfn: pfn to insert 891 * @pgprot: page protection to use 892 * @write: whether it's a write fault 893 * 894 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and 895 * also consult the vmf_insert_mixed_prot() documentation when 896 * @pgprot != @vmf->vma->vm_page_prot. 897 * 898 * Return: vm_fault_t value. 899 */ 900 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn, 901 pgprot_t pgprot, bool write) 902 { 903 unsigned long addr = vmf->address & PMD_MASK; 904 struct vm_area_struct *vma = vmf->vma; 905 pgtable_t pgtable = NULL; 906 907 /* 908 * If we had pmd_special, we could avoid all these restrictions, 909 * but we need to be consistent with PTEs and architectures that 910 * can't support a 'special' bit. 911 */ 912 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 913 !pfn_t_devmap(pfn)); 914 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 915 (VM_PFNMAP|VM_MIXEDMAP)); 916 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 917 918 if (addr < vma->vm_start || addr >= vma->vm_end) 919 return VM_FAULT_SIGBUS; 920 921 if (arch_needs_pgtable_deposit()) { 922 pgtable = pte_alloc_one(vma->vm_mm); 923 if (!pgtable) 924 return VM_FAULT_OOM; 925 } 926 927 track_pfn_insert(vma, &pgprot, pfn); 928 929 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 930 return VM_FAULT_NOPAGE; 931 } 932 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot); 933 934 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 935 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 936 { 937 if (likely(vma->vm_flags & VM_WRITE)) 938 pud = pud_mkwrite(pud); 939 return pud; 940 } 941 942 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 943 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 944 { 945 struct mm_struct *mm = vma->vm_mm; 946 pud_t entry; 947 spinlock_t *ptl; 948 949 ptl = pud_lock(mm, pud); 950 if (!pud_none(*pud)) { 951 if (write) { 952 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 953 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 954 goto out_unlock; 955 } 956 entry = pud_mkyoung(*pud); 957 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 958 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 959 update_mmu_cache_pud(vma, addr, pud); 960 } 961 goto out_unlock; 962 } 963 964 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 965 if (pfn_t_devmap(pfn)) 966 entry = pud_mkdevmap(entry); 967 if (write) { 968 entry = pud_mkyoung(pud_mkdirty(entry)); 969 entry = maybe_pud_mkwrite(entry, vma); 970 } 971 set_pud_at(mm, addr, pud, entry); 972 update_mmu_cache_pud(vma, addr, pud); 973 974 out_unlock: 975 spin_unlock(ptl); 976 } 977 978 /** 979 * vmf_insert_pfn_pud_prot - insert a pud size pfn 980 * @vmf: Structure describing the fault 981 * @pfn: pfn to insert 982 * @pgprot: page protection to use 983 * @write: whether it's a write fault 984 * 985 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and 986 * also consult the vmf_insert_mixed_prot() documentation when 987 * @pgprot != @vmf->vma->vm_page_prot. 988 * 989 * Return: vm_fault_t value. 990 */ 991 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn, 992 pgprot_t pgprot, bool write) 993 { 994 unsigned long addr = vmf->address & PUD_MASK; 995 struct vm_area_struct *vma = vmf->vma; 996 997 /* 998 * If we had pud_special, we could avoid all these restrictions, 999 * but we need to be consistent with PTEs and architectures that 1000 * can't support a 'special' bit. 1001 */ 1002 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1003 !pfn_t_devmap(pfn)); 1004 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1005 (VM_PFNMAP|VM_MIXEDMAP)); 1006 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1007 1008 if (addr < vma->vm_start || addr >= vma->vm_end) 1009 return VM_FAULT_SIGBUS; 1010 1011 track_pfn_insert(vma, &pgprot, pfn); 1012 1013 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write); 1014 return VM_FAULT_NOPAGE; 1015 } 1016 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot); 1017 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1018 1019 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1020 pmd_t *pmd, bool write) 1021 { 1022 pmd_t _pmd; 1023 1024 _pmd = pmd_mkyoung(*pmd); 1025 if (write) 1026 _pmd = pmd_mkdirty(_pmd); 1027 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1028 pmd, _pmd, write)) 1029 update_mmu_cache_pmd(vma, addr, pmd); 1030 } 1031 1032 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 1033 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 1034 { 1035 unsigned long pfn = pmd_pfn(*pmd); 1036 struct mm_struct *mm = vma->vm_mm; 1037 struct page *page; 1038 int ret; 1039 1040 assert_spin_locked(pmd_lockptr(mm, pmd)); 1041 1042 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1043 return NULL; 1044 1045 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1046 /* pass */; 1047 else 1048 return NULL; 1049 1050 if (flags & FOLL_TOUCH) 1051 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1052 1053 /* 1054 * device mapped pages can only be returned if the 1055 * caller will manage the page reference count. 1056 */ 1057 if (!(flags & (FOLL_GET | FOLL_PIN))) 1058 return ERR_PTR(-EEXIST); 1059 1060 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1061 *pgmap = get_dev_pagemap(pfn, *pgmap); 1062 if (!*pgmap) 1063 return ERR_PTR(-EFAULT); 1064 page = pfn_to_page(pfn); 1065 ret = try_grab_page(page, flags); 1066 if (ret) 1067 page = ERR_PTR(ret); 1068 1069 return page; 1070 } 1071 1072 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1073 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1074 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1075 { 1076 spinlock_t *dst_ptl, *src_ptl; 1077 struct page *src_page; 1078 pmd_t pmd; 1079 pgtable_t pgtable = NULL; 1080 int ret = -ENOMEM; 1081 1082 /* Skip if can be re-fill on fault */ 1083 if (!vma_is_anonymous(dst_vma)) 1084 return 0; 1085 1086 pgtable = pte_alloc_one(dst_mm); 1087 if (unlikely(!pgtable)) 1088 goto out; 1089 1090 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1091 src_ptl = pmd_lockptr(src_mm, src_pmd); 1092 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1093 1094 ret = -EAGAIN; 1095 pmd = *src_pmd; 1096 1097 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1098 if (unlikely(is_swap_pmd(pmd))) { 1099 swp_entry_t entry = pmd_to_swp_entry(pmd); 1100 1101 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1102 if (!is_readable_migration_entry(entry)) { 1103 entry = make_readable_migration_entry( 1104 swp_offset(entry)); 1105 pmd = swp_entry_to_pmd(entry); 1106 if (pmd_swp_soft_dirty(*src_pmd)) 1107 pmd = pmd_swp_mksoft_dirty(pmd); 1108 if (pmd_swp_uffd_wp(*src_pmd)) 1109 pmd = pmd_swp_mkuffd_wp(pmd); 1110 set_pmd_at(src_mm, addr, src_pmd, pmd); 1111 } 1112 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1113 mm_inc_nr_ptes(dst_mm); 1114 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1115 if (!userfaultfd_wp(dst_vma)) 1116 pmd = pmd_swp_clear_uffd_wp(pmd); 1117 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1118 ret = 0; 1119 goto out_unlock; 1120 } 1121 #endif 1122 1123 if (unlikely(!pmd_trans_huge(pmd))) { 1124 pte_free(dst_mm, pgtable); 1125 goto out_unlock; 1126 } 1127 /* 1128 * When page table lock is held, the huge zero pmd should not be 1129 * under splitting since we don't split the page itself, only pmd to 1130 * a page table. 1131 */ 1132 if (is_huge_zero_pmd(pmd)) { 1133 /* 1134 * get_huge_zero_page() will never allocate a new page here, 1135 * since we already have a zero page to copy. It just takes a 1136 * reference. 1137 */ 1138 mm_get_huge_zero_page(dst_mm); 1139 goto out_zero_page; 1140 } 1141 1142 src_page = pmd_page(pmd); 1143 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1144 1145 get_page(src_page); 1146 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) { 1147 /* Page maybe pinned: split and retry the fault on PTEs. */ 1148 put_page(src_page); 1149 pte_free(dst_mm, pgtable); 1150 spin_unlock(src_ptl); 1151 spin_unlock(dst_ptl); 1152 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1153 return -EAGAIN; 1154 } 1155 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1156 out_zero_page: 1157 mm_inc_nr_ptes(dst_mm); 1158 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1159 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1160 if (!userfaultfd_wp(dst_vma)) 1161 pmd = pmd_clear_uffd_wp(pmd); 1162 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1163 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1164 1165 ret = 0; 1166 out_unlock: 1167 spin_unlock(src_ptl); 1168 spin_unlock(dst_ptl); 1169 out: 1170 return ret; 1171 } 1172 1173 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1174 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1175 pud_t *pud, bool write) 1176 { 1177 pud_t _pud; 1178 1179 _pud = pud_mkyoung(*pud); 1180 if (write) 1181 _pud = pud_mkdirty(_pud); 1182 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1183 pud, _pud, write)) 1184 update_mmu_cache_pud(vma, addr, pud); 1185 } 1186 1187 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1188 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1189 { 1190 unsigned long pfn = pud_pfn(*pud); 1191 struct mm_struct *mm = vma->vm_mm; 1192 struct page *page; 1193 int ret; 1194 1195 assert_spin_locked(pud_lockptr(mm, pud)); 1196 1197 if (flags & FOLL_WRITE && !pud_write(*pud)) 1198 return NULL; 1199 1200 if (pud_present(*pud) && pud_devmap(*pud)) 1201 /* pass */; 1202 else 1203 return NULL; 1204 1205 if (flags & FOLL_TOUCH) 1206 touch_pud(vma, addr, pud, flags & FOLL_WRITE); 1207 1208 /* 1209 * device mapped pages can only be returned if the 1210 * caller will manage the page reference count. 1211 * 1212 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: 1213 */ 1214 if (!(flags & (FOLL_GET | FOLL_PIN))) 1215 return ERR_PTR(-EEXIST); 1216 1217 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1218 *pgmap = get_dev_pagemap(pfn, *pgmap); 1219 if (!*pgmap) 1220 return ERR_PTR(-EFAULT); 1221 page = pfn_to_page(pfn); 1222 1223 ret = try_grab_page(page, flags); 1224 if (ret) 1225 page = ERR_PTR(ret); 1226 1227 return page; 1228 } 1229 1230 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1231 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1232 struct vm_area_struct *vma) 1233 { 1234 spinlock_t *dst_ptl, *src_ptl; 1235 pud_t pud; 1236 int ret; 1237 1238 dst_ptl = pud_lock(dst_mm, dst_pud); 1239 src_ptl = pud_lockptr(src_mm, src_pud); 1240 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1241 1242 ret = -EAGAIN; 1243 pud = *src_pud; 1244 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1245 goto out_unlock; 1246 1247 /* 1248 * When page table lock is held, the huge zero pud should not be 1249 * under splitting since we don't split the page itself, only pud to 1250 * a page table. 1251 */ 1252 if (is_huge_zero_pud(pud)) { 1253 /* No huge zero pud yet */ 1254 } 1255 1256 /* 1257 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap() 1258 * and split if duplicating fails. 1259 */ 1260 pudp_set_wrprotect(src_mm, addr, src_pud); 1261 pud = pud_mkold(pud_wrprotect(pud)); 1262 set_pud_at(dst_mm, addr, dst_pud, pud); 1263 1264 ret = 0; 1265 out_unlock: 1266 spin_unlock(src_ptl); 1267 spin_unlock(dst_ptl); 1268 return ret; 1269 } 1270 1271 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1272 { 1273 bool write = vmf->flags & FAULT_FLAG_WRITE; 1274 1275 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1276 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1277 goto unlock; 1278 1279 touch_pud(vmf->vma, vmf->address, vmf->pud, write); 1280 unlock: 1281 spin_unlock(vmf->ptl); 1282 } 1283 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1284 1285 void huge_pmd_set_accessed(struct vm_fault *vmf) 1286 { 1287 bool write = vmf->flags & FAULT_FLAG_WRITE; 1288 1289 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1290 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) 1291 goto unlock; 1292 1293 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); 1294 1295 unlock: 1296 spin_unlock(vmf->ptl); 1297 } 1298 1299 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1300 { 1301 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 1302 struct vm_area_struct *vma = vmf->vma; 1303 struct folio *folio; 1304 struct page *page; 1305 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1306 pmd_t orig_pmd = vmf->orig_pmd; 1307 1308 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1309 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1310 1311 if (is_huge_zero_pmd(orig_pmd)) 1312 goto fallback; 1313 1314 spin_lock(vmf->ptl); 1315 1316 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1317 spin_unlock(vmf->ptl); 1318 return 0; 1319 } 1320 1321 page = pmd_page(orig_pmd); 1322 folio = page_folio(page); 1323 VM_BUG_ON_PAGE(!PageHead(page), page); 1324 1325 /* Early check when only holding the PT lock. */ 1326 if (PageAnonExclusive(page)) 1327 goto reuse; 1328 1329 if (!folio_trylock(folio)) { 1330 folio_get(folio); 1331 spin_unlock(vmf->ptl); 1332 folio_lock(folio); 1333 spin_lock(vmf->ptl); 1334 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1335 spin_unlock(vmf->ptl); 1336 folio_unlock(folio); 1337 folio_put(folio); 1338 return 0; 1339 } 1340 folio_put(folio); 1341 } 1342 1343 /* Recheck after temporarily dropping the PT lock. */ 1344 if (PageAnonExclusive(page)) { 1345 folio_unlock(folio); 1346 goto reuse; 1347 } 1348 1349 /* 1350 * See do_wp_page(): we can only reuse the folio exclusively if 1351 * there are no additional references. Note that we always drain 1352 * the LRU pagevecs immediately after adding a THP. 1353 */ 1354 if (folio_ref_count(folio) > 1355 1 + folio_test_swapcache(folio) * folio_nr_pages(folio)) 1356 goto unlock_fallback; 1357 if (folio_test_swapcache(folio)) 1358 folio_free_swap(folio); 1359 if (folio_ref_count(folio) == 1) { 1360 pmd_t entry; 1361 1362 page_move_anon_rmap(page, vma); 1363 folio_unlock(folio); 1364 reuse: 1365 if (unlikely(unshare)) { 1366 spin_unlock(vmf->ptl); 1367 return 0; 1368 } 1369 entry = pmd_mkyoung(orig_pmd); 1370 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1371 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1372 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1373 spin_unlock(vmf->ptl); 1374 return 0; 1375 } 1376 1377 unlock_fallback: 1378 folio_unlock(folio); 1379 spin_unlock(vmf->ptl); 1380 fallback: 1381 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1382 return VM_FAULT_FALLBACK; 1383 } 1384 1385 static inline bool can_change_pmd_writable(struct vm_area_struct *vma, 1386 unsigned long addr, pmd_t pmd) 1387 { 1388 struct page *page; 1389 1390 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) 1391 return false; 1392 1393 /* Don't touch entries that are not even readable (NUMA hinting). */ 1394 if (pmd_protnone(pmd)) 1395 return false; 1396 1397 /* Do we need write faults for softdirty tracking? */ 1398 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 1399 return false; 1400 1401 /* Do we need write faults for uffd-wp tracking? */ 1402 if (userfaultfd_huge_pmd_wp(vma, pmd)) 1403 return false; 1404 1405 if (!(vma->vm_flags & VM_SHARED)) { 1406 /* See can_change_pte_writable(). */ 1407 page = vm_normal_page_pmd(vma, addr, pmd); 1408 return page && PageAnon(page) && PageAnonExclusive(page); 1409 } 1410 1411 /* See can_change_pte_writable(). */ 1412 return pmd_dirty(pmd); 1413 } 1414 1415 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 1416 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 1417 struct vm_area_struct *vma, 1418 unsigned int flags) 1419 { 1420 /* If the pmd is writable, we can write to the page. */ 1421 if (pmd_write(pmd)) 1422 return true; 1423 1424 /* Maybe FOLL_FORCE is set to override it? */ 1425 if (!(flags & FOLL_FORCE)) 1426 return false; 1427 1428 /* But FOLL_FORCE has no effect on shared mappings */ 1429 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 1430 return false; 1431 1432 /* ... or read-only private ones */ 1433 if (!(vma->vm_flags & VM_MAYWRITE)) 1434 return false; 1435 1436 /* ... or already writable ones that just need to take a write fault */ 1437 if (vma->vm_flags & VM_WRITE) 1438 return false; 1439 1440 /* 1441 * See can_change_pte_writable(): we broke COW and could map the page 1442 * writable if we have an exclusive anonymous page ... 1443 */ 1444 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 1445 return false; 1446 1447 /* ... and a write-fault isn't required for other reasons. */ 1448 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 1449 return false; 1450 return !userfaultfd_huge_pmd_wp(vma, pmd); 1451 } 1452 1453 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1454 unsigned long addr, 1455 pmd_t *pmd, 1456 unsigned int flags) 1457 { 1458 struct mm_struct *mm = vma->vm_mm; 1459 struct page *page; 1460 int ret; 1461 1462 assert_spin_locked(pmd_lockptr(mm, pmd)); 1463 1464 page = pmd_page(*pmd); 1465 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1466 1467 if ((flags & FOLL_WRITE) && 1468 !can_follow_write_pmd(*pmd, page, vma, flags)) 1469 return NULL; 1470 1471 /* Avoid dumping huge zero page */ 1472 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1473 return ERR_PTR(-EFAULT); 1474 1475 /* Full NUMA hinting faults to serialise migration in fault paths */ 1476 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags)) 1477 return NULL; 1478 1479 if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page)) 1480 return ERR_PTR(-EMLINK); 1481 1482 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 1483 !PageAnonExclusive(page), page); 1484 1485 ret = try_grab_page(page, flags); 1486 if (ret) 1487 return ERR_PTR(ret); 1488 1489 if (flags & FOLL_TOUCH) 1490 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1491 1492 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1493 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1494 1495 return page; 1496 } 1497 1498 /* NUMA hinting page fault entry point for trans huge pmds */ 1499 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1500 { 1501 struct vm_area_struct *vma = vmf->vma; 1502 pmd_t oldpmd = vmf->orig_pmd; 1503 pmd_t pmd; 1504 struct page *page; 1505 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1506 int page_nid = NUMA_NO_NODE; 1507 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK); 1508 bool migrated = false, writable = false; 1509 int flags = 0; 1510 1511 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1512 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1513 spin_unlock(vmf->ptl); 1514 goto out; 1515 } 1516 1517 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1518 1519 /* 1520 * Detect now whether the PMD could be writable; this information 1521 * is only valid while holding the PT lock. 1522 */ 1523 writable = pmd_write(pmd); 1524 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 1525 can_change_pmd_writable(vma, vmf->address, pmd)) 1526 writable = true; 1527 1528 page = vm_normal_page_pmd(vma, haddr, pmd); 1529 if (!page) 1530 goto out_map; 1531 1532 /* See similar comment in do_numa_page for explanation */ 1533 if (!writable) 1534 flags |= TNF_NO_GROUP; 1535 1536 page_nid = page_to_nid(page); 1537 /* 1538 * For memory tiering mode, cpupid of slow memory page is used 1539 * to record page access time. So use default value. 1540 */ 1541 if (node_is_toptier(page_nid)) 1542 last_cpupid = page_cpupid_last(page); 1543 target_nid = numa_migrate_prep(page, vma, haddr, page_nid, 1544 &flags); 1545 1546 if (target_nid == NUMA_NO_NODE) { 1547 put_page(page); 1548 goto out_map; 1549 } 1550 1551 spin_unlock(vmf->ptl); 1552 writable = false; 1553 1554 migrated = migrate_misplaced_page(page, vma, target_nid); 1555 if (migrated) { 1556 flags |= TNF_MIGRATED; 1557 page_nid = target_nid; 1558 } else { 1559 flags |= TNF_MIGRATE_FAIL; 1560 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1561 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1562 spin_unlock(vmf->ptl); 1563 goto out; 1564 } 1565 goto out_map; 1566 } 1567 1568 out: 1569 if (page_nid != NUMA_NO_NODE) 1570 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1571 flags); 1572 1573 return 0; 1574 1575 out_map: 1576 /* Restore the PMD */ 1577 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1578 pmd = pmd_mkyoung(pmd); 1579 if (writable) 1580 pmd = pmd_mkwrite(pmd); 1581 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1582 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1583 spin_unlock(vmf->ptl); 1584 goto out; 1585 } 1586 1587 /* 1588 * Return true if we do MADV_FREE successfully on entire pmd page. 1589 * Otherwise, return false. 1590 */ 1591 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1592 pmd_t *pmd, unsigned long addr, unsigned long next) 1593 { 1594 spinlock_t *ptl; 1595 pmd_t orig_pmd; 1596 struct folio *folio; 1597 struct mm_struct *mm = tlb->mm; 1598 bool ret = false; 1599 1600 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1601 1602 ptl = pmd_trans_huge_lock(pmd, vma); 1603 if (!ptl) 1604 goto out_unlocked; 1605 1606 orig_pmd = *pmd; 1607 if (is_huge_zero_pmd(orig_pmd)) 1608 goto out; 1609 1610 if (unlikely(!pmd_present(orig_pmd))) { 1611 VM_BUG_ON(thp_migration_supported() && 1612 !is_pmd_migration_entry(orig_pmd)); 1613 goto out; 1614 } 1615 1616 folio = pfn_folio(pmd_pfn(orig_pmd)); 1617 /* 1618 * If other processes are mapping this folio, we couldn't discard 1619 * the folio unless they all do MADV_FREE so let's skip the folio. 1620 */ 1621 if (folio_mapcount(folio) != 1) 1622 goto out; 1623 1624 if (!folio_trylock(folio)) 1625 goto out; 1626 1627 /* 1628 * If user want to discard part-pages of THP, split it so MADV_FREE 1629 * will deactivate only them. 1630 */ 1631 if (next - addr != HPAGE_PMD_SIZE) { 1632 folio_get(folio); 1633 spin_unlock(ptl); 1634 split_folio(folio); 1635 folio_unlock(folio); 1636 folio_put(folio); 1637 goto out_unlocked; 1638 } 1639 1640 if (folio_test_dirty(folio)) 1641 folio_clear_dirty(folio); 1642 folio_unlock(folio); 1643 1644 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1645 pmdp_invalidate(vma, addr, pmd); 1646 orig_pmd = pmd_mkold(orig_pmd); 1647 orig_pmd = pmd_mkclean(orig_pmd); 1648 1649 set_pmd_at(mm, addr, pmd, orig_pmd); 1650 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1651 } 1652 1653 folio_mark_lazyfree(folio); 1654 ret = true; 1655 out: 1656 spin_unlock(ptl); 1657 out_unlocked: 1658 return ret; 1659 } 1660 1661 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1662 { 1663 pgtable_t pgtable; 1664 1665 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1666 pte_free(mm, pgtable); 1667 mm_dec_nr_ptes(mm); 1668 } 1669 1670 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1671 pmd_t *pmd, unsigned long addr) 1672 { 1673 pmd_t orig_pmd; 1674 spinlock_t *ptl; 1675 1676 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1677 1678 ptl = __pmd_trans_huge_lock(pmd, vma); 1679 if (!ptl) 1680 return 0; 1681 /* 1682 * For architectures like ppc64 we look at deposited pgtable 1683 * when calling pmdp_huge_get_and_clear. So do the 1684 * pgtable_trans_huge_withdraw after finishing pmdp related 1685 * operations. 1686 */ 1687 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1688 tlb->fullmm); 1689 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1690 if (vma_is_special_huge(vma)) { 1691 if (arch_needs_pgtable_deposit()) 1692 zap_deposited_table(tlb->mm, pmd); 1693 spin_unlock(ptl); 1694 } else if (is_huge_zero_pmd(orig_pmd)) { 1695 zap_deposited_table(tlb->mm, pmd); 1696 spin_unlock(ptl); 1697 } else { 1698 struct page *page = NULL; 1699 int flush_needed = 1; 1700 1701 if (pmd_present(orig_pmd)) { 1702 page = pmd_page(orig_pmd); 1703 page_remove_rmap(page, vma, true); 1704 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1705 VM_BUG_ON_PAGE(!PageHead(page), page); 1706 } else if (thp_migration_supported()) { 1707 swp_entry_t entry; 1708 1709 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1710 entry = pmd_to_swp_entry(orig_pmd); 1711 page = pfn_swap_entry_to_page(entry); 1712 flush_needed = 0; 1713 } else 1714 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1715 1716 if (PageAnon(page)) { 1717 zap_deposited_table(tlb->mm, pmd); 1718 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1719 } else { 1720 if (arch_needs_pgtable_deposit()) 1721 zap_deposited_table(tlb->mm, pmd); 1722 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR); 1723 } 1724 1725 spin_unlock(ptl); 1726 if (flush_needed) 1727 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1728 } 1729 return 1; 1730 } 1731 1732 #ifndef pmd_move_must_withdraw 1733 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1734 spinlock_t *old_pmd_ptl, 1735 struct vm_area_struct *vma) 1736 { 1737 /* 1738 * With split pmd lock we also need to move preallocated 1739 * PTE page table if new_pmd is on different PMD page table. 1740 * 1741 * We also don't deposit and withdraw tables for file pages. 1742 */ 1743 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1744 } 1745 #endif 1746 1747 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1748 { 1749 #ifdef CONFIG_MEM_SOFT_DIRTY 1750 if (unlikely(is_pmd_migration_entry(pmd))) 1751 pmd = pmd_swp_mksoft_dirty(pmd); 1752 else if (pmd_present(pmd)) 1753 pmd = pmd_mksoft_dirty(pmd); 1754 #endif 1755 return pmd; 1756 } 1757 1758 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1759 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1760 { 1761 spinlock_t *old_ptl, *new_ptl; 1762 pmd_t pmd; 1763 struct mm_struct *mm = vma->vm_mm; 1764 bool force_flush = false; 1765 1766 /* 1767 * The destination pmd shouldn't be established, free_pgtables() 1768 * should have release it. 1769 */ 1770 if (WARN_ON(!pmd_none(*new_pmd))) { 1771 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1772 return false; 1773 } 1774 1775 /* 1776 * We don't have to worry about the ordering of src and dst 1777 * ptlocks because exclusive mmap_lock prevents deadlock. 1778 */ 1779 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1780 if (old_ptl) { 1781 new_ptl = pmd_lockptr(mm, new_pmd); 1782 if (new_ptl != old_ptl) 1783 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1784 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1785 if (pmd_present(pmd)) 1786 force_flush = true; 1787 VM_BUG_ON(!pmd_none(*new_pmd)); 1788 1789 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1790 pgtable_t pgtable; 1791 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1792 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1793 } 1794 pmd = move_soft_dirty_pmd(pmd); 1795 set_pmd_at(mm, new_addr, new_pmd, pmd); 1796 if (force_flush) 1797 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1798 if (new_ptl != old_ptl) 1799 spin_unlock(new_ptl); 1800 spin_unlock(old_ptl); 1801 return true; 1802 } 1803 return false; 1804 } 1805 1806 /* 1807 * Returns 1808 * - 0 if PMD could not be locked 1809 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 1810 * or if prot_numa but THP migration is not supported 1811 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 1812 */ 1813 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1814 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 1815 unsigned long cp_flags) 1816 { 1817 struct mm_struct *mm = vma->vm_mm; 1818 spinlock_t *ptl; 1819 pmd_t oldpmd, entry; 1820 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 1821 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 1822 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 1823 int ret = 1; 1824 1825 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1826 1827 if (prot_numa && !thp_migration_supported()) 1828 return 1; 1829 1830 ptl = __pmd_trans_huge_lock(pmd, vma); 1831 if (!ptl) 1832 return 0; 1833 1834 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1835 if (is_swap_pmd(*pmd)) { 1836 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1837 struct page *page = pfn_swap_entry_to_page(entry); 1838 1839 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 1840 if (is_writable_migration_entry(entry)) { 1841 pmd_t newpmd; 1842 /* 1843 * A protection check is difficult so 1844 * just be safe and disable write 1845 */ 1846 if (PageAnon(page)) 1847 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 1848 else 1849 entry = make_readable_migration_entry(swp_offset(entry)); 1850 newpmd = swp_entry_to_pmd(entry); 1851 if (pmd_swp_soft_dirty(*pmd)) 1852 newpmd = pmd_swp_mksoft_dirty(newpmd); 1853 if (pmd_swp_uffd_wp(*pmd)) 1854 newpmd = pmd_swp_mkuffd_wp(newpmd); 1855 set_pmd_at(mm, addr, pmd, newpmd); 1856 } 1857 goto unlock; 1858 } 1859 #endif 1860 1861 if (prot_numa) { 1862 struct page *page; 1863 bool toptier; 1864 /* 1865 * Avoid trapping faults against the zero page. The read-only 1866 * data is likely to be read-cached on the local CPU and 1867 * local/remote hits to the zero page are not interesting. 1868 */ 1869 if (is_huge_zero_pmd(*pmd)) 1870 goto unlock; 1871 1872 if (pmd_protnone(*pmd)) 1873 goto unlock; 1874 1875 page = pmd_page(*pmd); 1876 toptier = node_is_toptier(page_to_nid(page)); 1877 /* 1878 * Skip scanning top tier node if normal numa 1879 * balancing is disabled 1880 */ 1881 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 1882 toptier) 1883 goto unlock; 1884 1885 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1886 !toptier) 1887 xchg_page_access_time(page, jiffies_to_msecs(jiffies)); 1888 } 1889 /* 1890 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 1891 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 1892 * which is also under mmap_read_lock(mm): 1893 * 1894 * CPU0: CPU1: 1895 * change_huge_pmd(prot_numa=1) 1896 * pmdp_huge_get_and_clear_notify() 1897 * madvise_dontneed() 1898 * zap_pmd_range() 1899 * pmd_trans_huge(*pmd) == 0 (without ptl) 1900 * // skip the pmd 1901 * set_pmd_at(); 1902 * // pmd is re-established 1903 * 1904 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 1905 * which may break userspace. 1906 * 1907 * pmdp_invalidate_ad() is required to make sure we don't miss 1908 * dirty/young flags set by hardware. 1909 */ 1910 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 1911 1912 entry = pmd_modify(oldpmd, newprot); 1913 if (uffd_wp) 1914 entry = pmd_mkuffd_wp(entry); 1915 else if (uffd_wp_resolve) 1916 /* 1917 * Leave the write bit to be handled by PF interrupt 1918 * handler, then things like COW could be properly 1919 * handled. 1920 */ 1921 entry = pmd_clear_uffd_wp(entry); 1922 1923 /* See change_pte_range(). */ 1924 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) && 1925 can_change_pmd_writable(vma, addr, entry)) 1926 entry = pmd_mkwrite(entry); 1927 1928 ret = HPAGE_PMD_NR; 1929 set_pmd_at(mm, addr, pmd, entry); 1930 1931 if (huge_pmd_needs_flush(oldpmd, entry)) 1932 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 1933 unlock: 1934 spin_unlock(ptl); 1935 return ret; 1936 } 1937 1938 /* 1939 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1940 * 1941 * Note that if it returns page table lock pointer, this routine returns without 1942 * unlocking page table lock. So callers must unlock it. 1943 */ 1944 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1945 { 1946 spinlock_t *ptl; 1947 ptl = pmd_lock(vma->vm_mm, pmd); 1948 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 1949 pmd_devmap(*pmd))) 1950 return ptl; 1951 spin_unlock(ptl); 1952 return NULL; 1953 } 1954 1955 /* 1956 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. 1957 * 1958 * Note that if it returns page table lock pointer, this routine returns without 1959 * unlocking page table lock. So callers must unlock it. 1960 */ 1961 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1962 { 1963 spinlock_t *ptl; 1964 1965 ptl = pud_lock(vma->vm_mm, pud); 1966 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1967 return ptl; 1968 spin_unlock(ptl); 1969 return NULL; 1970 } 1971 1972 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1973 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1974 pud_t *pud, unsigned long addr) 1975 { 1976 spinlock_t *ptl; 1977 1978 ptl = __pud_trans_huge_lock(pud, vma); 1979 if (!ptl) 1980 return 0; 1981 1982 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm); 1983 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1984 if (vma_is_special_huge(vma)) { 1985 spin_unlock(ptl); 1986 /* No zero page support yet */ 1987 } else { 1988 /* No support for anonymous PUD pages yet */ 1989 BUG(); 1990 } 1991 return 1; 1992 } 1993 1994 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 1995 unsigned long haddr) 1996 { 1997 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 1998 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1999 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2000 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 2001 2002 count_vm_event(THP_SPLIT_PUD); 2003 2004 pudp_huge_clear_flush_notify(vma, haddr, pud); 2005 } 2006 2007 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2008 unsigned long address) 2009 { 2010 spinlock_t *ptl; 2011 struct mmu_notifier_range range; 2012 2013 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2014 address & HPAGE_PUD_MASK, 2015 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2016 mmu_notifier_invalidate_range_start(&range); 2017 ptl = pud_lock(vma->vm_mm, pud); 2018 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 2019 goto out; 2020 __split_huge_pud_locked(vma, pud, range.start); 2021 2022 out: 2023 spin_unlock(ptl); 2024 /* 2025 * No need to double call mmu_notifier->invalidate_range() callback as 2026 * the above pudp_huge_clear_flush_notify() did already call it. 2027 */ 2028 mmu_notifier_invalidate_range_only_end(&range); 2029 } 2030 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2031 2032 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2033 unsigned long haddr, pmd_t *pmd) 2034 { 2035 struct mm_struct *mm = vma->vm_mm; 2036 pgtable_t pgtable; 2037 pmd_t _pmd, old_pmd; 2038 int i; 2039 2040 /* 2041 * Leave pmd empty until pte is filled note that it is fine to delay 2042 * notification until mmu_notifier_invalidate_range_end() as we are 2043 * replacing a zero pmd write protected page with a zero pte write 2044 * protected page. 2045 * 2046 * See Documentation/mm/mmu_notifier.rst 2047 */ 2048 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2049 2050 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2051 pmd_populate(mm, &_pmd, pgtable); 2052 2053 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 2054 pte_t *pte, entry; 2055 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 2056 entry = pte_mkspecial(entry); 2057 if (pmd_uffd_wp(old_pmd)) 2058 entry = pte_mkuffd_wp(entry); 2059 pte = pte_offset_map(&_pmd, haddr); 2060 VM_BUG_ON(!pte_none(*pte)); 2061 set_pte_at(mm, haddr, pte, entry); 2062 pte_unmap(pte); 2063 } 2064 smp_wmb(); /* make pte visible before pmd */ 2065 pmd_populate(mm, pmd, pgtable); 2066 } 2067 2068 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2069 unsigned long haddr, bool freeze) 2070 { 2071 struct mm_struct *mm = vma->vm_mm; 2072 struct page *page; 2073 pgtable_t pgtable; 2074 pmd_t old_pmd, _pmd; 2075 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2076 bool anon_exclusive = false, dirty = false; 2077 unsigned long addr; 2078 int i; 2079 2080 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2081 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2082 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2083 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2084 && !pmd_devmap(*pmd)); 2085 2086 count_vm_event(THP_SPLIT_PMD); 2087 2088 if (!vma_is_anonymous(vma)) { 2089 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 2090 /* 2091 * We are going to unmap this huge page. So 2092 * just go ahead and zap it 2093 */ 2094 if (arch_needs_pgtable_deposit()) 2095 zap_deposited_table(mm, pmd); 2096 if (vma_is_special_huge(vma)) 2097 return; 2098 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2099 swp_entry_t entry; 2100 2101 entry = pmd_to_swp_entry(old_pmd); 2102 page = pfn_swap_entry_to_page(entry); 2103 } else { 2104 page = pmd_page(old_pmd); 2105 if (!PageDirty(page) && pmd_dirty(old_pmd)) 2106 set_page_dirty(page); 2107 if (!PageReferenced(page) && pmd_young(old_pmd)) 2108 SetPageReferenced(page); 2109 page_remove_rmap(page, vma, true); 2110 put_page(page); 2111 } 2112 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR); 2113 return; 2114 } 2115 2116 if (is_huge_zero_pmd(*pmd)) { 2117 /* 2118 * FIXME: Do we want to invalidate secondary mmu by calling 2119 * mmu_notifier_invalidate_range() see comments below inside 2120 * __split_huge_pmd() ? 2121 * 2122 * We are going from a zero huge page write protected to zero 2123 * small page also write protected so it does not seems useful 2124 * to invalidate secondary mmu at this time. 2125 */ 2126 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2127 } 2128 2129 /* 2130 * Up to this point the pmd is present and huge and userland has the 2131 * whole access to the hugepage during the split (which happens in 2132 * place). If we overwrite the pmd with the not-huge version pointing 2133 * to the pte here (which of course we could if all CPUs were bug 2134 * free), userland could trigger a small page size TLB miss on the 2135 * small sized TLB while the hugepage TLB entry is still established in 2136 * the huge TLB. Some CPU doesn't like that. 2137 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2138 * 383 on page 105. Intel should be safe but is also warns that it's 2139 * only safe if the permission and cache attributes of the two entries 2140 * loaded in the two TLB is identical (which should be the case here). 2141 * But it is generally safer to never allow small and huge TLB entries 2142 * for the same virtual address to be loaded simultaneously. So instead 2143 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2144 * current pmd notpresent (atomically because here the pmd_trans_huge 2145 * must remain set at all times on the pmd until the split is complete 2146 * for this pmd), then we flush the SMP TLB and finally we write the 2147 * non-huge version of the pmd entry with pmd_populate. 2148 */ 2149 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2150 2151 pmd_migration = is_pmd_migration_entry(old_pmd); 2152 if (unlikely(pmd_migration)) { 2153 swp_entry_t entry; 2154 2155 entry = pmd_to_swp_entry(old_pmd); 2156 page = pfn_swap_entry_to_page(entry); 2157 write = is_writable_migration_entry(entry); 2158 if (PageAnon(page)) 2159 anon_exclusive = is_readable_exclusive_migration_entry(entry); 2160 young = is_migration_entry_young(entry); 2161 dirty = is_migration_entry_dirty(entry); 2162 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2163 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2164 } else { 2165 page = pmd_page(old_pmd); 2166 if (pmd_dirty(old_pmd)) { 2167 dirty = true; 2168 SetPageDirty(page); 2169 } 2170 write = pmd_write(old_pmd); 2171 young = pmd_young(old_pmd); 2172 soft_dirty = pmd_soft_dirty(old_pmd); 2173 uffd_wp = pmd_uffd_wp(old_pmd); 2174 2175 VM_BUG_ON_PAGE(!page_count(page), page); 2176 2177 /* 2178 * Without "freeze", we'll simply split the PMD, propagating the 2179 * PageAnonExclusive() flag for each PTE by setting it for 2180 * each subpage -- no need to (temporarily) clear. 2181 * 2182 * With "freeze" we want to replace mapped pages by 2183 * migration entries right away. This is only possible if we 2184 * managed to clear PageAnonExclusive() -- see 2185 * set_pmd_migration_entry(). 2186 * 2187 * In case we cannot clear PageAnonExclusive(), split the PMD 2188 * only and let try_to_migrate_one() fail later. 2189 * 2190 * See page_try_share_anon_rmap(): invalidate PMD first. 2191 */ 2192 anon_exclusive = PageAnon(page) && PageAnonExclusive(page); 2193 if (freeze && anon_exclusive && page_try_share_anon_rmap(page)) 2194 freeze = false; 2195 if (!freeze) 2196 page_ref_add(page, HPAGE_PMD_NR - 1); 2197 } 2198 2199 /* 2200 * Withdraw the table only after we mark the pmd entry invalid. 2201 * This's critical for some architectures (Power). 2202 */ 2203 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2204 pmd_populate(mm, &_pmd, pgtable); 2205 2206 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2207 pte_t entry, *pte; 2208 /* 2209 * Note that NUMA hinting access restrictions are not 2210 * transferred to avoid any possibility of altering 2211 * permissions across VMAs. 2212 */ 2213 if (freeze || pmd_migration) { 2214 swp_entry_t swp_entry; 2215 if (write) 2216 swp_entry = make_writable_migration_entry( 2217 page_to_pfn(page + i)); 2218 else if (anon_exclusive) 2219 swp_entry = make_readable_exclusive_migration_entry( 2220 page_to_pfn(page + i)); 2221 else 2222 swp_entry = make_readable_migration_entry( 2223 page_to_pfn(page + i)); 2224 if (young) 2225 swp_entry = make_migration_entry_young(swp_entry); 2226 if (dirty) 2227 swp_entry = make_migration_entry_dirty(swp_entry); 2228 entry = swp_entry_to_pte(swp_entry); 2229 if (soft_dirty) 2230 entry = pte_swp_mksoft_dirty(entry); 2231 if (uffd_wp) 2232 entry = pte_swp_mkuffd_wp(entry); 2233 } else { 2234 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2235 entry = maybe_mkwrite(entry, vma); 2236 if (anon_exclusive) 2237 SetPageAnonExclusive(page + i); 2238 if (!young) 2239 entry = pte_mkold(entry); 2240 /* NOTE: this may set soft-dirty too on some archs */ 2241 if (dirty) 2242 entry = pte_mkdirty(entry); 2243 /* 2244 * NOTE: this needs to happen after pte_mkdirty, 2245 * because some archs (sparc64, loongarch) could 2246 * set hw write bit when mkdirty. 2247 */ 2248 if (!write) 2249 entry = pte_wrprotect(entry); 2250 if (soft_dirty) 2251 entry = pte_mksoft_dirty(entry); 2252 if (uffd_wp) 2253 entry = pte_mkuffd_wp(entry); 2254 page_add_anon_rmap(page + i, vma, addr, false); 2255 } 2256 pte = pte_offset_map(&_pmd, addr); 2257 BUG_ON(!pte_none(*pte)); 2258 set_pte_at(mm, addr, pte, entry); 2259 pte_unmap(pte); 2260 } 2261 2262 if (!pmd_migration) 2263 page_remove_rmap(page, vma, true); 2264 if (freeze) 2265 put_page(page); 2266 2267 smp_wmb(); /* make pte visible before pmd */ 2268 pmd_populate(mm, pmd, pgtable); 2269 } 2270 2271 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2272 unsigned long address, bool freeze, struct folio *folio) 2273 { 2274 spinlock_t *ptl; 2275 struct mmu_notifier_range range; 2276 2277 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2278 address & HPAGE_PMD_MASK, 2279 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2280 mmu_notifier_invalidate_range_start(&range); 2281 ptl = pmd_lock(vma->vm_mm, pmd); 2282 2283 /* 2284 * If caller asks to setup a migration entry, we need a folio to check 2285 * pmd against. Otherwise we can end up replacing wrong folio. 2286 */ 2287 VM_BUG_ON(freeze && !folio); 2288 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio)); 2289 2290 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || 2291 is_pmd_migration_entry(*pmd)) { 2292 /* 2293 * It's safe to call pmd_page when folio is set because it's 2294 * guaranteed that pmd is present. 2295 */ 2296 if (folio && folio != page_folio(pmd_page(*pmd))) 2297 goto out; 2298 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2299 } 2300 2301 out: 2302 spin_unlock(ptl); 2303 /* 2304 * No need to double call mmu_notifier->invalidate_range() callback. 2305 * They are 3 cases to consider inside __split_huge_pmd_locked(): 2306 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious 2307 * 2) __split_huge_zero_page_pmd() read only zero page and any write 2308 * fault will trigger a flush_notify before pointing to a new page 2309 * (it is fine if the secondary mmu keeps pointing to the old zero 2310 * page in the meantime) 2311 * 3) Split a huge pmd into pte pointing to the same page. No need 2312 * to invalidate secondary tlb entry they are all still valid. 2313 * any further changes to individual pte will notify. So no need 2314 * to call mmu_notifier->invalidate_range() 2315 */ 2316 mmu_notifier_invalidate_range_only_end(&range); 2317 } 2318 2319 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2320 bool freeze, struct folio *folio) 2321 { 2322 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address); 2323 2324 if (!pmd) 2325 return; 2326 2327 __split_huge_pmd(vma, pmd, address, freeze, folio); 2328 } 2329 2330 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2331 { 2332 /* 2333 * If the new address isn't hpage aligned and it could previously 2334 * contain an hugepage: check if we need to split an huge pmd. 2335 */ 2336 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2337 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2338 ALIGN(address, HPAGE_PMD_SIZE))) 2339 split_huge_pmd_address(vma, address, false, NULL); 2340 } 2341 2342 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2343 unsigned long start, 2344 unsigned long end, 2345 long adjust_next) 2346 { 2347 /* Check if we need to split start first. */ 2348 split_huge_pmd_if_needed(vma, start); 2349 2350 /* Check if we need to split end next. */ 2351 split_huge_pmd_if_needed(vma, end); 2352 2353 /* 2354 * If we're also updating the next vma vm_start, 2355 * check if we need to split it. 2356 */ 2357 if (adjust_next > 0) { 2358 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end); 2359 unsigned long nstart = next->vm_start; 2360 nstart += adjust_next; 2361 split_huge_pmd_if_needed(next, nstart); 2362 } 2363 } 2364 2365 static void unmap_folio(struct folio *folio) 2366 { 2367 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2368 TTU_SYNC; 2369 2370 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 2371 2372 /* 2373 * Anon pages need migration entries to preserve them, but file 2374 * pages can simply be left unmapped, then faulted back on demand. 2375 * If that is ever changed (perhaps for mlock), update remap_page(). 2376 */ 2377 if (folio_test_anon(folio)) 2378 try_to_migrate(folio, ttu_flags); 2379 else 2380 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 2381 } 2382 2383 static void remap_page(struct folio *folio, unsigned long nr) 2384 { 2385 int i = 0; 2386 2387 /* If unmap_folio() uses try_to_migrate() on file, remove this check */ 2388 if (!folio_test_anon(folio)) 2389 return; 2390 for (;;) { 2391 remove_migration_ptes(folio, folio, true); 2392 i += folio_nr_pages(folio); 2393 if (i >= nr) 2394 break; 2395 folio = folio_next(folio); 2396 } 2397 } 2398 2399 static void lru_add_page_tail(struct page *head, struct page *tail, 2400 struct lruvec *lruvec, struct list_head *list) 2401 { 2402 VM_BUG_ON_PAGE(!PageHead(head), head); 2403 VM_BUG_ON_PAGE(PageCompound(tail), head); 2404 VM_BUG_ON_PAGE(PageLRU(tail), head); 2405 lockdep_assert_held(&lruvec->lru_lock); 2406 2407 if (list) { 2408 /* page reclaim is reclaiming a huge page */ 2409 VM_WARN_ON(PageLRU(head)); 2410 get_page(tail); 2411 list_add_tail(&tail->lru, list); 2412 } else { 2413 /* head is still on lru (and we have it frozen) */ 2414 VM_WARN_ON(!PageLRU(head)); 2415 if (PageUnevictable(tail)) 2416 tail->mlock_count = 0; 2417 else 2418 list_add_tail(&tail->lru, &head->lru); 2419 SetPageLRU(tail); 2420 } 2421 } 2422 2423 static void __split_huge_page_tail(struct page *head, int tail, 2424 struct lruvec *lruvec, struct list_head *list) 2425 { 2426 struct page *page_tail = head + tail; 2427 2428 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2429 2430 /* 2431 * Clone page flags before unfreezing refcount. 2432 * 2433 * After successful get_page_unless_zero() might follow flags change, 2434 * for example lock_page() which set PG_waiters. 2435 * 2436 * Note that for mapped sub-pages of an anonymous THP, 2437 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in 2438 * the migration entry instead from where remap_page() will restore it. 2439 * We can still have PG_anon_exclusive set on effectively unmapped and 2440 * unreferenced sub-pages of an anonymous THP: we can simply drop 2441 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 2442 */ 2443 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2444 page_tail->flags |= (head->flags & 2445 ((1L << PG_referenced) | 2446 (1L << PG_swapbacked) | 2447 (1L << PG_swapcache) | 2448 (1L << PG_mlocked) | 2449 (1L << PG_uptodate) | 2450 (1L << PG_active) | 2451 (1L << PG_workingset) | 2452 (1L << PG_locked) | 2453 (1L << PG_unevictable) | 2454 #ifdef CONFIG_ARCH_USES_PG_ARCH_X 2455 (1L << PG_arch_2) | 2456 (1L << PG_arch_3) | 2457 #endif 2458 (1L << PG_dirty) | 2459 LRU_GEN_MASK | LRU_REFS_MASK)); 2460 2461 /* ->mapping in first and second tail page is replaced by other uses */ 2462 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2463 page_tail); 2464 page_tail->mapping = head->mapping; 2465 page_tail->index = head->index + tail; 2466 2467 /* 2468 * page->private should not be set in tail pages with the exception 2469 * of swap cache pages that store the swp_entry_t in tail pages. 2470 * Fix up and warn once if private is unexpectedly set. 2471 * 2472 * What of 32-bit systems, on which folio->_pincount overlays 2473 * head[1].private? No problem: THP_SWAP is not enabled on 32-bit, and 2474 * pincount must be 0 for folio_ref_freeze() to have succeeded. 2475 */ 2476 if (!folio_test_swapcache(page_folio(head))) { 2477 VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail); 2478 page_tail->private = 0; 2479 } 2480 2481 /* Page flags must be visible before we make the page non-compound. */ 2482 smp_wmb(); 2483 2484 /* 2485 * Clear PageTail before unfreezing page refcount. 2486 * 2487 * After successful get_page_unless_zero() might follow put_page() 2488 * which needs correct compound_head(). 2489 */ 2490 clear_compound_head(page_tail); 2491 2492 /* Finally unfreeze refcount. Additional reference from page cache. */ 2493 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || 2494 PageSwapCache(head))); 2495 2496 if (page_is_young(head)) 2497 set_page_young(page_tail); 2498 if (page_is_idle(head)) 2499 set_page_idle(page_tail); 2500 2501 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2502 2503 /* 2504 * always add to the tail because some iterators expect new 2505 * pages to show after the currently processed elements - e.g. 2506 * migrate_pages 2507 */ 2508 lru_add_page_tail(head, page_tail, lruvec, list); 2509 } 2510 2511 static void __split_huge_page(struct page *page, struct list_head *list, 2512 pgoff_t end) 2513 { 2514 struct folio *folio = page_folio(page); 2515 struct page *head = &folio->page; 2516 struct lruvec *lruvec; 2517 struct address_space *swap_cache = NULL; 2518 unsigned long offset = 0; 2519 unsigned int nr = thp_nr_pages(head); 2520 int i; 2521 2522 /* complete memcg works before add pages to LRU */ 2523 split_page_memcg(head, nr); 2524 2525 if (PageAnon(head) && PageSwapCache(head)) { 2526 swp_entry_t entry = { .val = page_private(head) }; 2527 2528 offset = swp_offset(entry); 2529 swap_cache = swap_address_space(entry); 2530 xa_lock(&swap_cache->i_pages); 2531 } 2532 2533 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 2534 lruvec = folio_lruvec_lock(folio); 2535 2536 ClearPageHasHWPoisoned(head); 2537 2538 for (i = nr - 1; i >= 1; i--) { 2539 __split_huge_page_tail(head, i, lruvec, list); 2540 /* Some pages can be beyond EOF: drop them from page cache */ 2541 if (head[i].index >= end) { 2542 struct folio *tail = page_folio(head + i); 2543 2544 if (shmem_mapping(head->mapping)) 2545 shmem_uncharge(head->mapping->host, 1); 2546 else if (folio_test_clear_dirty(tail)) 2547 folio_account_cleaned(tail, 2548 inode_to_wb(folio->mapping->host)); 2549 __filemap_remove_folio(tail, NULL); 2550 folio_put(tail); 2551 } else if (!PageAnon(page)) { 2552 __xa_store(&head->mapping->i_pages, head[i].index, 2553 head + i, 0); 2554 } else if (swap_cache) { 2555 __xa_store(&swap_cache->i_pages, offset + i, 2556 head + i, 0); 2557 } 2558 } 2559 2560 ClearPageCompound(head); 2561 unlock_page_lruvec(lruvec); 2562 /* Caller disabled irqs, so they are still disabled here */ 2563 2564 split_page_owner(head, nr); 2565 2566 /* See comment in __split_huge_page_tail() */ 2567 if (PageAnon(head)) { 2568 /* Additional pin to swap cache */ 2569 if (PageSwapCache(head)) { 2570 page_ref_add(head, 2); 2571 xa_unlock(&swap_cache->i_pages); 2572 } else { 2573 page_ref_inc(head); 2574 } 2575 } else { 2576 /* Additional pin to page cache */ 2577 page_ref_add(head, 2); 2578 xa_unlock(&head->mapping->i_pages); 2579 } 2580 local_irq_enable(); 2581 2582 remap_page(folio, nr); 2583 2584 if (PageSwapCache(head)) { 2585 swp_entry_t entry = { .val = page_private(head) }; 2586 2587 split_swap_cluster(entry); 2588 } 2589 2590 for (i = 0; i < nr; i++) { 2591 struct page *subpage = head + i; 2592 if (subpage == page) 2593 continue; 2594 unlock_page(subpage); 2595 2596 /* 2597 * Subpages may be freed if there wasn't any mapping 2598 * like if add_to_swap() is running on a lru page that 2599 * had its mapping zapped. And freeing these pages 2600 * requires taking the lru_lock so we do the put_page 2601 * of the tail pages after the split is complete. 2602 */ 2603 free_page_and_swap_cache(subpage); 2604 } 2605 } 2606 2607 /* Racy check whether the huge page can be split */ 2608 bool can_split_folio(struct folio *folio, int *pextra_pins) 2609 { 2610 int extra_pins; 2611 2612 /* Additional pins from page cache */ 2613 if (folio_test_anon(folio)) 2614 extra_pins = folio_test_swapcache(folio) ? 2615 folio_nr_pages(folio) : 0; 2616 else 2617 extra_pins = folio_nr_pages(folio); 2618 if (pextra_pins) 2619 *pextra_pins = extra_pins; 2620 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1; 2621 } 2622 2623 /* 2624 * This function splits huge page into normal pages. @page can point to any 2625 * subpage of huge page to split. Split doesn't change the position of @page. 2626 * 2627 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2628 * The huge page must be locked. 2629 * 2630 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2631 * 2632 * Both head page and tail pages will inherit mapping, flags, and so on from 2633 * the hugepage. 2634 * 2635 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2636 * they are not mapped. 2637 * 2638 * Returns 0 if the hugepage is split successfully. 2639 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2640 * us. 2641 */ 2642 int split_huge_page_to_list(struct page *page, struct list_head *list) 2643 { 2644 struct folio *folio = page_folio(page); 2645 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 2646 XA_STATE(xas, &folio->mapping->i_pages, folio->index); 2647 struct anon_vma *anon_vma = NULL; 2648 struct address_space *mapping = NULL; 2649 int extra_pins, ret; 2650 pgoff_t end; 2651 bool is_hzp; 2652 2653 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2654 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 2655 2656 is_hzp = is_huge_zero_page(&folio->page); 2657 VM_WARN_ON_ONCE_FOLIO(is_hzp, folio); 2658 if (is_hzp) 2659 return -EBUSY; 2660 2661 if (folio_test_writeback(folio)) 2662 return -EBUSY; 2663 2664 if (folio_test_anon(folio)) { 2665 /* 2666 * The caller does not necessarily hold an mmap_lock that would 2667 * prevent the anon_vma disappearing so we first we take a 2668 * reference to it and then lock the anon_vma for write. This 2669 * is similar to folio_lock_anon_vma_read except the write lock 2670 * is taken to serialise against parallel split or collapse 2671 * operations. 2672 */ 2673 anon_vma = folio_get_anon_vma(folio); 2674 if (!anon_vma) { 2675 ret = -EBUSY; 2676 goto out; 2677 } 2678 end = -1; 2679 mapping = NULL; 2680 anon_vma_lock_write(anon_vma); 2681 } else { 2682 gfp_t gfp; 2683 2684 mapping = folio->mapping; 2685 2686 /* Truncated ? */ 2687 if (!mapping) { 2688 ret = -EBUSY; 2689 goto out; 2690 } 2691 2692 gfp = current_gfp_context(mapping_gfp_mask(mapping) & 2693 GFP_RECLAIM_MASK); 2694 2695 if (folio_test_private(folio) && 2696 !filemap_release_folio(folio, gfp)) { 2697 ret = -EBUSY; 2698 goto out; 2699 } 2700 2701 xas_split_alloc(&xas, folio, folio_order(folio), gfp); 2702 if (xas_error(&xas)) { 2703 ret = xas_error(&xas); 2704 goto out; 2705 } 2706 2707 anon_vma = NULL; 2708 i_mmap_lock_read(mapping); 2709 2710 /* 2711 *__split_huge_page() may need to trim off pages beyond EOF: 2712 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 2713 * which cannot be nested inside the page tree lock. So note 2714 * end now: i_size itself may be changed at any moment, but 2715 * folio lock is good enough to serialize the trimming. 2716 */ 2717 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2718 if (shmem_mapping(mapping)) 2719 end = shmem_fallocend(mapping->host, end); 2720 } 2721 2722 /* 2723 * Racy check if we can split the page, before unmap_folio() will 2724 * split PMDs 2725 */ 2726 if (!can_split_folio(folio, &extra_pins)) { 2727 ret = -EAGAIN; 2728 goto out_unlock; 2729 } 2730 2731 unmap_folio(folio); 2732 2733 /* block interrupt reentry in xa_lock and spinlock */ 2734 local_irq_disable(); 2735 if (mapping) { 2736 /* 2737 * Check if the folio is present in page cache. 2738 * We assume all tail are present too, if folio is there. 2739 */ 2740 xas_lock(&xas); 2741 xas_reset(&xas); 2742 if (xas_load(&xas) != folio) 2743 goto fail; 2744 } 2745 2746 /* Prevent deferred_split_scan() touching ->_refcount */ 2747 spin_lock(&ds_queue->split_queue_lock); 2748 if (folio_ref_freeze(folio, 1 + extra_pins)) { 2749 if (!list_empty(&folio->_deferred_list)) { 2750 ds_queue->split_queue_len--; 2751 list_del(&folio->_deferred_list); 2752 } 2753 spin_unlock(&ds_queue->split_queue_lock); 2754 if (mapping) { 2755 int nr = folio_nr_pages(folio); 2756 2757 xas_split(&xas, folio, folio_order(folio)); 2758 if (folio_test_swapbacked(folio)) { 2759 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, 2760 -nr); 2761 } else { 2762 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, 2763 -nr); 2764 filemap_nr_thps_dec(mapping); 2765 } 2766 } 2767 2768 __split_huge_page(page, list, end); 2769 ret = 0; 2770 } else { 2771 spin_unlock(&ds_queue->split_queue_lock); 2772 fail: 2773 if (mapping) 2774 xas_unlock(&xas); 2775 local_irq_enable(); 2776 remap_page(folio, folio_nr_pages(folio)); 2777 ret = -EAGAIN; 2778 } 2779 2780 out_unlock: 2781 if (anon_vma) { 2782 anon_vma_unlock_write(anon_vma); 2783 put_anon_vma(anon_vma); 2784 } 2785 if (mapping) 2786 i_mmap_unlock_read(mapping); 2787 out: 2788 xas_destroy(&xas); 2789 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2790 return ret; 2791 } 2792 2793 void free_transhuge_page(struct page *page) 2794 { 2795 struct folio *folio = (struct folio *)page; 2796 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 2797 unsigned long flags; 2798 2799 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2800 if (!list_empty(&folio->_deferred_list)) { 2801 ds_queue->split_queue_len--; 2802 list_del(&folio->_deferred_list); 2803 } 2804 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2805 free_compound_page(page); 2806 } 2807 2808 void deferred_split_folio(struct folio *folio) 2809 { 2810 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 2811 #ifdef CONFIG_MEMCG 2812 struct mem_cgroup *memcg = folio_memcg(folio); 2813 #endif 2814 unsigned long flags; 2815 2816 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio); 2817 2818 /* 2819 * The try_to_unmap() in page reclaim path might reach here too, 2820 * this may cause a race condition to corrupt deferred split queue. 2821 * And, if page reclaim is already handling the same folio, it is 2822 * unnecessary to handle it again in shrinker. 2823 * 2824 * Check the swapcache flag to determine if the folio is being 2825 * handled by page reclaim since THP swap would add the folio into 2826 * swap cache before calling try_to_unmap(). 2827 */ 2828 if (folio_test_swapcache(folio)) 2829 return; 2830 2831 if (!list_empty(&folio->_deferred_list)) 2832 return; 2833 2834 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2835 if (list_empty(&folio->_deferred_list)) { 2836 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2837 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue); 2838 ds_queue->split_queue_len++; 2839 #ifdef CONFIG_MEMCG 2840 if (memcg) 2841 set_shrinker_bit(memcg, folio_nid(folio), 2842 deferred_split_shrinker.id); 2843 #endif 2844 } 2845 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2846 } 2847 2848 static unsigned long deferred_split_count(struct shrinker *shrink, 2849 struct shrink_control *sc) 2850 { 2851 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2852 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2853 2854 #ifdef CONFIG_MEMCG 2855 if (sc->memcg) 2856 ds_queue = &sc->memcg->deferred_split_queue; 2857 #endif 2858 return READ_ONCE(ds_queue->split_queue_len); 2859 } 2860 2861 static unsigned long deferred_split_scan(struct shrinker *shrink, 2862 struct shrink_control *sc) 2863 { 2864 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2865 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2866 unsigned long flags; 2867 LIST_HEAD(list); 2868 struct folio *folio, *next; 2869 int split = 0; 2870 2871 #ifdef CONFIG_MEMCG 2872 if (sc->memcg) 2873 ds_queue = &sc->memcg->deferred_split_queue; 2874 #endif 2875 2876 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2877 /* Take pin on all head pages to avoid freeing them under us */ 2878 list_for_each_entry_safe(folio, next, &ds_queue->split_queue, 2879 _deferred_list) { 2880 if (folio_try_get(folio)) { 2881 list_move(&folio->_deferred_list, &list); 2882 } else { 2883 /* We lost race with folio_put() */ 2884 list_del_init(&folio->_deferred_list); 2885 ds_queue->split_queue_len--; 2886 } 2887 if (!--sc->nr_to_scan) 2888 break; 2889 } 2890 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2891 2892 list_for_each_entry_safe(folio, next, &list, _deferred_list) { 2893 if (!folio_trylock(folio)) 2894 goto next; 2895 /* split_huge_page() removes page from list on success */ 2896 if (!split_folio(folio)) 2897 split++; 2898 folio_unlock(folio); 2899 next: 2900 folio_put(folio); 2901 } 2902 2903 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2904 list_splice_tail(&list, &ds_queue->split_queue); 2905 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2906 2907 /* 2908 * Stop shrinker if we didn't split any page, but the queue is empty. 2909 * This can happen if pages were freed under us. 2910 */ 2911 if (!split && list_empty(&ds_queue->split_queue)) 2912 return SHRINK_STOP; 2913 return split; 2914 } 2915 2916 static struct shrinker deferred_split_shrinker = { 2917 .count_objects = deferred_split_count, 2918 .scan_objects = deferred_split_scan, 2919 .seeks = DEFAULT_SEEKS, 2920 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE | 2921 SHRINKER_NONSLAB, 2922 }; 2923 2924 #ifdef CONFIG_DEBUG_FS 2925 static void split_huge_pages_all(void) 2926 { 2927 struct zone *zone; 2928 struct page *page; 2929 struct folio *folio; 2930 unsigned long pfn, max_zone_pfn; 2931 unsigned long total = 0, split = 0; 2932 2933 pr_debug("Split all THPs\n"); 2934 for_each_zone(zone) { 2935 if (!managed_zone(zone)) 2936 continue; 2937 max_zone_pfn = zone_end_pfn(zone); 2938 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2939 int nr_pages; 2940 2941 page = pfn_to_online_page(pfn); 2942 if (!page || PageTail(page)) 2943 continue; 2944 folio = page_folio(page); 2945 if (!folio_try_get(folio)) 2946 continue; 2947 2948 if (unlikely(page_folio(page) != folio)) 2949 goto next; 2950 2951 if (zone != folio_zone(folio)) 2952 goto next; 2953 2954 if (!folio_test_large(folio) 2955 || folio_test_hugetlb(folio) 2956 || !folio_test_lru(folio)) 2957 goto next; 2958 2959 total++; 2960 folio_lock(folio); 2961 nr_pages = folio_nr_pages(folio); 2962 if (!split_folio(folio)) 2963 split++; 2964 pfn += nr_pages - 1; 2965 folio_unlock(folio); 2966 next: 2967 folio_put(folio); 2968 cond_resched(); 2969 } 2970 } 2971 2972 pr_debug("%lu of %lu THP split\n", split, total); 2973 } 2974 2975 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 2976 { 2977 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 2978 is_vm_hugetlb_page(vma); 2979 } 2980 2981 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 2982 unsigned long vaddr_end) 2983 { 2984 int ret = 0; 2985 struct task_struct *task; 2986 struct mm_struct *mm; 2987 unsigned long total = 0, split = 0; 2988 unsigned long addr; 2989 2990 vaddr_start &= PAGE_MASK; 2991 vaddr_end &= PAGE_MASK; 2992 2993 /* Find the task_struct from pid */ 2994 rcu_read_lock(); 2995 task = find_task_by_vpid(pid); 2996 if (!task) { 2997 rcu_read_unlock(); 2998 ret = -ESRCH; 2999 goto out; 3000 } 3001 get_task_struct(task); 3002 rcu_read_unlock(); 3003 3004 /* Find the mm_struct */ 3005 mm = get_task_mm(task); 3006 put_task_struct(task); 3007 3008 if (!mm) { 3009 ret = -EINVAL; 3010 goto out; 3011 } 3012 3013 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 3014 pid, vaddr_start, vaddr_end); 3015 3016 mmap_read_lock(mm); 3017 /* 3018 * always increase addr by PAGE_SIZE, since we could have a PTE page 3019 * table filled with PTE-mapped THPs, each of which is distinct. 3020 */ 3021 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 3022 struct vm_area_struct *vma = vma_lookup(mm, addr); 3023 struct page *page; 3024 3025 if (!vma) 3026 break; 3027 3028 /* skip special VMA and hugetlb VMA */ 3029 if (vma_not_suitable_for_thp_split(vma)) { 3030 addr = vma->vm_end; 3031 continue; 3032 } 3033 3034 /* FOLL_DUMP to ignore special (like zero) pages */ 3035 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 3036 3037 if (IS_ERR_OR_NULL(page)) 3038 continue; 3039 3040 if (!is_transparent_hugepage(page)) 3041 goto next; 3042 3043 total++; 3044 if (!can_split_folio(page_folio(page), NULL)) 3045 goto next; 3046 3047 if (!trylock_page(page)) 3048 goto next; 3049 3050 if (!split_huge_page(page)) 3051 split++; 3052 3053 unlock_page(page); 3054 next: 3055 put_page(page); 3056 cond_resched(); 3057 } 3058 mmap_read_unlock(mm); 3059 mmput(mm); 3060 3061 pr_debug("%lu of %lu THP split\n", split, total); 3062 3063 out: 3064 return ret; 3065 } 3066 3067 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 3068 pgoff_t off_end) 3069 { 3070 struct filename *file; 3071 struct file *candidate; 3072 struct address_space *mapping; 3073 int ret = -EINVAL; 3074 pgoff_t index; 3075 int nr_pages = 1; 3076 unsigned long total = 0, split = 0; 3077 3078 file = getname_kernel(file_path); 3079 if (IS_ERR(file)) 3080 return ret; 3081 3082 candidate = file_open_name(file, O_RDONLY, 0); 3083 if (IS_ERR(candidate)) 3084 goto out; 3085 3086 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 3087 file_path, off_start, off_end); 3088 3089 mapping = candidate->f_mapping; 3090 3091 for (index = off_start; index < off_end; index += nr_pages) { 3092 struct folio *folio = filemap_get_folio(mapping, index); 3093 3094 nr_pages = 1; 3095 if (IS_ERR(folio)) 3096 continue; 3097 3098 if (!folio_test_large(folio)) 3099 goto next; 3100 3101 total++; 3102 nr_pages = folio_nr_pages(folio); 3103 3104 if (!folio_trylock(folio)) 3105 goto next; 3106 3107 if (!split_folio(folio)) 3108 split++; 3109 3110 folio_unlock(folio); 3111 next: 3112 folio_put(folio); 3113 cond_resched(); 3114 } 3115 3116 filp_close(candidate, NULL); 3117 ret = 0; 3118 3119 pr_debug("%lu of %lu file-backed THP split\n", split, total); 3120 out: 3121 putname(file); 3122 return ret; 3123 } 3124 3125 #define MAX_INPUT_BUF_SZ 255 3126 3127 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 3128 size_t count, loff_t *ppops) 3129 { 3130 static DEFINE_MUTEX(split_debug_mutex); 3131 ssize_t ret; 3132 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */ 3133 char input_buf[MAX_INPUT_BUF_SZ]; 3134 int pid; 3135 unsigned long vaddr_start, vaddr_end; 3136 3137 ret = mutex_lock_interruptible(&split_debug_mutex); 3138 if (ret) 3139 return ret; 3140 3141 ret = -EFAULT; 3142 3143 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 3144 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 3145 goto out; 3146 3147 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 3148 3149 if (input_buf[0] == '/') { 3150 char *tok; 3151 char *buf = input_buf; 3152 char file_path[MAX_INPUT_BUF_SZ]; 3153 pgoff_t off_start = 0, off_end = 0; 3154 size_t input_len = strlen(input_buf); 3155 3156 tok = strsep(&buf, ","); 3157 if (tok) { 3158 strcpy(file_path, tok); 3159 } else { 3160 ret = -EINVAL; 3161 goto out; 3162 } 3163 3164 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end); 3165 if (ret != 2) { 3166 ret = -EINVAL; 3167 goto out; 3168 } 3169 ret = split_huge_pages_in_file(file_path, off_start, off_end); 3170 if (!ret) 3171 ret = input_len; 3172 3173 goto out; 3174 } 3175 3176 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end); 3177 if (ret == 1 && pid == 1) { 3178 split_huge_pages_all(); 3179 ret = strlen(input_buf); 3180 goto out; 3181 } else if (ret != 3) { 3182 ret = -EINVAL; 3183 goto out; 3184 } 3185 3186 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end); 3187 if (!ret) 3188 ret = strlen(input_buf); 3189 out: 3190 mutex_unlock(&split_debug_mutex); 3191 return ret; 3192 3193 } 3194 3195 static const struct file_operations split_huge_pages_fops = { 3196 .owner = THIS_MODULE, 3197 .write = split_huge_pages_write, 3198 .llseek = no_llseek, 3199 }; 3200 3201 static int __init split_huge_pages_debugfs(void) 3202 { 3203 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3204 &split_huge_pages_fops); 3205 return 0; 3206 } 3207 late_initcall(split_huge_pages_debugfs); 3208 #endif 3209 3210 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3211 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3212 struct page *page) 3213 { 3214 struct vm_area_struct *vma = pvmw->vma; 3215 struct mm_struct *mm = vma->vm_mm; 3216 unsigned long address = pvmw->address; 3217 bool anon_exclusive; 3218 pmd_t pmdval; 3219 swp_entry_t entry; 3220 pmd_t pmdswp; 3221 3222 if (!(pvmw->pmd && !pvmw->pte)) 3223 return 0; 3224 3225 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3226 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3227 3228 /* See page_try_share_anon_rmap(): invalidate PMD first. */ 3229 anon_exclusive = PageAnon(page) && PageAnonExclusive(page); 3230 if (anon_exclusive && page_try_share_anon_rmap(page)) { 3231 set_pmd_at(mm, address, pvmw->pmd, pmdval); 3232 return -EBUSY; 3233 } 3234 3235 if (pmd_dirty(pmdval)) 3236 set_page_dirty(page); 3237 if (pmd_write(pmdval)) 3238 entry = make_writable_migration_entry(page_to_pfn(page)); 3239 else if (anon_exclusive) 3240 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 3241 else 3242 entry = make_readable_migration_entry(page_to_pfn(page)); 3243 if (pmd_young(pmdval)) 3244 entry = make_migration_entry_young(entry); 3245 if (pmd_dirty(pmdval)) 3246 entry = make_migration_entry_dirty(entry); 3247 pmdswp = swp_entry_to_pmd(entry); 3248 if (pmd_soft_dirty(pmdval)) 3249 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3250 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3251 page_remove_rmap(page, vma, true); 3252 put_page(page); 3253 trace_set_migration_pmd(address, pmd_val(pmdswp)); 3254 3255 return 0; 3256 } 3257 3258 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3259 { 3260 struct vm_area_struct *vma = pvmw->vma; 3261 struct mm_struct *mm = vma->vm_mm; 3262 unsigned long address = pvmw->address; 3263 unsigned long haddr = address & HPAGE_PMD_MASK; 3264 pmd_t pmde; 3265 swp_entry_t entry; 3266 3267 if (!(pvmw->pmd && !pvmw->pte)) 3268 return; 3269 3270 entry = pmd_to_swp_entry(*pvmw->pmd); 3271 get_page(new); 3272 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)); 3273 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3274 pmde = pmd_mksoft_dirty(pmde); 3275 if (pmd_swp_uffd_wp(*pvmw->pmd)) 3276 pmde = pmd_mkuffd_wp(pmde); 3277 if (!is_migration_entry_young(entry)) 3278 pmde = pmd_mkold(pmde); 3279 /* NOTE: this may contain setting soft-dirty on some archs */ 3280 if (PageDirty(new) && is_migration_entry_dirty(entry)) 3281 pmde = pmd_mkdirty(pmde); 3282 if (is_writable_migration_entry(entry)) 3283 pmde = maybe_pmd_mkwrite(pmde, vma); 3284 else 3285 pmde = pmd_wrprotect(pmde); 3286 3287 if (PageAnon(new)) { 3288 rmap_t rmap_flags = RMAP_COMPOUND; 3289 3290 if (!is_readable_migration_entry(entry)) 3291 rmap_flags |= RMAP_EXCLUSIVE; 3292 3293 page_add_anon_rmap(new, vma, haddr, rmap_flags); 3294 } else { 3295 page_add_file_rmap(new, vma, true); 3296 } 3297 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new)); 3298 set_pmd_at(mm, haddr, pvmw->pmd, pmde); 3299 3300 /* No need to invalidate - it was non-present before */ 3301 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3302 trace_remove_migration_pmd(address, pmd_val(pmde)); 3303 } 3304 #endif 3305