xref: /openbmc/linux/mm/huge_memory.c (revision 23c2b932)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37 
38 enum scan_result {
39 	SCAN_FAIL,
40 	SCAN_SUCCEED,
41 	SCAN_PMD_NULL,
42 	SCAN_EXCEED_NONE_PTE,
43 	SCAN_PTE_NON_PRESENT,
44 	SCAN_PAGE_RO,
45 	SCAN_NO_REFERENCED_PAGE,
46 	SCAN_PAGE_NULL,
47 	SCAN_SCAN_ABORT,
48 	SCAN_PAGE_COUNT,
49 	SCAN_PAGE_LRU,
50 	SCAN_PAGE_LOCK,
51 	SCAN_PAGE_ANON,
52 	SCAN_PAGE_COMPOUND,
53 	SCAN_ANY_PROCESS,
54 	SCAN_VMA_NULL,
55 	SCAN_VMA_CHECK,
56 	SCAN_ADDRESS_RANGE,
57 	SCAN_SWAP_CACHE_PAGE,
58 	SCAN_DEL_PAGE_LRU,
59 	SCAN_ALLOC_HUGE_PAGE_FAIL,
60 	SCAN_CGROUP_CHARGE_FAIL
61 };
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/huge_memory.h>
65 
66 /*
67  * By default transparent hugepage support is disabled in order that avoid
68  * to risk increase the memory footprint of applications without a guaranteed
69  * benefit. When transparent hugepage support is enabled, is for all mappings,
70  * and khugepaged scans all mappings.
71  * Defrag is invoked by khugepaged hugepage allocations and by page faults
72  * for all hugepage allocations.
73  */
74 unsigned long transparent_hugepage_flags __read_mostly =
75 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
76 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
77 #endif
78 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
79 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
80 #endif
81 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
82 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
83 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
84 
85 /* default scan 8*512 pte (or vmas) every 30 second */
86 static unsigned int khugepaged_pages_to_scan __read_mostly;
87 static unsigned int khugepaged_pages_collapsed;
88 static unsigned int khugepaged_full_scans;
89 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
90 /* during fragmentation poll the hugepage allocator once every minute */
91 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
92 static unsigned long khugepaged_sleep_expire;
93 static struct task_struct *khugepaged_thread __read_mostly;
94 static DEFINE_MUTEX(khugepaged_mutex);
95 static DEFINE_SPINLOCK(khugepaged_mm_lock);
96 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
97 /*
98  * default collapse hugepages if there is at least one pte mapped like
99  * it would have happened if the vma was large enough during page
100  * fault.
101  */
102 static unsigned int khugepaged_max_ptes_none __read_mostly;
103 
104 static int khugepaged(void *none);
105 static int khugepaged_slab_init(void);
106 static void khugepaged_slab_exit(void);
107 
108 #define MM_SLOTS_HASH_BITS 10
109 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
110 
111 static struct kmem_cache *mm_slot_cache __read_mostly;
112 
113 /**
114  * struct mm_slot - hash lookup from mm to mm_slot
115  * @hash: hash collision list
116  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
117  * @mm: the mm that this information is valid for
118  */
119 struct mm_slot {
120 	struct hlist_node hash;
121 	struct list_head mm_node;
122 	struct mm_struct *mm;
123 };
124 
125 /**
126  * struct khugepaged_scan - cursor for scanning
127  * @mm_head: the head of the mm list to scan
128  * @mm_slot: the current mm_slot we are scanning
129  * @address: the next address inside that to be scanned
130  *
131  * There is only the one khugepaged_scan instance of this cursor structure.
132  */
133 struct khugepaged_scan {
134 	struct list_head mm_head;
135 	struct mm_slot *mm_slot;
136 	unsigned long address;
137 };
138 static struct khugepaged_scan khugepaged_scan = {
139 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
140 };
141 
142 static struct shrinker deferred_split_shrinker;
143 
144 static void set_recommended_min_free_kbytes(void)
145 {
146 	struct zone *zone;
147 	int nr_zones = 0;
148 	unsigned long recommended_min;
149 
150 	for_each_populated_zone(zone)
151 		nr_zones++;
152 
153 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
154 	recommended_min = pageblock_nr_pages * nr_zones * 2;
155 
156 	/*
157 	 * Make sure that on average at least two pageblocks are almost free
158 	 * of another type, one for a migratetype to fall back to and a
159 	 * second to avoid subsequent fallbacks of other types There are 3
160 	 * MIGRATE_TYPES we care about.
161 	 */
162 	recommended_min += pageblock_nr_pages * nr_zones *
163 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
164 
165 	/* don't ever allow to reserve more than 5% of the lowmem */
166 	recommended_min = min(recommended_min,
167 			      (unsigned long) nr_free_buffer_pages() / 20);
168 	recommended_min <<= (PAGE_SHIFT-10);
169 
170 	if (recommended_min > min_free_kbytes) {
171 		if (user_min_free_kbytes >= 0)
172 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
173 				min_free_kbytes, recommended_min);
174 
175 		min_free_kbytes = recommended_min;
176 	}
177 	setup_per_zone_wmarks();
178 }
179 
180 static int start_stop_khugepaged(void)
181 {
182 	int err = 0;
183 	if (khugepaged_enabled()) {
184 		if (!khugepaged_thread)
185 			khugepaged_thread = kthread_run(khugepaged, NULL,
186 							"khugepaged");
187 		if (IS_ERR(khugepaged_thread)) {
188 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
189 			err = PTR_ERR(khugepaged_thread);
190 			khugepaged_thread = NULL;
191 			goto fail;
192 		}
193 
194 		if (!list_empty(&khugepaged_scan.mm_head))
195 			wake_up_interruptible(&khugepaged_wait);
196 
197 		set_recommended_min_free_kbytes();
198 	} else if (khugepaged_thread) {
199 		kthread_stop(khugepaged_thread);
200 		khugepaged_thread = NULL;
201 	}
202 fail:
203 	return err;
204 }
205 
206 static atomic_t huge_zero_refcount;
207 struct page *huge_zero_page __read_mostly;
208 
209 struct page *get_huge_zero_page(void)
210 {
211 	struct page *zero_page;
212 retry:
213 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
214 		return READ_ONCE(huge_zero_page);
215 
216 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
217 			HPAGE_PMD_ORDER);
218 	if (!zero_page) {
219 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
220 		return NULL;
221 	}
222 	count_vm_event(THP_ZERO_PAGE_ALLOC);
223 	preempt_disable();
224 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
225 		preempt_enable();
226 		__free_pages(zero_page, compound_order(zero_page));
227 		goto retry;
228 	}
229 
230 	/* We take additional reference here. It will be put back by shrinker */
231 	atomic_set(&huge_zero_refcount, 2);
232 	preempt_enable();
233 	return READ_ONCE(huge_zero_page);
234 }
235 
236 void put_huge_zero_page(void)
237 {
238 	/*
239 	 * Counter should never go to zero here. Only shrinker can put
240 	 * last reference.
241 	 */
242 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
243 }
244 
245 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
246 					struct shrink_control *sc)
247 {
248 	/* we can free zero page only if last reference remains */
249 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
250 }
251 
252 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
253 				       struct shrink_control *sc)
254 {
255 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
256 		struct page *zero_page = xchg(&huge_zero_page, NULL);
257 		BUG_ON(zero_page == NULL);
258 		__free_pages(zero_page, compound_order(zero_page));
259 		return HPAGE_PMD_NR;
260 	}
261 
262 	return 0;
263 }
264 
265 static struct shrinker huge_zero_page_shrinker = {
266 	.count_objects = shrink_huge_zero_page_count,
267 	.scan_objects = shrink_huge_zero_page_scan,
268 	.seeks = DEFAULT_SEEKS,
269 };
270 
271 #ifdef CONFIG_SYSFS
272 
273 static ssize_t triple_flag_store(struct kobject *kobj,
274 				 struct kobj_attribute *attr,
275 				 const char *buf, size_t count,
276 				 enum transparent_hugepage_flag enabled,
277 				 enum transparent_hugepage_flag deferred,
278 				 enum transparent_hugepage_flag req_madv)
279 {
280 	if (!memcmp("defer", buf,
281 		    min(sizeof("defer")-1, count))) {
282 		if (enabled == deferred)
283 			return -EINVAL;
284 		clear_bit(enabled, &transparent_hugepage_flags);
285 		clear_bit(req_madv, &transparent_hugepage_flags);
286 		set_bit(deferred, &transparent_hugepage_flags);
287 	} else if (!memcmp("always", buf,
288 		    min(sizeof("always")-1, count))) {
289 		clear_bit(deferred, &transparent_hugepage_flags);
290 		clear_bit(req_madv, &transparent_hugepage_flags);
291 		set_bit(enabled, &transparent_hugepage_flags);
292 	} else if (!memcmp("madvise", buf,
293 			   min(sizeof("madvise")-1, count))) {
294 		clear_bit(enabled, &transparent_hugepage_flags);
295 		clear_bit(deferred, &transparent_hugepage_flags);
296 		set_bit(req_madv, &transparent_hugepage_flags);
297 	} else if (!memcmp("never", buf,
298 			   min(sizeof("never")-1, count))) {
299 		clear_bit(enabled, &transparent_hugepage_flags);
300 		clear_bit(req_madv, &transparent_hugepage_flags);
301 		clear_bit(deferred, &transparent_hugepage_flags);
302 	} else
303 		return -EINVAL;
304 
305 	return count;
306 }
307 
308 static ssize_t enabled_show(struct kobject *kobj,
309 			    struct kobj_attribute *attr, char *buf)
310 {
311 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
312 		return sprintf(buf, "[always] madvise never\n");
313 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
314 		return sprintf(buf, "always [madvise] never\n");
315 	else
316 		return sprintf(buf, "always madvise [never]\n");
317 }
318 
319 static ssize_t enabled_store(struct kobject *kobj,
320 			     struct kobj_attribute *attr,
321 			     const char *buf, size_t count)
322 {
323 	ssize_t ret;
324 
325 	ret = triple_flag_store(kobj, attr, buf, count,
326 				TRANSPARENT_HUGEPAGE_FLAG,
327 				TRANSPARENT_HUGEPAGE_FLAG,
328 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
329 
330 	if (ret > 0) {
331 		int err;
332 
333 		mutex_lock(&khugepaged_mutex);
334 		err = start_stop_khugepaged();
335 		mutex_unlock(&khugepaged_mutex);
336 
337 		if (err)
338 			ret = err;
339 	}
340 
341 	return ret;
342 }
343 static struct kobj_attribute enabled_attr =
344 	__ATTR(enabled, 0644, enabled_show, enabled_store);
345 
346 static ssize_t single_flag_show(struct kobject *kobj,
347 				struct kobj_attribute *attr, char *buf,
348 				enum transparent_hugepage_flag flag)
349 {
350 	return sprintf(buf, "%d\n",
351 		       !!test_bit(flag, &transparent_hugepage_flags));
352 }
353 
354 static ssize_t single_flag_store(struct kobject *kobj,
355 				 struct kobj_attribute *attr,
356 				 const char *buf, size_t count,
357 				 enum transparent_hugepage_flag flag)
358 {
359 	unsigned long value;
360 	int ret;
361 
362 	ret = kstrtoul(buf, 10, &value);
363 	if (ret < 0)
364 		return ret;
365 	if (value > 1)
366 		return -EINVAL;
367 
368 	if (value)
369 		set_bit(flag, &transparent_hugepage_flags);
370 	else
371 		clear_bit(flag, &transparent_hugepage_flags);
372 
373 	return count;
374 }
375 
376 /*
377  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
378  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
379  * memory just to allocate one more hugepage.
380  */
381 static ssize_t defrag_show(struct kobject *kobj,
382 			   struct kobj_attribute *attr, char *buf)
383 {
384 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
385 		return sprintf(buf, "[always] defer madvise never\n");
386 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
387 		return sprintf(buf, "always [defer] madvise never\n");
388 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
389 		return sprintf(buf, "always defer [madvise] never\n");
390 	else
391 		return sprintf(buf, "always defer madvise [never]\n");
392 
393 }
394 static ssize_t defrag_store(struct kobject *kobj,
395 			    struct kobj_attribute *attr,
396 			    const char *buf, size_t count)
397 {
398 	return triple_flag_store(kobj, attr, buf, count,
399 				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
400 				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
401 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
402 }
403 static struct kobj_attribute defrag_attr =
404 	__ATTR(defrag, 0644, defrag_show, defrag_store);
405 
406 static ssize_t use_zero_page_show(struct kobject *kobj,
407 		struct kobj_attribute *attr, char *buf)
408 {
409 	return single_flag_show(kobj, attr, buf,
410 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
411 }
412 static ssize_t use_zero_page_store(struct kobject *kobj,
413 		struct kobj_attribute *attr, const char *buf, size_t count)
414 {
415 	return single_flag_store(kobj, attr, buf, count,
416 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
417 }
418 static struct kobj_attribute use_zero_page_attr =
419 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
420 #ifdef CONFIG_DEBUG_VM
421 static ssize_t debug_cow_show(struct kobject *kobj,
422 				struct kobj_attribute *attr, char *buf)
423 {
424 	return single_flag_show(kobj, attr, buf,
425 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
426 }
427 static ssize_t debug_cow_store(struct kobject *kobj,
428 			       struct kobj_attribute *attr,
429 			       const char *buf, size_t count)
430 {
431 	return single_flag_store(kobj, attr, buf, count,
432 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
433 }
434 static struct kobj_attribute debug_cow_attr =
435 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
436 #endif /* CONFIG_DEBUG_VM */
437 
438 static struct attribute *hugepage_attr[] = {
439 	&enabled_attr.attr,
440 	&defrag_attr.attr,
441 	&use_zero_page_attr.attr,
442 #ifdef CONFIG_DEBUG_VM
443 	&debug_cow_attr.attr,
444 #endif
445 	NULL,
446 };
447 
448 static struct attribute_group hugepage_attr_group = {
449 	.attrs = hugepage_attr,
450 };
451 
452 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
453 					 struct kobj_attribute *attr,
454 					 char *buf)
455 {
456 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
457 }
458 
459 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
460 					  struct kobj_attribute *attr,
461 					  const char *buf, size_t count)
462 {
463 	unsigned long msecs;
464 	int err;
465 
466 	err = kstrtoul(buf, 10, &msecs);
467 	if (err || msecs > UINT_MAX)
468 		return -EINVAL;
469 
470 	khugepaged_scan_sleep_millisecs = msecs;
471 	khugepaged_sleep_expire = 0;
472 	wake_up_interruptible(&khugepaged_wait);
473 
474 	return count;
475 }
476 static struct kobj_attribute scan_sleep_millisecs_attr =
477 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
478 	       scan_sleep_millisecs_store);
479 
480 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
481 					  struct kobj_attribute *attr,
482 					  char *buf)
483 {
484 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
485 }
486 
487 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
488 					   struct kobj_attribute *attr,
489 					   const char *buf, size_t count)
490 {
491 	unsigned long msecs;
492 	int err;
493 
494 	err = kstrtoul(buf, 10, &msecs);
495 	if (err || msecs > UINT_MAX)
496 		return -EINVAL;
497 
498 	khugepaged_alloc_sleep_millisecs = msecs;
499 	khugepaged_sleep_expire = 0;
500 	wake_up_interruptible(&khugepaged_wait);
501 
502 	return count;
503 }
504 static struct kobj_attribute alloc_sleep_millisecs_attr =
505 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
506 	       alloc_sleep_millisecs_store);
507 
508 static ssize_t pages_to_scan_show(struct kobject *kobj,
509 				  struct kobj_attribute *attr,
510 				  char *buf)
511 {
512 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
513 }
514 static ssize_t pages_to_scan_store(struct kobject *kobj,
515 				   struct kobj_attribute *attr,
516 				   const char *buf, size_t count)
517 {
518 	int err;
519 	unsigned long pages;
520 
521 	err = kstrtoul(buf, 10, &pages);
522 	if (err || !pages || pages > UINT_MAX)
523 		return -EINVAL;
524 
525 	khugepaged_pages_to_scan = pages;
526 
527 	return count;
528 }
529 static struct kobj_attribute pages_to_scan_attr =
530 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
531 	       pages_to_scan_store);
532 
533 static ssize_t pages_collapsed_show(struct kobject *kobj,
534 				    struct kobj_attribute *attr,
535 				    char *buf)
536 {
537 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
538 }
539 static struct kobj_attribute pages_collapsed_attr =
540 	__ATTR_RO(pages_collapsed);
541 
542 static ssize_t full_scans_show(struct kobject *kobj,
543 			       struct kobj_attribute *attr,
544 			       char *buf)
545 {
546 	return sprintf(buf, "%u\n", khugepaged_full_scans);
547 }
548 static struct kobj_attribute full_scans_attr =
549 	__ATTR_RO(full_scans);
550 
551 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
552 				      struct kobj_attribute *attr, char *buf)
553 {
554 	return single_flag_show(kobj, attr, buf,
555 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
556 }
557 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
558 				       struct kobj_attribute *attr,
559 				       const char *buf, size_t count)
560 {
561 	return single_flag_store(kobj, attr, buf, count,
562 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
563 }
564 static struct kobj_attribute khugepaged_defrag_attr =
565 	__ATTR(defrag, 0644, khugepaged_defrag_show,
566 	       khugepaged_defrag_store);
567 
568 /*
569  * max_ptes_none controls if khugepaged should collapse hugepages over
570  * any unmapped ptes in turn potentially increasing the memory
571  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
572  * reduce the available free memory in the system as it
573  * runs. Increasing max_ptes_none will instead potentially reduce the
574  * free memory in the system during the khugepaged scan.
575  */
576 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
577 					     struct kobj_attribute *attr,
578 					     char *buf)
579 {
580 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
581 }
582 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
583 					      struct kobj_attribute *attr,
584 					      const char *buf, size_t count)
585 {
586 	int err;
587 	unsigned long max_ptes_none;
588 
589 	err = kstrtoul(buf, 10, &max_ptes_none);
590 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
591 		return -EINVAL;
592 
593 	khugepaged_max_ptes_none = max_ptes_none;
594 
595 	return count;
596 }
597 static struct kobj_attribute khugepaged_max_ptes_none_attr =
598 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
599 	       khugepaged_max_ptes_none_store);
600 
601 static struct attribute *khugepaged_attr[] = {
602 	&khugepaged_defrag_attr.attr,
603 	&khugepaged_max_ptes_none_attr.attr,
604 	&pages_to_scan_attr.attr,
605 	&pages_collapsed_attr.attr,
606 	&full_scans_attr.attr,
607 	&scan_sleep_millisecs_attr.attr,
608 	&alloc_sleep_millisecs_attr.attr,
609 	NULL,
610 };
611 
612 static struct attribute_group khugepaged_attr_group = {
613 	.attrs = khugepaged_attr,
614 	.name = "khugepaged",
615 };
616 
617 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
618 {
619 	int err;
620 
621 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
622 	if (unlikely(!*hugepage_kobj)) {
623 		pr_err("failed to create transparent hugepage kobject\n");
624 		return -ENOMEM;
625 	}
626 
627 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
628 	if (err) {
629 		pr_err("failed to register transparent hugepage group\n");
630 		goto delete_obj;
631 	}
632 
633 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
634 	if (err) {
635 		pr_err("failed to register transparent hugepage group\n");
636 		goto remove_hp_group;
637 	}
638 
639 	return 0;
640 
641 remove_hp_group:
642 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
643 delete_obj:
644 	kobject_put(*hugepage_kobj);
645 	return err;
646 }
647 
648 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
649 {
650 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
651 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
652 	kobject_put(hugepage_kobj);
653 }
654 #else
655 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
656 {
657 	return 0;
658 }
659 
660 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
661 {
662 }
663 #endif /* CONFIG_SYSFS */
664 
665 static int __init hugepage_init(void)
666 {
667 	int err;
668 	struct kobject *hugepage_kobj;
669 
670 	if (!has_transparent_hugepage()) {
671 		transparent_hugepage_flags = 0;
672 		return -EINVAL;
673 	}
674 
675 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
676 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
677 	/*
678 	 * hugepages can't be allocated by the buddy allocator
679 	 */
680 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
681 	/*
682 	 * we use page->mapping and page->index in second tail page
683 	 * as list_head: assuming THP order >= 2
684 	 */
685 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
686 
687 	err = hugepage_init_sysfs(&hugepage_kobj);
688 	if (err)
689 		goto err_sysfs;
690 
691 	err = khugepaged_slab_init();
692 	if (err)
693 		goto err_slab;
694 
695 	err = register_shrinker(&huge_zero_page_shrinker);
696 	if (err)
697 		goto err_hzp_shrinker;
698 	err = register_shrinker(&deferred_split_shrinker);
699 	if (err)
700 		goto err_split_shrinker;
701 
702 	/*
703 	 * By default disable transparent hugepages on smaller systems,
704 	 * where the extra memory used could hurt more than TLB overhead
705 	 * is likely to save.  The admin can still enable it through /sys.
706 	 */
707 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
708 		transparent_hugepage_flags = 0;
709 		return 0;
710 	}
711 
712 	err = start_stop_khugepaged();
713 	if (err)
714 		goto err_khugepaged;
715 
716 	return 0;
717 err_khugepaged:
718 	unregister_shrinker(&deferred_split_shrinker);
719 err_split_shrinker:
720 	unregister_shrinker(&huge_zero_page_shrinker);
721 err_hzp_shrinker:
722 	khugepaged_slab_exit();
723 err_slab:
724 	hugepage_exit_sysfs(hugepage_kobj);
725 err_sysfs:
726 	return err;
727 }
728 subsys_initcall(hugepage_init);
729 
730 static int __init setup_transparent_hugepage(char *str)
731 {
732 	int ret = 0;
733 	if (!str)
734 		goto out;
735 	if (!strcmp(str, "always")) {
736 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
737 			&transparent_hugepage_flags);
738 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
739 			  &transparent_hugepage_flags);
740 		ret = 1;
741 	} else if (!strcmp(str, "madvise")) {
742 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
743 			  &transparent_hugepage_flags);
744 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
745 			&transparent_hugepage_flags);
746 		ret = 1;
747 	} else if (!strcmp(str, "never")) {
748 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
749 			  &transparent_hugepage_flags);
750 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
751 			  &transparent_hugepage_flags);
752 		ret = 1;
753 	}
754 out:
755 	if (!ret)
756 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
757 	return ret;
758 }
759 __setup("transparent_hugepage=", setup_transparent_hugepage);
760 
761 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
762 {
763 	if (likely(vma->vm_flags & VM_WRITE))
764 		pmd = pmd_mkwrite(pmd);
765 	return pmd;
766 }
767 
768 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
769 {
770 	return pmd_mkhuge(mk_pmd(page, prot));
771 }
772 
773 static inline struct list_head *page_deferred_list(struct page *page)
774 {
775 	/*
776 	 * ->lru in the tail pages is occupied by compound_head.
777 	 * Let's use ->mapping + ->index in the second tail page as list_head.
778 	 */
779 	return (struct list_head *)&page[2].mapping;
780 }
781 
782 void prep_transhuge_page(struct page *page)
783 {
784 	/*
785 	 * we use page->mapping and page->indexlru in second tail page
786 	 * as list_head: assuming THP order >= 2
787 	 */
788 
789 	INIT_LIST_HEAD(page_deferred_list(page));
790 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
791 }
792 
793 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
794 					struct vm_area_struct *vma,
795 					unsigned long address, pmd_t *pmd,
796 					struct page *page, gfp_t gfp,
797 					unsigned int flags)
798 {
799 	struct mem_cgroup *memcg;
800 	pgtable_t pgtable;
801 	spinlock_t *ptl;
802 	unsigned long haddr = address & HPAGE_PMD_MASK;
803 
804 	VM_BUG_ON_PAGE(!PageCompound(page), page);
805 
806 	if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
807 		put_page(page);
808 		count_vm_event(THP_FAULT_FALLBACK);
809 		return VM_FAULT_FALLBACK;
810 	}
811 
812 	pgtable = pte_alloc_one(mm, haddr);
813 	if (unlikely(!pgtable)) {
814 		mem_cgroup_cancel_charge(page, memcg, true);
815 		put_page(page);
816 		return VM_FAULT_OOM;
817 	}
818 
819 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
820 	/*
821 	 * The memory barrier inside __SetPageUptodate makes sure that
822 	 * clear_huge_page writes become visible before the set_pmd_at()
823 	 * write.
824 	 */
825 	__SetPageUptodate(page);
826 
827 	ptl = pmd_lock(mm, pmd);
828 	if (unlikely(!pmd_none(*pmd))) {
829 		spin_unlock(ptl);
830 		mem_cgroup_cancel_charge(page, memcg, true);
831 		put_page(page);
832 		pte_free(mm, pgtable);
833 	} else {
834 		pmd_t entry;
835 
836 		/* Deliver the page fault to userland */
837 		if (userfaultfd_missing(vma)) {
838 			int ret;
839 
840 			spin_unlock(ptl);
841 			mem_cgroup_cancel_charge(page, memcg, true);
842 			put_page(page);
843 			pte_free(mm, pgtable);
844 			ret = handle_userfault(vma, address, flags,
845 					       VM_UFFD_MISSING);
846 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
847 			return ret;
848 		}
849 
850 		entry = mk_huge_pmd(page, vma->vm_page_prot);
851 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
852 		page_add_new_anon_rmap(page, vma, haddr, true);
853 		mem_cgroup_commit_charge(page, memcg, false, true);
854 		lru_cache_add_active_or_unevictable(page, vma);
855 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
856 		set_pmd_at(mm, haddr, pmd, entry);
857 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
858 		atomic_long_inc(&mm->nr_ptes);
859 		spin_unlock(ptl);
860 		count_vm_event(THP_FAULT_ALLOC);
861 	}
862 
863 	return 0;
864 }
865 
866 /*
867  * If THP is set to always then directly reclaim/compact as necessary
868  * If set to defer then do no reclaim and defer to khugepaged
869  * If set to madvise and the VMA is flagged then directly reclaim/compact
870  */
871 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
872 {
873 	gfp_t reclaim_flags = 0;
874 
875 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
876 	    (vma->vm_flags & VM_HUGEPAGE))
877 		reclaim_flags = __GFP_DIRECT_RECLAIM;
878 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
879 		reclaim_flags = __GFP_KSWAPD_RECLAIM;
880 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
881 		reclaim_flags = __GFP_DIRECT_RECLAIM;
882 
883 	return GFP_TRANSHUGE | reclaim_flags;
884 }
885 
886 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
887 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
888 {
889 	return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
890 }
891 
892 /* Caller must hold page table lock. */
893 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
894 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
895 		struct page *zero_page)
896 {
897 	pmd_t entry;
898 	if (!pmd_none(*pmd))
899 		return false;
900 	entry = mk_pmd(zero_page, vma->vm_page_prot);
901 	entry = pmd_mkhuge(entry);
902 	if (pgtable)
903 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
904 	set_pmd_at(mm, haddr, pmd, entry);
905 	atomic_long_inc(&mm->nr_ptes);
906 	return true;
907 }
908 
909 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
910 			       unsigned long address, pmd_t *pmd,
911 			       unsigned int flags)
912 {
913 	gfp_t gfp;
914 	struct page *page;
915 	unsigned long haddr = address & HPAGE_PMD_MASK;
916 
917 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
918 		return VM_FAULT_FALLBACK;
919 	if (unlikely(anon_vma_prepare(vma)))
920 		return VM_FAULT_OOM;
921 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
922 		return VM_FAULT_OOM;
923 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
924 			transparent_hugepage_use_zero_page()) {
925 		spinlock_t *ptl;
926 		pgtable_t pgtable;
927 		struct page *zero_page;
928 		bool set;
929 		int ret;
930 		pgtable = pte_alloc_one(mm, haddr);
931 		if (unlikely(!pgtable))
932 			return VM_FAULT_OOM;
933 		zero_page = get_huge_zero_page();
934 		if (unlikely(!zero_page)) {
935 			pte_free(mm, pgtable);
936 			count_vm_event(THP_FAULT_FALLBACK);
937 			return VM_FAULT_FALLBACK;
938 		}
939 		ptl = pmd_lock(mm, pmd);
940 		ret = 0;
941 		set = false;
942 		if (pmd_none(*pmd)) {
943 			if (userfaultfd_missing(vma)) {
944 				spin_unlock(ptl);
945 				ret = handle_userfault(vma, address, flags,
946 						       VM_UFFD_MISSING);
947 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
948 			} else {
949 				set_huge_zero_page(pgtable, mm, vma,
950 						   haddr, pmd,
951 						   zero_page);
952 				spin_unlock(ptl);
953 				set = true;
954 			}
955 		} else
956 			spin_unlock(ptl);
957 		if (!set) {
958 			pte_free(mm, pgtable);
959 			put_huge_zero_page();
960 		}
961 		return ret;
962 	}
963 	gfp = alloc_hugepage_direct_gfpmask(vma);
964 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
965 	if (unlikely(!page)) {
966 		count_vm_event(THP_FAULT_FALLBACK);
967 		return VM_FAULT_FALLBACK;
968 	}
969 	prep_transhuge_page(page);
970 	return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
971 					    flags);
972 }
973 
974 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
975 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
976 {
977 	struct mm_struct *mm = vma->vm_mm;
978 	pmd_t entry;
979 	spinlock_t *ptl;
980 
981 	ptl = pmd_lock(mm, pmd);
982 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
983 	if (pfn_t_devmap(pfn))
984 		entry = pmd_mkdevmap(entry);
985 	if (write) {
986 		entry = pmd_mkyoung(pmd_mkdirty(entry));
987 		entry = maybe_pmd_mkwrite(entry, vma);
988 	}
989 	set_pmd_at(mm, addr, pmd, entry);
990 	update_mmu_cache_pmd(vma, addr, pmd);
991 	spin_unlock(ptl);
992 }
993 
994 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
995 			pmd_t *pmd, pfn_t pfn, bool write)
996 {
997 	pgprot_t pgprot = vma->vm_page_prot;
998 	/*
999 	 * If we had pmd_special, we could avoid all these restrictions,
1000 	 * but we need to be consistent with PTEs and architectures that
1001 	 * can't support a 'special' bit.
1002 	 */
1003 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1004 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005 						(VM_PFNMAP|VM_MIXEDMAP));
1006 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1007 	BUG_ON(!pfn_t_devmap(pfn));
1008 
1009 	if (addr < vma->vm_start || addr >= vma->vm_end)
1010 		return VM_FAULT_SIGBUS;
1011 	if (track_pfn_insert(vma, &pgprot, pfn))
1012 		return VM_FAULT_SIGBUS;
1013 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1014 	return VM_FAULT_NOPAGE;
1015 }
1016 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1017 
1018 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1019 		pmd_t *pmd)
1020 {
1021 	pmd_t _pmd;
1022 
1023 	/*
1024 	 * We should set the dirty bit only for FOLL_WRITE but for now
1025 	 * the dirty bit in the pmd is meaningless.  And if the dirty
1026 	 * bit will become meaningful and we'll only set it with
1027 	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1028 	 * set the young bit, instead of the current set_pmd_at.
1029 	 */
1030 	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1031 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1032 				pmd, _pmd,  1))
1033 		update_mmu_cache_pmd(vma, addr, pmd);
1034 }
1035 
1036 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1037 		pmd_t *pmd, int flags)
1038 {
1039 	unsigned long pfn = pmd_pfn(*pmd);
1040 	struct mm_struct *mm = vma->vm_mm;
1041 	struct dev_pagemap *pgmap;
1042 	struct page *page;
1043 
1044 	assert_spin_locked(pmd_lockptr(mm, pmd));
1045 
1046 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1047 		return NULL;
1048 
1049 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1050 		/* pass */;
1051 	else
1052 		return NULL;
1053 
1054 	if (flags & FOLL_TOUCH)
1055 		touch_pmd(vma, addr, pmd);
1056 
1057 	/*
1058 	 * device mapped pages can only be returned if the
1059 	 * caller will manage the page reference count.
1060 	 */
1061 	if (!(flags & FOLL_GET))
1062 		return ERR_PTR(-EEXIST);
1063 
1064 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1065 	pgmap = get_dev_pagemap(pfn, NULL);
1066 	if (!pgmap)
1067 		return ERR_PTR(-EFAULT);
1068 	page = pfn_to_page(pfn);
1069 	get_page(page);
1070 	put_dev_pagemap(pgmap);
1071 
1072 	return page;
1073 }
1074 
1075 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1076 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1077 		  struct vm_area_struct *vma)
1078 {
1079 	spinlock_t *dst_ptl, *src_ptl;
1080 	struct page *src_page;
1081 	pmd_t pmd;
1082 	pgtable_t pgtable = NULL;
1083 	int ret;
1084 
1085 	if (!vma_is_dax(vma)) {
1086 		ret = -ENOMEM;
1087 		pgtable = pte_alloc_one(dst_mm, addr);
1088 		if (unlikely(!pgtable))
1089 			goto out;
1090 	}
1091 
1092 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1093 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1094 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1095 
1096 	ret = -EAGAIN;
1097 	pmd = *src_pmd;
1098 	if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1099 		pte_free(dst_mm, pgtable);
1100 		goto out_unlock;
1101 	}
1102 	/*
1103 	 * When page table lock is held, the huge zero pmd should not be
1104 	 * under splitting since we don't split the page itself, only pmd to
1105 	 * a page table.
1106 	 */
1107 	if (is_huge_zero_pmd(pmd)) {
1108 		struct page *zero_page;
1109 		/*
1110 		 * get_huge_zero_page() will never allocate a new page here,
1111 		 * since we already have a zero page to copy. It just takes a
1112 		 * reference.
1113 		 */
1114 		zero_page = get_huge_zero_page();
1115 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1116 				zero_page);
1117 		ret = 0;
1118 		goto out_unlock;
1119 	}
1120 
1121 	if (!vma_is_dax(vma)) {
1122 		/* thp accounting separate from pmd_devmap accounting */
1123 		src_page = pmd_page(pmd);
1124 		VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1125 		get_page(src_page);
1126 		page_dup_rmap(src_page, true);
1127 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1128 		atomic_long_inc(&dst_mm->nr_ptes);
1129 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1130 	}
1131 
1132 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1133 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1134 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1135 
1136 	ret = 0;
1137 out_unlock:
1138 	spin_unlock(src_ptl);
1139 	spin_unlock(dst_ptl);
1140 out:
1141 	return ret;
1142 }
1143 
1144 void huge_pmd_set_accessed(struct mm_struct *mm,
1145 			   struct vm_area_struct *vma,
1146 			   unsigned long address,
1147 			   pmd_t *pmd, pmd_t orig_pmd,
1148 			   int dirty)
1149 {
1150 	spinlock_t *ptl;
1151 	pmd_t entry;
1152 	unsigned long haddr;
1153 
1154 	ptl = pmd_lock(mm, pmd);
1155 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1156 		goto unlock;
1157 
1158 	entry = pmd_mkyoung(orig_pmd);
1159 	haddr = address & HPAGE_PMD_MASK;
1160 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1161 		update_mmu_cache_pmd(vma, address, pmd);
1162 
1163 unlock:
1164 	spin_unlock(ptl);
1165 }
1166 
1167 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1168 					struct vm_area_struct *vma,
1169 					unsigned long address,
1170 					pmd_t *pmd, pmd_t orig_pmd,
1171 					struct page *page,
1172 					unsigned long haddr)
1173 {
1174 	struct mem_cgroup *memcg;
1175 	spinlock_t *ptl;
1176 	pgtable_t pgtable;
1177 	pmd_t _pmd;
1178 	int ret = 0, i;
1179 	struct page **pages;
1180 	unsigned long mmun_start;	/* For mmu_notifiers */
1181 	unsigned long mmun_end;		/* For mmu_notifiers */
1182 
1183 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1184 			GFP_KERNEL);
1185 	if (unlikely(!pages)) {
1186 		ret |= VM_FAULT_OOM;
1187 		goto out;
1188 	}
1189 
1190 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1191 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1192 					       __GFP_OTHER_NODE,
1193 					       vma, address, page_to_nid(page));
1194 		if (unlikely(!pages[i] ||
1195 			     mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1196 						   &memcg, false))) {
1197 			if (pages[i])
1198 				put_page(pages[i]);
1199 			while (--i >= 0) {
1200 				memcg = (void *)page_private(pages[i]);
1201 				set_page_private(pages[i], 0);
1202 				mem_cgroup_cancel_charge(pages[i], memcg,
1203 						false);
1204 				put_page(pages[i]);
1205 			}
1206 			kfree(pages);
1207 			ret |= VM_FAULT_OOM;
1208 			goto out;
1209 		}
1210 		set_page_private(pages[i], (unsigned long)memcg);
1211 	}
1212 
1213 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1214 		copy_user_highpage(pages[i], page + i,
1215 				   haddr + PAGE_SIZE * i, vma);
1216 		__SetPageUptodate(pages[i]);
1217 		cond_resched();
1218 	}
1219 
1220 	mmun_start = haddr;
1221 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1222 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1223 
1224 	ptl = pmd_lock(mm, pmd);
1225 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1226 		goto out_free_pages;
1227 	VM_BUG_ON_PAGE(!PageHead(page), page);
1228 
1229 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1230 	/* leave pmd empty until pte is filled */
1231 
1232 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1233 	pmd_populate(mm, &_pmd, pgtable);
1234 
1235 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1236 		pte_t *pte, entry;
1237 		entry = mk_pte(pages[i], vma->vm_page_prot);
1238 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1239 		memcg = (void *)page_private(pages[i]);
1240 		set_page_private(pages[i], 0);
1241 		page_add_new_anon_rmap(pages[i], vma, haddr, false);
1242 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1243 		lru_cache_add_active_or_unevictable(pages[i], vma);
1244 		pte = pte_offset_map(&_pmd, haddr);
1245 		VM_BUG_ON(!pte_none(*pte));
1246 		set_pte_at(mm, haddr, pte, entry);
1247 		pte_unmap(pte);
1248 	}
1249 	kfree(pages);
1250 
1251 	smp_wmb(); /* make pte visible before pmd */
1252 	pmd_populate(mm, pmd, pgtable);
1253 	page_remove_rmap(page, true);
1254 	spin_unlock(ptl);
1255 
1256 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1257 
1258 	ret |= VM_FAULT_WRITE;
1259 	put_page(page);
1260 
1261 out:
1262 	return ret;
1263 
1264 out_free_pages:
1265 	spin_unlock(ptl);
1266 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1267 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1268 		memcg = (void *)page_private(pages[i]);
1269 		set_page_private(pages[i], 0);
1270 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1271 		put_page(pages[i]);
1272 	}
1273 	kfree(pages);
1274 	goto out;
1275 }
1276 
1277 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1278 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1279 {
1280 	spinlock_t *ptl;
1281 	int ret = 0;
1282 	struct page *page = NULL, *new_page;
1283 	struct mem_cgroup *memcg;
1284 	unsigned long haddr;
1285 	unsigned long mmun_start;	/* For mmu_notifiers */
1286 	unsigned long mmun_end;		/* For mmu_notifiers */
1287 	gfp_t huge_gfp;			/* for allocation and charge */
1288 
1289 	ptl = pmd_lockptr(mm, pmd);
1290 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1291 	haddr = address & HPAGE_PMD_MASK;
1292 	if (is_huge_zero_pmd(orig_pmd))
1293 		goto alloc;
1294 	spin_lock(ptl);
1295 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1296 		goto out_unlock;
1297 
1298 	page = pmd_page(orig_pmd);
1299 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1300 	/*
1301 	 * We can only reuse the page if nobody else maps the huge page or it's
1302 	 * part.
1303 	 */
1304 	if (page_trans_huge_mapcount(page, NULL) == 1) {
1305 		pmd_t entry;
1306 		entry = pmd_mkyoung(orig_pmd);
1307 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1308 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1309 			update_mmu_cache_pmd(vma, address, pmd);
1310 		ret |= VM_FAULT_WRITE;
1311 		goto out_unlock;
1312 	}
1313 	get_page(page);
1314 	spin_unlock(ptl);
1315 alloc:
1316 	if (transparent_hugepage_enabled(vma) &&
1317 	    !transparent_hugepage_debug_cow()) {
1318 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1319 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1320 	} else
1321 		new_page = NULL;
1322 
1323 	if (likely(new_page)) {
1324 		prep_transhuge_page(new_page);
1325 	} else {
1326 		if (!page) {
1327 			split_huge_pmd(vma, pmd, address);
1328 			ret |= VM_FAULT_FALLBACK;
1329 		} else {
1330 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1331 					pmd, orig_pmd, page, haddr);
1332 			if (ret & VM_FAULT_OOM) {
1333 				split_huge_pmd(vma, pmd, address);
1334 				ret |= VM_FAULT_FALLBACK;
1335 			}
1336 			put_page(page);
1337 		}
1338 		count_vm_event(THP_FAULT_FALLBACK);
1339 		goto out;
1340 	}
1341 
1342 	if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1343 					   true))) {
1344 		put_page(new_page);
1345 		if (page) {
1346 			split_huge_pmd(vma, pmd, address);
1347 			put_page(page);
1348 		} else
1349 			split_huge_pmd(vma, pmd, address);
1350 		ret |= VM_FAULT_FALLBACK;
1351 		count_vm_event(THP_FAULT_FALLBACK);
1352 		goto out;
1353 	}
1354 
1355 	count_vm_event(THP_FAULT_ALLOC);
1356 
1357 	if (!page)
1358 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1359 	else
1360 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1361 	__SetPageUptodate(new_page);
1362 
1363 	mmun_start = haddr;
1364 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1365 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1366 
1367 	spin_lock(ptl);
1368 	if (page)
1369 		put_page(page);
1370 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1371 		spin_unlock(ptl);
1372 		mem_cgroup_cancel_charge(new_page, memcg, true);
1373 		put_page(new_page);
1374 		goto out_mn;
1375 	} else {
1376 		pmd_t entry;
1377 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1378 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1379 		pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1380 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1381 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1382 		lru_cache_add_active_or_unevictable(new_page, vma);
1383 		set_pmd_at(mm, haddr, pmd, entry);
1384 		update_mmu_cache_pmd(vma, address, pmd);
1385 		if (!page) {
1386 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1387 			put_huge_zero_page();
1388 		} else {
1389 			VM_BUG_ON_PAGE(!PageHead(page), page);
1390 			page_remove_rmap(page, true);
1391 			put_page(page);
1392 		}
1393 		ret |= VM_FAULT_WRITE;
1394 	}
1395 	spin_unlock(ptl);
1396 out_mn:
1397 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1398 out:
1399 	return ret;
1400 out_unlock:
1401 	spin_unlock(ptl);
1402 	return ret;
1403 }
1404 
1405 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1406 				   unsigned long addr,
1407 				   pmd_t *pmd,
1408 				   unsigned int flags)
1409 {
1410 	struct mm_struct *mm = vma->vm_mm;
1411 	struct page *page = NULL;
1412 
1413 	assert_spin_locked(pmd_lockptr(mm, pmd));
1414 
1415 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1416 		goto out;
1417 
1418 	/* Avoid dumping huge zero page */
1419 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1420 		return ERR_PTR(-EFAULT);
1421 
1422 	/* Full NUMA hinting faults to serialise migration in fault paths */
1423 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1424 		goto out;
1425 
1426 	page = pmd_page(*pmd);
1427 	VM_BUG_ON_PAGE(!PageHead(page), page);
1428 	if (flags & FOLL_TOUCH)
1429 		touch_pmd(vma, addr, pmd);
1430 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1431 		/*
1432 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1433 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1434 		 *
1435 		 * In most cases the pmd is the only mapping of the page as we
1436 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1437 		 * writable private mappings in populate_vma_page_range().
1438 		 *
1439 		 * The only scenario when we have the page shared here is if we
1440 		 * mlocking read-only mapping shared over fork(). We skip
1441 		 * mlocking such pages.
1442 		 */
1443 		if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1444 				page->mapping && trylock_page(page)) {
1445 			lru_add_drain();
1446 			if (page->mapping)
1447 				mlock_vma_page(page);
1448 			unlock_page(page);
1449 		}
1450 	}
1451 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1452 	VM_BUG_ON_PAGE(!PageCompound(page), page);
1453 	if (flags & FOLL_GET)
1454 		get_page(page);
1455 
1456 out:
1457 	return page;
1458 }
1459 
1460 /* NUMA hinting page fault entry point for trans huge pmds */
1461 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1462 				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1463 {
1464 	spinlock_t *ptl;
1465 	struct anon_vma *anon_vma = NULL;
1466 	struct page *page;
1467 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1468 	int page_nid = -1, this_nid = numa_node_id();
1469 	int target_nid, last_cpupid = -1;
1470 	bool page_locked;
1471 	bool migrated = false;
1472 	bool was_writable;
1473 	int flags = 0;
1474 
1475 	/* A PROT_NONE fault should not end up here */
1476 	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1477 
1478 	ptl = pmd_lock(mm, pmdp);
1479 	if (unlikely(!pmd_same(pmd, *pmdp)))
1480 		goto out_unlock;
1481 
1482 	/*
1483 	 * If there are potential migrations, wait for completion and retry
1484 	 * without disrupting NUMA hinting information. Do not relock and
1485 	 * check_same as the page may no longer be mapped.
1486 	 */
1487 	if (unlikely(pmd_trans_migrating(*pmdp))) {
1488 		page = pmd_page(*pmdp);
1489 		spin_unlock(ptl);
1490 		wait_on_page_locked(page);
1491 		goto out;
1492 	}
1493 
1494 	page = pmd_page(pmd);
1495 	BUG_ON(is_huge_zero_page(page));
1496 	page_nid = page_to_nid(page);
1497 	last_cpupid = page_cpupid_last(page);
1498 	count_vm_numa_event(NUMA_HINT_FAULTS);
1499 	if (page_nid == this_nid) {
1500 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1501 		flags |= TNF_FAULT_LOCAL;
1502 	}
1503 
1504 	/* See similar comment in do_numa_page for explanation */
1505 	if (!(vma->vm_flags & VM_WRITE))
1506 		flags |= TNF_NO_GROUP;
1507 
1508 	/*
1509 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1510 	 * page_table_lock if at all possible
1511 	 */
1512 	page_locked = trylock_page(page);
1513 	target_nid = mpol_misplaced(page, vma, haddr);
1514 	if (target_nid == -1) {
1515 		/* If the page was locked, there are no parallel migrations */
1516 		if (page_locked)
1517 			goto clear_pmdnuma;
1518 	}
1519 
1520 	/* Migration could have started since the pmd_trans_migrating check */
1521 	if (!page_locked) {
1522 		spin_unlock(ptl);
1523 		wait_on_page_locked(page);
1524 		page_nid = -1;
1525 		goto out;
1526 	}
1527 
1528 	/*
1529 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1530 	 * to serialises splits
1531 	 */
1532 	get_page(page);
1533 	spin_unlock(ptl);
1534 	anon_vma = page_lock_anon_vma_read(page);
1535 
1536 	/* Confirm the PMD did not change while page_table_lock was released */
1537 	spin_lock(ptl);
1538 	if (unlikely(!pmd_same(pmd, *pmdp))) {
1539 		unlock_page(page);
1540 		put_page(page);
1541 		page_nid = -1;
1542 		goto out_unlock;
1543 	}
1544 
1545 	/* Bail if we fail to protect against THP splits for any reason */
1546 	if (unlikely(!anon_vma)) {
1547 		put_page(page);
1548 		page_nid = -1;
1549 		goto clear_pmdnuma;
1550 	}
1551 
1552 	/*
1553 	 * Migrate the THP to the requested node, returns with page unlocked
1554 	 * and access rights restored.
1555 	 */
1556 	spin_unlock(ptl);
1557 	migrated = migrate_misplaced_transhuge_page(mm, vma,
1558 				pmdp, pmd, addr, page, target_nid);
1559 	if (migrated) {
1560 		flags |= TNF_MIGRATED;
1561 		page_nid = target_nid;
1562 	} else
1563 		flags |= TNF_MIGRATE_FAIL;
1564 
1565 	goto out;
1566 clear_pmdnuma:
1567 	BUG_ON(!PageLocked(page));
1568 	was_writable = pmd_write(pmd);
1569 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1570 	pmd = pmd_mkyoung(pmd);
1571 	if (was_writable)
1572 		pmd = pmd_mkwrite(pmd);
1573 	set_pmd_at(mm, haddr, pmdp, pmd);
1574 	update_mmu_cache_pmd(vma, addr, pmdp);
1575 	unlock_page(page);
1576 out_unlock:
1577 	spin_unlock(ptl);
1578 
1579 out:
1580 	if (anon_vma)
1581 		page_unlock_anon_vma_read(anon_vma);
1582 
1583 	if (page_nid != -1)
1584 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1585 
1586 	return 0;
1587 }
1588 
1589 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1590 		pmd_t *pmd, unsigned long addr, unsigned long next)
1591 
1592 {
1593 	spinlock_t *ptl;
1594 	pmd_t orig_pmd;
1595 	struct page *page;
1596 	struct mm_struct *mm = tlb->mm;
1597 	int ret = 0;
1598 
1599 	ptl = pmd_trans_huge_lock(pmd, vma);
1600 	if (!ptl)
1601 		goto out_unlocked;
1602 
1603 	orig_pmd = *pmd;
1604 	if (is_huge_zero_pmd(orig_pmd)) {
1605 		ret = 1;
1606 		goto out;
1607 	}
1608 
1609 	page = pmd_page(orig_pmd);
1610 	/*
1611 	 * If other processes are mapping this page, we couldn't discard
1612 	 * the page unless they all do MADV_FREE so let's skip the page.
1613 	 */
1614 	if (page_mapcount(page) != 1)
1615 		goto out;
1616 
1617 	if (!trylock_page(page))
1618 		goto out;
1619 
1620 	/*
1621 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1622 	 * will deactivate only them.
1623 	 */
1624 	if (next - addr != HPAGE_PMD_SIZE) {
1625 		get_page(page);
1626 		spin_unlock(ptl);
1627 		split_huge_page(page);
1628 		put_page(page);
1629 		unlock_page(page);
1630 		goto out_unlocked;
1631 	}
1632 
1633 	if (PageDirty(page))
1634 		ClearPageDirty(page);
1635 	unlock_page(page);
1636 
1637 	if (PageActive(page))
1638 		deactivate_page(page);
1639 
1640 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1641 		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1642 			tlb->fullmm);
1643 		orig_pmd = pmd_mkold(orig_pmd);
1644 		orig_pmd = pmd_mkclean(orig_pmd);
1645 
1646 		set_pmd_at(mm, addr, pmd, orig_pmd);
1647 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1648 	}
1649 	ret = 1;
1650 out:
1651 	spin_unlock(ptl);
1652 out_unlocked:
1653 	return ret;
1654 }
1655 
1656 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1657 		 pmd_t *pmd, unsigned long addr)
1658 {
1659 	pmd_t orig_pmd;
1660 	spinlock_t *ptl;
1661 
1662 	ptl = __pmd_trans_huge_lock(pmd, vma);
1663 	if (!ptl)
1664 		return 0;
1665 	/*
1666 	 * For architectures like ppc64 we look at deposited pgtable
1667 	 * when calling pmdp_huge_get_and_clear. So do the
1668 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1669 	 * operations.
1670 	 */
1671 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1672 			tlb->fullmm);
1673 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1674 	if (vma_is_dax(vma)) {
1675 		spin_unlock(ptl);
1676 		if (is_huge_zero_pmd(orig_pmd))
1677 			tlb_remove_page(tlb, pmd_page(orig_pmd));
1678 	} else if (is_huge_zero_pmd(orig_pmd)) {
1679 		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1680 		atomic_long_dec(&tlb->mm->nr_ptes);
1681 		spin_unlock(ptl);
1682 		tlb_remove_page(tlb, pmd_page(orig_pmd));
1683 	} else {
1684 		struct page *page = pmd_page(orig_pmd);
1685 		page_remove_rmap(page, true);
1686 		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1687 		add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1688 		VM_BUG_ON_PAGE(!PageHead(page), page);
1689 		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1690 		atomic_long_dec(&tlb->mm->nr_ptes);
1691 		spin_unlock(ptl);
1692 		tlb_remove_page(tlb, page);
1693 	}
1694 	return 1;
1695 }
1696 
1697 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1698 		  unsigned long new_addr, unsigned long old_end,
1699 		  pmd_t *old_pmd, pmd_t *new_pmd)
1700 {
1701 	spinlock_t *old_ptl, *new_ptl;
1702 	pmd_t pmd;
1703 	struct mm_struct *mm = vma->vm_mm;
1704 
1705 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1706 	    (new_addr & ~HPAGE_PMD_MASK) ||
1707 	    old_end - old_addr < HPAGE_PMD_SIZE)
1708 		return false;
1709 
1710 	/*
1711 	 * The destination pmd shouldn't be established, free_pgtables()
1712 	 * should have release it.
1713 	 */
1714 	if (WARN_ON(!pmd_none(*new_pmd))) {
1715 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1716 		return false;
1717 	}
1718 
1719 	/*
1720 	 * We don't have to worry about the ordering of src and dst
1721 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1722 	 */
1723 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1724 	if (old_ptl) {
1725 		new_ptl = pmd_lockptr(mm, new_pmd);
1726 		if (new_ptl != old_ptl)
1727 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1728 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1729 		VM_BUG_ON(!pmd_none(*new_pmd));
1730 
1731 		if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1732 				vma_is_anonymous(vma)) {
1733 			pgtable_t pgtable;
1734 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1735 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1736 		}
1737 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1738 		if (new_ptl != old_ptl)
1739 			spin_unlock(new_ptl);
1740 		spin_unlock(old_ptl);
1741 		return true;
1742 	}
1743 	return false;
1744 }
1745 
1746 /*
1747  * Returns
1748  *  - 0 if PMD could not be locked
1749  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1750  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1751  */
1752 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1753 		unsigned long addr, pgprot_t newprot, int prot_numa)
1754 {
1755 	struct mm_struct *mm = vma->vm_mm;
1756 	spinlock_t *ptl;
1757 	int ret = 0;
1758 
1759 	ptl = __pmd_trans_huge_lock(pmd, vma);
1760 	if (ptl) {
1761 		pmd_t entry;
1762 		bool preserve_write = prot_numa && pmd_write(*pmd);
1763 		ret = 1;
1764 
1765 		/*
1766 		 * Avoid trapping faults against the zero page. The read-only
1767 		 * data is likely to be read-cached on the local CPU and
1768 		 * local/remote hits to the zero page are not interesting.
1769 		 */
1770 		if (prot_numa && is_huge_zero_pmd(*pmd)) {
1771 			spin_unlock(ptl);
1772 			return ret;
1773 		}
1774 
1775 		if (!prot_numa || !pmd_protnone(*pmd)) {
1776 			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1777 			entry = pmd_modify(entry, newprot);
1778 			if (preserve_write)
1779 				entry = pmd_mkwrite(entry);
1780 			ret = HPAGE_PMD_NR;
1781 			set_pmd_at(mm, addr, pmd, entry);
1782 			BUG_ON(!preserve_write && pmd_write(entry));
1783 		}
1784 		spin_unlock(ptl);
1785 	}
1786 
1787 	return ret;
1788 }
1789 
1790 /*
1791  * Returns true if a given pmd maps a thp, false otherwise.
1792  *
1793  * Note that if it returns true, this routine returns without unlocking page
1794  * table lock. So callers must unlock it.
1795  */
1796 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1797 {
1798 	spinlock_t *ptl;
1799 	ptl = pmd_lock(vma->vm_mm, pmd);
1800 	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1801 		return ptl;
1802 	spin_unlock(ptl);
1803 	return NULL;
1804 }
1805 
1806 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1807 
1808 int hugepage_madvise(struct vm_area_struct *vma,
1809 		     unsigned long *vm_flags, int advice)
1810 {
1811 	switch (advice) {
1812 	case MADV_HUGEPAGE:
1813 #ifdef CONFIG_S390
1814 		/*
1815 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1816 		 * can't handle this properly after s390_enable_sie, so we simply
1817 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1818 		 */
1819 		if (mm_has_pgste(vma->vm_mm))
1820 			return 0;
1821 #endif
1822 		/*
1823 		 * Be somewhat over-protective like KSM for now!
1824 		 */
1825 		if (*vm_flags & VM_NO_THP)
1826 			return -EINVAL;
1827 		*vm_flags &= ~VM_NOHUGEPAGE;
1828 		*vm_flags |= VM_HUGEPAGE;
1829 		/*
1830 		 * If the vma become good for khugepaged to scan,
1831 		 * register it here without waiting a page fault that
1832 		 * may not happen any time soon.
1833 		 */
1834 		if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1835 			return -ENOMEM;
1836 		break;
1837 	case MADV_NOHUGEPAGE:
1838 		/*
1839 		 * Be somewhat over-protective like KSM for now!
1840 		 */
1841 		if (*vm_flags & VM_NO_THP)
1842 			return -EINVAL;
1843 		*vm_flags &= ~VM_HUGEPAGE;
1844 		*vm_flags |= VM_NOHUGEPAGE;
1845 		/*
1846 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1847 		 * this vma even if we leave the mm registered in khugepaged if
1848 		 * it got registered before VM_NOHUGEPAGE was set.
1849 		 */
1850 		break;
1851 	}
1852 
1853 	return 0;
1854 }
1855 
1856 static int __init khugepaged_slab_init(void)
1857 {
1858 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1859 					  sizeof(struct mm_slot),
1860 					  __alignof__(struct mm_slot), 0, NULL);
1861 	if (!mm_slot_cache)
1862 		return -ENOMEM;
1863 
1864 	return 0;
1865 }
1866 
1867 static void __init khugepaged_slab_exit(void)
1868 {
1869 	kmem_cache_destroy(mm_slot_cache);
1870 }
1871 
1872 static inline struct mm_slot *alloc_mm_slot(void)
1873 {
1874 	if (!mm_slot_cache)	/* initialization failed */
1875 		return NULL;
1876 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1877 }
1878 
1879 static inline void free_mm_slot(struct mm_slot *mm_slot)
1880 {
1881 	kmem_cache_free(mm_slot_cache, mm_slot);
1882 }
1883 
1884 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1885 {
1886 	struct mm_slot *mm_slot;
1887 
1888 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1889 		if (mm == mm_slot->mm)
1890 			return mm_slot;
1891 
1892 	return NULL;
1893 }
1894 
1895 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1896 				    struct mm_slot *mm_slot)
1897 {
1898 	mm_slot->mm = mm;
1899 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1900 }
1901 
1902 static inline int khugepaged_test_exit(struct mm_struct *mm)
1903 {
1904 	return atomic_read(&mm->mm_users) == 0;
1905 }
1906 
1907 int __khugepaged_enter(struct mm_struct *mm)
1908 {
1909 	struct mm_slot *mm_slot;
1910 	int wakeup;
1911 
1912 	mm_slot = alloc_mm_slot();
1913 	if (!mm_slot)
1914 		return -ENOMEM;
1915 
1916 	/* __khugepaged_exit() must not run from under us */
1917 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1918 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1919 		free_mm_slot(mm_slot);
1920 		return 0;
1921 	}
1922 
1923 	spin_lock(&khugepaged_mm_lock);
1924 	insert_to_mm_slots_hash(mm, mm_slot);
1925 	/*
1926 	 * Insert just behind the scanning cursor, to let the area settle
1927 	 * down a little.
1928 	 */
1929 	wakeup = list_empty(&khugepaged_scan.mm_head);
1930 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1931 	spin_unlock(&khugepaged_mm_lock);
1932 
1933 	atomic_inc(&mm->mm_count);
1934 	if (wakeup)
1935 		wake_up_interruptible(&khugepaged_wait);
1936 
1937 	return 0;
1938 }
1939 
1940 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1941 			       unsigned long vm_flags)
1942 {
1943 	unsigned long hstart, hend;
1944 	if (!vma->anon_vma)
1945 		/*
1946 		 * Not yet faulted in so we will register later in the
1947 		 * page fault if needed.
1948 		 */
1949 		return 0;
1950 	if (vma->vm_ops || (vm_flags & VM_NO_THP))
1951 		/* khugepaged not yet working on file or special mappings */
1952 		return 0;
1953 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1954 	hend = vma->vm_end & HPAGE_PMD_MASK;
1955 	if (hstart < hend)
1956 		return khugepaged_enter(vma, vm_flags);
1957 	return 0;
1958 }
1959 
1960 void __khugepaged_exit(struct mm_struct *mm)
1961 {
1962 	struct mm_slot *mm_slot;
1963 	int free = 0;
1964 
1965 	spin_lock(&khugepaged_mm_lock);
1966 	mm_slot = get_mm_slot(mm);
1967 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1968 		hash_del(&mm_slot->hash);
1969 		list_del(&mm_slot->mm_node);
1970 		free = 1;
1971 	}
1972 	spin_unlock(&khugepaged_mm_lock);
1973 
1974 	if (free) {
1975 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1976 		free_mm_slot(mm_slot);
1977 		mmdrop(mm);
1978 	} else if (mm_slot) {
1979 		/*
1980 		 * This is required to serialize against
1981 		 * khugepaged_test_exit() (which is guaranteed to run
1982 		 * under mmap sem read mode). Stop here (after we
1983 		 * return all pagetables will be destroyed) until
1984 		 * khugepaged has finished working on the pagetables
1985 		 * under the mmap_sem.
1986 		 */
1987 		down_write(&mm->mmap_sem);
1988 		up_write(&mm->mmap_sem);
1989 	}
1990 }
1991 
1992 static void release_pte_page(struct page *page)
1993 {
1994 	/* 0 stands for page_is_file_cache(page) == false */
1995 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1996 	unlock_page(page);
1997 	putback_lru_page(page);
1998 }
1999 
2000 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2001 {
2002 	while (--_pte >= pte) {
2003 		pte_t pteval = *_pte;
2004 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2005 			release_pte_page(pte_page(pteval));
2006 	}
2007 }
2008 
2009 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2010 					unsigned long address,
2011 					pte_t *pte)
2012 {
2013 	struct page *page = NULL;
2014 	pte_t *_pte;
2015 	int none_or_zero = 0, result = 0;
2016 	bool referenced = false, writable = false;
2017 
2018 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2019 	     _pte++, address += PAGE_SIZE) {
2020 		pte_t pteval = *_pte;
2021 		if (pte_none(pteval) || (pte_present(pteval) &&
2022 				is_zero_pfn(pte_pfn(pteval)))) {
2023 			if (!userfaultfd_armed(vma) &&
2024 			    ++none_or_zero <= khugepaged_max_ptes_none) {
2025 				continue;
2026 			} else {
2027 				result = SCAN_EXCEED_NONE_PTE;
2028 				goto out;
2029 			}
2030 		}
2031 		if (!pte_present(pteval)) {
2032 			result = SCAN_PTE_NON_PRESENT;
2033 			goto out;
2034 		}
2035 		page = vm_normal_page(vma, address, pteval);
2036 		if (unlikely(!page)) {
2037 			result = SCAN_PAGE_NULL;
2038 			goto out;
2039 		}
2040 
2041 		VM_BUG_ON_PAGE(PageCompound(page), page);
2042 		VM_BUG_ON_PAGE(!PageAnon(page), page);
2043 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2044 
2045 		/*
2046 		 * We can do it before isolate_lru_page because the
2047 		 * page can't be freed from under us. NOTE: PG_lock
2048 		 * is needed to serialize against split_huge_page
2049 		 * when invoked from the VM.
2050 		 */
2051 		if (!trylock_page(page)) {
2052 			result = SCAN_PAGE_LOCK;
2053 			goto out;
2054 		}
2055 
2056 		/*
2057 		 * cannot use mapcount: can't collapse if there's a gup pin.
2058 		 * The page must only be referenced by the scanned process
2059 		 * and page swap cache.
2060 		 */
2061 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
2062 			unlock_page(page);
2063 			result = SCAN_PAGE_COUNT;
2064 			goto out;
2065 		}
2066 		if (pte_write(pteval)) {
2067 			writable = true;
2068 		} else {
2069 			if (PageSwapCache(page) &&
2070 			    !reuse_swap_page(page, NULL)) {
2071 				unlock_page(page);
2072 				result = SCAN_SWAP_CACHE_PAGE;
2073 				goto out;
2074 			}
2075 			/*
2076 			 * Page is not in the swap cache. It can be collapsed
2077 			 * into a THP.
2078 			 */
2079 		}
2080 
2081 		/*
2082 		 * Isolate the page to avoid collapsing an hugepage
2083 		 * currently in use by the VM.
2084 		 */
2085 		if (isolate_lru_page(page)) {
2086 			unlock_page(page);
2087 			result = SCAN_DEL_PAGE_LRU;
2088 			goto out;
2089 		}
2090 		/* 0 stands for page_is_file_cache(page) == false */
2091 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2092 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2093 		VM_BUG_ON_PAGE(PageLRU(page), page);
2094 
2095 		/* If there is no mapped pte young don't collapse the page */
2096 		if (pte_young(pteval) ||
2097 		    page_is_young(page) || PageReferenced(page) ||
2098 		    mmu_notifier_test_young(vma->vm_mm, address))
2099 			referenced = true;
2100 	}
2101 	if (likely(writable)) {
2102 		if (likely(referenced)) {
2103 			result = SCAN_SUCCEED;
2104 			trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2105 							    referenced, writable, result);
2106 			return 1;
2107 		}
2108 	} else {
2109 		result = SCAN_PAGE_RO;
2110 	}
2111 
2112 out:
2113 	release_pte_pages(pte, _pte);
2114 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2115 					    referenced, writable, result);
2116 	return 0;
2117 }
2118 
2119 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2120 				      struct vm_area_struct *vma,
2121 				      unsigned long address,
2122 				      spinlock_t *ptl)
2123 {
2124 	pte_t *_pte;
2125 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2126 		pte_t pteval = *_pte;
2127 		struct page *src_page;
2128 
2129 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2130 			clear_user_highpage(page, address);
2131 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2132 			if (is_zero_pfn(pte_pfn(pteval))) {
2133 				/*
2134 				 * ptl mostly unnecessary.
2135 				 */
2136 				spin_lock(ptl);
2137 				/*
2138 				 * paravirt calls inside pte_clear here are
2139 				 * superfluous.
2140 				 */
2141 				pte_clear(vma->vm_mm, address, _pte);
2142 				spin_unlock(ptl);
2143 			}
2144 		} else {
2145 			src_page = pte_page(pteval);
2146 			copy_user_highpage(page, src_page, address, vma);
2147 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2148 			release_pte_page(src_page);
2149 			/*
2150 			 * ptl mostly unnecessary, but preempt has to
2151 			 * be disabled to update the per-cpu stats
2152 			 * inside page_remove_rmap().
2153 			 */
2154 			spin_lock(ptl);
2155 			/*
2156 			 * paravirt calls inside pte_clear here are
2157 			 * superfluous.
2158 			 */
2159 			pte_clear(vma->vm_mm, address, _pte);
2160 			page_remove_rmap(src_page, false);
2161 			spin_unlock(ptl);
2162 			free_page_and_swap_cache(src_page);
2163 		}
2164 
2165 		address += PAGE_SIZE;
2166 		page++;
2167 	}
2168 }
2169 
2170 static void khugepaged_alloc_sleep(void)
2171 {
2172 	DEFINE_WAIT(wait);
2173 
2174 	add_wait_queue(&khugepaged_wait, &wait);
2175 	freezable_schedule_timeout_interruptible(
2176 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2177 	remove_wait_queue(&khugepaged_wait, &wait);
2178 }
2179 
2180 static int khugepaged_node_load[MAX_NUMNODES];
2181 
2182 static bool khugepaged_scan_abort(int nid)
2183 {
2184 	int i;
2185 
2186 	/*
2187 	 * If zone_reclaim_mode is disabled, then no extra effort is made to
2188 	 * allocate memory locally.
2189 	 */
2190 	if (!zone_reclaim_mode)
2191 		return false;
2192 
2193 	/* If there is a count for this node already, it must be acceptable */
2194 	if (khugepaged_node_load[nid])
2195 		return false;
2196 
2197 	for (i = 0; i < MAX_NUMNODES; i++) {
2198 		if (!khugepaged_node_load[i])
2199 			continue;
2200 		if (node_distance(nid, i) > RECLAIM_DISTANCE)
2201 			return true;
2202 	}
2203 	return false;
2204 }
2205 
2206 #ifdef CONFIG_NUMA
2207 static int khugepaged_find_target_node(void)
2208 {
2209 	static int last_khugepaged_target_node = NUMA_NO_NODE;
2210 	int nid, target_node = 0, max_value = 0;
2211 
2212 	/* find first node with max normal pages hit */
2213 	for (nid = 0; nid < MAX_NUMNODES; nid++)
2214 		if (khugepaged_node_load[nid] > max_value) {
2215 			max_value = khugepaged_node_load[nid];
2216 			target_node = nid;
2217 		}
2218 
2219 	/* do some balance if several nodes have the same hit record */
2220 	if (target_node <= last_khugepaged_target_node)
2221 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2222 				nid++)
2223 			if (max_value == khugepaged_node_load[nid]) {
2224 				target_node = nid;
2225 				break;
2226 			}
2227 
2228 	last_khugepaged_target_node = target_node;
2229 	return target_node;
2230 }
2231 
2232 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2233 {
2234 	if (IS_ERR(*hpage)) {
2235 		if (!*wait)
2236 			return false;
2237 
2238 		*wait = false;
2239 		*hpage = NULL;
2240 		khugepaged_alloc_sleep();
2241 	} else if (*hpage) {
2242 		put_page(*hpage);
2243 		*hpage = NULL;
2244 	}
2245 
2246 	return true;
2247 }
2248 
2249 static struct page *
2250 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2251 		       unsigned long address, int node)
2252 {
2253 	VM_BUG_ON_PAGE(*hpage, *hpage);
2254 
2255 	/*
2256 	 * Before allocating the hugepage, release the mmap_sem read lock.
2257 	 * The allocation can take potentially a long time if it involves
2258 	 * sync compaction, and we do not need to hold the mmap_sem during
2259 	 * that. We will recheck the vma after taking it again in write mode.
2260 	 */
2261 	up_read(&mm->mmap_sem);
2262 
2263 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2264 	if (unlikely(!*hpage)) {
2265 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2266 		*hpage = ERR_PTR(-ENOMEM);
2267 		return NULL;
2268 	}
2269 
2270 	prep_transhuge_page(*hpage);
2271 	count_vm_event(THP_COLLAPSE_ALLOC);
2272 	return *hpage;
2273 }
2274 #else
2275 static int khugepaged_find_target_node(void)
2276 {
2277 	return 0;
2278 }
2279 
2280 static inline struct page *alloc_khugepaged_hugepage(void)
2281 {
2282 	struct page *page;
2283 
2284 	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2285 			   HPAGE_PMD_ORDER);
2286 	if (page)
2287 		prep_transhuge_page(page);
2288 	return page;
2289 }
2290 
2291 static struct page *khugepaged_alloc_hugepage(bool *wait)
2292 {
2293 	struct page *hpage;
2294 
2295 	do {
2296 		hpage = alloc_khugepaged_hugepage();
2297 		if (!hpage) {
2298 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2299 			if (!*wait)
2300 				return NULL;
2301 
2302 			*wait = false;
2303 			khugepaged_alloc_sleep();
2304 		} else
2305 			count_vm_event(THP_COLLAPSE_ALLOC);
2306 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2307 
2308 	return hpage;
2309 }
2310 
2311 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2312 {
2313 	if (!*hpage)
2314 		*hpage = khugepaged_alloc_hugepage(wait);
2315 
2316 	if (unlikely(!*hpage))
2317 		return false;
2318 
2319 	return true;
2320 }
2321 
2322 static struct page *
2323 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2324 		       unsigned long address, int node)
2325 {
2326 	up_read(&mm->mmap_sem);
2327 	VM_BUG_ON(!*hpage);
2328 
2329 	return  *hpage;
2330 }
2331 #endif
2332 
2333 static bool hugepage_vma_check(struct vm_area_struct *vma)
2334 {
2335 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2336 	    (vma->vm_flags & VM_NOHUGEPAGE))
2337 		return false;
2338 	if (!vma->anon_vma || vma->vm_ops)
2339 		return false;
2340 	if (is_vma_temporary_stack(vma))
2341 		return false;
2342 	return !(vma->vm_flags & VM_NO_THP);
2343 }
2344 
2345 static void collapse_huge_page(struct mm_struct *mm,
2346 				   unsigned long address,
2347 				   struct page **hpage,
2348 				   struct vm_area_struct *vma,
2349 				   int node)
2350 {
2351 	pmd_t *pmd, _pmd;
2352 	pte_t *pte;
2353 	pgtable_t pgtable;
2354 	struct page *new_page;
2355 	spinlock_t *pmd_ptl, *pte_ptl;
2356 	int isolated = 0, result = 0;
2357 	unsigned long hstart, hend;
2358 	struct mem_cgroup *memcg;
2359 	unsigned long mmun_start;	/* For mmu_notifiers */
2360 	unsigned long mmun_end;		/* For mmu_notifiers */
2361 	gfp_t gfp;
2362 
2363 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2364 
2365 	/* Only allocate from the target node */
2366 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2367 
2368 	/* release the mmap_sem read lock. */
2369 	new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2370 	if (!new_page) {
2371 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2372 		goto out_nolock;
2373 	}
2374 
2375 	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2376 		result = SCAN_CGROUP_CHARGE_FAIL;
2377 		goto out_nolock;
2378 	}
2379 
2380 	/*
2381 	 * Prevent all access to pagetables with the exception of
2382 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2383 	 * handled by the anon_vma lock + PG_lock.
2384 	 */
2385 	down_write(&mm->mmap_sem);
2386 	if (unlikely(khugepaged_test_exit(mm))) {
2387 		result = SCAN_ANY_PROCESS;
2388 		goto out;
2389 	}
2390 
2391 	vma = find_vma(mm, address);
2392 	if (!vma) {
2393 		result = SCAN_VMA_NULL;
2394 		goto out;
2395 	}
2396 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2397 	hend = vma->vm_end & HPAGE_PMD_MASK;
2398 	if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2399 		result = SCAN_ADDRESS_RANGE;
2400 		goto out;
2401 	}
2402 	if (!hugepage_vma_check(vma)) {
2403 		result = SCAN_VMA_CHECK;
2404 		goto out;
2405 	}
2406 	pmd = mm_find_pmd(mm, address);
2407 	if (!pmd) {
2408 		result = SCAN_PMD_NULL;
2409 		goto out;
2410 	}
2411 
2412 	anon_vma_lock_write(vma->anon_vma);
2413 
2414 	pte = pte_offset_map(pmd, address);
2415 	pte_ptl = pte_lockptr(mm, pmd);
2416 
2417 	mmun_start = address;
2418 	mmun_end   = address + HPAGE_PMD_SIZE;
2419 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2420 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2421 	/*
2422 	 * After this gup_fast can't run anymore. This also removes
2423 	 * any huge TLB entry from the CPU so we won't allow
2424 	 * huge and small TLB entries for the same virtual address
2425 	 * to avoid the risk of CPU bugs in that area.
2426 	 */
2427 	_pmd = pmdp_collapse_flush(vma, address, pmd);
2428 	spin_unlock(pmd_ptl);
2429 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2430 
2431 	spin_lock(pte_ptl);
2432 	isolated = __collapse_huge_page_isolate(vma, address, pte);
2433 	spin_unlock(pte_ptl);
2434 
2435 	if (unlikely(!isolated)) {
2436 		pte_unmap(pte);
2437 		spin_lock(pmd_ptl);
2438 		BUG_ON(!pmd_none(*pmd));
2439 		/*
2440 		 * We can only use set_pmd_at when establishing
2441 		 * hugepmds and never for establishing regular pmds that
2442 		 * points to regular pagetables. Use pmd_populate for that
2443 		 */
2444 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2445 		spin_unlock(pmd_ptl);
2446 		anon_vma_unlock_write(vma->anon_vma);
2447 		result = SCAN_FAIL;
2448 		goto out;
2449 	}
2450 
2451 	/*
2452 	 * All pages are isolated and locked so anon_vma rmap
2453 	 * can't run anymore.
2454 	 */
2455 	anon_vma_unlock_write(vma->anon_vma);
2456 
2457 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2458 	pte_unmap(pte);
2459 	__SetPageUptodate(new_page);
2460 	pgtable = pmd_pgtable(_pmd);
2461 
2462 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2463 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2464 
2465 	/*
2466 	 * spin_lock() below is not the equivalent of smp_wmb(), so
2467 	 * this is needed to avoid the copy_huge_page writes to become
2468 	 * visible after the set_pmd_at() write.
2469 	 */
2470 	smp_wmb();
2471 
2472 	spin_lock(pmd_ptl);
2473 	BUG_ON(!pmd_none(*pmd));
2474 	page_add_new_anon_rmap(new_page, vma, address, true);
2475 	mem_cgroup_commit_charge(new_page, memcg, false, true);
2476 	lru_cache_add_active_or_unevictable(new_page, vma);
2477 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2478 	set_pmd_at(mm, address, pmd, _pmd);
2479 	update_mmu_cache_pmd(vma, address, pmd);
2480 	spin_unlock(pmd_ptl);
2481 
2482 	*hpage = NULL;
2483 
2484 	khugepaged_pages_collapsed++;
2485 	result = SCAN_SUCCEED;
2486 out_up_write:
2487 	up_write(&mm->mmap_sem);
2488 	trace_mm_collapse_huge_page(mm, isolated, result);
2489 	return;
2490 
2491 out_nolock:
2492 	trace_mm_collapse_huge_page(mm, isolated, result);
2493 	return;
2494 out:
2495 	mem_cgroup_cancel_charge(new_page, memcg, true);
2496 	goto out_up_write;
2497 }
2498 
2499 static int khugepaged_scan_pmd(struct mm_struct *mm,
2500 			       struct vm_area_struct *vma,
2501 			       unsigned long address,
2502 			       struct page **hpage)
2503 {
2504 	pmd_t *pmd;
2505 	pte_t *pte, *_pte;
2506 	int ret = 0, none_or_zero = 0, result = 0;
2507 	struct page *page = NULL;
2508 	unsigned long _address;
2509 	spinlock_t *ptl;
2510 	int node = NUMA_NO_NODE;
2511 	bool writable = false, referenced = false;
2512 
2513 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2514 
2515 	pmd = mm_find_pmd(mm, address);
2516 	if (!pmd) {
2517 		result = SCAN_PMD_NULL;
2518 		goto out;
2519 	}
2520 
2521 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2522 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2523 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2524 	     _pte++, _address += PAGE_SIZE) {
2525 		pte_t pteval = *_pte;
2526 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2527 			if (!userfaultfd_armed(vma) &&
2528 			    ++none_or_zero <= khugepaged_max_ptes_none) {
2529 				continue;
2530 			} else {
2531 				result = SCAN_EXCEED_NONE_PTE;
2532 				goto out_unmap;
2533 			}
2534 		}
2535 		if (!pte_present(pteval)) {
2536 			result = SCAN_PTE_NON_PRESENT;
2537 			goto out_unmap;
2538 		}
2539 		if (pte_write(pteval))
2540 			writable = true;
2541 
2542 		page = vm_normal_page(vma, _address, pteval);
2543 		if (unlikely(!page)) {
2544 			result = SCAN_PAGE_NULL;
2545 			goto out_unmap;
2546 		}
2547 
2548 		/* TODO: teach khugepaged to collapse THP mapped with pte */
2549 		if (PageCompound(page)) {
2550 			result = SCAN_PAGE_COMPOUND;
2551 			goto out_unmap;
2552 		}
2553 
2554 		/*
2555 		 * Record which node the original page is from and save this
2556 		 * information to khugepaged_node_load[].
2557 		 * Khupaged will allocate hugepage from the node has the max
2558 		 * hit record.
2559 		 */
2560 		node = page_to_nid(page);
2561 		if (khugepaged_scan_abort(node)) {
2562 			result = SCAN_SCAN_ABORT;
2563 			goto out_unmap;
2564 		}
2565 		khugepaged_node_load[node]++;
2566 		if (!PageLRU(page)) {
2567 			result = SCAN_PAGE_LRU;
2568 			goto out_unmap;
2569 		}
2570 		if (PageLocked(page)) {
2571 			result = SCAN_PAGE_LOCK;
2572 			goto out_unmap;
2573 		}
2574 		if (!PageAnon(page)) {
2575 			result = SCAN_PAGE_ANON;
2576 			goto out_unmap;
2577 		}
2578 
2579 		/*
2580 		 * cannot use mapcount: can't collapse if there's a gup pin.
2581 		 * The page must only be referenced by the scanned process
2582 		 * and page swap cache.
2583 		 */
2584 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
2585 			result = SCAN_PAGE_COUNT;
2586 			goto out_unmap;
2587 		}
2588 		if (pte_young(pteval) ||
2589 		    page_is_young(page) || PageReferenced(page) ||
2590 		    mmu_notifier_test_young(vma->vm_mm, address))
2591 			referenced = true;
2592 	}
2593 	if (writable) {
2594 		if (referenced) {
2595 			result = SCAN_SUCCEED;
2596 			ret = 1;
2597 		} else {
2598 			result = SCAN_NO_REFERENCED_PAGE;
2599 		}
2600 	} else {
2601 		result = SCAN_PAGE_RO;
2602 	}
2603 out_unmap:
2604 	pte_unmap_unlock(pte, ptl);
2605 	if (ret) {
2606 		node = khugepaged_find_target_node();
2607 		/* collapse_huge_page will return with the mmap_sem released */
2608 		collapse_huge_page(mm, address, hpage, vma, node);
2609 	}
2610 out:
2611 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2612 				     none_or_zero, result);
2613 	return ret;
2614 }
2615 
2616 static void collect_mm_slot(struct mm_slot *mm_slot)
2617 {
2618 	struct mm_struct *mm = mm_slot->mm;
2619 
2620 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2621 
2622 	if (khugepaged_test_exit(mm)) {
2623 		/* free mm_slot */
2624 		hash_del(&mm_slot->hash);
2625 		list_del(&mm_slot->mm_node);
2626 
2627 		/*
2628 		 * Not strictly needed because the mm exited already.
2629 		 *
2630 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2631 		 */
2632 
2633 		/* khugepaged_mm_lock actually not necessary for the below */
2634 		free_mm_slot(mm_slot);
2635 		mmdrop(mm);
2636 	}
2637 }
2638 
2639 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2640 					    struct page **hpage)
2641 	__releases(&khugepaged_mm_lock)
2642 	__acquires(&khugepaged_mm_lock)
2643 {
2644 	struct mm_slot *mm_slot;
2645 	struct mm_struct *mm;
2646 	struct vm_area_struct *vma;
2647 	int progress = 0;
2648 
2649 	VM_BUG_ON(!pages);
2650 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2651 
2652 	if (khugepaged_scan.mm_slot)
2653 		mm_slot = khugepaged_scan.mm_slot;
2654 	else {
2655 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2656 				     struct mm_slot, mm_node);
2657 		khugepaged_scan.address = 0;
2658 		khugepaged_scan.mm_slot = mm_slot;
2659 	}
2660 	spin_unlock(&khugepaged_mm_lock);
2661 
2662 	mm = mm_slot->mm;
2663 	down_read(&mm->mmap_sem);
2664 	if (unlikely(khugepaged_test_exit(mm)))
2665 		vma = NULL;
2666 	else
2667 		vma = find_vma(mm, khugepaged_scan.address);
2668 
2669 	progress++;
2670 	for (; vma; vma = vma->vm_next) {
2671 		unsigned long hstart, hend;
2672 
2673 		cond_resched();
2674 		if (unlikely(khugepaged_test_exit(mm))) {
2675 			progress++;
2676 			break;
2677 		}
2678 		if (!hugepage_vma_check(vma)) {
2679 skip:
2680 			progress++;
2681 			continue;
2682 		}
2683 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2684 		hend = vma->vm_end & HPAGE_PMD_MASK;
2685 		if (hstart >= hend)
2686 			goto skip;
2687 		if (khugepaged_scan.address > hend)
2688 			goto skip;
2689 		if (khugepaged_scan.address < hstart)
2690 			khugepaged_scan.address = hstart;
2691 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2692 
2693 		while (khugepaged_scan.address < hend) {
2694 			int ret;
2695 			cond_resched();
2696 			if (unlikely(khugepaged_test_exit(mm)))
2697 				goto breakouterloop;
2698 
2699 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2700 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2701 				  hend);
2702 			ret = khugepaged_scan_pmd(mm, vma,
2703 						  khugepaged_scan.address,
2704 						  hpage);
2705 			/* move to next address */
2706 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2707 			progress += HPAGE_PMD_NR;
2708 			if (ret)
2709 				/* we released mmap_sem so break loop */
2710 				goto breakouterloop_mmap_sem;
2711 			if (progress >= pages)
2712 				goto breakouterloop;
2713 		}
2714 	}
2715 breakouterloop:
2716 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2717 breakouterloop_mmap_sem:
2718 
2719 	spin_lock(&khugepaged_mm_lock);
2720 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2721 	/*
2722 	 * Release the current mm_slot if this mm is about to die, or
2723 	 * if we scanned all vmas of this mm.
2724 	 */
2725 	if (khugepaged_test_exit(mm) || !vma) {
2726 		/*
2727 		 * Make sure that if mm_users is reaching zero while
2728 		 * khugepaged runs here, khugepaged_exit will find
2729 		 * mm_slot not pointing to the exiting mm.
2730 		 */
2731 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2732 			khugepaged_scan.mm_slot = list_entry(
2733 				mm_slot->mm_node.next,
2734 				struct mm_slot, mm_node);
2735 			khugepaged_scan.address = 0;
2736 		} else {
2737 			khugepaged_scan.mm_slot = NULL;
2738 			khugepaged_full_scans++;
2739 		}
2740 
2741 		collect_mm_slot(mm_slot);
2742 	}
2743 
2744 	return progress;
2745 }
2746 
2747 static int khugepaged_has_work(void)
2748 {
2749 	return !list_empty(&khugepaged_scan.mm_head) &&
2750 		khugepaged_enabled();
2751 }
2752 
2753 static int khugepaged_wait_event(void)
2754 {
2755 	return !list_empty(&khugepaged_scan.mm_head) ||
2756 		kthread_should_stop();
2757 }
2758 
2759 static void khugepaged_do_scan(void)
2760 {
2761 	struct page *hpage = NULL;
2762 	unsigned int progress = 0, pass_through_head = 0;
2763 	unsigned int pages = khugepaged_pages_to_scan;
2764 	bool wait = true;
2765 
2766 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2767 
2768 	while (progress < pages) {
2769 		if (!khugepaged_prealloc_page(&hpage, &wait))
2770 			break;
2771 
2772 		cond_resched();
2773 
2774 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2775 			break;
2776 
2777 		spin_lock(&khugepaged_mm_lock);
2778 		if (!khugepaged_scan.mm_slot)
2779 			pass_through_head++;
2780 		if (khugepaged_has_work() &&
2781 		    pass_through_head < 2)
2782 			progress += khugepaged_scan_mm_slot(pages - progress,
2783 							    &hpage);
2784 		else
2785 			progress = pages;
2786 		spin_unlock(&khugepaged_mm_lock);
2787 	}
2788 
2789 	if (!IS_ERR_OR_NULL(hpage))
2790 		put_page(hpage);
2791 }
2792 
2793 static bool khugepaged_should_wakeup(void)
2794 {
2795 	return kthread_should_stop() ||
2796 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2797 }
2798 
2799 static void khugepaged_wait_work(void)
2800 {
2801 	if (khugepaged_has_work()) {
2802 		const unsigned long scan_sleep_jiffies =
2803 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2804 
2805 		if (!scan_sleep_jiffies)
2806 			return;
2807 
2808 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2809 		wait_event_freezable_timeout(khugepaged_wait,
2810 					     khugepaged_should_wakeup(),
2811 					     scan_sleep_jiffies);
2812 		return;
2813 	}
2814 
2815 	if (khugepaged_enabled())
2816 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2817 }
2818 
2819 static int khugepaged(void *none)
2820 {
2821 	struct mm_slot *mm_slot;
2822 
2823 	set_freezable();
2824 	set_user_nice(current, MAX_NICE);
2825 
2826 	while (!kthread_should_stop()) {
2827 		khugepaged_do_scan();
2828 		khugepaged_wait_work();
2829 	}
2830 
2831 	spin_lock(&khugepaged_mm_lock);
2832 	mm_slot = khugepaged_scan.mm_slot;
2833 	khugepaged_scan.mm_slot = NULL;
2834 	if (mm_slot)
2835 		collect_mm_slot(mm_slot);
2836 	spin_unlock(&khugepaged_mm_lock);
2837 	return 0;
2838 }
2839 
2840 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2841 		unsigned long haddr, pmd_t *pmd)
2842 {
2843 	struct mm_struct *mm = vma->vm_mm;
2844 	pgtable_t pgtable;
2845 	pmd_t _pmd;
2846 	int i;
2847 
2848 	/* leave pmd empty until pte is filled */
2849 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2850 
2851 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2852 	pmd_populate(mm, &_pmd, pgtable);
2853 
2854 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2855 		pte_t *pte, entry;
2856 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2857 		entry = pte_mkspecial(entry);
2858 		pte = pte_offset_map(&_pmd, haddr);
2859 		VM_BUG_ON(!pte_none(*pte));
2860 		set_pte_at(mm, haddr, pte, entry);
2861 		pte_unmap(pte);
2862 	}
2863 	smp_wmb(); /* make pte visible before pmd */
2864 	pmd_populate(mm, pmd, pgtable);
2865 	put_huge_zero_page();
2866 }
2867 
2868 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2869 		unsigned long haddr, bool freeze)
2870 {
2871 	struct mm_struct *mm = vma->vm_mm;
2872 	struct page *page;
2873 	pgtable_t pgtable;
2874 	pmd_t _pmd;
2875 	bool young, write, dirty;
2876 	unsigned long addr;
2877 	int i;
2878 
2879 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2880 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2881 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2882 	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2883 
2884 	count_vm_event(THP_SPLIT_PMD);
2885 
2886 	if (vma_is_dax(vma)) {
2887 		pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2888 		if (is_huge_zero_pmd(_pmd))
2889 			put_huge_zero_page();
2890 		return;
2891 	} else if (is_huge_zero_pmd(*pmd)) {
2892 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2893 	}
2894 
2895 	page = pmd_page(*pmd);
2896 	VM_BUG_ON_PAGE(!page_count(page), page);
2897 	page_ref_add(page, HPAGE_PMD_NR - 1);
2898 	write = pmd_write(*pmd);
2899 	young = pmd_young(*pmd);
2900 	dirty = pmd_dirty(*pmd);
2901 
2902 	pmdp_huge_split_prepare(vma, haddr, pmd);
2903 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2904 	pmd_populate(mm, &_pmd, pgtable);
2905 
2906 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2907 		pte_t entry, *pte;
2908 		/*
2909 		 * Note that NUMA hinting access restrictions are not
2910 		 * transferred to avoid any possibility of altering
2911 		 * permissions across VMAs.
2912 		 */
2913 		if (freeze) {
2914 			swp_entry_t swp_entry;
2915 			swp_entry = make_migration_entry(page + i, write);
2916 			entry = swp_entry_to_pte(swp_entry);
2917 		} else {
2918 			entry = mk_pte(page + i, vma->vm_page_prot);
2919 			entry = maybe_mkwrite(entry, vma);
2920 			if (!write)
2921 				entry = pte_wrprotect(entry);
2922 			if (!young)
2923 				entry = pte_mkold(entry);
2924 		}
2925 		if (dirty)
2926 			SetPageDirty(page + i);
2927 		pte = pte_offset_map(&_pmd, addr);
2928 		BUG_ON(!pte_none(*pte));
2929 		set_pte_at(mm, addr, pte, entry);
2930 		atomic_inc(&page[i]._mapcount);
2931 		pte_unmap(pte);
2932 	}
2933 
2934 	/*
2935 	 * Set PG_double_map before dropping compound_mapcount to avoid
2936 	 * false-negative page_mapped().
2937 	 */
2938 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2939 		for (i = 0; i < HPAGE_PMD_NR; i++)
2940 			atomic_inc(&page[i]._mapcount);
2941 	}
2942 
2943 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2944 		/* Last compound_mapcount is gone. */
2945 		__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2946 		if (TestClearPageDoubleMap(page)) {
2947 			/* No need in mapcount reference anymore */
2948 			for (i = 0; i < HPAGE_PMD_NR; i++)
2949 				atomic_dec(&page[i]._mapcount);
2950 		}
2951 	}
2952 
2953 	smp_wmb(); /* make pte visible before pmd */
2954 	/*
2955 	 * Up to this point the pmd is present and huge and userland has the
2956 	 * whole access to the hugepage during the split (which happens in
2957 	 * place). If we overwrite the pmd with the not-huge version pointing
2958 	 * to the pte here (which of course we could if all CPUs were bug
2959 	 * free), userland could trigger a small page size TLB miss on the
2960 	 * small sized TLB while the hugepage TLB entry is still established in
2961 	 * the huge TLB. Some CPU doesn't like that.
2962 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2963 	 * 383 on page 93. Intel should be safe but is also warns that it's
2964 	 * only safe if the permission and cache attributes of the two entries
2965 	 * loaded in the two TLB is identical (which should be the case here).
2966 	 * But it is generally safer to never allow small and huge TLB entries
2967 	 * for the same virtual address to be loaded simultaneously. So instead
2968 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2969 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2970 	 * and pmd_trans_splitting must remain set at all times on the pmd
2971 	 * until the split is complete for this pmd), then we flush the SMP TLB
2972 	 * and finally we write the non-huge version of the pmd entry with
2973 	 * pmd_populate.
2974 	 */
2975 	pmdp_invalidate(vma, haddr, pmd);
2976 	pmd_populate(mm, pmd, pgtable);
2977 
2978 	if (freeze) {
2979 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2980 			page_remove_rmap(page + i, false);
2981 			put_page(page + i);
2982 		}
2983 	}
2984 }
2985 
2986 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2987 		unsigned long address, bool freeze, struct page *page)
2988 {
2989 	spinlock_t *ptl;
2990 	struct mm_struct *mm = vma->vm_mm;
2991 	unsigned long haddr = address & HPAGE_PMD_MASK;
2992 
2993 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2994 	ptl = pmd_lock(mm, pmd);
2995 
2996 	/*
2997 	 * If caller asks to setup a migration entries, we need a page to check
2998 	 * pmd against. Otherwise we can end up replacing wrong page.
2999 	 */
3000 	VM_BUG_ON(freeze && !page);
3001 	if (page && page != pmd_page(*pmd))
3002 	        goto out;
3003 
3004 	if (pmd_trans_huge(*pmd)) {
3005 		page = pmd_page(*pmd);
3006 		if (PageMlocked(page))
3007 			clear_page_mlock(page);
3008 	} else if (!pmd_devmap(*pmd))
3009 		goto out;
3010 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
3011 out:
3012 	spin_unlock(ptl);
3013 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3014 }
3015 
3016 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3017 		bool freeze, struct page *page)
3018 {
3019 	pgd_t *pgd;
3020 	pud_t *pud;
3021 	pmd_t *pmd;
3022 
3023 	pgd = pgd_offset(vma->vm_mm, address);
3024 	if (!pgd_present(*pgd))
3025 		return;
3026 
3027 	pud = pud_offset(pgd, address);
3028 	if (!pud_present(*pud))
3029 		return;
3030 
3031 	pmd = pmd_offset(pud, address);
3032 
3033 	__split_huge_pmd(vma, pmd, address, freeze, page);
3034 }
3035 
3036 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3037 			     unsigned long start,
3038 			     unsigned long end,
3039 			     long adjust_next)
3040 {
3041 	/*
3042 	 * If the new start address isn't hpage aligned and it could
3043 	 * previously contain an hugepage: check if we need to split
3044 	 * an huge pmd.
3045 	 */
3046 	if (start & ~HPAGE_PMD_MASK &&
3047 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3048 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3049 		split_huge_pmd_address(vma, start, false, NULL);
3050 
3051 	/*
3052 	 * If the new end address isn't hpage aligned and it could
3053 	 * previously contain an hugepage: check if we need to split
3054 	 * an huge pmd.
3055 	 */
3056 	if (end & ~HPAGE_PMD_MASK &&
3057 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3058 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3059 		split_huge_pmd_address(vma, end, false, NULL);
3060 
3061 	/*
3062 	 * If we're also updating the vma->vm_next->vm_start, if the new
3063 	 * vm_next->vm_start isn't page aligned and it could previously
3064 	 * contain an hugepage: check if we need to split an huge pmd.
3065 	 */
3066 	if (adjust_next > 0) {
3067 		struct vm_area_struct *next = vma->vm_next;
3068 		unsigned long nstart = next->vm_start;
3069 		nstart += adjust_next << PAGE_SHIFT;
3070 		if (nstart & ~HPAGE_PMD_MASK &&
3071 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3072 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3073 			split_huge_pmd_address(next, nstart, false, NULL);
3074 	}
3075 }
3076 
3077 static void freeze_page(struct page *page)
3078 {
3079 	enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3080 		TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3081 	int i, ret;
3082 
3083 	VM_BUG_ON_PAGE(!PageHead(page), page);
3084 
3085 	/* We only need TTU_SPLIT_HUGE_PMD once */
3086 	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3087 	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3088 		/* Cut short if the page is unmapped */
3089 		if (page_count(page) == 1)
3090 			return;
3091 
3092 		ret = try_to_unmap(page + i, ttu_flags);
3093 	}
3094 	VM_BUG_ON(ret);
3095 }
3096 
3097 static void unfreeze_page(struct page *page)
3098 {
3099 	int i;
3100 
3101 	for (i = 0; i < HPAGE_PMD_NR; i++)
3102 		remove_migration_ptes(page + i, page + i, true);
3103 }
3104 
3105 static void __split_huge_page_tail(struct page *head, int tail,
3106 		struct lruvec *lruvec, struct list_head *list)
3107 {
3108 	struct page *page_tail = head + tail;
3109 
3110 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3111 	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3112 
3113 	/*
3114 	 * tail_page->_refcount is zero and not changing from under us. But
3115 	 * get_page_unless_zero() may be running from under us on the
3116 	 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
3117 	 * would then run atomic_set() concurrently with
3118 	 * get_page_unless_zero(), and atomic_set() is implemented in C not
3119 	 * using locked ops. spin_unlock on x86 sometime uses locked ops
3120 	 * because of PPro errata 66, 92, so unless somebody can guarantee
3121 	 * atomic_set() here would be safe on all archs (and not only on x86),
3122 	 * it's safer to use atomic_inc().
3123 	 */
3124 	page_ref_inc(page_tail);
3125 
3126 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3127 	page_tail->flags |= (head->flags &
3128 			((1L << PG_referenced) |
3129 			 (1L << PG_swapbacked) |
3130 			 (1L << PG_mlocked) |
3131 			 (1L << PG_uptodate) |
3132 			 (1L << PG_active) |
3133 			 (1L << PG_locked) |
3134 			 (1L << PG_unevictable) |
3135 			 (1L << PG_dirty)));
3136 
3137 	/*
3138 	 * After clearing PageTail the gup refcount can be released.
3139 	 * Page flags also must be visible before we make the page non-compound.
3140 	 */
3141 	smp_wmb();
3142 
3143 	clear_compound_head(page_tail);
3144 
3145 	if (page_is_young(head))
3146 		set_page_young(page_tail);
3147 	if (page_is_idle(head))
3148 		set_page_idle(page_tail);
3149 
3150 	/* ->mapping in first tail page is compound_mapcount */
3151 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3152 			page_tail);
3153 	page_tail->mapping = head->mapping;
3154 
3155 	page_tail->index = head->index + tail;
3156 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3157 	lru_add_page_tail(head, page_tail, lruvec, list);
3158 }
3159 
3160 static void __split_huge_page(struct page *page, struct list_head *list)
3161 {
3162 	struct page *head = compound_head(page);
3163 	struct zone *zone = page_zone(head);
3164 	struct lruvec *lruvec;
3165 	int i;
3166 
3167 	/* prevent PageLRU to go away from under us, and freeze lru stats */
3168 	spin_lock_irq(&zone->lru_lock);
3169 	lruvec = mem_cgroup_page_lruvec(head, zone);
3170 
3171 	/* complete memcg works before add pages to LRU */
3172 	mem_cgroup_split_huge_fixup(head);
3173 
3174 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3175 		__split_huge_page_tail(head, i, lruvec, list);
3176 
3177 	ClearPageCompound(head);
3178 	spin_unlock_irq(&zone->lru_lock);
3179 
3180 	unfreeze_page(head);
3181 
3182 	for (i = 0; i < HPAGE_PMD_NR; i++) {
3183 		struct page *subpage = head + i;
3184 		if (subpage == page)
3185 			continue;
3186 		unlock_page(subpage);
3187 
3188 		/*
3189 		 * Subpages may be freed if there wasn't any mapping
3190 		 * like if add_to_swap() is running on a lru page that
3191 		 * had its mapping zapped. And freeing these pages
3192 		 * requires taking the lru_lock so we do the put_page
3193 		 * of the tail pages after the split is complete.
3194 		 */
3195 		put_page(subpage);
3196 	}
3197 }
3198 
3199 int total_mapcount(struct page *page)
3200 {
3201 	int i, ret;
3202 
3203 	VM_BUG_ON_PAGE(PageTail(page), page);
3204 
3205 	if (likely(!PageCompound(page)))
3206 		return atomic_read(&page->_mapcount) + 1;
3207 
3208 	ret = compound_mapcount(page);
3209 	if (PageHuge(page))
3210 		return ret;
3211 	for (i = 0; i < HPAGE_PMD_NR; i++)
3212 		ret += atomic_read(&page[i]._mapcount) + 1;
3213 	if (PageDoubleMap(page))
3214 		ret -= HPAGE_PMD_NR;
3215 	return ret;
3216 }
3217 
3218 /*
3219  * This calculates accurately how many mappings a transparent hugepage
3220  * has (unlike page_mapcount() which isn't fully accurate). This full
3221  * accuracy is primarily needed to know if copy-on-write faults can
3222  * reuse the page and change the mapping to read-write instead of
3223  * copying them. At the same time this returns the total_mapcount too.
3224  *
3225  * The function returns the highest mapcount any one of the subpages
3226  * has. If the return value is one, even if different processes are
3227  * mapping different subpages of the transparent hugepage, they can
3228  * all reuse it, because each process is reusing a different subpage.
3229  *
3230  * The total_mapcount is instead counting all virtual mappings of the
3231  * subpages. If the total_mapcount is equal to "one", it tells the
3232  * caller all mappings belong to the same "mm" and in turn the
3233  * anon_vma of the transparent hugepage can become the vma->anon_vma
3234  * local one as no other process may be mapping any of the subpages.
3235  *
3236  * It would be more accurate to replace page_mapcount() with
3237  * page_trans_huge_mapcount(), however we only use
3238  * page_trans_huge_mapcount() in the copy-on-write faults where we
3239  * need full accuracy to avoid breaking page pinning, because
3240  * page_trans_huge_mapcount() is slower than page_mapcount().
3241  */
3242 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3243 {
3244 	int i, ret, _total_mapcount, mapcount;
3245 
3246 	/* hugetlbfs shouldn't call it */
3247 	VM_BUG_ON_PAGE(PageHuge(page), page);
3248 
3249 	if (likely(!PageTransCompound(page))) {
3250 		mapcount = atomic_read(&page->_mapcount) + 1;
3251 		if (total_mapcount)
3252 			*total_mapcount = mapcount;
3253 		return mapcount;
3254 	}
3255 
3256 	page = compound_head(page);
3257 
3258 	_total_mapcount = ret = 0;
3259 	for (i = 0; i < HPAGE_PMD_NR; i++) {
3260 		mapcount = atomic_read(&page[i]._mapcount) + 1;
3261 		ret = max(ret, mapcount);
3262 		_total_mapcount += mapcount;
3263 	}
3264 	if (PageDoubleMap(page)) {
3265 		ret -= 1;
3266 		_total_mapcount -= HPAGE_PMD_NR;
3267 	}
3268 	mapcount = compound_mapcount(page);
3269 	ret += mapcount;
3270 	_total_mapcount += mapcount;
3271 	if (total_mapcount)
3272 		*total_mapcount = _total_mapcount;
3273 	return ret;
3274 }
3275 
3276 /*
3277  * This function splits huge page into normal pages. @page can point to any
3278  * subpage of huge page to split. Split doesn't change the position of @page.
3279  *
3280  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3281  * The huge page must be locked.
3282  *
3283  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3284  *
3285  * Both head page and tail pages will inherit mapping, flags, and so on from
3286  * the hugepage.
3287  *
3288  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3289  * they are not mapped.
3290  *
3291  * Returns 0 if the hugepage is split successfully.
3292  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3293  * us.
3294  */
3295 int split_huge_page_to_list(struct page *page, struct list_head *list)
3296 {
3297 	struct page *head = compound_head(page);
3298 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3299 	struct anon_vma *anon_vma;
3300 	int count, mapcount, ret;
3301 	bool mlocked;
3302 	unsigned long flags;
3303 
3304 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3305 	VM_BUG_ON_PAGE(!PageAnon(page), page);
3306 	VM_BUG_ON_PAGE(!PageLocked(page), page);
3307 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3308 	VM_BUG_ON_PAGE(!PageCompound(page), page);
3309 
3310 	/*
3311 	 * The caller does not necessarily hold an mmap_sem that would prevent
3312 	 * the anon_vma disappearing so we first we take a reference to it
3313 	 * and then lock the anon_vma for write. This is similar to
3314 	 * page_lock_anon_vma_read except the write lock is taken to serialise
3315 	 * against parallel split or collapse operations.
3316 	 */
3317 	anon_vma = page_get_anon_vma(head);
3318 	if (!anon_vma) {
3319 		ret = -EBUSY;
3320 		goto out;
3321 	}
3322 	anon_vma_lock_write(anon_vma);
3323 
3324 	/*
3325 	 * Racy check if we can split the page, before freeze_page() will
3326 	 * split PMDs
3327 	 */
3328 	if (total_mapcount(head) != page_count(head) - 1) {
3329 		ret = -EBUSY;
3330 		goto out_unlock;
3331 	}
3332 
3333 	mlocked = PageMlocked(page);
3334 	freeze_page(head);
3335 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
3336 
3337 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
3338 	if (mlocked)
3339 		lru_add_drain();
3340 
3341 	/* Prevent deferred_split_scan() touching ->_refcount */
3342 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3343 	count = page_count(head);
3344 	mapcount = total_mapcount(head);
3345 	if (!mapcount && count == 1) {
3346 		if (!list_empty(page_deferred_list(head))) {
3347 			pgdata->split_queue_len--;
3348 			list_del(page_deferred_list(head));
3349 		}
3350 		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3351 		__split_huge_page(page, list);
3352 		ret = 0;
3353 	} else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3354 		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3355 		pr_alert("total_mapcount: %u, page_count(): %u\n",
3356 				mapcount, count);
3357 		if (PageTail(page))
3358 			dump_page(head, NULL);
3359 		dump_page(page, "total_mapcount(head) > 0");
3360 		BUG();
3361 	} else {
3362 		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3363 		unfreeze_page(head);
3364 		ret = -EBUSY;
3365 	}
3366 
3367 out_unlock:
3368 	anon_vma_unlock_write(anon_vma);
3369 	put_anon_vma(anon_vma);
3370 out:
3371 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3372 	return ret;
3373 }
3374 
3375 void free_transhuge_page(struct page *page)
3376 {
3377 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3378 	unsigned long flags;
3379 
3380 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3381 	if (!list_empty(page_deferred_list(page))) {
3382 		pgdata->split_queue_len--;
3383 		list_del(page_deferred_list(page));
3384 	}
3385 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3386 	free_compound_page(page);
3387 }
3388 
3389 void deferred_split_huge_page(struct page *page)
3390 {
3391 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3392 	unsigned long flags;
3393 
3394 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3395 
3396 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3397 	if (list_empty(page_deferred_list(page))) {
3398 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3399 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3400 		pgdata->split_queue_len++;
3401 	}
3402 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3403 }
3404 
3405 static unsigned long deferred_split_count(struct shrinker *shrink,
3406 		struct shrink_control *sc)
3407 {
3408 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3409 	return ACCESS_ONCE(pgdata->split_queue_len);
3410 }
3411 
3412 static unsigned long deferred_split_scan(struct shrinker *shrink,
3413 		struct shrink_control *sc)
3414 {
3415 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3416 	unsigned long flags;
3417 	LIST_HEAD(list), *pos, *next;
3418 	struct page *page;
3419 	int split = 0;
3420 
3421 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3422 	/* Take pin on all head pages to avoid freeing them under us */
3423 	list_for_each_safe(pos, next, &pgdata->split_queue) {
3424 		page = list_entry((void *)pos, struct page, mapping);
3425 		page = compound_head(page);
3426 		if (get_page_unless_zero(page)) {
3427 			list_move(page_deferred_list(page), &list);
3428 		} else {
3429 			/* We lost race with put_compound_page() */
3430 			list_del_init(page_deferred_list(page));
3431 			pgdata->split_queue_len--;
3432 		}
3433 		if (!--sc->nr_to_scan)
3434 			break;
3435 	}
3436 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3437 
3438 	list_for_each_safe(pos, next, &list) {
3439 		page = list_entry((void *)pos, struct page, mapping);
3440 		lock_page(page);
3441 		/* split_huge_page() removes page from list on success */
3442 		if (!split_huge_page(page))
3443 			split++;
3444 		unlock_page(page);
3445 		put_page(page);
3446 	}
3447 
3448 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3449 	list_splice_tail(&list, &pgdata->split_queue);
3450 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3451 
3452 	/*
3453 	 * Stop shrinker if we didn't split any page, but the queue is empty.
3454 	 * This can happen if pages were freed under us.
3455 	 */
3456 	if (!split && list_empty(&pgdata->split_queue))
3457 		return SHRINK_STOP;
3458 	return split;
3459 }
3460 
3461 static struct shrinker deferred_split_shrinker = {
3462 	.count_objects = deferred_split_count,
3463 	.scan_objects = deferred_split_scan,
3464 	.seeks = DEFAULT_SEEKS,
3465 	.flags = SHRINKER_NUMA_AWARE,
3466 };
3467 
3468 #ifdef CONFIG_DEBUG_FS
3469 static int split_huge_pages_set(void *data, u64 val)
3470 {
3471 	struct zone *zone;
3472 	struct page *page;
3473 	unsigned long pfn, max_zone_pfn;
3474 	unsigned long total = 0, split = 0;
3475 
3476 	if (val != 1)
3477 		return -EINVAL;
3478 
3479 	for_each_populated_zone(zone) {
3480 		max_zone_pfn = zone_end_pfn(zone);
3481 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3482 			if (!pfn_valid(pfn))
3483 				continue;
3484 
3485 			page = pfn_to_page(pfn);
3486 			if (!get_page_unless_zero(page))
3487 				continue;
3488 
3489 			if (zone != page_zone(page))
3490 				goto next;
3491 
3492 			if (!PageHead(page) || !PageAnon(page) ||
3493 					PageHuge(page))
3494 				goto next;
3495 
3496 			total++;
3497 			lock_page(page);
3498 			if (!split_huge_page(page))
3499 				split++;
3500 			unlock_page(page);
3501 next:
3502 			put_page(page);
3503 		}
3504 	}
3505 
3506 	pr_info("%lu of %lu THP split\n", split, total);
3507 
3508 	return 0;
3509 }
3510 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3511 		"%llu\n");
3512 
3513 static int __init split_huge_pages_debugfs(void)
3514 {
3515 	void *ret;
3516 
3517 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3518 			&split_huge_pages_fops);
3519 	if (!ret)
3520 		pr_warn("Failed to create split_huge_pages in debugfs");
3521 	return 0;
3522 }
3523 late_initcall(split_huge_pages_debugfs);
3524 #endif
3525