xref: /openbmc/linux/mm/huge_memory.c (revision 1f0d40d8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 
41 #include <asm/tlb.h>
42 #include <asm/pgalloc.h>
43 #include "internal.h"
44 #include "swap.h"
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/thp.h>
48 
49 /*
50  * By default, transparent hugepage support is disabled in order to avoid
51  * risking an increased memory footprint for applications that are not
52  * guaranteed to benefit from it. When transparent hugepage support is
53  * enabled, it is for all mappings, and khugepaged scans all mappings.
54  * Defrag is invoked by khugepaged hugepage allocations and by page faults
55  * for all hugepage allocations.
56  */
57 unsigned long transparent_hugepage_flags __read_mostly =
58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
59 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
60 #endif
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
62 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
63 #endif
64 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
65 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
66 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
67 
68 static struct shrinker deferred_split_shrinker;
69 
70 static atomic_t huge_zero_refcount;
71 struct page *huge_zero_page __read_mostly;
72 unsigned long huge_zero_pfn __read_mostly = ~0UL;
73 
74 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
75 			bool smaps, bool in_pf, bool enforce_sysfs)
76 {
77 	if (!vma->vm_mm)		/* vdso */
78 		return false;
79 
80 	/*
81 	 * Explicitly disabled through madvise or prctl, or some
82 	 * architectures may disable THP for some mappings, for
83 	 * example, s390 kvm.
84 	 * */
85 	if ((vm_flags & VM_NOHUGEPAGE) ||
86 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
87 		return false;
88 	/*
89 	 * If the hardware/firmware marked hugepage support disabled.
90 	 */
91 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX))
92 		return false;
93 
94 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
95 	if (vma_is_dax(vma))
96 		return in_pf;
97 
98 	/*
99 	 * Special VMA and hugetlb VMA.
100 	 * Must be checked after dax since some dax mappings may have
101 	 * VM_MIXEDMAP set.
102 	 */
103 	if (vm_flags & VM_NO_KHUGEPAGED)
104 		return false;
105 
106 	/*
107 	 * Check alignment for file vma and size for both file and anon vma.
108 	 *
109 	 * Skip the check for page fault. Huge fault does the check in fault
110 	 * handlers. And this check is not suitable for huge PUD fault.
111 	 */
112 	if (!in_pf &&
113 	    !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
114 		return false;
115 
116 	/*
117 	 * Enabled via shmem mount options or sysfs settings.
118 	 * Must be done before hugepage flags check since shmem has its
119 	 * own flags.
120 	 */
121 	if (!in_pf && shmem_file(vma->vm_file))
122 		return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
123 				     !enforce_sysfs, vma->vm_mm, vm_flags);
124 
125 	/* Enforce sysfs THP requirements as necessary */
126 	if (enforce_sysfs &&
127 	    (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
128 					   !hugepage_flags_always())))
129 		return false;
130 
131 	/* Only regular file is valid */
132 	if (!in_pf && file_thp_enabled(vma))
133 		return true;
134 
135 	if (!vma_is_anonymous(vma))
136 		return false;
137 
138 	if (vma_is_temporary_stack(vma))
139 		return false;
140 
141 	/*
142 	 * THPeligible bit of smaps should show 1 for proper VMAs even
143 	 * though anon_vma is not initialized yet.
144 	 *
145 	 * Allow page fault since anon_vma may be not initialized until
146 	 * the first page fault.
147 	 */
148 	if (!vma->anon_vma)
149 		return (smaps || in_pf);
150 
151 	return true;
152 }
153 
154 static bool get_huge_zero_page(void)
155 {
156 	struct page *zero_page;
157 retry:
158 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
159 		return true;
160 
161 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
162 			HPAGE_PMD_ORDER);
163 	if (!zero_page) {
164 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
165 		return false;
166 	}
167 	preempt_disable();
168 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
169 		preempt_enable();
170 		__free_pages(zero_page, compound_order(zero_page));
171 		goto retry;
172 	}
173 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
174 
175 	/* We take additional reference here. It will be put back by shrinker */
176 	atomic_set(&huge_zero_refcount, 2);
177 	preempt_enable();
178 	count_vm_event(THP_ZERO_PAGE_ALLOC);
179 	return true;
180 }
181 
182 static void put_huge_zero_page(void)
183 {
184 	/*
185 	 * Counter should never go to zero here. Only shrinker can put
186 	 * last reference.
187 	 */
188 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
189 }
190 
191 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
192 {
193 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
194 		return READ_ONCE(huge_zero_page);
195 
196 	if (!get_huge_zero_page())
197 		return NULL;
198 
199 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
200 		put_huge_zero_page();
201 
202 	return READ_ONCE(huge_zero_page);
203 }
204 
205 void mm_put_huge_zero_page(struct mm_struct *mm)
206 {
207 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
208 		put_huge_zero_page();
209 }
210 
211 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
212 					struct shrink_control *sc)
213 {
214 	/* we can free zero page only if last reference remains */
215 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
216 }
217 
218 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
219 				       struct shrink_control *sc)
220 {
221 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
222 		struct page *zero_page = xchg(&huge_zero_page, NULL);
223 		BUG_ON(zero_page == NULL);
224 		WRITE_ONCE(huge_zero_pfn, ~0UL);
225 		__free_pages(zero_page, compound_order(zero_page));
226 		return HPAGE_PMD_NR;
227 	}
228 
229 	return 0;
230 }
231 
232 static struct shrinker huge_zero_page_shrinker = {
233 	.count_objects = shrink_huge_zero_page_count,
234 	.scan_objects = shrink_huge_zero_page_scan,
235 	.seeks = DEFAULT_SEEKS,
236 };
237 
238 #ifdef CONFIG_SYSFS
239 static ssize_t enabled_show(struct kobject *kobj,
240 			    struct kobj_attribute *attr, char *buf)
241 {
242 	const char *output;
243 
244 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
245 		output = "[always] madvise never";
246 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
247 			  &transparent_hugepage_flags))
248 		output = "always [madvise] never";
249 	else
250 		output = "always madvise [never]";
251 
252 	return sysfs_emit(buf, "%s\n", output);
253 }
254 
255 static ssize_t enabled_store(struct kobject *kobj,
256 			     struct kobj_attribute *attr,
257 			     const char *buf, size_t count)
258 {
259 	ssize_t ret = count;
260 
261 	if (sysfs_streq(buf, "always")) {
262 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
264 	} else if (sysfs_streq(buf, "madvise")) {
265 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
266 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
267 	} else if (sysfs_streq(buf, "never")) {
268 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
269 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 	} else
271 		ret = -EINVAL;
272 
273 	if (ret > 0) {
274 		int err = start_stop_khugepaged();
275 		if (err)
276 			ret = err;
277 	}
278 	return ret;
279 }
280 
281 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
282 
283 ssize_t single_hugepage_flag_show(struct kobject *kobj,
284 				  struct kobj_attribute *attr, char *buf,
285 				  enum transparent_hugepage_flag flag)
286 {
287 	return sysfs_emit(buf, "%d\n",
288 			  !!test_bit(flag, &transparent_hugepage_flags));
289 }
290 
291 ssize_t single_hugepage_flag_store(struct kobject *kobj,
292 				 struct kobj_attribute *attr,
293 				 const char *buf, size_t count,
294 				 enum transparent_hugepage_flag flag)
295 {
296 	unsigned long value;
297 	int ret;
298 
299 	ret = kstrtoul(buf, 10, &value);
300 	if (ret < 0)
301 		return ret;
302 	if (value > 1)
303 		return -EINVAL;
304 
305 	if (value)
306 		set_bit(flag, &transparent_hugepage_flags);
307 	else
308 		clear_bit(flag, &transparent_hugepage_flags);
309 
310 	return count;
311 }
312 
313 static ssize_t defrag_show(struct kobject *kobj,
314 			   struct kobj_attribute *attr, char *buf)
315 {
316 	const char *output;
317 
318 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
319 		     &transparent_hugepage_flags))
320 		output = "[always] defer defer+madvise madvise never";
321 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
322 			  &transparent_hugepage_flags))
323 		output = "always [defer] defer+madvise madvise never";
324 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
325 			  &transparent_hugepage_flags))
326 		output = "always defer [defer+madvise] madvise never";
327 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
328 			  &transparent_hugepage_flags))
329 		output = "always defer defer+madvise [madvise] never";
330 	else
331 		output = "always defer defer+madvise madvise [never]";
332 
333 	return sysfs_emit(buf, "%s\n", output);
334 }
335 
336 static ssize_t defrag_store(struct kobject *kobj,
337 			    struct kobj_attribute *attr,
338 			    const char *buf, size_t count)
339 {
340 	if (sysfs_streq(buf, "always")) {
341 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
342 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
343 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
344 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
345 	} else if (sysfs_streq(buf, "defer+madvise")) {
346 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
347 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
348 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
349 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
350 	} else if (sysfs_streq(buf, "defer")) {
351 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
352 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
353 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
354 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
355 	} else if (sysfs_streq(buf, "madvise")) {
356 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
357 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
358 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
359 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
360 	} else if (sysfs_streq(buf, "never")) {
361 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
362 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
363 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
364 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
365 	} else
366 		return -EINVAL;
367 
368 	return count;
369 }
370 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
371 
372 static ssize_t use_zero_page_show(struct kobject *kobj,
373 				  struct kobj_attribute *attr, char *buf)
374 {
375 	return single_hugepage_flag_show(kobj, attr, buf,
376 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static ssize_t use_zero_page_store(struct kobject *kobj,
379 		struct kobj_attribute *attr, const char *buf, size_t count)
380 {
381 	return single_hugepage_flag_store(kobj, attr, buf, count,
382 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383 }
384 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
385 
386 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
387 				   struct kobj_attribute *attr, char *buf)
388 {
389 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
390 }
391 static struct kobj_attribute hpage_pmd_size_attr =
392 	__ATTR_RO(hpage_pmd_size);
393 
394 static struct attribute *hugepage_attr[] = {
395 	&enabled_attr.attr,
396 	&defrag_attr.attr,
397 	&use_zero_page_attr.attr,
398 	&hpage_pmd_size_attr.attr,
399 #ifdef CONFIG_SHMEM
400 	&shmem_enabled_attr.attr,
401 #endif
402 	NULL,
403 };
404 
405 static const struct attribute_group hugepage_attr_group = {
406 	.attrs = hugepage_attr,
407 };
408 
409 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
410 {
411 	int err;
412 
413 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
414 	if (unlikely(!*hugepage_kobj)) {
415 		pr_err("failed to create transparent hugepage kobject\n");
416 		return -ENOMEM;
417 	}
418 
419 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
420 	if (err) {
421 		pr_err("failed to register transparent hugepage group\n");
422 		goto delete_obj;
423 	}
424 
425 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
426 	if (err) {
427 		pr_err("failed to register transparent hugepage group\n");
428 		goto remove_hp_group;
429 	}
430 
431 	return 0;
432 
433 remove_hp_group:
434 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
435 delete_obj:
436 	kobject_put(*hugepage_kobj);
437 	return err;
438 }
439 
440 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
441 {
442 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
443 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
444 	kobject_put(hugepage_kobj);
445 }
446 #else
447 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
448 {
449 	return 0;
450 }
451 
452 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
453 {
454 }
455 #endif /* CONFIG_SYSFS */
456 
457 static int __init hugepage_init(void)
458 {
459 	int err;
460 	struct kobject *hugepage_kobj;
461 
462 	if (!has_transparent_hugepage()) {
463 		/*
464 		 * Hardware doesn't support hugepages, hence disable
465 		 * DAX PMD support.
466 		 */
467 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
468 		return -EINVAL;
469 	}
470 
471 	/*
472 	 * hugepages can't be allocated by the buddy allocator
473 	 */
474 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
475 	/*
476 	 * we use page->mapping and page->index in second tail page
477 	 * as list_head: assuming THP order >= 2
478 	 */
479 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
480 
481 	err = hugepage_init_sysfs(&hugepage_kobj);
482 	if (err)
483 		goto err_sysfs;
484 
485 	err = khugepaged_init();
486 	if (err)
487 		goto err_slab;
488 
489 	err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
490 	if (err)
491 		goto err_hzp_shrinker;
492 	err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
493 	if (err)
494 		goto err_split_shrinker;
495 
496 	/*
497 	 * By default disable transparent hugepages on smaller systems,
498 	 * where the extra memory used could hurt more than TLB overhead
499 	 * is likely to save.  The admin can still enable it through /sys.
500 	 */
501 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
502 		transparent_hugepage_flags = 0;
503 		return 0;
504 	}
505 
506 	err = start_stop_khugepaged();
507 	if (err)
508 		goto err_khugepaged;
509 
510 	return 0;
511 err_khugepaged:
512 	unregister_shrinker(&deferred_split_shrinker);
513 err_split_shrinker:
514 	unregister_shrinker(&huge_zero_page_shrinker);
515 err_hzp_shrinker:
516 	khugepaged_destroy();
517 err_slab:
518 	hugepage_exit_sysfs(hugepage_kobj);
519 err_sysfs:
520 	return err;
521 }
522 subsys_initcall(hugepage_init);
523 
524 static int __init setup_transparent_hugepage(char *str)
525 {
526 	int ret = 0;
527 	if (!str)
528 		goto out;
529 	if (!strcmp(str, "always")) {
530 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
531 			&transparent_hugepage_flags);
532 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
533 			  &transparent_hugepage_flags);
534 		ret = 1;
535 	} else if (!strcmp(str, "madvise")) {
536 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
537 			  &transparent_hugepage_flags);
538 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
539 			&transparent_hugepage_flags);
540 		ret = 1;
541 	} else if (!strcmp(str, "never")) {
542 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
543 			  &transparent_hugepage_flags);
544 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
545 			  &transparent_hugepage_flags);
546 		ret = 1;
547 	}
548 out:
549 	if (!ret)
550 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
551 	return ret;
552 }
553 __setup("transparent_hugepage=", setup_transparent_hugepage);
554 
555 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
556 {
557 	if (likely(vma->vm_flags & VM_WRITE))
558 		pmd = pmd_mkwrite(pmd);
559 	return pmd;
560 }
561 
562 #ifdef CONFIG_MEMCG
563 static inline
564 struct deferred_split *get_deferred_split_queue(struct folio *folio)
565 {
566 	struct mem_cgroup *memcg = folio_memcg(folio);
567 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
568 
569 	if (memcg)
570 		return &memcg->deferred_split_queue;
571 	else
572 		return &pgdat->deferred_split_queue;
573 }
574 #else
575 static inline
576 struct deferred_split *get_deferred_split_queue(struct folio *folio)
577 {
578 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
579 
580 	return &pgdat->deferred_split_queue;
581 }
582 #endif
583 
584 void prep_transhuge_page(struct page *page)
585 {
586 	struct folio *folio = (struct folio *)page;
587 
588 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
589 	INIT_LIST_HEAD(&folio->_deferred_list);
590 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
591 }
592 
593 static inline bool is_transparent_hugepage(struct page *page)
594 {
595 	struct folio *folio;
596 
597 	if (!PageCompound(page))
598 		return false;
599 
600 	folio = page_folio(page);
601 	return is_huge_zero_page(&folio->page) ||
602 	       folio->_folio_dtor == TRANSHUGE_PAGE_DTOR;
603 }
604 
605 static unsigned long __thp_get_unmapped_area(struct file *filp,
606 		unsigned long addr, unsigned long len,
607 		loff_t off, unsigned long flags, unsigned long size)
608 {
609 	loff_t off_end = off + len;
610 	loff_t off_align = round_up(off, size);
611 	unsigned long len_pad, ret;
612 
613 	if (off_end <= off_align || (off_end - off_align) < size)
614 		return 0;
615 
616 	len_pad = len + size;
617 	if (len_pad < len || (off + len_pad) < off)
618 		return 0;
619 
620 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
621 					      off >> PAGE_SHIFT, flags);
622 
623 	/*
624 	 * The failure might be due to length padding. The caller will retry
625 	 * without the padding.
626 	 */
627 	if (IS_ERR_VALUE(ret))
628 		return 0;
629 
630 	/*
631 	 * Do not try to align to THP boundary if allocation at the address
632 	 * hint succeeds.
633 	 */
634 	if (ret == addr)
635 		return addr;
636 
637 	ret += (off - ret) & (size - 1);
638 	return ret;
639 }
640 
641 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
642 		unsigned long len, unsigned long pgoff, unsigned long flags)
643 {
644 	unsigned long ret;
645 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
646 
647 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
648 	if (ret)
649 		return ret;
650 
651 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
652 }
653 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
654 
655 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
656 			struct page *page, gfp_t gfp)
657 {
658 	struct vm_area_struct *vma = vmf->vma;
659 	pgtable_t pgtable;
660 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
661 	vm_fault_t ret = 0;
662 
663 	VM_BUG_ON_PAGE(!PageCompound(page), page);
664 
665 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
666 		put_page(page);
667 		count_vm_event(THP_FAULT_FALLBACK);
668 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
669 		return VM_FAULT_FALLBACK;
670 	}
671 	cgroup_throttle_swaprate(page, gfp);
672 
673 	pgtable = pte_alloc_one(vma->vm_mm);
674 	if (unlikely(!pgtable)) {
675 		ret = VM_FAULT_OOM;
676 		goto release;
677 	}
678 
679 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
680 	/*
681 	 * The memory barrier inside __SetPageUptodate makes sure that
682 	 * clear_huge_page writes become visible before the set_pmd_at()
683 	 * write.
684 	 */
685 	__SetPageUptodate(page);
686 
687 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
688 	if (unlikely(!pmd_none(*vmf->pmd))) {
689 		goto unlock_release;
690 	} else {
691 		pmd_t entry;
692 
693 		ret = check_stable_address_space(vma->vm_mm);
694 		if (ret)
695 			goto unlock_release;
696 
697 		/* Deliver the page fault to userland */
698 		if (userfaultfd_missing(vma)) {
699 			spin_unlock(vmf->ptl);
700 			put_page(page);
701 			pte_free(vma->vm_mm, pgtable);
702 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
703 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
704 			return ret;
705 		}
706 
707 		entry = mk_huge_pmd(page, vma->vm_page_prot);
708 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
709 		page_add_new_anon_rmap(page, vma, haddr);
710 		lru_cache_add_inactive_or_unevictable(page, vma);
711 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
712 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
713 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
714 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
715 		mm_inc_nr_ptes(vma->vm_mm);
716 		spin_unlock(vmf->ptl);
717 		count_vm_event(THP_FAULT_ALLOC);
718 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
719 	}
720 
721 	return 0;
722 unlock_release:
723 	spin_unlock(vmf->ptl);
724 release:
725 	if (pgtable)
726 		pte_free(vma->vm_mm, pgtable);
727 	put_page(page);
728 	return ret;
729 
730 }
731 
732 /*
733  * always: directly stall for all thp allocations
734  * defer: wake kswapd and fail if not immediately available
735  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
736  *		  fail if not immediately available
737  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
738  *	    available
739  * never: never stall for any thp allocation
740  */
741 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
742 {
743 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
744 
745 	/* Always do synchronous compaction */
746 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
747 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
748 
749 	/* Kick kcompactd and fail quickly */
750 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
751 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
752 
753 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
754 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
755 		return GFP_TRANSHUGE_LIGHT |
756 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
757 					__GFP_KSWAPD_RECLAIM);
758 
759 	/* Only do synchronous compaction if madvised */
760 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
761 		return GFP_TRANSHUGE_LIGHT |
762 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
763 
764 	return GFP_TRANSHUGE_LIGHT;
765 }
766 
767 /* Caller must hold page table lock. */
768 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
769 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
770 		struct page *zero_page)
771 {
772 	pmd_t entry;
773 	if (!pmd_none(*pmd))
774 		return;
775 	entry = mk_pmd(zero_page, vma->vm_page_prot);
776 	entry = pmd_mkhuge(entry);
777 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
778 	set_pmd_at(mm, haddr, pmd, entry);
779 	mm_inc_nr_ptes(mm);
780 }
781 
782 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
783 {
784 	struct vm_area_struct *vma = vmf->vma;
785 	gfp_t gfp;
786 	struct folio *folio;
787 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
788 
789 	if (!transhuge_vma_suitable(vma, haddr))
790 		return VM_FAULT_FALLBACK;
791 	if (unlikely(anon_vma_prepare(vma)))
792 		return VM_FAULT_OOM;
793 	khugepaged_enter_vma(vma, vma->vm_flags);
794 
795 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
796 			!mm_forbids_zeropage(vma->vm_mm) &&
797 			transparent_hugepage_use_zero_page()) {
798 		pgtable_t pgtable;
799 		struct page *zero_page;
800 		vm_fault_t ret;
801 		pgtable = pte_alloc_one(vma->vm_mm);
802 		if (unlikely(!pgtable))
803 			return VM_FAULT_OOM;
804 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
805 		if (unlikely(!zero_page)) {
806 			pte_free(vma->vm_mm, pgtable);
807 			count_vm_event(THP_FAULT_FALLBACK);
808 			return VM_FAULT_FALLBACK;
809 		}
810 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
811 		ret = 0;
812 		if (pmd_none(*vmf->pmd)) {
813 			ret = check_stable_address_space(vma->vm_mm);
814 			if (ret) {
815 				spin_unlock(vmf->ptl);
816 				pte_free(vma->vm_mm, pgtable);
817 			} else if (userfaultfd_missing(vma)) {
818 				spin_unlock(vmf->ptl);
819 				pte_free(vma->vm_mm, pgtable);
820 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
821 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
822 			} else {
823 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
824 						   haddr, vmf->pmd, zero_page);
825 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
826 				spin_unlock(vmf->ptl);
827 			}
828 		} else {
829 			spin_unlock(vmf->ptl);
830 			pte_free(vma->vm_mm, pgtable);
831 		}
832 		return ret;
833 	}
834 	gfp = vma_thp_gfp_mask(vma);
835 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
836 	if (unlikely(!folio)) {
837 		count_vm_event(THP_FAULT_FALLBACK);
838 		return VM_FAULT_FALLBACK;
839 	}
840 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
841 }
842 
843 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
844 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
845 		pgtable_t pgtable)
846 {
847 	struct mm_struct *mm = vma->vm_mm;
848 	pmd_t entry;
849 	spinlock_t *ptl;
850 
851 	ptl = pmd_lock(mm, pmd);
852 	if (!pmd_none(*pmd)) {
853 		if (write) {
854 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
855 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
856 				goto out_unlock;
857 			}
858 			entry = pmd_mkyoung(*pmd);
859 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
860 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
861 				update_mmu_cache_pmd(vma, addr, pmd);
862 		}
863 
864 		goto out_unlock;
865 	}
866 
867 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
868 	if (pfn_t_devmap(pfn))
869 		entry = pmd_mkdevmap(entry);
870 	if (write) {
871 		entry = pmd_mkyoung(pmd_mkdirty(entry));
872 		entry = maybe_pmd_mkwrite(entry, vma);
873 	}
874 
875 	if (pgtable) {
876 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
877 		mm_inc_nr_ptes(mm);
878 		pgtable = NULL;
879 	}
880 
881 	set_pmd_at(mm, addr, pmd, entry);
882 	update_mmu_cache_pmd(vma, addr, pmd);
883 
884 out_unlock:
885 	spin_unlock(ptl);
886 	if (pgtable)
887 		pte_free(mm, pgtable);
888 }
889 
890 /**
891  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
892  * @vmf: Structure describing the fault
893  * @pfn: pfn to insert
894  * @pgprot: page protection to use
895  * @write: whether it's a write fault
896  *
897  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
898  * also consult the vmf_insert_mixed_prot() documentation when
899  * @pgprot != @vmf->vma->vm_page_prot.
900  *
901  * Return: vm_fault_t value.
902  */
903 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
904 				   pgprot_t pgprot, bool write)
905 {
906 	unsigned long addr = vmf->address & PMD_MASK;
907 	struct vm_area_struct *vma = vmf->vma;
908 	pgtable_t pgtable = NULL;
909 
910 	/*
911 	 * If we had pmd_special, we could avoid all these restrictions,
912 	 * but we need to be consistent with PTEs and architectures that
913 	 * can't support a 'special' bit.
914 	 */
915 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
916 			!pfn_t_devmap(pfn));
917 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
918 						(VM_PFNMAP|VM_MIXEDMAP));
919 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
920 
921 	if (addr < vma->vm_start || addr >= vma->vm_end)
922 		return VM_FAULT_SIGBUS;
923 
924 	if (arch_needs_pgtable_deposit()) {
925 		pgtable = pte_alloc_one(vma->vm_mm);
926 		if (!pgtable)
927 			return VM_FAULT_OOM;
928 	}
929 
930 	track_pfn_insert(vma, &pgprot, pfn);
931 
932 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
933 	return VM_FAULT_NOPAGE;
934 }
935 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
936 
937 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
938 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
939 {
940 	if (likely(vma->vm_flags & VM_WRITE))
941 		pud = pud_mkwrite(pud);
942 	return pud;
943 }
944 
945 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
946 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
947 {
948 	struct mm_struct *mm = vma->vm_mm;
949 	pud_t entry;
950 	spinlock_t *ptl;
951 
952 	ptl = pud_lock(mm, pud);
953 	if (!pud_none(*pud)) {
954 		if (write) {
955 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
956 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
957 				goto out_unlock;
958 			}
959 			entry = pud_mkyoung(*pud);
960 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
961 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
962 				update_mmu_cache_pud(vma, addr, pud);
963 		}
964 		goto out_unlock;
965 	}
966 
967 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
968 	if (pfn_t_devmap(pfn))
969 		entry = pud_mkdevmap(entry);
970 	if (write) {
971 		entry = pud_mkyoung(pud_mkdirty(entry));
972 		entry = maybe_pud_mkwrite(entry, vma);
973 	}
974 	set_pud_at(mm, addr, pud, entry);
975 	update_mmu_cache_pud(vma, addr, pud);
976 
977 out_unlock:
978 	spin_unlock(ptl);
979 }
980 
981 /**
982  * vmf_insert_pfn_pud_prot - insert a pud size pfn
983  * @vmf: Structure describing the fault
984  * @pfn: pfn to insert
985  * @pgprot: page protection to use
986  * @write: whether it's a write fault
987  *
988  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
989  * also consult the vmf_insert_mixed_prot() documentation when
990  * @pgprot != @vmf->vma->vm_page_prot.
991  *
992  * Return: vm_fault_t value.
993  */
994 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
995 				   pgprot_t pgprot, bool write)
996 {
997 	unsigned long addr = vmf->address & PUD_MASK;
998 	struct vm_area_struct *vma = vmf->vma;
999 
1000 	/*
1001 	 * If we had pud_special, we could avoid all these restrictions,
1002 	 * but we need to be consistent with PTEs and architectures that
1003 	 * can't support a 'special' bit.
1004 	 */
1005 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1006 			!pfn_t_devmap(pfn));
1007 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1008 						(VM_PFNMAP|VM_MIXEDMAP));
1009 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1010 
1011 	if (addr < vma->vm_start || addr >= vma->vm_end)
1012 		return VM_FAULT_SIGBUS;
1013 
1014 	track_pfn_insert(vma, &pgprot, pfn);
1015 
1016 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
1017 	return VM_FAULT_NOPAGE;
1018 }
1019 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
1020 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1021 
1022 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1023 		      pmd_t *pmd, bool write)
1024 {
1025 	pmd_t _pmd;
1026 
1027 	_pmd = pmd_mkyoung(*pmd);
1028 	if (write)
1029 		_pmd = pmd_mkdirty(_pmd);
1030 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1031 				  pmd, _pmd, write))
1032 		update_mmu_cache_pmd(vma, addr, pmd);
1033 }
1034 
1035 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1036 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1037 {
1038 	unsigned long pfn = pmd_pfn(*pmd);
1039 	struct mm_struct *mm = vma->vm_mm;
1040 	struct page *page;
1041 	int ret;
1042 
1043 	assert_spin_locked(pmd_lockptr(mm, pmd));
1044 
1045 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1046 		return NULL;
1047 
1048 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1049 		/* pass */;
1050 	else
1051 		return NULL;
1052 
1053 	if (flags & FOLL_TOUCH)
1054 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1055 
1056 	/*
1057 	 * device mapped pages can only be returned if the
1058 	 * caller will manage the page reference count.
1059 	 */
1060 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1061 		return ERR_PTR(-EEXIST);
1062 
1063 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1064 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1065 	if (!*pgmap)
1066 		return ERR_PTR(-EFAULT);
1067 	page = pfn_to_page(pfn);
1068 	ret = try_grab_page(page, flags);
1069 	if (ret)
1070 		page = ERR_PTR(ret);
1071 
1072 	return page;
1073 }
1074 
1075 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1076 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1077 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1078 {
1079 	spinlock_t *dst_ptl, *src_ptl;
1080 	struct page *src_page;
1081 	pmd_t pmd;
1082 	pgtable_t pgtable = NULL;
1083 	int ret = -ENOMEM;
1084 
1085 	/* Skip if can be re-fill on fault */
1086 	if (!vma_is_anonymous(dst_vma))
1087 		return 0;
1088 
1089 	pgtable = pte_alloc_one(dst_mm);
1090 	if (unlikely(!pgtable))
1091 		goto out;
1092 
1093 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1094 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1095 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1096 
1097 	ret = -EAGAIN;
1098 	pmd = *src_pmd;
1099 
1100 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1101 	if (unlikely(is_swap_pmd(pmd))) {
1102 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1103 
1104 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1105 		if (!is_readable_migration_entry(entry)) {
1106 			entry = make_readable_migration_entry(
1107 							swp_offset(entry));
1108 			pmd = swp_entry_to_pmd(entry);
1109 			if (pmd_swp_soft_dirty(*src_pmd))
1110 				pmd = pmd_swp_mksoft_dirty(pmd);
1111 			if (pmd_swp_uffd_wp(*src_pmd))
1112 				pmd = pmd_swp_mkuffd_wp(pmd);
1113 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1114 		}
1115 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1116 		mm_inc_nr_ptes(dst_mm);
1117 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1118 		if (!userfaultfd_wp(dst_vma))
1119 			pmd = pmd_swp_clear_uffd_wp(pmd);
1120 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1121 		ret = 0;
1122 		goto out_unlock;
1123 	}
1124 #endif
1125 
1126 	if (unlikely(!pmd_trans_huge(pmd))) {
1127 		pte_free(dst_mm, pgtable);
1128 		goto out_unlock;
1129 	}
1130 	/*
1131 	 * When page table lock is held, the huge zero pmd should not be
1132 	 * under splitting since we don't split the page itself, only pmd to
1133 	 * a page table.
1134 	 */
1135 	if (is_huge_zero_pmd(pmd)) {
1136 		/*
1137 		 * get_huge_zero_page() will never allocate a new page here,
1138 		 * since we already have a zero page to copy. It just takes a
1139 		 * reference.
1140 		 */
1141 		mm_get_huge_zero_page(dst_mm);
1142 		goto out_zero_page;
1143 	}
1144 
1145 	src_page = pmd_page(pmd);
1146 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1147 
1148 	get_page(src_page);
1149 	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1150 		/* Page maybe pinned: split and retry the fault on PTEs. */
1151 		put_page(src_page);
1152 		pte_free(dst_mm, pgtable);
1153 		spin_unlock(src_ptl);
1154 		spin_unlock(dst_ptl);
1155 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1156 		return -EAGAIN;
1157 	}
1158 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1159 out_zero_page:
1160 	mm_inc_nr_ptes(dst_mm);
1161 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1162 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1163 	if (!userfaultfd_wp(dst_vma))
1164 		pmd = pmd_clear_uffd_wp(pmd);
1165 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1166 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1167 
1168 	ret = 0;
1169 out_unlock:
1170 	spin_unlock(src_ptl);
1171 	spin_unlock(dst_ptl);
1172 out:
1173 	return ret;
1174 }
1175 
1176 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1177 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1178 		      pud_t *pud, bool write)
1179 {
1180 	pud_t _pud;
1181 
1182 	_pud = pud_mkyoung(*pud);
1183 	if (write)
1184 		_pud = pud_mkdirty(_pud);
1185 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1186 				  pud, _pud, write))
1187 		update_mmu_cache_pud(vma, addr, pud);
1188 }
1189 
1190 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1191 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1192 {
1193 	unsigned long pfn = pud_pfn(*pud);
1194 	struct mm_struct *mm = vma->vm_mm;
1195 	struct page *page;
1196 	int ret;
1197 
1198 	assert_spin_locked(pud_lockptr(mm, pud));
1199 
1200 	if (flags & FOLL_WRITE && !pud_write(*pud))
1201 		return NULL;
1202 
1203 	if (pud_present(*pud) && pud_devmap(*pud))
1204 		/* pass */;
1205 	else
1206 		return NULL;
1207 
1208 	if (flags & FOLL_TOUCH)
1209 		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1210 
1211 	/*
1212 	 * device mapped pages can only be returned if the
1213 	 * caller will manage the page reference count.
1214 	 *
1215 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1216 	 */
1217 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1218 		return ERR_PTR(-EEXIST);
1219 
1220 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1221 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1222 	if (!*pgmap)
1223 		return ERR_PTR(-EFAULT);
1224 	page = pfn_to_page(pfn);
1225 
1226 	ret = try_grab_page(page, flags);
1227 	if (ret)
1228 		page = ERR_PTR(ret);
1229 
1230 	return page;
1231 }
1232 
1233 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1234 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1235 		  struct vm_area_struct *vma)
1236 {
1237 	spinlock_t *dst_ptl, *src_ptl;
1238 	pud_t pud;
1239 	int ret;
1240 
1241 	dst_ptl = pud_lock(dst_mm, dst_pud);
1242 	src_ptl = pud_lockptr(src_mm, src_pud);
1243 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1244 
1245 	ret = -EAGAIN;
1246 	pud = *src_pud;
1247 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1248 		goto out_unlock;
1249 
1250 	/*
1251 	 * When page table lock is held, the huge zero pud should not be
1252 	 * under splitting since we don't split the page itself, only pud to
1253 	 * a page table.
1254 	 */
1255 	if (is_huge_zero_pud(pud)) {
1256 		/* No huge zero pud yet */
1257 	}
1258 
1259 	/*
1260 	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1261 	 * and split if duplicating fails.
1262 	 */
1263 	pudp_set_wrprotect(src_mm, addr, src_pud);
1264 	pud = pud_mkold(pud_wrprotect(pud));
1265 	set_pud_at(dst_mm, addr, dst_pud, pud);
1266 
1267 	ret = 0;
1268 out_unlock:
1269 	spin_unlock(src_ptl);
1270 	spin_unlock(dst_ptl);
1271 	return ret;
1272 }
1273 
1274 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1275 {
1276 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1277 
1278 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1279 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1280 		goto unlock;
1281 
1282 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1283 unlock:
1284 	spin_unlock(vmf->ptl);
1285 }
1286 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1287 
1288 void huge_pmd_set_accessed(struct vm_fault *vmf)
1289 {
1290 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1291 
1292 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1293 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1294 		goto unlock;
1295 
1296 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1297 
1298 unlock:
1299 	spin_unlock(vmf->ptl);
1300 }
1301 
1302 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1303 {
1304 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1305 	struct vm_area_struct *vma = vmf->vma;
1306 	struct folio *folio;
1307 	struct page *page;
1308 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1309 	pmd_t orig_pmd = vmf->orig_pmd;
1310 
1311 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1312 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1313 
1314 	if (is_huge_zero_pmd(orig_pmd))
1315 		goto fallback;
1316 
1317 	spin_lock(vmf->ptl);
1318 
1319 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1320 		spin_unlock(vmf->ptl);
1321 		return 0;
1322 	}
1323 
1324 	page = pmd_page(orig_pmd);
1325 	folio = page_folio(page);
1326 	VM_BUG_ON_PAGE(!PageHead(page), page);
1327 
1328 	/* Early check when only holding the PT lock. */
1329 	if (PageAnonExclusive(page))
1330 		goto reuse;
1331 
1332 	if (!folio_trylock(folio)) {
1333 		folio_get(folio);
1334 		spin_unlock(vmf->ptl);
1335 		folio_lock(folio);
1336 		spin_lock(vmf->ptl);
1337 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1338 			spin_unlock(vmf->ptl);
1339 			folio_unlock(folio);
1340 			folio_put(folio);
1341 			return 0;
1342 		}
1343 		folio_put(folio);
1344 	}
1345 
1346 	/* Recheck after temporarily dropping the PT lock. */
1347 	if (PageAnonExclusive(page)) {
1348 		folio_unlock(folio);
1349 		goto reuse;
1350 	}
1351 
1352 	/*
1353 	 * See do_wp_page(): we can only reuse the folio exclusively if
1354 	 * there are no additional references. Note that we always drain
1355 	 * the LRU pagevecs immediately after adding a THP.
1356 	 */
1357 	if (folio_ref_count(folio) >
1358 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1359 		goto unlock_fallback;
1360 	if (folio_test_swapcache(folio))
1361 		folio_free_swap(folio);
1362 	if (folio_ref_count(folio) == 1) {
1363 		pmd_t entry;
1364 
1365 		page_move_anon_rmap(page, vma);
1366 		folio_unlock(folio);
1367 reuse:
1368 		if (unlikely(unshare)) {
1369 			spin_unlock(vmf->ptl);
1370 			return 0;
1371 		}
1372 		entry = pmd_mkyoung(orig_pmd);
1373 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1374 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1375 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1376 		spin_unlock(vmf->ptl);
1377 		return 0;
1378 	}
1379 
1380 unlock_fallback:
1381 	folio_unlock(folio);
1382 	spin_unlock(vmf->ptl);
1383 fallback:
1384 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1385 	return VM_FAULT_FALLBACK;
1386 }
1387 
1388 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1389 					   unsigned long addr, pmd_t pmd)
1390 {
1391 	struct page *page;
1392 
1393 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1394 		return false;
1395 
1396 	/* Don't touch entries that are not even readable (NUMA hinting). */
1397 	if (pmd_protnone(pmd))
1398 		return false;
1399 
1400 	/* Do we need write faults for softdirty tracking? */
1401 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1402 		return false;
1403 
1404 	/* Do we need write faults for uffd-wp tracking? */
1405 	if (userfaultfd_huge_pmd_wp(vma, pmd))
1406 		return false;
1407 
1408 	if (!(vma->vm_flags & VM_SHARED)) {
1409 		/* See can_change_pte_writable(). */
1410 		page = vm_normal_page_pmd(vma, addr, pmd);
1411 		return page && PageAnon(page) && PageAnonExclusive(page);
1412 	}
1413 
1414 	/* See can_change_pte_writable(). */
1415 	return pmd_dirty(pmd);
1416 }
1417 
1418 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1419 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1420 					struct vm_area_struct *vma,
1421 					unsigned int flags)
1422 {
1423 	/* If the pmd is writable, we can write to the page. */
1424 	if (pmd_write(pmd))
1425 		return true;
1426 
1427 	/* Maybe FOLL_FORCE is set to override it? */
1428 	if (!(flags & FOLL_FORCE))
1429 		return false;
1430 
1431 	/* But FOLL_FORCE has no effect on shared mappings */
1432 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1433 		return false;
1434 
1435 	/* ... or read-only private ones */
1436 	if (!(vma->vm_flags & VM_MAYWRITE))
1437 		return false;
1438 
1439 	/* ... or already writable ones that just need to take a write fault */
1440 	if (vma->vm_flags & VM_WRITE)
1441 		return false;
1442 
1443 	/*
1444 	 * See can_change_pte_writable(): we broke COW and could map the page
1445 	 * writable if we have an exclusive anonymous page ...
1446 	 */
1447 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1448 		return false;
1449 
1450 	/* ... and a write-fault isn't required for other reasons. */
1451 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1452 		return false;
1453 	return !userfaultfd_huge_pmd_wp(vma, pmd);
1454 }
1455 
1456 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1457 				   unsigned long addr,
1458 				   pmd_t *pmd,
1459 				   unsigned int flags)
1460 {
1461 	struct mm_struct *mm = vma->vm_mm;
1462 	struct page *page;
1463 	int ret;
1464 
1465 	assert_spin_locked(pmd_lockptr(mm, pmd));
1466 
1467 	page = pmd_page(*pmd);
1468 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1469 
1470 	if ((flags & FOLL_WRITE) &&
1471 	    !can_follow_write_pmd(*pmd, page, vma, flags))
1472 		return NULL;
1473 
1474 	/* Avoid dumping huge zero page */
1475 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1476 		return ERR_PTR(-EFAULT);
1477 
1478 	/* Full NUMA hinting faults to serialise migration in fault paths */
1479 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags))
1480 		return NULL;
1481 
1482 	if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1483 		return ERR_PTR(-EMLINK);
1484 
1485 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1486 			!PageAnonExclusive(page), page);
1487 
1488 	ret = try_grab_page(page, flags);
1489 	if (ret)
1490 		return ERR_PTR(ret);
1491 
1492 	if (flags & FOLL_TOUCH)
1493 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1494 
1495 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1496 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1497 
1498 	return page;
1499 }
1500 
1501 /* NUMA hinting page fault entry point for trans huge pmds */
1502 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1503 {
1504 	struct vm_area_struct *vma = vmf->vma;
1505 	pmd_t oldpmd = vmf->orig_pmd;
1506 	pmd_t pmd;
1507 	struct page *page;
1508 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1509 	int page_nid = NUMA_NO_NODE;
1510 	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1511 	bool migrated = false, writable = false;
1512 	int flags = 0;
1513 
1514 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1515 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1516 		spin_unlock(vmf->ptl);
1517 		goto out;
1518 	}
1519 
1520 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1521 
1522 	/*
1523 	 * Detect now whether the PMD could be writable; this information
1524 	 * is only valid while holding the PT lock.
1525 	 */
1526 	writable = pmd_write(pmd);
1527 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1528 	    can_change_pmd_writable(vma, vmf->address, pmd))
1529 		writable = true;
1530 
1531 	page = vm_normal_page_pmd(vma, haddr, pmd);
1532 	if (!page)
1533 		goto out_map;
1534 
1535 	/* See similar comment in do_numa_page for explanation */
1536 	if (!writable)
1537 		flags |= TNF_NO_GROUP;
1538 
1539 	page_nid = page_to_nid(page);
1540 	/*
1541 	 * For memory tiering mode, cpupid of slow memory page is used
1542 	 * to record page access time.  So use default value.
1543 	 */
1544 	if (node_is_toptier(page_nid))
1545 		last_cpupid = page_cpupid_last(page);
1546 	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1547 				       &flags);
1548 
1549 	if (target_nid == NUMA_NO_NODE) {
1550 		put_page(page);
1551 		goto out_map;
1552 	}
1553 
1554 	spin_unlock(vmf->ptl);
1555 	writable = false;
1556 
1557 	migrated = migrate_misplaced_page(page, vma, target_nid);
1558 	if (migrated) {
1559 		flags |= TNF_MIGRATED;
1560 		page_nid = target_nid;
1561 	} else {
1562 		flags |= TNF_MIGRATE_FAIL;
1563 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1564 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1565 			spin_unlock(vmf->ptl);
1566 			goto out;
1567 		}
1568 		goto out_map;
1569 	}
1570 
1571 out:
1572 	if (page_nid != NUMA_NO_NODE)
1573 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1574 				flags);
1575 
1576 	return 0;
1577 
1578 out_map:
1579 	/* Restore the PMD */
1580 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1581 	pmd = pmd_mkyoung(pmd);
1582 	if (writable)
1583 		pmd = pmd_mkwrite(pmd);
1584 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1585 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1586 	spin_unlock(vmf->ptl);
1587 	goto out;
1588 }
1589 
1590 /*
1591  * Return true if we do MADV_FREE successfully on entire pmd page.
1592  * Otherwise, return false.
1593  */
1594 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1595 		pmd_t *pmd, unsigned long addr, unsigned long next)
1596 {
1597 	spinlock_t *ptl;
1598 	pmd_t orig_pmd;
1599 	struct folio *folio;
1600 	struct mm_struct *mm = tlb->mm;
1601 	bool ret = false;
1602 
1603 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1604 
1605 	ptl = pmd_trans_huge_lock(pmd, vma);
1606 	if (!ptl)
1607 		goto out_unlocked;
1608 
1609 	orig_pmd = *pmd;
1610 	if (is_huge_zero_pmd(orig_pmd))
1611 		goto out;
1612 
1613 	if (unlikely(!pmd_present(orig_pmd))) {
1614 		VM_BUG_ON(thp_migration_supported() &&
1615 				  !is_pmd_migration_entry(orig_pmd));
1616 		goto out;
1617 	}
1618 
1619 	folio = pfn_folio(pmd_pfn(orig_pmd));
1620 	/*
1621 	 * If other processes are mapping this folio, we couldn't discard
1622 	 * the folio unless they all do MADV_FREE so let's skip the folio.
1623 	 */
1624 	if (folio_mapcount(folio) != 1)
1625 		goto out;
1626 
1627 	if (!folio_trylock(folio))
1628 		goto out;
1629 
1630 	/*
1631 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1632 	 * will deactivate only them.
1633 	 */
1634 	if (next - addr != HPAGE_PMD_SIZE) {
1635 		folio_get(folio);
1636 		spin_unlock(ptl);
1637 		split_folio(folio);
1638 		folio_unlock(folio);
1639 		folio_put(folio);
1640 		goto out_unlocked;
1641 	}
1642 
1643 	if (folio_test_dirty(folio))
1644 		folio_clear_dirty(folio);
1645 	folio_unlock(folio);
1646 
1647 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1648 		pmdp_invalidate(vma, addr, pmd);
1649 		orig_pmd = pmd_mkold(orig_pmd);
1650 		orig_pmd = pmd_mkclean(orig_pmd);
1651 
1652 		set_pmd_at(mm, addr, pmd, orig_pmd);
1653 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1654 	}
1655 
1656 	folio_mark_lazyfree(folio);
1657 	ret = true;
1658 out:
1659 	spin_unlock(ptl);
1660 out_unlocked:
1661 	return ret;
1662 }
1663 
1664 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1665 {
1666 	pgtable_t pgtable;
1667 
1668 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1669 	pte_free(mm, pgtable);
1670 	mm_dec_nr_ptes(mm);
1671 }
1672 
1673 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1674 		 pmd_t *pmd, unsigned long addr)
1675 {
1676 	pmd_t orig_pmd;
1677 	spinlock_t *ptl;
1678 
1679 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1680 
1681 	ptl = __pmd_trans_huge_lock(pmd, vma);
1682 	if (!ptl)
1683 		return 0;
1684 	/*
1685 	 * For architectures like ppc64 we look at deposited pgtable
1686 	 * when calling pmdp_huge_get_and_clear. So do the
1687 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1688 	 * operations.
1689 	 */
1690 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1691 						tlb->fullmm);
1692 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1693 	if (vma_is_special_huge(vma)) {
1694 		if (arch_needs_pgtable_deposit())
1695 			zap_deposited_table(tlb->mm, pmd);
1696 		spin_unlock(ptl);
1697 	} else if (is_huge_zero_pmd(orig_pmd)) {
1698 		zap_deposited_table(tlb->mm, pmd);
1699 		spin_unlock(ptl);
1700 	} else {
1701 		struct page *page = NULL;
1702 		int flush_needed = 1;
1703 
1704 		if (pmd_present(orig_pmd)) {
1705 			page = pmd_page(orig_pmd);
1706 			page_remove_rmap(page, vma, true);
1707 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1708 			VM_BUG_ON_PAGE(!PageHead(page), page);
1709 		} else if (thp_migration_supported()) {
1710 			swp_entry_t entry;
1711 
1712 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1713 			entry = pmd_to_swp_entry(orig_pmd);
1714 			page = pfn_swap_entry_to_page(entry);
1715 			flush_needed = 0;
1716 		} else
1717 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1718 
1719 		if (PageAnon(page)) {
1720 			zap_deposited_table(tlb->mm, pmd);
1721 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1722 		} else {
1723 			if (arch_needs_pgtable_deposit())
1724 				zap_deposited_table(tlb->mm, pmd);
1725 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1726 		}
1727 
1728 		spin_unlock(ptl);
1729 		if (flush_needed)
1730 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1731 	}
1732 	return 1;
1733 }
1734 
1735 #ifndef pmd_move_must_withdraw
1736 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1737 					 spinlock_t *old_pmd_ptl,
1738 					 struct vm_area_struct *vma)
1739 {
1740 	/*
1741 	 * With split pmd lock we also need to move preallocated
1742 	 * PTE page table if new_pmd is on different PMD page table.
1743 	 *
1744 	 * We also don't deposit and withdraw tables for file pages.
1745 	 */
1746 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1747 }
1748 #endif
1749 
1750 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1751 {
1752 #ifdef CONFIG_MEM_SOFT_DIRTY
1753 	if (unlikely(is_pmd_migration_entry(pmd)))
1754 		pmd = pmd_swp_mksoft_dirty(pmd);
1755 	else if (pmd_present(pmd))
1756 		pmd = pmd_mksoft_dirty(pmd);
1757 #endif
1758 	return pmd;
1759 }
1760 
1761 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1762 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1763 {
1764 	spinlock_t *old_ptl, *new_ptl;
1765 	pmd_t pmd;
1766 	struct mm_struct *mm = vma->vm_mm;
1767 	bool force_flush = false;
1768 
1769 	/*
1770 	 * The destination pmd shouldn't be established, free_pgtables()
1771 	 * should have release it.
1772 	 */
1773 	if (WARN_ON(!pmd_none(*new_pmd))) {
1774 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1775 		return false;
1776 	}
1777 
1778 	/*
1779 	 * We don't have to worry about the ordering of src and dst
1780 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1781 	 */
1782 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1783 	if (old_ptl) {
1784 		new_ptl = pmd_lockptr(mm, new_pmd);
1785 		if (new_ptl != old_ptl)
1786 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1787 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1788 		if (pmd_present(pmd))
1789 			force_flush = true;
1790 		VM_BUG_ON(!pmd_none(*new_pmd));
1791 
1792 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1793 			pgtable_t pgtable;
1794 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1795 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1796 		}
1797 		pmd = move_soft_dirty_pmd(pmd);
1798 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1799 		if (force_flush)
1800 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1801 		if (new_ptl != old_ptl)
1802 			spin_unlock(new_ptl);
1803 		spin_unlock(old_ptl);
1804 		return true;
1805 	}
1806 	return false;
1807 }
1808 
1809 /*
1810  * Returns
1811  *  - 0 if PMD could not be locked
1812  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1813  *      or if prot_numa but THP migration is not supported
1814  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1815  */
1816 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1817 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1818 		    unsigned long cp_flags)
1819 {
1820 	struct mm_struct *mm = vma->vm_mm;
1821 	spinlock_t *ptl;
1822 	pmd_t oldpmd, entry;
1823 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1824 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1825 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1826 	int ret = 1;
1827 
1828 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1829 
1830 	if (prot_numa && !thp_migration_supported())
1831 		return 1;
1832 
1833 	ptl = __pmd_trans_huge_lock(pmd, vma);
1834 	if (!ptl)
1835 		return 0;
1836 
1837 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1838 	if (is_swap_pmd(*pmd)) {
1839 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1840 		struct page *page = pfn_swap_entry_to_page(entry);
1841 
1842 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1843 		if (is_writable_migration_entry(entry)) {
1844 			pmd_t newpmd;
1845 			/*
1846 			 * A protection check is difficult so
1847 			 * just be safe and disable write
1848 			 */
1849 			if (PageAnon(page))
1850 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1851 			else
1852 				entry = make_readable_migration_entry(swp_offset(entry));
1853 			newpmd = swp_entry_to_pmd(entry);
1854 			if (pmd_swp_soft_dirty(*pmd))
1855 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1856 			if (pmd_swp_uffd_wp(*pmd))
1857 				newpmd = pmd_swp_mkuffd_wp(newpmd);
1858 			set_pmd_at(mm, addr, pmd, newpmd);
1859 		}
1860 		goto unlock;
1861 	}
1862 #endif
1863 
1864 	if (prot_numa) {
1865 		struct page *page;
1866 		bool toptier;
1867 		/*
1868 		 * Avoid trapping faults against the zero page. The read-only
1869 		 * data is likely to be read-cached on the local CPU and
1870 		 * local/remote hits to the zero page are not interesting.
1871 		 */
1872 		if (is_huge_zero_pmd(*pmd))
1873 			goto unlock;
1874 
1875 		if (pmd_protnone(*pmd))
1876 			goto unlock;
1877 
1878 		page = pmd_page(*pmd);
1879 		toptier = node_is_toptier(page_to_nid(page));
1880 		/*
1881 		 * Skip scanning top tier node if normal numa
1882 		 * balancing is disabled
1883 		 */
1884 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1885 		    toptier)
1886 			goto unlock;
1887 
1888 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1889 		    !toptier)
1890 			xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1891 	}
1892 	/*
1893 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1894 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1895 	 * which is also under mmap_read_lock(mm):
1896 	 *
1897 	 *	CPU0:				CPU1:
1898 	 *				change_huge_pmd(prot_numa=1)
1899 	 *				 pmdp_huge_get_and_clear_notify()
1900 	 * madvise_dontneed()
1901 	 *  zap_pmd_range()
1902 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1903 	 *   // skip the pmd
1904 	 *				 set_pmd_at();
1905 	 *				 // pmd is re-established
1906 	 *
1907 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1908 	 * which may break userspace.
1909 	 *
1910 	 * pmdp_invalidate_ad() is required to make sure we don't miss
1911 	 * dirty/young flags set by hardware.
1912 	 */
1913 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1914 
1915 	entry = pmd_modify(oldpmd, newprot);
1916 	if (uffd_wp)
1917 		entry = pmd_mkuffd_wp(entry);
1918 	else if (uffd_wp_resolve)
1919 		/*
1920 		 * Leave the write bit to be handled by PF interrupt
1921 		 * handler, then things like COW could be properly
1922 		 * handled.
1923 		 */
1924 		entry = pmd_clear_uffd_wp(entry);
1925 
1926 	/* See change_pte_range(). */
1927 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1928 	    can_change_pmd_writable(vma, addr, entry))
1929 		entry = pmd_mkwrite(entry);
1930 
1931 	ret = HPAGE_PMD_NR;
1932 	set_pmd_at(mm, addr, pmd, entry);
1933 
1934 	if (huge_pmd_needs_flush(oldpmd, entry))
1935 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1936 unlock:
1937 	spin_unlock(ptl);
1938 	return ret;
1939 }
1940 
1941 /*
1942  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1943  *
1944  * Note that if it returns page table lock pointer, this routine returns without
1945  * unlocking page table lock. So callers must unlock it.
1946  */
1947 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1948 {
1949 	spinlock_t *ptl;
1950 	ptl = pmd_lock(vma->vm_mm, pmd);
1951 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1952 			pmd_devmap(*pmd)))
1953 		return ptl;
1954 	spin_unlock(ptl);
1955 	return NULL;
1956 }
1957 
1958 /*
1959  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1960  *
1961  * Note that if it returns page table lock pointer, this routine returns without
1962  * unlocking page table lock. So callers must unlock it.
1963  */
1964 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1965 {
1966 	spinlock_t *ptl;
1967 
1968 	ptl = pud_lock(vma->vm_mm, pud);
1969 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1970 		return ptl;
1971 	spin_unlock(ptl);
1972 	return NULL;
1973 }
1974 
1975 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1976 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1977 		 pud_t *pud, unsigned long addr)
1978 {
1979 	spinlock_t *ptl;
1980 
1981 	ptl = __pud_trans_huge_lock(pud, vma);
1982 	if (!ptl)
1983 		return 0;
1984 
1985 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1986 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1987 	if (vma_is_special_huge(vma)) {
1988 		spin_unlock(ptl);
1989 		/* No zero page support yet */
1990 	} else {
1991 		/* No support for anonymous PUD pages yet */
1992 		BUG();
1993 	}
1994 	return 1;
1995 }
1996 
1997 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1998 		unsigned long haddr)
1999 {
2000 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2001 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2002 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2003 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2004 
2005 	count_vm_event(THP_SPLIT_PUD);
2006 
2007 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2008 }
2009 
2010 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2011 		unsigned long address)
2012 {
2013 	spinlock_t *ptl;
2014 	struct mmu_notifier_range range;
2015 
2016 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2017 				address & HPAGE_PUD_MASK,
2018 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2019 	mmu_notifier_invalidate_range_start(&range);
2020 	ptl = pud_lock(vma->vm_mm, pud);
2021 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2022 		goto out;
2023 	__split_huge_pud_locked(vma, pud, range.start);
2024 
2025 out:
2026 	spin_unlock(ptl);
2027 	/*
2028 	 * No need to double call mmu_notifier->invalidate_range() callback as
2029 	 * the above pudp_huge_clear_flush_notify() did already call it.
2030 	 */
2031 	mmu_notifier_invalidate_range_only_end(&range);
2032 }
2033 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2034 
2035 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2036 		unsigned long haddr, pmd_t *pmd)
2037 {
2038 	struct mm_struct *mm = vma->vm_mm;
2039 	pgtable_t pgtable;
2040 	pmd_t _pmd, old_pmd;
2041 	int i;
2042 
2043 	/*
2044 	 * Leave pmd empty until pte is filled note that it is fine to delay
2045 	 * notification until mmu_notifier_invalidate_range_end() as we are
2046 	 * replacing a zero pmd write protected page with a zero pte write
2047 	 * protected page.
2048 	 *
2049 	 * See Documentation/mm/mmu_notifier.rst
2050 	 */
2051 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2052 
2053 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2054 	pmd_populate(mm, &_pmd, pgtable);
2055 
2056 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2057 		pte_t *pte, entry;
2058 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2059 		entry = pte_mkspecial(entry);
2060 		if (pmd_uffd_wp(old_pmd))
2061 			entry = pte_mkuffd_wp(entry);
2062 		pte = pte_offset_map(&_pmd, haddr);
2063 		VM_BUG_ON(!pte_none(*pte));
2064 		set_pte_at(mm, haddr, pte, entry);
2065 		pte_unmap(pte);
2066 	}
2067 	smp_wmb(); /* make pte visible before pmd */
2068 	pmd_populate(mm, pmd, pgtable);
2069 }
2070 
2071 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2072 		unsigned long haddr, bool freeze)
2073 {
2074 	struct mm_struct *mm = vma->vm_mm;
2075 	struct page *page;
2076 	pgtable_t pgtable;
2077 	pmd_t old_pmd, _pmd;
2078 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2079 	bool anon_exclusive = false, dirty = false;
2080 	unsigned long addr;
2081 	int i;
2082 
2083 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2084 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2085 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2086 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2087 				&& !pmd_devmap(*pmd));
2088 
2089 	count_vm_event(THP_SPLIT_PMD);
2090 
2091 	if (!vma_is_anonymous(vma)) {
2092 		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2093 		/*
2094 		 * We are going to unmap this huge page. So
2095 		 * just go ahead and zap it
2096 		 */
2097 		if (arch_needs_pgtable_deposit())
2098 			zap_deposited_table(mm, pmd);
2099 		if (vma_is_special_huge(vma))
2100 			return;
2101 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2102 			swp_entry_t entry;
2103 
2104 			entry = pmd_to_swp_entry(old_pmd);
2105 			page = pfn_swap_entry_to_page(entry);
2106 		} else {
2107 			page = pmd_page(old_pmd);
2108 			if (!PageDirty(page) && pmd_dirty(old_pmd))
2109 				set_page_dirty(page);
2110 			if (!PageReferenced(page) && pmd_young(old_pmd))
2111 				SetPageReferenced(page);
2112 			page_remove_rmap(page, vma, true);
2113 			put_page(page);
2114 		}
2115 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2116 		return;
2117 	}
2118 
2119 	if (is_huge_zero_pmd(*pmd)) {
2120 		/*
2121 		 * FIXME: Do we want to invalidate secondary mmu by calling
2122 		 * mmu_notifier_invalidate_range() see comments below inside
2123 		 * __split_huge_pmd() ?
2124 		 *
2125 		 * We are going from a zero huge page write protected to zero
2126 		 * small page also write protected so it does not seems useful
2127 		 * to invalidate secondary mmu at this time.
2128 		 */
2129 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2130 	}
2131 
2132 	/*
2133 	 * Up to this point the pmd is present and huge and userland has the
2134 	 * whole access to the hugepage during the split (which happens in
2135 	 * place). If we overwrite the pmd with the not-huge version pointing
2136 	 * to the pte here (which of course we could if all CPUs were bug
2137 	 * free), userland could trigger a small page size TLB miss on the
2138 	 * small sized TLB while the hugepage TLB entry is still established in
2139 	 * the huge TLB. Some CPU doesn't like that.
2140 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2141 	 * 383 on page 105. Intel should be safe but is also warns that it's
2142 	 * only safe if the permission and cache attributes of the two entries
2143 	 * loaded in the two TLB is identical (which should be the case here).
2144 	 * But it is generally safer to never allow small and huge TLB entries
2145 	 * for the same virtual address to be loaded simultaneously. So instead
2146 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2147 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2148 	 * must remain set at all times on the pmd until the split is complete
2149 	 * for this pmd), then we flush the SMP TLB and finally we write the
2150 	 * non-huge version of the pmd entry with pmd_populate.
2151 	 */
2152 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2153 
2154 	pmd_migration = is_pmd_migration_entry(old_pmd);
2155 	if (unlikely(pmd_migration)) {
2156 		swp_entry_t entry;
2157 
2158 		entry = pmd_to_swp_entry(old_pmd);
2159 		page = pfn_swap_entry_to_page(entry);
2160 		write = is_writable_migration_entry(entry);
2161 		if (PageAnon(page))
2162 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2163 		young = is_migration_entry_young(entry);
2164 		dirty = is_migration_entry_dirty(entry);
2165 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2166 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2167 	} else {
2168 		page = pmd_page(old_pmd);
2169 		if (pmd_dirty(old_pmd)) {
2170 			dirty = true;
2171 			SetPageDirty(page);
2172 		}
2173 		write = pmd_write(old_pmd);
2174 		young = pmd_young(old_pmd);
2175 		soft_dirty = pmd_soft_dirty(old_pmd);
2176 		uffd_wp = pmd_uffd_wp(old_pmd);
2177 
2178 		VM_BUG_ON_PAGE(!page_count(page), page);
2179 
2180 		/*
2181 		 * Without "freeze", we'll simply split the PMD, propagating the
2182 		 * PageAnonExclusive() flag for each PTE by setting it for
2183 		 * each subpage -- no need to (temporarily) clear.
2184 		 *
2185 		 * With "freeze" we want to replace mapped pages by
2186 		 * migration entries right away. This is only possible if we
2187 		 * managed to clear PageAnonExclusive() -- see
2188 		 * set_pmd_migration_entry().
2189 		 *
2190 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2191 		 * only and let try_to_migrate_one() fail later.
2192 		 *
2193 		 * See page_try_share_anon_rmap(): invalidate PMD first.
2194 		 */
2195 		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2196 		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2197 			freeze = false;
2198 		if (!freeze)
2199 			page_ref_add(page, HPAGE_PMD_NR - 1);
2200 	}
2201 
2202 	/*
2203 	 * Withdraw the table only after we mark the pmd entry invalid.
2204 	 * This's critical for some architectures (Power).
2205 	 */
2206 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2207 	pmd_populate(mm, &_pmd, pgtable);
2208 
2209 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2210 		pte_t entry, *pte;
2211 		/*
2212 		 * Note that NUMA hinting access restrictions are not
2213 		 * transferred to avoid any possibility of altering
2214 		 * permissions across VMAs.
2215 		 */
2216 		if (freeze || pmd_migration) {
2217 			swp_entry_t swp_entry;
2218 			if (write)
2219 				swp_entry = make_writable_migration_entry(
2220 							page_to_pfn(page + i));
2221 			else if (anon_exclusive)
2222 				swp_entry = make_readable_exclusive_migration_entry(
2223 							page_to_pfn(page + i));
2224 			else
2225 				swp_entry = make_readable_migration_entry(
2226 							page_to_pfn(page + i));
2227 			if (young)
2228 				swp_entry = make_migration_entry_young(swp_entry);
2229 			if (dirty)
2230 				swp_entry = make_migration_entry_dirty(swp_entry);
2231 			entry = swp_entry_to_pte(swp_entry);
2232 			if (soft_dirty)
2233 				entry = pte_swp_mksoft_dirty(entry);
2234 			if (uffd_wp)
2235 				entry = pte_swp_mkuffd_wp(entry);
2236 		} else {
2237 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2238 			entry = maybe_mkwrite(entry, vma);
2239 			if (anon_exclusive)
2240 				SetPageAnonExclusive(page + i);
2241 			if (!young)
2242 				entry = pte_mkold(entry);
2243 			/* NOTE: this may set soft-dirty too on some archs */
2244 			if (dirty)
2245 				entry = pte_mkdirty(entry);
2246 			/*
2247 			 * NOTE: this needs to happen after pte_mkdirty,
2248 			 * because some archs (sparc64, loongarch) could
2249 			 * set hw write bit when mkdirty.
2250 			 */
2251 			if (!write)
2252 				entry = pte_wrprotect(entry);
2253 			if (soft_dirty)
2254 				entry = pte_mksoft_dirty(entry);
2255 			if (uffd_wp)
2256 				entry = pte_mkuffd_wp(entry);
2257 			page_add_anon_rmap(page + i, vma, addr, false);
2258 		}
2259 		pte = pte_offset_map(&_pmd, addr);
2260 		BUG_ON(!pte_none(*pte));
2261 		set_pte_at(mm, addr, pte, entry);
2262 		pte_unmap(pte);
2263 	}
2264 
2265 	if (!pmd_migration)
2266 		page_remove_rmap(page, vma, true);
2267 	if (freeze)
2268 		put_page(page);
2269 
2270 	smp_wmb(); /* make pte visible before pmd */
2271 	pmd_populate(mm, pmd, pgtable);
2272 }
2273 
2274 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2275 		unsigned long address, bool freeze, struct folio *folio)
2276 {
2277 	spinlock_t *ptl;
2278 	struct mmu_notifier_range range;
2279 
2280 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2281 				address & HPAGE_PMD_MASK,
2282 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2283 	mmu_notifier_invalidate_range_start(&range);
2284 	ptl = pmd_lock(vma->vm_mm, pmd);
2285 
2286 	/*
2287 	 * If caller asks to setup a migration entry, we need a folio to check
2288 	 * pmd against. Otherwise we can end up replacing wrong folio.
2289 	 */
2290 	VM_BUG_ON(freeze && !folio);
2291 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2292 
2293 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2294 	    is_pmd_migration_entry(*pmd)) {
2295 		/*
2296 		 * It's safe to call pmd_page when folio is set because it's
2297 		 * guaranteed that pmd is present.
2298 		 */
2299 		if (folio && folio != page_folio(pmd_page(*pmd)))
2300 			goto out;
2301 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2302 	}
2303 
2304 out:
2305 	spin_unlock(ptl);
2306 	/*
2307 	 * No need to double call mmu_notifier->invalidate_range() callback.
2308 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2309 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2310 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2311 	 *    fault will trigger a flush_notify before pointing to a new page
2312 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2313 	 *    page in the meantime)
2314 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2315 	 *     to invalidate secondary tlb entry they are all still valid.
2316 	 *     any further changes to individual pte will notify. So no need
2317 	 *     to call mmu_notifier->invalidate_range()
2318 	 */
2319 	mmu_notifier_invalidate_range_only_end(&range);
2320 }
2321 
2322 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2323 		bool freeze, struct folio *folio)
2324 {
2325 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2326 
2327 	if (!pmd)
2328 		return;
2329 
2330 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2331 }
2332 
2333 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2334 {
2335 	/*
2336 	 * If the new address isn't hpage aligned and it could previously
2337 	 * contain an hugepage: check if we need to split an huge pmd.
2338 	 */
2339 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2340 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2341 			 ALIGN(address, HPAGE_PMD_SIZE)))
2342 		split_huge_pmd_address(vma, address, false, NULL);
2343 }
2344 
2345 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2346 			     unsigned long start,
2347 			     unsigned long end,
2348 			     long adjust_next)
2349 {
2350 	/* Check if we need to split start first. */
2351 	split_huge_pmd_if_needed(vma, start);
2352 
2353 	/* Check if we need to split end next. */
2354 	split_huge_pmd_if_needed(vma, end);
2355 
2356 	/*
2357 	 * If we're also updating the next vma vm_start,
2358 	 * check if we need to split it.
2359 	 */
2360 	if (adjust_next > 0) {
2361 		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2362 		unsigned long nstart = next->vm_start;
2363 		nstart += adjust_next;
2364 		split_huge_pmd_if_needed(next, nstart);
2365 	}
2366 }
2367 
2368 static void unmap_folio(struct folio *folio)
2369 {
2370 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2371 		TTU_SYNC;
2372 
2373 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2374 
2375 	/*
2376 	 * Anon pages need migration entries to preserve them, but file
2377 	 * pages can simply be left unmapped, then faulted back on demand.
2378 	 * If that is ever changed (perhaps for mlock), update remap_page().
2379 	 */
2380 	if (folio_test_anon(folio))
2381 		try_to_migrate(folio, ttu_flags);
2382 	else
2383 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2384 }
2385 
2386 static void remap_page(struct folio *folio, unsigned long nr)
2387 {
2388 	int i = 0;
2389 
2390 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2391 	if (!folio_test_anon(folio))
2392 		return;
2393 	for (;;) {
2394 		remove_migration_ptes(folio, folio, true);
2395 		i += folio_nr_pages(folio);
2396 		if (i >= nr)
2397 			break;
2398 		folio = folio_next(folio);
2399 	}
2400 }
2401 
2402 static void lru_add_page_tail(struct page *head, struct page *tail,
2403 		struct lruvec *lruvec, struct list_head *list)
2404 {
2405 	VM_BUG_ON_PAGE(!PageHead(head), head);
2406 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2407 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2408 	lockdep_assert_held(&lruvec->lru_lock);
2409 
2410 	if (list) {
2411 		/* page reclaim is reclaiming a huge page */
2412 		VM_WARN_ON(PageLRU(head));
2413 		get_page(tail);
2414 		list_add_tail(&tail->lru, list);
2415 	} else {
2416 		/* head is still on lru (and we have it frozen) */
2417 		VM_WARN_ON(!PageLRU(head));
2418 		if (PageUnevictable(tail))
2419 			tail->mlock_count = 0;
2420 		else
2421 			list_add_tail(&tail->lru, &head->lru);
2422 		SetPageLRU(tail);
2423 	}
2424 }
2425 
2426 static void __split_huge_page_tail(struct page *head, int tail,
2427 		struct lruvec *lruvec, struct list_head *list)
2428 {
2429 	struct page *page_tail = head + tail;
2430 
2431 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2432 
2433 	/*
2434 	 * Clone page flags before unfreezing refcount.
2435 	 *
2436 	 * After successful get_page_unless_zero() might follow flags change,
2437 	 * for example lock_page() which set PG_waiters.
2438 	 *
2439 	 * Note that for mapped sub-pages of an anonymous THP,
2440 	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2441 	 * the migration entry instead from where remap_page() will restore it.
2442 	 * We can still have PG_anon_exclusive set on effectively unmapped and
2443 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2444 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2445 	 */
2446 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2447 	page_tail->flags |= (head->flags &
2448 			((1L << PG_referenced) |
2449 			 (1L << PG_swapbacked) |
2450 			 (1L << PG_swapcache) |
2451 			 (1L << PG_mlocked) |
2452 			 (1L << PG_uptodate) |
2453 			 (1L << PG_active) |
2454 			 (1L << PG_workingset) |
2455 			 (1L << PG_locked) |
2456 			 (1L << PG_unevictable) |
2457 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2458 			 (1L << PG_arch_2) |
2459 			 (1L << PG_arch_3) |
2460 #endif
2461 			 (1L << PG_dirty) |
2462 			 LRU_GEN_MASK | LRU_REFS_MASK));
2463 
2464 	/* ->mapping in first and second tail page is replaced by other uses */
2465 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2466 			page_tail);
2467 	page_tail->mapping = head->mapping;
2468 	page_tail->index = head->index + tail;
2469 
2470 	/*
2471 	 * page->private should not be set in tail pages with the exception
2472 	 * of swap cache pages that store the swp_entry_t in tail pages.
2473 	 * Fix up and warn once if private is unexpectedly set.
2474 	 *
2475 	 * What of 32-bit systems, on which folio->_pincount overlays
2476 	 * head[1].private?  No problem: THP_SWAP is not enabled on 32-bit, and
2477 	 * pincount must be 0 for folio_ref_freeze() to have succeeded.
2478 	 */
2479 	if (!folio_test_swapcache(page_folio(head))) {
2480 		VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail);
2481 		page_tail->private = 0;
2482 	}
2483 
2484 	/* Page flags must be visible before we make the page non-compound. */
2485 	smp_wmb();
2486 
2487 	/*
2488 	 * Clear PageTail before unfreezing page refcount.
2489 	 *
2490 	 * After successful get_page_unless_zero() might follow put_page()
2491 	 * which needs correct compound_head().
2492 	 */
2493 	clear_compound_head(page_tail);
2494 
2495 	/* Finally unfreeze refcount. Additional reference from page cache. */
2496 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2497 					  PageSwapCache(head)));
2498 
2499 	if (page_is_young(head))
2500 		set_page_young(page_tail);
2501 	if (page_is_idle(head))
2502 		set_page_idle(page_tail);
2503 
2504 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2505 
2506 	/*
2507 	 * always add to the tail because some iterators expect new
2508 	 * pages to show after the currently processed elements - e.g.
2509 	 * migrate_pages
2510 	 */
2511 	lru_add_page_tail(head, page_tail, lruvec, list);
2512 }
2513 
2514 static void __split_huge_page(struct page *page, struct list_head *list,
2515 		pgoff_t end)
2516 {
2517 	struct folio *folio = page_folio(page);
2518 	struct page *head = &folio->page;
2519 	struct lruvec *lruvec;
2520 	struct address_space *swap_cache = NULL;
2521 	unsigned long offset = 0;
2522 	unsigned int nr = thp_nr_pages(head);
2523 	int i;
2524 
2525 	/* complete memcg works before add pages to LRU */
2526 	split_page_memcg(head, nr);
2527 
2528 	if (PageAnon(head) && PageSwapCache(head)) {
2529 		swp_entry_t entry = { .val = page_private(head) };
2530 
2531 		offset = swp_offset(entry);
2532 		swap_cache = swap_address_space(entry);
2533 		xa_lock(&swap_cache->i_pages);
2534 	}
2535 
2536 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2537 	lruvec = folio_lruvec_lock(folio);
2538 
2539 	ClearPageHasHWPoisoned(head);
2540 
2541 	for (i = nr - 1; i >= 1; i--) {
2542 		__split_huge_page_tail(head, i, lruvec, list);
2543 		/* Some pages can be beyond EOF: drop them from page cache */
2544 		if (head[i].index >= end) {
2545 			struct folio *tail = page_folio(head + i);
2546 
2547 			if (shmem_mapping(head->mapping))
2548 				shmem_uncharge(head->mapping->host, 1);
2549 			else if (folio_test_clear_dirty(tail))
2550 				folio_account_cleaned(tail,
2551 					inode_to_wb(folio->mapping->host));
2552 			__filemap_remove_folio(tail, NULL);
2553 			folio_put(tail);
2554 		} else if (!PageAnon(page)) {
2555 			__xa_store(&head->mapping->i_pages, head[i].index,
2556 					head + i, 0);
2557 		} else if (swap_cache) {
2558 			__xa_store(&swap_cache->i_pages, offset + i,
2559 					head + i, 0);
2560 		}
2561 	}
2562 
2563 	ClearPageCompound(head);
2564 	unlock_page_lruvec(lruvec);
2565 	/* Caller disabled irqs, so they are still disabled here */
2566 
2567 	split_page_owner(head, nr);
2568 
2569 	/* See comment in __split_huge_page_tail() */
2570 	if (PageAnon(head)) {
2571 		/* Additional pin to swap cache */
2572 		if (PageSwapCache(head)) {
2573 			page_ref_add(head, 2);
2574 			xa_unlock(&swap_cache->i_pages);
2575 		} else {
2576 			page_ref_inc(head);
2577 		}
2578 	} else {
2579 		/* Additional pin to page cache */
2580 		page_ref_add(head, 2);
2581 		xa_unlock(&head->mapping->i_pages);
2582 	}
2583 	local_irq_enable();
2584 
2585 	remap_page(folio, nr);
2586 
2587 	if (PageSwapCache(head)) {
2588 		swp_entry_t entry = { .val = page_private(head) };
2589 
2590 		split_swap_cluster(entry);
2591 	}
2592 
2593 	for (i = 0; i < nr; i++) {
2594 		struct page *subpage = head + i;
2595 		if (subpage == page)
2596 			continue;
2597 		unlock_page(subpage);
2598 
2599 		/*
2600 		 * Subpages may be freed if there wasn't any mapping
2601 		 * like if add_to_swap() is running on a lru page that
2602 		 * had its mapping zapped. And freeing these pages
2603 		 * requires taking the lru_lock so we do the put_page
2604 		 * of the tail pages after the split is complete.
2605 		 */
2606 		free_page_and_swap_cache(subpage);
2607 	}
2608 }
2609 
2610 /* Racy check whether the huge page can be split */
2611 bool can_split_folio(struct folio *folio, int *pextra_pins)
2612 {
2613 	int extra_pins;
2614 
2615 	/* Additional pins from page cache */
2616 	if (folio_test_anon(folio))
2617 		extra_pins = folio_test_swapcache(folio) ?
2618 				folio_nr_pages(folio) : 0;
2619 	else
2620 		extra_pins = folio_nr_pages(folio);
2621 	if (pextra_pins)
2622 		*pextra_pins = extra_pins;
2623 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2624 }
2625 
2626 /*
2627  * This function splits huge page into normal pages. @page can point to any
2628  * subpage of huge page to split. Split doesn't change the position of @page.
2629  *
2630  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2631  * The huge page must be locked.
2632  *
2633  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2634  *
2635  * Both head page and tail pages will inherit mapping, flags, and so on from
2636  * the hugepage.
2637  *
2638  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2639  * they are not mapped.
2640  *
2641  * Returns 0 if the hugepage is split successfully.
2642  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2643  * us.
2644  */
2645 int split_huge_page_to_list(struct page *page, struct list_head *list)
2646 {
2647 	struct folio *folio = page_folio(page);
2648 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2649 	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2650 	struct anon_vma *anon_vma = NULL;
2651 	struct address_space *mapping = NULL;
2652 	int extra_pins, ret;
2653 	pgoff_t end;
2654 	bool is_hzp;
2655 
2656 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2657 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2658 
2659 	is_hzp = is_huge_zero_page(&folio->page);
2660 	VM_WARN_ON_ONCE_FOLIO(is_hzp, folio);
2661 	if (is_hzp)
2662 		return -EBUSY;
2663 
2664 	if (folio_test_writeback(folio))
2665 		return -EBUSY;
2666 
2667 	if (folio_test_anon(folio)) {
2668 		/*
2669 		 * The caller does not necessarily hold an mmap_lock that would
2670 		 * prevent the anon_vma disappearing so we first we take a
2671 		 * reference to it and then lock the anon_vma for write. This
2672 		 * is similar to folio_lock_anon_vma_read except the write lock
2673 		 * is taken to serialise against parallel split or collapse
2674 		 * operations.
2675 		 */
2676 		anon_vma = folio_get_anon_vma(folio);
2677 		if (!anon_vma) {
2678 			ret = -EBUSY;
2679 			goto out;
2680 		}
2681 		end = -1;
2682 		mapping = NULL;
2683 		anon_vma_lock_write(anon_vma);
2684 	} else {
2685 		gfp_t gfp;
2686 
2687 		mapping = folio->mapping;
2688 
2689 		/* Truncated ? */
2690 		if (!mapping) {
2691 			ret = -EBUSY;
2692 			goto out;
2693 		}
2694 
2695 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2696 							GFP_RECLAIM_MASK);
2697 
2698 		if (folio_test_private(folio) &&
2699 				!filemap_release_folio(folio, gfp)) {
2700 			ret = -EBUSY;
2701 			goto out;
2702 		}
2703 
2704 		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2705 		if (xas_error(&xas)) {
2706 			ret = xas_error(&xas);
2707 			goto out;
2708 		}
2709 
2710 		anon_vma = NULL;
2711 		i_mmap_lock_read(mapping);
2712 
2713 		/*
2714 		 *__split_huge_page() may need to trim off pages beyond EOF:
2715 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2716 		 * which cannot be nested inside the page tree lock. So note
2717 		 * end now: i_size itself may be changed at any moment, but
2718 		 * folio lock is good enough to serialize the trimming.
2719 		 */
2720 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2721 		if (shmem_mapping(mapping))
2722 			end = shmem_fallocend(mapping->host, end);
2723 	}
2724 
2725 	/*
2726 	 * Racy check if we can split the page, before unmap_folio() will
2727 	 * split PMDs
2728 	 */
2729 	if (!can_split_folio(folio, &extra_pins)) {
2730 		ret = -EAGAIN;
2731 		goto out_unlock;
2732 	}
2733 
2734 	unmap_folio(folio);
2735 
2736 	/* block interrupt reentry in xa_lock and spinlock */
2737 	local_irq_disable();
2738 	if (mapping) {
2739 		/*
2740 		 * Check if the folio is present in page cache.
2741 		 * We assume all tail are present too, if folio is there.
2742 		 */
2743 		xas_lock(&xas);
2744 		xas_reset(&xas);
2745 		if (xas_load(&xas) != folio)
2746 			goto fail;
2747 	}
2748 
2749 	/* Prevent deferred_split_scan() touching ->_refcount */
2750 	spin_lock(&ds_queue->split_queue_lock);
2751 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
2752 		if (!list_empty(&folio->_deferred_list)) {
2753 			ds_queue->split_queue_len--;
2754 			list_del(&folio->_deferred_list);
2755 		}
2756 		spin_unlock(&ds_queue->split_queue_lock);
2757 		if (mapping) {
2758 			int nr = folio_nr_pages(folio);
2759 
2760 			xas_split(&xas, folio, folio_order(folio));
2761 			if (folio_test_swapbacked(folio)) {
2762 				__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS,
2763 							-nr);
2764 			} else {
2765 				__lruvec_stat_mod_folio(folio, NR_FILE_THPS,
2766 							-nr);
2767 				filemap_nr_thps_dec(mapping);
2768 			}
2769 		}
2770 
2771 		__split_huge_page(page, list, end);
2772 		ret = 0;
2773 	} else {
2774 		spin_unlock(&ds_queue->split_queue_lock);
2775 fail:
2776 		if (mapping)
2777 			xas_unlock(&xas);
2778 		local_irq_enable();
2779 		remap_page(folio, folio_nr_pages(folio));
2780 		ret = -EAGAIN;
2781 	}
2782 
2783 out_unlock:
2784 	if (anon_vma) {
2785 		anon_vma_unlock_write(anon_vma);
2786 		put_anon_vma(anon_vma);
2787 	}
2788 	if (mapping)
2789 		i_mmap_unlock_read(mapping);
2790 out:
2791 	xas_destroy(&xas);
2792 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2793 	return ret;
2794 }
2795 
2796 void free_transhuge_page(struct page *page)
2797 {
2798 	struct folio *folio = (struct folio *)page;
2799 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2800 	unsigned long flags;
2801 
2802 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2803 	if (!list_empty(&folio->_deferred_list)) {
2804 		ds_queue->split_queue_len--;
2805 		list_del(&folio->_deferred_list);
2806 	}
2807 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2808 	free_compound_page(page);
2809 }
2810 
2811 void deferred_split_folio(struct folio *folio)
2812 {
2813 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2814 #ifdef CONFIG_MEMCG
2815 	struct mem_cgroup *memcg = folio_memcg(folio);
2816 #endif
2817 	unsigned long flags;
2818 
2819 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
2820 
2821 	/*
2822 	 * The try_to_unmap() in page reclaim path might reach here too,
2823 	 * this may cause a race condition to corrupt deferred split queue.
2824 	 * And, if page reclaim is already handling the same folio, it is
2825 	 * unnecessary to handle it again in shrinker.
2826 	 *
2827 	 * Check the swapcache flag to determine if the folio is being
2828 	 * handled by page reclaim since THP swap would add the folio into
2829 	 * swap cache before calling try_to_unmap().
2830 	 */
2831 	if (folio_test_swapcache(folio))
2832 		return;
2833 
2834 	if (!list_empty(&folio->_deferred_list))
2835 		return;
2836 
2837 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2838 	if (list_empty(&folio->_deferred_list)) {
2839 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2840 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
2841 		ds_queue->split_queue_len++;
2842 #ifdef CONFIG_MEMCG
2843 		if (memcg)
2844 			set_shrinker_bit(memcg, folio_nid(folio),
2845 					 deferred_split_shrinker.id);
2846 #endif
2847 	}
2848 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2849 }
2850 
2851 static unsigned long deferred_split_count(struct shrinker *shrink,
2852 		struct shrink_control *sc)
2853 {
2854 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2855 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2856 
2857 #ifdef CONFIG_MEMCG
2858 	if (sc->memcg)
2859 		ds_queue = &sc->memcg->deferred_split_queue;
2860 #endif
2861 	return READ_ONCE(ds_queue->split_queue_len);
2862 }
2863 
2864 static unsigned long deferred_split_scan(struct shrinker *shrink,
2865 		struct shrink_control *sc)
2866 {
2867 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2868 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2869 	unsigned long flags;
2870 	LIST_HEAD(list);
2871 	struct folio *folio, *next;
2872 	int split = 0;
2873 
2874 #ifdef CONFIG_MEMCG
2875 	if (sc->memcg)
2876 		ds_queue = &sc->memcg->deferred_split_queue;
2877 #endif
2878 
2879 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2880 	/* Take pin on all head pages to avoid freeing them under us */
2881 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
2882 							_deferred_list) {
2883 		if (folio_try_get(folio)) {
2884 			list_move(&folio->_deferred_list, &list);
2885 		} else {
2886 			/* We lost race with folio_put() */
2887 			list_del_init(&folio->_deferred_list);
2888 			ds_queue->split_queue_len--;
2889 		}
2890 		if (!--sc->nr_to_scan)
2891 			break;
2892 	}
2893 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2894 
2895 	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
2896 		if (!folio_trylock(folio))
2897 			goto next;
2898 		/* split_huge_page() removes page from list on success */
2899 		if (!split_folio(folio))
2900 			split++;
2901 		folio_unlock(folio);
2902 next:
2903 		folio_put(folio);
2904 	}
2905 
2906 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2907 	list_splice_tail(&list, &ds_queue->split_queue);
2908 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2909 
2910 	/*
2911 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2912 	 * This can happen if pages were freed under us.
2913 	 */
2914 	if (!split && list_empty(&ds_queue->split_queue))
2915 		return SHRINK_STOP;
2916 	return split;
2917 }
2918 
2919 static struct shrinker deferred_split_shrinker = {
2920 	.count_objects = deferred_split_count,
2921 	.scan_objects = deferred_split_scan,
2922 	.seeks = DEFAULT_SEEKS,
2923 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2924 		 SHRINKER_NONSLAB,
2925 };
2926 
2927 #ifdef CONFIG_DEBUG_FS
2928 static void split_huge_pages_all(void)
2929 {
2930 	struct zone *zone;
2931 	struct page *page;
2932 	struct folio *folio;
2933 	unsigned long pfn, max_zone_pfn;
2934 	unsigned long total = 0, split = 0;
2935 
2936 	pr_debug("Split all THPs\n");
2937 	for_each_zone(zone) {
2938 		if (!managed_zone(zone))
2939 			continue;
2940 		max_zone_pfn = zone_end_pfn(zone);
2941 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2942 			int nr_pages;
2943 
2944 			page = pfn_to_online_page(pfn);
2945 			if (!page || PageTail(page))
2946 				continue;
2947 			folio = page_folio(page);
2948 			if (!folio_try_get(folio))
2949 				continue;
2950 
2951 			if (unlikely(page_folio(page) != folio))
2952 				goto next;
2953 
2954 			if (zone != folio_zone(folio))
2955 				goto next;
2956 
2957 			if (!folio_test_large(folio)
2958 				|| folio_test_hugetlb(folio)
2959 				|| !folio_test_lru(folio))
2960 				goto next;
2961 
2962 			total++;
2963 			folio_lock(folio);
2964 			nr_pages = folio_nr_pages(folio);
2965 			if (!split_folio(folio))
2966 				split++;
2967 			pfn += nr_pages - 1;
2968 			folio_unlock(folio);
2969 next:
2970 			folio_put(folio);
2971 			cond_resched();
2972 		}
2973 	}
2974 
2975 	pr_debug("%lu of %lu THP split\n", split, total);
2976 }
2977 
2978 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2979 {
2980 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2981 		    is_vm_hugetlb_page(vma);
2982 }
2983 
2984 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2985 				unsigned long vaddr_end)
2986 {
2987 	int ret = 0;
2988 	struct task_struct *task;
2989 	struct mm_struct *mm;
2990 	unsigned long total = 0, split = 0;
2991 	unsigned long addr;
2992 
2993 	vaddr_start &= PAGE_MASK;
2994 	vaddr_end &= PAGE_MASK;
2995 
2996 	/* Find the task_struct from pid */
2997 	rcu_read_lock();
2998 	task = find_task_by_vpid(pid);
2999 	if (!task) {
3000 		rcu_read_unlock();
3001 		ret = -ESRCH;
3002 		goto out;
3003 	}
3004 	get_task_struct(task);
3005 	rcu_read_unlock();
3006 
3007 	/* Find the mm_struct */
3008 	mm = get_task_mm(task);
3009 	put_task_struct(task);
3010 
3011 	if (!mm) {
3012 		ret = -EINVAL;
3013 		goto out;
3014 	}
3015 
3016 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3017 		 pid, vaddr_start, vaddr_end);
3018 
3019 	mmap_read_lock(mm);
3020 	/*
3021 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3022 	 * table filled with PTE-mapped THPs, each of which is distinct.
3023 	 */
3024 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3025 		struct vm_area_struct *vma = vma_lookup(mm, addr);
3026 		struct page *page;
3027 
3028 		if (!vma)
3029 			break;
3030 
3031 		/* skip special VMA and hugetlb VMA */
3032 		if (vma_not_suitable_for_thp_split(vma)) {
3033 			addr = vma->vm_end;
3034 			continue;
3035 		}
3036 
3037 		/* FOLL_DUMP to ignore special (like zero) pages */
3038 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3039 
3040 		if (IS_ERR_OR_NULL(page))
3041 			continue;
3042 
3043 		if (!is_transparent_hugepage(page))
3044 			goto next;
3045 
3046 		total++;
3047 		if (!can_split_folio(page_folio(page), NULL))
3048 			goto next;
3049 
3050 		if (!trylock_page(page))
3051 			goto next;
3052 
3053 		if (!split_huge_page(page))
3054 			split++;
3055 
3056 		unlock_page(page);
3057 next:
3058 		put_page(page);
3059 		cond_resched();
3060 	}
3061 	mmap_read_unlock(mm);
3062 	mmput(mm);
3063 
3064 	pr_debug("%lu of %lu THP split\n", split, total);
3065 
3066 out:
3067 	return ret;
3068 }
3069 
3070 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3071 				pgoff_t off_end)
3072 {
3073 	struct filename *file;
3074 	struct file *candidate;
3075 	struct address_space *mapping;
3076 	int ret = -EINVAL;
3077 	pgoff_t index;
3078 	int nr_pages = 1;
3079 	unsigned long total = 0, split = 0;
3080 
3081 	file = getname_kernel(file_path);
3082 	if (IS_ERR(file))
3083 		return ret;
3084 
3085 	candidate = file_open_name(file, O_RDONLY, 0);
3086 	if (IS_ERR(candidate))
3087 		goto out;
3088 
3089 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3090 		 file_path, off_start, off_end);
3091 
3092 	mapping = candidate->f_mapping;
3093 
3094 	for (index = off_start; index < off_end; index += nr_pages) {
3095 		struct folio *folio = __filemap_get_folio(mapping, index,
3096 						FGP_ENTRY, 0);
3097 
3098 		nr_pages = 1;
3099 		if (xa_is_value(folio) || !folio)
3100 			continue;
3101 
3102 		if (!folio_test_large(folio))
3103 			goto next;
3104 
3105 		total++;
3106 		nr_pages = folio_nr_pages(folio);
3107 
3108 		if (!folio_trylock(folio))
3109 			goto next;
3110 
3111 		if (!split_folio(folio))
3112 			split++;
3113 
3114 		folio_unlock(folio);
3115 next:
3116 		folio_put(folio);
3117 		cond_resched();
3118 	}
3119 
3120 	filp_close(candidate, NULL);
3121 	ret = 0;
3122 
3123 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3124 out:
3125 	putname(file);
3126 	return ret;
3127 }
3128 
3129 #define MAX_INPUT_BUF_SZ 255
3130 
3131 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3132 				size_t count, loff_t *ppops)
3133 {
3134 	static DEFINE_MUTEX(split_debug_mutex);
3135 	ssize_t ret;
3136 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3137 	char input_buf[MAX_INPUT_BUF_SZ];
3138 	int pid;
3139 	unsigned long vaddr_start, vaddr_end;
3140 
3141 	ret = mutex_lock_interruptible(&split_debug_mutex);
3142 	if (ret)
3143 		return ret;
3144 
3145 	ret = -EFAULT;
3146 
3147 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3148 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3149 		goto out;
3150 
3151 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3152 
3153 	if (input_buf[0] == '/') {
3154 		char *tok;
3155 		char *buf = input_buf;
3156 		char file_path[MAX_INPUT_BUF_SZ];
3157 		pgoff_t off_start = 0, off_end = 0;
3158 		size_t input_len = strlen(input_buf);
3159 
3160 		tok = strsep(&buf, ",");
3161 		if (tok) {
3162 			strcpy(file_path, tok);
3163 		} else {
3164 			ret = -EINVAL;
3165 			goto out;
3166 		}
3167 
3168 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3169 		if (ret != 2) {
3170 			ret = -EINVAL;
3171 			goto out;
3172 		}
3173 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3174 		if (!ret)
3175 			ret = input_len;
3176 
3177 		goto out;
3178 	}
3179 
3180 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3181 	if (ret == 1 && pid == 1) {
3182 		split_huge_pages_all();
3183 		ret = strlen(input_buf);
3184 		goto out;
3185 	} else if (ret != 3) {
3186 		ret = -EINVAL;
3187 		goto out;
3188 	}
3189 
3190 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3191 	if (!ret)
3192 		ret = strlen(input_buf);
3193 out:
3194 	mutex_unlock(&split_debug_mutex);
3195 	return ret;
3196 
3197 }
3198 
3199 static const struct file_operations split_huge_pages_fops = {
3200 	.owner	 = THIS_MODULE,
3201 	.write	 = split_huge_pages_write,
3202 	.llseek  = no_llseek,
3203 };
3204 
3205 static int __init split_huge_pages_debugfs(void)
3206 {
3207 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3208 			    &split_huge_pages_fops);
3209 	return 0;
3210 }
3211 late_initcall(split_huge_pages_debugfs);
3212 #endif
3213 
3214 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3215 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3216 		struct page *page)
3217 {
3218 	struct vm_area_struct *vma = pvmw->vma;
3219 	struct mm_struct *mm = vma->vm_mm;
3220 	unsigned long address = pvmw->address;
3221 	bool anon_exclusive;
3222 	pmd_t pmdval;
3223 	swp_entry_t entry;
3224 	pmd_t pmdswp;
3225 
3226 	if (!(pvmw->pmd && !pvmw->pte))
3227 		return 0;
3228 
3229 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3230 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3231 
3232 	/* See page_try_share_anon_rmap(): invalidate PMD first. */
3233 	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3234 	if (anon_exclusive && page_try_share_anon_rmap(page)) {
3235 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3236 		return -EBUSY;
3237 	}
3238 
3239 	if (pmd_dirty(pmdval))
3240 		set_page_dirty(page);
3241 	if (pmd_write(pmdval))
3242 		entry = make_writable_migration_entry(page_to_pfn(page));
3243 	else if (anon_exclusive)
3244 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3245 	else
3246 		entry = make_readable_migration_entry(page_to_pfn(page));
3247 	if (pmd_young(pmdval))
3248 		entry = make_migration_entry_young(entry);
3249 	if (pmd_dirty(pmdval))
3250 		entry = make_migration_entry_dirty(entry);
3251 	pmdswp = swp_entry_to_pmd(entry);
3252 	if (pmd_soft_dirty(pmdval))
3253 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3254 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3255 	page_remove_rmap(page, vma, true);
3256 	put_page(page);
3257 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3258 
3259 	return 0;
3260 }
3261 
3262 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3263 {
3264 	struct vm_area_struct *vma = pvmw->vma;
3265 	struct mm_struct *mm = vma->vm_mm;
3266 	unsigned long address = pvmw->address;
3267 	unsigned long haddr = address & HPAGE_PMD_MASK;
3268 	pmd_t pmde;
3269 	swp_entry_t entry;
3270 
3271 	if (!(pvmw->pmd && !pvmw->pte))
3272 		return;
3273 
3274 	entry = pmd_to_swp_entry(*pvmw->pmd);
3275 	get_page(new);
3276 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3277 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3278 		pmde = pmd_mksoft_dirty(pmde);
3279 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3280 		pmde = pmd_mkuffd_wp(pmde);
3281 	if (!is_migration_entry_young(entry))
3282 		pmde = pmd_mkold(pmde);
3283 	/* NOTE: this may contain setting soft-dirty on some archs */
3284 	if (PageDirty(new) && is_migration_entry_dirty(entry))
3285 		pmde = pmd_mkdirty(pmde);
3286 	if (is_writable_migration_entry(entry))
3287 		pmde = maybe_pmd_mkwrite(pmde, vma);
3288 	else
3289 		pmde = pmd_wrprotect(pmde);
3290 
3291 	if (PageAnon(new)) {
3292 		rmap_t rmap_flags = RMAP_COMPOUND;
3293 
3294 		if (!is_readable_migration_entry(entry))
3295 			rmap_flags |= RMAP_EXCLUSIVE;
3296 
3297 		page_add_anon_rmap(new, vma, haddr, rmap_flags);
3298 	} else {
3299 		page_add_file_rmap(new, vma, true);
3300 	}
3301 	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3302 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3303 
3304 	/* No need to invalidate - it was non-present before */
3305 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3306 	trace_remove_migration_pmd(address, pmd_val(pmde));
3307 }
3308 #endif
3309