1 /* 2 * Copyright (C) 2009 Red Hat, Inc. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/highmem.h> 11 #include <linux/hugetlb.h> 12 #include <linux/mmu_notifier.h> 13 #include <linux/rmap.h> 14 #include <linux/swap.h> 15 #include <linux/shrinker.h> 16 #include <linux/mm_inline.h> 17 #include <linux/kthread.h> 18 #include <linux/khugepaged.h> 19 #include <linux/freezer.h> 20 #include <linux/mman.h> 21 #include <linux/pagemap.h> 22 #include <linux/migrate.h> 23 #include <linux/hashtable.h> 24 25 #include <asm/tlb.h> 26 #include <asm/pgalloc.h> 27 #include "internal.h" 28 29 /* 30 * By default transparent hugepage support is disabled in order that avoid 31 * to risk increase the memory footprint of applications without a guaranteed 32 * benefit. When transparent hugepage support is enabled, is for all mappings, 33 * and khugepaged scans all mappings. 34 * Defrag is invoked by khugepaged hugepage allocations and by page faults 35 * for all hugepage allocations. 36 */ 37 unsigned long transparent_hugepage_flags __read_mostly = 38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 39 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 40 #endif 41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 42 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 43 #endif 44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)| 45 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 46 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 47 48 /* default scan 8*512 pte (or vmas) every 30 second */ 49 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8; 50 static unsigned int khugepaged_pages_collapsed; 51 static unsigned int khugepaged_full_scans; 52 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 53 /* during fragmentation poll the hugepage allocator once every minute */ 54 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 55 static struct task_struct *khugepaged_thread __read_mostly; 56 static DEFINE_MUTEX(khugepaged_mutex); 57 static DEFINE_SPINLOCK(khugepaged_mm_lock); 58 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 59 /* 60 * default collapse hugepages if there is at least one pte mapped like 61 * it would have happened if the vma was large enough during page 62 * fault. 63 */ 64 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1; 65 66 static int khugepaged(void *none); 67 static int khugepaged_slab_init(void); 68 69 #define MM_SLOTS_HASH_BITS 10 70 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 71 72 static struct kmem_cache *mm_slot_cache __read_mostly; 73 74 /** 75 * struct mm_slot - hash lookup from mm to mm_slot 76 * @hash: hash collision list 77 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head 78 * @mm: the mm that this information is valid for 79 */ 80 struct mm_slot { 81 struct hlist_node hash; 82 struct list_head mm_node; 83 struct mm_struct *mm; 84 }; 85 86 /** 87 * struct khugepaged_scan - cursor for scanning 88 * @mm_head: the head of the mm list to scan 89 * @mm_slot: the current mm_slot we are scanning 90 * @address: the next address inside that to be scanned 91 * 92 * There is only the one khugepaged_scan instance of this cursor structure. 93 */ 94 struct khugepaged_scan { 95 struct list_head mm_head; 96 struct mm_slot *mm_slot; 97 unsigned long address; 98 }; 99 static struct khugepaged_scan khugepaged_scan = { 100 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 101 }; 102 103 104 static int set_recommended_min_free_kbytes(void) 105 { 106 struct zone *zone; 107 int nr_zones = 0; 108 unsigned long recommended_min; 109 110 if (!khugepaged_enabled()) 111 return 0; 112 113 for_each_populated_zone(zone) 114 nr_zones++; 115 116 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */ 117 recommended_min = pageblock_nr_pages * nr_zones * 2; 118 119 /* 120 * Make sure that on average at least two pageblocks are almost free 121 * of another type, one for a migratetype to fall back to and a 122 * second to avoid subsequent fallbacks of other types There are 3 123 * MIGRATE_TYPES we care about. 124 */ 125 recommended_min += pageblock_nr_pages * nr_zones * 126 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 127 128 /* don't ever allow to reserve more than 5% of the lowmem */ 129 recommended_min = min(recommended_min, 130 (unsigned long) nr_free_buffer_pages() / 20); 131 recommended_min <<= (PAGE_SHIFT-10); 132 133 if (recommended_min > min_free_kbytes) { 134 if (user_min_free_kbytes >= 0) 135 pr_info("raising min_free_kbytes from %d to %lu " 136 "to help transparent hugepage allocations\n", 137 min_free_kbytes, recommended_min); 138 139 min_free_kbytes = recommended_min; 140 } 141 setup_per_zone_wmarks(); 142 return 0; 143 } 144 late_initcall(set_recommended_min_free_kbytes); 145 146 static int start_khugepaged(void) 147 { 148 int err = 0; 149 if (khugepaged_enabled()) { 150 if (!khugepaged_thread) 151 khugepaged_thread = kthread_run(khugepaged, NULL, 152 "khugepaged"); 153 if (unlikely(IS_ERR(khugepaged_thread))) { 154 printk(KERN_ERR 155 "khugepaged: kthread_run(khugepaged) failed\n"); 156 err = PTR_ERR(khugepaged_thread); 157 khugepaged_thread = NULL; 158 } 159 160 if (!list_empty(&khugepaged_scan.mm_head)) 161 wake_up_interruptible(&khugepaged_wait); 162 163 set_recommended_min_free_kbytes(); 164 } else if (khugepaged_thread) { 165 kthread_stop(khugepaged_thread); 166 khugepaged_thread = NULL; 167 } 168 169 return err; 170 } 171 172 static atomic_t huge_zero_refcount; 173 static struct page *huge_zero_page __read_mostly; 174 175 static inline bool is_huge_zero_page(struct page *page) 176 { 177 return ACCESS_ONCE(huge_zero_page) == page; 178 } 179 180 static inline bool is_huge_zero_pmd(pmd_t pmd) 181 { 182 return is_huge_zero_page(pmd_page(pmd)); 183 } 184 185 static struct page *get_huge_zero_page(void) 186 { 187 struct page *zero_page; 188 retry: 189 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 190 return ACCESS_ONCE(huge_zero_page); 191 192 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 193 HPAGE_PMD_ORDER); 194 if (!zero_page) { 195 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 196 return NULL; 197 } 198 count_vm_event(THP_ZERO_PAGE_ALLOC); 199 preempt_disable(); 200 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 201 preempt_enable(); 202 __free_page(zero_page); 203 goto retry; 204 } 205 206 /* We take additional reference here. It will be put back by shrinker */ 207 atomic_set(&huge_zero_refcount, 2); 208 preempt_enable(); 209 return ACCESS_ONCE(huge_zero_page); 210 } 211 212 static void put_huge_zero_page(void) 213 { 214 /* 215 * Counter should never go to zero here. Only shrinker can put 216 * last reference. 217 */ 218 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 219 } 220 221 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 222 struct shrink_control *sc) 223 { 224 /* we can free zero page only if last reference remains */ 225 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 226 } 227 228 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 229 struct shrink_control *sc) 230 { 231 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 232 struct page *zero_page = xchg(&huge_zero_page, NULL); 233 BUG_ON(zero_page == NULL); 234 __free_page(zero_page); 235 return HPAGE_PMD_NR; 236 } 237 238 return 0; 239 } 240 241 static struct shrinker huge_zero_page_shrinker = { 242 .count_objects = shrink_huge_zero_page_count, 243 .scan_objects = shrink_huge_zero_page_scan, 244 .seeks = DEFAULT_SEEKS, 245 }; 246 247 #ifdef CONFIG_SYSFS 248 249 static ssize_t double_flag_show(struct kobject *kobj, 250 struct kobj_attribute *attr, char *buf, 251 enum transparent_hugepage_flag enabled, 252 enum transparent_hugepage_flag req_madv) 253 { 254 if (test_bit(enabled, &transparent_hugepage_flags)) { 255 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags)); 256 return sprintf(buf, "[always] madvise never\n"); 257 } else if (test_bit(req_madv, &transparent_hugepage_flags)) 258 return sprintf(buf, "always [madvise] never\n"); 259 else 260 return sprintf(buf, "always madvise [never]\n"); 261 } 262 static ssize_t double_flag_store(struct kobject *kobj, 263 struct kobj_attribute *attr, 264 const char *buf, size_t count, 265 enum transparent_hugepage_flag enabled, 266 enum transparent_hugepage_flag req_madv) 267 { 268 if (!memcmp("always", buf, 269 min(sizeof("always")-1, count))) { 270 set_bit(enabled, &transparent_hugepage_flags); 271 clear_bit(req_madv, &transparent_hugepage_flags); 272 } else if (!memcmp("madvise", buf, 273 min(sizeof("madvise")-1, count))) { 274 clear_bit(enabled, &transparent_hugepage_flags); 275 set_bit(req_madv, &transparent_hugepage_flags); 276 } else if (!memcmp("never", buf, 277 min(sizeof("never")-1, count))) { 278 clear_bit(enabled, &transparent_hugepage_flags); 279 clear_bit(req_madv, &transparent_hugepage_flags); 280 } else 281 return -EINVAL; 282 283 return count; 284 } 285 286 static ssize_t enabled_show(struct kobject *kobj, 287 struct kobj_attribute *attr, char *buf) 288 { 289 return double_flag_show(kobj, attr, buf, 290 TRANSPARENT_HUGEPAGE_FLAG, 291 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); 292 } 293 static ssize_t enabled_store(struct kobject *kobj, 294 struct kobj_attribute *attr, 295 const char *buf, size_t count) 296 { 297 ssize_t ret; 298 299 ret = double_flag_store(kobj, attr, buf, count, 300 TRANSPARENT_HUGEPAGE_FLAG, 301 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); 302 303 if (ret > 0) { 304 int err; 305 306 mutex_lock(&khugepaged_mutex); 307 err = start_khugepaged(); 308 mutex_unlock(&khugepaged_mutex); 309 310 if (err) 311 ret = err; 312 } 313 314 return ret; 315 } 316 static struct kobj_attribute enabled_attr = 317 __ATTR(enabled, 0644, enabled_show, enabled_store); 318 319 static ssize_t single_flag_show(struct kobject *kobj, 320 struct kobj_attribute *attr, char *buf, 321 enum transparent_hugepage_flag flag) 322 { 323 return sprintf(buf, "%d\n", 324 !!test_bit(flag, &transparent_hugepage_flags)); 325 } 326 327 static ssize_t single_flag_store(struct kobject *kobj, 328 struct kobj_attribute *attr, 329 const char *buf, size_t count, 330 enum transparent_hugepage_flag flag) 331 { 332 unsigned long value; 333 int ret; 334 335 ret = kstrtoul(buf, 10, &value); 336 if (ret < 0) 337 return ret; 338 if (value > 1) 339 return -EINVAL; 340 341 if (value) 342 set_bit(flag, &transparent_hugepage_flags); 343 else 344 clear_bit(flag, &transparent_hugepage_flags); 345 346 return count; 347 } 348 349 /* 350 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind 351 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of 352 * memory just to allocate one more hugepage. 353 */ 354 static ssize_t defrag_show(struct kobject *kobj, 355 struct kobj_attribute *attr, char *buf) 356 { 357 return double_flag_show(kobj, attr, buf, 358 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, 359 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); 360 } 361 static ssize_t defrag_store(struct kobject *kobj, 362 struct kobj_attribute *attr, 363 const char *buf, size_t count) 364 { 365 return double_flag_store(kobj, attr, buf, count, 366 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG, 367 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); 368 } 369 static struct kobj_attribute defrag_attr = 370 __ATTR(defrag, 0644, defrag_show, defrag_store); 371 372 static ssize_t use_zero_page_show(struct kobject *kobj, 373 struct kobj_attribute *attr, char *buf) 374 { 375 return single_flag_show(kobj, attr, buf, 376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 377 } 378 static ssize_t use_zero_page_store(struct kobject *kobj, 379 struct kobj_attribute *attr, const char *buf, size_t count) 380 { 381 return single_flag_store(kobj, attr, buf, count, 382 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 383 } 384 static struct kobj_attribute use_zero_page_attr = 385 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 386 #ifdef CONFIG_DEBUG_VM 387 static ssize_t debug_cow_show(struct kobject *kobj, 388 struct kobj_attribute *attr, char *buf) 389 { 390 return single_flag_show(kobj, attr, buf, 391 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 392 } 393 static ssize_t debug_cow_store(struct kobject *kobj, 394 struct kobj_attribute *attr, 395 const char *buf, size_t count) 396 { 397 return single_flag_store(kobj, attr, buf, count, 398 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 399 } 400 static struct kobj_attribute debug_cow_attr = 401 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 402 #endif /* CONFIG_DEBUG_VM */ 403 404 static struct attribute *hugepage_attr[] = { 405 &enabled_attr.attr, 406 &defrag_attr.attr, 407 &use_zero_page_attr.attr, 408 #ifdef CONFIG_DEBUG_VM 409 &debug_cow_attr.attr, 410 #endif 411 NULL, 412 }; 413 414 static struct attribute_group hugepage_attr_group = { 415 .attrs = hugepage_attr, 416 }; 417 418 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 419 struct kobj_attribute *attr, 420 char *buf) 421 { 422 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs); 423 } 424 425 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 426 struct kobj_attribute *attr, 427 const char *buf, size_t count) 428 { 429 unsigned long msecs; 430 int err; 431 432 err = kstrtoul(buf, 10, &msecs); 433 if (err || msecs > UINT_MAX) 434 return -EINVAL; 435 436 khugepaged_scan_sleep_millisecs = msecs; 437 wake_up_interruptible(&khugepaged_wait); 438 439 return count; 440 } 441 static struct kobj_attribute scan_sleep_millisecs_attr = 442 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, 443 scan_sleep_millisecs_store); 444 445 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 446 struct kobj_attribute *attr, 447 char *buf) 448 { 449 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 450 } 451 452 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 453 struct kobj_attribute *attr, 454 const char *buf, size_t count) 455 { 456 unsigned long msecs; 457 int err; 458 459 err = kstrtoul(buf, 10, &msecs); 460 if (err || msecs > UINT_MAX) 461 return -EINVAL; 462 463 khugepaged_alloc_sleep_millisecs = msecs; 464 wake_up_interruptible(&khugepaged_wait); 465 466 return count; 467 } 468 static struct kobj_attribute alloc_sleep_millisecs_attr = 469 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, 470 alloc_sleep_millisecs_store); 471 472 static ssize_t pages_to_scan_show(struct kobject *kobj, 473 struct kobj_attribute *attr, 474 char *buf) 475 { 476 return sprintf(buf, "%u\n", khugepaged_pages_to_scan); 477 } 478 static ssize_t pages_to_scan_store(struct kobject *kobj, 479 struct kobj_attribute *attr, 480 const char *buf, size_t count) 481 { 482 int err; 483 unsigned long pages; 484 485 err = kstrtoul(buf, 10, &pages); 486 if (err || !pages || pages > UINT_MAX) 487 return -EINVAL; 488 489 khugepaged_pages_to_scan = pages; 490 491 return count; 492 } 493 static struct kobj_attribute pages_to_scan_attr = 494 __ATTR(pages_to_scan, 0644, pages_to_scan_show, 495 pages_to_scan_store); 496 497 static ssize_t pages_collapsed_show(struct kobject *kobj, 498 struct kobj_attribute *attr, 499 char *buf) 500 { 501 return sprintf(buf, "%u\n", khugepaged_pages_collapsed); 502 } 503 static struct kobj_attribute pages_collapsed_attr = 504 __ATTR_RO(pages_collapsed); 505 506 static ssize_t full_scans_show(struct kobject *kobj, 507 struct kobj_attribute *attr, 508 char *buf) 509 { 510 return sprintf(buf, "%u\n", khugepaged_full_scans); 511 } 512 static struct kobj_attribute full_scans_attr = 513 __ATTR_RO(full_scans); 514 515 static ssize_t khugepaged_defrag_show(struct kobject *kobj, 516 struct kobj_attribute *attr, char *buf) 517 { 518 return single_flag_show(kobj, attr, buf, 519 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 520 } 521 static ssize_t khugepaged_defrag_store(struct kobject *kobj, 522 struct kobj_attribute *attr, 523 const char *buf, size_t count) 524 { 525 return single_flag_store(kobj, attr, buf, count, 526 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 527 } 528 static struct kobj_attribute khugepaged_defrag_attr = 529 __ATTR(defrag, 0644, khugepaged_defrag_show, 530 khugepaged_defrag_store); 531 532 /* 533 * max_ptes_none controls if khugepaged should collapse hugepages over 534 * any unmapped ptes in turn potentially increasing the memory 535 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 536 * reduce the available free memory in the system as it 537 * runs. Increasing max_ptes_none will instead potentially reduce the 538 * free memory in the system during the khugepaged scan. 539 */ 540 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, 541 struct kobj_attribute *attr, 542 char *buf) 543 { 544 return sprintf(buf, "%u\n", khugepaged_max_ptes_none); 545 } 546 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, 547 struct kobj_attribute *attr, 548 const char *buf, size_t count) 549 { 550 int err; 551 unsigned long max_ptes_none; 552 553 err = kstrtoul(buf, 10, &max_ptes_none); 554 if (err || max_ptes_none > HPAGE_PMD_NR-1) 555 return -EINVAL; 556 557 khugepaged_max_ptes_none = max_ptes_none; 558 559 return count; 560 } 561 static struct kobj_attribute khugepaged_max_ptes_none_attr = 562 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, 563 khugepaged_max_ptes_none_store); 564 565 static struct attribute *khugepaged_attr[] = { 566 &khugepaged_defrag_attr.attr, 567 &khugepaged_max_ptes_none_attr.attr, 568 &pages_to_scan_attr.attr, 569 &pages_collapsed_attr.attr, 570 &full_scans_attr.attr, 571 &scan_sleep_millisecs_attr.attr, 572 &alloc_sleep_millisecs_attr.attr, 573 NULL, 574 }; 575 576 static struct attribute_group khugepaged_attr_group = { 577 .attrs = khugepaged_attr, 578 .name = "khugepaged", 579 }; 580 581 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 582 { 583 int err; 584 585 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 586 if (unlikely(!*hugepage_kobj)) { 587 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n"); 588 return -ENOMEM; 589 } 590 591 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 592 if (err) { 593 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n"); 594 goto delete_obj; 595 } 596 597 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 598 if (err) { 599 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n"); 600 goto remove_hp_group; 601 } 602 603 return 0; 604 605 remove_hp_group: 606 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 607 delete_obj: 608 kobject_put(*hugepage_kobj); 609 return err; 610 } 611 612 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 613 { 614 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 615 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 616 kobject_put(hugepage_kobj); 617 } 618 #else 619 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 620 { 621 return 0; 622 } 623 624 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 625 { 626 } 627 #endif /* CONFIG_SYSFS */ 628 629 static int __init hugepage_init(void) 630 { 631 int err; 632 struct kobject *hugepage_kobj; 633 634 if (!has_transparent_hugepage()) { 635 transparent_hugepage_flags = 0; 636 return -EINVAL; 637 } 638 639 err = hugepage_init_sysfs(&hugepage_kobj); 640 if (err) 641 return err; 642 643 err = khugepaged_slab_init(); 644 if (err) 645 goto out; 646 647 register_shrinker(&huge_zero_page_shrinker); 648 649 /* 650 * By default disable transparent hugepages on smaller systems, 651 * where the extra memory used could hurt more than TLB overhead 652 * is likely to save. The admin can still enable it through /sys. 653 */ 654 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) 655 transparent_hugepage_flags = 0; 656 657 start_khugepaged(); 658 659 return 0; 660 out: 661 hugepage_exit_sysfs(hugepage_kobj); 662 return err; 663 } 664 subsys_initcall(hugepage_init); 665 666 static int __init setup_transparent_hugepage(char *str) 667 { 668 int ret = 0; 669 if (!str) 670 goto out; 671 if (!strcmp(str, "always")) { 672 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 673 &transparent_hugepage_flags); 674 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 675 &transparent_hugepage_flags); 676 ret = 1; 677 } else if (!strcmp(str, "madvise")) { 678 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 679 &transparent_hugepage_flags); 680 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 681 &transparent_hugepage_flags); 682 ret = 1; 683 } else if (!strcmp(str, "never")) { 684 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 685 &transparent_hugepage_flags); 686 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 687 &transparent_hugepage_flags); 688 ret = 1; 689 } 690 out: 691 if (!ret) 692 printk(KERN_WARNING 693 "transparent_hugepage= cannot parse, ignored\n"); 694 return ret; 695 } 696 __setup("transparent_hugepage=", setup_transparent_hugepage); 697 698 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 699 { 700 if (likely(vma->vm_flags & VM_WRITE)) 701 pmd = pmd_mkwrite(pmd); 702 return pmd; 703 } 704 705 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot) 706 { 707 pmd_t entry; 708 entry = mk_pmd(page, prot); 709 entry = pmd_mkhuge(entry); 710 return entry; 711 } 712 713 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, 714 struct vm_area_struct *vma, 715 unsigned long haddr, pmd_t *pmd, 716 struct page *page) 717 { 718 pgtable_t pgtable; 719 spinlock_t *ptl; 720 721 VM_BUG_ON_PAGE(!PageCompound(page), page); 722 pgtable = pte_alloc_one(mm, haddr); 723 if (unlikely(!pgtable)) 724 return VM_FAULT_OOM; 725 726 clear_huge_page(page, haddr, HPAGE_PMD_NR); 727 /* 728 * The memory barrier inside __SetPageUptodate makes sure that 729 * clear_huge_page writes become visible before the set_pmd_at() 730 * write. 731 */ 732 __SetPageUptodate(page); 733 734 ptl = pmd_lock(mm, pmd); 735 if (unlikely(!pmd_none(*pmd))) { 736 spin_unlock(ptl); 737 mem_cgroup_uncharge_page(page); 738 put_page(page); 739 pte_free(mm, pgtable); 740 } else { 741 pmd_t entry; 742 entry = mk_huge_pmd(page, vma->vm_page_prot); 743 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 744 page_add_new_anon_rmap(page, vma, haddr); 745 pgtable_trans_huge_deposit(mm, pmd, pgtable); 746 set_pmd_at(mm, haddr, pmd, entry); 747 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); 748 atomic_long_inc(&mm->nr_ptes); 749 spin_unlock(ptl); 750 } 751 752 return 0; 753 } 754 755 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp) 756 { 757 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp; 758 } 759 760 static inline struct page *alloc_hugepage_vma(int defrag, 761 struct vm_area_struct *vma, 762 unsigned long haddr, int nd, 763 gfp_t extra_gfp) 764 { 765 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp), 766 HPAGE_PMD_ORDER, vma, haddr, nd); 767 } 768 769 /* Caller must hold page table lock. */ 770 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 771 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 772 struct page *zero_page) 773 { 774 pmd_t entry; 775 if (!pmd_none(*pmd)) 776 return false; 777 entry = mk_pmd(zero_page, vma->vm_page_prot); 778 entry = pmd_wrprotect(entry); 779 entry = pmd_mkhuge(entry); 780 pgtable_trans_huge_deposit(mm, pmd, pgtable); 781 set_pmd_at(mm, haddr, pmd, entry); 782 atomic_long_inc(&mm->nr_ptes); 783 return true; 784 } 785 786 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 787 unsigned long address, pmd_t *pmd, 788 unsigned int flags) 789 { 790 struct page *page; 791 unsigned long haddr = address & HPAGE_PMD_MASK; 792 793 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 794 return VM_FAULT_FALLBACK; 795 if (unlikely(anon_vma_prepare(vma))) 796 return VM_FAULT_OOM; 797 if (unlikely(khugepaged_enter(vma))) 798 return VM_FAULT_OOM; 799 if (!(flags & FAULT_FLAG_WRITE) && 800 transparent_hugepage_use_zero_page()) { 801 spinlock_t *ptl; 802 pgtable_t pgtable; 803 struct page *zero_page; 804 bool set; 805 pgtable = pte_alloc_one(mm, haddr); 806 if (unlikely(!pgtable)) 807 return VM_FAULT_OOM; 808 zero_page = get_huge_zero_page(); 809 if (unlikely(!zero_page)) { 810 pte_free(mm, pgtable); 811 count_vm_event(THP_FAULT_FALLBACK); 812 return VM_FAULT_FALLBACK; 813 } 814 ptl = pmd_lock(mm, pmd); 815 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd, 816 zero_page); 817 spin_unlock(ptl); 818 if (!set) { 819 pte_free(mm, pgtable); 820 put_huge_zero_page(); 821 } 822 return 0; 823 } 824 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), 825 vma, haddr, numa_node_id(), 0); 826 if (unlikely(!page)) { 827 count_vm_event(THP_FAULT_FALLBACK); 828 return VM_FAULT_FALLBACK; 829 } 830 if (unlikely(mem_cgroup_charge_anon(page, mm, GFP_KERNEL))) { 831 put_page(page); 832 count_vm_event(THP_FAULT_FALLBACK); 833 return VM_FAULT_FALLBACK; 834 } 835 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) { 836 mem_cgroup_uncharge_page(page); 837 put_page(page); 838 count_vm_event(THP_FAULT_FALLBACK); 839 return VM_FAULT_FALLBACK; 840 } 841 842 count_vm_event(THP_FAULT_ALLOC); 843 return 0; 844 } 845 846 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 847 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 848 struct vm_area_struct *vma) 849 { 850 spinlock_t *dst_ptl, *src_ptl; 851 struct page *src_page; 852 pmd_t pmd; 853 pgtable_t pgtable; 854 int ret; 855 856 ret = -ENOMEM; 857 pgtable = pte_alloc_one(dst_mm, addr); 858 if (unlikely(!pgtable)) 859 goto out; 860 861 dst_ptl = pmd_lock(dst_mm, dst_pmd); 862 src_ptl = pmd_lockptr(src_mm, src_pmd); 863 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 864 865 ret = -EAGAIN; 866 pmd = *src_pmd; 867 if (unlikely(!pmd_trans_huge(pmd))) { 868 pte_free(dst_mm, pgtable); 869 goto out_unlock; 870 } 871 /* 872 * When page table lock is held, the huge zero pmd should not be 873 * under splitting since we don't split the page itself, only pmd to 874 * a page table. 875 */ 876 if (is_huge_zero_pmd(pmd)) { 877 struct page *zero_page; 878 bool set; 879 /* 880 * get_huge_zero_page() will never allocate a new page here, 881 * since we already have a zero page to copy. It just takes a 882 * reference. 883 */ 884 zero_page = get_huge_zero_page(); 885 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 886 zero_page); 887 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */ 888 ret = 0; 889 goto out_unlock; 890 } 891 892 if (unlikely(pmd_trans_splitting(pmd))) { 893 /* split huge page running from under us */ 894 spin_unlock(src_ptl); 895 spin_unlock(dst_ptl); 896 pte_free(dst_mm, pgtable); 897 898 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */ 899 goto out; 900 } 901 src_page = pmd_page(pmd); 902 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 903 get_page(src_page); 904 page_dup_rmap(src_page); 905 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 906 907 pmdp_set_wrprotect(src_mm, addr, src_pmd); 908 pmd = pmd_mkold(pmd_wrprotect(pmd)); 909 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 910 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 911 atomic_long_inc(&dst_mm->nr_ptes); 912 913 ret = 0; 914 out_unlock: 915 spin_unlock(src_ptl); 916 spin_unlock(dst_ptl); 917 out: 918 return ret; 919 } 920 921 void huge_pmd_set_accessed(struct mm_struct *mm, 922 struct vm_area_struct *vma, 923 unsigned long address, 924 pmd_t *pmd, pmd_t orig_pmd, 925 int dirty) 926 { 927 spinlock_t *ptl; 928 pmd_t entry; 929 unsigned long haddr; 930 931 ptl = pmd_lock(mm, pmd); 932 if (unlikely(!pmd_same(*pmd, orig_pmd))) 933 goto unlock; 934 935 entry = pmd_mkyoung(orig_pmd); 936 haddr = address & HPAGE_PMD_MASK; 937 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty)) 938 update_mmu_cache_pmd(vma, address, pmd); 939 940 unlock: 941 spin_unlock(ptl); 942 } 943 944 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm, 945 struct vm_area_struct *vma, 946 unsigned long address, 947 pmd_t *pmd, pmd_t orig_pmd, 948 struct page *page, 949 unsigned long haddr) 950 { 951 spinlock_t *ptl; 952 pgtable_t pgtable; 953 pmd_t _pmd; 954 int ret = 0, i; 955 struct page **pages; 956 unsigned long mmun_start; /* For mmu_notifiers */ 957 unsigned long mmun_end; /* For mmu_notifiers */ 958 959 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, 960 GFP_KERNEL); 961 if (unlikely(!pages)) { 962 ret |= VM_FAULT_OOM; 963 goto out; 964 } 965 966 for (i = 0; i < HPAGE_PMD_NR; i++) { 967 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | 968 __GFP_OTHER_NODE, 969 vma, address, page_to_nid(page)); 970 if (unlikely(!pages[i] || 971 mem_cgroup_charge_anon(pages[i], mm, 972 GFP_KERNEL))) { 973 if (pages[i]) 974 put_page(pages[i]); 975 mem_cgroup_uncharge_start(); 976 while (--i >= 0) { 977 mem_cgroup_uncharge_page(pages[i]); 978 put_page(pages[i]); 979 } 980 mem_cgroup_uncharge_end(); 981 kfree(pages); 982 ret |= VM_FAULT_OOM; 983 goto out; 984 } 985 } 986 987 for (i = 0; i < HPAGE_PMD_NR; i++) { 988 copy_user_highpage(pages[i], page + i, 989 haddr + PAGE_SIZE * i, vma); 990 __SetPageUptodate(pages[i]); 991 cond_resched(); 992 } 993 994 mmun_start = haddr; 995 mmun_end = haddr + HPAGE_PMD_SIZE; 996 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 997 998 ptl = pmd_lock(mm, pmd); 999 if (unlikely(!pmd_same(*pmd, orig_pmd))) 1000 goto out_free_pages; 1001 VM_BUG_ON_PAGE(!PageHead(page), page); 1002 1003 pmdp_clear_flush(vma, haddr, pmd); 1004 /* leave pmd empty until pte is filled */ 1005 1006 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1007 pmd_populate(mm, &_pmd, pgtable); 1008 1009 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1010 pte_t *pte, entry; 1011 entry = mk_pte(pages[i], vma->vm_page_prot); 1012 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1013 page_add_new_anon_rmap(pages[i], vma, haddr); 1014 pte = pte_offset_map(&_pmd, haddr); 1015 VM_BUG_ON(!pte_none(*pte)); 1016 set_pte_at(mm, haddr, pte, entry); 1017 pte_unmap(pte); 1018 } 1019 kfree(pages); 1020 1021 smp_wmb(); /* make pte visible before pmd */ 1022 pmd_populate(mm, pmd, pgtable); 1023 page_remove_rmap(page); 1024 spin_unlock(ptl); 1025 1026 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1027 1028 ret |= VM_FAULT_WRITE; 1029 put_page(page); 1030 1031 out: 1032 return ret; 1033 1034 out_free_pages: 1035 spin_unlock(ptl); 1036 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1037 mem_cgroup_uncharge_start(); 1038 for (i = 0; i < HPAGE_PMD_NR; i++) { 1039 mem_cgroup_uncharge_page(pages[i]); 1040 put_page(pages[i]); 1041 } 1042 mem_cgroup_uncharge_end(); 1043 kfree(pages); 1044 goto out; 1045 } 1046 1047 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1048 unsigned long address, pmd_t *pmd, pmd_t orig_pmd) 1049 { 1050 spinlock_t *ptl; 1051 int ret = 0; 1052 struct page *page = NULL, *new_page; 1053 unsigned long haddr; 1054 unsigned long mmun_start; /* For mmu_notifiers */ 1055 unsigned long mmun_end; /* For mmu_notifiers */ 1056 1057 ptl = pmd_lockptr(mm, pmd); 1058 VM_BUG_ON(!vma->anon_vma); 1059 haddr = address & HPAGE_PMD_MASK; 1060 if (is_huge_zero_pmd(orig_pmd)) 1061 goto alloc; 1062 spin_lock(ptl); 1063 if (unlikely(!pmd_same(*pmd, orig_pmd))) 1064 goto out_unlock; 1065 1066 page = pmd_page(orig_pmd); 1067 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 1068 if (page_mapcount(page) == 1) { 1069 pmd_t entry; 1070 entry = pmd_mkyoung(orig_pmd); 1071 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1072 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1)) 1073 update_mmu_cache_pmd(vma, address, pmd); 1074 ret |= VM_FAULT_WRITE; 1075 goto out_unlock; 1076 } 1077 get_page(page); 1078 spin_unlock(ptl); 1079 alloc: 1080 if (transparent_hugepage_enabled(vma) && 1081 !transparent_hugepage_debug_cow()) 1082 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), 1083 vma, haddr, numa_node_id(), 0); 1084 else 1085 new_page = NULL; 1086 1087 if (unlikely(!new_page)) { 1088 if (!page) { 1089 split_huge_page_pmd(vma, address, pmd); 1090 ret |= VM_FAULT_FALLBACK; 1091 } else { 1092 ret = do_huge_pmd_wp_page_fallback(mm, vma, address, 1093 pmd, orig_pmd, page, haddr); 1094 if (ret & VM_FAULT_OOM) { 1095 split_huge_page(page); 1096 ret |= VM_FAULT_FALLBACK; 1097 } 1098 put_page(page); 1099 } 1100 count_vm_event(THP_FAULT_FALLBACK); 1101 goto out; 1102 } 1103 1104 if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) { 1105 put_page(new_page); 1106 if (page) { 1107 split_huge_page(page); 1108 put_page(page); 1109 } else 1110 split_huge_page_pmd(vma, address, pmd); 1111 ret |= VM_FAULT_FALLBACK; 1112 count_vm_event(THP_FAULT_FALLBACK); 1113 goto out; 1114 } 1115 1116 count_vm_event(THP_FAULT_ALLOC); 1117 1118 if (!page) 1119 clear_huge_page(new_page, haddr, HPAGE_PMD_NR); 1120 else 1121 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); 1122 __SetPageUptodate(new_page); 1123 1124 mmun_start = haddr; 1125 mmun_end = haddr + HPAGE_PMD_SIZE; 1126 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1127 1128 spin_lock(ptl); 1129 if (page) 1130 put_page(page); 1131 if (unlikely(!pmd_same(*pmd, orig_pmd))) { 1132 spin_unlock(ptl); 1133 mem_cgroup_uncharge_page(new_page); 1134 put_page(new_page); 1135 goto out_mn; 1136 } else { 1137 pmd_t entry; 1138 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1139 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1140 pmdp_clear_flush(vma, haddr, pmd); 1141 page_add_new_anon_rmap(new_page, vma, haddr); 1142 set_pmd_at(mm, haddr, pmd, entry); 1143 update_mmu_cache_pmd(vma, address, pmd); 1144 if (!page) { 1145 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR); 1146 put_huge_zero_page(); 1147 } else { 1148 VM_BUG_ON_PAGE(!PageHead(page), page); 1149 page_remove_rmap(page); 1150 put_page(page); 1151 } 1152 ret |= VM_FAULT_WRITE; 1153 } 1154 spin_unlock(ptl); 1155 out_mn: 1156 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1157 out: 1158 return ret; 1159 out_unlock: 1160 spin_unlock(ptl); 1161 return ret; 1162 } 1163 1164 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1165 unsigned long addr, 1166 pmd_t *pmd, 1167 unsigned int flags) 1168 { 1169 struct mm_struct *mm = vma->vm_mm; 1170 struct page *page = NULL; 1171 1172 assert_spin_locked(pmd_lockptr(mm, pmd)); 1173 1174 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1175 goto out; 1176 1177 /* Avoid dumping huge zero page */ 1178 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1179 return ERR_PTR(-EFAULT); 1180 1181 /* Full NUMA hinting faults to serialise migration in fault paths */ 1182 if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) 1183 goto out; 1184 1185 page = pmd_page(*pmd); 1186 VM_BUG_ON_PAGE(!PageHead(page), page); 1187 if (flags & FOLL_TOUCH) { 1188 pmd_t _pmd; 1189 /* 1190 * We should set the dirty bit only for FOLL_WRITE but 1191 * for now the dirty bit in the pmd is meaningless. 1192 * And if the dirty bit will become meaningful and 1193 * we'll only set it with FOLL_WRITE, an atomic 1194 * set_bit will be required on the pmd to set the 1195 * young bit, instead of the current set_pmd_at. 1196 */ 1197 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); 1198 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1199 pmd, _pmd, 1)) 1200 update_mmu_cache_pmd(vma, addr, pmd); 1201 } 1202 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1203 if (page->mapping && trylock_page(page)) { 1204 lru_add_drain(); 1205 if (page->mapping) 1206 mlock_vma_page(page); 1207 unlock_page(page); 1208 } 1209 } 1210 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1211 VM_BUG_ON_PAGE(!PageCompound(page), page); 1212 if (flags & FOLL_GET) 1213 get_page_foll(page); 1214 1215 out: 1216 return page; 1217 } 1218 1219 /* NUMA hinting page fault entry point for trans huge pmds */ 1220 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 1221 unsigned long addr, pmd_t pmd, pmd_t *pmdp) 1222 { 1223 spinlock_t *ptl; 1224 struct anon_vma *anon_vma = NULL; 1225 struct page *page; 1226 unsigned long haddr = addr & HPAGE_PMD_MASK; 1227 int page_nid = -1, this_nid = numa_node_id(); 1228 int target_nid, last_cpupid = -1; 1229 bool page_locked; 1230 bool migrated = false; 1231 int flags = 0; 1232 1233 ptl = pmd_lock(mm, pmdp); 1234 if (unlikely(!pmd_same(pmd, *pmdp))) 1235 goto out_unlock; 1236 1237 /* 1238 * If there are potential migrations, wait for completion and retry 1239 * without disrupting NUMA hinting information. Do not relock and 1240 * check_same as the page may no longer be mapped. 1241 */ 1242 if (unlikely(pmd_trans_migrating(*pmdp))) { 1243 spin_unlock(ptl); 1244 wait_migrate_huge_page(vma->anon_vma, pmdp); 1245 goto out; 1246 } 1247 1248 page = pmd_page(pmd); 1249 BUG_ON(is_huge_zero_page(page)); 1250 page_nid = page_to_nid(page); 1251 last_cpupid = page_cpupid_last(page); 1252 count_vm_numa_event(NUMA_HINT_FAULTS); 1253 if (page_nid == this_nid) { 1254 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1255 flags |= TNF_FAULT_LOCAL; 1256 } 1257 1258 /* 1259 * Avoid grouping on DSO/COW pages in specific and RO pages 1260 * in general, RO pages shouldn't hurt as much anyway since 1261 * they can be in shared cache state. 1262 */ 1263 if (!pmd_write(pmd)) 1264 flags |= TNF_NO_GROUP; 1265 1266 /* 1267 * Acquire the page lock to serialise THP migrations but avoid dropping 1268 * page_table_lock if at all possible 1269 */ 1270 page_locked = trylock_page(page); 1271 target_nid = mpol_misplaced(page, vma, haddr); 1272 if (target_nid == -1) { 1273 /* If the page was locked, there are no parallel migrations */ 1274 if (page_locked) 1275 goto clear_pmdnuma; 1276 } 1277 1278 /* Migration could have started since the pmd_trans_migrating check */ 1279 if (!page_locked) { 1280 spin_unlock(ptl); 1281 wait_on_page_locked(page); 1282 page_nid = -1; 1283 goto out; 1284 } 1285 1286 /* 1287 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1288 * to serialises splits 1289 */ 1290 get_page(page); 1291 spin_unlock(ptl); 1292 anon_vma = page_lock_anon_vma_read(page); 1293 1294 /* Confirm the PMD did not change while page_table_lock was released */ 1295 spin_lock(ptl); 1296 if (unlikely(!pmd_same(pmd, *pmdp))) { 1297 unlock_page(page); 1298 put_page(page); 1299 page_nid = -1; 1300 goto out_unlock; 1301 } 1302 1303 /* Bail if we fail to protect against THP splits for any reason */ 1304 if (unlikely(!anon_vma)) { 1305 put_page(page); 1306 page_nid = -1; 1307 goto clear_pmdnuma; 1308 } 1309 1310 /* 1311 * Migrate the THP to the requested node, returns with page unlocked 1312 * and pmd_numa cleared. 1313 */ 1314 spin_unlock(ptl); 1315 migrated = migrate_misplaced_transhuge_page(mm, vma, 1316 pmdp, pmd, addr, page, target_nid); 1317 if (migrated) { 1318 flags |= TNF_MIGRATED; 1319 page_nid = target_nid; 1320 } 1321 1322 goto out; 1323 clear_pmdnuma: 1324 BUG_ON(!PageLocked(page)); 1325 pmd = pmd_mknonnuma(pmd); 1326 set_pmd_at(mm, haddr, pmdp, pmd); 1327 VM_BUG_ON(pmd_numa(*pmdp)); 1328 update_mmu_cache_pmd(vma, addr, pmdp); 1329 unlock_page(page); 1330 out_unlock: 1331 spin_unlock(ptl); 1332 1333 out: 1334 if (anon_vma) 1335 page_unlock_anon_vma_read(anon_vma); 1336 1337 if (page_nid != -1) 1338 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags); 1339 1340 return 0; 1341 } 1342 1343 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1344 pmd_t *pmd, unsigned long addr) 1345 { 1346 spinlock_t *ptl; 1347 int ret = 0; 1348 1349 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 1350 struct page *page; 1351 pgtable_t pgtable; 1352 pmd_t orig_pmd; 1353 /* 1354 * For architectures like ppc64 we look at deposited pgtable 1355 * when calling pmdp_get_and_clear. So do the 1356 * pgtable_trans_huge_withdraw after finishing pmdp related 1357 * operations. 1358 */ 1359 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd); 1360 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1361 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd); 1362 if (is_huge_zero_pmd(orig_pmd)) { 1363 atomic_long_dec(&tlb->mm->nr_ptes); 1364 spin_unlock(ptl); 1365 put_huge_zero_page(); 1366 } else { 1367 page = pmd_page(orig_pmd); 1368 page_remove_rmap(page); 1369 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1370 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1371 VM_BUG_ON_PAGE(!PageHead(page), page); 1372 atomic_long_dec(&tlb->mm->nr_ptes); 1373 spin_unlock(ptl); 1374 tlb_remove_page(tlb, page); 1375 } 1376 pte_free(tlb->mm, pgtable); 1377 ret = 1; 1378 } 1379 return ret; 1380 } 1381 1382 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1383 unsigned long addr, unsigned long end, 1384 unsigned char *vec) 1385 { 1386 spinlock_t *ptl; 1387 int ret = 0; 1388 1389 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 1390 /* 1391 * All logical pages in the range are present 1392 * if backed by a huge page. 1393 */ 1394 spin_unlock(ptl); 1395 memset(vec, 1, (end - addr) >> PAGE_SHIFT); 1396 ret = 1; 1397 } 1398 1399 return ret; 1400 } 1401 1402 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma, 1403 unsigned long old_addr, 1404 unsigned long new_addr, unsigned long old_end, 1405 pmd_t *old_pmd, pmd_t *new_pmd) 1406 { 1407 spinlock_t *old_ptl, *new_ptl; 1408 int ret = 0; 1409 pmd_t pmd; 1410 1411 struct mm_struct *mm = vma->vm_mm; 1412 1413 if ((old_addr & ~HPAGE_PMD_MASK) || 1414 (new_addr & ~HPAGE_PMD_MASK) || 1415 old_end - old_addr < HPAGE_PMD_SIZE || 1416 (new_vma->vm_flags & VM_NOHUGEPAGE)) 1417 goto out; 1418 1419 /* 1420 * The destination pmd shouldn't be established, free_pgtables() 1421 * should have release it. 1422 */ 1423 if (WARN_ON(!pmd_none(*new_pmd))) { 1424 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1425 goto out; 1426 } 1427 1428 /* 1429 * We don't have to worry about the ordering of src and dst 1430 * ptlocks because exclusive mmap_sem prevents deadlock. 1431 */ 1432 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl); 1433 if (ret == 1) { 1434 new_ptl = pmd_lockptr(mm, new_pmd); 1435 if (new_ptl != old_ptl) 1436 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1437 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd); 1438 VM_BUG_ON(!pmd_none(*new_pmd)); 1439 1440 if (pmd_move_must_withdraw(new_ptl, old_ptl)) { 1441 pgtable_t pgtable; 1442 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1443 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1444 } 1445 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); 1446 if (new_ptl != old_ptl) 1447 spin_unlock(new_ptl); 1448 spin_unlock(old_ptl); 1449 } 1450 out: 1451 return ret; 1452 } 1453 1454 /* 1455 * Returns 1456 * - 0 if PMD could not be locked 1457 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1458 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1459 */ 1460 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1461 unsigned long addr, pgprot_t newprot, int prot_numa) 1462 { 1463 struct mm_struct *mm = vma->vm_mm; 1464 spinlock_t *ptl; 1465 int ret = 0; 1466 1467 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 1468 pmd_t entry; 1469 ret = 1; 1470 if (!prot_numa) { 1471 entry = pmdp_get_and_clear(mm, addr, pmd); 1472 if (pmd_numa(entry)) 1473 entry = pmd_mknonnuma(entry); 1474 entry = pmd_modify(entry, newprot); 1475 ret = HPAGE_PMD_NR; 1476 set_pmd_at(mm, addr, pmd, entry); 1477 BUG_ON(pmd_write(entry)); 1478 } else { 1479 struct page *page = pmd_page(*pmd); 1480 1481 /* 1482 * Do not trap faults against the zero page. The 1483 * read-only data is likely to be read-cached on the 1484 * local CPU cache and it is less useful to know about 1485 * local vs remote hits on the zero page. 1486 */ 1487 if (!is_huge_zero_page(page) && 1488 !pmd_numa(*pmd)) { 1489 pmdp_set_numa(mm, addr, pmd); 1490 ret = HPAGE_PMD_NR; 1491 } 1492 } 1493 spin_unlock(ptl); 1494 } 1495 1496 return ret; 1497 } 1498 1499 /* 1500 * Returns 1 if a given pmd maps a stable (not under splitting) thp. 1501 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise. 1502 * 1503 * Note that if it returns 1, this routine returns without unlocking page 1504 * table locks. So callers must unlock them. 1505 */ 1506 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma, 1507 spinlock_t **ptl) 1508 { 1509 *ptl = pmd_lock(vma->vm_mm, pmd); 1510 if (likely(pmd_trans_huge(*pmd))) { 1511 if (unlikely(pmd_trans_splitting(*pmd))) { 1512 spin_unlock(*ptl); 1513 wait_split_huge_page(vma->anon_vma, pmd); 1514 return -1; 1515 } else { 1516 /* Thp mapped by 'pmd' is stable, so we can 1517 * handle it as it is. */ 1518 return 1; 1519 } 1520 } 1521 spin_unlock(*ptl); 1522 return 0; 1523 } 1524 1525 /* 1526 * This function returns whether a given @page is mapped onto the @address 1527 * in the virtual space of @mm. 1528 * 1529 * When it's true, this function returns *pmd with holding the page table lock 1530 * and passing it back to the caller via @ptl. 1531 * If it's false, returns NULL without holding the page table lock. 1532 */ 1533 pmd_t *page_check_address_pmd(struct page *page, 1534 struct mm_struct *mm, 1535 unsigned long address, 1536 enum page_check_address_pmd_flag flag, 1537 spinlock_t **ptl) 1538 { 1539 pmd_t *pmd; 1540 1541 if (address & ~HPAGE_PMD_MASK) 1542 return NULL; 1543 1544 pmd = mm_find_pmd(mm, address); 1545 if (!pmd) 1546 return NULL; 1547 *ptl = pmd_lock(mm, pmd); 1548 if (pmd_none(*pmd)) 1549 goto unlock; 1550 if (pmd_page(*pmd) != page) 1551 goto unlock; 1552 /* 1553 * split_vma() may create temporary aliased mappings. There is 1554 * no risk as long as all huge pmd are found and have their 1555 * splitting bit set before __split_huge_page_refcount 1556 * runs. Finding the same huge pmd more than once during the 1557 * same rmap walk is not a problem. 1558 */ 1559 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG && 1560 pmd_trans_splitting(*pmd)) 1561 goto unlock; 1562 if (pmd_trans_huge(*pmd)) { 1563 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG && 1564 !pmd_trans_splitting(*pmd)); 1565 return pmd; 1566 } 1567 unlock: 1568 spin_unlock(*ptl); 1569 return NULL; 1570 } 1571 1572 static int __split_huge_page_splitting(struct page *page, 1573 struct vm_area_struct *vma, 1574 unsigned long address) 1575 { 1576 struct mm_struct *mm = vma->vm_mm; 1577 spinlock_t *ptl; 1578 pmd_t *pmd; 1579 int ret = 0; 1580 /* For mmu_notifiers */ 1581 const unsigned long mmun_start = address; 1582 const unsigned long mmun_end = address + HPAGE_PMD_SIZE; 1583 1584 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1585 pmd = page_check_address_pmd(page, mm, address, 1586 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl); 1587 if (pmd) { 1588 /* 1589 * We can't temporarily set the pmd to null in order 1590 * to split it, the pmd must remain marked huge at all 1591 * times or the VM won't take the pmd_trans_huge paths 1592 * and it won't wait on the anon_vma->root->rwsem to 1593 * serialize against split_huge_page*. 1594 */ 1595 pmdp_splitting_flush(vma, address, pmd); 1596 ret = 1; 1597 spin_unlock(ptl); 1598 } 1599 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1600 1601 return ret; 1602 } 1603 1604 static void __split_huge_page_refcount(struct page *page, 1605 struct list_head *list) 1606 { 1607 int i; 1608 struct zone *zone = page_zone(page); 1609 struct lruvec *lruvec; 1610 int tail_count = 0; 1611 1612 /* prevent PageLRU to go away from under us, and freeze lru stats */ 1613 spin_lock_irq(&zone->lru_lock); 1614 lruvec = mem_cgroup_page_lruvec(page, zone); 1615 1616 compound_lock(page); 1617 /* complete memcg works before add pages to LRU */ 1618 mem_cgroup_split_huge_fixup(page); 1619 1620 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 1621 struct page *page_tail = page + i; 1622 1623 /* tail_page->_mapcount cannot change */ 1624 BUG_ON(page_mapcount(page_tail) < 0); 1625 tail_count += page_mapcount(page_tail); 1626 /* check for overflow */ 1627 BUG_ON(tail_count < 0); 1628 BUG_ON(atomic_read(&page_tail->_count) != 0); 1629 /* 1630 * tail_page->_count is zero and not changing from 1631 * under us. But get_page_unless_zero() may be running 1632 * from under us on the tail_page. If we used 1633 * atomic_set() below instead of atomic_add(), we 1634 * would then run atomic_set() concurrently with 1635 * get_page_unless_zero(), and atomic_set() is 1636 * implemented in C not using locked ops. spin_unlock 1637 * on x86 sometime uses locked ops because of PPro 1638 * errata 66, 92, so unless somebody can guarantee 1639 * atomic_set() here would be safe on all archs (and 1640 * not only on x86), it's safer to use atomic_add(). 1641 */ 1642 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1, 1643 &page_tail->_count); 1644 1645 /* after clearing PageTail the gup refcount can be released */ 1646 smp_mb(); 1647 1648 /* 1649 * retain hwpoison flag of the poisoned tail page: 1650 * fix for the unsuitable process killed on Guest Machine(KVM) 1651 * by the memory-failure. 1652 */ 1653 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON; 1654 page_tail->flags |= (page->flags & 1655 ((1L << PG_referenced) | 1656 (1L << PG_swapbacked) | 1657 (1L << PG_mlocked) | 1658 (1L << PG_uptodate) | 1659 (1L << PG_active) | 1660 (1L << PG_unevictable))); 1661 page_tail->flags |= (1L << PG_dirty); 1662 1663 /* clear PageTail before overwriting first_page */ 1664 smp_wmb(); 1665 1666 /* 1667 * __split_huge_page_splitting() already set the 1668 * splitting bit in all pmd that could map this 1669 * hugepage, that will ensure no CPU can alter the 1670 * mapcount on the head page. The mapcount is only 1671 * accounted in the head page and it has to be 1672 * transferred to all tail pages in the below code. So 1673 * for this code to be safe, the split the mapcount 1674 * can't change. But that doesn't mean userland can't 1675 * keep changing and reading the page contents while 1676 * we transfer the mapcount, so the pmd splitting 1677 * status is achieved setting a reserved bit in the 1678 * pmd, not by clearing the present bit. 1679 */ 1680 page_tail->_mapcount = page->_mapcount; 1681 1682 BUG_ON(page_tail->mapping); 1683 page_tail->mapping = page->mapping; 1684 1685 page_tail->index = page->index + i; 1686 page_cpupid_xchg_last(page_tail, page_cpupid_last(page)); 1687 1688 BUG_ON(!PageAnon(page_tail)); 1689 BUG_ON(!PageUptodate(page_tail)); 1690 BUG_ON(!PageDirty(page_tail)); 1691 BUG_ON(!PageSwapBacked(page_tail)); 1692 1693 lru_add_page_tail(page, page_tail, lruvec, list); 1694 } 1695 atomic_sub(tail_count, &page->_count); 1696 BUG_ON(atomic_read(&page->_count) <= 0); 1697 1698 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1); 1699 1700 ClearPageCompound(page); 1701 compound_unlock(page); 1702 spin_unlock_irq(&zone->lru_lock); 1703 1704 for (i = 1; i < HPAGE_PMD_NR; i++) { 1705 struct page *page_tail = page + i; 1706 BUG_ON(page_count(page_tail) <= 0); 1707 /* 1708 * Tail pages may be freed if there wasn't any mapping 1709 * like if add_to_swap() is running on a lru page that 1710 * had its mapping zapped. And freeing these pages 1711 * requires taking the lru_lock so we do the put_page 1712 * of the tail pages after the split is complete. 1713 */ 1714 put_page(page_tail); 1715 } 1716 1717 /* 1718 * Only the head page (now become a regular page) is required 1719 * to be pinned by the caller. 1720 */ 1721 BUG_ON(page_count(page) <= 0); 1722 } 1723 1724 static int __split_huge_page_map(struct page *page, 1725 struct vm_area_struct *vma, 1726 unsigned long address) 1727 { 1728 struct mm_struct *mm = vma->vm_mm; 1729 spinlock_t *ptl; 1730 pmd_t *pmd, _pmd; 1731 int ret = 0, i; 1732 pgtable_t pgtable; 1733 unsigned long haddr; 1734 1735 pmd = page_check_address_pmd(page, mm, address, 1736 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl); 1737 if (pmd) { 1738 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1739 pmd_populate(mm, &_pmd, pgtable); 1740 1741 haddr = address; 1742 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1743 pte_t *pte, entry; 1744 BUG_ON(PageCompound(page+i)); 1745 entry = mk_pte(page + i, vma->vm_page_prot); 1746 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1747 if (!pmd_write(*pmd)) 1748 entry = pte_wrprotect(entry); 1749 else 1750 BUG_ON(page_mapcount(page) != 1); 1751 if (!pmd_young(*pmd)) 1752 entry = pte_mkold(entry); 1753 if (pmd_numa(*pmd)) 1754 entry = pte_mknuma(entry); 1755 pte = pte_offset_map(&_pmd, haddr); 1756 BUG_ON(!pte_none(*pte)); 1757 set_pte_at(mm, haddr, pte, entry); 1758 pte_unmap(pte); 1759 } 1760 1761 smp_wmb(); /* make pte visible before pmd */ 1762 /* 1763 * Up to this point the pmd is present and huge and 1764 * userland has the whole access to the hugepage 1765 * during the split (which happens in place). If we 1766 * overwrite the pmd with the not-huge version 1767 * pointing to the pte here (which of course we could 1768 * if all CPUs were bug free), userland could trigger 1769 * a small page size TLB miss on the small sized TLB 1770 * while the hugepage TLB entry is still established 1771 * in the huge TLB. Some CPU doesn't like that. See 1772 * http://support.amd.com/us/Processor_TechDocs/41322.pdf, 1773 * Erratum 383 on page 93. Intel should be safe but is 1774 * also warns that it's only safe if the permission 1775 * and cache attributes of the two entries loaded in 1776 * the two TLB is identical (which should be the case 1777 * here). But it is generally safer to never allow 1778 * small and huge TLB entries for the same virtual 1779 * address to be loaded simultaneously. So instead of 1780 * doing "pmd_populate(); flush_tlb_range();" we first 1781 * mark the current pmd notpresent (atomically because 1782 * here the pmd_trans_huge and pmd_trans_splitting 1783 * must remain set at all times on the pmd until the 1784 * split is complete for this pmd), then we flush the 1785 * SMP TLB and finally we write the non-huge version 1786 * of the pmd entry with pmd_populate. 1787 */ 1788 pmdp_invalidate(vma, address, pmd); 1789 pmd_populate(mm, pmd, pgtable); 1790 ret = 1; 1791 spin_unlock(ptl); 1792 } 1793 1794 return ret; 1795 } 1796 1797 /* must be called with anon_vma->root->rwsem held */ 1798 static void __split_huge_page(struct page *page, 1799 struct anon_vma *anon_vma, 1800 struct list_head *list) 1801 { 1802 int mapcount, mapcount2; 1803 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1804 struct anon_vma_chain *avc; 1805 1806 BUG_ON(!PageHead(page)); 1807 BUG_ON(PageTail(page)); 1808 1809 mapcount = 0; 1810 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1811 struct vm_area_struct *vma = avc->vma; 1812 unsigned long addr = vma_address(page, vma); 1813 BUG_ON(is_vma_temporary_stack(vma)); 1814 mapcount += __split_huge_page_splitting(page, vma, addr); 1815 } 1816 /* 1817 * It is critical that new vmas are added to the tail of the 1818 * anon_vma list. This guarantes that if copy_huge_pmd() runs 1819 * and establishes a child pmd before 1820 * __split_huge_page_splitting() freezes the parent pmd (so if 1821 * we fail to prevent copy_huge_pmd() from running until the 1822 * whole __split_huge_page() is complete), we will still see 1823 * the newly established pmd of the child later during the 1824 * walk, to be able to set it as pmd_trans_splitting too. 1825 */ 1826 if (mapcount != page_mapcount(page)) 1827 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1828 mapcount, page_mapcount(page)); 1829 BUG_ON(mapcount != page_mapcount(page)); 1830 1831 __split_huge_page_refcount(page, list); 1832 1833 mapcount2 = 0; 1834 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1835 struct vm_area_struct *vma = avc->vma; 1836 unsigned long addr = vma_address(page, vma); 1837 BUG_ON(is_vma_temporary_stack(vma)); 1838 mapcount2 += __split_huge_page_map(page, vma, addr); 1839 } 1840 if (mapcount != mapcount2) 1841 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n", 1842 mapcount, mapcount2, page_mapcount(page)); 1843 BUG_ON(mapcount != mapcount2); 1844 } 1845 1846 /* 1847 * Split a hugepage into normal pages. This doesn't change the position of head 1848 * page. If @list is null, tail pages will be added to LRU list, otherwise, to 1849 * @list. Both head page and tail pages will inherit mapping, flags, and so on 1850 * from the hugepage. 1851 * Return 0 if the hugepage is split successfully otherwise return 1. 1852 */ 1853 int split_huge_page_to_list(struct page *page, struct list_head *list) 1854 { 1855 struct anon_vma *anon_vma; 1856 int ret = 1; 1857 1858 BUG_ON(is_huge_zero_page(page)); 1859 BUG_ON(!PageAnon(page)); 1860 1861 /* 1862 * The caller does not necessarily hold an mmap_sem that would prevent 1863 * the anon_vma disappearing so we first we take a reference to it 1864 * and then lock the anon_vma for write. This is similar to 1865 * page_lock_anon_vma_read except the write lock is taken to serialise 1866 * against parallel split or collapse operations. 1867 */ 1868 anon_vma = page_get_anon_vma(page); 1869 if (!anon_vma) 1870 goto out; 1871 anon_vma_lock_write(anon_vma); 1872 1873 ret = 0; 1874 if (!PageCompound(page)) 1875 goto out_unlock; 1876 1877 BUG_ON(!PageSwapBacked(page)); 1878 __split_huge_page(page, anon_vma, list); 1879 count_vm_event(THP_SPLIT); 1880 1881 BUG_ON(PageCompound(page)); 1882 out_unlock: 1883 anon_vma_unlock_write(anon_vma); 1884 put_anon_vma(anon_vma); 1885 out: 1886 return ret; 1887 } 1888 1889 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE) 1890 1891 int hugepage_madvise(struct vm_area_struct *vma, 1892 unsigned long *vm_flags, int advice) 1893 { 1894 switch (advice) { 1895 case MADV_HUGEPAGE: 1896 #ifdef CONFIG_S390 1897 /* 1898 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 1899 * can't handle this properly after s390_enable_sie, so we simply 1900 * ignore the madvise to prevent qemu from causing a SIGSEGV. 1901 */ 1902 if (mm_has_pgste(vma->vm_mm)) 1903 return 0; 1904 #endif 1905 /* 1906 * Be somewhat over-protective like KSM for now! 1907 */ 1908 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP)) 1909 return -EINVAL; 1910 *vm_flags &= ~VM_NOHUGEPAGE; 1911 *vm_flags |= VM_HUGEPAGE; 1912 /* 1913 * If the vma become good for khugepaged to scan, 1914 * register it here without waiting a page fault that 1915 * may not happen any time soon. 1916 */ 1917 if (unlikely(khugepaged_enter_vma_merge(vma))) 1918 return -ENOMEM; 1919 break; 1920 case MADV_NOHUGEPAGE: 1921 /* 1922 * Be somewhat over-protective like KSM for now! 1923 */ 1924 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP)) 1925 return -EINVAL; 1926 *vm_flags &= ~VM_HUGEPAGE; 1927 *vm_flags |= VM_NOHUGEPAGE; 1928 /* 1929 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 1930 * this vma even if we leave the mm registered in khugepaged if 1931 * it got registered before VM_NOHUGEPAGE was set. 1932 */ 1933 break; 1934 } 1935 1936 return 0; 1937 } 1938 1939 static int __init khugepaged_slab_init(void) 1940 { 1941 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 1942 sizeof(struct mm_slot), 1943 __alignof__(struct mm_slot), 0, NULL); 1944 if (!mm_slot_cache) 1945 return -ENOMEM; 1946 1947 return 0; 1948 } 1949 1950 static inline struct mm_slot *alloc_mm_slot(void) 1951 { 1952 if (!mm_slot_cache) /* initialization failed */ 1953 return NULL; 1954 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 1955 } 1956 1957 static inline void free_mm_slot(struct mm_slot *mm_slot) 1958 { 1959 kmem_cache_free(mm_slot_cache, mm_slot); 1960 } 1961 1962 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 1963 { 1964 struct mm_slot *mm_slot; 1965 1966 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) 1967 if (mm == mm_slot->mm) 1968 return mm_slot; 1969 1970 return NULL; 1971 } 1972 1973 static void insert_to_mm_slots_hash(struct mm_struct *mm, 1974 struct mm_slot *mm_slot) 1975 { 1976 mm_slot->mm = mm; 1977 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); 1978 } 1979 1980 static inline int khugepaged_test_exit(struct mm_struct *mm) 1981 { 1982 return atomic_read(&mm->mm_users) == 0; 1983 } 1984 1985 int __khugepaged_enter(struct mm_struct *mm) 1986 { 1987 struct mm_slot *mm_slot; 1988 int wakeup; 1989 1990 mm_slot = alloc_mm_slot(); 1991 if (!mm_slot) 1992 return -ENOMEM; 1993 1994 /* __khugepaged_exit() must not run from under us */ 1995 VM_BUG_ON(khugepaged_test_exit(mm)); 1996 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 1997 free_mm_slot(mm_slot); 1998 return 0; 1999 } 2000 2001 spin_lock(&khugepaged_mm_lock); 2002 insert_to_mm_slots_hash(mm, mm_slot); 2003 /* 2004 * Insert just behind the scanning cursor, to let the area settle 2005 * down a little. 2006 */ 2007 wakeup = list_empty(&khugepaged_scan.mm_head); 2008 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); 2009 spin_unlock(&khugepaged_mm_lock); 2010 2011 atomic_inc(&mm->mm_count); 2012 if (wakeup) 2013 wake_up_interruptible(&khugepaged_wait); 2014 2015 return 0; 2016 } 2017 2018 int khugepaged_enter_vma_merge(struct vm_area_struct *vma) 2019 { 2020 unsigned long hstart, hend; 2021 if (!vma->anon_vma) 2022 /* 2023 * Not yet faulted in so we will register later in the 2024 * page fault if needed. 2025 */ 2026 return 0; 2027 if (vma->vm_ops) 2028 /* khugepaged not yet working on file or special mappings */ 2029 return 0; 2030 VM_BUG_ON(vma->vm_flags & VM_NO_THP); 2031 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2032 hend = vma->vm_end & HPAGE_PMD_MASK; 2033 if (hstart < hend) 2034 return khugepaged_enter(vma); 2035 return 0; 2036 } 2037 2038 void __khugepaged_exit(struct mm_struct *mm) 2039 { 2040 struct mm_slot *mm_slot; 2041 int free = 0; 2042 2043 spin_lock(&khugepaged_mm_lock); 2044 mm_slot = get_mm_slot(mm); 2045 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 2046 hash_del(&mm_slot->hash); 2047 list_del(&mm_slot->mm_node); 2048 free = 1; 2049 } 2050 spin_unlock(&khugepaged_mm_lock); 2051 2052 if (free) { 2053 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 2054 free_mm_slot(mm_slot); 2055 mmdrop(mm); 2056 } else if (mm_slot) { 2057 /* 2058 * This is required to serialize against 2059 * khugepaged_test_exit() (which is guaranteed to run 2060 * under mmap sem read mode). Stop here (after we 2061 * return all pagetables will be destroyed) until 2062 * khugepaged has finished working on the pagetables 2063 * under the mmap_sem. 2064 */ 2065 down_write(&mm->mmap_sem); 2066 up_write(&mm->mmap_sem); 2067 } 2068 } 2069 2070 static void release_pte_page(struct page *page) 2071 { 2072 /* 0 stands for page_is_file_cache(page) == false */ 2073 dec_zone_page_state(page, NR_ISOLATED_ANON + 0); 2074 unlock_page(page); 2075 putback_lru_page(page); 2076 } 2077 2078 static void release_pte_pages(pte_t *pte, pte_t *_pte) 2079 { 2080 while (--_pte >= pte) { 2081 pte_t pteval = *_pte; 2082 if (!pte_none(pteval)) 2083 release_pte_page(pte_page(pteval)); 2084 } 2085 } 2086 2087 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 2088 unsigned long address, 2089 pte_t *pte) 2090 { 2091 struct page *page; 2092 pte_t *_pte; 2093 int referenced = 0, none = 0; 2094 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; 2095 _pte++, address += PAGE_SIZE) { 2096 pte_t pteval = *_pte; 2097 if (pte_none(pteval)) { 2098 if (++none <= khugepaged_max_ptes_none) 2099 continue; 2100 else 2101 goto out; 2102 } 2103 if (!pte_present(pteval) || !pte_write(pteval)) 2104 goto out; 2105 page = vm_normal_page(vma, address, pteval); 2106 if (unlikely(!page)) 2107 goto out; 2108 2109 VM_BUG_ON_PAGE(PageCompound(page), page); 2110 VM_BUG_ON_PAGE(!PageAnon(page), page); 2111 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 2112 2113 /* cannot use mapcount: can't collapse if there's a gup pin */ 2114 if (page_count(page) != 1) 2115 goto out; 2116 /* 2117 * We can do it before isolate_lru_page because the 2118 * page can't be freed from under us. NOTE: PG_lock 2119 * is needed to serialize against split_huge_page 2120 * when invoked from the VM. 2121 */ 2122 if (!trylock_page(page)) 2123 goto out; 2124 /* 2125 * Isolate the page to avoid collapsing an hugepage 2126 * currently in use by the VM. 2127 */ 2128 if (isolate_lru_page(page)) { 2129 unlock_page(page); 2130 goto out; 2131 } 2132 /* 0 stands for page_is_file_cache(page) == false */ 2133 inc_zone_page_state(page, NR_ISOLATED_ANON + 0); 2134 VM_BUG_ON_PAGE(!PageLocked(page), page); 2135 VM_BUG_ON_PAGE(PageLRU(page), page); 2136 2137 /* If there is no mapped pte young don't collapse the page */ 2138 if (pte_young(pteval) || PageReferenced(page) || 2139 mmu_notifier_test_young(vma->vm_mm, address)) 2140 referenced = 1; 2141 } 2142 if (likely(referenced)) 2143 return 1; 2144 out: 2145 release_pte_pages(pte, _pte); 2146 return 0; 2147 } 2148 2149 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 2150 struct vm_area_struct *vma, 2151 unsigned long address, 2152 spinlock_t *ptl) 2153 { 2154 pte_t *_pte; 2155 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) { 2156 pte_t pteval = *_pte; 2157 struct page *src_page; 2158 2159 if (pte_none(pteval)) { 2160 clear_user_highpage(page, address); 2161 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 2162 } else { 2163 src_page = pte_page(pteval); 2164 copy_user_highpage(page, src_page, address, vma); 2165 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page); 2166 release_pte_page(src_page); 2167 /* 2168 * ptl mostly unnecessary, but preempt has to 2169 * be disabled to update the per-cpu stats 2170 * inside page_remove_rmap(). 2171 */ 2172 spin_lock(ptl); 2173 /* 2174 * paravirt calls inside pte_clear here are 2175 * superfluous. 2176 */ 2177 pte_clear(vma->vm_mm, address, _pte); 2178 page_remove_rmap(src_page); 2179 spin_unlock(ptl); 2180 free_page_and_swap_cache(src_page); 2181 } 2182 2183 address += PAGE_SIZE; 2184 page++; 2185 } 2186 } 2187 2188 static void khugepaged_alloc_sleep(void) 2189 { 2190 wait_event_freezable_timeout(khugepaged_wait, false, 2191 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 2192 } 2193 2194 static int khugepaged_node_load[MAX_NUMNODES]; 2195 2196 #ifdef CONFIG_NUMA 2197 static int khugepaged_find_target_node(void) 2198 { 2199 static int last_khugepaged_target_node = NUMA_NO_NODE; 2200 int nid, target_node = 0, max_value = 0; 2201 2202 /* find first node with max normal pages hit */ 2203 for (nid = 0; nid < MAX_NUMNODES; nid++) 2204 if (khugepaged_node_load[nid] > max_value) { 2205 max_value = khugepaged_node_load[nid]; 2206 target_node = nid; 2207 } 2208 2209 /* do some balance if several nodes have the same hit record */ 2210 if (target_node <= last_khugepaged_target_node) 2211 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; 2212 nid++) 2213 if (max_value == khugepaged_node_load[nid]) { 2214 target_node = nid; 2215 break; 2216 } 2217 2218 last_khugepaged_target_node = target_node; 2219 return target_node; 2220 } 2221 2222 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 2223 { 2224 if (IS_ERR(*hpage)) { 2225 if (!*wait) 2226 return false; 2227 2228 *wait = false; 2229 *hpage = NULL; 2230 khugepaged_alloc_sleep(); 2231 } else if (*hpage) { 2232 put_page(*hpage); 2233 *hpage = NULL; 2234 } 2235 2236 return true; 2237 } 2238 2239 static struct page 2240 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm, 2241 struct vm_area_struct *vma, unsigned long address, 2242 int node) 2243 { 2244 VM_BUG_ON_PAGE(*hpage, *hpage); 2245 /* 2246 * Allocate the page while the vma is still valid and under 2247 * the mmap_sem read mode so there is no memory allocation 2248 * later when we take the mmap_sem in write mode. This is more 2249 * friendly behavior (OTOH it may actually hide bugs) to 2250 * filesystems in userland with daemons allocating memory in 2251 * the userland I/O paths. Allocating memory with the 2252 * mmap_sem in read mode is good idea also to allow greater 2253 * scalability. 2254 */ 2255 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask( 2256 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER); 2257 /* 2258 * After allocating the hugepage, release the mmap_sem read lock in 2259 * preparation for taking it in write mode. 2260 */ 2261 up_read(&mm->mmap_sem); 2262 if (unlikely(!*hpage)) { 2263 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 2264 *hpage = ERR_PTR(-ENOMEM); 2265 return NULL; 2266 } 2267 2268 count_vm_event(THP_COLLAPSE_ALLOC); 2269 return *hpage; 2270 } 2271 #else 2272 static int khugepaged_find_target_node(void) 2273 { 2274 return 0; 2275 } 2276 2277 static inline struct page *alloc_hugepage(int defrag) 2278 { 2279 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0), 2280 HPAGE_PMD_ORDER); 2281 } 2282 2283 static struct page *khugepaged_alloc_hugepage(bool *wait) 2284 { 2285 struct page *hpage; 2286 2287 do { 2288 hpage = alloc_hugepage(khugepaged_defrag()); 2289 if (!hpage) { 2290 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 2291 if (!*wait) 2292 return NULL; 2293 2294 *wait = false; 2295 khugepaged_alloc_sleep(); 2296 } else 2297 count_vm_event(THP_COLLAPSE_ALLOC); 2298 } while (unlikely(!hpage) && likely(khugepaged_enabled())); 2299 2300 return hpage; 2301 } 2302 2303 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 2304 { 2305 if (!*hpage) 2306 *hpage = khugepaged_alloc_hugepage(wait); 2307 2308 if (unlikely(!*hpage)) 2309 return false; 2310 2311 return true; 2312 } 2313 2314 static struct page 2315 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm, 2316 struct vm_area_struct *vma, unsigned long address, 2317 int node) 2318 { 2319 up_read(&mm->mmap_sem); 2320 VM_BUG_ON(!*hpage); 2321 return *hpage; 2322 } 2323 #endif 2324 2325 static bool hugepage_vma_check(struct vm_area_struct *vma) 2326 { 2327 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) || 2328 (vma->vm_flags & VM_NOHUGEPAGE)) 2329 return false; 2330 2331 if (!vma->anon_vma || vma->vm_ops) 2332 return false; 2333 if (is_vma_temporary_stack(vma)) 2334 return false; 2335 VM_BUG_ON(vma->vm_flags & VM_NO_THP); 2336 return true; 2337 } 2338 2339 static void collapse_huge_page(struct mm_struct *mm, 2340 unsigned long address, 2341 struct page **hpage, 2342 struct vm_area_struct *vma, 2343 int node) 2344 { 2345 pmd_t *pmd, _pmd; 2346 pte_t *pte; 2347 pgtable_t pgtable; 2348 struct page *new_page; 2349 spinlock_t *pmd_ptl, *pte_ptl; 2350 int isolated; 2351 unsigned long hstart, hend; 2352 unsigned long mmun_start; /* For mmu_notifiers */ 2353 unsigned long mmun_end; /* For mmu_notifiers */ 2354 2355 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 2356 2357 /* release the mmap_sem read lock. */ 2358 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node); 2359 if (!new_page) 2360 return; 2361 2362 if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) 2363 return; 2364 2365 /* 2366 * Prevent all access to pagetables with the exception of 2367 * gup_fast later hanlded by the ptep_clear_flush and the VM 2368 * handled by the anon_vma lock + PG_lock. 2369 */ 2370 down_write(&mm->mmap_sem); 2371 if (unlikely(khugepaged_test_exit(mm))) 2372 goto out; 2373 2374 vma = find_vma(mm, address); 2375 if (!vma) 2376 goto out; 2377 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2378 hend = vma->vm_end & HPAGE_PMD_MASK; 2379 if (address < hstart || address + HPAGE_PMD_SIZE > hend) 2380 goto out; 2381 if (!hugepage_vma_check(vma)) 2382 goto out; 2383 pmd = mm_find_pmd(mm, address); 2384 if (!pmd) 2385 goto out; 2386 if (pmd_trans_huge(*pmd)) 2387 goto out; 2388 2389 anon_vma_lock_write(vma->anon_vma); 2390 2391 pte = pte_offset_map(pmd, address); 2392 pte_ptl = pte_lockptr(mm, pmd); 2393 2394 mmun_start = address; 2395 mmun_end = address + HPAGE_PMD_SIZE; 2396 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2397 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 2398 /* 2399 * After this gup_fast can't run anymore. This also removes 2400 * any huge TLB entry from the CPU so we won't allow 2401 * huge and small TLB entries for the same virtual address 2402 * to avoid the risk of CPU bugs in that area. 2403 */ 2404 _pmd = pmdp_clear_flush(vma, address, pmd); 2405 spin_unlock(pmd_ptl); 2406 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2407 2408 spin_lock(pte_ptl); 2409 isolated = __collapse_huge_page_isolate(vma, address, pte); 2410 spin_unlock(pte_ptl); 2411 2412 if (unlikely(!isolated)) { 2413 pte_unmap(pte); 2414 spin_lock(pmd_ptl); 2415 BUG_ON(!pmd_none(*pmd)); 2416 /* 2417 * We can only use set_pmd_at when establishing 2418 * hugepmds and never for establishing regular pmds that 2419 * points to regular pagetables. Use pmd_populate for that 2420 */ 2421 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 2422 spin_unlock(pmd_ptl); 2423 anon_vma_unlock_write(vma->anon_vma); 2424 goto out; 2425 } 2426 2427 /* 2428 * All pages are isolated and locked so anon_vma rmap 2429 * can't run anymore. 2430 */ 2431 anon_vma_unlock_write(vma->anon_vma); 2432 2433 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl); 2434 pte_unmap(pte); 2435 __SetPageUptodate(new_page); 2436 pgtable = pmd_pgtable(_pmd); 2437 2438 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot); 2439 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 2440 2441 /* 2442 * spin_lock() below is not the equivalent of smp_wmb(), so 2443 * this is needed to avoid the copy_huge_page writes to become 2444 * visible after the set_pmd_at() write. 2445 */ 2446 smp_wmb(); 2447 2448 spin_lock(pmd_ptl); 2449 BUG_ON(!pmd_none(*pmd)); 2450 page_add_new_anon_rmap(new_page, vma, address); 2451 pgtable_trans_huge_deposit(mm, pmd, pgtable); 2452 set_pmd_at(mm, address, pmd, _pmd); 2453 update_mmu_cache_pmd(vma, address, pmd); 2454 spin_unlock(pmd_ptl); 2455 2456 *hpage = NULL; 2457 2458 khugepaged_pages_collapsed++; 2459 out_up_write: 2460 up_write(&mm->mmap_sem); 2461 return; 2462 2463 out: 2464 mem_cgroup_uncharge_page(new_page); 2465 goto out_up_write; 2466 } 2467 2468 static int khugepaged_scan_pmd(struct mm_struct *mm, 2469 struct vm_area_struct *vma, 2470 unsigned long address, 2471 struct page **hpage) 2472 { 2473 pmd_t *pmd; 2474 pte_t *pte, *_pte; 2475 int ret = 0, referenced = 0, none = 0; 2476 struct page *page; 2477 unsigned long _address; 2478 spinlock_t *ptl; 2479 int node = NUMA_NO_NODE; 2480 2481 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 2482 2483 pmd = mm_find_pmd(mm, address); 2484 if (!pmd) 2485 goto out; 2486 if (pmd_trans_huge(*pmd)) 2487 goto out; 2488 2489 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 2490 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2491 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; 2492 _pte++, _address += PAGE_SIZE) { 2493 pte_t pteval = *_pte; 2494 if (pte_none(pteval)) { 2495 if (++none <= khugepaged_max_ptes_none) 2496 continue; 2497 else 2498 goto out_unmap; 2499 } 2500 if (!pte_present(pteval) || !pte_write(pteval)) 2501 goto out_unmap; 2502 page = vm_normal_page(vma, _address, pteval); 2503 if (unlikely(!page)) 2504 goto out_unmap; 2505 /* 2506 * Record which node the original page is from and save this 2507 * information to khugepaged_node_load[]. 2508 * Khupaged will allocate hugepage from the node has the max 2509 * hit record. 2510 */ 2511 node = page_to_nid(page); 2512 khugepaged_node_load[node]++; 2513 VM_BUG_ON_PAGE(PageCompound(page), page); 2514 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page)) 2515 goto out_unmap; 2516 /* cannot use mapcount: can't collapse if there's a gup pin */ 2517 if (page_count(page) != 1) 2518 goto out_unmap; 2519 if (pte_young(pteval) || PageReferenced(page) || 2520 mmu_notifier_test_young(vma->vm_mm, address)) 2521 referenced = 1; 2522 } 2523 if (referenced) 2524 ret = 1; 2525 out_unmap: 2526 pte_unmap_unlock(pte, ptl); 2527 if (ret) { 2528 node = khugepaged_find_target_node(); 2529 /* collapse_huge_page will return with the mmap_sem released */ 2530 collapse_huge_page(mm, address, hpage, vma, node); 2531 } 2532 out: 2533 return ret; 2534 } 2535 2536 static void collect_mm_slot(struct mm_slot *mm_slot) 2537 { 2538 struct mm_struct *mm = mm_slot->mm; 2539 2540 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); 2541 2542 if (khugepaged_test_exit(mm)) { 2543 /* free mm_slot */ 2544 hash_del(&mm_slot->hash); 2545 list_del(&mm_slot->mm_node); 2546 2547 /* 2548 * Not strictly needed because the mm exited already. 2549 * 2550 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 2551 */ 2552 2553 /* khugepaged_mm_lock actually not necessary for the below */ 2554 free_mm_slot(mm_slot); 2555 mmdrop(mm); 2556 } 2557 } 2558 2559 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, 2560 struct page **hpage) 2561 __releases(&khugepaged_mm_lock) 2562 __acquires(&khugepaged_mm_lock) 2563 { 2564 struct mm_slot *mm_slot; 2565 struct mm_struct *mm; 2566 struct vm_area_struct *vma; 2567 int progress = 0; 2568 2569 VM_BUG_ON(!pages); 2570 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock)); 2571 2572 if (khugepaged_scan.mm_slot) 2573 mm_slot = khugepaged_scan.mm_slot; 2574 else { 2575 mm_slot = list_entry(khugepaged_scan.mm_head.next, 2576 struct mm_slot, mm_node); 2577 khugepaged_scan.address = 0; 2578 khugepaged_scan.mm_slot = mm_slot; 2579 } 2580 spin_unlock(&khugepaged_mm_lock); 2581 2582 mm = mm_slot->mm; 2583 down_read(&mm->mmap_sem); 2584 if (unlikely(khugepaged_test_exit(mm))) 2585 vma = NULL; 2586 else 2587 vma = find_vma(mm, khugepaged_scan.address); 2588 2589 progress++; 2590 for (; vma; vma = vma->vm_next) { 2591 unsigned long hstart, hend; 2592 2593 cond_resched(); 2594 if (unlikely(khugepaged_test_exit(mm))) { 2595 progress++; 2596 break; 2597 } 2598 if (!hugepage_vma_check(vma)) { 2599 skip: 2600 progress++; 2601 continue; 2602 } 2603 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2604 hend = vma->vm_end & HPAGE_PMD_MASK; 2605 if (hstart >= hend) 2606 goto skip; 2607 if (khugepaged_scan.address > hend) 2608 goto skip; 2609 if (khugepaged_scan.address < hstart) 2610 khugepaged_scan.address = hstart; 2611 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2612 2613 while (khugepaged_scan.address < hend) { 2614 int ret; 2615 cond_resched(); 2616 if (unlikely(khugepaged_test_exit(mm))) 2617 goto breakouterloop; 2618 2619 VM_BUG_ON(khugepaged_scan.address < hstart || 2620 khugepaged_scan.address + HPAGE_PMD_SIZE > 2621 hend); 2622 ret = khugepaged_scan_pmd(mm, vma, 2623 khugepaged_scan.address, 2624 hpage); 2625 /* move to next address */ 2626 khugepaged_scan.address += HPAGE_PMD_SIZE; 2627 progress += HPAGE_PMD_NR; 2628 if (ret) 2629 /* we released mmap_sem so break loop */ 2630 goto breakouterloop_mmap_sem; 2631 if (progress >= pages) 2632 goto breakouterloop; 2633 } 2634 } 2635 breakouterloop: 2636 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */ 2637 breakouterloop_mmap_sem: 2638 2639 spin_lock(&khugepaged_mm_lock); 2640 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2641 /* 2642 * Release the current mm_slot if this mm is about to die, or 2643 * if we scanned all vmas of this mm. 2644 */ 2645 if (khugepaged_test_exit(mm) || !vma) { 2646 /* 2647 * Make sure that if mm_users is reaching zero while 2648 * khugepaged runs here, khugepaged_exit will find 2649 * mm_slot not pointing to the exiting mm. 2650 */ 2651 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { 2652 khugepaged_scan.mm_slot = list_entry( 2653 mm_slot->mm_node.next, 2654 struct mm_slot, mm_node); 2655 khugepaged_scan.address = 0; 2656 } else { 2657 khugepaged_scan.mm_slot = NULL; 2658 khugepaged_full_scans++; 2659 } 2660 2661 collect_mm_slot(mm_slot); 2662 } 2663 2664 return progress; 2665 } 2666 2667 static int khugepaged_has_work(void) 2668 { 2669 return !list_empty(&khugepaged_scan.mm_head) && 2670 khugepaged_enabled(); 2671 } 2672 2673 static int khugepaged_wait_event(void) 2674 { 2675 return !list_empty(&khugepaged_scan.mm_head) || 2676 kthread_should_stop(); 2677 } 2678 2679 static void khugepaged_do_scan(void) 2680 { 2681 struct page *hpage = NULL; 2682 unsigned int progress = 0, pass_through_head = 0; 2683 unsigned int pages = khugepaged_pages_to_scan; 2684 bool wait = true; 2685 2686 barrier(); /* write khugepaged_pages_to_scan to local stack */ 2687 2688 while (progress < pages) { 2689 if (!khugepaged_prealloc_page(&hpage, &wait)) 2690 break; 2691 2692 cond_resched(); 2693 2694 if (unlikely(kthread_should_stop() || freezing(current))) 2695 break; 2696 2697 spin_lock(&khugepaged_mm_lock); 2698 if (!khugepaged_scan.mm_slot) 2699 pass_through_head++; 2700 if (khugepaged_has_work() && 2701 pass_through_head < 2) 2702 progress += khugepaged_scan_mm_slot(pages - progress, 2703 &hpage); 2704 else 2705 progress = pages; 2706 spin_unlock(&khugepaged_mm_lock); 2707 } 2708 2709 if (!IS_ERR_OR_NULL(hpage)) 2710 put_page(hpage); 2711 } 2712 2713 static void khugepaged_wait_work(void) 2714 { 2715 try_to_freeze(); 2716 2717 if (khugepaged_has_work()) { 2718 if (!khugepaged_scan_sleep_millisecs) 2719 return; 2720 2721 wait_event_freezable_timeout(khugepaged_wait, 2722 kthread_should_stop(), 2723 msecs_to_jiffies(khugepaged_scan_sleep_millisecs)); 2724 return; 2725 } 2726 2727 if (khugepaged_enabled()) 2728 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2729 } 2730 2731 static int khugepaged(void *none) 2732 { 2733 struct mm_slot *mm_slot; 2734 2735 set_freezable(); 2736 set_user_nice(current, 19); 2737 2738 while (!kthread_should_stop()) { 2739 khugepaged_do_scan(); 2740 khugepaged_wait_work(); 2741 } 2742 2743 spin_lock(&khugepaged_mm_lock); 2744 mm_slot = khugepaged_scan.mm_slot; 2745 khugepaged_scan.mm_slot = NULL; 2746 if (mm_slot) 2747 collect_mm_slot(mm_slot); 2748 spin_unlock(&khugepaged_mm_lock); 2749 return 0; 2750 } 2751 2752 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2753 unsigned long haddr, pmd_t *pmd) 2754 { 2755 struct mm_struct *mm = vma->vm_mm; 2756 pgtable_t pgtable; 2757 pmd_t _pmd; 2758 int i; 2759 2760 pmdp_clear_flush(vma, haddr, pmd); 2761 /* leave pmd empty until pte is filled */ 2762 2763 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2764 pmd_populate(mm, &_pmd, pgtable); 2765 2766 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 2767 pte_t *pte, entry; 2768 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 2769 entry = pte_mkspecial(entry); 2770 pte = pte_offset_map(&_pmd, haddr); 2771 VM_BUG_ON(!pte_none(*pte)); 2772 set_pte_at(mm, haddr, pte, entry); 2773 pte_unmap(pte); 2774 } 2775 smp_wmb(); /* make pte visible before pmd */ 2776 pmd_populate(mm, pmd, pgtable); 2777 put_huge_zero_page(); 2778 } 2779 2780 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address, 2781 pmd_t *pmd) 2782 { 2783 spinlock_t *ptl; 2784 struct page *page; 2785 struct mm_struct *mm = vma->vm_mm; 2786 unsigned long haddr = address & HPAGE_PMD_MASK; 2787 unsigned long mmun_start; /* For mmu_notifiers */ 2788 unsigned long mmun_end; /* For mmu_notifiers */ 2789 2790 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE); 2791 2792 mmun_start = haddr; 2793 mmun_end = haddr + HPAGE_PMD_SIZE; 2794 again: 2795 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2796 ptl = pmd_lock(mm, pmd); 2797 if (unlikely(!pmd_trans_huge(*pmd))) { 2798 spin_unlock(ptl); 2799 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2800 return; 2801 } 2802 if (is_huge_zero_pmd(*pmd)) { 2803 __split_huge_zero_page_pmd(vma, haddr, pmd); 2804 spin_unlock(ptl); 2805 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2806 return; 2807 } 2808 page = pmd_page(*pmd); 2809 VM_BUG_ON_PAGE(!page_count(page), page); 2810 get_page(page); 2811 spin_unlock(ptl); 2812 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2813 2814 split_huge_page(page); 2815 2816 put_page(page); 2817 2818 /* 2819 * We don't always have down_write of mmap_sem here: a racing 2820 * do_huge_pmd_wp_page() might have copied-on-write to another 2821 * huge page before our split_huge_page() got the anon_vma lock. 2822 */ 2823 if (unlikely(pmd_trans_huge(*pmd))) 2824 goto again; 2825 } 2826 2827 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address, 2828 pmd_t *pmd) 2829 { 2830 struct vm_area_struct *vma; 2831 2832 vma = find_vma(mm, address); 2833 BUG_ON(vma == NULL); 2834 split_huge_page_pmd(vma, address, pmd); 2835 } 2836 2837 static void split_huge_page_address(struct mm_struct *mm, 2838 unsigned long address) 2839 { 2840 pmd_t *pmd; 2841 2842 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK)); 2843 2844 pmd = mm_find_pmd(mm, address); 2845 if (!pmd) 2846 return; 2847 /* 2848 * Caller holds the mmap_sem write mode, so a huge pmd cannot 2849 * materialize from under us. 2850 */ 2851 split_huge_page_pmd_mm(mm, address, pmd); 2852 } 2853 2854 void __vma_adjust_trans_huge(struct vm_area_struct *vma, 2855 unsigned long start, 2856 unsigned long end, 2857 long adjust_next) 2858 { 2859 /* 2860 * If the new start address isn't hpage aligned and it could 2861 * previously contain an hugepage: check if we need to split 2862 * an huge pmd. 2863 */ 2864 if (start & ~HPAGE_PMD_MASK && 2865 (start & HPAGE_PMD_MASK) >= vma->vm_start && 2866 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2867 split_huge_page_address(vma->vm_mm, start); 2868 2869 /* 2870 * If the new end address isn't hpage aligned and it could 2871 * previously contain an hugepage: check if we need to split 2872 * an huge pmd. 2873 */ 2874 if (end & ~HPAGE_PMD_MASK && 2875 (end & HPAGE_PMD_MASK) >= vma->vm_start && 2876 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2877 split_huge_page_address(vma->vm_mm, end); 2878 2879 /* 2880 * If we're also updating the vma->vm_next->vm_start, if the new 2881 * vm_next->vm_start isn't page aligned and it could previously 2882 * contain an hugepage: check if we need to split an huge pmd. 2883 */ 2884 if (adjust_next > 0) { 2885 struct vm_area_struct *next = vma->vm_next; 2886 unsigned long nstart = next->vm_start; 2887 nstart += adjust_next << PAGE_SHIFT; 2888 if (nstart & ~HPAGE_PMD_MASK && 2889 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 2890 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 2891 split_huge_page_address(next->vm_mm, nstart); 2892 } 2893 } 2894