xref: /openbmc/linux/mm/huge_memory.c (revision 1c2f87c2)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
24 
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28 
29 /*
30  * By default transparent hugepage support is disabled in order that avoid
31  * to risk increase the memory footprint of applications without a guaranteed
32  * benefit. When transparent hugepage support is enabled, is for all mappings,
33  * and khugepaged scans all mappings.
34  * Defrag is invoked by khugepaged hugepage allocations and by page faults
35  * for all hugepage allocations.
36  */
37 unsigned long transparent_hugepage_flags __read_mostly =
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
39 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
40 #endif
41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
43 #endif
44 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
45 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
46 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
47 
48 /* default scan 8*512 pte (or vmas) every 30 second */
49 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
50 static unsigned int khugepaged_pages_collapsed;
51 static unsigned int khugepaged_full_scans;
52 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
53 /* during fragmentation poll the hugepage allocator once every minute */
54 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
55 static struct task_struct *khugepaged_thread __read_mostly;
56 static DEFINE_MUTEX(khugepaged_mutex);
57 static DEFINE_SPINLOCK(khugepaged_mm_lock);
58 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
59 /*
60  * default collapse hugepages if there is at least one pte mapped like
61  * it would have happened if the vma was large enough during page
62  * fault.
63  */
64 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
65 
66 static int khugepaged(void *none);
67 static int khugepaged_slab_init(void);
68 
69 #define MM_SLOTS_HASH_BITS 10
70 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
71 
72 static struct kmem_cache *mm_slot_cache __read_mostly;
73 
74 /**
75  * struct mm_slot - hash lookup from mm to mm_slot
76  * @hash: hash collision list
77  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78  * @mm: the mm that this information is valid for
79  */
80 struct mm_slot {
81 	struct hlist_node hash;
82 	struct list_head mm_node;
83 	struct mm_struct *mm;
84 };
85 
86 /**
87  * struct khugepaged_scan - cursor for scanning
88  * @mm_head: the head of the mm list to scan
89  * @mm_slot: the current mm_slot we are scanning
90  * @address: the next address inside that to be scanned
91  *
92  * There is only the one khugepaged_scan instance of this cursor structure.
93  */
94 struct khugepaged_scan {
95 	struct list_head mm_head;
96 	struct mm_slot *mm_slot;
97 	unsigned long address;
98 };
99 static struct khugepaged_scan khugepaged_scan = {
100 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
101 };
102 
103 
104 static int set_recommended_min_free_kbytes(void)
105 {
106 	struct zone *zone;
107 	int nr_zones = 0;
108 	unsigned long recommended_min;
109 
110 	if (!khugepaged_enabled())
111 		return 0;
112 
113 	for_each_populated_zone(zone)
114 		nr_zones++;
115 
116 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 	recommended_min = pageblock_nr_pages * nr_zones * 2;
118 
119 	/*
120 	 * Make sure that on average at least two pageblocks are almost free
121 	 * of another type, one for a migratetype to fall back to and a
122 	 * second to avoid subsequent fallbacks of other types There are 3
123 	 * MIGRATE_TYPES we care about.
124 	 */
125 	recommended_min += pageblock_nr_pages * nr_zones *
126 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
127 
128 	/* don't ever allow to reserve more than 5% of the lowmem */
129 	recommended_min = min(recommended_min,
130 			      (unsigned long) nr_free_buffer_pages() / 20);
131 	recommended_min <<= (PAGE_SHIFT-10);
132 
133 	if (recommended_min > min_free_kbytes) {
134 		if (user_min_free_kbytes >= 0)
135 			pr_info("raising min_free_kbytes from %d to %lu "
136 				"to help transparent hugepage allocations\n",
137 				min_free_kbytes, recommended_min);
138 
139 		min_free_kbytes = recommended_min;
140 	}
141 	setup_per_zone_wmarks();
142 	return 0;
143 }
144 late_initcall(set_recommended_min_free_kbytes);
145 
146 static int start_khugepaged(void)
147 {
148 	int err = 0;
149 	if (khugepaged_enabled()) {
150 		if (!khugepaged_thread)
151 			khugepaged_thread = kthread_run(khugepaged, NULL,
152 							"khugepaged");
153 		if (unlikely(IS_ERR(khugepaged_thread))) {
154 			printk(KERN_ERR
155 			       "khugepaged: kthread_run(khugepaged) failed\n");
156 			err = PTR_ERR(khugepaged_thread);
157 			khugepaged_thread = NULL;
158 		}
159 
160 		if (!list_empty(&khugepaged_scan.mm_head))
161 			wake_up_interruptible(&khugepaged_wait);
162 
163 		set_recommended_min_free_kbytes();
164 	} else if (khugepaged_thread) {
165 		kthread_stop(khugepaged_thread);
166 		khugepaged_thread = NULL;
167 	}
168 
169 	return err;
170 }
171 
172 static atomic_t huge_zero_refcount;
173 static struct page *huge_zero_page __read_mostly;
174 
175 static inline bool is_huge_zero_page(struct page *page)
176 {
177 	return ACCESS_ONCE(huge_zero_page) == page;
178 }
179 
180 static inline bool is_huge_zero_pmd(pmd_t pmd)
181 {
182 	return is_huge_zero_page(pmd_page(pmd));
183 }
184 
185 static struct page *get_huge_zero_page(void)
186 {
187 	struct page *zero_page;
188 retry:
189 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
190 		return ACCESS_ONCE(huge_zero_page);
191 
192 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
193 			HPAGE_PMD_ORDER);
194 	if (!zero_page) {
195 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
196 		return NULL;
197 	}
198 	count_vm_event(THP_ZERO_PAGE_ALLOC);
199 	preempt_disable();
200 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
201 		preempt_enable();
202 		__free_page(zero_page);
203 		goto retry;
204 	}
205 
206 	/* We take additional reference here. It will be put back by shrinker */
207 	atomic_set(&huge_zero_refcount, 2);
208 	preempt_enable();
209 	return ACCESS_ONCE(huge_zero_page);
210 }
211 
212 static void put_huge_zero_page(void)
213 {
214 	/*
215 	 * Counter should never go to zero here. Only shrinker can put
216 	 * last reference.
217 	 */
218 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
219 }
220 
221 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
222 					struct shrink_control *sc)
223 {
224 	/* we can free zero page only if last reference remains */
225 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
226 }
227 
228 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
229 				       struct shrink_control *sc)
230 {
231 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
232 		struct page *zero_page = xchg(&huge_zero_page, NULL);
233 		BUG_ON(zero_page == NULL);
234 		__free_page(zero_page);
235 		return HPAGE_PMD_NR;
236 	}
237 
238 	return 0;
239 }
240 
241 static struct shrinker huge_zero_page_shrinker = {
242 	.count_objects = shrink_huge_zero_page_count,
243 	.scan_objects = shrink_huge_zero_page_scan,
244 	.seeks = DEFAULT_SEEKS,
245 };
246 
247 #ifdef CONFIG_SYSFS
248 
249 static ssize_t double_flag_show(struct kobject *kobj,
250 				struct kobj_attribute *attr, char *buf,
251 				enum transparent_hugepage_flag enabled,
252 				enum transparent_hugepage_flag req_madv)
253 {
254 	if (test_bit(enabled, &transparent_hugepage_flags)) {
255 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
256 		return sprintf(buf, "[always] madvise never\n");
257 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
258 		return sprintf(buf, "always [madvise] never\n");
259 	else
260 		return sprintf(buf, "always madvise [never]\n");
261 }
262 static ssize_t double_flag_store(struct kobject *kobj,
263 				 struct kobj_attribute *attr,
264 				 const char *buf, size_t count,
265 				 enum transparent_hugepage_flag enabled,
266 				 enum transparent_hugepage_flag req_madv)
267 {
268 	if (!memcmp("always", buf,
269 		    min(sizeof("always")-1, count))) {
270 		set_bit(enabled, &transparent_hugepage_flags);
271 		clear_bit(req_madv, &transparent_hugepage_flags);
272 	} else if (!memcmp("madvise", buf,
273 			   min(sizeof("madvise")-1, count))) {
274 		clear_bit(enabled, &transparent_hugepage_flags);
275 		set_bit(req_madv, &transparent_hugepage_flags);
276 	} else if (!memcmp("never", buf,
277 			   min(sizeof("never")-1, count))) {
278 		clear_bit(enabled, &transparent_hugepage_flags);
279 		clear_bit(req_madv, &transparent_hugepage_flags);
280 	} else
281 		return -EINVAL;
282 
283 	return count;
284 }
285 
286 static ssize_t enabled_show(struct kobject *kobj,
287 			    struct kobj_attribute *attr, char *buf)
288 {
289 	return double_flag_show(kobj, attr, buf,
290 				TRANSPARENT_HUGEPAGE_FLAG,
291 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
292 }
293 static ssize_t enabled_store(struct kobject *kobj,
294 			     struct kobj_attribute *attr,
295 			     const char *buf, size_t count)
296 {
297 	ssize_t ret;
298 
299 	ret = double_flag_store(kobj, attr, buf, count,
300 				TRANSPARENT_HUGEPAGE_FLAG,
301 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
302 
303 	if (ret > 0) {
304 		int err;
305 
306 		mutex_lock(&khugepaged_mutex);
307 		err = start_khugepaged();
308 		mutex_unlock(&khugepaged_mutex);
309 
310 		if (err)
311 			ret = err;
312 	}
313 
314 	return ret;
315 }
316 static struct kobj_attribute enabled_attr =
317 	__ATTR(enabled, 0644, enabled_show, enabled_store);
318 
319 static ssize_t single_flag_show(struct kobject *kobj,
320 				struct kobj_attribute *attr, char *buf,
321 				enum transparent_hugepage_flag flag)
322 {
323 	return sprintf(buf, "%d\n",
324 		       !!test_bit(flag, &transparent_hugepage_flags));
325 }
326 
327 static ssize_t single_flag_store(struct kobject *kobj,
328 				 struct kobj_attribute *attr,
329 				 const char *buf, size_t count,
330 				 enum transparent_hugepage_flag flag)
331 {
332 	unsigned long value;
333 	int ret;
334 
335 	ret = kstrtoul(buf, 10, &value);
336 	if (ret < 0)
337 		return ret;
338 	if (value > 1)
339 		return -EINVAL;
340 
341 	if (value)
342 		set_bit(flag, &transparent_hugepage_flags);
343 	else
344 		clear_bit(flag, &transparent_hugepage_flags);
345 
346 	return count;
347 }
348 
349 /*
350  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
351  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
352  * memory just to allocate one more hugepage.
353  */
354 static ssize_t defrag_show(struct kobject *kobj,
355 			   struct kobj_attribute *attr, char *buf)
356 {
357 	return double_flag_show(kobj, attr, buf,
358 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
359 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
360 }
361 static ssize_t defrag_store(struct kobject *kobj,
362 			    struct kobj_attribute *attr,
363 			    const char *buf, size_t count)
364 {
365 	return double_flag_store(kobj, attr, buf, count,
366 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
367 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
368 }
369 static struct kobj_attribute defrag_attr =
370 	__ATTR(defrag, 0644, defrag_show, defrag_store);
371 
372 static ssize_t use_zero_page_show(struct kobject *kobj,
373 		struct kobj_attribute *attr, char *buf)
374 {
375 	return single_flag_show(kobj, attr, buf,
376 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static ssize_t use_zero_page_store(struct kobject *kobj,
379 		struct kobj_attribute *attr, const char *buf, size_t count)
380 {
381 	return single_flag_store(kobj, attr, buf, count,
382 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383 }
384 static struct kobj_attribute use_zero_page_attr =
385 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
386 #ifdef CONFIG_DEBUG_VM
387 static ssize_t debug_cow_show(struct kobject *kobj,
388 				struct kobj_attribute *attr, char *buf)
389 {
390 	return single_flag_show(kobj, attr, buf,
391 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
392 }
393 static ssize_t debug_cow_store(struct kobject *kobj,
394 			       struct kobj_attribute *attr,
395 			       const char *buf, size_t count)
396 {
397 	return single_flag_store(kobj, attr, buf, count,
398 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
399 }
400 static struct kobj_attribute debug_cow_attr =
401 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
402 #endif /* CONFIG_DEBUG_VM */
403 
404 static struct attribute *hugepage_attr[] = {
405 	&enabled_attr.attr,
406 	&defrag_attr.attr,
407 	&use_zero_page_attr.attr,
408 #ifdef CONFIG_DEBUG_VM
409 	&debug_cow_attr.attr,
410 #endif
411 	NULL,
412 };
413 
414 static struct attribute_group hugepage_attr_group = {
415 	.attrs = hugepage_attr,
416 };
417 
418 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
419 					 struct kobj_attribute *attr,
420 					 char *buf)
421 {
422 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
423 }
424 
425 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
426 					  struct kobj_attribute *attr,
427 					  const char *buf, size_t count)
428 {
429 	unsigned long msecs;
430 	int err;
431 
432 	err = kstrtoul(buf, 10, &msecs);
433 	if (err || msecs > UINT_MAX)
434 		return -EINVAL;
435 
436 	khugepaged_scan_sleep_millisecs = msecs;
437 	wake_up_interruptible(&khugepaged_wait);
438 
439 	return count;
440 }
441 static struct kobj_attribute scan_sleep_millisecs_attr =
442 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
443 	       scan_sleep_millisecs_store);
444 
445 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
446 					  struct kobj_attribute *attr,
447 					  char *buf)
448 {
449 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
450 }
451 
452 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
453 					   struct kobj_attribute *attr,
454 					   const char *buf, size_t count)
455 {
456 	unsigned long msecs;
457 	int err;
458 
459 	err = kstrtoul(buf, 10, &msecs);
460 	if (err || msecs > UINT_MAX)
461 		return -EINVAL;
462 
463 	khugepaged_alloc_sleep_millisecs = msecs;
464 	wake_up_interruptible(&khugepaged_wait);
465 
466 	return count;
467 }
468 static struct kobj_attribute alloc_sleep_millisecs_attr =
469 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
470 	       alloc_sleep_millisecs_store);
471 
472 static ssize_t pages_to_scan_show(struct kobject *kobj,
473 				  struct kobj_attribute *attr,
474 				  char *buf)
475 {
476 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
477 }
478 static ssize_t pages_to_scan_store(struct kobject *kobj,
479 				   struct kobj_attribute *attr,
480 				   const char *buf, size_t count)
481 {
482 	int err;
483 	unsigned long pages;
484 
485 	err = kstrtoul(buf, 10, &pages);
486 	if (err || !pages || pages > UINT_MAX)
487 		return -EINVAL;
488 
489 	khugepaged_pages_to_scan = pages;
490 
491 	return count;
492 }
493 static struct kobj_attribute pages_to_scan_attr =
494 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
495 	       pages_to_scan_store);
496 
497 static ssize_t pages_collapsed_show(struct kobject *kobj,
498 				    struct kobj_attribute *attr,
499 				    char *buf)
500 {
501 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
502 }
503 static struct kobj_attribute pages_collapsed_attr =
504 	__ATTR_RO(pages_collapsed);
505 
506 static ssize_t full_scans_show(struct kobject *kobj,
507 			       struct kobj_attribute *attr,
508 			       char *buf)
509 {
510 	return sprintf(buf, "%u\n", khugepaged_full_scans);
511 }
512 static struct kobj_attribute full_scans_attr =
513 	__ATTR_RO(full_scans);
514 
515 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
516 				      struct kobj_attribute *attr, char *buf)
517 {
518 	return single_flag_show(kobj, attr, buf,
519 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
520 }
521 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
522 				       struct kobj_attribute *attr,
523 				       const char *buf, size_t count)
524 {
525 	return single_flag_store(kobj, attr, buf, count,
526 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
527 }
528 static struct kobj_attribute khugepaged_defrag_attr =
529 	__ATTR(defrag, 0644, khugepaged_defrag_show,
530 	       khugepaged_defrag_store);
531 
532 /*
533  * max_ptes_none controls if khugepaged should collapse hugepages over
534  * any unmapped ptes in turn potentially increasing the memory
535  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
536  * reduce the available free memory in the system as it
537  * runs. Increasing max_ptes_none will instead potentially reduce the
538  * free memory in the system during the khugepaged scan.
539  */
540 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
541 					     struct kobj_attribute *attr,
542 					     char *buf)
543 {
544 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
545 }
546 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
547 					      struct kobj_attribute *attr,
548 					      const char *buf, size_t count)
549 {
550 	int err;
551 	unsigned long max_ptes_none;
552 
553 	err = kstrtoul(buf, 10, &max_ptes_none);
554 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
555 		return -EINVAL;
556 
557 	khugepaged_max_ptes_none = max_ptes_none;
558 
559 	return count;
560 }
561 static struct kobj_attribute khugepaged_max_ptes_none_attr =
562 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
563 	       khugepaged_max_ptes_none_store);
564 
565 static struct attribute *khugepaged_attr[] = {
566 	&khugepaged_defrag_attr.attr,
567 	&khugepaged_max_ptes_none_attr.attr,
568 	&pages_to_scan_attr.attr,
569 	&pages_collapsed_attr.attr,
570 	&full_scans_attr.attr,
571 	&scan_sleep_millisecs_attr.attr,
572 	&alloc_sleep_millisecs_attr.attr,
573 	NULL,
574 };
575 
576 static struct attribute_group khugepaged_attr_group = {
577 	.attrs = khugepaged_attr,
578 	.name = "khugepaged",
579 };
580 
581 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
582 {
583 	int err;
584 
585 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
586 	if (unlikely(!*hugepage_kobj)) {
587 		printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
588 		return -ENOMEM;
589 	}
590 
591 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
592 	if (err) {
593 		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
594 		goto delete_obj;
595 	}
596 
597 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
598 	if (err) {
599 		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
600 		goto remove_hp_group;
601 	}
602 
603 	return 0;
604 
605 remove_hp_group:
606 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
607 delete_obj:
608 	kobject_put(*hugepage_kobj);
609 	return err;
610 }
611 
612 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
613 {
614 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
615 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
616 	kobject_put(hugepage_kobj);
617 }
618 #else
619 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
620 {
621 	return 0;
622 }
623 
624 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
625 {
626 }
627 #endif /* CONFIG_SYSFS */
628 
629 static int __init hugepage_init(void)
630 {
631 	int err;
632 	struct kobject *hugepage_kobj;
633 
634 	if (!has_transparent_hugepage()) {
635 		transparent_hugepage_flags = 0;
636 		return -EINVAL;
637 	}
638 
639 	err = hugepage_init_sysfs(&hugepage_kobj);
640 	if (err)
641 		return err;
642 
643 	err = khugepaged_slab_init();
644 	if (err)
645 		goto out;
646 
647 	register_shrinker(&huge_zero_page_shrinker);
648 
649 	/*
650 	 * By default disable transparent hugepages on smaller systems,
651 	 * where the extra memory used could hurt more than TLB overhead
652 	 * is likely to save.  The admin can still enable it through /sys.
653 	 */
654 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
655 		transparent_hugepage_flags = 0;
656 
657 	start_khugepaged();
658 
659 	return 0;
660 out:
661 	hugepage_exit_sysfs(hugepage_kobj);
662 	return err;
663 }
664 subsys_initcall(hugepage_init);
665 
666 static int __init setup_transparent_hugepage(char *str)
667 {
668 	int ret = 0;
669 	if (!str)
670 		goto out;
671 	if (!strcmp(str, "always")) {
672 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 			&transparent_hugepage_flags);
674 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 			  &transparent_hugepage_flags);
676 		ret = 1;
677 	} else if (!strcmp(str, "madvise")) {
678 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 			  &transparent_hugepage_flags);
680 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 			&transparent_hugepage_flags);
682 		ret = 1;
683 	} else if (!strcmp(str, "never")) {
684 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
685 			  &transparent_hugepage_flags);
686 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
687 			  &transparent_hugepage_flags);
688 		ret = 1;
689 	}
690 out:
691 	if (!ret)
692 		printk(KERN_WARNING
693 		       "transparent_hugepage= cannot parse, ignored\n");
694 	return ret;
695 }
696 __setup("transparent_hugepage=", setup_transparent_hugepage);
697 
698 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
699 {
700 	if (likely(vma->vm_flags & VM_WRITE))
701 		pmd = pmd_mkwrite(pmd);
702 	return pmd;
703 }
704 
705 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
706 {
707 	pmd_t entry;
708 	entry = mk_pmd(page, prot);
709 	entry = pmd_mkhuge(entry);
710 	return entry;
711 }
712 
713 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
714 					struct vm_area_struct *vma,
715 					unsigned long haddr, pmd_t *pmd,
716 					struct page *page)
717 {
718 	pgtable_t pgtable;
719 	spinlock_t *ptl;
720 
721 	VM_BUG_ON_PAGE(!PageCompound(page), page);
722 	pgtable = pte_alloc_one(mm, haddr);
723 	if (unlikely(!pgtable))
724 		return VM_FAULT_OOM;
725 
726 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
727 	/*
728 	 * The memory barrier inside __SetPageUptodate makes sure that
729 	 * clear_huge_page writes become visible before the set_pmd_at()
730 	 * write.
731 	 */
732 	__SetPageUptodate(page);
733 
734 	ptl = pmd_lock(mm, pmd);
735 	if (unlikely(!pmd_none(*pmd))) {
736 		spin_unlock(ptl);
737 		mem_cgroup_uncharge_page(page);
738 		put_page(page);
739 		pte_free(mm, pgtable);
740 	} else {
741 		pmd_t entry;
742 		entry = mk_huge_pmd(page, vma->vm_page_prot);
743 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
744 		page_add_new_anon_rmap(page, vma, haddr);
745 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
746 		set_pmd_at(mm, haddr, pmd, entry);
747 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
748 		atomic_long_inc(&mm->nr_ptes);
749 		spin_unlock(ptl);
750 	}
751 
752 	return 0;
753 }
754 
755 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
756 {
757 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
758 }
759 
760 static inline struct page *alloc_hugepage_vma(int defrag,
761 					      struct vm_area_struct *vma,
762 					      unsigned long haddr, int nd,
763 					      gfp_t extra_gfp)
764 {
765 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
766 			       HPAGE_PMD_ORDER, vma, haddr, nd);
767 }
768 
769 /* Caller must hold page table lock. */
770 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
771 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
772 		struct page *zero_page)
773 {
774 	pmd_t entry;
775 	if (!pmd_none(*pmd))
776 		return false;
777 	entry = mk_pmd(zero_page, vma->vm_page_prot);
778 	entry = pmd_wrprotect(entry);
779 	entry = pmd_mkhuge(entry);
780 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
781 	set_pmd_at(mm, haddr, pmd, entry);
782 	atomic_long_inc(&mm->nr_ptes);
783 	return true;
784 }
785 
786 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
787 			       unsigned long address, pmd_t *pmd,
788 			       unsigned int flags)
789 {
790 	struct page *page;
791 	unsigned long haddr = address & HPAGE_PMD_MASK;
792 
793 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
794 		return VM_FAULT_FALLBACK;
795 	if (unlikely(anon_vma_prepare(vma)))
796 		return VM_FAULT_OOM;
797 	if (unlikely(khugepaged_enter(vma)))
798 		return VM_FAULT_OOM;
799 	if (!(flags & FAULT_FLAG_WRITE) &&
800 			transparent_hugepage_use_zero_page()) {
801 		spinlock_t *ptl;
802 		pgtable_t pgtable;
803 		struct page *zero_page;
804 		bool set;
805 		pgtable = pte_alloc_one(mm, haddr);
806 		if (unlikely(!pgtable))
807 			return VM_FAULT_OOM;
808 		zero_page = get_huge_zero_page();
809 		if (unlikely(!zero_page)) {
810 			pte_free(mm, pgtable);
811 			count_vm_event(THP_FAULT_FALLBACK);
812 			return VM_FAULT_FALLBACK;
813 		}
814 		ptl = pmd_lock(mm, pmd);
815 		set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
816 				zero_page);
817 		spin_unlock(ptl);
818 		if (!set) {
819 			pte_free(mm, pgtable);
820 			put_huge_zero_page();
821 		}
822 		return 0;
823 	}
824 	page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
825 			vma, haddr, numa_node_id(), 0);
826 	if (unlikely(!page)) {
827 		count_vm_event(THP_FAULT_FALLBACK);
828 		return VM_FAULT_FALLBACK;
829 	}
830 	if (unlikely(mem_cgroup_charge_anon(page, mm, GFP_KERNEL))) {
831 		put_page(page);
832 		count_vm_event(THP_FAULT_FALLBACK);
833 		return VM_FAULT_FALLBACK;
834 	}
835 	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
836 		mem_cgroup_uncharge_page(page);
837 		put_page(page);
838 		count_vm_event(THP_FAULT_FALLBACK);
839 		return VM_FAULT_FALLBACK;
840 	}
841 
842 	count_vm_event(THP_FAULT_ALLOC);
843 	return 0;
844 }
845 
846 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
847 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
848 		  struct vm_area_struct *vma)
849 {
850 	spinlock_t *dst_ptl, *src_ptl;
851 	struct page *src_page;
852 	pmd_t pmd;
853 	pgtable_t pgtable;
854 	int ret;
855 
856 	ret = -ENOMEM;
857 	pgtable = pte_alloc_one(dst_mm, addr);
858 	if (unlikely(!pgtable))
859 		goto out;
860 
861 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
862 	src_ptl = pmd_lockptr(src_mm, src_pmd);
863 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
864 
865 	ret = -EAGAIN;
866 	pmd = *src_pmd;
867 	if (unlikely(!pmd_trans_huge(pmd))) {
868 		pte_free(dst_mm, pgtable);
869 		goto out_unlock;
870 	}
871 	/*
872 	 * When page table lock is held, the huge zero pmd should not be
873 	 * under splitting since we don't split the page itself, only pmd to
874 	 * a page table.
875 	 */
876 	if (is_huge_zero_pmd(pmd)) {
877 		struct page *zero_page;
878 		bool set;
879 		/*
880 		 * get_huge_zero_page() will never allocate a new page here,
881 		 * since we already have a zero page to copy. It just takes a
882 		 * reference.
883 		 */
884 		zero_page = get_huge_zero_page();
885 		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
886 				zero_page);
887 		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
888 		ret = 0;
889 		goto out_unlock;
890 	}
891 
892 	if (unlikely(pmd_trans_splitting(pmd))) {
893 		/* split huge page running from under us */
894 		spin_unlock(src_ptl);
895 		spin_unlock(dst_ptl);
896 		pte_free(dst_mm, pgtable);
897 
898 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
899 		goto out;
900 	}
901 	src_page = pmd_page(pmd);
902 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
903 	get_page(src_page);
904 	page_dup_rmap(src_page);
905 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
906 
907 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
908 	pmd = pmd_mkold(pmd_wrprotect(pmd));
909 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
910 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
911 	atomic_long_inc(&dst_mm->nr_ptes);
912 
913 	ret = 0;
914 out_unlock:
915 	spin_unlock(src_ptl);
916 	spin_unlock(dst_ptl);
917 out:
918 	return ret;
919 }
920 
921 void huge_pmd_set_accessed(struct mm_struct *mm,
922 			   struct vm_area_struct *vma,
923 			   unsigned long address,
924 			   pmd_t *pmd, pmd_t orig_pmd,
925 			   int dirty)
926 {
927 	spinlock_t *ptl;
928 	pmd_t entry;
929 	unsigned long haddr;
930 
931 	ptl = pmd_lock(mm, pmd);
932 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
933 		goto unlock;
934 
935 	entry = pmd_mkyoung(orig_pmd);
936 	haddr = address & HPAGE_PMD_MASK;
937 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
938 		update_mmu_cache_pmd(vma, address, pmd);
939 
940 unlock:
941 	spin_unlock(ptl);
942 }
943 
944 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
945 					struct vm_area_struct *vma,
946 					unsigned long address,
947 					pmd_t *pmd, pmd_t orig_pmd,
948 					struct page *page,
949 					unsigned long haddr)
950 {
951 	spinlock_t *ptl;
952 	pgtable_t pgtable;
953 	pmd_t _pmd;
954 	int ret = 0, i;
955 	struct page **pages;
956 	unsigned long mmun_start;	/* For mmu_notifiers */
957 	unsigned long mmun_end;		/* For mmu_notifiers */
958 
959 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
960 			GFP_KERNEL);
961 	if (unlikely(!pages)) {
962 		ret |= VM_FAULT_OOM;
963 		goto out;
964 	}
965 
966 	for (i = 0; i < HPAGE_PMD_NR; i++) {
967 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
968 					       __GFP_OTHER_NODE,
969 					       vma, address, page_to_nid(page));
970 		if (unlikely(!pages[i] ||
971 			     mem_cgroup_charge_anon(pages[i], mm,
972 						       GFP_KERNEL))) {
973 			if (pages[i])
974 				put_page(pages[i]);
975 			mem_cgroup_uncharge_start();
976 			while (--i >= 0) {
977 				mem_cgroup_uncharge_page(pages[i]);
978 				put_page(pages[i]);
979 			}
980 			mem_cgroup_uncharge_end();
981 			kfree(pages);
982 			ret |= VM_FAULT_OOM;
983 			goto out;
984 		}
985 	}
986 
987 	for (i = 0; i < HPAGE_PMD_NR; i++) {
988 		copy_user_highpage(pages[i], page + i,
989 				   haddr + PAGE_SIZE * i, vma);
990 		__SetPageUptodate(pages[i]);
991 		cond_resched();
992 	}
993 
994 	mmun_start = haddr;
995 	mmun_end   = haddr + HPAGE_PMD_SIZE;
996 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
997 
998 	ptl = pmd_lock(mm, pmd);
999 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1000 		goto out_free_pages;
1001 	VM_BUG_ON_PAGE(!PageHead(page), page);
1002 
1003 	pmdp_clear_flush(vma, haddr, pmd);
1004 	/* leave pmd empty until pte is filled */
1005 
1006 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1007 	pmd_populate(mm, &_pmd, pgtable);
1008 
1009 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1010 		pte_t *pte, entry;
1011 		entry = mk_pte(pages[i], vma->vm_page_prot);
1012 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1013 		page_add_new_anon_rmap(pages[i], vma, haddr);
1014 		pte = pte_offset_map(&_pmd, haddr);
1015 		VM_BUG_ON(!pte_none(*pte));
1016 		set_pte_at(mm, haddr, pte, entry);
1017 		pte_unmap(pte);
1018 	}
1019 	kfree(pages);
1020 
1021 	smp_wmb(); /* make pte visible before pmd */
1022 	pmd_populate(mm, pmd, pgtable);
1023 	page_remove_rmap(page);
1024 	spin_unlock(ptl);
1025 
1026 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1027 
1028 	ret |= VM_FAULT_WRITE;
1029 	put_page(page);
1030 
1031 out:
1032 	return ret;
1033 
1034 out_free_pages:
1035 	spin_unlock(ptl);
1036 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1037 	mem_cgroup_uncharge_start();
1038 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1039 		mem_cgroup_uncharge_page(pages[i]);
1040 		put_page(pages[i]);
1041 	}
1042 	mem_cgroup_uncharge_end();
1043 	kfree(pages);
1044 	goto out;
1045 }
1046 
1047 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1048 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1049 {
1050 	spinlock_t *ptl;
1051 	int ret = 0;
1052 	struct page *page = NULL, *new_page;
1053 	unsigned long haddr;
1054 	unsigned long mmun_start;	/* For mmu_notifiers */
1055 	unsigned long mmun_end;		/* For mmu_notifiers */
1056 
1057 	ptl = pmd_lockptr(mm, pmd);
1058 	VM_BUG_ON(!vma->anon_vma);
1059 	haddr = address & HPAGE_PMD_MASK;
1060 	if (is_huge_zero_pmd(orig_pmd))
1061 		goto alloc;
1062 	spin_lock(ptl);
1063 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1064 		goto out_unlock;
1065 
1066 	page = pmd_page(orig_pmd);
1067 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1068 	if (page_mapcount(page) == 1) {
1069 		pmd_t entry;
1070 		entry = pmd_mkyoung(orig_pmd);
1071 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1072 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1073 			update_mmu_cache_pmd(vma, address, pmd);
1074 		ret |= VM_FAULT_WRITE;
1075 		goto out_unlock;
1076 	}
1077 	get_page(page);
1078 	spin_unlock(ptl);
1079 alloc:
1080 	if (transparent_hugepage_enabled(vma) &&
1081 	    !transparent_hugepage_debug_cow())
1082 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1083 					      vma, haddr, numa_node_id(), 0);
1084 	else
1085 		new_page = NULL;
1086 
1087 	if (unlikely(!new_page)) {
1088 		if (!page) {
1089 			split_huge_page_pmd(vma, address, pmd);
1090 			ret |= VM_FAULT_FALLBACK;
1091 		} else {
1092 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1093 					pmd, orig_pmd, page, haddr);
1094 			if (ret & VM_FAULT_OOM) {
1095 				split_huge_page(page);
1096 				ret |= VM_FAULT_FALLBACK;
1097 			}
1098 			put_page(page);
1099 		}
1100 		count_vm_event(THP_FAULT_FALLBACK);
1101 		goto out;
1102 	}
1103 
1104 	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) {
1105 		put_page(new_page);
1106 		if (page) {
1107 			split_huge_page(page);
1108 			put_page(page);
1109 		} else
1110 			split_huge_page_pmd(vma, address, pmd);
1111 		ret |= VM_FAULT_FALLBACK;
1112 		count_vm_event(THP_FAULT_FALLBACK);
1113 		goto out;
1114 	}
1115 
1116 	count_vm_event(THP_FAULT_ALLOC);
1117 
1118 	if (!page)
1119 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1120 	else
1121 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1122 	__SetPageUptodate(new_page);
1123 
1124 	mmun_start = haddr;
1125 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1126 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1127 
1128 	spin_lock(ptl);
1129 	if (page)
1130 		put_page(page);
1131 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1132 		spin_unlock(ptl);
1133 		mem_cgroup_uncharge_page(new_page);
1134 		put_page(new_page);
1135 		goto out_mn;
1136 	} else {
1137 		pmd_t entry;
1138 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1139 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1140 		pmdp_clear_flush(vma, haddr, pmd);
1141 		page_add_new_anon_rmap(new_page, vma, haddr);
1142 		set_pmd_at(mm, haddr, pmd, entry);
1143 		update_mmu_cache_pmd(vma, address, pmd);
1144 		if (!page) {
1145 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1146 			put_huge_zero_page();
1147 		} else {
1148 			VM_BUG_ON_PAGE(!PageHead(page), page);
1149 			page_remove_rmap(page);
1150 			put_page(page);
1151 		}
1152 		ret |= VM_FAULT_WRITE;
1153 	}
1154 	spin_unlock(ptl);
1155 out_mn:
1156 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1157 out:
1158 	return ret;
1159 out_unlock:
1160 	spin_unlock(ptl);
1161 	return ret;
1162 }
1163 
1164 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1165 				   unsigned long addr,
1166 				   pmd_t *pmd,
1167 				   unsigned int flags)
1168 {
1169 	struct mm_struct *mm = vma->vm_mm;
1170 	struct page *page = NULL;
1171 
1172 	assert_spin_locked(pmd_lockptr(mm, pmd));
1173 
1174 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1175 		goto out;
1176 
1177 	/* Avoid dumping huge zero page */
1178 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1179 		return ERR_PTR(-EFAULT);
1180 
1181 	/* Full NUMA hinting faults to serialise migration in fault paths */
1182 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1183 		goto out;
1184 
1185 	page = pmd_page(*pmd);
1186 	VM_BUG_ON_PAGE(!PageHead(page), page);
1187 	if (flags & FOLL_TOUCH) {
1188 		pmd_t _pmd;
1189 		/*
1190 		 * We should set the dirty bit only for FOLL_WRITE but
1191 		 * for now the dirty bit in the pmd is meaningless.
1192 		 * And if the dirty bit will become meaningful and
1193 		 * we'll only set it with FOLL_WRITE, an atomic
1194 		 * set_bit will be required on the pmd to set the
1195 		 * young bit, instead of the current set_pmd_at.
1196 		 */
1197 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1198 		if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1199 					  pmd, _pmd,  1))
1200 			update_mmu_cache_pmd(vma, addr, pmd);
1201 	}
1202 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1203 		if (page->mapping && trylock_page(page)) {
1204 			lru_add_drain();
1205 			if (page->mapping)
1206 				mlock_vma_page(page);
1207 			unlock_page(page);
1208 		}
1209 	}
1210 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1211 	VM_BUG_ON_PAGE(!PageCompound(page), page);
1212 	if (flags & FOLL_GET)
1213 		get_page_foll(page);
1214 
1215 out:
1216 	return page;
1217 }
1218 
1219 /* NUMA hinting page fault entry point for trans huge pmds */
1220 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1221 				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1222 {
1223 	spinlock_t *ptl;
1224 	struct anon_vma *anon_vma = NULL;
1225 	struct page *page;
1226 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1227 	int page_nid = -1, this_nid = numa_node_id();
1228 	int target_nid, last_cpupid = -1;
1229 	bool page_locked;
1230 	bool migrated = false;
1231 	int flags = 0;
1232 
1233 	ptl = pmd_lock(mm, pmdp);
1234 	if (unlikely(!pmd_same(pmd, *pmdp)))
1235 		goto out_unlock;
1236 
1237 	/*
1238 	 * If there are potential migrations, wait for completion and retry
1239 	 * without disrupting NUMA hinting information. Do not relock and
1240 	 * check_same as the page may no longer be mapped.
1241 	 */
1242 	if (unlikely(pmd_trans_migrating(*pmdp))) {
1243 		spin_unlock(ptl);
1244 		wait_migrate_huge_page(vma->anon_vma, pmdp);
1245 		goto out;
1246 	}
1247 
1248 	page = pmd_page(pmd);
1249 	BUG_ON(is_huge_zero_page(page));
1250 	page_nid = page_to_nid(page);
1251 	last_cpupid = page_cpupid_last(page);
1252 	count_vm_numa_event(NUMA_HINT_FAULTS);
1253 	if (page_nid == this_nid) {
1254 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1255 		flags |= TNF_FAULT_LOCAL;
1256 	}
1257 
1258 	/*
1259 	 * Avoid grouping on DSO/COW pages in specific and RO pages
1260 	 * in general, RO pages shouldn't hurt as much anyway since
1261 	 * they can be in shared cache state.
1262 	 */
1263 	if (!pmd_write(pmd))
1264 		flags |= TNF_NO_GROUP;
1265 
1266 	/*
1267 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1268 	 * page_table_lock if at all possible
1269 	 */
1270 	page_locked = trylock_page(page);
1271 	target_nid = mpol_misplaced(page, vma, haddr);
1272 	if (target_nid == -1) {
1273 		/* If the page was locked, there are no parallel migrations */
1274 		if (page_locked)
1275 			goto clear_pmdnuma;
1276 	}
1277 
1278 	/* Migration could have started since the pmd_trans_migrating check */
1279 	if (!page_locked) {
1280 		spin_unlock(ptl);
1281 		wait_on_page_locked(page);
1282 		page_nid = -1;
1283 		goto out;
1284 	}
1285 
1286 	/*
1287 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1288 	 * to serialises splits
1289 	 */
1290 	get_page(page);
1291 	spin_unlock(ptl);
1292 	anon_vma = page_lock_anon_vma_read(page);
1293 
1294 	/* Confirm the PMD did not change while page_table_lock was released */
1295 	spin_lock(ptl);
1296 	if (unlikely(!pmd_same(pmd, *pmdp))) {
1297 		unlock_page(page);
1298 		put_page(page);
1299 		page_nid = -1;
1300 		goto out_unlock;
1301 	}
1302 
1303 	/* Bail if we fail to protect against THP splits for any reason */
1304 	if (unlikely(!anon_vma)) {
1305 		put_page(page);
1306 		page_nid = -1;
1307 		goto clear_pmdnuma;
1308 	}
1309 
1310 	/*
1311 	 * Migrate the THP to the requested node, returns with page unlocked
1312 	 * and pmd_numa cleared.
1313 	 */
1314 	spin_unlock(ptl);
1315 	migrated = migrate_misplaced_transhuge_page(mm, vma,
1316 				pmdp, pmd, addr, page, target_nid);
1317 	if (migrated) {
1318 		flags |= TNF_MIGRATED;
1319 		page_nid = target_nid;
1320 	}
1321 
1322 	goto out;
1323 clear_pmdnuma:
1324 	BUG_ON(!PageLocked(page));
1325 	pmd = pmd_mknonnuma(pmd);
1326 	set_pmd_at(mm, haddr, pmdp, pmd);
1327 	VM_BUG_ON(pmd_numa(*pmdp));
1328 	update_mmu_cache_pmd(vma, addr, pmdp);
1329 	unlock_page(page);
1330 out_unlock:
1331 	spin_unlock(ptl);
1332 
1333 out:
1334 	if (anon_vma)
1335 		page_unlock_anon_vma_read(anon_vma);
1336 
1337 	if (page_nid != -1)
1338 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1339 
1340 	return 0;
1341 }
1342 
1343 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1344 		 pmd_t *pmd, unsigned long addr)
1345 {
1346 	spinlock_t *ptl;
1347 	int ret = 0;
1348 
1349 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1350 		struct page *page;
1351 		pgtable_t pgtable;
1352 		pmd_t orig_pmd;
1353 		/*
1354 		 * For architectures like ppc64 we look at deposited pgtable
1355 		 * when calling pmdp_get_and_clear. So do the
1356 		 * pgtable_trans_huge_withdraw after finishing pmdp related
1357 		 * operations.
1358 		 */
1359 		orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1360 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1361 		pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1362 		if (is_huge_zero_pmd(orig_pmd)) {
1363 			atomic_long_dec(&tlb->mm->nr_ptes);
1364 			spin_unlock(ptl);
1365 			put_huge_zero_page();
1366 		} else {
1367 			page = pmd_page(orig_pmd);
1368 			page_remove_rmap(page);
1369 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1370 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1371 			VM_BUG_ON_PAGE(!PageHead(page), page);
1372 			atomic_long_dec(&tlb->mm->nr_ptes);
1373 			spin_unlock(ptl);
1374 			tlb_remove_page(tlb, page);
1375 		}
1376 		pte_free(tlb->mm, pgtable);
1377 		ret = 1;
1378 	}
1379 	return ret;
1380 }
1381 
1382 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1383 		unsigned long addr, unsigned long end,
1384 		unsigned char *vec)
1385 {
1386 	spinlock_t *ptl;
1387 	int ret = 0;
1388 
1389 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1390 		/*
1391 		 * All logical pages in the range are present
1392 		 * if backed by a huge page.
1393 		 */
1394 		spin_unlock(ptl);
1395 		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1396 		ret = 1;
1397 	}
1398 
1399 	return ret;
1400 }
1401 
1402 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1403 		  unsigned long old_addr,
1404 		  unsigned long new_addr, unsigned long old_end,
1405 		  pmd_t *old_pmd, pmd_t *new_pmd)
1406 {
1407 	spinlock_t *old_ptl, *new_ptl;
1408 	int ret = 0;
1409 	pmd_t pmd;
1410 
1411 	struct mm_struct *mm = vma->vm_mm;
1412 
1413 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1414 	    (new_addr & ~HPAGE_PMD_MASK) ||
1415 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1416 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1417 		goto out;
1418 
1419 	/*
1420 	 * The destination pmd shouldn't be established, free_pgtables()
1421 	 * should have release it.
1422 	 */
1423 	if (WARN_ON(!pmd_none(*new_pmd))) {
1424 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1425 		goto out;
1426 	}
1427 
1428 	/*
1429 	 * We don't have to worry about the ordering of src and dst
1430 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1431 	 */
1432 	ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1433 	if (ret == 1) {
1434 		new_ptl = pmd_lockptr(mm, new_pmd);
1435 		if (new_ptl != old_ptl)
1436 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1437 		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1438 		VM_BUG_ON(!pmd_none(*new_pmd));
1439 
1440 		if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1441 			pgtable_t pgtable;
1442 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1443 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1444 		}
1445 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1446 		if (new_ptl != old_ptl)
1447 			spin_unlock(new_ptl);
1448 		spin_unlock(old_ptl);
1449 	}
1450 out:
1451 	return ret;
1452 }
1453 
1454 /*
1455  * Returns
1456  *  - 0 if PMD could not be locked
1457  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1458  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1459  */
1460 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1461 		unsigned long addr, pgprot_t newprot, int prot_numa)
1462 {
1463 	struct mm_struct *mm = vma->vm_mm;
1464 	spinlock_t *ptl;
1465 	int ret = 0;
1466 
1467 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1468 		pmd_t entry;
1469 		ret = 1;
1470 		if (!prot_numa) {
1471 			entry = pmdp_get_and_clear(mm, addr, pmd);
1472 			if (pmd_numa(entry))
1473 				entry = pmd_mknonnuma(entry);
1474 			entry = pmd_modify(entry, newprot);
1475 			ret = HPAGE_PMD_NR;
1476 			set_pmd_at(mm, addr, pmd, entry);
1477 			BUG_ON(pmd_write(entry));
1478 		} else {
1479 			struct page *page = pmd_page(*pmd);
1480 
1481 			/*
1482 			 * Do not trap faults against the zero page. The
1483 			 * read-only data is likely to be read-cached on the
1484 			 * local CPU cache and it is less useful to know about
1485 			 * local vs remote hits on the zero page.
1486 			 */
1487 			if (!is_huge_zero_page(page) &&
1488 			    !pmd_numa(*pmd)) {
1489 				pmdp_set_numa(mm, addr, pmd);
1490 				ret = HPAGE_PMD_NR;
1491 			}
1492 		}
1493 		spin_unlock(ptl);
1494 	}
1495 
1496 	return ret;
1497 }
1498 
1499 /*
1500  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1501  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1502  *
1503  * Note that if it returns 1, this routine returns without unlocking page
1504  * table locks. So callers must unlock them.
1505  */
1506 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1507 		spinlock_t **ptl)
1508 {
1509 	*ptl = pmd_lock(vma->vm_mm, pmd);
1510 	if (likely(pmd_trans_huge(*pmd))) {
1511 		if (unlikely(pmd_trans_splitting(*pmd))) {
1512 			spin_unlock(*ptl);
1513 			wait_split_huge_page(vma->anon_vma, pmd);
1514 			return -1;
1515 		} else {
1516 			/* Thp mapped by 'pmd' is stable, so we can
1517 			 * handle it as it is. */
1518 			return 1;
1519 		}
1520 	}
1521 	spin_unlock(*ptl);
1522 	return 0;
1523 }
1524 
1525 /*
1526  * This function returns whether a given @page is mapped onto the @address
1527  * in the virtual space of @mm.
1528  *
1529  * When it's true, this function returns *pmd with holding the page table lock
1530  * and passing it back to the caller via @ptl.
1531  * If it's false, returns NULL without holding the page table lock.
1532  */
1533 pmd_t *page_check_address_pmd(struct page *page,
1534 			      struct mm_struct *mm,
1535 			      unsigned long address,
1536 			      enum page_check_address_pmd_flag flag,
1537 			      spinlock_t **ptl)
1538 {
1539 	pmd_t *pmd;
1540 
1541 	if (address & ~HPAGE_PMD_MASK)
1542 		return NULL;
1543 
1544 	pmd = mm_find_pmd(mm, address);
1545 	if (!pmd)
1546 		return NULL;
1547 	*ptl = pmd_lock(mm, pmd);
1548 	if (pmd_none(*pmd))
1549 		goto unlock;
1550 	if (pmd_page(*pmd) != page)
1551 		goto unlock;
1552 	/*
1553 	 * split_vma() may create temporary aliased mappings. There is
1554 	 * no risk as long as all huge pmd are found and have their
1555 	 * splitting bit set before __split_huge_page_refcount
1556 	 * runs. Finding the same huge pmd more than once during the
1557 	 * same rmap walk is not a problem.
1558 	 */
1559 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1560 	    pmd_trans_splitting(*pmd))
1561 		goto unlock;
1562 	if (pmd_trans_huge(*pmd)) {
1563 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1564 			  !pmd_trans_splitting(*pmd));
1565 		return pmd;
1566 	}
1567 unlock:
1568 	spin_unlock(*ptl);
1569 	return NULL;
1570 }
1571 
1572 static int __split_huge_page_splitting(struct page *page,
1573 				       struct vm_area_struct *vma,
1574 				       unsigned long address)
1575 {
1576 	struct mm_struct *mm = vma->vm_mm;
1577 	spinlock_t *ptl;
1578 	pmd_t *pmd;
1579 	int ret = 0;
1580 	/* For mmu_notifiers */
1581 	const unsigned long mmun_start = address;
1582 	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1583 
1584 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1585 	pmd = page_check_address_pmd(page, mm, address,
1586 			PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1587 	if (pmd) {
1588 		/*
1589 		 * We can't temporarily set the pmd to null in order
1590 		 * to split it, the pmd must remain marked huge at all
1591 		 * times or the VM won't take the pmd_trans_huge paths
1592 		 * and it won't wait on the anon_vma->root->rwsem to
1593 		 * serialize against split_huge_page*.
1594 		 */
1595 		pmdp_splitting_flush(vma, address, pmd);
1596 		ret = 1;
1597 		spin_unlock(ptl);
1598 	}
1599 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1600 
1601 	return ret;
1602 }
1603 
1604 static void __split_huge_page_refcount(struct page *page,
1605 				       struct list_head *list)
1606 {
1607 	int i;
1608 	struct zone *zone = page_zone(page);
1609 	struct lruvec *lruvec;
1610 	int tail_count = 0;
1611 
1612 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1613 	spin_lock_irq(&zone->lru_lock);
1614 	lruvec = mem_cgroup_page_lruvec(page, zone);
1615 
1616 	compound_lock(page);
1617 	/* complete memcg works before add pages to LRU */
1618 	mem_cgroup_split_huge_fixup(page);
1619 
1620 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1621 		struct page *page_tail = page + i;
1622 
1623 		/* tail_page->_mapcount cannot change */
1624 		BUG_ON(page_mapcount(page_tail) < 0);
1625 		tail_count += page_mapcount(page_tail);
1626 		/* check for overflow */
1627 		BUG_ON(tail_count < 0);
1628 		BUG_ON(atomic_read(&page_tail->_count) != 0);
1629 		/*
1630 		 * tail_page->_count is zero and not changing from
1631 		 * under us. But get_page_unless_zero() may be running
1632 		 * from under us on the tail_page. If we used
1633 		 * atomic_set() below instead of atomic_add(), we
1634 		 * would then run atomic_set() concurrently with
1635 		 * get_page_unless_zero(), and atomic_set() is
1636 		 * implemented in C not using locked ops. spin_unlock
1637 		 * on x86 sometime uses locked ops because of PPro
1638 		 * errata 66, 92, so unless somebody can guarantee
1639 		 * atomic_set() here would be safe on all archs (and
1640 		 * not only on x86), it's safer to use atomic_add().
1641 		 */
1642 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1643 			   &page_tail->_count);
1644 
1645 		/* after clearing PageTail the gup refcount can be released */
1646 		smp_mb();
1647 
1648 		/*
1649 		 * retain hwpoison flag of the poisoned tail page:
1650 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1651 		 *   by the memory-failure.
1652 		 */
1653 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1654 		page_tail->flags |= (page->flags &
1655 				     ((1L << PG_referenced) |
1656 				      (1L << PG_swapbacked) |
1657 				      (1L << PG_mlocked) |
1658 				      (1L << PG_uptodate) |
1659 				      (1L << PG_active) |
1660 				      (1L << PG_unevictable)));
1661 		page_tail->flags |= (1L << PG_dirty);
1662 
1663 		/* clear PageTail before overwriting first_page */
1664 		smp_wmb();
1665 
1666 		/*
1667 		 * __split_huge_page_splitting() already set the
1668 		 * splitting bit in all pmd that could map this
1669 		 * hugepage, that will ensure no CPU can alter the
1670 		 * mapcount on the head page. The mapcount is only
1671 		 * accounted in the head page and it has to be
1672 		 * transferred to all tail pages in the below code. So
1673 		 * for this code to be safe, the split the mapcount
1674 		 * can't change. But that doesn't mean userland can't
1675 		 * keep changing and reading the page contents while
1676 		 * we transfer the mapcount, so the pmd splitting
1677 		 * status is achieved setting a reserved bit in the
1678 		 * pmd, not by clearing the present bit.
1679 		*/
1680 		page_tail->_mapcount = page->_mapcount;
1681 
1682 		BUG_ON(page_tail->mapping);
1683 		page_tail->mapping = page->mapping;
1684 
1685 		page_tail->index = page->index + i;
1686 		page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1687 
1688 		BUG_ON(!PageAnon(page_tail));
1689 		BUG_ON(!PageUptodate(page_tail));
1690 		BUG_ON(!PageDirty(page_tail));
1691 		BUG_ON(!PageSwapBacked(page_tail));
1692 
1693 		lru_add_page_tail(page, page_tail, lruvec, list);
1694 	}
1695 	atomic_sub(tail_count, &page->_count);
1696 	BUG_ON(atomic_read(&page->_count) <= 0);
1697 
1698 	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1699 
1700 	ClearPageCompound(page);
1701 	compound_unlock(page);
1702 	spin_unlock_irq(&zone->lru_lock);
1703 
1704 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1705 		struct page *page_tail = page + i;
1706 		BUG_ON(page_count(page_tail) <= 0);
1707 		/*
1708 		 * Tail pages may be freed if there wasn't any mapping
1709 		 * like if add_to_swap() is running on a lru page that
1710 		 * had its mapping zapped. And freeing these pages
1711 		 * requires taking the lru_lock so we do the put_page
1712 		 * of the tail pages after the split is complete.
1713 		 */
1714 		put_page(page_tail);
1715 	}
1716 
1717 	/*
1718 	 * Only the head page (now become a regular page) is required
1719 	 * to be pinned by the caller.
1720 	 */
1721 	BUG_ON(page_count(page) <= 0);
1722 }
1723 
1724 static int __split_huge_page_map(struct page *page,
1725 				 struct vm_area_struct *vma,
1726 				 unsigned long address)
1727 {
1728 	struct mm_struct *mm = vma->vm_mm;
1729 	spinlock_t *ptl;
1730 	pmd_t *pmd, _pmd;
1731 	int ret = 0, i;
1732 	pgtable_t pgtable;
1733 	unsigned long haddr;
1734 
1735 	pmd = page_check_address_pmd(page, mm, address,
1736 			PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1737 	if (pmd) {
1738 		pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1739 		pmd_populate(mm, &_pmd, pgtable);
1740 
1741 		haddr = address;
1742 		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1743 			pte_t *pte, entry;
1744 			BUG_ON(PageCompound(page+i));
1745 			entry = mk_pte(page + i, vma->vm_page_prot);
1746 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1747 			if (!pmd_write(*pmd))
1748 				entry = pte_wrprotect(entry);
1749 			else
1750 				BUG_ON(page_mapcount(page) != 1);
1751 			if (!pmd_young(*pmd))
1752 				entry = pte_mkold(entry);
1753 			if (pmd_numa(*pmd))
1754 				entry = pte_mknuma(entry);
1755 			pte = pte_offset_map(&_pmd, haddr);
1756 			BUG_ON(!pte_none(*pte));
1757 			set_pte_at(mm, haddr, pte, entry);
1758 			pte_unmap(pte);
1759 		}
1760 
1761 		smp_wmb(); /* make pte visible before pmd */
1762 		/*
1763 		 * Up to this point the pmd is present and huge and
1764 		 * userland has the whole access to the hugepage
1765 		 * during the split (which happens in place). If we
1766 		 * overwrite the pmd with the not-huge version
1767 		 * pointing to the pte here (which of course we could
1768 		 * if all CPUs were bug free), userland could trigger
1769 		 * a small page size TLB miss on the small sized TLB
1770 		 * while the hugepage TLB entry is still established
1771 		 * in the huge TLB. Some CPU doesn't like that. See
1772 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1773 		 * Erratum 383 on page 93. Intel should be safe but is
1774 		 * also warns that it's only safe if the permission
1775 		 * and cache attributes of the two entries loaded in
1776 		 * the two TLB is identical (which should be the case
1777 		 * here). But it is generally safer to never allow
1778 		 * small and huge TLB entries for the same virtual
1779 		 * address to be loaded simultaneously. So instead of
1780 		 * doing "pmd_populate(); flush_tlb_range();" we first
1781 		 * mark the current pmd notpresent (atomically because
1782 		 * here the pmd_trans_huge and pmd_trans_splitting
1783 		 * must remain set at all times on the pmd until the
1784 		 * split is complete for this pmd), then we flush the
1785 		 * SMP TLB and finally we write the non-huge version
1786 		 * of the pmd entry with pmd_populate.
1787 		 */
1788 		pmdp_invalidate(vma, address, pmd);
1789 		pmd_populate(mm, pmd, pgtable);
1790 		ret = 1;
1791 		spin_unlock(ptl);
1792 	}
1793 
1794 	return ret;
1795 }
1796 
1797 /* must be called with anon_vma->root->rwsem held */
1798 static void __split_huge_page(struct page *page,
1799 			      struct anon_vma *anon_vma,
1800 			      struct list_head *list)
1801 {
1802 	int mapcount, mapcount2;
1803 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1804 	struct anon_vma_chain *avc;
1805 
1806 	BUG_ON(!PageHead(page));
1807 	BUG_ON(PageTail(page));
1808 
1809 	mapcount = 0;
1810 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1811 		struct vm_area_struct *vma = avc->vma;
1812 		unsigned long addr = vma_address(page, vma);
1813 		BUG_ON(is_vma_temporary_stack(vma));
1814 		mapcount += __split_huge_page_splitting(page, vma, addr);
1815 	}
1816 	/*
1817 	 * It is critical that new vmas are added to the tail of the
1818 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1819 	 * and establishes a child pmd before
1820 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1821 	 * we fail to prevent copy_huge_pmd() from running until the
1822 	 * whole __split_huge_page() is complete), we will still see
1823 	 * the newly established pmd of the child later during the
1824 	 * walk, to be able to set it as pmd_trans_splitting too.
1825 	 */
1826 	if (mapcount != page_mapcount(page))
1827 		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1828 		       mapcount, page_mapcount(page));
1829 	BUG_ON(mapcount != page_mapcount(page));
1830 
1831 	__split_huge_page_refcount(page, list);
1832 
1833 	mapcount2 = 0;
1834 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1835 		struct vm_area_struct *vma = avc->vma;
1836 		unsigned long addr = vma_address(page, vma);
1837 		BUG_ON(is_vma_temporary_stack(vma));
1838 		mapcount2 += __split_huge_page_map(page, vma, addr);
1839 	}
1840 	if (mapcount != mapcount2)
1841 		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1842 		       mapcount, mapcount2, page_mapcount(page));
1843 	BUG_ON(mapcount != mapcount2);
1844 }
1845 
1846 /*
1847  * Split a hugepage into normal pages. This doesn't change the position of head
1848  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1849  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1850  * from the hugepage.
1851  * Return 0 if the hugepage is split successfully otherwise return 1.
1852  */
1853 int split_huge_page_to_list(struct page *page, struct list_head *list)
1854 {
1855 	struct anon_vma *anon_vma;
1856 	int ret = 1;
1857 
1858 	BUG_ON(is_huge_zero_page(page));
1859 	BUG_ON(!PageAnon(page));
1860 
1861 	/*
1862 	 * The caller does not necessarily hold an mmap_sem that would prevent
1863 	 * the anon_vma disappearing so we first we take a reference to it
1864 	 * and then lock the anon_vma for write. This is similar to
1865 	 * page_lock_anon_vma_read except the write lock is taken to serialise
1866 	 * against parallel split or collapse operations.
1867 	 */
1868 	anon_vma = page_get_anon_vma(page);
1869 	if (!anon_vma)
1870 		goto out;
1871 	anon_vma_lock_write(anon_vma);
1872 
1873 	ret = 0;
1874 	if (!PageCompound(page))
1875 		goto out_unlock;
1876 
1877 	BUG_ON(!PageSwapBacked(page));
1878 	__split_huge_page(page, anon_vma, list);
1879 	count_vm_event(THP_SPLIT);
1880 
1881 	BUG_ON(PageCompound(page));
1882 out_unlock:
1883 	anon_vma_unlock_write(anon_vma);
1884 	put_anon_vma(anon_vma);
1885 out:
1886 	return ret;
1887 }
1888 
1889 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1890 
1891 int hugepage_madvise(struct vm_area_struct *vma,
1892 		     unsigned long *vm_flags, int advice)
1893 {
1894 	switch (advice) {
1895 	case MADV_HUGEPAGE:
1896 #ifdef CONFIG_S390
1897 		/*
1898 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1899 		 * can't handle this properly after s390_enable_sie, so we simply
1900 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1901 		 */
1902 		if (mm_has_pgste(vma->vm_mm))
1903 			return 0;
1904 #endif
1905 		/*
1906 		 * Be somewhat over-protective like KSM for now!
1907 		 */
1908 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1909 			return -EINVAL;
1910 		*vm_flags &= ~VM_NOHUGEPAGE;
1911 		*vm_flags |= VM_HUGEPAGE;
1912 		/*
1913 		 * If the vma become good for khugepaged to scan,
1914 		 * register it here without waiting a page fault that
1915 		 * may not happen any time soon.
1916 		 */
1917 		if (unlikely(khugepaged_enter_vma_merge(vma)))
1918 			return -ENOMEM;
1919 		break;
1920 	case MADV_NOHUGEPAGE:
1921 		/*
1922 		 * Be somewhat over-protective like KSM for now!
1923 		 */
1924 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1925 			return -EINVAL;
1926 		*vm_flags &= ~VM_HUGEPAGE;
1927 		*vm_flags |= VM_NOHUGEPAGE;
1928 		/*
1929 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1930 		 * this vma even if we leave the mm registered in khugepaged if
1931 		 * it got registered before VM_NOHUGEPAGE was set.
1932 		 */
1933 		break;
1934 	}
1935 
1936 	return 0;
1937 }
1938 
1939 static int __init khugepaged_slab_init(void)
1940 {
1941 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1942 					  sizeof(struct mm_slot),
1943 					  __alignof__(struct mm_slot), 0, NULL);
1944 	if (!mm_slot_cache)
1945 		return -ENOMEM;
1946 
1947 	return 0;
1948 }
1949 
1950 static inline struct mm_slot *alloc_mm_slot(void)
1951 {
1952 	if (!mm_slot_cache)	/* initialization failed */
1953 		return NULL;
1954 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1955 }
1956 
1957 static inline void free_mm_slot(struct mm_slot *mm_slot)
1958 {
1959 	kmem_cache_free(mm_slot_cache, mm_slot);
1960 }
1961 
1962 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1963 {
1964 	struct mm_slot *mm_slot;
1965 
1966 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1967 		if (mm == mm_slot->mm)
1968 			return mm_slot;
1969 
1970 	return NULL;
1971 }
1972 
1973 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1974 				    struct mm_slot *mm_slot)
1975 {
1976 	mm_slot->mm = mm;
1977 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1978 }
1979 
1980 static inline int khugepaged_test_exit(struct mm_struct *mm)
1981 {
1982 	return atomic_read(&mm->mm_users) == 0;
1983 }
1984 
1985 int __khugepaged_enter(struct mm_struct *mm)
1986 {
1987 	struct mm_slot *mm_slot;
1988 	int wakeup;
1989 
1990 	mm_slot = alloc_mm_slot();
1991 	if (!mm_slot)
1992 		return -ENOMEM;
1993 
1994 	/* __khugepaged_exit() must not run from under us */
1995 	VM_BUG_ON(khugepaged_test_exit(mm));
1996 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1997 		free_mm_slot(mm_slot);
1998 		return 0;
1999 	}
2000 
2001 	spin_lock(&khugepaged_mm_lock);
2002 	insert_to_mm_slots_hash(mm, mm_slot);
2003 	/*
2004 	 * Insert just behind the scanning cursor, to let the area settle
2005 	 * down a little.
2006 	 */
2007 	wakeup = list_empty(&khugepaged_scan.mm_head);
2008 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2009 	spin_unlock(&khugepaged_mm_lock);
2010 
2011 	atomic_inc(&mm->mm_count);
2012 	if (wakeup)
2013 		wake_up_interruptible(&khugepaged_wait);
2014 
2015 	return 0;
2016 }
2017 
2018 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2019 {
2020 	unsigned long hstart, hend;
2021 	if (!vma->anon_vma)
2022 		/*
2023 		 * Not yet faulted in so we will register later in the
2024 		 * page fault if needed.
2025 		 */
2026 		return 0;
2027 	if (vma->vm_ops)
2028 		/* khugepaged not yet working on file or special mappings */
2029 		return 0;
2030 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2031 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2032 	hend = vma->vm_end & HPAGE_PMD_MASK;
2033 	if (hstart < hend)
2034 		return khugepaged_enter(vma);
2035 	return 0;
2036 }
2037 
2038 void __khugepaged_exit(struct mm_struct *mm)
2039 {
2040 	struct mm_slot *mm_slot;
2041 	int free = 0;
2042 
2043 	spin_lock(&khugepaged_mm_lock);
2044 	mm_slot = get_mm_slot(mm);
2045 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2046 		hash_del(&mm_slot->hash);
2047 		list_del(&mm_slot->mm_node);
2048 		free = 1;
2049 	}
2050 	spin_unlock(&khugepaged_mm_lock);
2051 
2052 	if (free) {
2053 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2054 		free_mm_slot(mm_slot);
2055 		mmdrop(mm);
2056 	} else if (mm_slot) {
2057 		/*
2058 		 * This is required to serialize against
2059 		 * khugepaged_test_exit() (which is guaranteed to run
2060 		 * under mmap sem read mode). Stop here (after we
2061 		 * return all pagetables will be destroyed) until
2062 		 * khugepaged has finished working on the pagetables
2063 		 * under the mmap_sem.
2064 		 */
2065 		down_write(&mm->mmap_sem);
2066 		up_write(&mm->mmap_sem);
2067 	}
2068 }
2069 
2070 static void release_pte_page(struct page *page)
2071 {
2072 	/* 0 stands for page_is_file_cache(page) == false */
2073 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2074 	unlock_page(page);
2075 	putback_lru_page(page);
2076 }
2077 
2078 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2079 {
2080 	while (--_pte >= pte) {
2081 		pte_t pteval = *_pte;
2082 		if (!pte_none(pteval))
2083 			release_pte_page(pte_page(pteval));
2084 	}
2085 }
2086 
2087 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2088 					unsigned long address,
2089 					pte_t *pte)
2090 {
2091 	struct page *page;
2092 	pte_t *_pte;
2093 	int referenced = 0, none = 0;
2094 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2095 	     _pte++, address += PAGE_SIZE) {
2096 		pte_t pteval = *_pte;
2097 		if (pte_none(pteval)) {
2098 			if (++none <= khugepaged_max_ptes_none)
2099 				continue;
2100 			else
2101 				goto out;
2102 		}
2103 		if (!pte_present(pteval) || !pte_write(pteval))
2104 			goto out;
2105 		page = vm_normal_page(vma, address, pteval);
2106 		if (unlikely(!page))
2107 			goto out;
2108 
2109 		VM_BUG_ON_PAGE(PageCompound(page), page);
2110 		VM_BUG_ON_PAGE(!PageAnon(page), page);
2111 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2112 
2113 		/* cannot use mapcount: can't collapse if there's a gup pin */
2114 		if (page_count(page) != 1)
2115 			goto out;
2116 		/*
2117 		 * We can do it before isolate_lru_page because the
2118 		 * page can't be freed from under us. NOTE: PG_lock
2119 		 * is needed to serialize against split_huge_page
2120 		 * when invoked from the VM.
2121 		 */
2122 		if (!trylock_page(page))
2123 			goto out;
2124 		/*
2125 		 * Isolate the page to avoid collapsing an hugepage
2126 		 * currently in use by the VM.
2127 		 */
2128 		if (isolate_lru_page(page)) {
2129 			unlock_page(page);
2130 			goto out;
2131 		}
2132 		/* 0 stands for page_is_file_cache(page) == false */
2133 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2134 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2135 		VM_BUG_ON_PAGE(PageLRU(page), page);
2136 
2137 		/* If there is no mapped pte young don't collapse the page */
2138 		if (pte_young(pteval) || PageReferenced(page) ||
2139 		    mmu_notifier_test_young(vma->vm_mm, address))
2140 			referenced = 1;
2141 	}
2142 	if (likely(referenced))
2143 		return 1;
2144 out:
2145 	release_pte_pages(pte, _pte);
2146 	return 0;
2147 }
2148 
2149 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2150 				      struct vm_area_struct *vma,
2151 				      unsigned long address,
2152 				      spinlock_t *ptl)
2153 {
2154 	pte_t *_pte;
2155 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2156 		pte_t pteval = *_pte;
2157 		struct page *src_page;
2158 
2159 		if (pte_none(pteval)) {
2160 			clear_user_highpage(page, address);
2161 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2162 		} else {
2163 			src_page = pte_page(pteval);
2164 			copy_user_highpage(page, src_page, address, vma);
2165 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2166 			release_pte_page(src_page);
2167 			/*
2168 			 * ptl mostly unnecessary, but preempt has to
2169 			 * be disabled to update the per-cpu stats
2170 			 * inside page_remove_rmap().
2171 			 */
2172 			spin_lock(ptl);
2173 			/*
2174 			 * paravirt calls inside pte_clear here are
2175 			 * superfluous.
2176 			 */
2177 			pte_clear(vma->vm_mm, address, _pte);
2178 			page_remove_rmap(src_page);
2179 			spin_unlock(ptl);
2180 			free_page_and_swap_cache(src_page);
2181 		}
2182 
2183 		address += PAGE_SIZE;
2184 		page++;
2185 	}
2186 }
2187 
2188 static void khugepaged_alloc_sleep(void)
2189 {
2190 	wait_event_freezable_timeout(khugepaged_wait, false,
2191 			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2192 }
2193 
2194 static int khugepaged_node_load[MAX_NUMNODES];
2195 
2196 #ifdef CONFIG_NUMA
2197 static int khugepaged_find_target_node(void)
2198 {
2199 	static int last_khugepaged_target_node = NUMA_NO_NODE;
2200 	int nid, target_node = 0, max_value = 0;
2201 
2202 	/* find first node with max normal pages hit */
2203 	for (nid = 0; nid < MAX_NUMNODES; nid++)
2204 		if (khugepaged_node_load[nid] > max_value) {
2205 			max_value = khugepaged_node_load[nid];
2206 			target_node = nid;
2207 		}
2208 
2209 	/* do some balance if several nodes have the same hit record */
2210 	if (target_node <= last_khugepaged_target_node)
2211 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2212 				nid++)
2213 			if (max_value == khugepaged_node_load[nid]) {
2214 				target_node = nid;
2215 				break;
2216 			}
2217 
2218 	last_khugepaged_target_node = target_node;
2219 	return target_node;
2220 }
2221 
2222 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2223 {
2224 	if (IS_ERR(*hpage)) {
2225 		if (!*wait)
2226 			return false;
2227 
2228 		*wait = false;
2229 		*hpage = NULL;
2230 		khugepaged_alloc_sleep();
2231 	} else if (*hpage) {
2232 		put_page(*hpage);
2233 		*hpage = NULL;
2234 	}
2235 
2236 	return true;
2237 }
2238 
2239 static struct page
2240 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2241 		       struct vm_area_struct *vma, unsigned long address,
2242 		       int node)
2243 {
2244 	VM_BUG_ON_PAGE(*hpage, *hpage);
2245 	/*
2246 	 * Allocate the page while the vma is still valid and under
2247 	 * the mmap_sem read mode so there is no memory allocation
2248 	 * later when we take the mmap_sem in write mode. This is more
2249 	 * friendly behavior (OTOH it may actually hide bugs) to
2250 	 * filesystems in userland with daemons allocating memory in
2251 	 * the userland I/O paths.  Allocating memory with the
2252 	 * mmap_sem in read mode is good idea also to allow greater
2253 	 * scalability.
2254 	 */
2255 	*hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2256 		khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2257 	/*
2258 	 * After allocating the hugepage, release the mmap_sem read lock in
2259 	 * preparation for taking it in write mode.
2260 	 */
2261 	up_read(&mm->mmap_sem);
2262 	if (unlikely(!*hpage)) {
2263 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2264 		*hpage = ERR_PTR(-ENOMEM);
2265 		return NULL;
2266 	}
2267 
2268 	count_vm_event(THP_COLLAPSE_ALLOC);
2269 	return *hpage;
2270 }
2271 #else
2272 static int khugepaged_find_target_node(void)
2273 {
2274 	return 0;
2275 }
2276 
2277 static inline struct page *alloc_hugepage(int defrag)
2278 {
2279 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2280 			   HPAGE_PMD_ORDER);
2281 }
2282 
2283 static struct page *khugepaged_alloc_hugepage(bool *wait)
2284 {
2285 	struct page *hpage;
2286 
2287 	do {
2288 		hpage = alloc_hugepage(khugepaged_defrag());
2289 		if (!hpage) {
2290 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2291 			if (!*wait)
2292 				return NULL;
2293 
2294 			*wait = false;
2295 			khugepaged_alloc_sleep();
2296 		} else
2297 			count_vm_event(THP_COLLAPSE_ALLOC);
2298 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2299 
2300 	return hpage;
2301 }
2302 
2303 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2304 {
2305 	if (!*hpage)
2306 		*hpage = khugepaged_alloc_hugepage(wait);
2307 
2308 	if (unlikely(!*hpage))
2309 		return false;
2310 
2311 	return true;
2312 }
2313 
2314 static struct page
2315 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2316 		       struct vm_area_struct *vma, unsigned long address,
2317 		       int node)
2318 {
2319 	up_read(&mm->mmap_sem);
2320 	VM_BUG_ON(!*hpage);
2321 	return  *hpage;
2322 }
2323 #endif
2324 
2325 static bool hugepage_vma_check(struct vm_area_struct *vma)
2326 {
2327 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2328 	    (vma->vm_flags & VM_NOHUGEPAGE))
2329 		return false;
2330 
2331 	if (!vma->anon_vma || vma->vm_ops)
2332 		return false;
2333 	if (is_vma_temporary_stack(vma))
2334 		return false;
2335 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2336 	return true;
2337 }
2338 
2339 static void collapse_huge_page(struct mm_struct *mm,
2340 				   unsigned long address,
2341 				   struct page **hpage,
2342 				   struct vm_area_struct *vma,
2343 				   int node)
2344 {
2345 	pmd_t *pmd, _pmd;
2346 	pte_t *pte;
2347 	pgtable_t pgtable;
2348 	struct page *new_page;
2349 	spinlock_t *pmd_ptl, *pte_ptl;
2350 	int isolated;
2351 	unsigned long hstart, hend;
2352 	unsigned long mmun_start;	/* For mmu_notifiers */
2353 	unsigned long mmun_end;		/* For mmu_notifiers */
2354 
2355 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2356 
2357 	/* release the mmap_sem read lock. */
2358 	new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2359 	if (!new_page)
2360 		return;
2361 
2362 	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)))
2363 		return;
2364 
2365 	/*
2366 	 * Prevent all access to pagetables with the exception of
2367 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2368 	 * handled by the anon_vma lock + PG_lock.
2369 	 */
2370 	down_write(&mm->mmap_sem);
2371 	if (unlikely(khugepaged_test_exit(mm)))
2372 		goto out;
2373 
2374 	vma = find_vma(mm, address);
2375 	if (!vma)
2376 		goto out;
2377 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2378 	hend = vma->vm_end & HPAGE_PMD_MASK;
2379 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2380 		goto out;
2381 	if (!hugepage_vma_check(vma))
2382 		goto out;
2383 	pmd = mm_find_pmd(mm, address);
2384 	if (!pmd)
2385 		goto out;
2386 	if (pmd_trans_huge(*pmd))
2387 		goto out;
2388 
2389 	anon_vma_lock_write(vma->anon_vma);
2390 
2391 	pte = pte_offset_map(pmd, address);
2392 	pte_ptl = pte_lockptr(mm, pmd);
2393 
2394 	mmun_start = address;
2395 	mmun_end   = address + HPAGE_PMD_SIZE;
2396 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2397 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2398 	/*
2399 	 * After this gup_fast can't run anymore. This also removes
2400 	 * any huge TLB entry from the CPU so we won't allow
2401 	 * huge and small TLB entries for the same virtual address
2402 	 * to avoid the risk of CPU bugs in that area.
2403 	 */
2404 	_pmd = pmdp_clear_flush(vma, address, pmd);
2405 	spin_unlock(pmd_ptl);
2406 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2407 
2408 	spin_lock(pte_ptl);
2409 	isolated = __collapse_huge_page_isolate(vma, address, pte);
2410 	spin_unlock(pte_ptl);
2411 
2412 	if (unlikely(!isolated)) {
2413 		pte_unmap(pte);
2414 		spin_lock(pmd_ptl);
2415 		BUG_ON(!pmd_none(*pmd));
2416 		/*
2417 		 * We can only use set_pmd_at when establishing
2418 		 * hugepmds and never for establishing regular pmds that
2419 		 * points to regular pagetables. Use pmd_populate for that
2420 		 */
2421 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2422 		spin_unlock(pmd_ptl);
2423 		anon_vma_unlock_write(vma->anon_vma);
2424 		goto out;
2425 	}
2426 
2427 	/*
2428 	 * All pages are isolated and locked so anon_vma rmap
2429 	 * can't run anymore.
2430 	 */
2431 	anon_vma_unlock_write(vma->anon_vma);
2432 
2433 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2434 	pte_unmap(pte);
2435 	__SetPageUptodate(new_page);
2436 	pgtable = pmd_pgtable(_pmd);
2437 
2438 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2439 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2440 
2441 	/*
2442 	 * spin_lock() below is not the equivalent of smp_wmb(), so
2443 	 * this is needed to avoid the copy_huge_page writes to become
2444 	 * visible after the set_pmd_at() write.
2445 	 */
2446 	smp_wmb();
2447 
2448 	spin_lock(pmd_ptl);
2449 	BUG_ON(!pmd_none(*pmd));
2450 	page_add_new_anon_rmap(new_page, vma, address);
2451 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2452 	set_pmd_at(mm, address, pmd, _pmd);
2453 	update_mmu_cache_pmd(vma, address, pmd);
2454 	spin_unlock(pmd_ptl);
2455 
2456 	*hpage = NULL;
2457 
2458 	khugepaged_pages_collapsed++;
2459 out_up_write:
2460 	up_write(&mm->mmap_sem);
2461 	return;
2462 
2463 out:
2464 	mem_cgroup_uncharge_page(new_page);
2465 	goto out_up_write;
2466 }
2467 
2468 static int khugepaged_scan_pmd(struct mm_struct *mm,
2469 			       struct vm_area_struct *vma,
2470 			       unsigned long address,
2471 			       struct page **hpage)
2472 {
2473 	pmd_t *pmd;
2474 	pte_t *pte, *_pte;
2475 	int ret = 0, referenced = 0, none = 0;
2476 	struct page *page;
2477 	unsigned long _address;
2478 	spinlock_t *ptl;
2479 	int node = NUMA_NO_NODE;
2480 
2481 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2482 
2483 	pmd = mm_find_pmd(mm, address);
2484 	if (!pmd)
2485 		goto out;
2486 	if (pmd_trans_huge(*pmd))
2487 		goto out;
2488 
2489 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2490 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2491 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2492 	     _pte++, _address += PAGE_SIZE) {
2493 		pte_t pteval = *_pte;
2494 		if (pte_none(pteval)) {
2495 			if (++none <= khugepaged_max_ptes_none)
2496 				continue;
2497 			else
2498 				goto out_unmap;
2499 		}
2500 		if (!pte_present(pteval) || !pte_write(pteval))
2501 			goto out_unmap;
2502 		page = vm_normal_page(vma, _address, pteval);
2503 		if (unlikely(!page))
2504 			goto out_unmap;
2505 		/*
2506 		 * Record which node the original page is from and save this
2507 		 * information to khugepaged_node_load[].
2508 		 * Khupaged will allocate hugepage from the node has the max
2509 		 * hit record.
2510 		 */
2511 		node = page_to_nid(page);
2512 		khugepaged_node_load[node]++;
2513 		VM_BUG_ON_PAGE(PageCompound(page), page);
2514 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2515 			goto out_unmap;
2516 		/* cannot use mapcount: can't collapse if there's a gup pin */
2517 		if (page_count(page) != 1)
2518 			goto out_unmap;
2519 		if (pte_young(pteval) || PageReferenced(page) ||
2520 		    mmu_notifier_test_young(vma->vm_mm, address))
2521 			referenced = 1;
2522 	}
2523 	if (referenced)
2524 		ret = 1;
2525 out_unmap:
2526 	pte_unmap_unlock(pte, ptl);
2527 	if (ret) {
2528 		node = khugepaged_find_target_node();
2529 		/* collapse_huge_page will return with the mmap_sem released */
2530 		collapse_huge_page(mm, address, hpage, vma, node);
2531 	}
2532 out:
2533 	return ret;
2534 }
2535 
2536 static void collect_mm_slot(struct mm_slot *mm_slot)
2537 {
2538 	struct mm_struct *mm = mm_slot->mm;
2539 
2540 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2541 
2542 	if (khugepaged_test_exit(mm)) {
2543 		/* free mm_slot */
2544 		hash_del(&mm_slot->hash);
2545 		list_del(&mm_slot->mm_node);
2546 
2547 		/*
2548 		 * Not strictly needed because the mm exited already.
2549 		 *
2550 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2551 		 */
2552 
2553 		/* khugepaged_mm_lock actually not necessary for the below */
2554 		free_mm_slot(mm_slot);
2555 		mmdrop(mm);
2556 	}
2557 }
2558 
2559 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2560 					    struct page **hpage)
2561 	__releases(&khugepaged_mm_lock)
2562 	__acquires(&khugepaged_mm_lock)
2563 {
2564 	struct mm_slot *mm_slot;
2565 	struct mm_struct *mm;
2566 	struct vm_area_struct *vma;
2567 	int progress = 0;
2568 
2569 	VM_BUG_ON(!pages);
2570 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2571 
2572 	if (khugepaged_scan.mm_slot)
2573 		mm_slot = khugepaged_scan.mm_slot;
2574 	else {
2575 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2576 				     struct mm_slot, mm_node);
2577 		khugepaged_scan.address = 0;
2578 		khugepaged_scan.mm_slot = mm_slot;
2579 	}
2580 	spin_unlock(&khugepaged_mm_lock);
2581 
2582 	mm = mm_slot->mm;
2583 	down_read(&mm->mmap_sem);
2584 	if (unlikely(khugepaged_test_exit(mm)))
2585 		vma = NULL;
2586 	else
2587 		vma = find_vma(mm, khugepaged_scan.address);
2588 
2589 	progress++;
2590 	for (; vma; vma = vma->vm_next) {
2591 		unsigned long hstart, hend;
2592 
2593 		cond_resched();
2594 		if (unlikely(khugepaged_test_exit(mm))) {
2595 			progress++;
2596 			break;
2597 		}
2598 		if (!hugepage_vma_check(vma)) {
2599 skip:
2600 			progress++;
2601 			continue;
2602 		}
2603 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2604 		hend = vma->vm_end & HPAGE_PMD_MASK;
2605 		if (hstart >= hend)
2606 			goto skip;
2607 		if (khugepaged_scan.address > hend)
2608 			goto skip;
2609 		if (khugepaged_scan.address < hstart)
2610 			khugepaged_scan.address = hstart;
2611 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2612 
2613 		while (khugepaged_scan.address < hend) {
2614 			int ret;
2615 			cond_resched();
2616 			if (unlikely(khugepaged_test_exit(mm)))
2617 				goto breakouterloop;
2618 
2619 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2620 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2621 				  hend);
2622 			ret = khugepaged_scan_pmd(mm, vma,
2623 						  khugepaged_scan.address,
2624 						  hpage);
2625 			/* move to next address */
2626 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2627 			progress += HPAGE_PMD_NR;
2628 			if (ret)
2629 				/* we released mmap_sem so break loop */
2630 				goto breakouterloop_mmap_sem;
2631 			if (progress >= pages)
2632 				goto breakouterloop;
2633 		}
2634 	}
2635 breakouterloop:
2636 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2637 breakouterloop_mmap_sem:
2638 
2639 	spin_lock(&khugepaged_mm_lock);
2640 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2641 	/*
2642 	 * Release the current mm_slot if this mm is about to die, or
2643 	 * if we scanned all vmas of this mm.
2644 	 */
2645 	if (khugepaged_test_exit(mm) || !vma) {
2646 		/*
2647 		 * Make sure that if mm_users is reaching zero while
2648 		 * khugepaged runs here, khugepaged_exit will find
2649 		 * mm_slot not pointing to the exiting mm.
2650 		 */
2651 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2652 			khugepaged_scan.mm_slot = list_entry(
2653 				mm_slot->mm_node.next,
2654 				struct mm_slot, mm_node);
2655 			khugepaged_scan.address = 0;
2656 		} else {
2657 			khugepaged_scan.mm_slot = NULL;
2658 			khugepaged_full_scans++;
2659 		}
2660 
2661 		collect_mm_slot(mm_slot);
2662 	}
2663 
2664 	return progress;
2665 }
2666 
2667 static int khugepaged_has_work(void)
2668 {
2669 	return !list_empty(&khugepaged_scan.mm_head) &&
2670 		khugepaged_enabled();
2671 }
2672 
2673 static int khugepaged_wait_event(void)
2674 {
2675 	return !list_empty(&khugepaged_scan.mm_head) ||
2676 		kthread_should_stop();
2677 }
2678 
2679 static void khugepaged_do_scan(void)
2680 {
2681 	struct page *hpage = NULL;
2682 	unsigned int progress = 0, pass_through_head = 0;
2683 	unsigned int pages = khugepaged_pages_to_scan;
2684 	bool wait = true;
2685 
2686 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2687 
2688 	while (progress < pages) {
2689 		if (!khugepaged_prealloc_page(&hpage, &wait))
2690 			break;
2691 
2692 		cond_resched();
2693 
2694 		if (unlikely(kthread_should_stop() || freezing(current)))
2695 			break;
2696 
2697 		spin_lock(&khugepaged_mm_lock);
2698 		if (!khugepaged_scan.mm_slot)
2699 			pass_through_head++;
2700 		if (khugepaged_has_work() &&
2701 		    pass_through_head < 2)
2702 			progress += khugepaged_scan_mm_slot(pages - progress,
2703 							    &hpage);
2704 		else
2705 			progress = pages;
2706 		spin_unlock(&khugepaged_mm_lock);
2707 	}
2708 
2709 	if (!IS_ERR_OR_NULL(hpage))
2710 		put_page(hpage);
2711 }
2712 
2713 static void khugepaged_wait_work(void)
2714 {
2715 	try_to_freeze();
2716 
2717 	if (khugepaged_has_work()) {
2718 		if (!khugepaged_scan_sleep_millisecs)
2719 			return;
2720 
2721 		wait_event_freezable_timeout(khugepaged_wait,
2722 					     kthread_should_stop(),
2723 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2724 		return;
2725 	}
2726 
2727 	if (khugepaged_enabled())
2728 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2729 }
2730 
2731 static int khugepaged(void *none)
2732 {
2733 	struct mm_slot *mm_slot;
2734 
2735 	set_freezable();
2736 	set_user_nice(current, 19);
2737 
2738 	while (!kthread_should_stop()) {
2739 		khugepaged_do_scan();
2740 		khugepaged_wait_work();
2741 	}
2742 
2743 	spin_lock(&khugepaged_mm_lock);
2744 	mm_slot = khugepaged_scan.mm_slot;
2745 	khugepaged_scan.mm_slot = NULL;
2746 	if (mm_slot)
2747 		collect_mm_slot(mm_slot);
2748 	spin_unlock(&khugepaged_mm_lock);
2749 	return 0;
2750 }
2751 
2752 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2753 		unsigned long haddr, pmd_t *pmd)
2754 {
2755 	struct mm_struct *mm = vma->vm_mm;
2756 	pgtable_t pgtable;
2757 	pmd_t _pmd;
2758 	int i;
2759 
2760 	pmdp_clear_flush(vma, haddr, pmd);
2761 	/* leave pmd empty until pte is filled */
2762 
2763 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2764 	pmd_populate(mm, &_pmd, pgtable);
2765 
2766 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2767 		pte_t *pte, entry;
2768 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2769 		entry = pte_mkspecial(entry);
2770 		pte = pte_offset_map(&_pmd, haddr);
2771 		VM_BUG_ON(!pte_none(*pte));
2772 		set_pte_at(mm, haddr, pte, entry);
2773 		pte_unmap(pte);
2774 	}
2775 	smp_wmb(); /* make pte visible before pmd */
2776 	pmd_populate(mm, pmd, pgtable);
2777 	put_huge_zero_page();
2778 }
2779 
2780 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2781 		pmd_t *pmd)
2782 {
2783 	spinlock_t *ptl;
2784 	struct page *page;
2785 	struct mm_struct *mm = vma->vm_mm;
2786 	unsigned long haddr = address & HPAGE_PMD_MASK;
2787 	unsigned long mmun_start;	/* For mmu_notifiers */
2788 	unsigned long mmun_end;		/* For mmu_notifiers */
2789 
2790 	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2791 
2792 	mmun_start = haddr;
2793 	mmun_end   = haddr + HPAGE_PMD_SIZE;
2794 again:
2795 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2796 	ptl = pmd_lock(mm, pmd);
2797 	if (unlikely(!pmd_trans_huge(*pmd))) {
2798 		spin_unlock(ptl);
2799 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2800 		return;
2801 	}
2802 	if (is_huge_zero_pmd(*pmd)) {
2803 		__split_huge_zero_page_pmd(vma, haddr, pmd);
2804 		spin_unlock(ptl);
2805 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2806 		return;
2807 	}
2808 	page = pmd_page(*pmd);
2809 	VM_BUG_ON_PAGE(!page_count(page), page);
2810 	get_page(page);
2811 	spin_unlock(ptl);
2812 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2813 
2814 	split_huge_page(page);
2815 
2816 	put_page(page);
2817 
2818 	/*
2819 	 * We don't always have down_write of mmap_sem here: a racing
2820 	 * do_huge_pmd_wp_page() might have copied-on-write to another
2821 	 * huge page before our split_huge_page() got the anon_vma lock.
2822 	 */
2823 	if (unlikely(pmd_trans_huge(*pmd)))
2824 		goto again;
2825 }
2826 
2827 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2828 		pmd_t *pmd)
2829 {
2830 	struct vm_area_struct *vma;
2831 
2832 	vma = find_vma(mm, address);
2833 	BUG_ON(vma == NULL);
2834 	split_huge_page_pmd(vma, address, pmd);
2835 }
2836 
2837 static void split_huge_page_address(struct mm_struct *mm,
2838 				    unsigned long address)
2839 {
2840 	pmd_t *pmd;
2841 
2842 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2843 
2844 	pmd = mm_find_pmd(mm, address);
2845 	if (!pmd)
2846 		return;
2847 	/*
2848 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2849 	 * materialize from under us.
2850 	 */
2851 	split_huge_page_pmd_mm(mm, address, pmd);
2852 }
2853 
2854 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2855 			     unsigned long start,
2856 			     unsigned long end,
2857 			     long adjust_next)
2858 {
2859 	/*
2860 	 * If the new start address isn't hpage aligned and it could
2861 	 * previously contain an hugepage: check if we need to split
2862 	 * an huge pmd.
2863 	 */
2864 	if (start & ~HPAGE_PMD_MASK &&
2865 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2866 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2867 		split_huge_page_address(vma->vm_mm, start);
2868 
2869 	/*
2870 	 * If the new end address isn't hpage aligned and it could
2871 	 * previously contain an hugepage: check if we need to split
2872 	 * an huge pmd.
2873 	 */
2874 	if (end & ~HPAGE_PMD_MASK &&
2875 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2876 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2877 		split_huge_page_address(vma->vm_mm, end);
2878 
2879 	/*
2880 	 * If we're also updating the vma->vm_next->vm_start, if the new
2881 	 * vm_next->vm_start isn't page aligned and it could previously
2882 	 * contain an hugepage: check if we need to split an huge pmd.
2883 	 */
2884 	if (adjust_next > 0) {
2885 		struct vm_area_struct *next = vma->vm_next;
2886 		unsigned long nstart = next->vm_start;
2887 		nstart += adjust_next << PAGE_SHIFT;
2888 		if (nstart & ~HPAGE_PMD_MASK &&
2889 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2890 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2891 			split_huge_page_address(next->vm_mm, nstart);
2892 	}
2893 }
2894