xref: /openbmc/linux/mm/huge_memory.c (revision 193b1fc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 #include <linux/compat.h>
41 
42 #include <asm/tlb.h>
43 #include <asm/pgalloc.h>
44 #include "internal.h"
45 #include "swap.h"
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/thp.h>
49 
50 /*
51  * By default, transparent hugepage support is disabled in order to avoid
52  * risking an increased memory footprint for applications that are not
53  * guaranteed to benefit from it. When transparent hugepage support is
54  * enabled, it is for all mappings, and khugepaged scans all mappings.
55  * Defrag is invoked by khugepaged hugepage allocations and by page faults
56  * for all hugepage allocations.
57  */
58 unsigned long transparent_hugepage_flags __read_mostly =
59 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
60 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
61 #endif
62 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
63 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
64 #endif
65 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
66 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
67 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
68 
69 static struct shrinker deferred_split_shrinker;
70 
71 static atomic_t huge_zero_refcount;
72 struct page *huge_zero_page __read_mostly;
73 unsigned long huge_zero_pfn __read_mostly = ~0UL;
74 
75 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
76 			bool smaps, bool in_pf, bool enforce_sysfs)
77 {
78 	if (!vma->vm_mm)		/* vdso */
79 		return false;
80 
81 	/*
82 	 * Explicitly disabled through madvise or prctl, or some
83 	 * architectures may disable THP for some mappings, for
84 	 * example, s390 kvm.
85 	 * */
86 	if ((vm_flags & VM_NOHUGEPAGE) ||
87 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
88 		return false;
89 	/*
90 	 * If the hardware/firmware marked hugepage support disabled.
91 	 */
92 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
93 		return false;
94 
95 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
96 	if (vma_is_dax(vma))
97 		return in_pf;
98 
99 	/*
100 	 * Special VMA and hugetlb VMA.
101 	 * Must be checked after dax since some dax mappings may have
102 	 * VM_MIXEDMAP set.
103 	 */
104 	if (vm_flags & VM_NO_KHUGEPAGED)
105 		return false;
106 
107 	/*
108 	 * Check alignment for file vma and size for both file and anon vma.
109 	 *
110 	 * Skip the check for page fault. Huge fault does the check in fault
111 	 * handlers. And this check is not suitable for huge PUD fault.
112 	 */
113 	if (!in_pf &&
114 	    !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
115 		return false;
116 
117 	/*
118 	 * Enabled via shmem mount options or sysfs settings.
119 	 * Must be done before hugepage flags check since shmem has its
120 	 * own flags.
121 	 */
122 	if (!in_pf && shmem_file(vma->vm_file))
123 		return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
124 				     !enforce_sysfs, vma->vm_mm, vm_flags);
125 
126 	/* Enforce sysfs THP requirements as necessary */
127 	if (enforce_sysfs &&
128 	    (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
129 					   !hugepage_flags_always())))
130 		return false;
131 
132 	/* Only regular file is valid */
133 	if (!in_pf && file_thp_enabled(vma))
134 		return true;
135 
136 	if (!vma_is_anonymous(vma))
137 		return false;
138 
139 	if (vma_is_temporary_stack(vma))
140 		return false;
141 
142 	/*
143 	 * THPeligible bit of smaps should show 1 for proper VMAs even
144 	 * though anon_vma is not initialized yet.
145 	 *
146 	 * Allow page fault since anon_vma may be not initialized until
147 	 * the first page fault.
148 	 */
149 	if (!vma->anon_vma)
150 		return (smaps || in_pf);
151 
152 	return true;
153 }
154 
155 static bool get_huge_zero_page(void)
156 {
157 	struct page *zero_page;
158 retry:
159 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
160 		return true;
161 
162 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
163 			HPAGE_PMD_ORDER);
164 	if (!zero_page) {
165 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
166 		return false;
167 	}
168 	preempt_disable();
169 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
170 		preempt_enable();
171 		__free_pages(zero_page, compound_order(zero_page));
172 		goto retry;
173 	}
174 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
175 
176 	/* We take additional reference here. It will be put back by shrinker */
177 	atomic_set(&huge_zero_refcount, 2);
178 	preempt_enable();
179 	count_vm_event(THP_ZERO_PAGE_ALLOC);
180 	return true;
181 }
182 
183 static void put_huge_zero_page(void)
184 {
185 	/*
186 	 * Counter should never go to zero here. Only shrinker can put
187 	 * last reference.
188 	 */
189 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
190 }
191 
192 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
193 {
194 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
195 		return READ_ONCE(huge_zero_page);
196 
197 	if (!get_huge_zero_page())
198 		return NULL;
199 
200 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
201 		put_huge_zero_page();
202 
203 	return READ_ONCE(huge_zero_page);
204 }
205 
206 void mm_put_huge_zero_page(struct mm_struct *mm)
207 {
208 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
209 		put_huge_zero_page();
210 }
211 
212 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
213 					struct shrink_control *sc)
214 {
215 	/* we can free zero page only if last reference remains */
216 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
217 }
218 
219 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
220 				       struct shrink_control *sc)
221 {
222 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
223 		struct page *zero_page = xchg(&huge_zero_page, NULL);
224 		BUG_ON(zero_page == NULL);
225 		WRITE_ONCE(huge_zero_pfn, ~0UL);
226 		__free_pages(zero_page, compound_order(zero_page));
227 		return HPAGE_PMD_NR;
228 	}
229 
230 	return 0;
231 }
232 
233 static struct shrinker huge_zero_page_shrinker = {
234 	.count_objects = shrink_huge_zero_page_count,
235 	.scan_objects = shrink_huge_zero_page_scan,
236 	.seeks = DEFAULT_SEEKS,
237 };
238 
239 #ifdef CONFIG_SYSFS
240 static ssize_t enabled_show(struct kobject *kobj,
241 			    struct kobj_attribute *attr, char *buf)
242 {
243 	const char *output;
244 
245 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
246 		output = "[always] madvise never";
247 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
248 			  &transparent_hugepage_flags))
249 		output = "always [madvise] never";
250 	else
251 		output = "always madvise [never]";
252 
253 	return sysfs_emit(buf, "%s\n", output);
254 }
255 
256 static ssize_t enabled_store(struct kobject *kobj,
257 			     struct kobj_attribute *attr,
258 			     const char *buf, size_t count)
259 {
260 	ssize_t ret = count;
261 
262 	if (sysfs_streq(buf, "always")) {
263 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
265 	} else if (sysfs_streq(buf, "madvise")) {
266 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
267 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 	} else if (sysfs_streq(buf, "never")) {
269 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
270 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
271 	} else
272 		ret = -EINVAL;
273 
274 	if (ret > 0) {
275 		int err = start_stop_khugepaged();
276 		if (err)
277 			ret = err;
278 	}
279 	return ret;
280 }
281 
282 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
283 
284 ssize_t single_hugepage_flag_show(struct kobject *kobj,
285 				  struct kobj_attribute *attr, char *buf,
286 				  enum transparent_hugepage_flag flag)
287 {
288 	return sysfs_emit(buf, "%d\n",
289 			  !!test_bit(flag, &transparent_hugepage_flags));
290 }
291 
292 ssize_t single_hugepage_flag_store(struct kobject *kobj,
293 				 struct kobj_attribute *attr,
294 				 const char *buf, size_t count,
295 				 enum transparent_hugepage_flag flag)
296 {
297 	unsigned long value;
298 	int ret;
299 
300 	ret = kstrtoul(buf, 10, &value);
301 	if (ret < 0)
302 		return ret;
303 	if (value > 1)
304 		return -EINVAL;
305 
306 	if (value)
307 		set_bit(flag, &transparent_hugepage_flags);
308 	else
309 		clear_bit(flag, &transparent_hugepage_flags);
310 
311 	return count;
312 }
313 
314 static ssize_t defrag_show(struct kobject *kobj,
315 			   struct kobj_attribute *attr, char *buf)
316 {
317 	const char *output;
318 
319 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
320 		     &transparent_hugepage_flags))
321 		output = "[always] defer defer+madvise madvise never";
322 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
323 			  &transparent_hugepage_flags))
324 		output = "always [defer] defer+madvise madvise never";
325 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
326 			  &transparent_hugepage_flags))
327 		output = "always defer [defer+madvise] madvise never";
328 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
329 			  &transparent_hugepage_flags))
330 		output = "always defer defer+madvise [madvise] never";
331 	else
332 		output = "always defer defer+madvise madvise [never]";
333 
334 	return sysfs_emit(buf, "%s\n", output);
335 }
336 
337 static ssize_t defrag_store(struct kobject *kobj,
338 			    struct kobj_attribute *attr,
339 			    const char *buf, size_t count)
340 {
341 	if (sysfs_streq(buf, "always")) {
342 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
343 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
344 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
345 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
346 	} else if (sysfs_streq(buf, "defer+madvise")) {
347 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
348 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
349 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
350 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
351 	} else if (sysfs_streq(buf, "defer")) {
352 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
353 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
354 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
355 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
356 	} else if (sysfs_streq(buf, "madvise")) {
357 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
358 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
359 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
360 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
361 	} else if (sysfs_streq(buf, "never")) {
362 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
363 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
364 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
365 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
366 	} else
367 		return -EINVAL;
368 
369 	return count;
370 }
371 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
372 
373 static ssize_t use_zero_page_show(struct kobject *kobj,
374 				  struct kobj_attribute *attr, char *buf)
375 {
376 	return single_hugepage_flag_show(kobj, attr, buf,
377 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378 }
379 static ssize_t use_zero_page_store(struct kobject *kobj,
380 		struct kobj_attribute *attr, const char *buf, size_t count)
381 {
382 	return single_hugepage_flag_store(kobj, attr, buf, count,
383 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
384 }
385 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
386 
387 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
388 				   struct kobj_attribute *attr, char *buf)
389 {
390 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
391 }
392 static struct kobj_attribute hpage_pmd_size_attr =
393 	__ATTR_RO(hpage_pmd_size);
394 
395 static struct attribute *hugepage_attr[] = {
396 	&enabled_attr.attr,
397 	&defrag_attr.attr,
398 	&use_zero_page_attr.attr,
399 	&hpage_pmd_size_attr.attr,
400 #ifdef CONFIG_SHMEM
401 	&shmem_enabled_attr.attr,
402 #endif
403 	NULL,
404 };
405 
406 static const struct attribute_group hugepage_attr_group = {
407 	.attrs = hugepage_attr,
408 };
409 
410 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
411 {
412 	int err;
413 
414 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
415 	if (unlikely(!*hugepage_kobj)) {
416 		pr_err("failed to create transparent hugepage kobject\n");
417 		return -ENOMEM;
418 	}
419 
420 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
421 	if (err) {
422 		pr_err("failed to register transparent hugepage group\n");
423 		goto delete_obj;
424 	}
425 
426 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
427 	if (err) {
428 		pr_err("failed to register transparent hugepage group\n");
429 		goto remove_hp_group;
430 	}
431 
432 	return 0;
433 
434 remove_hp_group:
435 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
436 delete_obj:
437 	kobject_put(*hugepage_kobj);
438 	return err;
439 }
440 
441 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
442 {
443 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
444 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
445 	kobject_put(hugepage_kobj);
446 }
447 #else
448 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
449 {
450 	return 0;
451 }
452 
453 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
454 {
455 }
456 #endif /* CONFIG_SYSFS */
457 
458 static int __init hugepage_init(void)
459 {
460 	int err;
461 	struct kobject *hugepage_kobj;
462 
463 	if (!has_transparent_hugepage()) {
464 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
465 		return -EINVAL;
466 	}
467 
468 	/*
469 	 * hugepages can't be allocated by the buddy allocator
470 	 */
471 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_ORDER);
472 	/*
473 	 * we use page->mapping and page->index in second tail page
474 	 * as list_head: assuming THP order >= 2
475 	 */
476 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
477 
478 	err = hugepage_init_sysfs(&hugepage_kobj);
479 	if (err)
480 		goto err_sysfs;
481 
482 	err = khugepaged_init();
483 	if (err)
484 		goto err_slab;
485 
486 	err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
487 	if (err)
488 		goto err_hzp_shrinker;
489 	err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
490 	if (err)
491 		goto err_split_shrinker;
492 
493 	/*
494 	 * By default disable transparent hugepages on smaller systems,
495 	 * where the extra memory used could hurt more than TLB overhead
496 	 * is likely to save.  The admin can still enable it through /sys.
497 	 */
498 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
499 		transparent_hugepage_flags = 0;
500 		return 0;
501 	}
502 
503 	err = start_stop_khugepaged();
504 	if (err)
505 		goto err_khugepaged;
506 
507 	return 0;
508 err_khugepaged:
509 	unregister_shrinker(&deferred_split_shrinker);
510 err_split_shrinker:
511 	unregister_shrinker(&huge_zero_page_shrinker);
512 err_hzp_shrinker:
513 	khugepaged_destroy();
514 err_slab:
515 	hugepage_exit_sysfs(hugepage_kobj);
516 err_sysfs:
517 	return err;
518 }
519 subsys_initcall(hugepage_init);
520 
521 static int __init setup_transparent_hugepage(char *str)
522 {
523 	int ret = 0;
524 	if (!str)
525 		goto out;
526 	if (!strcmp(str, "always")) {
527 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
528 			&transparent_hugepage_flags);
529 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
530 			  &transparent_hugepage_flags);
531 		ret = 1;
532 	} else if (!strcmp(str, "madvise")) {
533 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
534 			  &transparent_hugepage_flags);
535 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
536 			&transparent_hugepage_flags);
537 		ret = 1;
538 	} else if (!strcmp(str, "never")) {
539 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
540 			  &transparent_hugepage_flags);
541 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
542 			  &transparent_hugepage_flags);
543 		ret = 1;
544 	}
545 out:
546 	if (!ret)
547 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
548 	return ret;
549 }
550 __setup("transparent_hugepage=", setup_transparent_hugepage);
551 
552 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
553 {
554 	if (likely(vma->vm_flags & VM_WRITE))
555 		pmd = pmd_mkwrite(pmd, vma);
556 	return pmd;
557 }
558 
559 #ifdef CONFIG_MEMCG
560 static inline
561 struct deferred_split *get_deferred_split_queue(struct folio *folio)
562 {
563 	struct mem_cgroup *memcg = folio_memcg(folio);
564 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
565 
566 	if (memcg)
567 		return &memcg->deferred_split_queue;
568 	else
569 		return &pgdat->deferred_split_queue;
570 }
571 #else
572 static inline
573 struct deferred_split *get_deferred_split_queue(struct folio *folio)
574 {
575 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
576 
577 	return &pgdat->deferred_split_queue;
578 }
579 #endif
580 
581 void folio_prep_large_rmappable(struct folio *folio)
582 {
583 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
584 	INIT_LIST_HEAD(&folio->_deferred_list);
585 	folio_set_large_rmappable(folio);
586 }
587 
588 static inline bool is_transparent_hugepage(struct folio *folio)
589 {
590 	if (!folio_test_large(folio))
591 		return false;
592 
593 	return is_huge_zero_page(&folio->page) ||
594 		folio_test_large_rmappable(folio);
595 }
596 
597 static unsigned long __thp_get_unmapped_area(struct file *filp,
598 		unsigned long addr, unsigned long len,
599 		loff_t off, unsigned long flags, unsigned long size)
600 {
601 	loff_t off_end = off + len;
602 	loff_t off_align = round_up(off, size);
603 	unsigned long len_pad, ret;
604 
605 	if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
606 		return 0;
607 
608 	if (off_end <= off_align || (off_end - off_align) < size)
609 		return 0;
610 
611 	len_pad = len + size;
612 	if (len_pad < len || (off + len_pad) < off)
613 		return 0;
614 
615 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
616 					      off >> PAGE_SHIFT, flags);
617 
618 	/*
619 	 * The failure might be due to length padding. The caller will retry
620 	 * without the padding.
621 	 */
622 	if (IS_ERR_VALUE(ret))
623 		return 0;
624 
625 	/*
626 	 * Do not try to align to THP boundary if allocation at the address
627 	 * hint succeeds.
628 	 */
629 	if (ret == addr)
630 		return addr;
631 
632 	ret += (off - ret) & (size - 1);
633 	return ret;
634 }
635 
636 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
637 		unsigned long len, unsigned long pgoff, unsigned long flags)
638 {
639 	unsigned long ret;
640 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
641 
642 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
643 	if (ret)
644 		return ret;
645 
646 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
647 }
648 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
649 
650 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
651 			struct page *page, gfp_t gfp)
652 {
653 	struct vm_area_struct *vma = vmf->vma;
654 	struct folio *folio = page_folio(page);
655 	pgtable_t pgtable;
656 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
657 	vm_fault_t ret = 0;
658 
659 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
660 
661 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
662 		folio_put(folio);
663 		count_vm_event(THP_FAULT_FALLBACK);
664 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
665 		return VM_FAULT_FALLBACK;
666 	}
667 	folio_throttle_swaprate(folio, gfp);
668 
669 	pgtable = pte_alloc_one(vma->vm_mm);
670 	if (unlikely(!pgtable)) {
671 		ret = VM_FAULT_OOM;
672 		goto release;
673 	}
674 
675 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
676 	/*
677 	 * The memory barrier inside __folio_mark_uptodate makes sure that
678 	 * clear_huge_page writes become visible before the set_pmd_at()
679 	 * write.
680 	 */
681 	__folio_mark_uptodate(folio);
682 
683 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
684 	if (unlikely(!pmd_none(*vmf->pmd))) {
685 		goto unlock_release;
686 	} else {
687 		pmd_t entry;
688 
689 		ret = check_stable_address_space(vma->vm_mm);
690 		if (ret)
691 			goto unlock_release;
692 
693 		/* Deliver the page fault to userland */
694 		if (userfaultfd_missing(vma)) {
695 			spin_unlock(vmf->ptl);
696 			folio_put(folio);
697 			pte_free(vma->vm_mm, pgtable);
698 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
699 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
700 			return ret;
701 		}
702 
703 		entry = mk_huge_pmd(page, vma->vm_page_prot);
704 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
705 		folio_add_new_anon_rmap(folio, vma, haddr);
706 		folio_add_lru_vma(folio, vma);
707 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
708 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
709 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
710 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
711 		mm_inc_nr_ptes(vma->vm_mm);
712 		spin_unlock(vmf->ptl);
713 		count_vm_event(THP_FAULT_ALLOC);
714 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
715 	}
716 
717 	return 0;
718 unlock_release:
719 	spin_unlock(vmf->ptl);
720 release:
721 	if (pgtable)
722 		pte_free(vma->vm_mm, pgtable);
723 	folio_put(folio);
724 	return ret;
725 
726 }
727 
728 /*
729  * always: directly stall for all thp allocations
730  * defer: wake kswapd and fail if not immediately available
731  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
732  *		  fail if not immediately available
733  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
734  *	    available
735  * never: never stall for any thp allocation
736  */
737 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
738 {
739 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
740 
741 	/* Always do synchronous compaction */
742 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
743 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
744 
745 	/* Kick kcompactd and fail quickly */
746 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
747 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
748 
749 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
750 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
751 		return GFP_TRANSHUGE_LIGHT |
752 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
753 					__GFP_KSWAPD_RECLAIM);
754 
755 	/* Only do synchronous compaction if madvised */
756 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
757 		return GFP_TRANSHUGE_LIGHT |
758 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
759 
760 	return GFP_TRANSHUGE_LIGHT;
761 }
762 
763 /* Caller must hold page table lock. */
764 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
765 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
766 		struct page *zero_page)
767 {
768 	pmd_t entry;
769 	if (!pmd_none(*pmd))
770 		return;
771 	entry = mk_pmd(zero_page, vma->vm_page_prot);
772 	entry = pmd_mkhuge(entry);
773 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
774 	set_pmd_at(mm, haddr, pmd, entry);
775 	mm_inc_nr_ptes(mm);
776 }
777 
778 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
779 {
780 	struct vm_area_struct *vma = vmf->vma;
781 	gfp_t gfp;
782 	struct folio *folio;
783 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
784 
785 	if (!transhuge_vma_suitable(vma, haddr))
786 		return VM_FAULT_FALLBACK;
787 	if (unlikely(anon_vma_prepare(vma)))
788 		return VM_FAULT_OOM;
789 	khugepaged_enter_vma(vma, vma->vm_flags);
790 
791 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
792 			!mm_forbids_zeropage(vma->vm_mm) &&
793 			transparent_hugepage_use_zero_page()) {
794 		pgtable_t pgtable;
795 		struct page *zero_page;
796 		vm_fault_t ret;
797 		pgtable = pte_alloc_one(vma->vm_mm);
798 		if (unlikely(!pgtable))
799 			return VM_FAULT_OOM;
800 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
801 		if (unlikely(!zero_page)) {
802 			pte_free(vma->vm_mm, pgtable);
803 			count_vm_event(THP_FAULT_FALLBACK);
804 			return VM_FAULT_FALLBACK;
805 		}
806 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
807 		ret = 0;
808 		if (pmd_none(*vmf->pmd)) {
809 			ret = check_stable_address_space(vma->vm_mm);
810 			if (ret) {
811 				spin_unlock(vmf->ptl);
812 				pte_free(vma->vm_mm, pgtable);
813 			} else if (userfaultfd_missing(vma)) {
814 				spin_unlock(vmf->ptl);
815 				pte_free(vma->vm_mm, pgtable);
816 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
817 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
818 			} else {
819 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
820 						   haddr, vmf->pmd, zero_page);
821 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
822 				spin_unlock(vmf->ptl);
823 			}
824 		} else {
825 			spin_unlock(vmf->ptl);
826 			pte_free(vma->vm_mm, pgtable);
827 		}
828 		return ret;
829 	}
830 	gfp = vma_thp_gfp_mask(vma);
831 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
832 	if (unlikely(!folio)) {
833 		count_vm_event(THP_FAULT_FALLBACK);
834 		return VM_FAULT_FALLBACK;
835 	}
836 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
837 }
838 
839 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
840 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
841 		pgtable_t pgtable)
842 {
843 	struct mm_struct *mm = vma->vm_mm;
844 	pmd_t entry;
845 	spinlock_t *ptl;
846 
847 	ptl = pmd_lock(mm, pmd);
848 	if (!pmd_none(*pmd)) {
849 		if (write) {
850 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
851 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
852 				goto out_unlock;
853 			}
854 			entry = pmd_mkyoung(*pmd);
855 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
856 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
857 				update_mmu_cache_pmd(vma, addr, pmd);
858 		}
859 
860 		goto out_unlock;
861 	}
862 
863 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
864 	if (pfn_t_devmap(pfn))
865 		entry = pmd_mkdevmap(entry);
866 	if (write) {
867 		entry = pmd_mkyoung(pmd_mkdirty(entry));
868 		entry = maybe_pmd_mkwrite(entry, vma);
869 	}
870 
871 	if (pgtable) {
872 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
873 		mm_inc_nr_ptes(mm);
874 		pgtable = NULL;
875 	}
876 
877 	set_pmd_at(mm, addr, pmd, entry);
878 	update_mmu_cache_pmd(vma, addr, pmd);
879 
880 out_unlock:
881 	spin_unlock(ptl);
882 	if (pgtable)
883 		pte_free(mm, pgtable);
884 }
885 
886 /**
887  * vmf_insert_pfn_pmd - insert a pmd size pfn
888  * @vmf: Structure describing the fault
889  * @pfn: pfn to insert
890  * @write: whether it's a write fault
891  *
892  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
893  *
894  * Return: vm_fault_t value.
895  */
896 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
897 {
898 	unsigned long addr = vmf->address & PMD_MASK;
899 	struct vm_area_struct *vma = vmf->vma;
900 	pgprot_t pgprot = vma->vm_page_prot;
901 	pgtable_t pgtable = NULL;
902 
903 	/*
904 	 * If we had pmd_special, we could avoid all these restrictions,
905 	 * but we need to be consistent with PTEs and architectures that
906 	 * can't support a 'special' bit.
907 	 */
908 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
909 			!pfn_t_devmap(pfn));
910 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
911 						(VM_PFNMAP|VM_MIXEDMAP));
912 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
913 
914 	if (addr < vma->vm_start || addr >= vma->vm_end)
915 		return VM_FAULT_SIGBUS;
916 
917 	if (arch_needs_pgtable_deposit()) {
918 		pgtable = pte_alloc_one(vma->vm_mm);
919 		if (!pgtable)
920 			return VM_FAULT_OOM;
921 	}
922 
923 	track_pfn_insert(vma, &pgprot, pfn);
924 
925 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
926 	return VM_FAULT_NOPAGE;
927 }
928 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
929 
930 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
931 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
932 {
933 	if (likely(vma->vm_flags & VM_WRITE))
934 		pud = pud_mkwrite(pud);
935 	return pud;
936 }
937 
938 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
939 		pud_t *pud, pfn_t pfn, bool write)
940 {
941 	struct mm_struct *mm = vma->vm_mm;
942 	pgprot_t prot = vma->vm_page_prot;
943 	pud_t entry;
944 	spinlock_t *ptl;
945 
946 	ptl = pud_lock(mm, pud);
947 	if (!pud_none(*pud)) {
948 		if (write) {
949 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
950 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
951 				goto out_unlock;
952 			}
953 			entry = pud_mkyoung(*pud);
954 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
955 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
956 				update_mmu_cache_pud(vma, addr, pud);
957 		}
958 		goto out_unlock;
959 	}
960 
961 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
962 	if (pfn_t_devmap(pfn))
963 		entry = pud_mkdevmap(entry);
964 	if (write) {
965 		entry = pud_mkyoung(pud_mkdirty(entry));
966 		entry = maybe_pud_mkwrite(entry, vma);
967 	}
968 	set_pud_at(mm, addr, pud, entry);
969 	update_mmu_cache_pud(vma, addr, pud);
970 
971 out_unlock:
972 	spin_unlock(ptl);
973 }
974 
975 /**
976  * vmf_insert_pfn_pud - insert a pud size pfn
977  * @vmf: Structure describing the fault
978  * @pfn: pfn to insert
979  * @write: whether it's a write fault
980  *
981  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
982  *
983  * Return: vm_fault_t value.
984  */
985 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
986 {
987 	unsigned long addr = vmf->address & PUD_MASK;
988 	struct vm_area_struct *vma = vmf->vma;
989 	pgprot_t pgprot = vma->vm_page_prot;
990 
991 	/*
992 	 * If we had pud_special, we could avoid all these restrictions,
993 	 * but we need to be consistent with PTEs and architectures that
994 	 * can't support a 'special' bit.
995 	 */
996 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
997 			!pfn_t_devmap(pfn));
998 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
999 						(VM_PFNMAP|VM_MIXEDMAP));
1000 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1001 
1002 	if (addr < vma->vm_start || addr >= vma->vm_end)
1003 		return VM_FAULT_SIGBUS;
1004 
1005 	track_pfn_insert(vma, &pgprot, pfn);
1006 
1007 	insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1008 	return VM_FAULT_NOPAGE;
1009 }
1010 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1011 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1012 
1013 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1014 		      pmd_t *pmd, bool write)
1015 {
1016 	pmd_t _pmd;
1017 
1018 	_pmd = pmd_mkyoung(*pmd);
1019 	if (write)
1020 		_pmd = pmd_mkdirty(_pmd);
1021 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1022 				  pmd, _pmd, write))
1023 		update_mmu_cache_pmd(vma, addr, pmd);
1024 }
1025 
1026 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1027 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1028 {
1029 	unsigned long pfn = pmd_pfn(*pmd);
1030 	struct mm_struct *mm = vma->vm_mm;
1031 	struct page *page;
1032 	int ret;
1033 
1034 	assert_spin_locked(pmd_lockptr(mm, pmd));
1035 
1036 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1037 		return NULL;
1038 
1039 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1040 		/* pass */;
1041 	else
1042 		return NULL;
1043 
1044 	if (flags & FOLL_TOUCH)
1045 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1046 
1047 	/*
1048 	 * device mapped pages can only be returned if the
1049 	 * caller will manage the page reference count.
1050 	 */
1051 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1052 		return ERR_PTR(-EEXIST);
1053 
1054 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1055 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1056 	if (!*pgmap)
1057 		return ERR_PTR(-EFAULT);
1058 	page = pfn_to_page(pfn);
1059 	ret = try_grab_folio(page_folio(page), 1, flags);
1060 	if (ret)
1061 		page = ERR_PTR(ret);
1062 
1063 	return page;
1064 }
1065 
1066 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1067 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1068 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1069 {
1070 	spinlock_t *dst_ptl, *src_ptl;
1071 	struct page *src_page;
1072 	pmd_t pmd;
1073 	pgtable_t pgtable = NULL;
1074 	int ret = -ENOMEM;
1075 
1076 	/* Skip if can be re-fill on fault */
1077 	if (!vma_is_anonymous(dst_vma))
1078 		return 0;
1079 
1080 	pgtable = pte_alloc_one(dst_mm);
1081 	if (unlikely(!pgtable))
1082 		goto out;
1083 
1084 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1085 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1086 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1087 
1088 	ret = -EAGAIN;
1089 	pmd = *src_pmd;
1090 
1091 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1092 	if (unlikely(is_swap_pmd(pmd))) {
1093 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1094 
1095 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1096 		if (!is_readable_migration_entry(entry)) {
1097 			entry = make_readable_migration_entry(
1098 							swp_offset(entry));
1099 			pmd = swp_entry_to_pmd(entry);
1100 			if (pmd_swp_soft_dirty(*src_pmd))
1101 				pmd = pmd_swp_mksoft_dirty(pmd);
1102 			if (pmd_swp_uffd_wp(*src_pmd))
1103 				pmd = pmd_swp_mkuffd_wp(pmd);
1104 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1105 		}
1106 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1107 		mm_inc_nr_ptes(dst_mm);
1108 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1109 		if (!userfaultfd_wp(dst_vma))
1110 			pmd = pmd_swp_clear_uffd_wp(pmd);
1111 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1112 		ret = 0;
1113 		goto out_unlock;
1114 	}
1115 #endif
1116 
1117 	if (unlikely(!pmd_trans_huge(pmd))) {
1118 		pte_free(dst_mm, pgtable);
1119 		goto out_unlock;
1120 	}
1121 	/*
1122 	 * When page table lock is held, the huge zero pmd should not be
1123 	 * under splitting since we don't split the page itself, only pmd to
1124 	 * a page table.
1125 	 */
1126 	if (is_huge_zero_pmd(pmd)) {
1127 		/*
1128 		 * get_huge_zero_page() will never allocate a new page here,
1129 		 * since we already have a zero page to copy. It just takes a
1130 		 * reference.
1131 		 */
1132 		mm_get_huge_zero_page(dst_mm);
1133 		goto out_zero_page;
1134 	}
1135 
1136 	src_page = pmd_page(pmd);
1137 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1138 
1139 	get_page(src_page);
1140 	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1141 		/* Page maybe pinned: split and retry the fault on PTEs. */
1142 		put_page(src_page);
1143 		pte_free(dst_mm, pgtable);
1144 		spin_unlock(src_ptl);
1145 		spin_unlock(dst_ptl);
1146 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1147 		return -EAGAIN;
1148 	}
1149 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1150 out_zero_page:
1151 	mm_inc_nr_ptes(dst_mm);
1152 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1153 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1154 	if (!userfaultfd_wp(dst_vma))
1155 		pmd = pmd_clear_uffd_wp(pmd);
1156 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1157 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1158 
1159 	ret = 0;
1160 out_unlock:
1161 	spin_unlock(src_ptl);
1162 	spin_unlock(dst_ptl);
1163 out:
1164 	return ret;
1165 }
1166 
1167 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1168 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1169 		      pud_t *pud, bool write)
1170 {
1171 	pud_t _pud;
1172 
1173 	_pud = pud_mkyoung(*pud);
1174 	if (write)
1175 		_pud = pud_mkdirty(_pud);
1176 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1177 				  pud, _pud, write))
1178 		update_mmu_cache_pud(vma, addr, pud);
1179 }
1180 
1181 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1182 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1183 {
1184 	unsigned long pfn = pud_pfn(*pud);
1185 	struct mm_struct *mm = vma->vm_mm;
1186 	struct page *page;
1187 	int ret;
1188 
1189 	assert_spin_locked(pud_lockptr(mm, pud));
1190 
1191 	if (flags & FOLL_WRITE && !pud_write(*pud))
1192 		return NULL;
1193 
1194 	if (pud_present(*pud) && pud_devmap(*pud))
1195 		/* pass */;
1196 	else
1197 		return NULL;
1198 
1199 	if (flags & FOLL_TOUCH)
1200 		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1201 
1202 	/*
1203 	 * device mapped pages can only be returned if the
1204 	 * caller will manage the page reference count.
1205 	 *
1206 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1207 	 */
1208 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1209 		return ERR_PTR(-EEXIST);
1210 
1211 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1212 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1213 	if (!*pgmap)
1214 		return ERR_PTR(-EFAULT);
1215 	page = pfn_to_page(pfn);
1216 
1217 	ret = try_grab_folio(page_folio(page), 1, flags);
1218 	if (ret)
1219 		page = ERR_PTR(ret);
1220 
1221 	return page;
1222 }
1223 
1224 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1225 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1226 		  struct vm_area_struct *vma)
1227 {
1228 	spinlock_t *dst_ptl, *src_ptl;
1229 	pud_t pud;
1230 	int ret;
1231 
1232 	dst_ptl = pud_lock(dst_mm, dst_pud);
1233 	src_ptl = pud_lockptr(src_mm, src_pud);
1234 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1235 
1236 	ret = -EAGAIN;
1237 	pud = *src_pud;
1238 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1239 		goto out_unlock;
1240 
1241 	/*
1242 	 * When page table lock is held, the huge zero pud should not be
1243 	 * under splitting since we don't split the page itself, only pud to
1244 	 * a page table.
1245 	 */
1246 	if (is_huge_zero_pud(pud)) {
1247 		/* No huge zero pud yet */
1248 	}
1249 
1250 	/*
1251 	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1252 	 * and split if duplicating fails.
1253 	 */
1254 	pudp_set_wrprotect(src_mm, addr, src_pud);
1255 	pud = pud_mkold(pud_wrprotect(pud));
1256 	set_pud_at(dst_mm, addr, dst_pud, pud);
1257 
1258 	ret = 0;
1259 out_unlock:
1260 	spin_unlock(src_ptl);
1261 	spin_unlock(dst_ptl);
1262 	return ret;
1263 }
1264 
1265 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1266 {
1267 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1268 
1269 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1270 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1271 		goto unlock;
1272 
1273 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1274 unlock:
1275 	spin_unlock(vmf->ptl);
1276 }
1277 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1278 
1279 void huge_pmd_set_accessed(struct vm_fault *vmf)
1280 {
1281 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1282 
1283 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1284 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1285 		goto unlock;
1286 
1287 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1288 
1289 unlock:
1290 	spin_unlock(vmf->ptl);
1291 }
1292 
1293 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1294 {
1295 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1296 	struct vm_area_struct *vma = vmf->vma;
1297 	struct folio *folio;
1298 	struct page *page;
1299 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1300 	pmd_t orig_pmd = vmf->orig_pmd;
1301 
1302 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1303 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1304 
1305 	if (is_huge_zero_pmd(orig_pmd))
1306 		goto fallback;
1307 
1308 	spin_lock(vmf->ptl);
1309 
1310 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1311 		spin_unlock(vmf->ptl);
1312 		return 0;
1313 	}
1314 
1315 	page = pmd_page(orig_pmd);
1316 	folio = page_folio(page);
1317 	VM_BUG_ON_PAGE(!PageHead(page), page);
1318 
1319 	/* Early check when only holding the PT lock. */
1320 	if (PageAnonExclusive(page))
1321 		goto reuse;
1322 
1323 	if (!folio_trylock(folio)) {
1324 		folio_get(folio);
1325 		spin_unlock(vmf->ptl);
1326 		folio_lock(folio);
1327 		spin_lock(vmf->ptl);
1328 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1329 			spin_unlock(vmf->ptl);
1330 			folio_unlock(folio);
1331 			folio_put(folio);
1332 			return 0;
1333 		}
1334 		folio_put(folio);
1335 	}
1336 
1337 	/* Recheck after temporarily dropping the PT lock. */
1338 	if (PageAnonExclusive(page)) {
1339 		folio_unlock(folio);
1340 		goto reuse;
1341 	}
1342 
1343 	/*
1344 	 * See do_wp_page(): we can only reuse the folio exclusively if
1345 	 * there are no additional references. Note that we always drain
1346 	 * the LRU cache immediately after adding a THP.
1347 	 */
1348 	if (folio_ref_count(folio) >
1349 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1350 		goto unlock_fallback;
1351 	if (folio_test_swapcache(folio))
1352 		folio_free_swap(folio);
1353 	if (folio_ref_count(folio) == 1) {
1354 		pmd_t entry;
1355 
1356 		page_move_anon_rmap(page, vma);
1357 		folio_unlock(folio);
1358 reuse:
1359 		if (unlikely(unshare)) {
1360 			spin_unlock(vmf->ptl);
1361 			return 0;
1362 		}
1363 		entry = pmd_mkyoung(orig_pmd);
1364 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1365 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1366 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1367 		spin_unlock(vmf->ptl);
1368 		return 0;
1369 	}
1370 
1371 unlock_fallback:
1372 	folio_unlock(folio);
1373 	spin_unlock(vmf->ptl);
1374 fallback:
1375 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1376 	return VM_FAULT_FALLBACK;
1377 }
1378 
1379 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1380 					   unsigned long addr, pmd_t pmd)
1381 {
1382 	struct page *page;
1383 
1384 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1385 		return false;
1386 
1387 	/* Don't touch entries that are not even readable (NUMA hinting). */
1388 	if (pmd_protnone(pmd))
1389 		return false;
1390 
1391 	/* Do we need write faults for softdirty tracking? */
1392 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1393 		return false;
1394 
1395 	/* Do we need write faults for uffd-wp tracking? */
1396 	if (userfaultfd_huge_pmd_wp(vma, pmd))
1397 		return false;
1398 
1399 	if (!(vma->vm_flags & VM_SHARED)) {
1400 		/* See can_change_pte_writable(). */
1401 		page = vm_normal_page_pmd(vma, addr, pmd);
1402 		return page && PageAnon(page) && PageAnonExclusive(page);
1403 	}
1404 
1405 	/* See can_change_pte_writable(). */
1406 	return pmd_dirty(pmd);
1407 }
1408 
1409 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1410 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1411 					struct vm_area_struct *vma,
1412 					unsigned int flags)
1413 {
1414 	/* If the pmd is writable, we can write to the page. */
1415 	if (pmd_write(pmd))
1416 		return true;
1417 
1418 	/* Maybe FOLL_FORCE is set to override it? */
1419 	if (!(flags & FOLL_FORCE))
1420 		return false;
1421 
1422 	/* But FOLL_FORCE has no effect on shared mappings */
1423 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1424 		return false;
1425 
1426 	/* ... or read-only private ones */
1427 	if (!(vma->vm_flags & VM_MAYWRITE))
1428 		return false;
1429 
1430 	/* ... or already writable ones that just need to take a write fault */
1431 	if (vma->vm_flags & VM_WRITE)
1432 		return false;
1433 
1434 	/*
1435 	 * See can_change_pte_writable(): we broke COW and could map the page
1436 	 * writable if we have an exclusive anonymous page ...
1437 	 */
1438 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1439 		return false;
1440 
1441 	/* ... and a write-fault isn't required for other reasons. */
1442 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1443 		return false;
1444 	return !userfaultfd_huge_pmd_wp(vma, pmd);
1445 }
1446 
1447 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1448 				   unsigned long addr,
1449 				   pmd_t *pmd,
1450 				   unsigned int flags)
1451 {
1452 	struct mm_struct *mm = vma->vm_mm;
1453 	struct page *page;
1454 	int ret;
1455 
1456 	assert_spin_locked(pmd_lockptr(mm, pmd));
1457 
1458 	page = pmd_page(*pmd);
1459 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1460 
1461 	if ((flags & FOLL_WRITE) &&
1462 	    !can_follow_write_pmd(*pmd, page, vma, flags))
1463 		return NULL;
1464 
1465 	/* Avoid dumping huge zero page */
1466 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1467 		return ERR_PTR(-EFAULT);
1468 
1469 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
1470 		return NULL;
1471 
1472 	if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1473 		return ERR_PTR(-EMLINK);
1474 
1475 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1476 			!PageAnonExclusive(page), page);
1477 
1478 	ret = try_grab_folio(page_folio(page), 1, flags);
1479 	if (ret)
1480 		return ERR_PTR(ret);
1481 
1482 	if (flags & FOLL_TOUCH)
1483 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1484 
1485 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1486 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1487 
1488 	return page;
1489 }
1490 
1491 /* NUMA hinting page fault entry point for trans huge pmds */
1492 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1493 {
1494 	struct vm_area_struct *vma = vmf->vma;
1495 	pmd_t oldpmd = vmf->orig_pmd;
1496 	pmd_t pmd;
1497 	struct page *page;
1498 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1499 	int page_nid = NUMA_NO_NODE;
1500 	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1501 	bool migrated = false, writable = false;
1502 	int flags = 0;
1503 
1504 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1505 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1506 		spin_unlock(vmf->ptl);
1507 		return 0;
1508 	}
1509 
1510 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1511 
1512 	/*
1513 	 * Detect now whether the PMD could be writable; this information
1514 	 * is only valid while holding the PT lock.
1515 	 */
1516 	writable = pmd_write(pmd);
1517 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1518 	    can_change_pmd_writable(vma, vmf->address, pmd))
1519 		writable = true;
1520 
1521 	page = vm_normal_page_pmd(vma, haddr, pmd);
1522 	if (!page)
1523 		goto out_map;
1524 
1525 	/* See similar comment in do_numa_page for explanation */
1526 	if (!writable)
1527 		flags |= TNF_NO_GROUP;
1528 
1529 	page_nid = page_to_nid(page);
1530 	/*
1531 	 * For memory tiering mode, cpupid of slow memory page is used
1532 	 * to record page access time.  So use default value.
1533 	 */
1534 	if (node_is_toptier(page_nid))
1535 		last_cpupid = page_cpupid_last(page);
1536 	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1537 				       &flags);
1538 
1539 	if (target_nid == NUMA_NO_NODE) {
1540 		put_page(page);
1541 		goto out_map;
1542 	}
1543 
1544 	spin_unlock(vmf->ptl);
1545 	writable = false;
1546 
1547 	migrated = migrate_misplaced_page(page, vma, target_nid);
1548 	if (migrated) {
1549 		flags |= TNF_MIGRATED;
1550 		page_nid = target_nid;
1551 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1552 		return 0;
1553 	}
1554 
1555 	flags |= TNF_MIGRATE_FAIL;
1556 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1557 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1558 		spin_unlock(vmf->ptl);
1559 		return 0;
1560 	}
1561 out_map:
1562 	/* Restore the PMD */
1563 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1564 	pmd = pmd_mkyoung(pmd);
1565 	if (writable)
1566 		pmd = pmd_mkwrite(pmd, vma);
1567 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1568 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1569 	spin_unlock(vmf->ptl);
1570 
1571 	if (page_nid != NUMA_NO_NODE)
1572 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1573 	return 0;
1574 }
1575 
1576 /*
1577  * Return true if we do MADV_FREE successfully on entire pmd page.
1578  * Otherwise, return false.
1579  */
1580 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1581 		pmd_t *pmd, unsigned long addr, unsigned long next)
1582 {
1583 	spinlock_t *ptl;
1584 	pmd_t orig_pmd;
1585 	struct folio *folio;
1586 	struct mm_struct *mm = tlb->mm;
1587 	bool ret = false;
1588 
1589 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1590 
1591 	ptl = pmd_trans_huge_lock(pmd, vma);
1592 	if (!ptl)
1593 		goto out_unlocked;
1594 
1595 	orig_pmd = *pmd;
1596 	if (is_huge_zero_pmd(orig_pmd))
1597 		goto out;
1598 
1599 	if (unlikely(!pmd_present(orig_pmd))) {
1600 		VM_BUG_ON(thp_migration_supported() &&
1601 				  !is_pmd_migration_entry(orig_pmd));
1602 		goto out;
1603 	}
1604 
1605 	folio = pfn_folio(pmd_pfn(orig_pmd));
1606 	/*
1607 	 * If other processes are mapping this folio, we couldn't discard
1608 	 * the folio unless they all do MADV_FREE so let's skip the folio.
1609 	 */
1610 	if (folio_estimated_sharers(folio) != 1)
1611 		goto out;
1612 
1613 	if (!folio_trylock(folio))
1614 		goto out;
1615 
1616 	/*
1617 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1618 	 * will deactivate only them.
1619 	 */
1620 	if (next - addr != HPAGE_PMD_SIZE) {
1621 		folio_get(folio);
1622 		spin_unlock(ptl);
1623 		split_folio(folio);
1624 		folio_unlock(folio);
1625 		folio_put(folio);
1626 		goto out_unlocked;
1627 	}
1628 
1629 	if (folio_test_dirty(folio))
1630 		folio_clear_dirty(folio);
1631 	folio_unlock(folio);
1632 
1633 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1634 		pmdp_invalidate(vma, addr, pmd);
1635 		orig_pmd = pmd_mkold(orig_pmd);
1636 		orig_pmd = pmd_mkclean(orig_pmd);
1637 
1638 		set_pmd_at(mm, addr, pmd, orig_pmd);
1639 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1640 	}
1641 
1642 	folio_mark_lazyfree(folio);
1643 	ret = true;
1644 out:
1645 	spin_unlock(ptl);
1646 out_unlocked:
1647 	return ret;
1648 }
1649 
1650 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1651 {
1652 	pgtable_t pgtable;
1653 
1654 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1655 	pte_free(mm, pgtable);
1656 	mm_dec_nr_ptes(mm);
1657 }
1658 
1659 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1660 		 pmd_t *pmd, unsigned long addr)
1661 {
1662 	pmd_t orig_pmd;
1663 	spinlock_t *ptl;
1664 
1665 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1666 
1667 	ptl = __pmd_trans_huge_lock(pmd, vma);
1668 	if (!ptl)
1669 		return 0;
1670 	/*
1671 	 * For architectures like ppc64 we look at deposited pgtable
1672 	 * when calling pmdp_huge_get_and_clear. So do the
1673 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1674 	 * operations.
1675 	 */
1676 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1677 						tlb->fullmm);
1678 	arch_check_zapped_pmd(vma, orig_pmd);
1679 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1680 	if (vma_is_special_huge(vma)) {
1681 		if (arch_needs_pgtable_deposit())
1682 			zap_deposited_table(tlb->mm, pmd);
1683 		spin_unlock(ptl);
1684 	} else if (is_huge_zero_pmd(orig_pmd)) {
1685 		zap_deposited_table(tlb->mm, pmd);
1686 		spin_unlock(ptl);
1687 	} else {
1688 		struct page *page = NULL;
1689 		int flush_needed = 1;
1690 
1691 		if (pmd_present(orig_pmd)) {
1692 			page = pmd_page(orig_pmd);
1693 			page_remove_rmap(page, vma, true);
1694 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1695 			VM_BUG_ON_PAGE(!PageHead(page), page);
1696 		} else if (thp_migration_supported()) {
1697 			swp_entry_t entry;
1698 
1699 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1700 			entry = pmd_to_swp_entry(orig_pmd);
1701 			page = pfn_swap_entry_to_page(entry);
1702 			flush_needed = 0;
1703 		} else
1704 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1705 
1706 		if (PageAnon(page)) {
1707 			zap_deposited_table(tlb->mm, pmd);
1708 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1709 		} else {
1710 			if (arch_needs_pgtable_deposit())
1711 				zap_deposited_table(tlb->mm, pmd);
1712 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1713 		}
1714 
1715 		spin_unlock(ptl);
1716 		if (flush_needed)
1717 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1718 	}
1719 	return 1;
1720 }
1721 
1722 #ifndef pmd_move_must_withdraw
1723 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1724 					 spinlock_t *old_pmd_ptl,
1725 					 struct vm_area_struct *vma)
1726 {
1727 	/*
1728 	 * With split pmd lock we also need to move preallocated
1729 	 * PTE page table if new_pmd is on different PMD page table.
1730 	 *
1731 	 * We also don't deposit and withdraw tables for file pages.
1732 	 */
1733 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1734 }
1735 #endif
1736 
1737 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1738 {
1739 #ifdef CONFIG_MEM_SOFT_DIRTY
1740 	if (unlikely(is_pmd_migration_entry(pmd)))
1741 		pmd = pmd_swp_mksoft_dirty(pmd);
1742 	else if (pmd_present(pmd))
1743 		pmd = pmd_mksoft_dirty(pmd);
1744 #endif
1745 	return pmd;
1746 }
1747 
1748 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1749 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1750 {
1751 	spinlock_t *old_ptl, *new_ptl;
1752 	pmd_t pmd;
1753 	struct mm_struct *mm = vma->vm_mm;
1754 	bool force_flush = false;
1755 
1756 	/*
1757 	 * The destination pmd shouldn't be established, free_pgtables()
1758 	 * should have released it; but move_page_tables() might have already
1759 	 * inserted a page table, if racing against shmem/file collapse.
1760 	 */
1761 	if (!pmd_none(*new_pmd)) {
1762 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1763 		return false;
1764 	}
1765 
1766 	/*
1767 	 * We don't have to worry about the ordering of src and dst
1768 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1769 	 */
1770 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1771 	if (old_ptl) {
1772 		new_ptl = pmd_lockptr(mm, new_pmd);
1773 		if (new_ptl != old_ptl)
1774 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1775 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1776 		if (pmd_present(pmd))
1777 			force_flush = true;
1778 		VM_BUG_ON(!pmd_none(*new_pmd));
1779 
1780 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1781 			pgtable_t pgtable;
1782 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1783 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1784 		}
1785 		pmd = move_soft_dirty_pmd(pmd);
1786 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1787 		if (force_flush)
1788 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1789 		if (new_ptl != old_ptl)
1790 			spin_unlock(new_ptl);
1791 		spin_unlock(old_ptl);
1792 		return true;
1793 	}
1794 	return false;
1795 }
1796 
1797 /*
1798  * Returns
1799  *  - 0 if PMD could not be locked
1800  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1801  *      or if prot_numa but THP migration is not supported
1802  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1803  */
1804 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1805 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1806 		    unsigned long cp_flags)
1807 {
1808 	struct mm_struct *mm = vma->vm_mm;
1809 	spinlock_t *ptl;
1810 	pmd_t oldpmd, entry;
1811 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1812 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1813 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1814 	int ret = 1;
1815 
1816 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1817 
1818 	if (prot_numa && !thp_migration_supported())
1819 		return 1;
1820 
1821 	ptl = __pmd_trans_huge_lock(pmd, vma);
1822 	if (!ptl)
1823 		return 0;
1824 
1825 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1826 	if (is_swap_pmd(*pmd)) {
1827 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1828 		struct page *page = pfn_swap_entry_to_page(entry);
1829 		pmd_t newpmd;
1830 
1831 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1832 		if (is_writable_migration_entry(entry)) {
1833 			/*
1834 			 * A protection check is difficult so
1835 			 * just be safe and disable write
1836 			 */
1837 			if (PageAnon(page))
1838 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1839 			else
1840 				entry = make_readable_migration_entry(swp_offset(entry));
1841 			newpmd = swp_entry_to_pmd(entry);
1842 			if (pmd_swp_soft_dirty(*pmd))
1843 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1844 		} else {
1845 			newpmd = *pmd;
1846 		}
1847 
1848 		if (uffd_wp)
1849 			newpmd = pmd_swp_mkuffd_wp(newpmd);
1850 		else if (uffd_wp_resolve)
1851 			newpmd = pmd_swp_clear_uffd_wp(newpmd);
1852 		if (!pmd_same(*pmd, newpmd))
1853 			set_pmd_at(mm, addr, pmd, newpmd);
1854 		goto unlock;
1855 	}
1856 #endif
1857 
1858 	if (prot_numa) {
1859 		struct page *page;
1860 		bool toptier;
1861 		/*
1862 		 * Avoid trapping faults against the zero page. The read-only
1863 		 * data is likely to be read-cached on the local CPU and
1864 		 * local/remote hits to the zero page are not interesting.
1865 		 */
1866 		if (is_huge_zero_pmd(*pmd))
1867 			goto unlock;
1868 
1869 		if (pmd_protnone(*pmd))
1870 			goto unlock;
1871 
1872 		page = pmd_page(*pmd);
1873 		toptier = node_is_toptier(page_to_nid(page));
1874 		/*
1875 		 * Skip scanning top tier node if normal numa
1876 		 * balancing is disabled
1877 		 */
1878 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1879 		    toptier)
1880 			goto unlock;
1881 
1882 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1883 		    !toptier)
1884 			xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1885 	}
1886 	/*
1887 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1888 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1889 	 * which is also under mmap_read_lock(mm):
1890 	 *
1891 	 *	CPU0:				CPU1:
1892 	 *				change_huge_pmd(prot_numa=1)
1893 	 *				 pmdp_huge_get_and_clear_notify()
1894 	 * madvise_dontneed()
1895 	 *  zap_pmd_range()
1896 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1897 	 *   // skip the pmd
1898 	 *				 set_pmd_at();
1899 	 *				 // pmd is re-established
1900 	 *
1901 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1902 	 * which may break userspace.
1903 	 *
1904 	 * pmdp_invalidate_ad() is required to make sure we don't miss
1905 	 * dirty/young flags set by hardware.
1906 	 */
1907 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1908 
1909 	entry = pmd_modify(oldpmd, newprot);
1910 	if (uffd_wp)
1911 		entry = pmd_mkuffd_wp(entry);
1912 	else if (uffd_wp_resolve)
1913 		/*
1914 		 * Leave the write bit to be handled by PF interrupt
1915 		 * handler, then things like COW could be properly
1916 		 * handled.
1917 		 */
1918 		entry = pmd_clear_uffd_wp(entry);
1919 
1920 	/* See change_pte_range(). */
1921 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1922 	    can_change_pmd_writable(vma, addr, entry))
1923 		entry = pmd_mkwrite(entry, vma);
1924 
1925 	ret = HPAGE_PMD_NR;
1926 	set_pmd_at(mm, addr, pmd, entry);
1927 
1928 	if (huge_pmd_needs_flush(oldpmd, entry))
1929 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1930 unlock:
1931 	spin_unlock(ptl);
1932 	return ret;
1933 }
1934 
1935 /*
1936  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1937  *
1938  * Note that if it returns page table lock pointer, this routine returns without
1939  * unlocking page table lock. So callers must unlock it.
1940  */
1941 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1942 {
1943 	spinlock_t *ptl;
1944 	ptl = pmd_lock(vma->vm_mm, pmd);
1945 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1946 			pmd_devmap(*pmd)))
1947 		return ptl;
1948 	spin_unlock(ptl);
1949 	return NULL;
1950 }
1951 
1952 /*
1953  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1954  *
1955  * Note that if it returns page table lock pointer, this routine returns without
1956  * unlocking page table lock. So callers must unlock it.
1957  */
1958 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1959 {
1960 	spinlock_t *ptl;
1961 
1962 	ptl = pud_lock(vma->vm_mm, pud);
1963 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1964 		return ptl;
1965 	spin_unlock(ptl);
1966 	return NULL;
1967 }
1968 
1969 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1970 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1971 		 pud_t *pud, unsigned long addr)
1972 {
1973 	spinlock_t *ptl;
1974 
1975 	ptl = __pud_trans_huge_lock(pud, vma);
1976 	if (!ptl)
1977 		return 0;
1978 
1979 	pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
1980 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1981 	if (vma_is_special_huge(vma)) {
1982 		spin_unlock(ptl);
1983 		/* No zero page support yet */
1984 	} else {
1985 		/* No support for anonymous PUD pages yet */
1986 		BUG();
1987 	}
1988 	return 1;
1989 }
1990 
1991 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1992 		unsigned long haddr)
1993 {
1994 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1995 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1996 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1997 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1998 
1999 	count_vm_event(THP_SPLIT_PUD);
2000 
2001 	pudp_huge_clear_flush(vma, haddr, pud);
2002 }
2003 
2004 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2005 		unsigned long address)
2006 {
2007 	spinlock_t *ptl;
2008 	struct mmu_notifier_range range;
2009 
2010 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2011 				address & HPAGE_PUD_MASK,
2012 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2013 	mmu_notifier_invalidate_range_start(&range);
2014 	ptl = pud_lock(vma->vm_mm, pud);
2015 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2016 		goto out;
2017 	__split_huge_pud_locked(vma, pud, range.start);
2018 
2019 out:
2020 	spin_unlock(ptl);
2021 	mmu_notifier_invalidate_range_end(&range);
2022 }
2023 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2024 
2025 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2026 		unsigned long haddr, pmd_t *pmd)
2027 {
2028 	struct mm_struct *mm = vma->vm_mm;
2029 	pgtable_t pgtable;
2030 	pmd_t _pmd, old_pmd;
2031 	unsigned long addr;
2032 	pte_t *pte;
2033 	int i;
2034 
2035 	/*
2036 	 * Leave pmd empty until pte is filled note that it is fine to delay
2037 	 * notification until mmu_notifier_invalidate_range_end() as we are
2038 	 * replacing a zero pmd write protected page with a zero pte write
2039 	 * protected page.
2040 	 *
2041 	 * See Documentation/mm/mmu_notifier.rst
2042 	 */
2043 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2044 
2045 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2046 	pmd_populate(mm, &_pmd, pgtable);
2047 
2048 	pte = pte_offset_map(&_pmd, haddr);
2049 	VM_BUG_ON(!pte);
2050 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2051 		pte_t entry;
2052 
2053 		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2054 		entry = pte_mkspecial(entry);
2055 		if (pmd_uffd_wp(old_pmd))
2056 			entry = pte_mkuffd_wp(entry);
2057 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2058 		set_pte_at(mm, addr, pte, entry);
2059 		pte++;
2060 	}
2061 	pte_unmap(pte - 1);
2062 	smp_wmb(); /* make pte visible before pmd */
2063 	pmd_populate(mm, pmd, pgtable);
2064 }
2065 
2066 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2067 		unsigned long haddr, bool freeze)
2068 {
2069 	struct mm_struct *mm = vma->vm_mm;
2070 	struct page *page;
2071 	pgtable_t pgtable;
2072 	pmd_t old_pmd, _pmd;
2073 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2074 	bool anon_exclusive = false, dirty = false;
2075 	unsigned long addr;
2076 	pte_t *pte;
2077 	int i;
2078 
2079 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2080 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2081 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2082 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2083 				&& !pmd_devmap(*pmd));
2084 
2085 	count_vm_event(THP_SPLIT_PMD);
2086 
2087 	if (!vma_is_anonymous(vma)) {
2088 		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2089 		/*
2090 		 * We are going to unmap this huge page. So
2091 		 * just go ahead and zap it
2092 		 */
2093 		if (arch_needs_pgtable_deposit())
2094 			zap_deposited_table(mm, pmd);
2095 		if (vma_is_special_huge(vma))
2096 			return;
2097 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2098 			swp_entry_t entry;
2099 
2100 			entry = pmd_to_swp_entry(old_pmd);
2101 			page = pfn_swap_entry_to_page(entry);
2102 		} else {
2103 			page = pmd_page(old_pmd);
2104 			if (!PageDirty(page) && pmd_dirty(old_pmd))
2105 				set_page_dirty(page);
2106 			if (!PageReferenced(page) && pmd_young(old_pmd))
2107 				SetPageReferenced(page);
2108 			page_remove_rmap(page, vma, true);
2109 			put_page(page);
2110 		}
2111 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2112 		return;
2113 	}
2114 
2115 	if (is_huge_zero_pmd(*pmd)) {
2116 		/*
2117 		 * FIXME: Do we want to invalidate secondary mmu by calling
2118 		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2119 		 * inside __split_huge_pmd() ?
2120 		 *
2121 		 * We are going from a zero huge page write protected to zero
2122 		 * small page also write protected so it does not seems useful
2123 		 * to invalidate secondary mmu at this time.
2124 		 */
2125 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2126 	}
2127 
2128 	pmd_migration = is_pmd_migration_entry(*pmd);
2129 	if (unlikely(pmd_migration)) {
2130 		swp_entry_t entry;
2131 
2132 		old_pmd = *pmd;
2133 		entry = pmd_to_swp_entry(old_pmd);
2134 		page = pfn_swap_entry_to_page(entry);
2135 		write = is_writable_migration_entry(entry);
2136 		if (PageAnon(page))
2137 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2138 		young = is_migration_entry_young(entry);
2139 		dirty = is_migration_entry_dirty(entry);
2140 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2141 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2142 	} else {
2143 		/*
2144 		 * Up to this point the pmd is present and huge and userland has
2145 		 * the whole access to the hugepage during the split (which
2146 		 * happens in place). If we overwrite the pmd with the not-huge
2147 		 * version pointing to the pte here (which of course we could if
2148 		 * all CPUs were bug free), userland could trigger a small page
2149 		 * size TLB miss on the small sized TLB while the hugepage TLB
2150 		 * entry is still established in the huge TLB. Some CPU doesn't
2151 		 * like that. See
2152 		 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2153 		 * 383 on page 105. Intel should be safe but is also warns that
2154 		 * it's only safe if the permission and cache attributes of the
2155 		 * two entries loaded in the two TLB is identical (which should
2156 		 * be the case here). But it is generally safer to never allow
2157 		 * small and huge TLB entries for the same virtual address to be
2158 		 * loaded simultaneously. So instead of doing "pmd_populate();
2159 		 * flush_pmd_tlb_range();" we first mark the current pmd
2160 		 * notpresent (atomically because here the pmd_trans_huge must
2161 		 * remain set at all times on the pmd until the split is
2162 		 * complete for this pmd), then we flush the SMP TLB and finally
2163 		 * we write the non-huge version of the pmd entry with
2164 		 * pmd_populate.
2165 		 */
2166 		old_pmd = pmdp_invalidate(vma, haddr, pmd);
2167 		page = pmd_page(old_pmd);
2168 		if (pmd_dirty(old_pmd)) {
2169 			dirty = true;
2170 			SetPageDirty(page);
2171 		}
2172 		write = pmd_write(old_pmd);
2173 		young = pmd_young(old_pmd);
2174 		soft_dirty = pmd_soft_dirty(old_pmd);
2175 		uffd_wp = pmd_uffd_wp(old_pmd);
2176 
2177 		VM_BUG_ON_PAGE(!page_count(page), page);
2178 
2179 		/*
2180 		 * Without "freeze", we'll simply split the PMD, propagating the
2181 		 * PageAnonExclusive() flag for each PTE by setting it for
2182 		 * each subpage -- no need to (temporarily) clear.
2183 		 *
2184 		 * With "freeze" we want to replace mapped pages by
2185 		 * migration entries right away. This is only possible if we
2186 		 * managed to clear PageAnonExclusive() -- see
2187 		 * set_pmd_migration_entry().
2188 		 *
2189 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2190 		 * only and let try_to_migrate_one() fail later.
2191 		 *
2192 		 * See page_try_share_anon_rmap(): invalidate PMD first.
2193 		 */
2194 		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2195 		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2196 			freeze = false;
2197 		if (!freeze)
2198 			page_ref_add(page, HPAGE_PMD_NR - 1);
2199 	}
2200 
2201 	/*
2202 	 * Withdraw the table only after we mark the pmd entry invalid.
2203 	 * This's critical for some architectures (Power).
2204 	 */
2205 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2206 	pmd_populate(mm, &_pmd, pgtable);
2207 
2208 	pte = pte_offset_map(&_pmd, haddr);
2209 	VM_BUG_ON(!pte);
2210 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2211 		pte_t entry;
2212 		/*
2213 		 * Note that NUMA hinting access restrictions are not
2214 		 * transferred to avoid any possibility of altering
2215 		 * permissions across VMAs.
2216 		 */
2217 		if (freeze || pmd_migration) {
2218 			swp_entry_t swp_entry;
2219 			if (write)
2220 				swp_entry = make_writable_migration_entry(
2221 							page_to_pfn(page + i));
2222 			else if (anon_exclusive)
2223 				swp_entry = make_readable_exclusive_migration_entry(
2224 							page_to_pfn(page + i));
2225 			else
2226 				swp_entry = make_readable_migration_entry(
2227 							page_to_pfn(page + i));
2228 			if (young)
2229 				swp_entry = make_migration_entry_young(swp_entry);
2230 			if (dirty)
2231 				swp_entry = make_migration_entry_dirty(swp_entry);
2232 			entry = swp_entry_to_pte(swp_entry);
2233 			if (soft_dirty)
2234 				entry = pte_swp_mksoft_dirty(entry);
2235 			if (uffd_wp)
2236 				entry = pte_swp_mkuffd_wp(entry);
2237 		} else {
2238 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2239 			if (write)
2240 				entry = pte_mkwrite(entry, vma);
2241 			if (anon_exclusive)
2242 				SetPageAnonExclusive(page + i);
2243 			if (!young)
2244 				entry = pte_mkold(entry);
2245 			/* NOTE: this may set soft-dirty too on some archs */
2246 			if (dirty)
2247 				entry = pte_mkdirty(entry);
2248 			if (soft_dirty)
2249 				entry = pte_mksoft_dirty(entry);
2250 			if (uffd_wp)
2251 				entry = pte_mkuffd_wp(entry);
2252 			page_add_anon_rmap(page + i, vma, addr, RMAP_NONE);
2253 		}
2254 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2255 		set_pte_at(mm, addr, pte, entry);
2256 		pte++;
2257 	}
2258 	pte_unmap(pte - 1);
2259 
2260 	if (!pmd_migration)
2261 		page_remove_rmap(page, vma, true);
2262 	if (freeze)
2263 		put_page(page);
2264 
2265 	smp_wmb(); /* make pte visible before pmd */
2266 	pmd_populate(mm, pmd, pgtable);
2267 }
2268 
2269 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2270 		unsigned long address, bool freeze, struct folio *folio)
2271 {
2272 	spinlock_t *ptl;
2273 	struct mmu_notifier_range range;
2274 
2275 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2276 				address & HPAGE_PMD_MASK,
2277 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2278 	mmu_notifier_invalidate_range_start(&range);
2279 	ptl = pmd_lock(vma->vm_mm, pmd);
2280 
2281 	/*
2282 	 * If caller asks to setup a migration entry, we need a folio to check
2283 	 * pmd against. Otherwise we can end up replacing wrong folio.
2284 	 */
2285 	VM_BUG_ON(freeze && !folio);
2286 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2287 
2288 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2289 	    is_pmd_migration_entry(*pmd)) {
2290 		/*
2291 		 * It's safe to call pmd_page when folio is set because it's
2292 		 * guaranteed that pmd is present.
2293 		 */
2294 		if (folio && folio != page_folio(pmd_page(*pmd)))
2295 			goto out;
2296 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2297 	}
2298 
2299 out:
2300 	spin_unlock(ptl);
2301 	mmu_notifier_invalidate_range_end(&range);
2302 }
2303 
2304 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2305 		bool freeze, struct folio *folio)
2306 {
2307 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2308 
2309 	if (!pmd)
2310 		return;
2311 
2312 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2313 }
2314 
2315 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2316 {
2317 	/*
2318 	 * If the new address isn't hpage aligned and it could previously
2319 	 * contain an hugepage: check if we need to split an huge pmd.
2320 	 */
2321 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2322 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2323 			 ALIGN(address, HPAGE_PMD_SIZE)))
2324 		split_huge_pmd_address(vma, address, false, NULL);
2325 }
2326 
2327 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2328 			     unsigned long start,
2329 			     unsigned long end,
2330 			     long adjust_next)
2331 {
2332 	/* Check if we need to split start first. */
2333 	split_huge_pmd_if_needed(vma, start);
2334 
2335 	/* Check if we need to split end next. */
2336 	split_huge_pmd_if_needed(vma, end);
2337 
2338 	/*
2339 	 * If we're also updating the next vma vm_start,
2340 	 * check if we need to split it.
2341 	 */
2342 	if (adjust_next > 0) {
2343 		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2344 		unsigned long nstart = next->vm_start;
2345 		nstart += adjust_next;
2346 		split_huge_pmd_if_needed(next, nstart);
2347 	}
2348 }
2349 
2350 static void unmap_folio(struct folio *folio)
2351 {
2352 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2353 		TTU_SYNC;
2354 
2355 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2356 
2357 	/*
2358 	 * Anon pages need migration entries to preserve them, but file
2359 	 * pages can simply be left unmapped, then faulted back on demand.
2360 	 * If that is ever changed (perhaps for mlock), update remap_page().
2361 	 */
2362 	if (folio_test_anon(folio))
2363 		try_to_migrate(folio, ttu_flags);
2364 	else
2365 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2366 }
2367 
2368 static void remap_page(struct folio *folio, unsigned long nr)
2369 {
2370 	int i = 0;
2371 
2372 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2373 	if (!folio_test_anon(folio))
2374 		return;
2375 	for (;;) {
2376 		remove_migration_ptes(folio, folio, true);
2377 		i += folio_nr_pages(folio);
2378 		if (i >= nr)
2379 			break;
2380 		folio = folio_next(folio);
2381 	}
2382 }
2383 
2384 static void lru_add_page_tail(struct page *head, struct page *tail,
2385 		struct lruvec *lruvec, struct list_head *list)
2386 {
2387 	VM_BUG_ON_PAGE(!PageHead(head), head);
2388 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2389 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2390 	lockdep_assert_held(&lruvec->lru_lock);
2391 
2392 	if (list) {
2393 		/* page reclaim is reclaiming a huge page */
2394 		VM_WARN_ON(PageLRU(head));
2395 		get_page(tail);
2396 		list_add_tail(&tail->lru, list);
2397 	} else {
2398 		/* head is still on lru (and we have it frozen) */
2399 		VM_WARN_ON(!PageLRU(head));
2400 		if (PageUnevictable(tail))
2401 			tail->mlock_count = 0;
2402 		else
2403 			list_add_tail(&tail->lru, &head->lru);
2404 		SetPageLRU(tail);
2405 	}
2406 }
2407 
2408 static void __split_huge_page_tail(struct folio *folio, int tail,
2409 		struct lruvec *lruvec, struct list_head *list)
2410 {
2411 	struct page *head = &folio->page;
2412 	struct page *page_tail = head + tail;
2413 	/*
2414 	 * Careful: new_folio is not a "real" folio before we cleared PageTail.
2415 	 * Don't pass it around before clear_compound_head().
2416 	 */
2417 	struct folio *new_folio = (struct folio *)page_tail;
2418 
2419 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2420 
2421 	/*
2422 	 * Clone page flags before unfreezing refcount.
2423 	 *
2424 	 * After successful get_page_unless_zero() might follow flags change,
2425 	 * for example lock_page() which set PG_waiters.
2426 	 *
2427 	 * Note that for mapped sub-pages of an anonymous THP,
2428 	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2429 	 * the migration entry instead from where remap_page() will restore it.
2430 	 * We can still have PG_anon_exclusive set on effectively unmapped and
2431 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2432 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2433 	 */
2434 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2435 	page_tail->flags |= (head->flags &
2436 			((1L << PG_referenced) |
2437 			 (1L << PG_swapbacked) |
2438 			 (1L << PG_swapcache) |
2439 			 (1L << PG_mlocked) |
2440 			 (1L << PG_uptodate) |
2441 			 (1L << PG_active) |
2442 			 (1L << PG_workingset) |
2443 			 (1L << PG_locked) |
2444 			 (1L << PG_unevictable) |
2445 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2446 			 (1L << PG_arch_2) |
2447 			 (1L << PG_arch_3) |
2448 #endif
2449 			 (1L << PG_dirty) |
2450 			 LRU_GEN_MASK | LRU_REFS_MASK));
2451 
2452 	/* ->mapping in first and second tail page is replaced by other uses */
2453 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2454 			page_tail);
2455 	page_tail->mapping = head->mapping;
2456 	page_tail->index = head->index + tail;
2457 
2458 	/*
2459 	 * page->private should not be set in tail pages. Fix up and warn once
2460 	 * if private is unexpectedly set.
2461 	 */
2462 	if (unlikely(page_tail->private)) {
2463 		VM_WARN_ON_ONCE_PAGE(true, page_tail);
2464 		page_tail->private = 0;
2465 	}
2466 	if (folio_test_swapcache(folio))
2467 		new_folio->swap.val = folio->swap.val + tail;
2468 
2469 	/* Page flags must be visible before we make the page non-compound. */
2470 	smp_wmb();
2471 
2472 	/*
2473 	 * Clear PageTail before unfreezing page refcount.
2474 	 *
2475 	 * After successful get_page_unless_zero() might follow put_page()
2476 	 * which needs correct compound_head().
2477 	 */
2478 	clear_compound_head(page_tail);
2479 
2480 	/* Finally unfreeze refcount. Additional reference from page cache. */
2481 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2482 					  PageSwapCache(head)));
2483 
2484 	if (page_is_young(head))
2485 		set_page_young(page_tail);
2486 	if (page_is_idle(head))
2487 		set_page_idle(page_tail);
2488 
2489 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2490 
2491 	/*
2492 	 * always add to the tail because some iterators expect new
2493 	 * pages to show after the currently processed elements - e.g.
2494 	 * migrate_pages
2495 	 */
2496 	lru_add_page_tail(head, page_tail, lruvec, list);
2497 }
2498 
2499 static void __split_huge_page(struct page *page, struct list_head *list,
2500 		pgoff_t end)
2501 {
2502 	struct folio *folio = page_folio(page);
2503 	struct page *head = &folio->page;
2504 	struct lruvec *lruvec;
2505 	struct address_space *swap_cache = NULL;
2506 	unsigned long offset = 0;
2507 	unsigned int nr = thp_nr_pages(head);
2508 	int i, nr_dropped = 0;
2509 
2510 	/* complete memcg works before add pages to LRU */
2511 	split_page_memcg(head, nr);
2512 
2513 	if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
2514 		offset = swp_offset(folio->swap);
2515 		swap_cache = swap_address_space(folio->swap);
2516 		xa_lock(&swap_cache->i_pages);
2517 	}
2518 
2519 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2520 	lruvec = folio_lruvec_lock(folio);
2521 
2522 	ClearPageHasHWPoisoned(head);
2523 
2524 	for (i = nr - 1; i >= 1; i--) {
2525 		__split_huge_page_tail(folio, i, lruvec, list);
2526 		/* Some pages can be beyond EOF: drop them from page cache */
2527 		if (head[i].index >= end) {
2528 			struct folio *tail = page_folio(head + i);
2529 
2530 			if (shmem_mapping(head->mapping))
2531 				nr_dropped++;
2532 			else if (folio_test_clear_dirty(tail))
2533 				folio_account_cleaned(tail,
2534 					inode_to_wb(folio->mapping->host));
2535 			__filemap_remove_folio(tail, NULL);
2536 			folio_put(tail);
2537 		} else if (!PageAnon(page)) {
2538 			__xa_store(&head->mapping->i_pages, head[i].index,
2539 					head + i, 0);
2540 		} else if (swap_cache) {
2541 			__xa_store(&swap_cache->i_pages, offset + i,
2542 					head + i, 0);
2543 		}
2544 	}
2545 
2546 	ClearPageCompound(head);
2547 	unlock_page_lruvec(lruvec);
2548 	/* Caller disabled irqs, so they are still disabled here */
2549 
2550 	split_page_owner(head, nr);
2551 
2552 	/* See comment in __split_huge_page_tail() */
2553 	if (PageAnon(head)) {
2554 		/* Additional pin to swap cache */
2555 		if (PageSwapCache(head)) {
2556 			page_ref_add(head, 2);
2557 			xa_unlock(&swap_cache->i_pages);
2558 		} else {
2559 			page_ref_inc(head);
2560 		}
2561 	} else {
2562 		/* Additional pin to page cache */
2563 		page_ref_add(head, 2);
2564 		xa_unlock(&head->mapping->i_pages);
2565 	}
2566 	local_irq_enable();
2567 
2568 	if (nr_dropped)
2569 		shmem_uncharge(head->mapping->host, nr_dropped);
2570 	remap_page(folio, nr);
2571 
2572 	if (folio_test_swapcache(folio))
2573 		split_swap_cluster(folio->swap);
2574 
2575 	for (i = 0; i < nr; i++) {
2576 		struct page *subpage = head + i;
2577 		if (subpage == page)
2578 			continue;
2579 		unlock_page(subpage);
2580 
2581 		/*
2582 		 * Subpages may be freed if there wasn't any mapping
2583 		 * like if add_to_swap() is running on a lru page that
2584 		 * had its mapping zapped. And freeing these pages
2585 		 * requires taking the lru_lock so we do the put_page
2586 		 * of the tail pages after the split is complete.
2587 		 */
2588 		free_page_and_swap_cache(subpage);
2589 	}
2590 }
2591 
2592 /* Racy check whether the huge page can be split */
2593 bool can_split_folio(struct folio *folio, int *pextra_pins)
2594 {
2595 	int extra_pins;
2596 
2597 	/* Additional pins from page cache */
2598 	if (folio_test_anon(folio))
2599 		extra_pins = folio_test_swapcache(folio) ?
2600 				folio_nr_pages(folio) : 0;
2601 	else
2602 		extra_pins = folio_nr_pages(folio);
2603 	if (pextra_pins)
2604 		*pextra_pins = extra_pins;
2605 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2606 }
2607 
2608 /*
2609  * This function splits huge page into normal pages. @page can point to any
2610  * subpage of huge page to split. Split doesn't change the position of @page.
2611  *
2612  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2613  * The huge page must be locked.
2614  *
2615  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2616  *
2617  * Both head page and tail pages will inherit mapping, flags, and so on from
2618  * the hugepage.
2619  *
2620  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2621  * they are not mapped.
2622  *
2623  * Returns 0 if the hugepage is split successfully.
2624  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2625  * us.
2626  */
2627 int split_huge_page_to_list(struct page *page, struct list_head *list)
2628 {
2629 	struct folio *folio = page_folio(page);
2630 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2631 	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2632 	struct anon_vma *anon_vma = NULL;
2633 	struct address_space *mapping = NULL;
2634 	int extra_pins, ret;
2635 	pgoff_t end;
2636 	bool is_hzp;
2637 
2638 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2639 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2640 
2641 	is_hzp = is_huge_zero_page(&folio->page);
2642 	if (is_hzp) {
2643 		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2644 		return -EBUSY;
2645 	}
2646 
2647 	if (folio_test_writeback(folio))
2648 		return -EBUSY;
2649 
2650 	if (folio_test_anon(folio)) {
2651 		/*
2652 		 * The caller does not necessarily hold an mmap_lock that would
2653 		 * prevent the anon_vma disappearing so we first we take a
2654 		 * reference to it and then lock the anon_vma for write. This
2655 		 * is similar to folio_lock_anon_vma_read except the write lock
2656 		 * is taken to serialise against parallel split or collapse
2657 		 * operations.
2658 		 */
2659 		anon_vma = folio_get_anon_vma(folio);
2660 		if (!anon_vma) {
2661 			ret = -EBUSY;
2662 			goto out;
2663 		}
2664 		end = -1;
2665 		mapping = NULL;
2666 		anon_vma_lock_write(anon_vma);
2667 	} else {
2668 		gfp_t gfp;
2669 
2670 		mapping = folio->mapping;
2671 
2672 		/* Truncated ? */
2673 		if (!mapping) {
2674 			ret = -EBUSY;
2675 			goto out;
2676 		}
2677 
2678 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2679 							GFP_RECLAIM_MASK);
2680 
2681 		if (!filemap_release_folio(folio, gfp)) {
2682 			ret = -EBUSY;
2683 			goto out;
2684 		}
2685 
2686 		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2687 		if (xas_error(&xas)) {
2688 			ret = xas_error(&xas);
2689 			goto out;
2690 		}
2691 
2692 		anon_vma = NULL;
2693 		i_mmap_lock_read(mapping);
2694 
2695 		/*
2696 		 *__split_huge_page() may need to trim off pages beyond EOF:
2697 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2698 		 * which cannot be nested inside the page tree lock. So note
2699 		 * end now: i_size itself may be changed at any moment, but
2700 		 * folio lock is good enough to serialize the trimming.
2701 		 */
2702 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2703 		if (shmem_mapping(mapping))
2704 			end = shmem_fallocend(mapping->host, end);
2705 	}
2706 
2707 	/*
2708 	 * Racy check if we can split the page, before unmap_folio() will
2709 	 * split PMDs
2710 	 */
2711 	if (!can_split_folio(folio, &extra_pins)) {
2712 		ret = -EAGAIN;
2713 		goto out_unlock;
2714 	}
2715 
2716 	unmap_folio(folio);
2717 
2718 	/* block interrupt reentry in xa_lock and spinlock */
2719 	local_irq_disable();
2720 	if (mapping) {
2721 		/*
2722 		 * Check if the folio is present in page cache.
2723 		 * We assume all tail are present too, if folio is there.
2724 		 */
2725 		xas_lock(&xas);
2726 		xas_reset(&xas);
2727 		if (xas_load(&xas) != folio)
2728 			goto fail;
2729 	}
2730 
2731 	/* Prevent deferred_split_scan() touching ->_refcount */
2732 	spin_lock(&ds_queue->split_queue_lock);
2733 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
2734 		if (!list_empty(&folio->_deferred_list)) {
2735 			ds_queue->split_queue_len--;
2736 			list_del(&folio->_deferred_list);
2737 		}
2738 		spin_unlock(&ds_queue->split_queue_lock);
2739 		if (mapping) {
2740 			int nr = folio_nr_pages(folio);
2741 
2742 			xas_split(&xas, folio, folio_order(folio));
2743 			if (folio_test_pmd_mappable(folio)) {
2744 				if (folio_test_swapbacked(folio)) {
2745 					__lruvec_stat_mod_folio(folio,
2746 							NR_SHMEM_THPS, -nr);
2747 				} else {
2748 					__lruvec_stat_mod_folio(folio,
2749 							NR_FILE_THPS, -nr);
2750 					filemap_nr_thps_dec(mapping);
2751 				}
2752 			}
2753 		}
2754 
2755 		__split_huge_page(page, list, end);
2756 		ret = 0;
2757 	} else {
2758 		spin_unlock(&ds_queue->split_queue_lock);
2759 fail:
2760 		if (mapping)
2761 			xas_unlock(&xas);
2762 		local_irq_enable();
2763 		remap_page(folio, folio_nr_pages(folio));
2764 		ret = -EAGAIN;
2765 	}
2766 
2767 out_unlock:
2768 	if (anon_vma) {
2769 		anon_vma_unlock_write(anon_vma);
2770 		put_anon_vma(anon_vma);
2771 	}
2772 	if (mapping)
2773 		i_mmap_unlock_read(mapping);
2774 out:
2775 	xas_destroy(&xas);
2776 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2777 	return ret;
2778 }
2779 
2780 void folio_undo_large_rmappable(struct folio *folio)
2781 {
2782 	struct deferred_split *ds_queue;
2783 	unsigned long flags;
2784 
2785 	/*
2786 	 * At this point, there is no one trying to add the folio to
2787 	 * deferred_list. If folio is not in deferred_list, it's safe
2788 	 * to check without acquiring the split_queue_lock.
2789 	 */
2790 	if (data_race(list_empty(&folio->_deferred_list)))
2791 		return;
2792 
2793 	ds_queue = get_deferred_split_queue(folio);
2794 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2795 	if (!list_empty(&folio->_deferred_list)) {
2796 		ds_queue->split_queue_len--;
2797 		list_del(&folio->_deferred_list);
2798 	}
2799 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2800 }
2801 
2802 void deferred_split_folio(struct folio *folio)
2803 {
2804 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2805 #ifdef CONFIG_MEMCG
2806 	struct mem_cgroup *memcg = folio_memcg(folio);
2807 #endif
2808 	unsigned long flags;
2809 
2810 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
2811 
2812 	/*
2813 	 * The try_to_unmap() in page reclaim path might reach here too,
2814 	 * this may cause a race condition to corrupt deferred split queue.
2815 	 * And, if page reclaim is already handling the same folio, it is
2816 	 * unnecessary to handle it again in shrinker.
2817 	 *
2818 	 * Check the swapcache flag to determine if the folio is being
2819 	 * handled by page reclaim since THP swap would add the folio into
2820 	 * swap cache before calling try_to_unmap().
2821 	 */
2822 	if (folio_test_swapcache(folio))
2823 		return;
2824 
2825 	if (!list_empty(&folio->_deferred_list))
2826 		return;
2827 
2828 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2829 	if (list_empty(&folio->_deferred_list)) {
2830 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2831 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
2832 		ds_queue->split_queue_len++;
2833 #ifdef CONFIG_MEMCG
2834 		if (memcg)
2835 			set_shrinker_bit(memcg, folio_nid(folio),
2836 					 deferred_split_shrinker.id);
2837 #endif
2838 	}
2839 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2840 }
2841 
2842 static unsigned long deferred_split_count(struct shrinker *shrink,
2843 		struct shrink_control *sc)
2844 {
2845 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2846 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2847 
2848 #ifdef CONFIG_MEMCG
2849 	if (sc->memcg)
2850 		ds_queue = &sc->memcg->deferred_split_queue;
2851 #endif
2852 	return READ_ONCE(ds_queue->split_queue_len);
2853 }
2854 
2855 static unsigned long deferred_split_scan(struct shrinker *shrink,
2856 		struct shrink_control *sc)
2857 {
2858 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2859 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2860 	unsigned long flags;
2861 	LIST_HEAD(list);
2862 	struct folio *folio, *next;
2863 	int split = 0;
2864 
2865 #ifdef CONFIG_MEMCG
2866 	if (sc->memcg)
2867 		ds_queue = &sc->memcg->deferred_split_queue;
2868 #endif
2869 
2870 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2871 	/* Take pin on all head pages to avoid freeing them under us */
2872 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
2873 							_deferred_list) {
2874 		if (folio_try_get(folio)) {
2875 			list_move(&folio->_deferred_list, &list);
2876 		} else {
2877 			/* We lost race with folio_put() */
2878 			list_del_init(&folio->_deferred_list);
2879 			ds_queue->split_queue_len--;
2880 		}
2881 		if (!--sc->nr_to_scan)
2882 			break;
2883 	}
2884 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2885 
2886 	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
2887 		if (!folio_trylock(folio))
2888 			goto next;
2889 		/* split_huge_page() removes page from list on success */
2890 		if (!split_folio(folio))
2891 			split++;
2892 		folio_unlock(folio);
2893 next:
2894 		folio_put(folio);
2895 	}
2896 
2897 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2898 	list_splice_tail(&list, &ds_queue->split_queue);
2899 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2900 
2901 	/*
2902 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2903 	 * This can happen if pages were freed under us.
2904 	 */
2905 	if (!split && list_empty(&ds_queue->split_queue))
2906 		return SHRINK_STOP;
2907 	return split;
2908 }
2909 
2910 static struct shrinker deferred_split_shrinker = {
2911 	.count_objects = deferred_split_count,
2912 	.scan_objects = deferred_split_scan,
2913 	.seeks = DEFAULT_SEEKS,
2914 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2915 		 SHRINKER_NONSLAB,
2916 };
2917 
2918 #ifdef CONFIG_DEBUG_FS
2919 static void split_huge_pages_all(void)
2920 {
2921 	struct zone *zone;
2922 	struct page *page;
2923 	struct folio *folio;
2924 	unsigned long pfn, max_zone_pfn;
2925 	unsigned long total = 0, split = 0;
2926 
2927 	pr_debug("Split all THPs\n");
2928 	for_each_zone(zone) {
2929 		if (!managed_zone(zone))
2930 			continue;
2931 		max_zone_pfn = zone_end_pfn(zone);
2932 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2933 			int nr_pages;
2934 
2935 			page = pfn_to_online_page(pfn);
2936 			if (!page || PageTail(page))
2937 				continue;
2938 			folio = page_folio(page);
2939 			if (!folio_try_get(folio))
2940 				continue;
2941 
2942 			if (unlikely(page_folio(page) != folio))
2943 				goto next;
2944 
2945 			if (zone != folio_zone(folio))
2946 				goto next;
2947 
2948 			if (!folio_test_large(folio)
2949 				|| folio_test_hugetlb(folio)
2950 				|| !folio_test_lru(folio))
2951 				goto next;
2952 
2953 			total++;
2954 			folio_lock(folio);
2955 			nr_pages = folio_nr_pages(folio);
2956 			if (!split_folio(folio))
2957 				split++;
2958 			pfn += nr_pages - 1;
2959 			folio_unlock(folio);
2960 next:
2961 			folio_put(folio);
2962 			cond_resched();
2963 		}
2964 	}
2965 
2966 	pr_debug("%lu of %lu THP split\n", split, total);
2967 }
2968 
2969 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2970 {
2971 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2972 		    is_vm_hugetlb_page(vma);
2973 }
2974 
2975 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2976 				unsigned long vaddr_end)
2977 {
2978 	int ret = 0;
2979 	struct task_struct *task;
2980 	struct mm_struct *mm;
2981 	unsigned long total = 0, split = 0;
2982 	unsigned long addr;
2983 
2984 	vaddr_start &= PAGE_MASK;
2985 	vaddr_end &= PAGE_MASK;
2986 
2987 	/* Find the task_struct from pid */
2988 	rcu_read_lock();
2989 	task = find_task_by_vpid(pid);
2990 	if (!task) {
2991 		rcu_read_unlock();
2992 		ret = -ESRCH;
2993 		goto out;
2994 	}
2995 	get_task_struct(task);
2996 	rcu_read_unlock();
2997 
2998 	/* Find the mm_struct */
2999 	mm = get_task_mm(task);
3000 	put_task_struct(task);
3001 
3002 	if (!mm) {
3003 		ret = -EINVAL;
3004 		goto out;
3005 	}
3006 
3007 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3008 		 pid, vaddr_start, vaddr_end);
3009 
3010 	mmap_read_lock(mm);
3011 	/*
3012 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3013 	 * table filled with PTE-mapped THPs, each of which is distinct.
3014 	 */
3015 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3016 		struct vm_area_struct *vma = vma_lookup(mm, addr);
3017 		struct page *page;
3018 		struct folio *folio;
3019 
3020 		if (!vma)
3021 			break;
3022 
3023 		/* skip special VMA and hugetlb VMA */
3024 		if (vma_not_suitable_for_thp_split(vma)) {
3025 			addr = vma->vm_end;
3026 			continue;
3027 		}
3028 
3029 		/* FOLL_DUMP to ignore special (like zero) pages */
3030 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3031 
3032 		if (IS_ERR_OR_NULL(page))
3033 			continue;
3034 
3035 		folio = page_folio(page);
3036 		if (!is_transparent_hugepage(folio))
3037 			goto next;
3038 
3039 		total++;
3040 		if (!can_split_folio(folio, NULL))
3041 			goto next;
3042 
3043 		if (!folio_trylock(folio))
3044 			goto next;
3045 
3046 		if (!split_folio(folio))
3047 			split++;
3048 
3049 		folio_unlock(folio);
3050 next:
3051 		folio_put(folio);
3052 		cond_resched();
3053 	}
3054 	mmap_read_unlock(mm);
3055 	mmput(mm);
3056 
3057 	pr_debug("%lu of %lu THP split\n", split, total);
3058 
3059 out:
3060 	return ret;
3061 }
3062 
3063 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3064 				pgoff_t off_end)
3065 {
3066 	struct filename *file;
3067 	struct file *candidate;
3068 	struct address_space *mapping;
3069 	int ret = -EINVAL;
3070 	pgoff_t index;
3071 	int nr_pages = 1;
3072 	unsigned long total = 0, split = 0;
3073 
3074 	file = getname_kernel(file_path);
3075 	if (IS_ERR(file))
3076 		return ret;
3077 
3078 	candidate = file_open_name(file, O_RDONLY, 0);
3079 	if (IS_ERR(candidate))
3080 		goto out;
3081 
3082 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3083 		 file_path, off_start, off_end);
3084 
3085 	mapping = candidate->f_mapping;
3086 
3087 	for (index = off_start; index < off_end; index += nr_pages) {
3088 		struct folio *folio = filemap_get_folio(mapping, index);
3089 
3090 		nr_pages = 1;
3091 		if (IS_ERR(folio))
3092 			continue;
3093 
3094 		if (!folio_test_large(folio))
3095 			goto next;
3096 
3097 		total++;
3098 		nr_pages = folio_nr_pages(folio);
3099 
3100 		if (!folio_trylock(folio))
3101 			goto next;
3102 
3103 		if (!split_folio(folio))
3104 			split++;
3105 
3106 		folio_unlock(folio);
3107 next:
3108 		folio_put(folio);
3109 		cond_resched();
3110 	}
3111 
3112 	filp_close(candidate, NULL);
3113 	ret = 0;
3114 
3115 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3116 out:
3117 	putname(file);
3118 	return ret;
3119 }
3120 
3121 #define MAX_INPUT_BUF_SZ 255
3122 
3123 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3124 				size_t count, loff_t *ppops)
3125 {
3126 	static DEFINE_MUTEX(split_debug_mutex);
3127 	ssize_t ret;
3128 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3129 	char input_buf[MAX_INPUT_BUF_SZ];
3130 	int pid;
3131 	unsigned long vaddr_start, vaddr_end;
3132 
3133 	ret = mutex_lock_interruptible(&split_debug_mutex);
3134 	if (ret)
3135 		return ret;
3136 
3137 	ret = -EFAULT;
3138 
3139 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3140 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3141 		goto out;
3142 
3143 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3144 
3145 	if (input_buf[0] == '/') {
3146 		char *tok;
3147 		char *buf = input_buf;
3148 		char file_path[MAX_INPUT_BUF_SZ];
3149 		pgoff_t off_start = 0, off_end = 0;
3150 		size_t input_len = strlen(input_buf);
3151 
3152 		tok = strsep(&buf, ",");
3153 		if (tok) {
3154 			strcpy(file_path, tok);
3155 		} else {
3156 			ret = -EINVAL;
3157 			goto out;
3158 		}
3159 
3160 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3161 		if (ret != 2) {
3162 			ret = -EINVAL;
3163 			goto out;
3164 		}
3165 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3166 		if (!ret)
3167 			ret = input_len;
3168 
3169 		goto out;
3170 	}
3171 
3172 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3173 	if (ret == 1 && pid == 1) {
3174 		split_huge_pages_all();
3175 		ret = strlen(input_buf);
3176 		goto out;
3177 	} else if (ret != 3) {
3178 		ret = -EINVAL;
3179 		goto out;
3180 	}
3181 
3182 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3183 	if (!ret)
3184 		ret = strlen(input_buf);
3185 out:
3186 	mutex_unlock(&split_debug_mutex);
3187 	return ret;
3188 
3189 }
3190 
3191 static const struct file_operations split_huge_pages_fops = {
3192 	.owner	 = THIS_MODULE,
3193 	.write	 = split_huge_pages_write,
3194 	.llseek  = no_llseek,
3195 };
3196 
3197 static int __init split_huge_pages_debugfs(void)
3198 {
3199 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3200 			    &split_huge_pages_fops);
3201 	return 0;
3202 }
3203 late_initcall(split_huge_pages_debugfs);
3204 #endif
3205 
3206 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3207 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3208 		struct page *page)
3209 {
3210 	struct vm_area_struct *vma = pvmw->vma;
3211 	struct mm_struct *mm = vma->vm_mm;
3212 	unsigned long address = pvmw->address;
3213 	bool anon_exclusive;
3214 	pmd_t pmdval;
3215 	swp_entry_t entry;
3216 	pmd_t pmdswp;
3217 
3218 	if (!(pvmw->pmd && !pvmw->pte))
3219 		return 0;
3220 
3221 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3222 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3223 
3224 	/* See page_try_share_anon_rmap(): invalidate PMD first. */
3225 	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3226 	if (anon_exclusive && page_try_share_anon_rmap(page)) {
3227 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3228 		return -EBUSY;
3229 	}
3230 
3231 	if (pmd_dirty(pmdval))
3232 		set_page_dirty(page);
3233 	if (pmd_write(pmdval))
3234 		entry = make_writable_migration_entry(page_to_pfn(page));
3235 	else if (anon_exclusive)
3236 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3237 	else
3238 		entry = make_readable_migration_entry(page_to_pfn(page));
3239 	if (pmd_young(pmdval))
3240 		entry = make_migration_entry_young(entry);
3241 	if (pmd_dirty(pmdval))
3242 		entry = make_migration_entry_dirty(entry);
3243 	pmdswp = swp_entry_to_pmd(entry);
3244 	if (pmd_soft_dirty(pmdval))
3245 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3246 	if (pmd_uffd_wp(pmdval))
3247 		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3248 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3249 	page_remove_rmap(page, vma, true);
3250 	put_page(page);
3251 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3252 
3253 	return 0;
3254 }
3255 
3256 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3257 {
3258 	struct vm_area_struct *vma = pvmw->vma;
3259 	struct mm_struct *mm = vma->vm_mm;
3260 	unsigned long address = pvmw->address;
3261 	unsigned long haddr = address & HPAGE_PMD_MASK;
3262 	pmd_t pmde;
3263 	swp_entry_t entry;
3264 
3265 	if (!(pvmw->pmd && !pvmw->pte))
3266 		return;
3267 
3268 	entry = pmd_to_swp_entry(*pvmw->pmd);
3269 	get_page(new);
3270 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3271 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3272 		pmde = pmd_mksoft_dirty(pmde);
3273 	if (is_writable_migration_entry(entry))
3274 		pmde = pmd_mkwrite(pmde, vma);
3275 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3276 		pmde = pmd_mkuffd_wp(pmde);
3277 	if (!is_migration_entry_young(entry))
3278 		pmde = pmd_mkold(pmde);
3279 	/* NOTE: this may contain setting soft-dirty on some archs */
3280 	if (PageDirty(new) && is_migration_entry_dirty(entry))
3281 		pmde = pmd_mkdirty(pmde);
3282 
3283 	if (PageAnon(new)) {
3284 		rmap_t rmap_flags = RMAP_COMPOUND;
3285 
3286 		if (!is_readable_migration_entry(entry))
3287 			rmap_flags |= RMAP_EXCLUSIVE;
3288 
3289 		page_add_anon_rmap(new, vma, haddr, rmap_flags);
3290 	} else {
3291 		page_add_file_rmap(new, vma, true);
3292 	}
3293 	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3294 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3295 
3296 	/* No need to invalidate - it was non-present before */
3297 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3298 	trace_remove_migration_pmd(address, pmd_val(pmde));
3299 }
3300 #endif
3301