xref: /openbmc/linux/mm/huge_memory.c (revision 160b8e75)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 static struct page *get_huge_zero_page(void)
66 {
67 	struct page *zero_page;
68 retry:
69 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70 		return READ_ONCE(huge_zero_page);
71 
72 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73 			HPAGE_PMD_ORDER);
74 	if (!zero_page) {
75 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76 		return NULL;
77 	}
78 	count_vm_event(THP_ZERO_PAGE_ALLOC);
79 	preempt_disable();
80 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81 		preempt_enable();
82 		__free_pages(zero_page, compound_order(zero_page));
83 		goto retry;
84 	}
85 
86 	/* We take additional reference here. It will be put back by shrinker */
87 	atomic_set(&huge_zero_refcount, 2);
88 	preempt_enable();
89 	return READ_ONCE(huge_zero_page);
90 }
91 
92 static void put_huge_zero_page(void)
93 {
94 	/*
95 	 * Counter should never go to zero here. Only shrinker can put
96 	 * last reference.
97 	 */
98 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
99 }
100 
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102 {
103 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 		return READ_ONCE(huge_zero_page);
105 
106 	if (!get_huge_zero_page())
107 		return NULL;
108 
109 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 		put_huge_zero_page();
111 
112 	return READ_ONCE(huge_zero_page);
113 }
114 
115 void mm_put_huge_zero_page(struct mm_struct *mm)
116 {
117 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 		put_huge_zero_page();
119 }
120 
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 					struct shrink_control *sc)
123 {
124 	/* we can free zero page only if last reference remains */
125 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126 }
127 
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 				       struct shrink_control *sc)
130 {
131 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 		struct page *zero_page = xchg(&huge_zero_page, NULL);
133 		BUG_ON(zero_page == NULL);
134 		__free_pages(zero_page, compound_order(zero_page));
135 		return HPAGE_PMD_NR;
136 	}
137 
138 	return 0;
139 }
140 
141 static struct shrinker huge_zero_page_shrinker = {
142 	.count_objects = shrink_huge_zero_page_count,
143 	.scan_objects = shrink_huge_zero_page_scan,
144 	.seeks = DEFAULT_SEEKS,
145 };
146 
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149 			    struct kobj_attribute *attr, char *buf)
150 {
151 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 		return sprintf(buf, "[always] madvise never\n");
153 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 		return sprintf(buf, "always [madvise] never\n");
155 	else
156 		return sprintf(buf, "always madvise [never]\n");
157 }
158 
159 static ssize_t enabled_store(struct kobject *kobj,
160 			     struct kobj_attribute *attr,
161 			     const char *buf, size_t count)
162 {
163 	ssize_t ret = count;
164 
165 	if (!memcmp("always", buf,
166 		    min(sizeof("always")-1, count))) {
167 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 	} else if (!memcmp("madvise", buf,
170 			   min(sizeof("madvise")-1, count))) {
171 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 	} else if (!memcmp("never", buf,
174 			   min(sizeof("never")-1, count))) {
175 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 	} else
178 		ret = -EINVAL;
179 
180 	if (ret > 0) {
181 		int err = start_stop_khugepaged();
182 		if (err)
183 			ret = err;
184 	}
185 	return ret;
186 }
187 static struct kobj_attribute enabled_attr =
188 	__ATTR(enabled, 0644, enabled_show, enabled_store);
189 
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 				struct kobj_attribute *attr, char *buf,
192 				enum transparent_hugepage_flag flag)
193 {
194 	return sprintf(buf, "%d\n",
195 		       !!test_bit(flag, &transparent_hugepage_flags));
196 }
197 
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 				 struct kobj_attribute *attr,
200 				 const char *buf, size_t count,
201 				 enum transparent_hugepage_flag flag)
202 {
203 	unsigned long value;
204 	int ret;
205 
206 	ret = kstrtoul(buf, 10, &value);
207 	if (ret < 0)
208 		return ret;
209 	if (value > 1)
210 		return -EINVAL;
211 
212 	if (value)
213 		set_bit(flag, &transparent_hugepage_flags);
214 	else
215 		clear_bit(flag, &transparent_hugepage_flags);
216 
217 	return count;
218 }
219 
220 static ssize_t defrag_show(struct kobject *kobj,
221 			   struct kobj_attribute *attr, char *buf)
222 {
223 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
232 }
233 
234 static ssize_t defrag_store(struct kobject *kobj,
235 			    struct kobj_attribute *attr,
236 			    const char *buf, size_t count)
237 {
238 	if (!memcmp("always", buf,
239 		    min(sizeof("always")-1, count))) {
240 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 	} else if (!memcmp("defer+madvise", buf,
245 		    min(sizeof("defer+madvise")-1, count))) {
246 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 	} else if (!memcmp("defer", buf,
251 		    min(sizeof("defer")-1, count))) {
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 	} else if (!memcmp("madvise", buf,
257 			   min(sizeof("madvise")-1, count))) {
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 	} else if (!memcmp("never", buf,
263 			   min(sizeof("never")-1, count))) {
264 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 	} else
269 		return -EINVAL;
270 
271 	return count;
272 }
273 static struct kobj_attribute defrag_attr =
274 	__ATTR(defrag, 0644, defrag_show, defrag_store);
275 
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277 		struct kobj_attribute *attr, char *buf)
278 {
279 	return single_hugepage_flag_show(kobj, attr, buf,
280 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281 }
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283 		struct kobj_attribute *attr, const char *buf, size_t count)
284 {
285 	return single_hugepage_flag_store(kobj, attr, buf, count,
286 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287 }
288 static struct kobj_attribute use_zero_page_attr =
289 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
290 
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 		struct kobj_attribute *attr, char *buf)
293 {
294 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295 }
296 static struct kobj_attribute hpage_pmd_size_attr =
297 	__ATTR_RO(hpage_pmd_size);
298 
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301 				struct kobj_attribute *attr, char *buf)
302 {
303 	return single_hugepage_flag_show(kobj, attr, buf,
304 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305 }
306 static ssize_t debug_cow_store(struct kobject *kobj,
307 			       struct kobj_attribute *attr,
308 			       const char *buf, size_t count)
309 {
310 	return single_hugepage_flag_store(kobj, attr, buf, count,
311 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312 }
313 static struct kobj_attribute debug_cow_attr =
314 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
316 
317 static struct attribute *hugepage_attr[] = {
318 	&enabled_attr.attr,
319 	&defrag_attr.attr,
320 	&use_zero_page_attr.attr,
321 	&hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 	&shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326 	&debug_cow_attr.attr,
327 #endif
328 	NULL,
329 };
330 
331 static const struct attribute_group hugepage_attr_group = {
332 	.attrs = hugepage_attr,
333 };
334 
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 {
337 	int err;
338 
339 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 	if (unlikely(!*hugepage_kobj)) {
341 		pr_err("failed to create transparent hugepage kobject\n");
342 		return -ENOMEM;
343 	}
344 
345 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 	if (err) {
347 		pr_err("failed to register transparent hugepage group\n");
348 		goto delete_obj;
349 	}
350 
351 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 	if (err) {
353 		pr_err("failed to register transparent hugepage group\n");
354 		goto remove_hp_group;
355 	}
356 
357 	return 0;
358 
359 remove_hp_group:
360 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 	kobject_put(*hugepage_kobj);
363 	return err;
364 }
365 
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 	kobject_put(hugepage_kobj);
371 }
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374 {
375 	return 0;
376 }
377 
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 }
381 #endif /* CONFIG_SYSFS */
382 
383 static int __init hugepage_init(void)
384 {
385 	int err;
386 	struct kobject *hugepage_kobj;
387 
388 	if (!has_transparent_hugepage()) {
389 		transparent_hugepage_flags = 0;
390 		return -EINVAL;
391 	}
392 
393 	/*
394 	 * hugepages can't be allocated by the buddy allocator
395 	 */
396 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 	/*
398 	 * we use page->mapping and page->index in second tail page
399 	 * as list_head: assuming THP order >= 2
400 	 */
401 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402 
403 	err = hugepage_init_sysfs(&hugepage_kobj);
404 	if (err)
405 		goto err_sysfs;
406 
407 	err = khugepaged_init();
408 	if (err)
409 		goto err_slab;
410 
411 	err = register_shrinker(&huge_zero_page_shrinker);
412 	if (err)
413 		goto err_hzp_shrinker;
414 	err = register_shrinker(&deferred_split_shrinker);
415 	if (err)
416 		goto err_split_shrinker;
417 
418 	/*
419 	 * By default disable transparent hugepages on smaller systems,
420 	 * where the extra memory used could hurt more than TLB overhead
421 	 * is likely to save.  The admin can still enable it through /sys.
422 	 */
423 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424 		transparent_hugepage_flags = 0;
425 		return 0;
426 	}
427 
428 	err = start_stop_khugepaged();
429 	if (err)
430 		goto err_khugepaged;
431 
432 	return 0;
433 err_khugepaged:
434 	unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436 	unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438 	khugepaged_destroy();
439 err_slab:
440 	hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442 	return err;
443 }
444 subsys_initcall(hugepage_init);
445 
446 static int __init setup_transparent_hugepage(char *str)
447 {
448 	int ret = 0;
449 	if (!str)
450 		goto out;
451 	if (!strcmp(str, "always")) {
452 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 			&transparent_hugepage_flags);
454 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 			  &transparent_hugepage_flags);
456 		ret = 1;
457 	} else if (!strcmp(str, "madvise")) {
458 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 			  &transparent_hugepage_flags);
460 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 			&transparent_hugepage_flags);
462 		ret = 1;
463 	} else if (!strcmp(str, "never")) {
464 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 			  &transparent_hugepage_flags);
466 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 			  &transparent_hugepage_flags);
468 		ret = 1;
469 	}
470 out:
471 	if (!ret)
472 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 	return ret;
474 }
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
476 
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478 {
479 	if (likely(vma->vm_flags & VM_WRITE))
480 		pmd = pmd_mkwrite(pmd);
481 	return pmd;
482 }
483 
484 static inline struct list_head *page_deferred_list(struct page *page)
485 {
486 	/*
487 	 * ->lru in the tail pages is occupied by compound_head.
488 	 * Let's use ->mapping + ->index in the second tail page as list_head.
489 	 */
490 	return (struct list_head *)&page[2].mapping;
491 }
492 
493 void prep_transhuge_page(struct page *page)
494 {
495 	/*
496 	 * we use page->mapping and page->indexlru in second tail page
497 	 * as list_head: assuming THP order >= 2
498 	 */
499 
500 	INIT_LIST_HEAD(page_deferred_list(page));
501 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
502 }
503 
504 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
505 		loff_t off, unsigned long flags, unsigned long size)
506 {
507 	unsigned long addr;
508 	loff_t off_end = off + len;
509 	loff_t off_align = round_up(off, size);
510 	unsigned long len_pad;
511 
512 	if (off_end <= off_align || (off_end - off_align) < size)
513 		return 0;
514 
515 	len_pad = len + size;
516 	if (len_pad < len || (off + len_pad) < off)
517 		return 0;
518 
519 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
520 					      off >> PAGE_SHIFT, flags);
521 	if (IS_ERR_VALUE(addr))
522 		return 0;
523 
524 	addr += (off - addr) & (size - 1);
525 	return addr;
526 }
527 
528 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
529 		unsigned long len, unsigned long pgoff, unsigned long flags)
530 {
531 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
532 
533 	if (addr)
534 		goto out;
535 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
536 		goto out;
537 
538 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
539 	if (addr)
540 		return addr;
541 
542  out:
543 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
544 }
545 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
546 
547 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
548 		gfp_t gfp)
549 {
550 	struct vm_area_struct *vma = vmf->vma;
551 	struct mem_cgroup *memcg;
552 	pgtable_t pgtable;
553 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
554 	int ret = 0;
555 
556 	VM_BUG_ON_PAGE(!PageCompound(page), page);
557 
558 	if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
559 		put_page(page);
560 		count_vm_event(THP_FAULT_FALLBACK);
561 		return VM_FAULT_FALLBACK;
562 	}
563 
564 	pgtable = pte_alloc_one(vma->vm_mm, haddr);
565 	if (unlikely(!pgtable)) {
566 		ret = VM_FAULT_OOM;
567 		goto release;
568 	}
569 
570 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
571 	/*
572 	 * The memory barrier inside __SetPageUptodate makes sure that
573 	 * clear_huge_page writes become visible before the set_pmd_at()
574 	 * write.
575 	 */
576 	__SetPageUptodate(page);
577 
578 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
579 	if (unlikely(!pmd_none(*vmf->pmd))) {
580 		goto unlock_release;
581 	} else {
582 		pmd_t entry;
583 
584 		ret = check_stable_address_space(vma->vm_mm);
585 		if (ret)
586 			goto unlock_release;
587 
588 		/* Deliver the page fault to userland */
589 		if (userfaultfd_missing(vma)) {
590 			int ret;
591 
592 			spin_unlock(vmf->ptl);
593 			mem_cgroup_cancel_charge(page, memcg, true);
594 			put_page(page);
595 			pte_free(vma->vm_mm, pgtable);
596 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
597 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
598 			return ret;
599 		}
600 
601 		entry = mk_huge_pmd(page, vma->vm_page_prot);
602 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
603 		page_add_new_anon_rmap(page, vma, haddr, true);
604 		mem_cgroup_commit_charge(page, memcg, false, true);
605 		lru_cache_add_active_or_unevictable(page, vma);
606 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
607 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
608 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
609 		mm_inc_nr_ptes(vma->vm_mm);
610 		spin_unlock(vmf->ptl);
611 		count_vm_event(THP_FAULT_ALLOC);
612 	}
613 
614 	return 0;
615 unlock_release:
616 	spin_unlock(vmf->ptl);
617 release:
618 	if (pgtable)
619 		pte_free(vma->vm_mm, pgtable);
620 	mem_cgroup_cancel_charge(page, memcg, true);
621 	put_page(page);
622 	return ret;
623 
624 }
625 
626 /*
627  * always: directly stall for all thp allocations
628  * defer: wake kswapd and fail if not immediately available
629  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
630  *		  fail if not immediately available
631  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
632  *	    available
633  * never: never stall for any thp allocation
634  */
635 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
636 {
637 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
638 
639 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
640 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
641 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
642 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
643 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
644 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
645 							     __GFP_KSWAPD_RECLAIM);
646 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
647 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
648 							     0);
649 	return GFP_TRANSHUGE_LIGHT;
650 }
651 
652 /* Caller must hold page table lock. */
653 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
654 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
655 		struct page *zero_page)
656 {
657 	pmd_t entry;
658 	if (!pmd_none(*pmd))
659 		return false;
660 	entry = mk_pmd(zero_page, vma->vm_page_prot);
661 	entry = pmd_mkhuge(entry);
662 	if (pgtable)
663 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
664 	set_pmd_at(mm, haddr, pmd, entry);
665 	mm_inc_nr_ptes(mm);
666 	return true;
667 }
668 
669 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
670 {
671 	struct vm_area_struct *vma = vmf->vma;
672 	gfp_t gfp;
673 	struct page *page;
674 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
675 
676 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
677 		return VM_FAULT_FALLBACK;
678 	if (unlikely(anon_vma_prepare(vma)))
679 		return VM_FAULT_OOM;
680 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
681 		return VM_FAULT_OOM;
682 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
683 			!mm_forbids_zeropage(vma->vm_mm) &&
684 			transparent_hugepage_use_zero_page()) {
685 		pgtable_t pgtable;
686 		struct page *zero_page;
687 		bool set;
688 		int ret;
689 		pgtable = pte_alloc_one(vma->vm_mm, haddr);
690 		if (unlikely(!pgtable))
691 			return VM_FAULT_OOM;
692 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
693 		if (unlikely(!zero_page)) {
694 			pte_free(vma->vm_mm, pgtable);
695 			count_vm_event(THP_FAULT_FALLBACK);
696 			return VM_FAULT_FALLBACK;
697 		}
698 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
699 		ret = 0;
700 		set = false;
701 		if (pmd_none(*vmf->pmd)) {
702 			ret = check_stable_address_space(vma->vm_mm);
703 			if (ret) {
704 				spin_unlock(vmf->ptl);
705 			} else if (userfaultfd_missing(vma)) {
706 				spin_unlock(vmf->ptl);
707 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
708 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
709 			} else {
710 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
711 						   haddr, vmf->pmd, zero_page);
712 				spin_unlock(vmf->ptl);
713 				set = true;
714 			}
715 		} else
716 			spin_unlock(vmf->ptl);
717 		if (!set)
718 			pte_free(vma->vm_mm, pgtable);
719 		return ret;
720 	}
721 	gfp = alloc_hugepage_direct_gfpmask(vma);
722 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
723 	if (unlikely(!page)) {
724 		count_vm_event(THP_FAULT_FALLBACK);
725 		return VM_FAULT_FALLBACK;
726 	}
727 	prep_transhuge_page(page);
728 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
729 }
730 
731 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
732 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
733 		pgtable_t pgtable)
734 {
735 	struct mm_struct *mm = vma->vm_mm;
736 	pmd_t entry;
737 	spinlock_t *ptl;
738 
739 	ptl = pmd_lock(mm, pmd);
740 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
741 	if (pfn_t_devmap(pfn))
742 		entry = pmd_mkdevmap(entry);
743 	if (write) {
744 		entry = pmd_mkyoung(pmd_mkdirty(entry));
745 		entry = maybe_pmd_mkwrite(entry, vma);
746 	}
747 
748 	if (pgtable) {
749 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
750 		mm_inc_nr_ptes(mm);
751 	}
752 
753 	set_pmd_at(mm, addr, pmd, entry);
754 	update_mmu_cache_pmd(vma, addr, pmd);
755 	spin_unlock(ptl);
756 }
757 
758 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
759 			pmd_t *pmd, pfn_t pfn, bool write)
760 {
761 	pgprot_t pgprot = vma->vm_page_prot;
762 	pgtable_t pgtable = NULL;
763 	/*
764 	 * If we had pmd_special, we could avoid all these restrictions,
765 	 * but we need to be consistent with PTEs and architectures that
766 	 * can't support a 'special' bit.
767 	 */
768 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
769 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
770 						(VM_PFNMAP|VM_MIXEDMAP));
771 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
772 	BUG_ON(!pfn_t_devmap(pfn));
773 
774 	if (addr < vma->vm_start || addr >= vma->vm_end)
775 		return VM_FAULT_SIGBUS;
776 
777 	if (arch_needs_pgtable_deposit()) {
778 		pgtable = pte_alloc_one(vma->vm_mm, addr);
779 		if (!pgtable)
780 			return VM_FAULT_OOM;
781 	}
782 
783 	track_pfn_insert(vma, &pgprot, pfn);
784 
785 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
786 	return VM_FAULT_NOPAGE;
787 }
788 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
789 
790 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
791 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
792 {
793 	if (likely(vma->vm_flags & VM_WRITE))
794 		pud = pud_mkwrite(pud);
795 	return pud;
796 }
797 
798 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
799 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
800 {
801 	struct mm_struct *mm = vma->vm_mm;
802 	pud_t entry;
803 	spinlock_t *ptl;
804 
805 	ptl = pud_lock(mm, pud);
806 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
807 	if (pfn_t_devmap(pfn))
808 		entry = pud_mkdevmap(entry);
809 	if (write) {
810 		entry = pud_mkyoung(pud_mkdirty(entry));
811 		entry = maybe_pud_mkwrite(entry, vma);
812 	}
813 	set_pud_at(mm, addr, pud, entry);
814 	update_mmu_cache_pud(vma, addr, pud);
815 	spin_unlock(ptl);
816 }
817 
818 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
819 			pud_t *pud, pfn_t pfn, bool write)
820 {
821 	pgprot_t pgprot = vma->vm_page_prot;
822 	/*
823 	 * If we had pud_special, we could avoid all these restrictions,
824 	 * but we need to be consistent with PTEs and architectures that
825 	 * can't support a 'special' bit.
826 	 */
827 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
828 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
829 						(VM_PFNMAP|VM_MIXEDMAP));
830 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
831 	BUG_ON(!pfn_t_devmap(pfn));
832 
833 	if (addr < vma->vm_start || addr >= vma->vm_end)
834 		return VM_FAULT_SIGBUS;
835 
836 	track_pfn_insert(vma, &pgprot, pfn);
837 
838 	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
839 	return VM_FAULT_NOPAGE;
840 }
841 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
842 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
843 
844 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
845 		pmd_t *pmd, int flags)
846 {
847 	pmd_t _pmd;
848 
849 	_pmd = pmd_mkyoung(*pmd);
850 	if (flags & FOLL_WRITE)
851 		_pmd = pmd_mkdirty(_pmd);
852 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
853 				pmd, _pmd, flags & FOLL_WRITE))
854 		update_mmu_cache_pmd(vma, addr, pmd);
855 }
856 
857 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
858 		pmd_t *pmd, int flags)
859 {
860 	unsigned long pfn = pmd_pfn(*pmd);
861 	struct mm_struct *mm = vma->vm_mm;
862 	struct dev_pagemap *pgmap;
863 	struct page *page;
864 
865 	assert_spin_locked(pmd_lockptr(mm, pmd));
866 
867 	/*
868 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
869 	 * not be in this function with `flags & FOLL_COW` set.
870 	 */
871 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
872 
873 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
874 		return NULL;
875 
876 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
877 		/* pass */;
878 	else
879 		return NULL;
880 
881 	if (flags & FOLL_TOUCH)
882 		touch_pmd(vma, addr, pmd, flags);
883 
884 	/*
885 	 * device mapped pages can only be returned if the
886 	 * caller will manage the page reference count.
887 	 */
888 	if (!(flags & FOLL_GET))
889 		return ERR_PTR(-EEXIST);
890 
891 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
892 	pgmap = get_dev_pagemap(pfn, NULL);
893 	if (!pgmap)
894 		return ERR_PTR(-EFAULT);
895 	page = pfn_to_page(pfn);
896 	get_page(page);
897 	put_dev_pagemap(pgmap);
898 
899 	return page;
900 }
901 
902 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
903 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
904 		  struct vm_area_struct *vma)
905 {
906 	spinlock_t *dst_ptl, *src_ptl;
907 	struct page *src_page;
908 	pmd_t pmd;
909 	pgtable_t pgtable = NULL;
910 	int ret = -ENOMEM;
911 
912 	/* Skip if can be re-fill on fault */
913 	if (!vma_is_anonymous(vma))
914 		return 0;
915 
916 	pgtable = pte_alloc_one(dst_mm, addr);
917 	if (unlikely(!pgtable))
918 		goto out;
919 
920 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
921 	src_ptl = pmd_lockptr(src_mm, src_pmd);
922 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
923 
924 	ret = -EAGAIN;
925 	pmd = *src_pmd;
926 
927 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
928 	if (unlikely(is_swap_pmd(pmd))) {
929 		swp_entry_t entry = pmd_to_swp_entry(pmd);
930 
931 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
932 		if (is_write_migration_entry(entry)) {
933 			make_migration_entry_read(&entry);
934 			pmd = swp_entry_to_pmd(entry);
935 			if (pmd_swp_soft_dirty(*src_pmd))
936 				pmd = pmd_swp_mksoft_dirty(pmd);
937 			set_pmd_at(src_mm, addr, src_pmd, pmd);
938 		}
939 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
940 		mm_inc_nr_ptes(dst_mm);
941 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
942 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
943 		ret = 0;
944 		goto out_unlock;
945 	}
946 #endif
947 
948 	if (unlikely(!pmd_trans_huge(pmd))) {
949 		pte_free(dst_mm, pgtable);
950 		goto out_unlock;
951 	}
952 	/*
953 	 * When page table lock is held, the huge zero pmd should not be
954 	 * under splitting since we don't split the page itself, only pmd to
955 	 * a page table.
956 	 */
957 	if (is_huge_zero_pmd(pmd)) {
958 		struct page *zero_page;
959 		/*
960 		 * get_huge_zero_page() will never allocate a new page here,
961 		 * since we already have a zero page to copy. It just takes a
962 		 * reference.
963 		 */
964 		zero_page = mm_get_huge_zero_page(dst_mm);
965 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
966 				zero_page);
967 		ret = 0;
968 		goto out_unlock;
969 	}
970 
971 	src_page = pmd_page(pmd);
972 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
973 	get_page(src_page);
974 	page_dup_rmap(src_page, true);
975 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
976 	mm_inc_nr_ptes(dst_mm);
977 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
978 
979 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
980 	pmd = pmd_mkold(pmd_wrprotect(pmd));
981 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
982 
983 	ret = 0;
984 out_unlock:
985 	spin_unlock(src_ptl);
986 	spin_unlock(dst_ptl);
987 out:
988 	return ret;
989 }
990 
991 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
992 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
993 		pud_t *pud, int flags)
994 {
995 	pud_t _pud;
996 
997 	_pud = pud_mkyoung(*pud);
998 	if (flags & FOLL_WRITE)
999 		_pud = pud_mkdirty(_pud);
1000 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1001 				pud, _pud, flags & FOLL_WRITE))
1002 		update_mmu_cache_pud(vma, addr, pud);
1003 }
1004 
1005 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1006 		pud_t *pud, int flags)
1007 {
1008 	unsigned long pfn = pud_pfn(*pud);
1009 	struct mm_struct *mm = vma->vm_mm;
1010 	struct dev_pagemap *pgmap;
1011 	struct page *page;
1012 
1013 	assert_spin_locked(pud_lockptr(mm, pud));
1014 
1015 	if (flags & FOLL_WRITE && !pud_write(*pud))
1016 		return NULL;
1017 
1018 	if (pud_present(*pud) && pud_devmap(*pud))
1019 		/* pass */;
1020 	else
1021 		return NULL;
1022 
1023 	if (flags & FOLL_TOUCH)
1024 		touch_pud(vma, addr, pud, flags);
1025 
1026 	/*
1027 	 * device mapped pages can only be returned if the
1028 	 * caller will manage the page reference count.
1029 	 */
1030 	if (!(flags & FOLL_GET))
1031 		return ERR_PTR(-EEXIST);
1032 
1033 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1034 	pgmap = get_dev_pagemap(pfn, NULL);
1035 	if (!pgmap)
1036 		return ERR_PTR(-EFAULT);
1037 	page = pfn_to_page(pfn);
1038 	get_page(page);
1039 	put_dev_pagemap(pgmap);
1040 
1041 	return page;
1042 }
1043 
1044 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1046 		  struct vm_area_struct *vma)
1047 {
1048 	spinlock_t *dst_ptl, *src_ptl;
1049 	pud_t pud;
1050 	int ret;
1051 
1052 	dst_ptl = pud_lock(dst_mm, dst_pud);
1053 	src_ptl = pud_lockptr(src_mm, src_pud);
1054 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1055 
1056 	ret = -EAGAIN;
1057 	pud = *src_pud;
1058 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1059 		goto out_unlock;
1060 
1061 	/*
1062 	 * When page table lock is held, the huge zero pud should not be
1063 	 * under splitting since we don't split the page itself, only pud to
1064 	 * a page table.
1065 	 */
1066 	if (is_huge_zero_pud(pud)) {
1067 		/* No huge zero pud yet */
1068 	}
1069 
1070 	pudp_set_wrprotect(src_mm, addr, src_pud);
1071 	pud = pud_mkold(pud_wrprotect(pud));
1072 	set_pud_at(dst_mm, addr, dst_pud, pud);
1073 
1074 	ret = 0;
1075 out_unlock:
1076 	spin_unlock(src_ptl);
1077 	spin_unlock(dst_ptl);
1078 	return ret;
1079 }
1080 
1081 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1082 {
1083 	pud_t entry;
1084 	unsigned long haddr;
1085 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1086 
1087 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1088 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1089 		goto unlock;
1090 
1091 	entry = pud_mkyoung(orig_pud);
1092 	if (write)
1093 		entry = pud_mkdirty(entry);
1094 	haddr = vmf->address & HPAGE_PUD_MASK;
1095 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1096 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1097 
1098 unlock:
1099 	spin_unlock(vmf->ptl);
1100 }
1101 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1102 
1103 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1104 {
1105 	pmd_t entry;
1106 	unsigned long haddr;
1107 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1108 
1109 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1110 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1111 		goto unlock;
1112 
1113 	entry = pmd_mkyoung(orig_pmd);
1114 	if (write)
1115 		entry = pmd_mkdirty(entry);
1116 	haddr = vmf->address & HPAGE_PMD_MASK;
1117 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1118 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1119 
1120 unlock:
1121 	spin_unlock(vmf->ptl);
1122 }
1123 
1124 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1125 		struct page *page)
1126 {
1127 	struct vm_area_struct *vma = vmf->vma;
1128 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1129 	struct mem_cgroup *memcg;
1130 	pgtable_t pgtable;
1131 	pmd_t _pmd;
1132 	int ret = 0, i;
1133 	struct page **pages;
1134 	unsigned long mmun_start;	/* For mmu_notifiers */
1135 	unsigned long mmun_end;		/* For mmu_notifiers */
1136 
1137 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1138 			GFP_KERNEL);
1139 	if (unlikely(!pages)) {
1140 		ret |= VM_FAULT_OOM;
1141 		goto out;
1142 	}
1143 
1144 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1145 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1146 					       vmf->address, page_to_nid(page));
1147 		if (unlikely(!pages[i] ||
1148 			     mem_cgroup_try_charge(pages[i], vma->vm_mm,
1149 				     GFP_KERNEL, &memcg, false))) {
1150 			if (pages[i])
1151 				put_page(pages[i]);
1152 			while (--i >= 0) {
1153 				memcg = (void *)page_private(pages[i]);
1154 				set_page_private(pages[i], 0);
1155 				mem_cgroup_cancel_charge(pages[i], memcg,
1156 						false);
1157 				put_page(pages[i]);
1158 			}
1159 			kfree(pages);
1160 			ret |= VM_FAULT_OOM;
1161 			goto out;
1162 		}
1163 		set_page_private(pages[i], (unsigned long)memcg);
1164 	}
1165 
1166 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1167 		copy_user_highpage(pages[i], page + i,
1168 				   haddr + PAGE_SIZE * i, vma);
1169 		__SetPageUptodate(pages[i]);
1170 		cond_resched();
1171 	}
1172 
1173 	mmun_start = haddr;
1174 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1175 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1176 
1177 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1178 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1179 		goto out_free_pages;
1180 	VM_BUG_ON_PAGE(!PageHead(page), page);
1181 
1182 	/*
1183 	 * Leave pmd empty until pte is filled note we must notify here as
1184 	 * concurrent CPU thread might write to new page before the call to
1185 	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1186 	 * device seeing memory write in different order than CPU.
1187 	 *
1188 	 * See Documentation/vm/mmu_notifier.txt
1189 	 */
1190 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1191 
1192 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1193 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1194 
1195 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1196 		pte_t entry;
1197 		entry = mk_pte(pages[i], vma->vm_page_prot);
1198 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1199 		memcg = (void *)page_private(pages[i]);
1200 		set_page_private(pages[i], 0);
1201 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1202 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1203 		lru_cache_add_active_or_unevictable(pages[i], vma);
1204 		vmf->pte = pte_offset_map(&_pmd, haddr);
1205 		VM_BUG_ON(!pte_none(*vmf->pte));
1206 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1207 		pte_unmap(vmf->pte);
1208 	}
1209 	kfree(pages);
1210 
1211 	smp_wmb(); /* make pte visible before pmd */
1212 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1213 	page_remove_rmap(page, true);
1214 	spin_unlock(vmf->ptl);
1215 
1216 	/*
1217 	 * No need to double call mmu_notifier->invalidate_range() callback as
1218 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1219 	 */
1220 	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1221 						mmun_end);
1222 
1223 	ret |= VM_FAULT_WRITE;
1224 	put_page(page);
1225 
1226 out:
1227 	return ret;
1228 
1229 out_free_pages:
1230 	spin_unlock(vmf->ptl);
1231 	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1232 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1233 		memcg = (void *)page_private(pages[i]);
1234 		set_page_private(pages[i], 0);
1235 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1236 		put_page(pages[i]);
1237 	}
1238 	kfree(pages);
1239 	goto out;
1240 }
1241 
1242 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1243 {
1244 	struct vm_area_struct *vma = vmf->vma;
1245 	struct page *page = NULL, *new_page;
1246 	struct mem_cgroup *memcg;
1247 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1248 	unsigned long mmun_start;	/* For mmu_notifiers */
1249 	unsigned long mmun_end;		/* For mmu_notifiers */
1250 	gfp_t huge_gfp;			/* for allocation and charge */
1251 	int ret = 0;
1252 
1253 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1254 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1255 	if (is_huge_zero_pmd(orig_pmd))
1256 		goto alloc;
1257 	spin_lock(vmf->ptl);
1258 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1259 		goto out_unlock;
1260 
1261 	page = pmd_page(orig_pmd);
1262 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1263 	/*
1264 	 * We can only reuse the page if nobody else maps the huge page or it's
1265 	 * part.
1266 	 */
1267 	if (!trylock_page(page)) {
1268 		get_page(page);
1269 		spin_unlock(vmf->ptl);
1270 		lock_page(page);
1271 		spin_lock(vmf->ptl);
1272 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1273 			unlock_page(page);
1274 			put_page(page);
1275 			goto out_unlock;
1276 		}
1277 		put_page(page);
1278 	}
1279 	if (reuse_swap_page(page, NULL)) {
1280 		pmd_t entry;
1281 		entry = pmd_mkyoung(orig_pmd);
1282 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1283 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1284 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1285 		ret |= VM_FAULT_WRITE;
1286 		unlock_page(page);
1287 		goto out_unlock;
1288 	}
1289 	unlock_page(page);
1290 	get_page(page);
1291 	spin_unlock(vmf->ptl);
1292 alloc:
1293 	if (transparent_hugepage_enabled(vma) &&
1294 	    !transparent_hugepage_debug_cow()) {
1295 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1296 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1297 	} else
1298 		new_page = NULL;
1299 
1300 	if (likely(new_page)) {
1301 		prep_transhuge_page(new_page);
1302 	} else {
1303 		if (!page) {
1304 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1305 			ret |= VM_FAULT_FALLBACK;
1306 		} else {
1307 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1308 			if (ret & VM_FAULT_OOM) {
1309 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1310 				ret |= VM_FAULT_FALLBACK;
1311 			}
1312 			put_page(page);
1313 		}
1314 		count_vm_event(THP_FAULT_FALLBACK);
1315 		goto out;
1316 	}
1317 
1318 	if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1319 					huge_gfp, &memcg, true))) {
1320 		put_page(new_page);
1321 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1322 		if (page)
1323 			put_page(page);
1324 		ret |= VM_FAULT_FALLBACK;
1325 		count_vm_event(THP_FAULT_FALLBACK);
1326 		goto out;
1327 	}
1328 
1329 	count_vm_event(THP_FAULT_ALLOC);
1330 
1331 	if (!page)
1332 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1333 	else
1334 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1335 	__SetPageUptodate(new_page);
1336 
1337 	mmun_start = haddr;
1338 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1339 	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1340 
1341 	spin_lock(vmf->ptl);
1342 	if (page)
1343 		put_page(page);
1344 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1345 		spin_unlock(vmf->ptl);
1346 		mem_cgroup_cancel_charge(new_page, memcg, true);
1347 		put_page(new_page);
1348 		goto out_mn;
1349 	} else {
1350 		pmd_t entry;
1351 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1352 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1353 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1354 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1355 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1356 		lru_cache_add_active_or_unevictable(new_page, vma);
1357 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1358 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1359 		if (!page) {
1360 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1361 		} else {
1362 			VM_BUG_ON_PAGE(!PageHead(page), page);
1363 			page_remove_rmap(page, true);
1364 			put_page(page);
1365 		}
1366 		ret |= VM_FAULT_WRITE;
1367 	}
1368 	spin_unlock(vmf->ptl);
1369 out_mn:
1370 	/*
1371 	 * No need to double call mmu_notifier->invalidate_range() callback as
1372 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1373 	 */
1374 	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1375 					       mmun_end);
1376 out:
1377 	return ret;
1378 out_unlock:
1379 	spin_unlock(vmf->ptl);
1380 	return ret;
1381 }
1382 
1383 /*
1384  * FOLL_FORCE can write to even unwritable pmd's, but only
1385  * after we've gone through a COW cycle and they are dirty.
1386  */
1387 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1388 {
1389 	return pmd_write(pmd) ||
1390 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1391 }
1392 
1393 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1394 				   unsigned long addr,
1395 				   pmd_t *pmd,
1396 				   unsigned int flags)
1397 {
1398 	struct mm_struct *mm = vma->vm_mm;
1399 	struct page *page = NULL;
1400 
1401 	assert_spin_locked(pmd_lockptr(mm, pmd));
1402 
1403 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1404 		goto out;
1405 
1406 	/* Avoid dumping huge zero page */
1407 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1408 		return ERR_PTR(-EFAULT);
1409 
1410 	/* Full NUMA hinting faults to serialise migration in fault paths */
1411 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1412 		goto out;
1413 
1414 	page = pmd_page(*pmd);
1415 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1416 	if (flags & FOLL_TOUCH)
1417 		touch_pmd(vma, addr, pmd, flags);
1418 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1419 		/*
1420 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1421 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1422 		 *
1423 		 * For anon THP:
1424 		 *
1425 		 * In most cases the pmd is the only mapping of the page as we
1426 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1427 		 * writable private mappings in populate_vma_page_range().
1428 		 *
1429 		 * The only scenario when we have the page shared here is if we
1430 		 * mlocking read-only mapping shared over fork(). We skip
1431 		 * mlocking such pages.
1432 		 *
1433 		 * For file THP:
1434 		 *
1435 		 * We can expect PageDoubleMap() to be stable under page lock:
1436 		 * for file pages we set it in page_add_file_rmap(), which
1437 		 * requires page to be locked.
1438 		 */
1439 
1440 		if (PageAnon(page) && compound_mapcount(page) != 1)
1441 			goto skip_mlock;
1442 		if (PageDoubleMap(page) || !page->mapping)
1443 			goto skip_mlock;
1444 		if (!trylock_page(page))
1445 			goto skip_mlock;
1446 		lru_add_drain();
1447 		if (page->mapping && !PageDoubleMap(page))
1448 			mlock_vma_page(page);
1449 		unlock_page(page);
1450 	}
1451 skip_mlock:
1452 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1453 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1454 	if (flags & FOLL_GET)
1455 		get_page(page);
1456 
1457 out:
1458 	return page;
1459 }
1460 
1461 /* NUMA hinting page fault entry point for trans huge pmds */
1462 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1463 {
1464 	struct vm_area_struct *vma = vmf->vma;
1465 	struct anon_vma *anon_vma = NULL;
1466 	struct page *page;
1467 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1468 	int page_nid = -1, this_nid = numa_node_id();
1469 	int target_nid, last_cpupid = -1;
1470 	bool page_locked;
1471 	bool migrated = false;
1472 	bool was_writable;
1473 	int flags = 0;
1474 
1475 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1476 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1477 		goto out_unlock;
1478 
1479 	/*
1480 	 * If there are potential migrations, wait for completion and retry
1481 	 * without disrupting NUMA hinting information. Do not relock and
1482 	 * check_same as the page may no longer be mapped.
1483 	 */
1484 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1485 		page = pmd_page(*vmf->pmd);
1486 		if (!get_page_unless_zero(page))
1487 			goto out_unlock;
1488 		spin_unlock(vmf->ptl);
1489 		wait_on_page_locked(page);
1490 		put_page(page);
1491 		goto out;
1492 	}
1493 
1494 	page = pmd_page(pmd);
1495 	BUG_ON(is_huge_zero_page(page));
1496 	page_nid = page_to_nid(page);
1497 	last_cpupid = page_cpupid_last(page);
1498 	count_vm_numa_event(NUMA_HINT_FAULTS);
1499 	if (page_nid == this_nid) {
1500 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1501 		flags |= TNF_FAULT_LOCAL;
1502 	}
1503 
1504 	/* See similar comment in do_numa_page for explanation */
1505 	if (!pmd_savedwrite(pmd))
1506 		flags |= TNF_NO_GROUP;
1507 
1508 	/*
1509 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1510 	 * page_table_lock if at all possible
1511 	 */
1512 	page_locked = trylock_page(page);
1513 	target_nid = mpol_misplaced(page, vma, haddr);
1514 	if (target_nid == -1) {
1515 		/* If the page was locked, there are no parallel migrations */
1516 		if (page_locked)
1517 			goto clear_pmdnuma;
1518 	}
1519 
1520 	/* Migration could have started since the pmd_trans_migrating check */
1521 	if (!page_locked) {
1522 		page_nid = -1;
1523 		if (!get_page_unless_zero(page))
1524 			goto out_unlock;
1525 		spin_unlock(vmf->ptl);
1526 		wait_on_page_locked(page);
1527 		put_page(page);
1528 		goto out;
1529 	}
1530 
1531 	/*
1532 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1533 	 * to serialises splits
1534 	 */
1535 	get_page(page);
1536 	spin_unlock(vmf->ptl);
1537 	anon_vma = page_lock_anon_vma_read(page);
1538 
1539 	/* Confirm the PMD did not change while page_table_lock was released */
1540 	spin_lock(vmf->ptl);
1541 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1542 		unlock_page(page);
1543 		put_page(page);
1544 		page_nid = -1;
1545 		goto out_unlock;
1546 	}
1547 
1548 	/* Bail if we fail to protect against THP splits for any reason */
1549 	if (unlikely(!anon_vma)) {
1550 		put_page(page);
1551 		page_nid = -1;
1552 		goto clear_pmdnuma;
1553 	}
1554 
1555 	/*
1556 	 * Since we took the NUMA fault, we must have observed the !accessible
1557 	 * bit. Make sure all other CPUs agree with that, to avoid them
1558 	 * modifying the page we're about to migrate.
1559 	 *
1560 	 * Must be done under PTL such that we'll observe the relevant
1561 	 * inc_tlb_flush_pending().
1562 	 *
1563 	 * We are not sure a pending tlb flush here is for a huge page
1564 	 * mapping or not. Hence use the tlb range variant
1565 	 */
1566 	if (mm_tlb_flush_pending(vma->vm_mm))
1567 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1568 
1569 	/*
1570 	 * Migrate the THP to the requested node, returns with page unlocked
1571 	 * and access rights restored.
1572 	 */
1573 	spin_unlock(vmf->ptl);
1574 
1575 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1576 				vmf->pmd, pmd, vmf->address, page, target_nid);
1577 	if (migrated) {
1578 		flags |= TNF_MIGRATED;
1579 		page_nid = target_nid;
1580 	} else
1581 		flags |= TNF_MIGRATE_FAIL;
1582 
1583 	goto out;
1584 clear_pmdnuma:
1585 	BUG_ON(!PageLocked(page));
1586 	was_writable = pmd_savedwrite(pmd);
1587 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1588 	pmd = pmd_mkyoung(pmd);
1589 	if (was_writable)
1590 		pmd = pmd_mkwrite(pmd);
1591 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1592 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1593 	unlock_page(page);
1594 out_unlock:
1595 	spin_unlock(vmf->ptl);
1596 
1597 out:
1598 	if (anon_vma)
1599 		page_unlock_anon_vma_read(anon_vma);
1600 
1601 	if (page_nid != -1)
1602 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1603 				flags);
1604 
1605 	return 0;
1606 }
1607 
1608 /*
1609  * Return true if we do MADV_FREE successfully on entire pmd page.
1610  * Otherwise, return false.
1611  */
1612 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1613 		pmd_t *pmd, unsigned long addr, unsigned long next)
1614 {
1615 	spinlock_t *ptl;
1616 	pmd_t orig_pmd;
1617 	struct page *page;
1618 	struct mm_struct *mm = tlb->mm;
1619 	bool ret = false;
1620 
1621 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1622 
1623 	ptl = pmd_trans_huge_lock(pmd, vma);
1624 	if (!ptl)
1625 		goto out_unlocked;
1626 
1627 	orig_pmd = *pmd;
1628 	if (is_huge_zero_pmd(orig_pmd))
1629 		goto out;
1630 
1631 	if (unlikely(!pmd_present(orig_pmd))) {
1632 		VM_BUG_ON(thp_migration_supported() &&
1633 				  !is_pmd_migration_entry(orig_pmd));
1634 		goto out;
1635 	}
1636 
1637 	page = pmd_page(orig_pmd);
1638 	/*
1639 	 * If other processes are mapping this page, we couldn't discard
1640 	 * the page unless they all do MADV_FREE so let's skip the page.
1641 	 */
1642 	if (page_mapcount(page) != 1)
1643 		goto out;
1644 
1645 	if (!trylock_page(page))
1646 		goto out;
1647 
1648 	/*
1649 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1650 	 * will deactivate only them.
1651 	 */
1652 	if (next - addr != HPAGE_PMD_SIZE) {
1653 		get_page(page);
1654 		spin_unlock(ptl);
1655 		split_huge_page(page);
1656 		unlock_page(page);
1657 		put_page(page);
1658 		goto out_unlocked;
1659 	}
1660 
1661 	if (PageDirty(page))
1662 		ClearPageDirty(page);
1663 	unlock_page(page);
1664 
1665 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1666 		pmdp_invalidate(vma, addr, pmd);
1667 		orig_pmd = pmd_mkold(orig_pmd);
1668 		orig_pmd = pmd_mkclean(orig_pmd);
1669 
1670 		set_pmd_at(mm, addr, pmd, orig_pmd);
1671 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1672 	}
1673 
1674 	mark_page_lazyfree(page);
1675 	ret = true;
1676 out:
1677 	spin_unlock(ptl);
1678 out_unlocked:
1679 	return ret;
1680 }
1681 
1682 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1683 {
1684 	pgtable_t pgtable;
1685 
1686 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1687 	pte_free(mm, pgtable);
1688 	mm_dec_nr_ptes(mm);
1689 }
1690 
1691 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1692 		 pmd_t *pmd, unsigned long addr)
1693 {
1694 	pmd_t orig_pmd;
1695 	spinlock_t *ptl;
1696 
1697 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1698 
1699 	ptl = __pmd_trans_huge_lock(pmd, vma);
1700 	if (!ptl)
1701 		return 0;
1702 	/*
1703 	 * For architectures like ppc64 we look at deposited pgtable
1704 	 * when calling pmdp_huge_get_and_clear. So do the
1705 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1706 	 * operations.
1707 	 */
1708 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1709 			tlb->fullmm);
1710 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1711 	if (vma_is_dax(vma)) {
1712 		if (arch_needs_pgtable_deposit())
1713 			zap_deposited_table(tlb->mm, pmd);
1714 		spin_unlock(ptl);
1715 		if (is_huge_zero_pmd(orig_pmd))
1716 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1717 	} else if (is_huge_zero_pmd(orig_pmd)) {
1718 		zap_deposited_table(tlb->mm, pmd);
1719 		spin_unlock(ptl);
1720 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1721 	} else {
1722 		struct page *page = NULL;
1723 		int flush_needed = 1;
1724 
1725 		if (pmd_present(orig_pmd)) {
1726 			page = pmd_page(orig_pmd);
1727 			page_remove_rmap(page, true);
1728 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1729 			VM_BUG_ON_PAGE(!PageHead(page), page);
1730 		} else if (thp_migration_supported()) {
1731 			swp_entry_t entry;
1732 
1733 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1734 			entry = pmd_to_swp_entry(orig_pmd);
1735 			page = pfn_to_page(swp_offset(entry));
1736 			flush_needed = 0;
1737 		} else
1738 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1739 
1740 		if (PageAnon(page)) {
1741 			zap_deposited_table(tlb->mm, pmd);
1742 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1743 		} else {
1744 			if (arch_needs_pgtable_deposit())
1745 				zap_deposited_table(tlb->mm, pmd);
1746 			add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1747 		}
1748 
1749 		spin_unlock(ptl);
1750 		if (flush_needed)
1751 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1752 	}
1753 	return 1;
1754 }
1755 
1756 #ifndef pmd_move_must_withdraw
1757 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1758 					 spinlock_t *old_pmd_ptl,
1759 					 struct vm_area_struct *vma)
1760 {
1761 	/*
1762 	 * With split pmd lock we also need to move preallocated
1763 	 * PTE page table if new_pmd is on different PMD page table.
1764 	 *
1765 	 * We also don't deposit and withdraw tables for file pages.
1766 	 */
1767 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1768 }
1769 #endif
1770 
1771 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1772 {
1773 #ifdef CONFIG_MEM_SOFT_DIRTY
1774 	if (unlikely(is_pmd_migration_entry(pmd)))
1775 		pmd = pmd_swp_mksoft_dirty(pmd);
1776 	else if (pmd_present(pmd))
1777 		pmd = pmd_mksoft_dirty(pmd);
1778 #endif
1779 	return pmd;
1780 }
1781 
1782 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1783 		  unsigned long new_addr, unsigned long old_end,
1784 		  pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1785 {
1786 	spinlock_t *old_ptl, *new_ptl;
1787 	pmd_t pmd;
1788 	struct mm_struct *mm = vma->vm_mm;
1789 	bool force_flush = false;
1790 
1791 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1792 	    (new_addr & ~HPAGE_PMD_MASK) ||
1793 	    old_end - old_addr < HPAGE_PMD_SIZE)
1794 		return false;
1795 
1796 	/*
1797 	 * The destination pmd shouldn't be established, free_pgtables()
1798 	 * should have release it.
1799 	 */
1800 	if (WARN_ON(!pmd_none(*new_pmd))) {
1801 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1802 		return false;
1803 	}
1804 
1805 	/*
1806 	 * We don't have to worry about the ordering of src and dst
1807 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1808 	 */
1809 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1810 	if (old_ptl) {
1811 		new_ptl = pmd_lockptr(mm, new_pmd);
1812 		if (new_ptl != old_ptl)
1813 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1814 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1815 		if (pmd_present(pmd) && pmd_dirty(pmd))
1816 			force_flush = true;
1817 		VM_BUG_ON(!pmd_none(*new_pmd));
1818 
1819 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1820 			pgtable_t pgtable;
1821 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1822 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1823 		}
1824 		pmd = move_soft_dirty_pmd(pmd);
1825 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1826 		if (new_ptl != old_ptl)
1827 			spin_unlock(new_ptl);
1828 		if (force_flush)
1829 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1830 		else
1831 			*need_flush = true;
1832 		spin_unlock(old_ptl);
1833 		return true;
1834 	}
1835 	return false;
1836 }
1837 
1838 /*
1839  * Returns
1840  *  - 0 if PMD could not be locked
1841  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1842  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1843  */
1844 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1845 		unsigned long addr, pgprot_t newprot, int prot_numa)
1846 {
1847 	struct mm_struct *mm = vma->vm_mm;
1848 	spinlock_t *ptl;
1849 	pmd_t entry;
1850 	bool preserve_write;
1851 	int ret;
1852 
1853 	ptl = __pmd_trans_huge_lock(pmd, vma);
1854 	if (!ptl)
1855 		return 0;
1856 
1857 	preserve_write = prot_numa && pmd_write(*pmd);
1858 	ret = 1;
1859 
1860 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1861 	if (is_swap_pmd(*pmd)) {
1862 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1863 
1864 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1865 		if (is_write_migration_entry(entry)) {
1866 			pmd_t newpmd;
1867 			/*
1868 			 * A protection check is difficult so
1869 			 * just be safe and disable write
1870 			 */
1871 			make_migration_entry_read(&entry);
1872 			newpmd = swp_entry_to_pmd(entry);
1873 			if (pmd_swp_soft_dirty(*pmd))
1874 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1875 			set_pmd_at(mm, addr, pmd, newpmd);
1876 		}
1877 		goto unlock;
1878 	}
1879 #endif
1880 
1881 	/*
1882 	 * Avoid trapping faults against the zero page. The read-only
1883 	 * data is likely to be read-cached on the local CPU and
1884 	 * local/remote hits to the zero page are not interesting.
1885 	 */
1886 	if (prot_numa && is_huge_zero_pmd(*pmd))
1887 		goto unlock;
1888 
1889 	if (prot_numa && pmd_protnone(*pmd))
1890 		goto unlock;
1891 
1892 	/*
1893 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1894 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1895 	 * which is also under down_read(mmap_sem):
1896 	 *
1897 	 *	CPU0:				CPU1:
1898 	 *				change_huge_pmd(prot_numa=1)
1899 	 *				 pmdp_huge_get_and_clear_notify()
1900 	 * madvise_dontneed()
1901 	 *  zap_pmd_range()
1902 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1903 	 *   // skip the pmd
1904 	 *				 set_pmd_at();
1905 	 *				 // pmd is re-established
1906 	 *
1907 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1908 	 * which may break userspace.
1909 	 *
1910 	 * pmdp_invalidate() is required to make sure we don't miss
1911 	 * dirty/young flags set by hardware.
1912 	 */
1913 	entry = pmdp_invalidate(vma, addr, pmd);
1914 
1915 	entry = pmd_modify(entry, newprot);
1916 	if (preserve_write)
1917 		entry = pmd_mk_savedwrite(entry);
1918 	ret = HPAGE_PMD_NR;
1919 	set_pmd_at(mm, addr, pmd, entry);
1920 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1921 unlock:
1922 	spin_unlock(ptl);
1923 	return ret;
1924 }
1925 
1926 /*
1927  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1928  *
1929  * Note that if it returns page table lock pointer, this routine returns without
1930  * unlocking page table lock. So callers must unlock it.
1931  */
1932 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1933 {
1934 	spinlock_t *ptl;
1935 	ptl = pmd_lock(vma->vm_mm, pmd);
1936 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1937 			pmd_devmap(*pmd)))
1938 		return ptl;
1939 	spin_unlock(ptl);
1940 	return NULL;
1941 }
1942 
1943 /*
1944  * Returns true if a given pud maps a thp, false otherwise.
1945  *
1946  * Note that if it returns true, this routine returns without unlocking page
1947  * table lock. So callers must unlock it.
1948  */
1949 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1950 {
1951 	spinlock_t *ptl;
1952 
1953 	ptl = pud_lock(vma->vm_mm, pud);
1954 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1955 		return ptl;
1956 	spin_unlock(ptl);
1957 	return NULL;
1958 }
1959 
1960 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1961 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1962 		 pud_t *pud, unsigned long addr)
1963 {
1964 	pud_t orig_pud;
1965 	spinlock_t *ptl;
1966 
1967 	ptl = __pud_trans_huge_lock(pud, vma);
1968 	if (!ptl)
1969 		return 0;
1970 	/*
1971 	 * For architectures like ppc64 we look at deposited pgtable
1972 	 * when calling pudp_huge_get_and_clear. So do the
1973 	 * pgtable_trans_huge_withdraw after finishing pudp related
1974 	 * operations.
1975 	 */
1976 	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1977 			tlb->fullmm);
1978 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1979 	if (vma_is_dax(vma)) {
1980 		spin_unlock(ptl);
1981 		/* No zero page support yet */
1982 	} else {
1983 		/* No support for anonymous PUD pages yet */
1984 		BUG();
1985 	}
1986 	return 1;
1987 }
1988 
1989 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1990 		unsigned long haddr)
1991 {
1992 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1993 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1994 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1995 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1996 
1997 	count_vm_event(THP_SPLIT_PUD);
1998 
1999 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2000 }
2001 
2002 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2003 		unsigned long address)
2004 {
2005 	spinlock_t *ptl;
2006 	struct mm_struct *mm = vma->vm_mm;
2007 	unsigned long haddr = address & HPAGE_PUD_MASK;
2008 
2009 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2010 	ptl = pud_lock(mm, pud);
2011 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2012 		goto out;
2013 	__split_huge_pud_locked(vma, pud, haddr);
2014 
2015 out:
2016 	spin_unlock(ptl);
2017 	/*
2018 	 * No need to double call mmu_notifier->invalidate_range() callback as
2019 	 * the above pudp_huge_clear_flush_notify() did already call it.
2020 	 */
2021 	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2022 					       HPAGE_PUD_SIZE);
2023 }
2024 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2025 
2026 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2027 		unsigned long haddr, pmd_t *pmd)
2028 {
2029 	struct mm_struct *mm = vma->vm_mm;
2030 	pgtable_t pgtable;
2031 	pmd_t _pmd;
2032 	int i;
2033 
2034 	/*
2035 	 * Leave pmd empty until pte is filled note that it is fine to delay
2036 	 * notification until mmu_notifier_invalidate_range_end() as we are
2037 	 * replacing a zero pmd write protected page with a zero pte write
2038 	 * protected page.
2039 	 *
2040 	 * See Documentation/vm/mmu_notifier.txt
2041 	 */
2042 	pmdp_huge_clear_flush(vma, haddr, pmd);
2043 
2044 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2045 	pmd_populate(mm, &_pmd, pgtable);
2046 
2047 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2048 		pte_t *pte, entry;
2049 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2050 		entry = pte_mkspecial(entry);
2051 		pte = pte_offset_map(&_pmd, haddr);
2052 		VM_BUG_ON(!pte_none(*pte));
2053 		set_pte_at(mm, haddr, pte, entry);
2054 		pte_unmap(pte);
2055 	}
2056 	smp_wmb(); /* make pte visible before pmd */
2057 	pmd_populate(mm, pmd, pgtable);
2058 }
2059 
2060 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2061 		unsigned long haddr, bool freeze)
2062 {
2063 	struct mm_struct *mm = vma->vm_mm;
2064 	struct page *page;
2065 	pgtable_t pgtable;
2066 	pmd_t old_pmd, _pmd;
2067 	bool young, write, soft_dirty, pmd_migration = false;
2068 	unsigned long addr;
2069 	int i;
2070 
2071 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2072 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2073 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2074 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2075 				&& !pmd_devmap(*pmd));
2076 
2077 	count_vm_event(THP_SPLIT_PMD);
2078 
2079 	if (!vma_is_anonymous(vma)) {
2080 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2081 		/*
2082 		 * We are going to unmap this huge page. So
2083 		 * just go ahead and zap it
2084 		 */
2085 		if (arch_needs_pgtable_deposit())
2086 			zap_deposited_table(mm, pmd);
2087 		if (vma_is_dax(vma))
2088 			return;
2089 		page = pmd_page(_pmd);
2090 		if (!PageReferenced(page) && pmd_young(_pmd))
2091 			SetPageReferenced(page);
2092 		page_remove_rmap(page, true);
2093 		put_page(page);
2094 		add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2095 		return;
2096 	} else if (is_huge_zero_pmd(*pmd)) {
2097 		/*
2098 		 * FIXME: Do we want to invalidate secondary mmu by calling
2099 		 * mmu_notifier_invalidate_range() see comments below inside
2100 		 * __split_huge_pmd() ?
2101 		 *
2102 		 * We are going from a zero huge page write protected to zero
2103 		 * small page also write protected so it does not seems useful
2104 		 * to invalidate secondary mmu at this time.
2105 		 */
2106 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2107 	}
2108 
2109 	/*
2110 	 * Up to this point the pmd is present and huge and userland has the
2111 	 * whole access to the hugepage during the split (which happens in
2112 	 * place). If we overwrite the pmd with the not-huge version pointing
2113 	 * to the pte here (which of course we could if all CPUs were bug
2114 	 * free), userland could trigger a small page size TLB miss on the
2115 	 * small sized TLB while the hugepage TLB entry is still established in
2116 	 * the huge TLB. Some CPU doesn't like that.
2117 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2118 	 * 383 on page 93. Intel should be safe but is also warns that it's
2119 	 * only safe if the permission and cache attributes of the two entries
2120 	 * loaded in the two TLB is identical (which should be the case here).
2121 	 * But it is generally safer to never allow small and huge TLB entries
2122 	 * for the same virtual address to be loaded simultaneously. So instead
2123 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2124 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2125 	 * must remain set at all times on the pmd until the split is complete
2126 	 * for this pmd), then we flush the SMP TLB and finally we write the
2127 	 * non-huge version of the pmd entry with pmd_populate.
2128 	 */
2129 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2130 
2131 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2132 	pmd_migration = is_pmd_migration_entry(old_pmd);
2133 	if (pmd_migration) {
2134 		swp_entry_t entry;
2135 
2136 		entry = pmd_to_swp_entry(old_pmd);
2137 		page = pfn_to_page(swp_offset(entry));
2138 	} else
2139 #endif
2140 		page = pmd_page(old_pmd);
2141 	VM_BUG_ON_PAGE(!page_count(page), page);
2142 	page_ref_add(page, HPAGE_PMD_NR - 1);
2143 	if (pmd_dirty(old_pmd))
2144 		SetPageDirty(page);
2145 	write = pmd_write(old_pmd);
2146 	young = pmd_young(old_pmd);
2147 	soft_dirty = pmd_soft_dirty(old_pmd);
2148 
2149 	/*
2150 	 * Withdraw the table only after we mark the pmd entry invalid.
2151 	 * This's critical for some architectures (Power).
2152 	 */
2153 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2154 	pmd_populate(mm, &_pmd, pgtable);
2155 
2156 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2157 		pte_t entry, *pte;
2158 		/*
2159 		 * Note that NUMA hinting access restrictions are not
2160 		 * transferred to avoid any possibility of altering
2161 		 * permissions across VMAs.
2162 		 */
2163 		if (freeze || pmd_migration) {
2164 			swp_entry_t swp_entry;
2165 			swp_entry = make_migration_entry(page + i, write);
2166 			entry = swp_entry_to_pte(swp_entry);
2167 			if (soft_dirty)
2168 				entry = pte_swp_mksoft_dirty(entry);
2169 		} else {
2170 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2171 			entry = maybe_mkwrite(entry, vma);
2172 			if (!write)
2173 				entry = pte_wrprotect(entry);
2174 			if (!young)
2175 				entry = pte_mkold(entry);
2176 			if (soft_dirty)
2177 				entry = pte_mksoft_dirty(entry);
2178 		}
2179 		pte = pte_offset_map(&_pmd, addr);
2180 		BUG_ON(!pte_none(*pte));
2181 		set_pte_at(mm, addr, pte, entry);
2182 		atomic_inc(&page[i]._mapcount);
2183 		pte_unmap(pte);
2184 	}
2185 
2186 	/*
2187 	 * Set PG_double_map before dropping compound_mapcount to avoid
2188 	 * false-negative page_mapped().
2189 	 */
2190 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2191 		for (i = 0; i < HPAGE_PMD_NR; i++)
2192 			atomic_inc(&page[i]._mapcount);
2193 	}
2194 
2195 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2196 		/* Last compound_mapcount is gone. */
2197 		__dec_node_page_state(page, NR_ANON_THPS);
2198 		if (TestClearPageDoubleMap(page)) {
2199 			/* No need in mapcount reference anymore */
2200 			for (i = 0; i < HPAGE_PMD_NR; i++)
2201 				atomic_dec(&page[i]._mapcount);
2202 		}
2203 	}
2204 
2205 	smp_wmb(); /* make pte visible before pmd */
2206 	pmd_populate(mm, pmd, pgtable);
2207 
2208 	if (freeze) {
2209 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2210 			page_remove_rmap(page + i, false);
2211 			put_page(page + i);
2212 		}
2213 	}
2214 }
2215 
2216 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2217 		unsigned long address, bool freeze, struct page *page)
2218 {
2219 	spinlock_t *ptl;
2220 	struct mm_struct *mm = vma->vm_mm;
2221 	unsigned long haddr = address & HPAGE_PMD_MASK;
2222 
2223 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2224 	ptl = pmd_lock(mm, pmd);
2225 
2226 	/*
2227 	 * If caller asks to setup a migration entries, we need a page to check
2228 	 * pmd against. Otherwise we can end up replacing wrong page.
2229 	 */
2230 	VM_BUG_ON(freeze && !page);
2231 	if (page && page != pmd_page(*pmd))
2232 	        goto out;
2233 
2234 	if (pmd_trans_huge(*pmd)) {
2235 		page = pmd_page(*pmd);
2236 		if (PageMlocked(page))
2237 			clear_page_mlock(page);
2238 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2239 		goto out;
2240 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2241 out:
2242 	spin_unlock(ptl);
2243 	/*
2244 	 * No need to double call mmu_notifier->invalidate_range() callback.
2245 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2246 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2247 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2248 	 *    fault will trigger a flush_notify before pointing to a new page
2249 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2250 	 *    page in the meantime)
2251 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2252 	 *     to invalidate secondary tlb entry they are all still valid.
2253 	 *     any further changes to individual pte will notify. So no need
2254 	 *     to call mmu_notifier->invalidate_range()
2255 	 */
2256 	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2257 					       HPAGE_PMD_SIZE);
2258 }
2259 
2260 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2261 		bool freeze, struct page *page)
2262 {
2263 	pgd_t *pgd;
2264 	p4d_t *p4d;
2265 	pud_t *pud;
2266 	pmd_t *pmd;
2267 
2268 	pgd = pgd_offset(vma->vm_mm, address);
2269 	if (!pgd_present(*pgd))
2270 		return;
2271 
2272 	p4d = p4d_offset(pgd, address);
2273 	if (!p4d_present(*p4d))
2274 		return;
2275 
2276 	pud = pud_offset(p4d, address);
2277 	if (!pud_present(*pud))
2278 		return;
2279 
2280 	pmd = pmd_offset(pud, address);
2281 
2282 	__split_huge_pmd(vma, pmd, address, freeze, page);
2283 }
2284 
2285 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2286 			     unsigned long start,
2287 			     unsigned long end,
2288 			     long adjust_next)
2289 {
2290 	/*
2291 	 * If the new start address isn't hpage aligned and it could
2292 	 * previously contain an hugepage: check if we need to split
2293 	 * an huge pmd.
2294 	 */
2295 	if (start & ~HPAGE_PMD_MASK &&
2296 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2297 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2298 		split_huge_pmd_address(vma, start, false, NULL);
2299 
2300 	/*
2301 	 * If the new end address isn't hpage aligned and it could
2302 	 * previously contain an hugepage: check if we need to split
2303 	 * an huge pmd.
2304 	 */
2305 	if (end & ~HPAGE_PMD_MASK &&
2306 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2307 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2308 		split_huge_pmd_address(vma, end, false, NULL);
2309 
2310 	/*
2311 	 * If we're also updating the vma->vm_next->vm_start, if the new
2312 	 * vm_next->vm_start isn't page aligned and it could previously
2313 	 * contain an hugepage: check if we need to split an huge pmd.
2314 	 */
2315 	if (adjust_next > 0) {
2316 		struct vm_area_struct *next = vma->vm_next;
2317 		unsigned long nstart = next->vm_start;
2318 		nstart += adjust_next << PAGE_SHIFT;
2319 		if (nstart & ~HPAGE_PMD_MASK &&
2320 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2321 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2322 			split_huge_pmd_address(next, nstart, false, NULL);
2323 	}
2324 }
2325 
2326 static void freeze_page(struct page *page)
2327 {
2328 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2329 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2330 	bool unmap_success;
2331 
2332 	VM_BUG_ON_PAGE(!PageHead(page), page);
2333 
2334 	if (PageAnon(page))
2335 		ttu_flags |= TTU_SPLIT_FREEZE;
2336 
2337 	unmap_success = try_to_unmap(page, ttu_flags);
2338 	VM_BUG_ON_PAGE(!unmap_success, page);
2339 }
2340 
2341 static void unfreeze_page(struct page *page)
2342 {
2343 	int i;
2344 	if (PageTransHuge(page)) {
2345 		remove_migration_ptes(page, page, true);
2346 	} else {
2347 		for (i = 0; i < HPAGE_PMD_NR; i++)
2348 			remove_migration_ptes(page + i, page + i, true);
2349 	}
2350 }
2351 
2352 static void __split_huge_page_tail(struct page *head, int tail,
2353 		struct lruvec *lruvec, struct list_head *list)
2354 {
2355 	struct page *page_tail = head + tail;
2356 
2357 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2358 	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
2359 
2360 	/*
2361 	 * tail_page->_refcount is zero and not changing from under us. But
2362 	 * get_page_unless_zero() may be running from under us on the
2363 	 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2364 	 * atomic_add(), we would then run atomic_set() concurrently with
2365 	 * get_page_unless_zero(), and atomic_set() is implemented in C not
2366 	 * using locked ops. spin_unlock on x86 sometime uses locked ops
2367 	 * because of PPro errata 66, 92, so unless somebody can guarantee
2368 	 * atomic_set() here would be safe on all archs (and not only on x86),
2369 	 * it's safer to use atomic_inc()/atomic_add().
2370 	 */
2371 	if (PageAnon(head) && !PageSwapCache(head)) {
2372 		page_ref_inc(page_tail);
2373 	} else {
2374 		/* Additional pin to radix tree */
2375 		page_ref_add(page_tail, 2);
2376 	}
2377 
2378 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2379 	page_tail->flags |= (head->flags &
2380 			((1L << PG_referenced) |
2381 			 (1L << PG_swapbacked) |
2382 			 (1L << PG_swapcache) |
2383 			 (1L << PG_mlocked) |
2384 			 (1L << PG_uptodate) |
2385 			 (1L << PG_active) |
2386 			 (1L << PG_locked) |
2387 			 (1L << PG_unevictable) |
2388 			 (1L << PG_dirty)));
2389 
2390 	/*
2391 	 * After clearing PageTail the gup refcount can be released.
2392 	 * Page flags also must be visible before we make the page non-compound.
2393 	 */
2394 	smp_wmb();
2395 
2396 	clear_compound_head(page_tail);
2397 
2398 	if (page_is_young(head))
2399 		set_page_young(page_tail);
2400 	if (page_is_idle(head))
2401 		set_page_idle(page_tail);
2402 
2403 	/* ->mapping in first tail page is compound_mapcount */
2404 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2405 			page_tail);
2406 	page_tail->mapping = head->mapping;
2407 
2408 	page_tail->index = head->index + tail;
2409 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2410 	lru_add_page_tail(head, page_tail, lruvec, list);
2411 }
2412 
2413 static void __split_huge_page(struct page *page, struct list_head *list,
2414 		unsigned long flags)
2415 {
2416 	struct page *head = compound_head(page);
2417 	struct zone *zone = page_zone(head);
2418 	struct lruvec *lruvec;
2419 	pgoff_t end = -1;
2420 	int i;
2421 
2422 	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2423 
2424 	/* complete memcg works before add pages to LRU */
2425 	mem_cgroup_split_huge_fixup(head);
2426 
2427 	if (!PageAnon(page))
2428 		end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2429 
2430 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2431 		__split_huge_page_tail(head, i, lruvec, list);
2432 		/* Some pages can be beyond i_size: drop them from page cache */
2433 		if (head[i].index >= end) {
2434 			__ClearPageDirty(head + i);
2435 			__delete_from_page_cache(head + i, NULL);
2436 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2437 				shmem_uncharge(head->mapping->host, 1);
2438 			put_page(head + i);
2439 		}
2440 	}
2441 
2442 	ClearPageCompound(head);
2443 	/* See comment in __split_huge_page_tail() */
2444 	if (PageAnon(head)) {
2445 		/* Additional pin to radix tree of swap cache */
2446 		if (PageSwapCache(head))
2447 			page_ref_add(head, 2);
2448 		else
2449 			page_ref_inc(head);
2450 	} else {
2451 		/* Additional pin to radix tree */
2452 		page_ref_add(head, 2);
2453 		spin_unlock(&head->mapping->tree_lock);
2454 	}
2455 
2456 	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2457 
2458 	unfreeze_page(head);
2459 
2460 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2461 		struct page *subpage = head + i;
2462 		if (subpage == page)
2463 			continue;
2464 		unlock_page(subpage);
2465 
2466 		/*
2467 		 * Subpages may be freed if there wasn't any mapping
2468 		 * like if add_to_swap() is running on a lru page that
2469 		 * had its mapping zapped. And freeing these pages
2470 		 * requires taking the lru_lock so we do the put_page
2471 		 * of the tail pages after the split is complete.
2472 		 */
2473 		put_page(subpage);
2474 	}
2475 }
2476 
2477 int total_mapcount(struct page *page)
2478 {
2479 	int i, compound, ret;
2480 
2481 	VM_BUG_ON_PAGE(PageTail(page), page);
2482 
2483 	if (likely(!PageCompound(page)))
2484 		return atomic_read(&page->_mapcount) + 1;
2485 
2486 	compound = compound_mapcount(page);
2487 	if (PageHuge(page))
2488 		return compound;
2489 	ret = compound;
2490 	for (i = 0; i < HPAGE_PMD_NR; i++)
2491 		ret += atomic_read(&page[i]._mapcount) + 1;
2492 	/* File pages has compound_mapcount included in _mapcount */
2493 	if (!PageAnon(page))
2494 		return ret - compound * HPAGE_PMD_NR;
2495 	if (PageDoubleMap(page))
2496 		ret -= HPAGE_PMD_NR;
2497 	return ret;
2498 }
2499 
2500 /*
2501  * This calculates accurately how many mappings a transparent hugepage
2502  * has (unlike page_mapcount() which isn't fully accurate). This full
2503  * accuracy is primarily needed to know if copy-on-write faults can
2504  * reuse the page and change the mapping to read-write instead of
2505  * copying them. At the same time this returns the total_mapcount too.
2506  *
2507  * The function returns the highest mapcount any one of the subpages
2508  * has. If the return value is one, even if different processes are
2509  * mapping different subpages of the transparent hugepage, they can
2510  * all reuse it, because each process is reusing a different subpage.
2511  *
2512  * The total_mapcount is instead counting all virtual mappings of the
2513  * subpages. If the total_mapcount is equal to "one", it tells the
2514  * caller all mappings belong to the same "mm" and in turn the
2515  * anon_vma of the transparent hugepage can become the vma->anon_vma
2516  * local one as no other process may be mapping any of the subpages.
2517  *
2518  * It would be more accurate to replace page_mapcount() with
2519  * page_trans_huge_mapcount(), however we only use
2520  * page_trans_huge_mapcount() in the copy-on-write faults where we
2521  * need full accuracy to avoid breaking page pinning, because
2522  * page_trans_huge_mapcount() is slower than page_mapcount().
2523  */
2524 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2525 {
2526 	int i, ret, _total_mapcount, mapcount;
2527 
2528 	/* hugetlbfs shouldn't call it */
2529 	VM_BUG_ON_PAGE(PageHuge(page), page);
2530 
2531 	if (likely(!PageTransCompound(page))) {
2532 		mapcount = atomic_read(&page->_mapcount) + 1;
2533 		if (total_mapcount)
2534 			*total_mapcount = mapcount;
2535 		return mapcount;
2536 	}
2537 
2538 	page = compound_head(page);
2539 
2540 	_total_mapcount = ret = 0;
2541 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2542 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2543 		ret = max(ret, mapcount);
2544 		_total_mapcount += mapcount;
2545 	}
2546 	if (PageDoubleMap(page)) {
2547 		ret -= 1;
2548 		_total_mapcount -= HPAGE_PMD_NR;
2549 	}
2550 	mapcount = compound_mapcount(page);
2551 	ret += mapcount;
2552 	_total_mapcount += mapcount;
2553 	if (total_mapcount)
2554 		*total_mapcount = _total_mapcount;
2555 	return ret;
2556 }
2557 
2558 /* Racy check whether the huge page can be split */
2559 bool can_split_huge_page(struct page *page, int *pextra_pins)
2560 {
2561 	int extra_pins;
2562 
2563 	/* Additional pins from radix tree */
2564 	if (PageAnon(page))
2565 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2566 	else
2567 		extra_pins = HPAGE_PMD_NR;
2568 	if (pextra_pins)
2569 		*pextra_pins = extra_pins;
2570 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2571 }
2572 
2573 /*
2574  * This function splits huge page into normal pages. @page can point to any
2575  * subpage of huge page to split. Split doesn't change the position of @page.
2576  *
2577  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2578  * The huge page must be locked.
2579  *
2580  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2581  *
2582  * Both head page and tail pages will inherit mapping, flags, and so on from
2583  * the hugepage.
2584  *
2585  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2586  * they are not mapped.
2587  *
2588  * Returns 0 if the hugepage is split successfully.
2589  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2590  * us.
2591  */
2592 int split_huge_page_to_list(struct page *page, struct list_head *list)
2593 {
2594 	struct page *head = compound_head(page);
2595 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2596 	struct anon_vma *anon_vma = NULL;
2597 	struct address_space *mapping = NULL;
2598 	int count, mapcount, extra_pins, ret;
2599 	bool mlocked;
2600 	unsigned long flags;
2601 
2602 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2603 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2604 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2605 
2606 	if (PageWriteback(page))
2607 		return -EBUSY;
2608 
2609 	if (PageAnon(head)) {
2610 		/*
2611 		 * The caller does not necessarily hold an mmap_sem that would
2612 		 * prevent the anon_vma disappearing so we first we take a
2613 		 * reference to it and then lock the anon_vma for write. This
2614 		 * is similar to page_lock_anon_vma_read except the write lock
2615 		 * is taken to serialise against parallel split or collapse
2616 		 * operations.
2617 		 */
2618 		anon_vma = page_get_anon_vma(head);
2619 		if (!anon_vma) {
2620 			ret = -EBUSY;
2621 			goto out;
2622 		}
2623 		mapping = NULL;
2624 		anon_vma_lock_write(anon_vma);
2625 	} else {
2626 		mapping = head->mapping;
2627 
2628 		/* Truncated ? */
2629 		if (!mapping) {
2630 			ret = -EBUSY;
2631 			goto out;
2632 		}
2633 
2634 		anon_vma = NULL;
2635 		i_mmap_lock_read(mapping);
2636 	}
2637 
2638 	/*
2639 	 * Racy check if we can split the page, before freeze_page() will
2640 	 * split PMDs
2641 	 */
2642 	if (!can_split_huge_page(head, &extra_pins)) {
2643 		ret = -EBUSY;
2644 		goto out_unlock;
2645 	}
2646 
2647 	mlocked = PageMlocked(page);
2648 	freeze_page(head);
2649 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2650 
2651 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2652 	if (mlocked)
2653 		lru_add_drain();
2654 
2655 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2656 	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2657 
2658 	if (mapping) {
2659 		void **pslot;
2660 
2661 		spin_lock(&mapping->tree_lock);
2662 		pslot = radix_tree_lookup_slot(&mapping->page_tree,
2663 				page_index(head));
2664 		/*
2665 		 * Check if the head page is present in radix tree.
2666 		 * We assume all tail are present too, if head is there.
2667 		 */
2668 		if (radix_tree_deref_slot_protected(pslot,
2669 					&mapping->tree_lock) != head)
2670 			goto fail;
2671 	}
2672 
2673 	/* Prevent deferred_split_scan() touching ->_refcount */
2674 	spin_lock(&pgdata->split_queue_lock);
2675 	count = page_count(head);
2676 	mapcount = total_mapcount(head);
2677 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2678 		if (!list_empty(page_deferred_list(head))) {
2679 			pgdata->split_queue_len--;
2680 			list_del(page_deferred_list(head));
2681 		}
2682 		if (mapping)
2683 			__dec_node_page_state(page, NR_SHMEM_THPS);
2684 		spin_unlock(&pgdata->split_queue_lock);
2685 		__split_huge_page(page, list, flags);
2686 		if (PageSwapCache(head)) {
2687 			swp_entry_t entry = { .val = page_private(head) };
2688 
2689 			ret = split_swap_cluster(entry);
2690 		} else
2691 			ret = 0;
2692 	} else {
2693 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2694 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2695 					mapcount, count);
2696 			if (PageTail(page))
2697 				dump_page(head, NULL);
2698 			dump_page(page, "total_mapcount(head) > 0");
2699 			BUG();
2700 		}
2701 		spin_unlock(&pgdata->split_queue_lock);
2702 fail:		if (mapping)
2703 			spin_unlock(&mapping->tree_lock);
2704 		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2705 		unfreeze_page(head);
2706 		ret = -EBUSY;
2707 	}
2708 
2709 out_unlock:
2710 	if (anon_vma) {
2711 		anon_vma_unlock_write(anon_vma);
2712 		put_anon_vma(anon_vma);
2713 	}
2714 	if (mapping)
2715 		i_mmap_unlock_read(mapping);
2716 out:
2717 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2718 	return ret;
2719 }
2720 
2721 void free_transhuge_page(struct page *page)
2722 {
2723 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2724 	unsigned long flags;
2725 
2726 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2727 	if (!list_empty(page_deferred_list(page))) {
2728 		pgdata->split_queue_len--;
2729 		list_del(page_deferred_list(page));
2730 	}
2731 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2732 	free_compound_page(page);
2733 }
2734 
2735 void deferred_split_huge_page(struct page *page)
2736 {
2737 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2738 	unsigned long flags;
2739 
2740 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2741 
2742 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2743 	if (list_empty(page_deferred_list(page))) {
2744 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2745 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2746 		pgdata->split_queue_len++;
2747 	}
2748 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2749 }
2750 
2751 static unsigned long deferred_split_count(struct shrinker *shrink,
2752 		struct shrink_control *sc)
2753 {
2754 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2755 	return READ_ONCE(pgdata->split_queue_len);
2756 }
2757 
2758 static unsigned long deferred_split_scan(struct shrinker *shrink,
2759 		struct shrink_control *sc)
2760 {
2761 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2762 	unsigned long flags;
2763 	LIST_HEAD(list), *pos, *next;
2764 	struct page *page;
2765 	int split = 0;
2766 
2767 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2768 	/* Take pin on all head pages to avoid freeing them under us */
2769 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2770 		page = list_entry((void *)pos, struct page, mapping);
2771 		page = compound_head(page);
2772 		if (get_page_unless_zero(page)) {
2773 			list_move(page_deferred_list(page), &list);
2774 		} else {
2775 			/* We lost race with put_compound_page() */
2776 			list_del_init(page_deferred_list(page));
2777 			pgdata->split_queue_len--;
2778 		}
2779 		if (!--sc->nr_to_scan)
2780 			break;
2781 	}
2782 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2783 
2784 	list_for_each_safe(pos, next, &list) {
2785 		page = list_entry((void *)pos, struct page, mapping);
2786 		lock_page(page);
2787 		/* split_huge_page() removes page from list on success */
2788 		if (!split_huge_page(page))
2789 			split++;
2790 		unlock_page(page);
2791 		put_page(page);
2792 	}
2793 
2794 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2795 	list_splice_tail(&list, &pgdata->split_queue);
2796 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2797 
2798 	/*
2799 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2800 	 * This can happen if pages were freed under us.
2801 	 */
2802 	if (!split && list_empty(&pgdata->split_queue))
2803 		return SHRINK_STOP;
2804 	return split;
2805 }
2806 
2807 static struct shrinker deferred_split_shrinker = {
2808 	.count_objects = deferred_split_count,
2809 	.scan_objects = deferred_split_scan,
2810 	.seeks = DEFAULT_SEEKS,
2811 	.flags = SHRINKER_NUMA_AWARE,
2812 };
2813 
2814 #ifdef CONFIG_DEBUG_FS
2815 static int split_huge_pages_set(void *data, u64 val)
2816 {
2817 	struct zone *zone;
2818 	struct page *page;
2819 	unsigned long pfn, max_zone_pfn;
2820 	unsigned long total = 0, split = 0;
2821 
2822 	if (val != 1)
2823 		return -EINVAL;
2824 
2825 	for_each_populated_zone(zone) {
2826 		max_zone_pfn = zone_end_pfn(zone);
2827 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2828 			if (!pfn_valid(pfn))
2829 				continue;
2830 
2831 			page = pfn_to_page(pfn);
2832 			if (!get_page_unless_zero(page))
2833 				continue;
2834 
2835 			if (zone != page_zone(page))
2836 				goto next;
2837 
2838 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2839 				goto next;
2840 
2841 			total++;
2842 			lock_page(page);
2843 			if (!split_huge_page(page))
2844 				split++;
2845 			unlock_page(page);
2846 next:
2847 			put_page(page);
2848 		}
2849 	}
2850 
2851 	pr_info("%lu of %lu THP split\n", split, total);
2852 
2853 	return 0;
2854 }
2855 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2856 		"%llu\n");
2857 
2858 static int __init split_huge_pages_debugfs(void)
2859 {
2860 	void *ret;
2861 
2862 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2863 			&split_huge_pages_fops);
2864 	if (!ret)
2865 		pr_warn("Failed to create split_huge_pages in debugfs");
2866 	return 0;
2867 }
2868 late_initcall(split_huge_pages_debugfs);
2869 #endif
2870 
2871 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2872 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2873 		struct page *page)
2874 {
2875 	struct vm_area_struct *vma = pvmw->vma;
2876 	struct mm_struct *mm = vma->vm_mm;
2877 	unsigned long address = pvmw->address;
2878 	pmd_t pmdval;
2879 	swp_entry_t entry;
2880 	pmd_t pmdswp;
2881 
2882 	if (!(pvmw->pmd && !pvmw->pte))
2883 		return;
2884 
2885 	mmu_notifier_invalidate_range_start(mm, address,
2886 			address + HPAGE_PMD_SIZE);
2887 
2888 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2889 	pmdval = *pvmw->pmd;
2890 	pmdp_invalidate(vma, address, pvmw->pmd);
2891 	if (pmd_dirty(pmdval))
2892 		set_page_dirty(page);
2893 	entry = make_migration_entry(page, pmd_write(pmdval));
2894 	pmdswp = swp_entry_to_pmd(entry);
2895 	if (pmd_soft_dirty(pmdval))
2896 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2897 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2898 	page_remove_rmap(page, true);
2899 	put_page(page);
2900 
2901 	mmu_notifier_invalidate_range_end(mm, address,
2902 			address + HPAGE_PMD_SIZE);
2903 }
2904 
2905 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2906 {
2907 	struct vm_area_struct *vma = pvmw->vma;
2908 	struct mm_struct *mm = vma->vm_mm;
2909 	unsigned long address = pvmw->address;
2910 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2911 	pmd_t pmde;
2912 	swp_entry_t entry;
2913 
2914 	if (!(pvmw->pmd && !pvmw->pte))
2915 		return;
2916 
2917 	entry = pmd_to_swp_entry(*pvmw->pmd);
2918 	get_page(new);
2919 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2920 	if (pmd_swp_soft_dirty(*pvmw->pmd))
2921 		pmde = pmd_mksoft_dirty(pmde);
2922 	if (is_write_migration_entry(entry))
2923 		pmde = maybe_pmd_mkwrite(pmde, vma);
2924 
2925 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2926 	page_add_anon_rmap(new, vma, mmun_start, true);
2927 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2928 	if (vma->vm_flags & VM_LOCKED)
2929 		mlock_vma_page(new);
2930 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2931 }
2932 #endif
2933