xref: /openbmc/linux/mm/huge_memory.c (revision 115dd546)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 
41 #include <asm/tlb.h>
42 #include <asm/pgalloc.h>
43 #include "internal.h"
44 #include "swap.h"
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/thp.h>
48 
49 /*
50  * By default, transparent hugepage support is disabled in order to avoid
51  * risking an increased memory footprint for applications that are not
52  * guaranteed to benefit from it. When transparent hugepage support is
53  * enabled, it is for all mappings, and khugepaged scans all mappings.
54  * Defrag is invoked by khugepaged hugepage allocations and by page faults
55  * for all hugepage allocations.
56  */
57 unsigned long transparent_hugepage_flags __read_mostly =
58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
59 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
60 #endif
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
62 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
63 #endif
64 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
65 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
66 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
67 
68 static struct shrinker deferred_split_shrinker;
69 
70 static atomic_t huge_zero_refcount;
71 struct page *huge_zero_page __read_mostly;
72 unsigned long huge_zero_pfn __read_mostly = ~0UL;
73 
74 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
75 			bool smaps, bool in_pf, bool enforce_sysfs)
76 {
77 	if (!vma->vm_mm)		/* vdso */
78 		return false;
79 
80 	/*
81 	 * Explicitly disabled through madvise or prctl, or some
82 	 * architectures may disable THP for some mappings, for
83 	 * example, s390 kvm.
84 	 * */
85 	if ((vm_flags & VM_NOHUGEPAGE) ||
86 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
87 		return false;
88 	/*
89 	 * If the hardware/firmware marked hugepage support disabled.
90 	 */
91 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX))
92 		return false;
93 
94 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
95 	if (vma_is_dax(vma))
96 		return in_pf;
97 
98 	/*
99 	 * Special VMA and hugetlb VMA.
100 	 * Must be checked after dax since some dax mappings may have
101 	 * VM_MIXEDMAP set.
102 	 */
103 	if (vm_flags & VM_NO_KHUGEPAGED)
104 		return false;
105 
106 	/*
107 	 * Check alignment for file vma and size for both file and anon vma.
108 	 *
109 	 * Skip the check for page fault. Huge fault does the check in fault
110 	 * handlers. And this check is not suitable for huge PUD fault.
111 	 */
112 	if (!in_pf &&
113 	    !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
114 		return false;
115 
116 	/*
117 	 * Enabled via shmem mount options or sysfs settings.
118 	 * Must be done before hugepage flags check since shmem has its
119 	 * own flags.
120 	 */
121 	if (!in_pf && shmem_file(vma->vm_file))
122 		return shmem_huge_enabled(vma, !enforce_sysfs);
123 
124 	/* Enforce sysfs THP requirements as necessary */
125 	if (enforce_sysfs &&
126 	    (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
127 					   !hugepage_flags_always())))
128 		return false;
129 
130 	/* Only regular file is valid */
131 	if (!in_pf && file_thp_enabled(vma))
132 		return true;
133 
134 	if (!vma_is_anonymous(vma))
135 		return false;
136 
137 	if (vma_is_temporary_stack(vma))
138 		return false;
139 
140 	/*
141 	 * THPeligible bit of smaps should show 1 for proper VMAs even
142 	 * though anon_vma is not initialized yet.
143 	 *
144 	 * Allow page fault since anon_vma may be not initialized until
145 	 * the first page fault.
146 	 */
147 	if (!vma->anon_vma)
148 		return (smaps || in_pf);
149 
150 	return true;
151 }
152 
153 static bool get_huge_zero_page(void)
154 {
155 	struct page *zero_page;
156 retry:
157 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
158 		return true;
159 
160 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
161 			HPAGE_PMD_ORDER);
162 	if (!zero_page) {
163 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
164 		return false;
165 	}
166 	preempt_disable();
167 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
168 		preempt_enable();
169 		__free_pages(zero_page, compound_order(zero_page));
170 		goto retry;
171 	}
172 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
173 
174 	/* We take additional reference here. It will be put back by shrinker */
175 	atomic_set(&huge_zero_refcount, 2);
176 	preempt_enable();
177 	count_vm_event(THP_ZERO_PAGE_ALLOC);
178 	return true;
179 }
180 
181 static void put_huge_zero_page(void)
182 {
183 	/*
184 	 * Counter should never go to zero here. Only shrinker can put
185 	 * last reference.
186 	 */
187 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
188 }
189 
190 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
191 {
192 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
193 		return READ_ONCE(huge_zero_page);
194 
195 	if (!get_huge_zero_page())
196 		return NULL;
197 
198 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
199 		put_huge_zero_page();
200 
201 	return READ_ONCE(huge_zero_page);
202 }
203 
204 void mm_put_huge_zero_page(struct mm_struct *mm)
205 {
206 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
207 		put_huge_zero_page();
208 }
209 
210 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
211 					struct shrink_control *sc)
212 {
213 	/* we can free zero page only if last reference remains */
214 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
215 }
216 
217 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
218 				       struct shrink_control *sc)
219 {
220 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
221 		struct page *zero_page = xchg(&huge_zero_page, NULL);
222 		BUG_ON(zero_page == NULL);
223 		WRITE_ONCE(huge_zero_pfn, ~0UL);
224 		__free_pages(zero_page, compound_order(zero_page));
225 		return HPAGE_PMD_NR;
226 	}
227 
228 	return 0;
229 }
230 
231 static struct shrinker huge_zero_page_shrinker = {
232 	.count_objects = shrink_huge_zero_page_count,
233 	.scan_objects = shrink_huge_zero_page_scan,
234 	.seeks = DEFAULT_SEEKS,
235 };
236 
237 #ifdef CONFIG_SYSFS
238 static ssize_t enabled_show(struct kobject *kobj,
239 			    struct kobj_attribute *attr, char *buf)
240 {
241 	const char *output;
242 
243 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
244 		output = "[always] madvise never";
245 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
246 			  &transparent_hugepage_flags))
247 		output = "always [madvise] never";
248 	else
249 		output = "always madvise [never]";
250 
251 	return sysfs_emit(buf, "%s\n", output);
252 }
253 
254 static ssize_t enabled_store(struct kobject *kobj,
255 			     struct kobj_attribute *attr,
256 			     const char *buf, size_t count)
257 {
258 	ssize_t ret = count;
259 
260 	if (sysfs_streq(buf, "always")) {
261 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
263 	} else if (sysfs_streq(buf, "madvise")) {
264 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
265 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
266 	} else if (sysfs_streq(buf, "never")) {
267 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
268 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
269 	} else
270 		ret = -EINVAL;
271 
272 	if (ret > 0) {
273 		int err = start_stop_khugepaged();
274 		if (err)
275 			ret = err;
276 	}
277 	return ret;
278 }
279 
280 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
281 
282 ssize_t single_hugepage_flag_show(struct kobject *kobj,
283 				  struct kobj_attribute *attr, char *buf,
284 				  enum transparent_hugepage_flag flag)
285 {
286 	return sysfs_emit(buf, "%d\n",
287 			  !!test_bit(flag, &transparent_hugepage_flags));
288 }
289 
290 ssize_t single_hugepage_flag_store(struct kobject *kobj,
291 				 struct kobj_attribute *attr,
292 				 const char *buf, size_t count,
293 				 enum transparent_hugepage_flag flag)
294 {
295 	unsigned long value;
296 	int ret;
297 
298 	ret = kstrtoul(buf, 10, &value);
299 	if (ret < 0)
300 		return ret;
301 	if (value > 1)
302 		return -EINVAL;
303 
304 	if (value)
305 		set_bit(flag, &transparent_hugepage_flags);
306 	else
307 		clear_bit(flag, &transparent_hugepage_flags);
308 
309 	return count;
310 }
311 
312 static ssize_t defrag_show(struct kobject *kobj,
313 			   struct kobj_attribute *attr, char *buf)
314 {
315 	const char *output;
316 
317 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
318 		     &transparent_hugepage_flags))
319 		output = "[always] defer defer+madvise madvise never";
320 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
321 			  &transparent_hugepage_flags))
322 		output = "always [defer] defer+madvise madvise never";
323 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
324 			  &transparent_hugepage_flags))
325 		output = "always defer [defer+madvise] madvise never";
326 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
327 			  &transparent_hugepage_flags))
328 		output = "always defer defer+madvise [madvise] never";
329 	else
330 		output = "always defer defer+madvise madvise [never]";
331 
332 	return sysfs_emit(buf, "%s\n", output);
333 }
334 
335 static ssize_t defrag_store(struct kobject *kobj,
336 			    struct kobj_attribute *attr,
337 			    const char *buf, size_t count)
338 {
339 	if (sysfs_streq(buf, "always")) {
340 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
341 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
342 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
343 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
344 	} else if (sysfs_streq(buf, "defer+madvise")) {
345 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
346 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
347 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
348 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
349 	} else if (sysfs_streq(buf, "defer")) {
350 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
351 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
352 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
353 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
354 	} else if (sysfs_streq(buf, "madvise")) {
355 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
356 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
357 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
358 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
359 	} else if (sysfs_streq(buf, "never")) {
360 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
361 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
362 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
363 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
364 	} else
365 		return -EINVAL;
366 
367 	return count;
368 }
369 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
370 
371 static ssize_t use_zero_page_show(struct kobject *kobj,
372 				  struct kobj_attribute *attr, char *buf)
373 {
374 	return single_hugepage_flag_show(kobj, attr, buf,
375 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
376 }
377 static ssize_t use_zero_page_store(struct kobject *kobj,
378 		struct kobj_attribute *attr, const char *buf, size_t count)
379 {
380 	return single_hugepage_flag_store(kobj, attr, buf, count,
381 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
382 }
383 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
384 
385 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
386 				   struct kobj_attribute *attr, char *buf)
387 {
388 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
389 }
390 static struct kobj_attribute hpage_pmd_size_attr =
391 	__ATTR_RO(hpage_pmd_size);
392 
393 static struct attribute *hugepage_attr[] = {
394 	&enabled_attr.attr,
395 	&defrag_attr.attr,
396 	&use_zero_page_attr.attr,
397 	&hpage_pmd_size_attr.attr,
398 #ifdef CONFIG_SHMEM
399 	&shmem_enabled_attr.attr,
400 #endif
401 	NULL,
402 };
403 
404 static const struct attribute_group hugepage_attr_group = {
405 	.attrs = hugepage_attr,
406 };
407 
408 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
409 {
410 	int err;
411 
412 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
413 	if (unlikely(!*hugepage_kobj)) {
414 		pr_err("failed to create transparent hugepage kobject\n");
415 		return -ENOMEM;
416 	}
417 
418 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
419 	if (err) {
420 		pr_err("failed to register transparent hugepage group\n");
421 		goto delete_obj;
422 	}
423 
424 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
425 	if (err) {
426 		pr_err("failed to register transparent hugepage group\n");
427 		goto remove_hp_group;
428 	}
429 
430 	return 0;
431 
432 remove_hp_group:
433 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
434 delete_obj:
435 	kobject_put(*hugepage_kobj);
436 	return err;
437 }
438 
439 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
440 {
441 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
442 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
443 	kobject_put(hugepage_kobj);
444 }
445 #else
446 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
447 {
448 	return 0;
449 }
450 
451 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
452 {
453 }
454 #endif /* CONFIG_SYSFS */
455 
456 static int __init hugepage_init(void)
457 {
458 	int err;
459 	struct kobject *hugepage_kobj;
460 
461 	if (!has_transparent_hugepage()) {
462 		/*
463 		 * Hardware doesn't support hugepages, hence disable
464 		 * DAX PMD support.
465 		 */
466 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
467 		return -EINVAL;
468 	}
469 
470 	/*
471 	 * hugepages can't be allocated by the buddy allocator
472 	 */
473 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
474 	/*
475 	 * we use page->mapping and page->index in second tail page
476 	 * as list_head: assuming THP order >= 2
477 	 */
478 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
479 
480 	err = hugepage_init_sysfs(&hugepage_kobj);
481 	if (err)
482 		goto err_sysfs;
483 
484 	err = khugepaged_init();
485 	if (err)
486 		goto err_slab;
487 
488 	err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
489 	if (err)
490 		goto err_hzp_shrinker;
491 	err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
492 	if (err)
493 		goto err_split_shrinker;
494 
495 	/*
496 	 * By default disable transparent hugepages on smaller systems,
497 	 * where the extra memory used could hurt more than TLB overhead
498 	 * is likely to save.  The admin can still enable it through /sys.
499 	 */
500 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
501 		transparent_hugepage_flags = 0;
502 		return 0;
503 	}
504 
505 	err = start_stop_khugepaged();
506 	if (err)
507 		goto err_khugepaged;
508 
509 	return 0;
510 err_khugepaged:
511 	unregister_shrinker(&deferred_split_shrinker);
512 err_split_shrinker:
513 	unregister_shrinker(&huge_zero_page_shrinker);
514 err_hzp_shrinker:
515 	khugepaged_destroy();
516 err_slab:
517 	hugepage_exit_sysfs(hugepage_kobj);
518 err_sysfs:
519 	return err;
520 }
521 subsys_initcall(hugepage_init);
522 
523 static int __init setup_transparent_hugepage(char *str)
524 {
525 	int ret = 0;
526 	if (!str)
527 		goto out;
528 	if (!strcmp(str, "always")) {
529 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
530 			&transparent_hugepage_flags);
531 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
532 			  &transparent_hugepage_flags);
533 		ret = 1;
534 	} else if (!strcmp(str, "madvise")) {
535 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
536 			  &transparent_hugepage_flags);
537 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
538 			&transparent_hugepage_flags);
539 		ret = 1;
540 	} else if (!strcmp(str, "never")) {
541 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
542 			  &transparent_hugepage_flags);
543 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
544 			  &transparent_hugepage_flags);
545 		ret = 1;
546 	}
547 out:
548 	if (!ret)
549 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
550 	return ret;
551 }
552 __setup("transparent_hugepage=", setup_transparent_hugepage);
553 
554 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
555 {
556 	if (likely(vma->vm_flags & VM_WRITE))
557 		pmd = pmd_mkwrite(pmd);
558 	return pmd;
559 }
560 
561 #ifdef CONFIG_MEMCG
562 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
563 {
564 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
565 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
566 
567 	if (memcg)
568 		return &memcg->deferred_split_queue;
569 	else
570 		return &pgdat->deferred_split_queue;
571 }
572 #else
573 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
574 {
575 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
576 
577 	return &pgdat->deferred_split_queue;
578 }
579 #endif
580 
581 void prep_transhuge_page(struct page *page)
582 {
583 	/*
584 	 * we use page->mapping and page->index in second tail page
585 	 * as list_head: assuming THP order >= 2
586 	 */
587 
588 	INIT_LIST_HEAD(page_deferred_list(page));
589 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
590 }
591 
592 static inline bool is_transparent_hugepage(struct page *page)
593 {
594 	if (!PageCompound(page))
595 		return false;
596 
597 	page = compound_head(page);
598 	return is_huge_zero_page(page) ||
599 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
600 }
601 
602 static unsigned long __thp_get_unmapped_area(struct file *filp,
603 		unsigned long addr, unsigned long len,
604 		loff_t off, unsigned long flags, unsigned long size)
605 {
606 	loff_t off_end = off + len;
607 	loff_t off_align = round_up(off, size);
608 	unsigned long len_pad, ret;
609 
610 	if (off_end <= off_align || (off_end - off_align) < size)
611 		return 0;
612 
613 	len_pad = len + size;
614 	if (len_pad < len || (off + len_pad) < off)
615 		return 0;
616 
617 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
618 					      off >> PAGE_SHIFT, flags);
619 
620 	/*
621 	 * The failure might be due to length padding. The caller will retry
622 	 * without the padding.
623 	 */
624 	if (IS_ERR_VALUE(ret))
625 		return 0;
626 
627 	/*
628 	 * Do not try to align to THP boundary if allocation at the address
629 	 * hint succeeds.
630 	 */
631 	if (ret == addr)
632 		return addr;
633 
634 	ret += (off - ret) & (size - 1);
635 	return ret;
636 }
637 
638 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
639 		unsigned long len, unsigned long pgoff, unsigned long flags)
640 {
641 	unsigned long ret;
642 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
643 
644 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
645 	if (ret)
646 		return ret;
647 
648 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
649 }
650 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
651 
652 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
653 			struct page *page, gfp_t gfp)
654 {
655 	struct vm_area_struct *vma = vmf->vma;
656 	pgtable_t pgtable;
657 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
658 	vm_fault_t ret = 0;
659 
660 	VM_BUG_ON_PAGE(!PageCompound(page), page);
661 
662 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
663 		put_page(page);
664 		count_vm_event(THP_FAULT_FALLBACK);
665 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
666 		return VM_FAULT_FALLBACK;
667 	}
668 	cgroup_throttle_swaprate(page, gfp);
669 
670 	pgtable = pte_alloc_one(vma->vm_mm);
671 	if (unlikely(!pgtable)) {
672 		ret = VM_FAULT_OOM;
673 		goto release;
674 	}
675 
676 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
677 	/*
678 	 * The memory barrier inside __SetPageUptodate makes sure that
679 	 * clear_huge_page writes become visible before the set_pmd_at()
680 	 * write.
681 	 */
682 	__SetPageUptodate(page);
683 
684 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
685 	if (unlikely(!pmd_none(*vmf->pmd))) {
686 		goto unlock_release;
687 	} else {
688 		pmd_t entry;
689 
690 		ret = check_stable_address_space(vma->vm_mm);
691 		if (ret)
692 			goto unlock_release;
693 
694 		/* Deliver the page fault to userland */
695 		if (userfaultfd_missing(vma)) {
696 			spin_unlock(vmf->ptl);
697 			put_page(page);
698 			pte_free(vma->vm_mm, pgtable);
699 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
700 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
701 			return ret;
702 		}
703 
704 		entry = mk_huge_pmd(page, vma->vm_page_prot);
705 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
706 		page_add_new_anon_rmap(page, vma, haddr);
707 		lru_cache_add_inactive_or_unevictable(page, vma);
708 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
709 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
710 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
711 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
712 		mm_inc_nr_ptes(vma->vm_mm);
713 		spin_unlock(vmf->ptl);
714 		count_vm_event(THP_FAULT_ALLOC);
715 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
716 	}
717 
718 	return 0;
719 unlock_release:
720 	spin_unlock(vmf->ptl);
721 release:
722 	if (pgtable)
723 		pte_free(vma->vm_mm, pgtable);
724 	put_page(page);
725 	return ret;
726 
727 }
728 
729 /*
730  * always: directly stall for all thp allocations
731  * defer: wake kswapd and fail if not immediately available
732  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
733  *		  fail if not immediately available
734  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
735  *	    available
736  * never: never stall for any thp allocation
737  */
738 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
739 {
740 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
741 
742 	/* Always do synchronous compaction */
743 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
744 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
745 
746 	/* Kick kcompactd and fail quickly */
747 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
748 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
749 
750 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
751 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
752 		return GFP_TRANSHUGE_LIGHT |
753 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
754 					__GFP_KSWAPD_RECLAIM);
755 
756 	/* Only do synchronous compaction if madvised */
757 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
758 		return GFP_TRANSHUGE_LIGHT |
759 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
760 
761 	return GFP_TRANSHUGE_LIGHT;
762 }
763 
764 /* Caller must hold page table lock. */
765 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
766 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
767 		struct page *zero_page)
768 {
769 	pmd_t entry;
770 	if (!pmd_none(*pmd))
771 		return;
772 	entry = mk_pmd(zero_page, vma->vm_page_prot);
773 	entry = pmd_mkhuge(entry);
774 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 	set_pmd_at(mm, haddr, pmd, entry);
776 	mm_inc_nr_ptes(mm);
777 }
778 
779 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
780 {
781 	struct vm_area_struct *vma = vmf->vma;
782 	gfp_t gfp;
783 	struct folio *folio;
784 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
785 
786 	if (!transhuge_vma_suitable(vma, haddr))
787 		return VM_FAULT_FALLBACK;
788 	if (unlikely(anon_vma_prepare(vma)))
789 		return VM_FAULT_OOM;
790 	khugepaged_enter_vma(vma, vma->vm_flags);
791 
792 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
793 			!mm_forbids_zeropage(vma->vm_mm) &&
794 			transparent_hugepage_use_zero_page()) {
795 		pgtable_t pgtable;
796 		struct page *zero_page;
797 		vm_fault_t ret;
798 		pgtable = pte_alloc_one(vma->vm_mm);
799 		if (unlikely(!pgtable))
800 			return VM_FAULT_OOM;
801 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
802 		if (unlikely(!zero_page)) {
803 			pte_free(vma->vm_mm, pgtable);
804 			count_vm_event(THP_FAULT_FALLBACK);
805 			return VM_FAULT_FALLBACK;
806 		}
807 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
808 		ret = 0;
809 		if (pmd_none(*vmf->pmd)) {
810 			ret = check_stable_address_space(vma->vm_mm);
811 			if (ret) {
812 				spin_unlock(vmf->ptl);
813 				pte_free(vma->vm_mm, pgtable);
814 			} else if (userfaultfd_missing(vma)) {
815 				spin_unlock(vmf->ptl);
816 				pte_free(vma->vm_mm, pgtable);
817 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
818 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
819 			} else {
820 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
821 						   haddr, vmf->pmd, zero_page);
822 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
823 				spin_unlock(vmf->ptl);
824 			}
825 		} else {
826 			spin_unlock(vmf->ptl);
827 			pte_free(vma->vm_mm, pgtable);
828 		}
829 		return ret;
830 	}
831 	gfp = vma_thp_gfp_mask(vma);
832 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
833 	if (unlikely(!folio)) {
834 		count_vm_event(THP_FAULT_FALLBACK);
835 		return VM_FAULT_FALLBACK;
836 	}
837 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
838 }
839 
840 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
841 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
842 		pgtable_t pgtable)
843 {
844 	struct mm_struct *mm = vma->vm_mm;
845 	pmd_t entry;
846 	spinlock_t *ptl;
847 
848 	ptl = pmd_lock(mm, pmd);
849 	if (!pmd_none(*pmd)) {
850 		if (write) {
851 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
852 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
853 				goto out_unlock;
854 			}
855 			entry = pmd_mkyoung(*pmd);
856 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
857 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
858 				update_mmu_cache_pmd(vma, addr, pmd);
859 		}
860 
861 		goto out_unlock;
862 	}
863 
864 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
865 	if (pfn_t_devmap(pfn))
866 		entry = pmd_mkdevmap(entry);
867 	if (write) {
868 		entry = pmd_mkyoung(pmd_mkdirty(entry));
869 		entry = maybe_pmd_mkwrite(entry, vma);
870 	}
871 
872 	if (pgtable) {
873 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
874 		mm_inc_nr_ptes(mm);
875 		pgtable = NULL;
876 	}
877 
878 	set_pmd_at(mm, addr, pmd, entry);
879 	update_mmu_cache_pmd(vma, addr, pmd);
880 
881 out_unlock:
882 	spin_unlock(ptl);
883 	if (pgtable)
884 		pte_free(mm, pgtable);
885 }
886 
887 /**
888  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
889  * @vmf: Structure describing the fault
890  * @pfn: pfn to insert
891  * @pgprot: page protection to use
892  * @write: whether it's a write fault
893  *
894  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
895  * also consult the vmf_insert_mixed_prot() documentation when
896  * @pgprot != @vmf->vma->vm_page_prot.
897  *
898  * Return: vm_fault_t value.
899  */
900 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
901 				   pgprot_t pgprot, bool write)
902 {
903 	unsigned long addr = vmf->address & PMD_MASK;
904 	struct vm_area_struct *vma = vmf->vma;
905 	pgtable_t pgtable = NULL;
906 
907 	/*
908 	 * If we had pmd_special, we could avoid all these restrictions,
909 	 * but we need to be consistent with PTEs and architectures that
910 	 * can't support a 'special' bit.
911 	 */
912 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
913 			!pfn_t_devmap(pfn));
914 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
915 						(VM_PFNMAP|VM_MIXEDMAP));
916 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
917 
918 	if (addr < vma->vm_start || addr >= vma->vm_end)
919 		return VM_FAULT_SIGBUS;
920 
921 	if (arch_needs_pgtable_deposit()) {
922 		pgtable = pte_alloc_one(vma->vm_mm);
923 		if (!pgtable)
924 			return VM_FAULT_OOM;
925 	}
926 
927 	track_pfn_insert(vma, &pgprot, pfn);
928 
929 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
930 	return VM_FAULT_NOPAGE;
931 }
932 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
933 
934 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
935 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
936 {
937 	if (likely(vma->vm_flags & VM_WRITE))
938 		pud = pud_mkwrite(pud);
939 	return pud;
940 }
941 
942 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
943 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
944 {
945 	struct mm_struct *mm = vma->vm_mm;
946 	pud_t entry;
947 	spinlock_t *ptl;
948 
949 	ptl = pud_lock(mm, pud);
950 	if (!pud_none(*pud)) {
951 		if (write) {
952 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
953 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
954 				goto out_unlock;
955 			}
956 			entry = pud_mkyoung(*pud);
957 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
958 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
959 				update_mmu_cache_pud(vma, addr, pud);
960 		}
961 		goto out_unlock;
962 	}
963 
964 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
965 	if (pfn_t_devmap(pfn))
966 		entry = pud_mkdevmap(entry);
967 	if (write) {
968 		entry = pud_mkyoung(pud_mkdirty(entry));
969 		entry = maybe_pud_mkwrite(entry, vma);
970 	}
971 	set_pud_at(mm, addr, pud, entry);
972 	update_mmu_cache_pud(vma, addr, pud);
973 
974 out_unlock:
975 	spin_unlock(ptl);
976 }
977 
978 /**
979  * vmf_insert_pfn_pud_prot - insert a pud size pfn
980  * @vmf: Structure describing the fault
981  * @pfn: pfn to insert
982  * @pgprot: page protection to use
983  * @write: whether it's a write fault
984  *
985  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
986  * also consult the vmf_insert_mixed_prot() documentation when
987  * @pgprot != @vmf->vma->vm_page_prot.
988  *
989  * Return: vm_fault_t value.
990  */
991 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
992 				   pgprot_t pgprot, bool write)
993 {
994 	unsigned long addr = vmf->address & PUD_MASK;
995 	struct vm_area_struct *vma = vmf->vma;
996 
997 	/*
998 	 * If we had pud_special, we could avoid all these restrictions,
999 	 * but we need to be consistent with PTEs and architectures that
1000 	 * can't support a 'special' bit.
1001 	 */
1002 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1003 			!pfn_t_devmap(pfn));
1004 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005 						(VM_PFNMAP|VM_MIXEDMAP));
1006 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1007 
1008 	if (addr < vma->vm_start || addr >= vma->vm_end)
1009 		return VM_FAULT_SIGBUS;
1010 
1011 	track_pfn_insert(vma, &pgprot, pfn);
1012 
1013 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
1014 	return VM_FAULT_NOPAGE;
1015 }
1016 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
1017 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1018 
1019 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1020 		      pmd_t *pmd, bool write)
1021 {
1022 	pmd_t _pmd;
1023 
1024 	_pmd = pmd_mkyoung(*pmd);
1025 	if (write)
1026 		_pmd = pmd_mkdirty(_pmd);
1027 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1028 				  pmd, _pmd, write))
1029 		update_mmu_cache_pmd(vma, addr, pmd);
1030 }
1031 
1032 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1033 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1034 {
1035 	unsigned long pfn = pmd_pfn(*pmd);
1036 	struct mm_struct *mm = vma->vm_mm;
1037 	struct page *page;
1038 	int ret;
1039 
1040 	assert_spin_locked(pmd_lockptr(mm, pmd));
1041 
1042 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1043 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1044 			 (FOLL_PIN | FOLL_GET)))
1045 		return NULL;
1046 
1047 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1048 		return NULL;
1049 
1050 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1051 		/* pass */;
1052 	else
1053 		return NULL;
1054 
1055 	if (flags & FOLL_TOUCH)
1056 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1057 
1058 	/*
1059 	 * device mapped pages can only be returned if the
1060 	 * caller will manage the page reference count.
1061 	 */
1062 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1063 		return ERR_PTR(-EEXIST);
1064 
1065 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1066 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1067 	if (!*pgmap)
1068 		return ERR_PTR(-EFAULT);
1069 	page = pfn_to_page(pfn);
1070 	ret = try_grab_page(page, flags);
1071 	if (ret)
1072 		page = ERR_PTR(ret);
1073 
1074 	return page;
1075 }
1076 
1077 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1078 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1079 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1080 {
1081 	spinlock_t *dst_ptl, *src_ptl;
1082 	struct page *src_page;
1083 	pmd_t pmd;
1084 	pgtable_t pgtable = NULL;
1085 	int ret = -ENOMEM;
1086 
1087 	/* Skip if can be re-fill on fault */
1088 	if (!vma_is_anonymous(dst_vma))
1089 		return 0;
1090 
1091 	pgtable = pte_alloc_one(dst_mm);
1092 	if (unlikely(!pgtable))
1093 		goto out;
1094 
1095 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1096 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1097 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1098 
1099 	ret = -EAGAIN;
1100 	pmd = *src_pmd;
1101 
1102 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1103 	if (unlikely(is_swap_pmd(pmd))) {
1104 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1105 
1106 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1107 		if (!is_readable_migration_entry(entry)) {
1108 			entry = make_readable_migration_entry(
1109 							swp_offset(entry));
1110 			pmd = swp_entry_to_pmd(entry);
1111 			if (pmd_swp_soft_dirty(*src_pmd))
1112 				pmd = pmd_swp_mksoft_dirty(pmd);
1113 			if (pmd_swp_uffd_wp(*src_pmd))
1114 				pmd = pmd_swp_mkuffd_wp(pmd);
1115 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1116 		}
1117 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118 		mm_inc_nr_ptes(dst_mm);
1119 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1120 		if (!userfaultfd_wp(dst_vma))
1121 			pmd = pmd_swp_clear_uffd_wp(pmd);
1122 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1123 		ret = 0;
1124 		goto out_unlock;
1125 	}
1126 #endif
1127 
1128 	if (unlikely(!pmd_trans_huge(pmd))) {
1129 		pte_free(dst_mm, pgtable);
1130 		goto out_unlock;
1131 	}
1132 	/*
1133 	 * When page table lock is held, the huge zero pmd should not be
1134 	 * under splitting since we don't split the page itself, only pmd to
1135 	 * a page table.
1136 	 */
1137 	if (is_huge_zero_pmd(pmd)) {
1138 		/*
1139 		 * get_huge_zero_page() will never allocate a new page here,
1140 		 * since we already have a zero page to copy. It just takes a
1141 		 * reference.
1142 		 */
1143 		mm_get_huge_zero_page(dst_mm);
1144 		goto out_zero_page;
1145 	}
1146 
1147 	src_page = pmd_page(pmd);
1148 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1149 
1150 	get_page(src_page);
1151 	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1152 		/* Page maybe pinned: split and retry the fault on PTEs. */
1153 		put_page(src_page);
1154 		pte_free(dst_mm, pgtable);
1155 		spin_unlock(src_ptl);
1156 		spin_unlock(dst_ptl);
1157 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1158 		return -EAGAIN;
1159 	}
1160 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1161 out_zero_page:
1162 	mm_inc_nr_ptes(dst_mm);
1163 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1164 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1165 	if (!userfaultfd_wp(dst_vma))
1166 		pmd = pmd_clear_uffd_wp(pmd);
1167 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1168 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1169 
1170 	ret = 0;
1171 out_unlock:
1172 	spin_unlock(src_ptl);
1173 	spin_unlock(dst_ptl);
1174 out:
1175 	return ret;
1176 }
1177 
1178 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1179 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1180 		      pud_t *pud, bool write)
1181 {
1182 	pud_t _pud;
1183 
1184 	_pud = pud_mkyoung(*pud);
1185 	if (write)
1186 		_pud = pud_mkdirty(_pud);
1187 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1188 				  pud, _pud, write))
1189 		update_mmu_cache_pud(vma, addr, pud);
1190 }
1191 
1192 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1193 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1194 {
1195 	unsigned long pfn = pud_pfn(*pud);
1196 	struct mm_struct *mm = vma->vm_mm;
1197 	struct page *page;
1198 	int ret;
1199 
1200 	assert_spin_locked(pud_lockptr(mm, pud));
1201 
1202 	if (flags & FOLL_WRITE && !pud_write(*pud))
1203 		return NULL;
1204 
1205 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1206 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1207 			 (FOLL_PIN | FOLL_GET)))
1208 		return NULL;
1209 
1210 	if (pud_present(*pud) && pud_devmap(*pud))
1211 		/* pass */;
1212 	else
1213 		return NULL;
1214 
1215 	if (flags & FOLL_TOUCH)
1216 		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1217 
1218 	/*
1219 	 * device mapped pages can only be returned if the
1220 	 * caller will manage the page reference count.
1221 	 *
1222 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1223 	 */
1224 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1225 		return ERR_PTR(-EEXIST);
1226 
1227 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1228 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1229 	if (!*pgmap)
1230 		return ERR_PTR(-EFAULT);
1231 	page = pfn_to_page(pfn);
1232 
1233 	ret = try_grab_page(page, flags);
1234 	if (ret)
1235 		page = ERR_PTR(ret);
1236 
1237 	return page;
1238 }
1239 
1240 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1241 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1242 		  struct vm_area_struct *vma)
1243 {
1244 	spinlock_t *dst_ptl, *src_ptl;
1245 	pud_t pud;
1246 	int ret;
1247 
1248 	dst_ptl = pud_lock(dst_mm, dst_pud);
1249 	src_ptl = pud_lockptr(src_mm, src_pud);
1250 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1251 
1252 	ret = -EAGAIN;
1253 	pud = *src_pud;
1254 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1255 		goto out_unlock;
1256 
1257 	/*
1258 	 * When page table lock is held, the huge zero pud should not be
1259 	 * under splitting since we don't split the page itself, only pud to
1260 	 * a page table.
1261 	 */
1262 	if (is_huge_zero_pud(pud)) {
1263 		/* No huge zero pud yet */
1264 	}
1265 
1266 	/*
1267 	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1268 	 * and split if duplicating fails.
1269 	 */
1270 	pudp_set_wrprotect(src_mm, addr, src_pud);
1271 	pud = pud_mkold(pud_wrprotect(pud));
1272 	set_pud_at(dst_mm, addr, dst_pud, pud);
1273 
1274 	ret = 0;
1275 out_unlock:
1276 	spin_unlock(src_ptl);
1277 	spin_unlock(dst_ptl);
1278 	return ret;
1279 }
1280 
1281 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1282 {
1283 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1284 
1285 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1286 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1287 		goto unlock;
1288 
1289 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1290 unlock:
1291 	spin_unlock(vmf->ptl);
1292 }
1293 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1294 
1295 void huge_pmd_set_accessed(struct vm_fault *vmf)
1296 {
1297 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1298 
1299 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1300 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1301 		goto unlock;
1302 
1303 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1304 
1305 unlock:
1306 	spin_unlock(vmf->ptl);
1307 }
1308 
1309 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1310 {
1311 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1312 	struct vm_area_struct *vma = vmf->vma;
1313 	struct folio *folio;
1314 	struct page *page;
1315 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1316 	pmd_t orig_pmd = vmf->orig_pmd;
1317 
1318 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1319 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1320 
1321 	VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
1322 	VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
1323 
1324 	if (is_huge_zero_pmd(orig_pmd))
1325 		goto fallback;
1326 
1327 	spin_lock(vmf->ptl);
1328 
1329 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1330 		spin_unlock(vmf->ptl);
1331 		return 0;
1332 	}
1333 
1334 	page = pmd_page(orig_pmd);
1335 	folio = page_folio(page);
1336 	VM_BUG_ON_PAGE(!PageHead(page), page);
1337 
1338 	/* Early check when only holding the PT lock. */
1339 	if (PageAnonExclusive(page))
1340 		goto reuse;
1341 
1342 	if (!folio_trylock(folio)) {
1343 		folio_get(folio);
1344 		spin_unlock(vmf->ptl);
1345 		folio_lock(folio);
1346 		spin_lock(vmf->ptl);
1347 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1348 			spin_unlock(vmf->ptl);
1349 			folio_unlock(folio);
1350 			folio_put(folio);
1351 			return 0;
1352 		}
1353 		folio_put(folio);
1354 	}
1355 
1356 	/* Recheck after temporarily dropping the PT lock. */
1357 	if (PageAnonExclusive(page)) {
1358 		folio_unlock(folio);
1359 		goto reuse;
1360 	}
1361 
1362 	/*
1363 	 * See do_wp_page(): we can only reuse the folio exclusively if
1364 	 * there are no additional references. Note that we always drain
1365 	 * the LRU pagevecs immediately after adding a THP.
1366 	 */
1367 	if (folio_ref_count(folio) >
1368 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1369 		goto unlock_fallback;
1370 	if (folio_test_swapcache(folio))
1371 		folio_free_swap(folio);
1372 	if (folio_ref_count(folio) == 1) {
1373 		pmd_t entry;
1374 
1375 		page_move_anon_rmap(page, vma);
1376 		folio_unlock(folio);
1377 reuse:
1378 		if (unlikely(unshare)) {
1379 			spin_unlock(vmf->ptl);
1380 			return 0;
1381 		}
1382 		entry = pmd_mkyoung(orig_pmd);
1383 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1384 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1385 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1386 		spin_unlock(vmf->ptl);
1387 		return VM_FAULT_WRITE;
1388 	}
1389 
1390 unlock_fallback:
1391 	folio_unlock(folio);
1392 	spin_unlock(vmf->ptl);
1393 fallback:
1394 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1395 	return VM_FAULT_FALLBACK;
1396 }
1397 
1398 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1399 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1400 					struct vm_area_struct *vma,
1401 					unsigned int flags)
1402 {
1403 	/* If the pmd is writable, we can write to the page. */
1404 	if (pmd_write(pmd))
1405 		return true;
1406 
1407 	/* Maybe FOLL_FORCE is set to override it? */
1408 	if (!(flags & FOLL_FORCE))
1409 		return false;
1410 
1411 	/* But FOLL_FORCE has no effect on shared mappings */
1412 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1413 		return false;
1414 
1415 	/* ... or read-only private ones */
1416 	if (!(vma->vm_flags & VM_MAYWRITE))
1417 		return false;
1418 
1419 	/* ... or already writable ones that just need to take a write fault */
1420 	if (vma->vm_flags & VM_WRITE)
1421 		return false;
1422 
1423 	/*
1424 	 * See can_change_pte_writable(): we broke COW and could map the page
1425 	 * writable if we have an exclusive anonymous page ...
1426 	 */
1427 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1428 		return false;
1429 
1430 	/* ... and a write-fault isn't required for other reasons. */
1431 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1432 		return false;
1433 	return !userfaultfd_huge_pmd_wp(vma, pmd);
1434 }
1435 
1436 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1437 				   unsigned long addr,
1438 				   pmd_t *pmd,
1439 				   unsigned int flags)
1440 {
1441 	struct mm_struct *mm = vma->vm_mm;
1442 	struct page *page;
1443 	int ret;
1444 
1445 	assert_spin_locked(pmd_lockptr(mm, pmd));
1446 
1447 	page = pmd_page(*pmd);
1448 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1449 
1450 	if ((flags & FOLL_WRITE) &&
1451 	    !can_follow_write_pmd(*pmd, page, vma, flags))
1452 		return NULL;
1453 
1454 	/* Avoid dumping huge zero page */
1455 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1456 		return ERR_PTR(-EFAULT);
1457 
1458 	/* Full NUMA hinting faults to serialise migration in fault paths */
1459 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags))
1460 		return NULL;
1461 
1462 	if (!pmd_write(*pmd) && gup_must_unshare(flags, page))
1463 		return ERR_PTR(-EMLINK);
1464 
1465 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1466 			!PageAnonExclusive(page), page);
1467 
1468 	ret = try_grab_page(page, flags);
1469 	if (ret)
1470 		return ERR_PTR(ret);
1471 
1472 	if (flags & FOLL_TOUCH)
1473 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1474 
1475 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1476 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1477 
1478 	return page;
1479 }
1480 
1481 /* NUMA hinting page fault entry point for trans huge pmds */
1482 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1483 {
1484 	struct vm_area_struct *vma = vmf->vma;
1485 	pmd_t oldpmd = vmf->orig_pmd;
1486 	pmd_t pmd;
1487 	struct page *page;
1488 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1489 	int page_nid = NUMA_NO_NODE;
1490 	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1491 	bool migrated = false;
1492 	bool was_writable = pmd_savedwrite(oldpmd);
1493 	int flags = 0;
1494 
1495 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1496 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1497 		spin_unlock(vmf->ptl);
1498 		goto out;
1499 	}
1500 
1501 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1502 	page = vm_normal_page_pmd(vma, haddr, pmd);
1503 	if (!page)
1504 		goto out_map;
1505 
1506 	/* See similar comment in do_numa_page for explanation */
1507 	if (!was_writable)
1508 		flags |= TNF_NO_GROUP;
1509 
1510 	page_nid = page_to_nid(page);
1511 	/*
1512 	 * For memory tiering mode, cpupid of slow memory page is used
1513 	 * to record page access time.  So use default value.
1514 	 */
1515 	if (node_is_toptier(page_nid))
1516 		last_cpupid = page_cpupid_last(page);
1517 	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1518 				       &flags);
1519 
1520 	if (target_nid == NUMA_NO_NODE) {
1521 		put_page(page);
1522 		goto out_map;
1523 	}
1524 
1525 	spin_unlock(vmf->ptl);
1526 
1527 	migrated = migrate_misplaced_page(page, vma, target_nid);
1528 	if (migrated) {
1529 		flags |= TNF_MIGRATED;
1530 		page_nid = target_nid;
1531 	} else {
1532 		flags |= TNF_MIGRATE_FAIL;
1533 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1534 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1535 			spin_unlock(vmf->ptl);
1536 			goto out;
1537 		}
1538 		goto out_map;
1539 	}
1540 
1541 out:
1542 	if (page_nid != NUMA_NO_NODE)
1543 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1544 				flags);
1545 
1546 	return 0;
1547 
1548 out_map:
1549 	/* Restore the PMD */
1550 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1551 	pmd = pmd_mkyoung(pmd);
1552 	if (was_writable)
1553 		pmd = pmd_mkwrite(pmd);
1554 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1555 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1556 	spin_unlock(vmf->ptl);
1557 	goto out;
1558 }
1559 
1560 /*
1561  * Return true if we do MADV_FREE successfully on entire pmd page.
1562  * Otherwise, return false.
1563  */
1564 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1565 		pmd_t *pmd, unsigned long addr, unsigned long next)
1566 {
1567 	spinlock_t *ptl;
1568 	pmd_t orig_pmd;
1569 	struct page *page;
1570 	struct mm_struct *mm = tlb->mm;
1571 	bool ret = false;
1572 
1573 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1574 
1575 	ptl = pmd_trans_huge_lock(pmd, vma);
1576 	if (!ptl)
1577 		goto out_unlocked;
1578 
1579 	orig_pmd = *pmd;
1580 	if (is_huge_zero_pmd(orig_pmd))
1581 		goto out;
1582 
1583 	if (unlikely(!pmd_present(orig_pmd))) {
1584 		VM_BUG_ON(thp_migration_supported() &&
1585 				  !is_pmd_migration_entry(orig_pmd));
1586 		goto out;
1587 	}
1588 
1589 	page = pmd_page(orig_pmd);
1590 	/*
1591 	 * If other processes are mapping this page, we couldn't discard
1592 	 * the page unless they all do MADV_FREE so let's skip the page.
1593 	 */
1594 	if (total_mapcount(page) != 1)
1595 		goto out;
1596 
1597 	if (!trylock_page(page))
1598 		goto out;
1599 
1600 	/*
1601 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1602 	 * will deactivate only them.
1603 	 */
1604 	if (next - addr != HPAGE_PMD_SIZE) {
1605 		get_page(page);
1606 		spin_unlock(ptl);
1607 		split_huge_page(page);
1608 		unlock_page(page);
1609 		put_page(page);
1610 		goto out_unlocked;
1611 	}
1612 
1613 	if (PageDirty(page))
1614 		ClearPageDirty(page);
1615 	unlock_page(page);
1616 
1617 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1618 		pmdp_invalidate(vma, addr, pmd);
1619 		orig_pmd = pmd_mkold(orig_pmd);
1620 		orig_pmd = pmd_mkclean(orig_pmd);
1621 
1622 		set_pmd_at(mm, addr, pmd, orig_pmd);
1623 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1624 	}
1625 
1626 	mark_page_lazyfree(page);
1627 	ret = true;
1628 out:
1629 	spin_unlock(ptl);
1630 out_unlocked:
1631 	return ret;
1632 }
1633 
1634 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1635 {
1636 	pgtable_t pgtable;
1637 
1638 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1639 	pte_free(mm, pgtable);
1640 	mm_dec_nr_ptes(mm);
1641 }
1642 
1643 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1644 		 pmd_t *pmd, unsigned long addr)
1645 {
1646 	pmd_t orig_pmd;
1647 	spinlock_t *ptl;
1648 
1649 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1650 
1651 	ptl = __pmd_trans_huge_lock(pmd, vma);
1652 	if (!ptl)
1653 		return 0;
1654 	/*
1655 	 * For architectures like ppc64 we look at deposited pgtable
1656 	 * when calling pmdp_huge_get_and_clear. So do the
1657 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1658 	 * operations.
1659 	 */
1660 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1661 						tlb->fullmm);
1662 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1663 	if (vma_is_special_huge(vma)) {
1664 		if (arch_needs_pgtable_deposit())
1665 			zap_deposited_table(tlb->mm, pmd);
1666 		spin_unlock(ptl);
1667 	} else if (is_huge_zero_pmd(orig_pmd)) {
1668 		zap_deposited_table(tlb->mm, pmd);
1669 		spin_unlock(ptl);
1670 	} else {
1671 		struct page *page = NULL;
1672 		int flush_needed = 1;
1673 
1674 		if (pmd_present(orig_pmd)) {
1675 			page = pmd_page(orig_pmd);
1676 			page_remove_rmap(page, vma, true);
1677 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1678 			VM_BUG_ON_PAGE(!PageHead(page), page);
1679 		} else if (thp_migration_supported()) {
1680 			swp_entry_t entry;
1681 
1682 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1683 			entry = pmd_to_swp_entry(orig_pmd);
1684 			page = pfn_swap_entry_to_page(entry);
1685 			flush_needed = 0;
1686 		} else
1687 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1688 
1689 		if (PageAnon(page)) {
1690 			zap_deposited_table(tlb->mm, pmd);
1691 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1692 		} else {
1693 			if (arch_needs_pgtable_deposit())
1694 				zap_deposited_table(tlb->mm, pmd);
1695 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1696 		}
1697 
1698 		spin_unlock(ptl);
1699 		if (flush_needed)
1700 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1701 	}
1702 	return 1;
1703 }
1704 
1705 #ifndef pmd_move_must_withdraw
1706 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1707 					 spinlock_t *old_pmd_ptl,
1708 					 struct vm_area_struct *vma)
1709 {
1710 	/*
1711 	 * With split pmd lock we also need to move preallocated
1712 	 * PTE page table if new_pmd is on different PMD page table.
1713 	 *
1714 	 * We also don't deposit and withdraw tables for file pages.
1715 	 */
1716 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1717 }
1718 #endif
1719 
1720 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1721 {
1722 #ifdef CONFIG_MEM_SOFT_DIRTY
1723 	if (unlikely(is_pmd_migration_entry(pmd)))
1724 		pmd = pmd_swp_mksoft_dirty(pmd);
1725 	else if (pmd_present(pmd))
1726 		pmd = pmd_mksoft_dirty(pmd);
1727 #endif
1728 	return pmd;
1729 }
1730 
1731 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1732 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1733 {
1734 	spinlock_t *old_ptl, *new_ptl;
1735 	pmd_t pmd;
1736 	struct mm_struct *mm = vma->vm_mm;
1737 	bool force_flush = false;
1738 
1739 	/*
1740 	 * The destination pmd shouldn't be established, free_pgtables()
1741 	 * should have release it.
1742 	 */
1743 	if (WARN_ON(!pmd_none(*new_pmd))) {
1744 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1745 		return false;
1746 	}
1747 
1748 	/*
1749 	 * We don't have to worry about the ordering of src and dst
1750 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1751 	 */
1752 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1753 	if (old_ptl) {
1754 		new_ptl = pmd_lockptr(mm, new_pmd);
1755 		if (new_ptl != old_ptl)
1756 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1757 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1758 		if (pmd_present(pmd))
1759 			force_flush = true;
1760 		VM_BUG_ON(!pmd_none(*new_pmd));
1761 
1762 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1763 			pgtable_t pgtable;
1764 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1765 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1766 		}
1767 		pmd = move_soft_dirty_pmd(pmd);
1768 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1769 		if (force_flush)
1770 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1771 		if (new_ptl != old_ptl)
1772 			spin_unlock(new_ptl);
1773 		spin_unlock(old_ptl);
1774 		return true;
1775 	}
1776 	return false;
1777 }
1778 
1779 /*
1780  * Returns
1781  *  - 0 if PMD could not be locked
1782  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1783  *      or if prot_numa but THP migration is not supported
1784  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1785  */
1786 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1787 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1788 		    unsigned long cp_flags)
1789 {
1790 	struct mm_struct *mm = vma->vm_mm;
1791 	spinlock_t *ptl;
1792 	pmd_t oldpmd, entry;
1793 	bool preserve_write;
1794 	int ret;
1795 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1796 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1797 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1798 
1799 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1800 
1801 	if (prot_numa && !thp_migration_supported())
1802 		return 1;
1803 
1804 	ptl = __pmd_trans_huge_lock(pmd, vma);
1805 	if (!ptl)
1806 		return 0;
1807 
1808 	preserve_write = prot_numa && pmd_write(*pmd);
1809 	ret = 1;
1810 
1811 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1812 	if (is_swap_pmd(*pmd)) {
1813 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1814 		struct page *page = pfn_swap_entry_to_page(entry);
1815 
1816 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1817 		if (is_writable_migration_entry(entry)) {
1818 			pmd_t newpmd;
1819 			/*
1820 			 * A protection check is difficult so
1821 			 * just be safe and disable write
1822 			 */
1823 			if (PageAnon(page))
1824 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1825 			else
1826 				entry = make_readable_migration_entry(swp_offset(entry));
1827 			newpmd = swp_entry_to_pmd(entry);
1828 			if (pmd_swp_soft_dirty(*pmd))
1829 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1830 			if (pmd_swp_uffd_wp(*pmd))
1831 				newpmd = pmd_swp_mkuffd_wp(newpmd);
1832 			set_pmd_at(mm, addr, pmd, newpmd);
1833 		}
1834 		goto unlock;
1835 	}
1836 #endif
1837 
1838 	if (prot_numa) {
1839 		struct page *page;
1840 		bool toptier;
1841 		/*
1842 		 * Avoid trapping faults against the zero page. The read-only
1843 		 * data is likely to be read-cached on the local CPU and
1844 		 * local/remote hits to the zero page are not interesting.
1845 		 */
1846 		if (is_huge_zero_pmd(*pmd))
1847 			goto unlock;
1848 
1849 		if (pmd_protnone(*pmd))
1850 			goto unlock;
1851 
1852 		page = pmd_page(*pmd);
1853 		toptier = node_is_toptier(page_to_nid(page));
1854 		/*
1855 		 * Skip scanning top tier node if normal numa
1856 		 * balancing is disabled
1857 		 */
1858 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1859 		    toptier)
1860 			goto unlock;
1861 
1862 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1863 		    !toptier)
1864 			xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1865 	}
1866 	/*
1867 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1868 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1869 	 * which is also under mmap_read_lock(mm):
1870 	 *
1871 	 *	CPU0:				CPU1:
1872 	 *				change_huge_pmd(prot_numa=1)
1873 	 *				 pmdp_huge_get_and_clear_notify()
1874 	 * madvise_dontneed()
1875 	 *  zap_pmd_range()
1876 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1877 	 *   // skip the pmd
1878 	 *				 set_pmd_at();
1879 	 *				 // pmd is re-established
1880 	 *
1881 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1882 	 * which may break userspace.
1883 	 *
1884 	 * pmdp_invalidate_ad() is required to make sure we don't miss
1885 	 * dirty/young flags set by hardware.
1886 	 */
1887 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1888 
1889 	entry = pmd_modify(oldpmd, newprot);
1890 	if (preserve_write)
1891 		entry = pmd_mk_savedwrite(entry);
1892 	if (uffd_wp) {
1893 		entry = pmd_wrprotect(entry);
1894 		entry = pmd_mkuffd_wp(entry);
1895 	} else if (uffd_wp_resolve) {
1896 		/*
1897 		 * Leave the write bit to be handled by PF interrupt
1898 		 * handler, then things like COW could be properly
1899 		 * handled.
1900 		 */
1901 		entry = pmd_clear_uffd_wp(entry);
1902 	}
1903 	ret = HPAGE_PMD_NR;
1904 	set_pmd_at(mm, addr, pmd, entry);
1905 
1906 	if (huge_pmd_needs_flush(oldpmd, entry))
1907 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1908 
1909 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1910 unlock:
1911 	spin_unlock(ptl);
1912 	return ret;
1913 }
1914 
1915 /*
1916  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1917  *
1918  * Note that if it returns page table lock pointer, this routine returns without
1919  * unlocking page table lock. So callers must unlock it.
1920  */
1921 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1922 {
1923 	spinlock_t *ptl;
1924 	ptl = pmd_lock(vma->vm_mm, pmd);
1925 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1926 			pmd_devmap(*pmd)))
1927 		return ptl;
1928 	spin_unlock(ptl);
1929 	return NULL;
1930 }
1931 
1932 /*
1933  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1934  *
1935  * Note that if it returns page table lock pointer, this routine returns without
1936  * unlocking page table lock. So callers must unlock it.
1937  */
1938 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1939 {
1940 	spinlock_t *ptl;
1941 
1942 	ptl = pud_lock(vma->vm_mm, pud);
1943 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1944 		return ptl;
1945 	spin_unlock(ptl);
1946 	return NULL;
1947 }
1948 
1949 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1950 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1951 		 pud_t *pud, unsigned long addr)
1952 {
1953 	spinlock_t *ptl;
1954 
1955 	ptl = __pud_trans_huge_lock(pud, vma);
1956 	if (!ptl)
1957 		return 0;
1958 
1959 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1960 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1961 	if (vma_is_special_huge(vma)) {
1962 		spin_unlock(ptl);
1963 		/* No zero page support yet */
1964 	} else {
1965 		/* No support for anonymous PUD pages yet */
1966 		BUG();
1967 	}
1968 	return 1;
1969 }
1970 
1971 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1972 		unsigned long haddr)
1973 {
1974 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1975 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1976 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1977 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1978 
1979 	count_vm_event(THP_SPLIT_PUD);
1980 
1981 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1982 }
1983 
1984 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1985 		unsigned long address)
1986 {
1987 	spinlock_t *ptl;
1988 	struct mmu_notifier_range range;
1989 
1990 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1991 				address & HPAGE_PUD_MASK,
1992 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1993 	mmu_notifier_invalidate_range_start(&range);
1994 	ptl = pud_lock(vma->vm_mm, pud);
1995 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1996 		goto out;
1997 	__split_huge_pud_locked(vma, pud, range.start);
1998 
1999 out:
2000 	spin_unlock(ptl);
2001 	/*
2002 	 * No need to double call mmu_notifier->invalidate_range() callback as
2003 	 * the above pudp_huge_clear_flush_notify() did already call it.
2004 	 */
2005 	mmu_notifier_invalidate_range_only_end(&range);
2006 }
2007 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2008 
2009 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2010 		unsigned long haddr, pmd_t *pmd)
2011 {
2012 	struct mm_struct *mm = vma->vm_mm;
2013 	pgtable_t pgtable;
2014 	pmd_t _pmd;
2015 	int i;
2016 
2017 	/*
2018 	 * Leave pmd empty until pte is filled note that it is fine to delay
2019 	 * notification until mmu_notifier_invalidate_range_end() as we are
2020 	 * replacing a zero pmd write protected page with a zero pte write
2021 	 * protected page.
2022 	 *
2023 	 * See Documentation/mm/mmu_notifier.rst
2024 	 */
2025 	pmdp_huge_clear_flush(vma, haddr, pmd);
2026 
2027 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2028 	pmd_populate(mm, &_pmd, pgtable);
2029 
2030 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2031 		pte_t *pte, entry;
2032 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2033 		entry = pte_mkspecial(entry);
2034 		pte = pte_offset_map(&_pmd, haddr);
2035 		VM_BUG_ON(!pte_none(*pte));
2036 		set_pte_at(mm, haddr, pte, entry);
2037 		pte_unmap(pte);
2038 	}
2039 	smp_wmb(); /* make pte visible before pmd */
2040 	pmd_populate(mm, pmd, pgtable);
2041 }
2042 
2043 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2044 		unsigned long haddr, bool freeze)
2045 {
2046 	struct mm_struct *mm = vma->vm_mm;
2047 	struct page *page;
2048 	pgtable_t pgtable;
2049 	pmd_t old_pmd, _pmd;
2050 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2051 	bool anon_exclusive = false, dirty = false;
2052 	unsigned long addr;
2053 	int i;
2054 
2055 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2056 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2057 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2058 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2059 				&& !pmd_devmap(*pmd));
2060 
2061 	count_vm_event(THP_SPLIT_PMD);
2062 
2063 	if (!vma_is_anonymous(vma)) {
2064 		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2065 		/*
2066 		 * We are going to unmap this huge page. So
2067 		 * just go ahead and zap it
2068 		 */
2069 		if (arch_needs_pgtable_deposit())
2070 			zap_deposited_table(mm, pmd);
2071 		if (vma_is_special_huge(vma))
2072 			return;
2073 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2074 			swp_entry_t entry;
2075 
2076 			entry = pmd_to_swp_entry(old_pmd);
2077 			page = pfn_swap_entry_to_page(entry);
2078 		} else {
2079 			page = pmd_page(old_pmd);
2080 			if (!PageDirty(page) && pmd_dirty(old_pmd))
2081 				set_page_dirty(page);
2082 			if (!PageReferenced(page) && pmd_young(old_pmd))
2083 				SetPageReferenced(page);
2084 			page_remove_rmap(page, vma, true);
2085 			put_page(page);
2086 		}
2087 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2088 		return;
2089 	}
2090 
2091 	if (is_huge_zero_pmd(*pmd)) {
2092 		/*
2093 		 * FIXME: Do we want to invalidate secondary mmu by calling
2094 		 * mmu_notifier_invalidate_range() see comments below inside
2095 		 * __split_huge_pmd() ?
2096 		 *
2097 		 * We are going from a zero huge page write protected to zero
2098 		 * small page also write protected so it does not seems useful
2099 		 * to invalidate secondary mmu at this time.
2100 		 */
2101 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2102 	}
2103 
2104 	/*
2105 	 * Up to this point the pmd is present and huge and userland has the
2106 	 * whole access to the hugepage during the split (which happens in
2107 	 * place). If we overwrite the pmd with the not-huge version pointing
2108 	 * to the pte here (which of course we could if all CPUs were bug
2109 	 * free), userland could trigger a small page size TLB miss on the
2110 	 * small sized TLB while the hugepage TLB entry is still established in
2111 	 * the huge TLB. Some CPU doesn't like that.
2112 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2113 	 * 383 on page 105. Intel should be safe but is also warns that it's
2114 	 * only safe if the permission and cache attributes of the two entries
2115 	 * loaded in the two TLB is identical (which should be the case here).
2116 	 * But it is generally safer to never allow small and huge TLB entries
2117 	 * for the same virtual address to be loaded simultaneously. So instead
2118 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2119 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2120 	 * must remain set at all times on the pmd until the split is complete
2121 	 * for this pmd), then we flush the SMP TLB and finally we write the
2122 	 * non-huge version of the pmd entry with pmd_populate.
2123 	 */
2124 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2125 
2126 	pmd_migration = is_pmd_migration_entry(old_pmd);
2127 	if (unlikely(pmd_migration)) {
2128 		swp_entry_t entry;
2129 
2130 		entry = pmd_to_swp_entry(old_pmd);
2131 		page = pfn_swap_entry_to_page(entry);
2132 		write = is_writable_migration_entry(entry);
2133 		if (PageAnon(page))
2134 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2135 		young = is_migration_entry_young(entry);
2136 		dirty = is_migration_entry_dirty(entry);
2137 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2138 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2139 	} else {
2140 		page = pmd_page(old_pmd);
2141 		if (pmd_dirty(old_pmd)) {
2142 			dirty = true;
2143 			SetPageDirty(page);
2144 		}
2145 		write = pmd_write(old_pmd);
2146 		young = pmd_young(old_pmd);
2147 		soft_dirty = pmd_soft_dirty(old_pmd);
2148 		uffd_wp = pmd_uffd_wp(old_pmd);
2149 
2150 		VM_BUG_ON_PAGE(!page_count(page), page);
2151 		page_ref_add(page, HPAGE_PMD_NR - 1);
2152 
2153 		/*
2154 		 * Without "freeze", we'll simply split the PMD, propagating the
2155 		 * PageAnonExclusive() flag for each PTE by setting it for
2156 		 * each subpage -- no need to (temporarily) clear.
2157 		 *
2158 		 * With "freeze" we want to replace mapped pages by
2159 		 * migration entries right away. This is only possible if we
2160 		 * managed to clear PageAnonExclusive() -- see
2161 		 * set_pmd_migration_entry().
2162 		 *
2163 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2164 		 * only and let try_to_migrate_one() fail later.
2165 		 *
2166 		 * See page_try_share_anon_rmap(): invalidate PMD first.
2167 		 */
2168 		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2169 		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2170 			freeze = false;
2171 	}
2172 
2173 	/*
2174 	 * Withdraw the table only after we mark the pmd entry invalid.
2175 	 * This's critical for some architectures (Power).
2176 	 */
2177 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2178 	pmd_populate(mm, &_pmd, pgtable);
2179 
2180 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2181 		pte_t entry, *pte;
2182 		/*
2183 		 * Note that NUMA hinting access restrictions are not
2184 		 * transferred to avoid any possibility of altering
2185 		 * permissions across VMAs.
2186 		 */
2187 		if (freeze || pmd_migration) {
2188 			swp_entry_t swp_entry;
2189 			if (write)
2190 				swp_entry = make_writable_migration_entry(
2191 							page_to_pfn(page + i));
2192 			else if (anon_exclusive)
2193 				swp_entry = make_readable_exclusive_migration_entry(
2194 							page_to_pfn(page + i));
2195 			else
2196 				swp_entry = make_readable_migration_entry(
2197 							page_to_pfn(page + i));
2198 			if (young)
2199 				swp_entry = make_migration_entry_young(swp_entry);
2200 			if (dirty)
2201 				swp_entry = make_migration_entry_dirty(swp_entry);
2202 			entry = swp_entry_to_pte(swp_entry);
2203 			if (soft_dirty)
2204 				entry = pte_swp_mksoft_dirty(entry);
2205 			if (uffd_wp)
2206 				entry = pte_swp_mkuffd_wp(entry);
2207 		} else {
2208 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2209 			entry = maybe_mkwrite(entry, vma);
2210 			if (anon_exclusive)
2211 				SetPageAnonExclusive(page + i);
2212 			if (!write)
2213 				entry = pte_wrprotect(entry);
2214 			if (!young)
2215 				entry = pte_mkold(entry);
2216 			/*
2217 			 * NOTE: we don't do pte_mkdirty when dirty==true
2218 			 * because it breaks sparc64 which can sigsegv
2219 			 * random process.  Need to revisit when we figure
2220 			 * out what is special with sparc64.
2221 			 */
2222 			if (soft_dirty)
2223 				entry = pte_mksoft_dirty(entry);
2224 			if (uffd_wp)
2225 				entry = pte_mkuffd_wp(entry);
2226 		}
2227 		pte = pte_offset_map(&_pmd, addr);
2228 		BUG_ON(!pte_none(*pte));
2229 		set_pte_at(mm, addr, pte, entry);
2230 		if (!pmd_migration)
2231 			atomic_inc(&page[i]._mapcount);
2232 		pte_unmap(pte);
2233 	}
2234 
2235 	if (!pmd_migration) {
2236 		/*
2237 		 * Set PG_double_map before dropping compound_mapcount to avoid
2238 		 * false-negative page_mapped().
2239 		 */
2240 		if (compound_mapcount(page) > 1 &&
2241 		    !TestSetPageDoubleMap(page)) {
2242 			for (i = 0; i < HPAGE_PMD_NR; i++)
2243 				atomic_inc(&page[i]._mapcount);
2244 		}
2245 
2246 		lock_page_memcg(page);
2247 		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2248 			/* Last compound_mapcount is gone. */
2249 			__mod_lruvec_page_state(page, NR_ANON_THPS,
2250 						-HPAGE_PMD_NR);
2251 			if (TestClearPageDoubleMap(page)) {
2252 				/* No need in mapcount reference anymore */
2253 				for (i = 0; i < HPAGE_PMD_NR; i++)
2254 					atomic_dec(&page[i]._mapcount);
2255 			}
2256 		}
2257 		unlock_page_memcg(page);
2258 
2259 		/* Above is effectively page_remove_rmap(page, vma, true) */
2260 		munlock_vma_page(page, vma, true);
2261 	}
2262 
2263 	smp_wmb(); /* make pte visible before pmd */
2264 	pmd_populate(mm, pmd, pgtable);
2265 
2266 	if (freeze) {
2267 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2268 			page_remove_rmap(page + i, vma, false);
2269 			put_page(page + i);
2270 		}
2271 	}
2272 }
2273 
2274 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2275 		unsigned long address, bool freeze, struct folio *folio)
2276 {
2277 	spinlock_t *ptl;
2278 	struct mmu_notifier_range range;
2279 
2280 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2281 				address & HPAGE_PMD_MASK,
2282 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2283 	mmu_notifier_invalidate_range_start(&range);
2284 	ptl = pmd_lock(vma->vm_mm, pmd);
2285 
2286 	/*
2287 	 * If caller asks to setup a migration entry, we need a folio to check
2288 	 * pmd against. Otherwise we can end up replacing wrong folio.
2289 	 */
2290 	VM_BUG_ON(freeze && !folio);
2291 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2292 
2293 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2294 	    is_pmd_migration_entry(*pmd)) {
2295 		/*
2296 		 * It's safe to call pmd_page when folio is set because it's
2297 		 * guaranteed that pmd is present.
2298 		 */
2299 		if (folio && folio != page_folio(pmd_page(*pmd)))
2300 			goto out;
2301 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2302 	}
2303 
2304 out:
2305 	spin_unlock(ptl);
2306 	/*
2307 	 * No need to double call mmu_notifier->invalidate_range() callback.
2308 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2309 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2310 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2311 	 *    fault will trigger a flush_notify before pointing to a new page
2312 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2313 	 *    page in the meantime)
2314 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2315 	 *     to invalidate secondary tlb entry they are all still valid.
2316 	 *     any further changes to individual pte will notify. So no need
2317 	 *     to call mmu_notifier->invalidate_range()
2318 	 */
2319 	mmu_notifier_invalidate_range_only_end(&range);
2320 }
2321 
2322 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2323 		bool freeze, struct folio *folio)
2324 {
2325 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2326 
2327 	if (!pmd)
2328 		return;
2329 
2330 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2331 }
2332 
2333 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2334 {
2335 	/*
2336 	 * If the new address isn't hpage aligned and it could previously
2337 	 * contain an hugepage: check if we need to split an huge pmd.
2338 	 */
2339 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2340 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2341 			 ALIGN(address, HPAGE_PMD_SIZE)))
2342 		split_huge_pmd_address(vma, address, false, NULL);
2343 }
2344 
2345 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2346 			     unsigned long start,
2347 			     unsigned long end,
2348 			     long adjust_next)
2349 {
2350 	/* Check if we need to split start first. */
2351 	split_huge_pmd_if_needed(vma, start);
2352 
2353 	/* Check if we need to split end next. */
2354 	split_huge_pmd_if_needed(vma, end);
2355 
2356 	/*
2357 	 * If we're also updating the next vma vm_start,
2358 	 * check if we need to split it.
2359 	 */
2360 	if (adjust_next > 0) {
2361 		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2362 		unsigned long nstart = next->vm_start;
2363 		nstart += adjust_next;
2364 		split_huge_pmd_if_needed(next, nstart);
2365 	}
2366 }
2367 
2368 static void unmap_folio(struct folio *folio)
2369 {
2370 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2371 		TTU_SYNC;
2372 
2373 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2374 
2375 	/*
2376 	 * Anon pages need migration entries to preserve them, but file
2377 	 * pages can simply be left unmapped, then faulted back on demand.
2378 	 * If that is ever changed (perhaps for mlock), update remap_page().
2379 	 */
2380 	if (folio_test_anon(folio))
2381 		try_to_migrate(folio, ttu_flags);
2382 	else
2383 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2384 }
2385 
2386 static void remap_page(struct folio *folio, unsigned long nr)
2387 {
2388 	int i = 0;
2389 
2390 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2391 	if (!folio_test_anon(folio))
2392 		return;
2393 	for (;;) {
2394 		remove_migration_ptes(folio, folio, true);
2395 		i += folio_nr_pages(folio);
2396 		if (i >= nr)
2397 			break;
2398 		folio = folio_next(folio);
2399 	}
2400 }
2401 
2402 static void lru_add_page_tail(struct page *head, struct page *tail,
2403 		struct lruvec *lruvec, struct list_head *list)
2404 {
2405 	VM_BUG_ON_PAGE(!PageHead(head), head);
2406 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2407 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2408 	lockdep_assert_held(&lruvec->lru_lock);
2409 
2410 	if (list) {
2411 		/* page reclaim is reclaiming a huge page */
2412 		VM_WARN_ON(PageLRU(head));
2413 		get_page(tail);
2414 		list_add_tail(&tail->lru, list);
2415 	} else {
2416 		/* head is still on lru (and we have it frozen) */
2417 		VM_WARN_ON(!PageLRU(head));
2418 		if (PageUnevictable(tail))
2419 			tail->mlock_count = 0;
2420 		else
2421 			list_add_tail(&tail->lru, &head->lru);
2422 		SetPageLRU(tail);
2423 	}
2424 }
2425 
2426 static void __split_huge_page_tail(struct page *head, int tail,
2427 		struct lruvec *lruvec, struct list_head *list)
2428 {
2429 	struct page *page_tail = head + tail;
2430 
2431 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2432 
2433 	/*
2434 	 * Clone page flags before unfreezing refcount.
2435 	 *
2436 	 * After successful get_page_unless_zero() might follow flags change,
2437 	 * for example lock_page() which set PG_waiters.
2438 	 *
2439 	 * Note that for mapped sub-pages of an anonymous THP,
2440 	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2441 	 * the migration entry instead from where remap_page() will restore it.
2442 	 * We can still have PG_anon_exclusive set on effectively unmapped and
2443 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2444 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2445 	 */
2446 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2447 	page_tail->flags |= (head->flags &
2448 			((1L << PG_referenced) |
2449 			 (1L << PG_swapbacked) |
2450 			 (1L << PG_swapcache) |
2451 			 (1L << PG_mlocked) |
2452 			 (1L << PG_uptodate) |
2453 			 (1L << PG_active) |
2454 			 (1L << PG_workingset) |
2455 			 (1L << PG_locked) |
2456 			 (1L << PG_unevictable) |
2457 #ifdef CONFIG_64BIT
2458 			 (1L << PG_arch_2) |
2459 #endif
2460 			 (1L << PG_dirty) |
2461 			 LRU_GEN_MASK | LRU_REFS_MASK));
2462 
2463 	/* ->mapping in first tail page is compound_mapcount */
2464 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2465 			page_tail);
2466 	page_tail->mapping = head->mapping;
2467 	page_tail->index = head->index + tail;
2468 
2469 	/*
2470 	 * page->private should not be set in tail pages with the exception
2471 	 * of swap cache pages that store the swp_entry_t in tail pages.
2472 	 * Fix up and warn once if private is unexpectedly set.
2473 	 */
2474 	if (!folio_test_swapcache(page_folio(head))) {
2475 		VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail);
2476 		page_tail->private = 0;
2477 	}
2478 
2479 	/* Page flags must be visible before we make the page non-compound. */
2480 	smp_wmb();
2481 
2482 	/*
2483 	 * Clear PageTail before unfreezing page refcount.
2484 	 *
2485 	 * After successful get_page_unless_zero() might follow put_page()
2486 	 * which needs correct compound_head().
2487 	 */
2488 	clear_compound_head(page_tail);
2489 
2490 	/* Finally unfreeze refcount. Additional reference from page cache. */
2491 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2492 					  PageSwapCache(head)));
2493 
2494 	if (page_is_young(head))
2495 		set_page_young(page_tail);
2496 	if (page_is_idle(head))
2497 		set_page_idle(page_tail);
2498 
2499 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2500 
2501 	/*
2502 	 * always add to the tail because some iterators expect new
2503 	 * pages to show after the currently processed elements - e.g.
2504 	 * migrate_pages
2505 	 */
2506 	lru_add_page_tail(head, page_tail, lruvec, list);
2507 }
2508 
2509 static void __split_huge_page(struct page *page, struct list_head *list,
2510 		pgoff_t end)
2511 {
2512 	struct folio *folio = page_folio(page);
2513 	struct page *head = &folio->page;
2514 	struct lruvec *lruvec;
2515 	struct address_space *swap_cache = NULL;
2516 	unsigned long offset = 0;
2517 	unsigned int nr = thp_nr_pages(head);
2518 	int i;
2519 
2520 	/* complete memcg works before add pages to LRU */
2521 	split_page_memcg(head, nr);
2522 
2523 	if (PageAnon(head) && PageSwapCache(head)) {
2524 		swp_entry_t entry = { .val = page_private(head) };
2525 
2526 		offset = swp_offset(entry);
2527 		swap_cache = swap_address_space(entry);
2528 		xa_lock(&swap_cache->i_pages);
2529 	}
2530 
2531 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2532 	lruvec = folio_lruvec_lock(folio);
2533 
2534 	ClearPageHasHWPoisoned(head);
2535 
2536 	for (i = nr - 1; i >= 1; i--) {
2537 		__split_huge_page_tail(head, i, lruvec, list);
2538 		/* Some pages can be beyond EOF: drop them from page cache */
2539 		if (head[i].index >= end) {
2540 			struct folio *tail = page_folio(head + i);
2541 
2542 			if (shmem_mapping(head->mapping))
2543 				shmem_uncharge(head->mapping->host, 1);
2544 			else if (folio_test_clear_dirty(tail))
2545 				folio_account_cleaned(tail,
2546 					inode_to_wb(folio->mapping->host));
2547 			__filemap_remove_folio(tail, NULL);
2548 			folio_put(tail);
2549 		} else if (!PageAnon(page)) {
2550 			__xa_store(&head->mapping->i_pages, head[i].index,
2551 					head + i, 0);
2552 		} else if (swap_cache) {
2553 			__xa_store(&swap_cache->i_pages, offset + i,
2554 					head + i, 0);
2555 		}
2556 	}
2557 
2558 	ClearPageCompound(head);
2559 	unlock_page_lruvec(lruvec);
2560 	/* Caller disabled irqs, so they are still disabled here */
2561 
2562 	split_page_owner(head, nr);
2563 
2564 	/* See comment in __split_huge_page_tail() */
2565 	if (PageAnon(head)) {
2566 		/* Additional pin to swap cache */
2567 		if (PageSwapCache(head)) {
2568 			page_ref_add(head, 2);
2569 			xa_unlock(&swap_cache->i_pages);
2570 		} else {
2571 			page_ref_inc(head);
2572 		}
2573 	} else {
2574 		/* Additional pin to page cache */
2575 		page_ref_add(head, 2);
2576 		xa_unlock(&head->mapping->i_pages);
2577 	}
2578 	local_irq_enable();
2579 
2580 	remap_page(folio, nr);
2581 
2582 	if (PageSwapCache(head)) {
2583 		swp_entry_t entry = { .val = page_private(head) };
2584 
2585 		split_swap_cluster(entry);
2586 	}
2587 
2588 	for (i = 0; i < nr; i++) {
2589 		struct page *subpage = head + i;
2590 		if (subpage == page)
2591 			continue;
2592 		unlock_page(subpage);
2593 
2594 		/*
2595 		 * Subpages may be freed if there wasn't any mapping
2596 		 * like if add_to_swap() is running on a lru page that
2597 		 * had its mapping zapped. And freeing these pages
2598 		 * requires taking the lru_lock so we do the put_page
2599 		 * of the tail pages after the split is complete.
2600 		 */
2601 		free_page_and_swap_cache(subpage);
2602 	}
2603 }
2604 
2605 /* Racy check whether the huge page can be split */
2606 bool can_split_folio(struct folio *folio, int *pextra_pins)
2607 {
2608 	int extra_pins;
2609 
2610 	/* Additional pins from page cache */
2611 	if (folio_test_anon(folio))
2612 		extra_pins = folio_test_swapcache(folio) ?
2613 				folio_nr_pages(folio) : 0;
2614 	else
2615 		extra_pins = folio_nr_pages(folio);
2616 	if (pextra_pins)
2617 		*pextra_pins = extra_pins;
2618 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2619 }
2620 
2621 /*
2622  * This function splits huge page into normal pages. @page can point to any
2623  * subpage of huge page to split. Split doesn't change the position of @page.
2624  *
2625  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2626  * The huge page must be locked.
2627  *
2628  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2629  *
2630  * Both head page and tail pages will inherit mapping, flags, and so on from
2631  * the hugepage.
2632  *
2633  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2634  * they are not mapped.
2635  *
2636  * Returns 0 if the hugepage is split successfully.
2637  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2638  * us.
2639  */
2640 int split_huge_page_to_list(struct page *page, struct list_head *list)
2641 {
2642 	struct folio *folio = page_folio(page);
2643 	struct deferred_split *ds_queue = get_deferred_split_queue(&folio->page);
2644 	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2645 	struct anon_vma *anon_vma = NULL;
2646 	struct address_space *mapping = NULL;
2647 	int extra_pins, ret;
2648 	pgoff_t end;
2649 	bool is_hzp;
2650 
2651 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2652 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2653 
2654 	is_hzp = is_huge_zero_page(&folio->page);
2655 	VM_WARN_ON_ONCE_FOLIO(is_hzp, folio);
2656 	if (is_hzp)
2657 		return -EBUSY;
2658 
2659 	if (folio_test_writeback(folio))
2660 		return -EBUSY;
2661 
2662 	if (folio_test_anon(folio)) {
2663 		/*
2664 		 * The caller does not necessarily hold an mmap_lock that would
2665 		 * prevent the anon_vma disappearing so we first we take a
2666 		 * reference to it and then lock the anon_vma for write. This
2667 		 * is similar to folio_lock_anon_vma_read except the write lock
2668 		 * is taken to serialise against parallel split or collapse
2669 		 * operations.
2670 		 */
2671 		anon_vma = folio_get_anon_vma(folio);
2672 		if (!anon_vma) {
2673 			ret = -EBUSY;
2674 			goto out;
2675 		}
2676 		end = -1;
2677 		mapping = NULL;
2678 		anon_vma_lock_write(anon_vma);
2679 	} else {
2680 		gfp_t gfp;
2681 
2682 		mapping = folio->mapping;
2683 
2684 		/* Truncated ? */
2685 		if (!mapping) {
2686 			ret = -EBUSY;
2687 			goto out;
2688 		}
2689 
2690 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2691 							GFP_RECLAIM_MASK);
2692 
2693 		if (folio_test_private(folio) &&
2694 				!filemap_release_folio(folio, gfp)) {
2695 			ret = -EBUSY;
2696 			goto out;
2697 		}
2698 
2699 		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2700 		if (xas_error(&xas)) {
2701 			ret = xas_error(&xas);
2702 			goto out;
2703 		}
2704 
2705 		anon_vma = NULL;
2706 		i_mmap_lock_read(mapping);
2707 
2708 		/*
2709 		 *__split_huge_page() may need to trim off pages beyond EOF:
2710 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2711 		 * which cannot be nested inside the page tree lock. So note
2712 		 * end now: i_size itself may be changed at any moment, but
2713 		 * folio lock is good enough to serialize the trimming.
2714 		 */
2715 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2716 		if (shmem_mapping(mapping))
2717 			end = shmem_fallocend(mapping->host, end);
2718 	}
2719 
2720 	/*
2721 	 * Racy check if we can split the page, before unmap_folio() will
2722 	 * split PMDs
2723 	 */
2724 	if (!can_split_folio(folio, &extra_pins)) {
2725 		ret = -EBUSY;
2726 		goto out_unlock;
2727 	}
2728 
2729 	unmap_folio(folio);
2730 
2731 	/* block interrupt reentry in xa_lock and spinlock */
2732 	local_irq_disable();
2733 	if (mapping) {
2734 		/*
2735 		 * Check if the folio is present in page cache.
2736 		 * We assume all tail are present too, if folio is there.
2737 		 */
2738 		xas_lock(&xas);
2739 		xas_reset(&xas);
2740 		if (xas_load(&xas) != folio)
2741 			goto fail;
2742 	}
2743 
2744 	/* Prevent deferred_split_scan() touching ->_refcount */
2745 	spin_lock(&ds_queue->split_queue_lock);
2746 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
2747 		if (!list_empty(page_deferred_list(&folio->page))) {
2748 			ds_queue->split_queue_len--;
2749 			list_del(page_deferred_list(&folio->page));
2750 		}
2751 		spin_unlock(&ds_queue->split_queue_lock);
2752 		if (mapping) {
2753 			int nr = folio_nr_pages(folio);
2754 
2755 			xas_split(&xas, folio, folio_order(folio));
2756 			if (folio_test_swapbacked(folio)) {
2757 				__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS,
2758 							-nr);
2759 			} else {
2760 				__lruvec_stat_mod_folio(folio, NR_FILE_THPS,
2761 							-nr);
2762 				filemap_nr_thps_dec(mapping);
2763 			}
2764 		}
2765 
2766 		__split_huge_page(page, list, end);
2767 		ret = 0;
2768 	} else {
2769 		spin_unlock(&ds_queue->split_queue_lock);
2770 fail:
2771 		if (mapping)
2772 			xas_unlock(&xas);
2773 		local_irq_enable();
2774 		remap_page(folio, folio_nr_pages(folio));
2775 		ret = -EBUSY;
2776 	}
2777 
2778 out_unlock:
2779 	if (anon_vma) {
2780 		anon_vma_unlock_write(anon_vma);
2781 		put_anon_vma(anon_vma);
2782 	}
2783 	if (mapping)
2784 		i_mmap_unlock_read(mapping);
2785 out:
2786 	xas_destroy(&xas);
2787 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2788 	return ret;
2789 }
2790 
2791 void free_transhuge_page(struct page *page)
2792 {
2793 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2794 	unsigned long flags;
2795 
2796 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2797 	if (!list_empty(page_deferred_list(page))) {
2798 		ds_queue->split_queue_len--;
2799 		list_del(page_deferred_list(page));
2800 	}
2801 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2802 	free_compound_page(page);
2803 }
2804 
2805 void deferred_split_huge_page(struct page *page)
2806 {
2807 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2808 #ifdef CONFIG_MEMCG
2809 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2810 #endif
2811 	unsigned long flags;
2812 
2813 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2814 
2815 	/*
2816 	 * The try_to_unmap() in page reclaim path might reach here too,
2817 	 * this may cause a race condition to corrupt deferred split queue.
2818 	 * And, if page reclaim is already handling the same page, it is
2819 	 * unnecessary to handle it again in shrinker.
2820 	 *
2821 	 * Check PageSwapCache to determine if the page is being
2822 	 * handled by page reclaim since THP swap would add the page into
2823 	 * swap cache before calling try_to_unmap().
2824 	 */
2825 	if (PageSwapCache(page))
2826 		return;
2827 
2828 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2829 	if (list_empty(page_deferred_list(page))) {
2830 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2831 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2832 		ds_queue->split_queue_len++;
2833 #ifdef CONFIG_MEMCG
2834 		if (memcg)
2835 			set_shrinker_bit(memcg, page_to_nid(page),
2836 					 deferred_split_shrinker.id);
2837 #endif
2838 	}
2839 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2840 }
2841 
2842 static unsigned long deferred_split_count(struct shrinker *shrink,
2843 		struct shrink_control *sc)
2844 {
2845 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2846 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2847 
2848 #ifdef CONFIG_MEMCG
2849 	if (sc->memcg)
2850 		ds_queue = &sc->memcg->deferred_split_queue;
2851 #endif
2852 	return READ_ONCE(ds_queue->split_queue_len);
2853 }
2854 
2855 static unsigned long deferred_split_scan(struct shrinker *shrink,
2856 		struct shrink_control *sc)
2857 {
2858 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2859 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2860 	unsigned long flags;
2861 	LIST_HEAD(list), *pos, *next;
2862 	struct page *page;
2863 	int split = 0;
2864 
2865 #ifdef CONFIG_MEMCG
2866 	if (sc->memcg)
2867 		ds_queue = &sc->memcg->deferred_split_queue;
2868 #endif
2869 
2870 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2871 	/* Take pin on all head pages to avoid freeing them under us */
2872 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2873 		page = list_entry((void *)pos, struct page, deferred_list);
2874 		page = compound_head(page);
2875 		if (get_page_unless_zero(page)) {
2876 			list_move(page_deferred_list(page), &list);
2877 		} else {
2878 			/* We lost race with put_compound_page() */
2879 			list_del_init(page_deferred_list(page));
2880 			ds_queue->split_queue_len--;
2881 		}
2882 		if (!--sc->nr_to_scan)
2883 			break;
2884 	}
2885 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2886 
2887 	list_for_each_safe(pos, next, &list) {
2888 		page = list_entry((void *)pos, struct page, deferred_list);
2889 		if (!trylock_page(page))
2890 			goto next;
2891 		/* split_huge_page() removes page from list on success */
2892 		if (!split_huge_page(page))
2893 			split++;
2894 		unlock_page(page);
2895 next:
2896 		put_page(page);
2897 	}
2898 
2899 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2900 	list_splice_tail(&list, &ds_queue->split_queue);
2901 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2902 
2903 	/*
2904 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2905 	 * This can happen if pages were freed under us.
2906 	 */
2907 	if (!split && list_empty(&ds_queue->split_queue))
2908 		return SHRINK_STOP;
2909 	return split;
2910 }
2911 
2912 static struct shrinker deferred_split_shrinker = {
2913 	.count_objects = deferred_split_count,
2914 	.scan_objects = deferred_split_scan,
2915 	.seeks = DEFAULT_SEEKS,
2916 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2917 		 SHRINKER_NONSLAB,
2918 };
2919 
2920 #ifdef CONFIG_DEBUG_FS
2921 static void split_huge_pages_all(void)
2922 {
2923 	struct zone *zone;
2924 	struct page *page;
2925 	unsigned long pfn, max_zone_pfn;
2926 	unsigned long total = 0, split = 0;
2927 
2928 	pr_debug("Split all THPs\n");
2929 	for_each_zone(zone) {
2930 		if (!managed_zone(zone))
2931 			continue;
2932 		max_zone_pfn = zone_end_pfn(zone);
2933 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2934 			int nr_pages;
2935 
2936 			page = pfn_to_online_page(pfn);
2937 			if (!page || !get_page_unless_zero(page))
2938 				continue;
2939 
2940 			if (zone != page_zone(page))
2941 				goto next;
2942 
2943 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2944 				goto next;
2945 
2946 			total++;
2947 			lock_page(page);
2948 			nr_pages = thp_nr_pages(page);
2949 			if (!split_huge_page(page))
2950 				split++;
2951 			pfn += nr_pages - 1;
2952 			unlock_page(page);
2953 next:
2954 			put_page(page);
2955 			cond_resched();
2956 		}
2957 	}
2958 
2959 	pr_debug("%lu of %lu THP split\n", split, total);
2960 }
2961 
2962 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2963 {
2964 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2965 		    is_vm_hugetlb_page(vma);
2966 }
2967 
2968 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2969 				unsigned long vaddr_end)
2970 {
2971 	int ret = 0;
2972 	struct task_struct *task;
2973 	struct mm_struct *mm;
2974 	unsigned long total = 0, split = 0;
2975 	unsigned long addr;
2976 
2977 	vaddr_start &= PAGE_MASK;
2978 	vaddr_end &= PAGE_MASK;
2979 
2980 	/* Find the task_struct from pid */
2981 	rcu_read_lock();
2982 	task = find_task_by_vpid(pid);
2983 	if (!task) {
2984 		rcu_read_unlock();
2985 		ret = -ESRCH;
2986 		goto out;
2987 	}
2988 	get_task_struct(task);
2989 	rcu_read_unlock();
2990 
2991 	/* Find the mm_struct */
2992 	mm = get_task_mm(task);
2993 	put_task_struct(task);
2994 
2995 	if (!mm) {
2996 		ret = -EINVAL;
2997 		goto out;
2998 	}
2999 
3000 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3001 		 pid, vaddr_start, vaddr_end);
3002 
3003 	mmap_read_lock(mm);
3004 	/*
3005 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3006 	 * table filled with PTE-mapped THPs, each of which is distinct.
3007 	 */
3008 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3009 		struct vm_area_struct *vma = vma_lookup(mm, addr);
3010 		struct page *page;
3011 
3012 		if (!vma)
3013 			break;
3014 
3015 		/* skip special VMA and hugetlb VMA */
3016 		if (vma_not_suitable_for_thp_split(vma)) {
3017 			addr = vma->vm_end;
3018 			continue;
3019 		}
3020 
3021 		/* FOLL_DUMP to ignore special (like zero) pages */
3022 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3023 
3024 		if (IS_ERR_OR_NULL(page))
3025 			continue;
3026 
3027 		if (!is_transparent_hugepage(page))
3028 			goto next;
3029 
3030 		total++;
3031 		if (!can_split_folio(page_folio(page), NULL))
3032 			goto next;
3033 
3034 		if (!trylock_page(page))
3035 			goto next;
3036 
3037 		if (!split_huge_page(page))
3038 			split++;
3039 
3040 		unlock_page(page);
3041 next:
3042 		put_page(page);
3043 		cond_resched();
3044 	}
3045 	mmap_read_unlock(mm);
3046 	mmput(mm);
3047 
3048 	pr_debug("%lu of %lu THP split\n", split, total);
3049 
3050 out:
3051 	return ret;
3052 }
3053 
3054 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3055 				pgoff_t off_end)
3056 {
3057 	struct filename *file;
3058 	struct file *candidate;
3059 	struct address_space *mapping;
3060 	int ret = -EINVAL;
3061 	pgoff_t index;
3062 	int nr_pages = 1;
3063 	unsigned long total = 0, split = 0;
3064 
3065 	file = getname_kernel(file_path);
3066 	if (IS_ERR(file))
3067 		return ret;
3068 
3069 	candidate = file_open_name(file, O_RDONLY, 0);
3070 	if (IS_ERR(candidate))
3071 		goto out;
3072 
3073 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3074 		 file_path, off_start, off_end);
3075 
3076 	mapping = candidate->f_mapping;
3077 
3078 	for (index = off_start; index < off_end; index += nr_pages) {
3079 		struct page *fpage = pagecache_get_page(mapping, index,
3080 						FGP_ENTRY | FGP_HEAD, 0);
3081 
3082 		nr_pages = 1;
3083 		if (xa_is_value(fpage) || !fpage)
3084 			continue;
3085 
3086 		if (!is_transparent_hugepage(fpage))
3087 			goto next;
3088 
3089 		total++;
3090 		nr_pages = thp_nr_pages(fpage);
3091 
3092 		if (!trylock_page(fpage))
3093 			goto next;
3094 
3095 		if (!split_huge_page(fpage))
3096 			split++;
3097 
3098 		unlock_page(fpage);
3099 next:
3100 		put_page(fpage);
3101 		cond_resched();
3102 	}
3103 
3104 	filp_close(candidate, NULL);
3105 	ret = 0;
3106 
3107 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3108 out:
3109 	putname(file);
3110 	return ret;
3111 }
3112 
3113 #define MAX_INPUT_BUF_SZ 255
3114 
3115 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3116 				size_t count, loff_t *ppops)
3117 {
3118 	static DEFINE_MUTEX(split_debug_mutex);
3119 	ssize_t ret;
3120 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3121 	char input_buf[MAX_INPUT_BUF_SZ];
3122 	int pid;
3123 	unsigned long vaddr_start, vaddr_end;
3124 
3125 	ret = mutex_lock_interruptible(&split_debug_mutex);
3126 	if (ret)
3127 		return ret;
3128 
3129 	ret = -EFAULT;
3130 
3131 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3132 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3133 		goto out;
3134 
3135 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3136 
3137 	if (input_buf[0] == '/') {
3138 		char *tok;
3139 		char *buf = input_buf;
3140 		char file_path[MAX_INPUT_BUF_SZ];
3141 		pgoff_t off_start = 0, off_end = 0;
3142 		size_t input_len = strlen(input_buf);
3143 
3144 		tok = strsep(&buf, ",");
3145 		if (tok) {
3146 			strcpy(file_path, tok);
3147 		} else {
3148 			ret = -EINVAL;
3149 			goto out;
3150 		}
3151 
3152 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3153 		if (ret != 2) {
3154 			ret = -EINVAL;
3155 			goto out;
3156 		}
3157 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3158 		if (!ret)
3159 			ret = input_len;
3160 
3161 		goto out;
3162 	}
3163 
3164 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3165 	if (ret == 1 && pid == 1) {
3166 		split_huge_pages_all();
3167 		ret = strlen(input_buf);
3168 		goto out;
3169 	} else if (ret != 3) {
3170 		ret = -EINVAL;
3171 		goto out;
3172 	}
3173 
3174 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3175 	if (!ret)
3176 		ret = strlen(input_buf);
3177 out:
3178 	mutex_unlock(&split_debug_mutex);
3179 	return ret;
3180 
3181 }
3182 
3183 static const struct file_operations split_huge_pages_fops = {
3184 	.owner	 = THIS_MODULE,
3185 	.write	 = split_huge_pages_write,
3186 	.llseek  = no_llseek,
3187 };
3188 
3189 static int __init split_huge_pages_debugfs(void)
3190 {
3191 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3192 			    &split_huge_pages_fops);
3193 	return 0;
3194 }
3195 late_initcall(split_huge_pages_debugfs);
3196 #endif
3197 
3198 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3199 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3200 		struct page *page)
3201 {
3202 	struct vm_area_struct *vma = pvmw->vma;
3203 	struct mm_struct *mm = vma->vm_mm;
3204 	unsigned long address = pvmw->address;
3205 	bool anon_exclusive;
3206 	pmd_t pmdval;
3207 	swp_entry_t entry;
3208 	pmd_t pmdswp;
3209 
3210 	if (!(pvmw->pmd && !pvmw->pte))
3211 		return 0;
3212 
3213 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3214 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3215 
3216 	/* See page_try_share_anon_rmap(): invalidate PMD first. */
3217 	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3218 	if (anon_exclusive && page_try_share_anon_rmap(page)) {
3219 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3220 		return -EBUSY;
3221 	}
3222 
3223 	if (pmd_dirty(pmdval))
3224 		set_page_dirty(page);
3225 	if (pmd_write(pmdval))
3226 		entry = make_writable_migration_entry(page_to_pfn(page));
3227 	else if (anon_exclusive)
3228 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3229 	else
3230 		entry = make_readable_migration_entry(page_to_pfn(page));
3231 	if (pmd_young(pmdval))
3232 		entry = make_migration_entry_young(entry);
3233 	if (pmd_dirty(pmdval))
3234 		entry = make_migration_entry_dirty(entry);
3235 	pmdswp = swp_entry_to_pmd(entry);
3236 	if (pmd_soft_dirty(pmdval))
3237 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3238 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3239 	page_remove_rmap(page, vma, true);
3240 	put_page(page);
3241 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3242 
3243 	return 0;
3244 }
3245 
3246 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3247 {
3248 	struct vm_area_struct *vma = pvmw->vma;
3249 	struct mm_struct *mm = vma->vm_mm;
3250 	unsigned long address = pvmw->address;
3251 	unsigned long haddr = address & HPAGE_PMD_MASK;
3252 	pmd_t pmde;
3253 	swp_entry_t entry;
3254 
3255 	if (!(pvmw->pmd && !pvmw->pte))
3256 		return;
3257 
3258 	entry = pmd_to_swp_entry(*pvmw->pmd);
3259 	get_page(new);
3260 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3261 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3262 		pmde = pmd_mksoft_dirty(pmde);
3263 	if (is_writable_migration_entry(entry))
3264 		pmde = maybe_pmd_mkwrite(pmde, vma);
3265 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3266 		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3267 	if (!is_migration_entry_young(entry))
3268 		pmde = pmd_mkold(pmde);
3269 	/* NOTE: this may contain setting soft-dirty on some archs */
3270 	if (PageDirty(new) && is_migration_entry_dirty(entry))
3271 		pmde = pmd_mkdirty(pmde);
3272 
3273 	if (PageAnon(new)) {
3274 		rmap_t rmap_flags = RMAP_COMPOUND;
3275 
3276 		if (!is_readable_migration_entry(entry))
3277 			rmap_flags |= RMAP_EXCLUSIVE;
3278 
3279 		page_add_anon_rmap(new, vma, haddr, rmap_flags);
3280 	} else {
3281 		page_add_file_rmap(new, vma, true);
3282 	}
3283 	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3284 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3285 
3286 	/* No need to invalidate - it was non-present before */
3287 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3288 	trace_remove_migration_pmd(address, pmd_val(pmde));
3289 }
3290 #endif
3291