1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/coredump.h> 12 #include <linux/sched/numa_balancing.h> 13 #include <linux/highmem.h> 14 #include <linux/hugetlb.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/rmap.h> 17 #include <linux/swap.h> 18 #include <linux/shrinker.h> 19 #include <linux/mm_inline.h> 20 #include <linux/swapops.h> 21 #include <linux/backing-dev.h> 22 #include <linux/dax.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/oom.h> 36 #include <linux/numa.h> 37 #include <linux/page_owner.h> 38 #include <linux/sched/sysctl.h> 39 40 #include <asm/tlb.h> 41 #include <asm/pgalloc.h> 42 #include "internal.h" 43 #include "swap.h" 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/thp.h> 47 48 /* 49 * By default, transparent hugepage support is disabled in order to avoid 50 * risking an increased memory footprint for applications that are not 51 * guaranteed to benefit from it. When transparent hugepage support is 52 * enabled, it is for all mappings, and khugepaged scans all mappings. 53 * Defrag is invoked by khugepaged hugepage allocations and by page faults 54 * for all hugepage allocations. 55 */ 56 unsigned long transparent_hugepage_flags __read_mostly = 57 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 58 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 59 #endif 60 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 61 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 62 #endif 63 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 64 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 65 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 66 67 static struct shrinker deferred_split_shrinker; 68 69 static atomic_t huge_zero_refcount; 70 struct page *huge_zero_page __read_mostly; 71 unsigned long huge_zero_pfn __read_mostly = ~0UL; 72 73 bool transparent_hugepage_active(struct vm_area_struct *vma) 74 { 75 /* The addr is used to check if the vma size fits */ 76 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE; 77 78 if (!transhuge_vma_suitable(vma, addr)) 79 return false; 80 if (vma_is_anonymous(vma)) 81 return __transparent_hugepage_enabled(vma); 82 if (vma_is_shmem(vma)) 83 return shmem_huge_enabled(vma); 84 if (transhuge_vma_enabled(vma, vma->vm_flags) && file_thp_enabled(vma)) 85 return true; 86 87 return false; 88 } 89 90 static bool get_huge_zero_page(void) 91 { 92 struct page *zero_page; 93 retry: 94 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 95 return true; 96 97 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 98 HPAGE_PMD_ORDER); 99 if (!zero_page) { 100 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 101 return false; 102 } 103 count_vm_event(THP_ZERO_PAGE_ALLOC); 104 preempt_disable(); 105 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 106 preempt_enable(); 107 __free_pages(zero_page, compound_order(zero_page)); 108 goto retry; 109 } 110 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page)); 111 112 /* We take additional reference here. It will be put back by shrinker */ 113 atomic_set(&huge_zero_refcount, 2); 114 preempt_enable(); 115 return true; 116 } 117 118 static void put_huge_zero_page(void) 119 { 120 /* 121 * Counter should never go to zero here. Only shrinker can put 122 * last reference. 123 */ 124 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 125 } 126 127 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 128 { 129 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 130 return READ_ONCE(huge_zero_page); 131 132 if (!get_huge_zero_page()) 133 return NULL; 134 135 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 136 put_huge_zero_page(); 137 138 return READ_ONCE(huge_zero_page); 139 } 140 141 void mm_put_huge_zero_page(struct mm_struct *mm) 142 { 143 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 144 put_huge_zero_page(); 145 } 146 147 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 148 struct shrink_control *sc) 149 { 150 /* we can free zero page only if last reference remains */ 151 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 152 } 153 154 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 155 struct shrink_control *sc) 156 { 157 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 158 struct page *zero_page = xchg(&huge_zero_page, NULL); 159 BUG_ON(zero_page == NULL); 160 WRITE_ONCE(huge_zero_pfn, ~0UL); 161 __free_pages(zero_page, compound_order(zero_page)); 162 return HPAGE_PMD_NR; 163 } 164 165 return 0; 166 } 167 168 static struct shrinker huge_zero_page_shrinker = { 169 .count_objects = shrink_huge_zero_page_count, 170 .scan_objects = shrink_huge_zero_page_scan, 171 .seeks = DEFAULT_SEEKS, 172 }; 173 174 #ifdef CONFIG_SYSFS 175 static ssize_t enabled_show(struct kobject *kobj, 176 struct kobj_attribute *attr, char *buf) 177 { 178 const char *output; 179 180 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 181 output = "[always] madvise never"; 182 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 183 &transparent_hugepage_flags)) 184 output = "always [madvise] never"; 185 else 186 output = "always madvise [never]"; 187 188 return sysfs_emit(buf, "%s\n", output); 189 } 190 191 static ssize_t enabled_store(struct kobject *kobj, 192 struct kobj_attribute *attr, 193 const char *buf, size_t count) 194 { 195 ssize_t ret = count; 196 197 if (sysfs_streq(buf, "always")) { 198 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 199 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 200 } else if (sysfs_streq(buf, "madvise")) { 201 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 202 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 203 } else if (sysfs_streq(buf, "never")) { 204 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 205 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 206 } else 207 ret = -EINVAL; 208 209 if (ret > 0) { 210 int err = start_stop_khugepaged(); 211 if (err) 212 ret = err; 213 } 214 return ret; 215 } 216 static struct kobj_attribute enabled_attr = 217 __ATTR(enabled, 0644, enabled_show, enabled_store); 218 219 ssize_t single_hugepage_flag_show(struct kobject *kobj, 220 struct kobj_attribute *attr, char *buf, 221 enum transparent_hugepage_flag flag) 222 { 223 return sysfs_emit(buf, "%d\n", 224 !!test_bit(flag, &transparent_hugepage_flags)); 225 } 226 227 ssize_t single_hugepage_flag_store(struct kobject *kobj, 228 struct kobj_attribute *attr, 229 const char *buf, size_t count, 230 enum transparent_hugepage_flag flag) 231 { 232 unsigned long value; 233 int ret; 234 235 ret = kstrtoul(buf, 10, &value); 236 if (ret < 0) 237 return ret; 238 if (value > 1) 239 return -EINVAL; 240 241 if (value) 242 set_bit(flag, &transparent_hugepage_flags); 243 else 244 clear_bit(flag, &transparent_hugepage_flags); 245 246 return count; 247 } 248 249 static ssize_t defrag_show(struct kobject *kobj, 250 struct kobj_attribute *attr, char *buf) 251 { 252 const char *output; 253 254 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 255 &transparent_hugepage_flags)) 256 output = "[always] defer defer+madvise madvise never"; 257 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 258 &transparent_hugepage_flags)) 259 output = "always [defer] defer+madvise madvise never"; 260 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 261 &transparent_hugepage_flags)) 262 output = "always defer [defer+madvise] madvise never"; 263 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 264 &transparent_hugepage_flags)) 265 output = "always defer defer+madvise [madvise] never"; 266 else 267 output = "always defer defer+madvise madvise [never]"; 268 269 return sysfs_emit(buf, "%s\n", output); 270 } 271 272 static ssize_t defrag_store(struct kobject *kobj, 273 struct kobj_attribute *attr, 274 const char *buf, size_t count) 275 { 276 if (sysfs_streq(buf, "always")) { 277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 280 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 281 } else if (sysfs_streq(buf, "defer+madvise")) { 282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 283 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 284 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 285 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 286 } else if (sysfs_streq(buf, "defer")) { 287 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 289 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 290 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 291 } else if (sysfs_streq(buf, "madvise")) { 292 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 293 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 294 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 295 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 296 } else if (sysfs_streq(buf, "never")) { 297 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 298 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 299 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 300 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 301 } else 302 return -EINVAL; 303 304 return count; 305 } 306 static struct kobj_attribute defrag_attr = 307 __ATTR(defrag, 0644, defrag_show, defrag_store); 308 309 static ssize_t use_zero_page_show(struct kobject *kobj, 310 struct kobj_attribute *attr, char *buf) 311 { 312 return single_hugepage_flag_show(kobj, attr, buf, 313 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 314 } 315 static ssize_t use_zero_page_store(struct kobject *kobj, 316 struct kobj_attribute *attr, const char *buf, size_t count) 317 { 318 return single_hugepage_flag_store(kobj, attr, buf, count, 319 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 320 } 321 static struct kobj_attribute use_zero_page_attr = 322 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 323 324 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 325 struct kobj_attribute *attr, char *buf) 326 { 327 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 328 } 329 static struct kobj_attribute hpage_pmd_size_attr = 330 __ATTR_RO(hpage_pmd_size); 331 332 static struct attribute *hugepage_attr[] = { 333 &enabled_attr.attr, 334 &defrag_attr.attr, 335 &use_zero_page_attr.attr, 336 &hpage_pmd_size_attr.attr, 337 #ifdef CONFIG_SHMEM 338 &shmem_enabled_attr.attr, 339 #endif 340 NULL, 341 }; 342 343 static const struct attribute_group hugepage_attr_group = { 344 .attrs = hugepage_attr, 345 }; 346 347 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 348 { 349 int err; 350 351 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 352 if (unlikely(!*hugepage_kobj)) { 353 pr_err("failed to create transparent hugepage kobject\n"); 354 return -ENOMEM; 355 } 356 357 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 358 if (err) { 359 pr_err("failed to register transparent hugepage group\n"); 360 goto delete_obj; 361 } 362 363 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 364 if (err) { 365 pr_err("failed to register transparent hugepage group\n"); 366 goto remove_hp_group; 367 } 368 369 return 0; 370 371 remove_hp_group: 372 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 373 delete_obj: 374 kobject_put(*hugepage_kobj); 375 return err; 376 } 377 378 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 379 { 380 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 381 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 382 kobject_put(hugepage_kobj); 383 } 384 #else 385 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 386 { 387 return 0; 388 } 389 390 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 391 { 392 } 393 #endif /* CONFIG_SYSFS */ 394 395 static int __init hugepage_init(void) 396 { 397 int err; 398 struct kobject *hugepage_kobj; 399 400 if (!has_transparent_hugepage()) { 401 /* 402 * Hardware doesn't support hugepages, hence disable 403 * DAX PMD support. 404 */ 405 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX; 406 return -EINVAL; 407 } 408 409 /* 410 * hugepages can't be allocated by the buddy allocator 411 */ 412 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 413 /* 414 * we use page->mapping and page->index in second tail page 415 * as list_head: assuming THP order >= 2 416 */ 417 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 418 419 err = hugepage_init_sysfs(&hugepage_kobj); 420 if (err) 421 goto err_sysfs; 422 423 err = khugepaged_init(); 424 if (err) 425 goto err_slab; 426 427 err = register_shrinker(&huge_zero_page_shrinker); 428 if (err) 429 goto err_hzp_shrinker; 430 err = register_shrinker(&deferred_split_shrinker); 431 if (err) 432 goto err_split_shrinker; 433 434 /* 435 * By default disable transparent hugepages on smaller systems, 436 * where the extra memory used could hurt more than TLB overhead 437 * is likely to save. The admin can still enable it through /sys. 438 */ 439 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 440 transparent_hugepage_flags = 0; 441 return 0; 442 } 443 444 err = start_stop_khugepaged(); 445 if (err) 446 goto err_khugepaged; 447 448 return 0; 449 err_khugepaged: 450 unregister_shrinker(&deferred_split_shrinker); 451 err_split_shrinker: 452 unregister_shrinker(&huge_zero_page_shrinker); 453 err_hzp_shrinker: 454 khugepaged_destroy(); 455 err_slab: 456 hugepage_exit_sysfs(hugepage_kobj); 457 err_sysfs: 458 return err; 459 } 460 subsys_initcall(hugepage_init); 461 462 static int __init setup_transparent_hugepage(char *str) 463 { 464 int ret = 0; 465 if (!str) 466 goto out; 467 if (!strcmp(str, "always")) { 468 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 469 &transparent_hugepage_flags); 470 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 471 &transparent_hugepage_flags); 472 ret = 1; 473 } else if (!strcmp(str, "madvise")) { 474 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 475 &transparent_hugepage_flags); 476 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 477 &transparent_hugepage_flags); 478 ret = 1; 479 } else if (!strcmp(str, "never")) { 480 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 481 &transparent_hugepage_flags); 482 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 483 &transparent_hugepage_flags); 484 ret = 1; 485 } 486 out: 487 if (!ret) 488 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 489 return ret; 490 } 491 __setup("transparent_hugepage=", setup_transparent_hugepage); 492 493 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 494 { 495 if (likely(vma->vm_flags & VM_WRITE)) 496 pmd = pmd_mkwrite(pmd); 497 return pmd; 498 } 499 500 #ifdef CONFIG_MEMCG 501 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 502 { 503 struct mem_cgroup *memcg = page_memcg(compound_head(page)); 504 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 505 506 if (memcg) 507 return &memcg->deferred_split_queue; 508 else 509 return &pgdat->deferred_split_queue; 510 } 511 #else 512 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 513 { 514 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 515 516 return &pgdat->deferred_split_queue; 517 } 518 #endif 519 520 void prep_transhuge_page(struct page *page) 521 { 522 /* 523 * we use page->mapping and page->indexlru in second tail page 524 * as list_head: assuming THP order >= 2 525 */ 526 527 INIT_LIST_HEAD(page_deferred_list(page)); 528 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 529 } 530 531 static inline bool is_transparent_hugepage(struct page *page) 532 { 533 if (!PageCompound(page)) 534 return false; 535 536 page = compound_head(page); 537 return is_huge_zero_page(page) || 538 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR; 539 } 540 541 static unsigned long __thp_get_unmapped_area(struct file *filp, 542 unsigned long addr, unsigned long len, 543 loff_t off, unsigned long flags, unsigned long size) 544 { 545 loff_t off_end = off + len; 546 loff_t off_align = round_up(off, size); 547 unsigned long len_pad, ret; 548 549 if (off_end <= off_align || (off_end - off_align) < size) 550 return 0; 551 552 len_pad = len + size; 553 if (len_pad < len || (off + len_pad) < off) 554 return 0; 555 556 ret = current->mm->get_unmapped_area(filp, addr, len_pad, 557 off >> PAGE_SHIFT, flags); 558 559 /* 560 * The failure might be due to length padding. The caller will retry 561 * without the padding. 562 */ 563 if (IS_ERR_VALUE(ret)) 564 return 0; 565 566 /* 567 * Do not try to align to THP boundary if allocation at the address 568 * hint succeeds. 569 */ 570 if (ret == addr) 571 return addr; 572 573 ret += (off - ret) & (size - 1); 574 return ret; 575 } 576 577 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 578 unsigned long len, unsigned long pgoff, unsigned long flags) 579 { 580 unsigned long ret; 581 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 582 583 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); 584 if (ret) 585 return ret; 586 587 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 588 } 589 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 590 591 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 592 struct page *page, gfp_t gfp) 593 { 594 struct vm_area_struct *vma = vmf->vma; 595 pgtable_t pgtable; 596 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 597 vm_fault_t ret = 0; 598 599 VM_BUG_ON_PAGE(!PageCompound(page), page); 600 601 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) { 602 put_page(page); 603 count_vm_event(THP_FAULT_FALLBACK); 604 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 605 return VM_FAULT_FALLBACK; 606 } 607 cgroup_throttle_swaprate(page, gfp); 608 609 pgtable = pte_alloc_one(vma->vm_mm); 610 if (unlikely(!pgtable)) { 611 ret = VM_FAULT_OOM; 612 goto release; 613 } 614 615 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 616 /* 617 * The memory barrier inside __SetPageUptodate makes sure that 618 * clear_huge_page writes become visible before the set_pmd_at() 619 * write. 620 */ 621 __SetPageUptodate(page); 622 623 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 624 if (unlikely(!pmd_none(*vmf->pmd))) { 625 goto unlock_release; 626 } else { 627 pmd_t entry; 628 629 ret = check_stable_address_space(vma->vm_mm); 630 if (ret) 631 goto unlock_release; 632 633 /* Deliver the page fault to userland */ 634 if (userfaultfd_missing(vma)) { 635 spin_unlock(vmf->ptl); 636 put_page(page); 637 pte_free(vma->vm_mm, pgtable); 638 ret = handle_userfault(vmf, VM_UFFD_MISSING); 639 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 640 return ret; 641 } 642 643 entry = mk_huge_pmd(page, vma->vm_page_prot); 644 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 645 page_add_new_anon_rmap(page, vma, haddr); 646 lru_cache_add_inactive_or_unevictable(page, vma); 647 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 648 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 649 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 650 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 651 mm_inc_nr_ptes(vma->vm_mm); 652 spin_unlock(vmf->ptl); 653 count_vm_event(THP_FAULT_ALLOC); 654 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 655 } 656 657 return 0; 658 unlock_release: 659 spin_unlock(vmf->ptl); 660 release: 661 if (pgtable) 662 pte_free(vma->vm_mm, pgtable); 663 put_page(page); 664 return ret; 665 666 } 667 668 /* 669 * always: directly stall for all thp allocations 670 * defer: wake kswapd and fail if not immediately available 671 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 672 * fail if not immediately available 673 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 674 * available 675 * never: never stall for any thp allocation 676 */ 677 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 678 { 679 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 680 681 /* Always do synchronous compaction */ 682 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 683 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 684 685 /* Kick kcompactd and fail quickly */ 686 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 687 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 688 689 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 690 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 691 return GFP_TRANSHUGE_LIGHT | 692 (vma_madvised ? __GFP_DIRECT_RECLAIM : 693 __GFP_KSWAPD_RECLAIM); 694 695 /* Only do synchronous compaction if madvised */ 696 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 697 return GFP_TRANSHUGE_LIGHT | 698 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 699 700 return GFP_TRANSHUGE_LIGHT; 701 } 702 703 /* Caller must hold page table lock. */ 704 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 705 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 706 struct page *zero_page) 707 { 708 pmd_t entry; 709 if (!pmd_none(*pmd)) 710 return; 711 entry = mk_pmd(zero_page, vma->vm_page_prot); 712 entry = pmd_mkhuge(entry); 713 if (pgtable) 714 pgtable_trans_huge_deposit(mm, pmd, pgtable); 715 set_pmd_at(mm, haddr, pmd, entry); 716 mm_inc_nr_ptes(mm); 717 } 718 719 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 720 { 721 struct vm_area_struct *vma = vmf->vma; 722 gfp_t gfp; 723 struct folio *folio; 724 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 725 726 if (!transhuge_vma_suitable(vma, haddr)) 727 return VM_FAULT_FALLBACK; 728 if (unlikely(anon_vma_prepare(vma))) 729 return VM_FAULT_OOM; 730 khugepaged_enter(vma, vma->vm_flags); 731 732 if (!(vmf->flags & FAULT_FLAG_WRITE) && 733 !mm_forbids_zeropage(vma->vm_mm) && 734 transparent_hugepage_use_zero_page()) { 735 pgtable_t pgtable; 736 struct page *zero_page; 737 vm_fault_t ret; 738 pgtable = pte_alloc_one(vma->vm_mm); 739 if (unlikely(!pgtable)) 740 return VM_FAULT_OOM; 741 zero_page = mm_get_huge_zero_page(vma->vm_mm); 742 if (unlikely(!zero_page)) { 743 pte_free(vma->vm_mm, pgtable); 744 count_vm_event(THP_FAULT_FALLBACK); 745 return VM_FAULT_FALLBACK; 746 } 747 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 748 ret = 0; 749 if (pmd_none(*vmf->pmd)) { 750 ret = check_stable_address_space(vma->vm_mm); 751 if (ret) { 752 spin_unlock(vmf->ptl); 753 pte_free(vma->vm_mm, pgtable); 754 } else if (userfaultfd_missing(vma)) { 755 spin_unlock(vmf->ptl); 756 pte_free(vma->vm_mm, pgtable); 757 ret = handle_userfault(vmf, VM_UFFD_MISSING); 758 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 759 } else { 760 set_huge_zero_page(pgtable, vma->vm_mm, vma, 761 haddr, vmf->pmd, zero_page); 762 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 763 spin_unlock(vmf->ptl); 764 } 765 } else { 766 spin_unlock(vmf->ptl); 767 pte_free(vma->vm_mm, pgtable); 768 } 769 return ret; 770 } 771 gfp = vma_thp_gfp_mask(vma); 772 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true); 773 if (unlikely(!folio)) { 774 count_vm_event(THP_FAULT_FALLBACK); 775 return VM_FAULT_FALLBACK; 776 } 777 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp); 778 } 779 780 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 781 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 782 pgtable_t pgtable) 783 { 784 struct mm_struct *mm = vma->vm_mm; 785 pmd_t entry; 786 spinlock_t *ptl; 787 788 ptl = pmd_lock(mm, pmd); 789 if (!pmd_none(*pmd)) { 790 if (write) { 791 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 792 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 793 goto out_unlock; 794 } 795 entry = pmd_mkyoung(*pmd); 796 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 797 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 798 update_mmu_cache_pmd(vma, addr, pmd); 799 } 800 801 goto out_unlock; 802 } 803 804 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 805 if (pfn_t_devmap(pfn)) 806 entry = pmd_mkdevmap(entry); 807 if (write) { 808 entry = pmd_mkyoung(pmd_mkdirty(entry)); 809 entry = maybe_pmd_mkwrite(entry, vma); 810 } 811 812 if (pgtable) { 813 pgtable_trans_huge_deposit(mm, pmd, pgtable); 814 mm_inc_nr_ptes(mm); 815 pgtable = NULL; 816 } 817 818 set_pmd_at(mm, addr, pmd, entry); 819 update_mmu_cache_pmd(vma, addr, pmd); 820 821 out_unlock: 822 spin_unlock(ptl); 823 if (pgtable) 824 pte_free(mm, pgtable); 825 } 826 827 /** 828 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn 829 * @vmf: Structure describing the fault 830 * @pfn: pfn to insert 831 * @pgprot: page protection to use 832 * @write: whether it's a write fault 833 * 834 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and 835 * also consult the vmf_insert_mixed_prot() documentation when 836 * @pgprot != @vmf->vma->vm_page_prot. 837 * 838 * Return: vm_fault_t value. 839 */ 840 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn, 841 pgprot_t pgprot, bool write) 842 { 843 unsigned long addr = vmf->address & PMD_MASK; 844 struct vm_area_struct *vma = vmf->vma; 845 pgtable_t pgtable = NULL; 846 847 /* 848 * If we had pmd_special, we could avoid all these restrictions, 849 * but we need to be consistent with PTEs and architectures that 850 * can't support a 'special' bit. 851 */ 852 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 853 !pfn_t_devmap(pfn)); 854 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 855 (VM_PFNMAP|VM_MIXEDMAP)); 856 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 857 858 if (addr < vma->vm_start || addr >= vma->vm_end) 859 return VM_FAULT_SIGBUS; 860 861 if (arch_needs_pgtable_deposit()) { 862 pgtable = pte_alloc_one(vma->vm_mm); 863 if (!pgtable) 864 return VM_FAULT_OOM; 865 } 866 867 track_pfn_insert(vma, &pgprot, pfn); 868 869 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 870 return VM_FAULT_NOPAGE; 871 } 872 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot); 873 874 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 875 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 876 { 877 if (likely(vma->vm_flags & VM_WRITE)) 878 pud = pud_mkwrite(pud); 879 return pud; 880 } 881 882 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 883 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 884 { 885 struct mm_struct *mm = vma->vm_mm; 886 pud_t entry; 887 spinlock_t *ptl; 888 889 ptl = pud_lock(mm, pud); 890 if (!pud_none(*pud)) { 891 if (write) { 892 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 893 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 894 goto out_unlock; 895 } 896 entry = pud_mkyoung(*pud); 897 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 898 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 899 update_mmu_cache_pud(vma, addr, pud); 900 } 901 goto out_unlock; 902 } 903 904 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 905 if (pfn_t_devmap(pfn)) 906 entry = pud_mkdevmap(entry); 907 if (write) { 908 entry = pud_mkyoung(pud_mkdirty(entry)); 909 entry = maybe_pud_mkwrite(entry, vma); 910 } 911 set_pud_at(mm, addr, pud, entry); 912 update_mmu_cache_pud(vma, addr, pud); 913 914 out_unlock: 915 spin_unlock(ptl); 916 } 917 918 /** 919 * vmf_insert_pfn_pud_prot - insert a pud size pfn 920 * @vmf: Structure describing the fault 921 * @pfn: pfn to insert 922 * @pgprot: page protection to use 923 * @write: whether it's a write fault 924 * 925 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and 926 * also consult the vmf_insert_mixed_prot() documentation when 927 * @pgprot != @vmf->vma->vm_page_prot. 928 * 929 * Return: vm_fault_t value. 930 */ 931 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn, 932 pgprot_t pgprot, bool write) 933 { 934 unsigned long addr = vmf->address & PUD_MASK; 935 struct vm_area_struct *vma = vmf->vma; 936 937 /* 938 * If we had pud_special, we could avoid all these restrictions, 939 * but we need to be consistent with PTEs and architectures that 940 * can't support a 'special' bit. 941 */ 942 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 943 !pfn_t_devmap(pfn)); 944 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 945 (VM_PFNMAP|VM_MIXEDMAP)); 946 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 947 948 if (addr < vma->vm_start || addr >= vma->vm_end) 949 return VM_FAULT_SIGBUS; 950 951 track_pfn_insert(vma, &pgprot, pfn); 952 953 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write); 954 return VM_FAULT_NOPAGE; 955 } 956 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot); 957 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 958 959 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 960 pmd_t *pmd, int flags) 961 { 962 pmd_t _pmd; 963 964 _pmd = pmd_mkyoung(*pmd); 965 if (flags & FOLL_WRITE) 966 _pmd = pmd_mkdirty(_pmd); 967 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 968 pmd, _pmd, flags & FOLL_WRITE)) 969 update_mmu_cache_pmd(vma, addr, pmd); 970 } 971 972 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 973 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 974 { 975 unsigned long pfn = pmd_pfn(*pmd); 976 struct mm_struct *mm = vma->vm_mm; 977 struct page *page; 978 979 assert_spin_locked(pmd_lockptr(mm, pmd)); 980 981 /* 982 * When we COW a devmap PMD entry, we split it into PTEs, so we should 983 * not be in this function with `flags & FOLL_COW` set. 984 */ 985 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); 986 987 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 988 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 989 (FOLL_PIN | FOLL_GET))) 990 return NULL; 991 992 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 993 return NULL; 994 995 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 996 /* pass */; 997 else 998 return NULL; 999 1000 if (flags & FOLL_TOUCH) 1001 touch_pmd(vma, addr, pmd, flags); 1002 1003 /* 1004 * device mapped pages can only be returned if the 1005 * caller will manage the page reference count. 1006 */ 1007 if (!(flags & (FOLL_GET | FOLL_PIN))) 1008 return ERR_PTR(-EEXIST); 1009 1010 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1011 *pgmap = get_dev_pagemap(pfn, *pgmap); 1012 if (!*pgmap) 1013 return ERR_PTR(-EFAULT); 1014 page = pfn_to_page(pfn); 1015 if (!try_grab_page(page, flags)) 1016 page = ERR_PTR(-ENOMEM); 1017 1018 return page; 1019 } 1020 1021 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1022 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1023 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1024 { 1025 spinlock_t *dst_ptl, *src_ptl; 1026 struct page *src_page; 1027 pmd_t pmd; 1028 pgtable_t pgtable = NULL; 1029 int ret = -ENOMEM; 1030 1031 /* Skip if can be re-fill on fault */ 1032 if (!vma_is_anonymous(dst_vma)) 1033 return 0; 1034 1035 pgtable = pte_alloc_one(dst_mm); 1036 if (unlikely(!pgtable)) 1037 goto out; 1038 1039 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1040 src_ptl = pmd_lockptr(src_mm, src_pmd); 1041 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1042 1043 ret = -EAGAIN; 1044 pmd = *src_pmd; 1045 1046 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1047 if (unlikely(is_swap_pmd(pmd))) { 1048 swp_entry_t entry = pmd_to_swp_entry(pmd); 1049 1050 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1051 if (!is_readable_migration_entry(entry)) { 1052 entry = make_readable_migration_entry( 1053 swp_offset(entry)); 1054 pmd = swp_entry_to_pmd(entry); 1055 if (pmd_swp_soft_dirty(*src_pmd)) 1056 pmd = pmd_swp_mksoft_dirty(pmd); 1057 if (pmd_swp_uffd_wp(*src_pmd)) 1058 pmd = pmd_swp_mkuffd_wp(pmd); 1059 set_pmd_at(src_mm, addr, src_pmd, pmd); 1060 } 1061 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1062 mm_inc_nr_ptes(dst_mm); 1063 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1064 if (!userfaultfd_wp(dst_vma)) 1065 pmd = pmd_swp_clear_uffd_wp(pmd); 1066 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1067 ret = 0; 1068 goto out_unlock; 1069 } 1070 #endif 1071 1072 if (unlikely(!pmd_trans_huge(pmd))) { 1073 pte_free(dst_mm, pgtable); 1074 goto out_unlock; 1075 } 1076 /* 1077 * When page table lock is held, the huge zero pmd should not be 1078 * under splitting since we don't split the page itself, only pmd to 1079 * a page table. 1080 */ 1081 if (is_huge_zero_pmd(pmd)) { 1082 /* 1083 * get_huge_zero_page() will never allocate a new page here, 1084 * since we already have a zero page to copy. It just takes a 1085 * reference. 1086 */ 1087 mm_get_huge_zero_page(dst_mm); 1088 goto out_zero_page; 1089 } 1090 1091 src_page = pmd_page(pmd); 1092 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1093 1094 get_page(src_page); 1095 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) { 1096 /* Page maybe pinned: split and retry the fault on PTEs. */ 1097 put_page(src_page); 1098 pte_free(dst_mm, pgtable); 1099 spin_unlock(src_ptl); 1100 spin_unlock(dst_ptl); 1101 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1102 return -EAGAIN; 1103 } 1104 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1105 out_zero_page: 1106 mm_inc_nr_ptes(dst_mm); 1107 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1108 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1109 if (!userfaultfd_wp(dst_vma)) 1110 pmd = pmd_clear_uffd_wp(pmd); 1111 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1112 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1113 1114 ret = 0; 1115 out_unlock: 1116 spin_unlock(src_ptl); 1117 spin_unlock(dst_ptl); 1118 out: 1119 return ret; 1120 } 1121 1122 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1123 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1124 pud_t *pud, int flags) 1125 { 1126 pud_t _pud; 1127 1128 _pud = pud_mkyoung(*pud); 1129 if (flags & FOLL_WRITE) 1130 _pud = pud_mkdirty(_pud); 1131 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1132 pud, _pud, flags & FOLL_WRITE)) 1133 update_mmu_cache_pud(vma, addr, pud); 1134 } 1135 1136 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1137 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1138 { 1139 unsigned long pfn = pud_pfn(*pud); 1140 struct mm_struct *mm = vma->vm_mm; 1141 struct page *page; 1142 1143 assert_spin_locked(pud_lockptr(mm, pud)); 1144 1145 if (flags & FOLL_WRITE && !pud_write(*pud)) 1146 return NULL; 1147 1148 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 1149 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 1150 (FOLL_PIN | FOLL_GET))) 1151 return NULL; 1152 1153 if (pud_present(*pud) && pud_devmap(*pud)) 1154 /* pass */; 1155 else 1156 return NULL; 1157 1158 if (flags & FOLL_TOUCH) 1159 touch_pud(vma, addr, pud, flags); 1160 1161 /* 1162 * device mapped pages can only be returned if the 1163 * caller will manage the page reference count. 1164 * 1165 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: 1166 */ 1167 if (!(flags & (FOLL_GET | FOLL_PIN))) 1168 return ERR_PTR(-EEXIST); 1169 1170 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1171 *pgmap = get_dev_pagemap(pfn, *pgmap); 1172 if (!*pgmap) 1173 return ERR_PTR(-EFAULT); 1174 page = pfn_to_page(pfn); 1175 if (!try_grab_page(page, flags)) 1176 page = ERR_PTR(-ENOMEM); 1177 1178 return page; 1179 } 1180 1181 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1182 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1183 struct vm_area_struct *vma) 1184 { 1185 spinlock_t *dst_ptl, *src_ptl; 1186 pud_t pud; 1187 int ret; 1188 1189 dst_ptl = pud_lock(dst_mm, dst_pud); 1190 src_ptl = pud_lockptr(src_mm, src_pud); 1191 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1192 1193 ret = -EAGAIN; 1194 pud = *src_pud; 1195 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1196 goto out_unlock; 1197 1198 /* 1199 * When page table lock is held, the huge zero pud should not be 1200 * under splitting since we don't split the page itself, only pud to 1201 * a page table. 1202 */ 1203 if (is_huge_zero_pud(pud)) { 1204 /* No huge zero pud yet */ 1205 } 1206 1207 /* 1208 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap() 1209 * and split if duplicating fails. 1210 */ 1211 pudp_set_wrprotect(src_mm, addr, src_pud); 1212 pud = pud_mkold(pud_wrprotect(pud)); 1213 set_pud_at(dst_mm, addr, dst_pud, pud); 1214 1215 ret = 0; 1216 out_unlock: 1217 spin_unlock(src_ptl); 1218 spin_unlock(dst_ptl); 1219 return ret; 1220 } 1221 1222 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1223 { 1224 pud_t entry; 1225 unsigned long haddr; 1226 bool write = vmf->flags & FAULT_FLAG_WRITE; 1227 1228 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1229 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1230 goto unlock; 1231 1232 entry = pud_mkyoung(orig_pud); 1233 if (write) 1234 entry = pud_mkdirty(entry); 1235 haddr = vmf->address & HPAGE_PUD_MASK; 1236 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write)) 1237 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud); 1238 1239 unlock: 1240 spin_unlock(vmf->ptl); 1241 } 1242 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1243 1244 void huge_pmd_set_accessed(struct vm_fault *vmf) 1245 { 1246 pmd_t entry; 1247 unsigned long haddr; 1248 bool write = vmf->flags & FAULT_FLAG_WRITE; 1249 pmd_t orig_pmd = vmf->orig_pmd; 1250 1251 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1252 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1253 goto unlock; 1254 1255 entry = pmd_mkyoung(orig_pmd); 1256 if (write) 1257 entry = pmd_mkdirty(entry); 1258 haddr = vmf->address & HPAGE_PMD_MASK; 1259 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) 1260 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); 1261 1262 unlock: 1263 spin_unlock(vmf->ptl); 1264 } 1265 1266 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1267 { 1268 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 1269 struct vm_area_struct *vma = vmf->vma; 1270 struct page *page; 1271 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1272 pmd_t orig_pmd = vmf->orig_pmd; 1273 1274 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1275 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1276 1277 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE)); 1278 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE)); 1279 1280 if (is_huge_zero_pmd(orig_pmd)) 1281 goto fallback; 1282 1283 spin_lock(vmf->ptl); 1284 1285 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1286 spin_unlock(vmf->ptl); 1287 return 0; 1288 } 1289 1290 page = pmd_page(orig_pmd); 1291 VM_BUG_ON_PAGE(!PageHead(page), page); 1292 1293 /* Early check when only holding the PT lock. */ 1294 if (PageAnonExclusive(page)) 1295 goto reuse; 1296 1297 if (!trylock_page(page)) { 1298 get_page(page); 1299 spin_unlock(vmf->ptl); 1300 lock_page(page); 1301 spin_lock(vmf->ptl); 1302 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1303 spin_unlock(vmf->ptl); 1304 unlock_page(page); 1305 put_page(page); 1306 return 0; 1307 } 1308 put_page(page); 1309 } 1310 1311 /* Recheck after temporarily dropping the PT lock. */ 1312 if (PageAnonExclusive(page)) { 1313 unlock_page(page); 1314 goto reuse; 1315 } 1316 1317 /* 1318 * See do_wp_page(): we can only reuse the page exclusively if there are 1319 * no additional references. Note that we always drain the LRU 1320 * pagevecs immediately after adding a THP. 1321 */ 1322 if (page_count(page) > 1 + PageSwapCache(page) * thp_nr_pages(page)) 1323 goto unlock_fallback; 1324 if (PageSwapCache(page)) 1325 try_to_free_swap(page); 1326 if (page_count(page) == 1) { 1327 pmd_t entry; 1328 1329 page_move_anon_rmap(page, vma); 1330 unlock_page(page); 1331 reuse: 1332 if (unlikely(unshare)) { 1333 spin_unlock(vmf->ptl); 1334 return 0; 1335 } 1336 entry = pmd_mkyoung(orig_pmd); 1337 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1338 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1339 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1340 spin_unlock(vmf->ptl); 1341 return VM_FAULT_WRITE; 1342 } 1343 1344 unlock_fallback: 1345 unlock_page(page); 1346 spin_unlock(vmf->ptl); 1347 fallback: 1348 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1349 return VM_FAULT_FALLBACK; 1350 } 1351 1352 /* 1353 * FOLL_FORCE can write to even unwritable pmd's, but only 1354 * after we've gone through a COW cycle and they are dirty. 1355 */ 1356 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) 1357 { 1358 return pmd_write(pmd) || 1359 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); 1360 } 1361 1362 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1363 unsigned long addr, 1364 pmd_t *pmd, 1365 unsigned int flags) 1366 { 1367 struct mm_struct *mm = vma->vm_mm; 1368 struct page *page = NULL; 1369 1370 assert_spin_locked(pmd_lockptr(mm, pmd)); 1371 1372 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) 1373 goto out; 1374 1375 /* Avoid dumping huge zero page */ 1376 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1377 return ERR_PTR(-EFAULT); 1378 1379 /* Full NUMA hinting faults to serialise migration in fault paths */ 1380 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1381 goto out; 1382 1383 page = pmd_page(*pmd); 1384 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1385 1386 if (!pmd_write(*pmd) && gup_must_unshare(flags, page)) 1387 return ERR_PTR(-EMLINK); 1388 1389 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 1390 !PageAnonExclusive(page), page); 1391 1392 if (!try_grab_page(page, flags)) 1393 return ERR_PTR(-ENOMEM); 1394 1395 if (flags & FOLL_TOUCH) 1396 touch_pmd(vma, addr, pmd, flags); 1397 1398 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1399 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1400 1401 out: 1402 return page; 1403 } 1404 1405 /* NUMA hinting page fault entry point for trans huge pmds */ 1406 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1407 { 1408 struct vm_area_struct *vma = vmf->vma; 1409 pmd_t oldpmd = vmf->orig_pmd; 1410 pmd_t pmd; 1411 struct page *page; 1412 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1413 int page_nid = NUMA_NO_NODE; 1414 int target_nid, last_cpupid = -1; 1415 bool migrated = false; 1416 bool was_writable = pmd_savedwrite(oldpmd); 1417 int flags = 0; 1418 1419 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1420 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1421 spin_unlock(vmf->ptl); 1422 goto out; 1423 } 1424 1425 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1426 page = vm_normal_page_pmd(vma, haddr, pmd); 1427 if (!page) 1428 goto out_map; 1429 1430 /* See similar comment in do_numa_page for explanation */ 1431 if (!was_writable) 1432 flags |= TNF_NO_GROUP; 1433 1434 page_nid = page_to_nid(page); 1435 last_cpupid = page_cpupid_last(page); 1436 target_nid = numa_migrate_prep(page, vma, haddr, page_nid, 1437 &flags); 1438 1439 if (target_nid == NUMA_NO_NODE) { 1440 put_page(page); 1441 goto out_map; 1442 } 1443 1444 spin_unlock(vmf->ptl); 1445 1446 migrated = migrate_misplaced_page(page, vma, target_nid); 1447 if (migrated) { 1448 flags |= TNF_MIGRATED; 1449 page_nid = target_nid; 1450 } else { 1451 flags |= TNF_MIGRATE_FAIL; 1452 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1453 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1454 spin_unlock(vmf->ptl); 1455 goto out; 1456 } 1457 goto out_map; 1458 } 1459 1460 out: 1461 if (page_nid != NUMA_NO_NODE) 1462 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1463 flags); 1464 1465 return 0; 1466 1467 out_map: 1468 /* Restore the PMD */ 1469 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1470 pmd = pmd_mkyoung(pmd); 1471 if (was_writable) 1472 pmd = pmd_mkwrite(pmd); 1473 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1474 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1475 spin_unlock(vmf->ptl); 1476 goto out; 1477 } 1478 1479 /* 1480 * Return true if we do MADV_FREE successfully on entire pmd page. 1481 * Otherwise, return false. 1482 */ 1483 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1484 pmd_t *pmd, unsigned long addr, unsigned long next) 1485 { 1486 spinlock_t *ptl; 1487 pmd_t orig_pmd; 1488 struct page *page; 1489 struct mm_struct *mm = tlb->mm; 1490 bool ret = false; 1491 1492 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1493 1494 ptl = pmd_trans_huge_lock(pmd, vma); 1495 if (!ptl) 1496 goto out_unlocked; 1497 1498 orig_pmd = *pmd; 1499 if (is_huge_zero_pmd(orig_pmd)) 1500 goto out; 1501 1502 if (unlikely(!pmd_present(orig_pmd))) { 1503 VM_BUG_ON(thp_migration_supported() && 1504 !is_pmd_migration_entry(orig_pmd)); 1505 goto out; 1506 } 1507 1508 page = pmd_page(orig_pmd); 1509 /* 1510 * If other processes are mapping this page, we couldn't discard 1511 * the page unless they all do MADV_FREE so let's skip the page. 1512 */ 1513 if (total_mapcount(page) != 1) 1514 goto out; 1515 1516 if (!trylock_page(page)) 1517 goto out; 1518 1519 /* 1520 * If user want to discard part-pages of THP, split it so MADV_FREE 1521 * will deactivate only them. 1522 */ 1523 if (next - addr != HPAGE_PMD_SIZE) { 1524 get_page(page); 1525 spin_unlock(ptl); 1526 split_huge_page(page); 1527 unlock_page(page); 1528 put_page(page); 1529 goto out_unlocked; 1530 } 1531 1532 if (PageDirty(page)) 1533 ClearPageDirty(page); 1534 unlock_page(page); 1535 1536 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1537 pmdp_invalidate(vma, addr, pmd); 1538 orig_pmd = pmd_mkold(orig_pmd); 1539 orig_pmd = pmd_mkclean(orig_pmd); 1540 1541 set_pmd_at(mm, addr, pmd, orig_pmd); 1542 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1543 } 1544 1545 mark_page_lazyfree(page); 1546 ret = true; 1547 out: 1548 spin_unlock(ptl); 1549 out_unlocked: 1550 return ret; 1551 } 1552 1553 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1554 { 1555 pgtable_t pgtable; 1556 1557 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1558 pte_free(mm, pgtable); 1559 mm_dec_nr_ptes(mm); 1560 } 1561 1562 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1563 pmd_t *pmd, unsigned long addr) 1564 { 1565 pmd_t orig_pmd; 1566 spinlock_t *ptl; 1567 1568 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1569 1570 ptl = __pmd_trans_huge_lock(pmd, vma); 1571 if (!ptl) 1572 return 0; 1573 /* 1574 * For architectures like ppc64 we look at deposited pgtable 1575 * when calling pmdp_huge_get_and_clear. So do the 1576 * pgtable_trans_huge_withdraw after finishing pmdp related 1577 * operations. 1578 */ 1579 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1580 tlb->fullmm); 1581 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1582 if (vma_is_special_huge(vma)) { 1583 if (arch_needs_pgtable_deposit()) 1584 zap_deposited_table(tlb->mm, pmd); 1585 spin_unlock(ptl); 1586 } else if (is_huge_zero_pmd(orig_pmd)) { 1587 zap_deposited_table(tlb->mm, pmd); 1588 spin_unlock(ptl); 1589 } else { 1590 struct page *page = NULL; 1591 int flush_needed = 1; 1592 1593 if (pmd_present(orig_pmd)) { 1594 page = pmd_page(orig_pmd); 1595 page_remove_rmap(page, vma, true); 1596 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1597 VM_BUG_ON_PAGE(!PageHead(page), page); 1598 } else if (thp_migration_supported()) { 1599 swp_entry_t entry; 1600 1601 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1602 entry = pmd_to_swp_entry(orig_pmd); 1603 page = pfn_swap_entry_to_page(entry); 1604 flush_needed = 0; 1605 } else 1606 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1607 1608 if (PageAnon(page)) { 1609 zap_deposited_table(tlb->mm, pmd); 1610 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1611 } else { 1612 if (arch_needs_pgtable_deposit()) 1613 zap_deposited_table(tlb->mm, pmd); 1614 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR); 1615 } 1616 1617 spin_unlock(ptl); 1618 if (flush_needed) 1619 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1620 } 1621 return 1; 1622 } 1623 1624 #ifndef pmd_move_must_withdraw 1625 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1626 spinlock_t *old_pmd_ptl, 1627 struct vm_area_struct *vma) 1628 { 1629 /* 1630 * With split pmd lock we also need to move preallocated 1631 * PTE page table if new_pmd is on different PMD page table. 1632 * 1633 * We also don't deposit and withdraw tables for file pages. 1634 */ 1635 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1636 } 1637 #endif 1638 1639 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1640 { 1641 #ifdef CONFIG_MEM_SOFT_DIRTY 1642 if (unlikely(is_pmd_migration_entry(pmd))) 1643 pmd = pmd_swp_mksoft_dirty(pmd); 1644 else if (pmd_present(pmd)) 1645 pmd = pmd_mksoft_dirty(pmd); 1646 #endif 1647 return pmd; 1648 } 1649 1650 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1651 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1652 { 1653 spinlock_t *old_ptl, *new_ptl; 1654 pmd_t pmd; 1655 struct mm_struct *mm = vma->vm_mm; 1656 bool force_flush = false; 1657 1658 /* 1659 * The destination pmd shouldn't be established, free_pgtables() 1660 * should have release it. 1661 */ 1662 if (WARN_ON(!pmd_none(*new_pmd))) { 1663 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1664 return false; 1665 } 1666 1667 /* 1668 * We don't have to worry about the ordering of src and dst 1669 * ptlocks because exclusive mmap_lock prevents deadlock. 1670 */ 1671 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1672 if (old_ptl) { 1673 new_ptl = pmd_lockptr(mm, new_pmd); 1674 if (new_ptl != old_ptl) 1675 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1676 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1677 if (pmd_present(pmd)) 1678 force_flush = true; 1679 VM_BUG_ON(!pmd_none(*new_pmd)); 1680 1681 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1682 pgtable_t pgtable; 1683 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1684 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1685 } 1686 pmd = move_soft_dirty_pmd(pmd); 1687 set_pmd_at(mm, new_addr, new_pmd, pmd); 1688 if (force_flush) 1689 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1690 if (new_ptl != old_ptl) 1691 spin_unlock(new_ptl); 1692 spin_unlock(old_ptl); 1693 return true; 1694 } 1695 return false; 1696 } 1697 1698 /* 1699 * Returns 1700 * - 0 if PMD could not be locked 1701 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 1702 * or if prot_numa but THP migration is not supported 1703 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 1704 */ 1705 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1706 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 1707 unsigned long cp_flags) 1708 { 1709 struct mm_struct *mm = vma->vm_mm; 1710 spinlock_t *ptl; 1711 pmd_t oldpmd, entry; 1712 bool preserve_write; 1713 int ret; 1714 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 1715 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 1716 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 1717 1718 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1719 1720 if (prot_numa && !thp_migration_supported()) 1721 return 1; 1722 1723 ptl = __pmd_trans_huge_lock(pmd, vma); 1724 if (!ptl) 1725 return 0; 1726 1727 preserve_write = prot_numa && pmd_write(*pmd); 1728 ret = 1; 1729 1730 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1731 if (is_swap_pmd(*pmd)) { 1732 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1733 struct page *page = pfn_swap_entry_to_page(entry); 1734 1735 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 1736 if (is_writable_migration_entry(entry)) { 1737 pmd_t newpmd; 1738 /* 1739 * A protection check is difficult so 1740 * just be safe and disable write 1741 */ 1742 if (PageAnon(page)) 1743 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 1744 else 1745 entry = make_readable_migration_entry(swp_offset(entry)); 1746 newpmd = swp_entry_to_pmd(entry); 1747 if (pmd_swp_soft_dirty(*pmd)) 1748 newpmd = pmd_swp_mksoft_dirty(newpmd); 1749 if (pmd_swp_uffd_wp(*pmd)) 1750 newpmd = pmd_swp_mkuffd_wp(newpmd); 1751 set_pmd_at(mm, addr, pmd, newpmd); 1752 } 1753 goto unlock; 1754 } 1755 #endif 1756 1757 if (prot_numa) { 1758 struct page *page; 1759 /* 1760 * Avoid trapping faults against the zero page. The read-only 1761 * data is likely to be read-cached on the local CPU and 1762 * local/remote hits to the zero page are not interesting. 1763 */ 1764 if (is_huge_zero_pmd(*pmd)) 1765 goto unlock; 1766 1767 if (pmd_protnone(*pmd)) 1768 goto unlock; 1769 1770 page = pmd_page(*pmd); 1771 /* 1772 * Skip scanning top tier node if normal numa 1773 * balancing is disabled 1774 */ 1775 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 1776 node_is_toptier(page_to_nid(page))) 1777 goto unlock; 1778 } 1779 /* 1780 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 1781 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 1782 * which is also under mmap_read_lock(mm): 1783 * 1784 * CPU0: CPU1: 1785 * change_huge_pmd(prot_numa=1) 1786 * pmdp_huge_get_and_clear_notify() 1787 * madvise_dontneed() 1788 * zap_pmd_range() 1789 * pmd_trans_huge(*pmd) == 0 (without ptl) 1790 * // skip the pmd 1791 * set_pmd_at(); 1792 * // pmd is re-established 1793 * 1794 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 1795 * which may break userspace. 1796 * 1797 * pmdp_invalidate_ad() is required to make sure we don't miss 1798 * dirty/young flags set by hardware. 1799 */ 1800 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 1801 1802 entry = pmd_modify(oldpmd, newprot); 1803 if (preserve_write) 1804 entry = pmd_mk_savedwrite(entry); 1805 if (uffd_wp) { 1806 entry = pmd_wrprotect(entry); 1807 entry = pmd_mkuffd_wp(entry); 1808 } else if (uffd_wp_resolve) { 1809 /* 1810 * Leave the write bit to be handled by PF interrupt 1811 * handler, then things like COW could be properly 1812 * handled. 1813 */ 1814 entry = pmd_clear_uffd_wp(entry); 1815 } 1816 ret = HPAGE_PMD_NR; 1817 set_pmd_at(mm, addr, pmd, entry); 1818 1819 if (huge_pmd_needs_flush(oldpmd, entry)) 1820 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 1821 1822 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry)); 1823 unlock: 1824 spin_unlock(ptl); 1825 return ret; 1826 } 1827 1828 /* 1829 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1830 * 1831 * Note that if it returns page table lock pointer, this routine returns without 1832 * unlocking page table lock. So callers must unlock it. 1833 */ 1834 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1835 { 1836 spinlock_t *ptl; 1837 ptl = pmd_lock(vma->vm_mm, pmd); 1838 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 1839 pmd_devmap(*pmd))) 1840 return ptl; 1841 spin_unlock(ptl); 1842 return NULL; 1843 } 1844 1845 /* 1846 * Returns true if a given pud maps a thp, false otherwise. 1847 * 1848 * Note that if it returns true, this routine returns without unlocking page 1849 * table lock. So callers must unlock it. 1850 */ 1851 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1852 { 1853 spinlock_t *ptl; 1854 1855 ptl = pud_lock(vma->vm_mm, pud); 1856 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1857 return ptl; 1858 spin_unlock(ptl); 1859 return NULL; 1860 } 1861 1862 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1863 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1864 pud_t *pud, unsigned long addr) 1865 { 1866 spinlock_t *ptl; 1867 1868 ptl = __pud_trans_huge_lock(pud, vma); 1869 if (!ptl) 1870 return 0; 1871 /* 1872 * For architectures like ppc64 we look at deposited pgtable 1873 * when calling pudp_huge_get_and_clear. So do the 1874 * pgtable_trans_huge_withdraw after finishing pudp related 1875 * operations. 1876 */ 1877 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm); 1878 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1879 if (vma_is_special_huge(vma)) { 1880 spin_unlock(ptl); 1881 /* No zero page support yet */ 1882 } else { 1883 /* No support for anonymous PUD pages yet */ 1884 BUG(); 1885 } 1886 return 1; 1887 } 1888 1889 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 1890 unsigned long haddr) 1891 { 1892 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 1893 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1894 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 1895 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 1896 1897 count_vm_event(THP_SPLIT_PUD); 1898 1899 pudp_huge_clear_flush_notify(vma, haddr, pud); 1900 } 1901 1902 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 1903 unsigned long address) 1904 { 1905 spinlock_t *ptl; 1906 struct mmu_notifier_range range; 1907 1908 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1909 address & HPAGE_PUD_MASK, 1910 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 1911 mmu_notifier_invalidate_range_start(&range); 1912 ptl = pud_lock(vma->vm_mm, pud); 1913 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 1914 goto out; 1915 __split_huge_pud_locked(vma, pud, range.start); 1916 1917 out: 1918 spin_unlock(ptl); 1919 /* 1920 * No need to double call mmu_notifier->invalidate_range() callback as 1921 * the above pudp_huge_clear_flush_notify() did already call it. 1922 */ 1923 mmu_notifier_invalidate_range_only_end(&range); 1924 } 1925 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1926 1927 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1928 unsigned long haddr, pmd_t *pmd) 1929 { 1930 struct mm_struct *mm = vma->vm_mm; 1931 pgtable_t pgtable; 1932 pmd_t _pmd; 1933 int i; 1934 1935 /* 1936 * Leave pmd empty until pte is filled note that it is fine to delay 1937 * notification until mmu_notifier_invalidate_range_end() as we are 1938 * replacing a zero pmd write protected page with a zero pte write 1939 * protected page. 1940 * 1941 * See Documentation/vm/mmu_notifier.rst 1942 */ 1943 pmdp_huge_clear_flush(vma, haddr, pmd); 1944 1945 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1946 pmd_populate(mm, &_pmd, pgtable); 1947 1948 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1949 pte_t *pte, entry; 1950 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 1951 entry = pte_mkspecial(entry); 1952 pte = pte_offset_map(&_pmd, haddr); 1953 VM_BUG_ON(!pte_none(*pte)); 1954 set_pte_at(mm, haddr, pte, entry); 1955 pte_unmap(pte); 1956 } 1957 smp_wmb(); /* make pte visible before pmd */ 1958 pmd_populate(mm, pmd, pgtable); 1959 } 1960 1961 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 1962 unsigned long haddr, bool freeze) 1963 { 1964 struct mm_struct *mm = vma->vm_mm; 1965 struct page *page; 1966 pgtable_t pgtable; 1967 pmd_t old_pmd, _pmd; 1968 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 1969 bool anon_exclusive = false; 1970 unsigned long addr; 1971 int i; 1972 1973 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 1974 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1975 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 1976 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 1977 && !pmd_devmap(*pmd)); 1978 1979 count_vm_event(THP_SPLIT_PMD); 1980 1981 if (!vma_is_anonymous(vma)) { 1982 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1983 /* 1984 * We are going to unmap this huge page. So 1985 * just go ahead and zap it 1986 */ 1987 if (arch_needs_pgtable_deposit()) 1988 zap_deposited_table(mm, pmd); 1989 if (vma_is_special_huge(vma)) 1990 return; 1991 if (unlikely(is_pmd_migration_entry(old_pmd))) { 1992 swp_entry_t entry; 1993 1994 entry = pmd_to_swp_entry(old_pmd); 1995 page = pfn_swap_entry_to_page(entry); 1996 } else { 1997 page = pmd_page(old_pmd); 1998 if (!PageDirty(page) && pmd_dirty(old_pmd)) 1999 set_page_dirty(page); 2000 if (!PageReferenced(page) && pmd_young(old_pmd)) 2001 SetPageReferenced(page); 2002 page_remove_rmap(page, vma, true); 2003 put_page(page); 2004 } 2005 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR); 2006 return; 2007 } 2008 2009 if (is_huge_zero_pmd(*pmd)) { 2010 /* 2011 * FIXME: Do we want to invalidate secondary mmu by calling 2012 * mmu_notifier_invalidate_range() see comments below inside 2013 * __split_huge_pmd() ? 2014 * 2015 * We are going from a zero huge page write protected to zero 2016 * small page also write protected so it does not seems useful 2017 * to invalidate secondary mmu at this time. 2018 */ 2019 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2020 } 2021 2022 /* 2023 * Up to this point the pmd is present and huge and userland has the 2024 * whole access to the hugepage during the split (which happens in 2025 * place). If we overwrite the pmd with the not-huge version pointing 2026 * to the pte here (which of course we could if all CPUs were bug 2027 * free), userland could trigger a small page size TLB miss on the 2028 * small sized TLB while the hugepage TLB entry is still established in 2029 * the huge TLB. Some CPU doesn't like that. 2030 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2031 * 383 on page 105. Intel should be safe but is also warns that it's 2032 * only safe if the permission and cache attributes of the two entries 2033 * loaded in the two TLB is identical (which should be the case here). 2034 * But it is generally safer to never allow small and huge TLB entries 2035 * for the same virtual address to be loaded simultaneously. So instead 2036 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2037 * current pmd notpresent (atomically because here the pmd_trans_huge 2038 * must remain set at all times on the pmd until the split is complete 2039 * for this pmd), then we flush the SMP TLB and finally we write the 2040 * non-huge version of the pmd entry with pmd_populate. 2041 */ 2042 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2043 2044 pmd_migration = is_pmd_migration_entry(old_pmd); 2045 if (unlikely(pmd_migration)) { 2046 swp_entry_t entry; 2047 2048 entry = pmd_to_swp_entry(old_pmd); 2049 page = pfn_swap_entry_to_page(entry); 2050 write = is_writable_migration_entry(entry); 2051 if (PageAnon(page)) 2052 anon_exclusive = is_readable_exclusive_migration_entry(entry); 2053 young = false; 2054 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2055 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2056 } else { 2057 page = pmd_page(old_pmd); 2058 if (pmd_dirty(old_pmd)) 2059 SetPageDirty(page); 2060 write = pmd_write(old_pmd); 2061 young = pmd_young(old_pmd); 2062 soft_dirty = pmd_soft_dirty(old_pmd); 2063 uffd_wp = pmd_uffd_wp(old_pmd); 2064 2065 VM_BUG_ON_PAGE(!page_count(page), page); 2066 page_ref_add(page, HPAGE_PMD_NR - 1); 2067 2068 /* 2069 * Without "freeze", we'll simply split the PMD, propagating the 2070 * PageAnonExclusive() flag for each PTE by setting it for 2071 * each subpage -- no need to (temporarily) clear. 2072 * 2073 * With "freeze" we want to replace mapped pages by 2074 * migration entries right away. This is only possible if we 2075 * managed to clear PageAnonExclusive() -- see 2076 * set_pmd_migration_entry(). 2077 * 2078 * In case we cannot clear PageAnonExclusive(), split the PMD 2079 * only and let try_to_migrate_one() fail later. 2080 */ 2081 anon_exclusive = PageAnon(page) && PageAnonExclusive(page); 2082 if (freeze && anon_exclusive && page_try_share_anon_rmap(page)) 2083 freeze = false; 2084 } 2085 2086 /* 2087 * Withdraw the table only after we mark the pmd entry invalid. 2088 * This's critical for some architectures (Power). 2089 */ 2090 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2091 pmd_populate(mm, &_pmd, pgtable); 2092 2093 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2094 pte_t entry, *pte; 2095 /* 2096 * Note that NUMA hinting access restrictions are not 2097 * transferred to avoid any possibility of altering 2098 * permissions across VMAs. 2099 */ 2100 if (freeze || pmd_migration) { 2101 swp_entry_t swp_entry; 2102 if (write) 2103 swp_entry = make_writable_migration_entry( 2104 page_to_pfn(page + i)); 2105 else if (anon_exclusive) 2106 swp_entry = make_readable_exclusive_migration_entry( 2107 page_to_pfn(page + i)); 2108 else 2109 swp_entry = make_readable_migration_entry( 2110 page_to_pfn(page + i)); 2111 entry = swp_entry_to_pte(swp_entry); 2112 if (soft_dirty) 2113 entry = pte_swp_mksoft_dirty(entry); 2114 if (uffd_wp) 2115 entry = pte_swp_mkuffd_wp(entry); 2116 } else { 2117 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2118 entry = maybe_mkwrite(entry, vma); 2119 if (anon_exclusive) 2120 SetPageAnonExclusive(page + i); 2121 if (!write) 2122 entry = pte_wrprotect(entry); 2123 if (!young) 2124 entry = pte_mkold(entry); 2125 if (soft_dirty) 2126 entry = pte_mksoft_dirty(entry); 2127 if (uffd_wp) 2128 entry = pte_mkuffd_wp(entry); 2129 } 2130 pte = pte_offset_map(&_pmd, addr); 2131 BUG_ON(!pte_none(*pte)); 2132 set_pte_at(mm, addr, pte, entry); 2133 if (!pmd_migration) 2134 atomic_inc(&page[i]._mapcount); 2135 pte_unmap(pte); 2136 } 2137 2138 if (!pmd_migration) { 2139 /* 2140 * Set PG_double_map before dropping compound_mapcount to avoid 2141 * false-negative page_mapped(). 2142 */ 2143 if (compound_mapcount(page) > 1 && 2144 !TestSetPageDoubleMap(page)) { 2145 for (i = 0; i < HPAGE_PMD_NR; i++) 2146 atomic_inc(&page[i]._mapcount); 2147 } 2148 2149 lock_page_memcg(page); 2150 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 2151 /* Last compound_mapcount is gone. */ 2152 __mod_lruvec_page_state(page, NR_ANON_THPS, 2153 -HPAGE_PMD_NR); 2154 if (TestClearPageDoubleMap(page)) { 2155 /* No need in mapcount reference anymore */ 2156 for (i = 0; i < HPAGE_PMD_NR; i++) 2157 atomic_dec(&page[i]._mapcount); 2158 } 2159 } 2160 unlock_page_memcg(page); 2161 2162 /* Above is effectively page_remove_rmap(page, vma, true) */ 2163 munlock_vma_page(page, vma, true); 2164 } 2165 2166 smp_wmb(); /* make pte visible before pmd */ 2167 pmd_populate(mm, pmd, pgtable); 2168 2169 if (freeze) { 2170 for (i = 0; i < HPAGE_PMD_NR; i++) { 2171 page_remove_rmap(page + i, vma, false); 2172 put_page(page + i); 2173 } 2174 } 2175 } 2176 2177 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2178 unsigned long address, bool freeze, struct folio *folio) 2179 { 2180 spinlock_t *ptl; 2181 struct mmu_notifier_range range; 2182 2183 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 2184 address & HPAGE_PMD_MASK, 2185 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2186 mmu_notifier_invalidate_range_start(&range); 2187 ptl = pmd_lock(vma->vm_mm, pmd); 2188 2189 /* 2190 * If caller asks to setup a migration entry, we need a folio to check 2191 * pmd against. Otherwise we can end up replacing wrong folio. 2192 */ 2193 VM_BUG_ON(freeze && !folio); 2194 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio)); 2195 2196 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || 2197 is_pmd_migration_entry(*pmd)) { 2198 if (folio && folio != page_folio(pmd_page(*pmd))) 2199 goto out; 2200 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2201 } 2202 2203 out: 2204 spin_unlock(ptl); 2205 /* 2206 * No need to double call mmu_notifier->invalidate_range() callback. 2207 * They are 3 cases to consider inside __split_huge_pmd_locked(): 2208 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious 2209 * 2) __split_huge_zero_page_pmd() read only zero page and any write 2210 * fault will trigger a flush_notify before pointing to a new page 2211 * (it is fine if the secondary mmu keeps pointing to the old zero 2212 * page in the meantime) 2213 * 3) Split a huge pmd into pte pointing to the same page. No need 2214 * to invalidate secondary tlb entry they are all still valid. 2215 * any further changes to individual pte will notify. So no need 2216 * to call mmu_notifier->invalidate_range() 2217 */ 2218 mmu_notifier_invalidate_range_only_end(&range); 2219 } 2220 2221 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2222 bool freeze, struct folio *folio) 2223 { 2224 pgd_t *pgd; 2225 p4d_t *p4d; 2226 pud_t *pud; 2227 pmd_t *pmd; 2228 2229 pgd = pgd_offset(vma->vm_mm, address); 2230 if (!pgd_present(*pgd)) 2231 return; 2232 2233 p4d = p4d_offset(pgd, address); 2234 if (!p4d_present(*p4d)) 2235 return; 2236 2237 pud = pud_offset(p4d, address); 2238 if (!pud_present(*pud)) 2239 return; 2240 2241 pmd = pmd_offset(pud, address); 2242 2243 __split_huge_pmd(vma, pmd, address, freeze, folio); 2244 } 2245 2246 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2247 { 2248 /* 2249 * If the new address isn't hpage aligned and it could previously 2250 * contain an hugepage: check if we need to split an huge pmd. 2251 */ 2252 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2253 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2254 ALIGN(address, HPAGE_PMD_SIZE))) 2255 split_huge_pmd_address(vma, address, false, NULL); 2256 } 2257 2258 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2259 unsigned long start, 2260 unsigned long end, 2261 long adjust_next) 2262 { 2263 /* Check if we need to split start first. */ 2264 split_huge_pmd_if_needed(vma, start); 2265 2266 /* Check if we need to split end next. */ 2267 split_huge_pmd_if_needed(vma, end); 2268 2269 /* 2270 * If we're also updating the vma->vm_next->vm_start, 2271 * check if we need to split it. 2272 */ 2273 if (adjust_next > 0) { 2274 struct vm_area_struct *next = vma->vm_next; 2275 unsigned long nstart = next->vm_start; 2276 nstart += adjust_next; 2277 split_huge_pmd_if_needed(next, nstart); 2278 } 2279 } 2280 2281 static void unmap_page(struct page *page) 2282 { 2283 struct folio *folio = page_folio(page); 2284 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2285 TTU_SYNC; 2286 2287 VM_BUG_ON_PAGE(!PageHead(page), page); 2288 2289 /* 2290 * Anon pages need migration entries to preserve them, but file 2291 * pages can simply be left unmapped, then faulted back on demand. 2292 * If that is ever changed (perhaps for mlock), update remap_page(). 2293 */ 2294 if (folio_test_anon(folio)) 2295 try_to_migrate(folio, ttu_flags); 2296 else 2297 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 2298 } 2299 2300 static void remap_page(struct folio *folio, unsigned long nr) 2301 { 2302 int i = 0; 2303 2304 /* If unmap_page() uses try_to_migrate() on file, remove this check */ 2305 if (!folio_test_anon(folio)) 2306 return; 2307 for (;;) { 2308 remove_migration_ptes(folio, folio, true); 2309 i += folio_nr_pages(folio); 2310 if (i >= nr) 2311 break; 2312 folio = folio_next(folio); 2313 } 2314 } 2315 2316 static void lru_add_page_tail(struct page *head, struct page *tail, 2317 struct lruvec *lruvec, struct list_head *list) 2318 { 2319 VM_BUG_ON_PAGE(!PageHead(head), head); 2320 VM_BUG_ON_PAGE(PageCompound(tail), head); 2321 VM_BUG_ON_PAGE(PageLRU(tail), head); 2322 lockdep_assert_held(&lruvec->lru_lock); 2323 2324 if (list) { 2325 /* page reclaim is reclaiming a huge page */ 2326 VM_WARN_ON(PageLRU(head)); 2327 get_page(tail); 2328 list_add_tail(&tail->lru, list); 2329 } else { 2330 /* head is still on lru (and we have it frozen) */ 2331 VM_WARN_ON(!PageLRU(head)); 2332 if (PageUnevictable(tail)) 2333 tail->mlock_count = 0; 2334 else 2335 list_add_tail(&tail->lru, &head->lru); 2336 SetPageLRU(tail); 2337 } 2338 } 2339 2340 static void __split_huge_page_tail(struct page *head, int tail, 2341 struct lruvec *lruvec, struct list_head *list) 2342 { 2343 struct page *page_tail = head + tail; 2344 2345 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2346 2347 /* 2348 * Clone page flags before unfreezing refcount. 2349 * 2350 * After successful get_page_unless_zero() might follow flags change, 2351 * for example lock_page() which set PG_waiters. 2352 * 2353 * Note that for mapped sub-pages of an anonymous THP, 2354 * PG_anon_exclusive has been cleared in unmap_page() and is stored in 2355 * the migration entry instead from where remap_page() will restore it. 2356 * We can still have PG_anon_exclusive set on effectively unmapped and 2357 * unreferenced sub-pages of an anonymous THP: we can simply drop 2358 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 2359 */ 2360 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2361 page_tail->flags |= (head->flags & 2362 ((1L << PG_referenced) | 2363 (1L << PG_swapbacked) | 2364 (1L << PG_swapcache) | 2365 (1L << PG_mlocked) | 2366 (1L << PG_uptodate) | 2367 (1L << PG_active) | 2368 (1L << PG_workingset) | 2369 (1L << PG_locked) | 2370 (1L << PG_unevictable) | 2371 #ifdef CONFIG_64BIT 2372 (1L << PG_arch_2) | 2373 #endif 2374 (1L << PG_dirty))); 2375 2376 /* ->mapping in first tail page is compound_mapcount */ 2377 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2378 page_tail); 2379 page_tail->mapping = head->mapping; 2380 page_tail->index = head->index + tail; 2381 page_tail->private = 0; 2382 2383 /* Page flags must be visible before we make the page non-compound. */ 2384 smp_wmb(); 2385 2386 /* 2387 * Clear PageTail before unfreezing page refcount. 2388 * 2389 * After successful get_page_unless_zero() might follow put_page() 2390 * which needs correct compound_head(). 2391 */ 2392 clear_compound_head(page_tail); 2393 2394 /* Finally unfreeze refcount. Additional reference from page cache. */ 2395 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || 2396 PageSwapCache(head))); 2397 2398 if (page_is_young(head)) 2399 set_page_young(page_tail); 2400 if (page_is_idle(head)) 2401 set_page_idle(page_tail); 2402 2403 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2404 2405 /* 2406 * always add to the tail because some iterators expect new 2407 * pages to show after the currently processed elements - e.g. 2408 * migrate_pages 2409 */ 2410 lru_add_page_tail(head, page_tail, lruvec, list); 2411 } 2412 2413 static void __split_huge_page(struct page *page, struct list_head *list, 2414 pgoff_t end) 2415 { 2416 struct folio *folio = page_folio(page); 2417 struct page *head = &folio->page; 2418 struct lruvec *lruvec; 2419 struct address_space *swap_cache = NULL; 2420 unsigned long offset = 0; 2421 unsigned int nr = thp_nr_pages(head); 2422 int i; 2423 2424 /* complete memcg works before add pages to LRU */ 2425 split_page_memcg(head, nr); 2426 2427 if (PageAnon(head) && PageSwapCache(head)) { 2428 swp_entry_t entry = { .val = page_private(head) }; 2429 2430 offset = swp_offset(entry); 2431 swap_cache = swap_address_space(entry); 2432 xa_lock(&swap_cache->i_pages); 2433 } 2434 2435 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 2436 lruvec = folio_lruvec_lock(folio); 2437 2438 ClearPageHasHWPoisoned(head); 2439 2440 for (i = nr - 1; i >= 1; i--) { 2441 __split_huge_page_tail(head, i, lruvec, list); 2442 /* Some pages can be beyond EOF: drop them from page cache */ 2443 if (head[i].index >= end) { 2444 struct folio *tail = page_folio(head + i); 2445 2446 if (shmem_mapping(head->mapping)) 2447 shmem_uncharge(head->mapping->host, 1); 2448 else if (folio_test_clear_dirty(tail)) 2449 folio_account_cleaned(tail, 2450 inode_to_wb(folio->mapping->host)); 2451 __filemap_remove_folio(tail, NULL); 2452 folio_put(tail); 2453 } else if (!PageAnon(page)) { 2454 __xa_store(&head->mapping->i_pages, head[i].index, 2455 head + i, 0); 2456 } else if (swap_cache) { 2457 __xa_store(&swap_cache->i_pages, offset + i, 2458 head + i, 0); 2459 } 2460 } 2461 2462 ClearPageCompound(head); 2463 unlock_page_lruvec(lruvec); 2464 /* Caller disabled irqs, so they are still disabled here */ 2465 2466 split_page_owner(head, nr); 2467 2468 /* See comment in __split_huge_page_tail() */ 2469 if (PageAnon(head)) { 2470 /* Additional pin to swap cache */ 2471 if (PageSwapCache(head)) { 2472 page_ref_add(head, 2); 2473 xa_unlock(&swap_cache->i_pages); 2474 } else { 2475 page_ref_inc(head); 2476 } 2477 } else { 2478 /* Additional pin to page cache */ 2479 page_ref_add(head, 2); 2480 xa_unlock(&head->mapping->i_pages); 2481 } 2482 local_irq_enable(); 2483 2484 remap_page(folio, nr); 2485 2486 if (PageSwapCache(head)) { 2487 swp_entry_t entry = { .val = page_private(head) }; 2488 2489 split_swap_cluster(entry); 2490 } 2491 2492 for (i = 0; i < nr; i++) { 2493 struct page *subpage = head + i; 2494 if (subpage == page) 2495 continue; 2496 unlock_page(subpage); 2497 2498 /* 2499 * Subpages may be freed if there wasn't any mapping 2500 * like if add_to_swap() is running on a lru page that 2501 * had its mapping zapped. And freeing these pages 2502 * requires taking the lru_lock so we do the put_page 2503 * of the tail pages after the split is complete. 2504 */ 2505 put_page(subpage); 2506 } 2507 } 2508 2509 /* Racy check whether the huge page can be split */ 2510 bool can_split_folio(struct folio *folio, int *pextra_pins) 2511 { 2512 int extra_pins; 2513 2514 /* Additional pins from page cache */ 2515 if (folio_test_anon(folio)) 2516 extra_pins = folio_test_swapcache(folio) ? 2517 folio_nr_pages(folio) : 0; 2518 else 2519 extra_pins = folio_nr_pages(folio); 2520 if (pextra_pins) 2521 *pextra_pins = extra_pins; 2522 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1; 2523 } 2524 2525 /* 2526 * This function splits huge page into normal pages. @page can point to any 2527 * subpage of huge page to split. Split doesn't change the position of @page. 2528 * 2529 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2530 * The huge page must be locked. 2531 * 2532 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2533 * 2534 * Both head page and tail pages will inherit mapping, flags, and so on from 2535 * the hugepage. 2536 * 2537 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2538 * they are not mapped. 2539 * 2540 * Returns 0 if the hugepage is split successfully. 2541 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2542 * us. 2543 */ 2544 int split_huge_page_to_list(struct page *page, struct list_head *list) 2545 { 2546 struct folio *folio = page_folio(page); 2547 struct page *head = &folio->page; 2548 struct deferred_split *ds_queue = get_deferred_split_queue(head); 2549 XA_STATE(xas, &head->mapping->i_pages, head->index); 2550 struct anon_vma *anon_vma = NULL; 2551 struct address_space *mapping = NULL; 2552 int extra_pins, ret; 2553 pgoff_t end; 2554 bool is_hzp; 2555 2556 VM_BUG_ON_PAGE(!PageLocked(head), head); 2557 VM_BUG_ON_PAGE(!PageCompound(head), head); 2558 2559 is_hzp = is_huge_zero_page(head); 2560 VM_WARN_ON_ONCE_PAGE(is_hzp, head); 2561 if (is_hzp) 2562 return -EBUSY; 2563 2564 if (PageWriteback(head)) 2565 return -EBUSY; 2566 2567 if (PageAnon(head)) { 2568 /* 2569 * The caller does not necessarily hold an mmap_lock that would 2570 * prevent the anon_vma disappearing so we first we take a 2571 * reference to it and then lock the anon_vma for write. This 2572 * is similar to folio_lock_anon_vma_read except the write lock 2573 * is taken to serialise against parallel split or collapse 2574 * operations. 2575 */ 2576 anon_vma = page_get_anon_vma(head); 2577 if (!anon_vma) { 2578 ret = -EBUSY; 2579 goto out; 2580 } 2581 end = -1; 2582 mapping = NULL; 2583 anon_vma_lock_write(anon_vma); 2584 } else { 2585 mapping = head->mapping; 2586 2587 /* Truncated ? */ 2588 if (!mapping) { 2589 ret = -EBUSY; 2590 goto out; 2591 } 2592 2593 xas_split_alloc(&xas, head, compound_order(head), 2594 mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK); 2595 if (xas_error(&xas)) { 2596 ret = xas_error(&xas); 2597 goto out; 2598 } 2599 2600 anon_vma = NULL; 2601 i_mmap_lock_read(mapping); 2602 2603 /* 2604 *__split_huge_page() may need to trim off pages beyond EOF: 2605 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 2606 * which cannot be nested inside the page tree lock. So note 2607 * end now: i_size itself may be changed at any moment, but 2608 * head page lock is good enough to serialize the trimming. 2609 */ 2610 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2611 if (shmem_mapping(mapping)) 2612 end = shmem_fallocend(mapping->host, end); 2613 } 2614 2615 /* 2616 * Racy check if we can split the page, before unmap_page() will 2617 * split PMDs 2618 */ 2619 if (!can_split_folio(folio, &extra_pins)) { 2620 ret = -EBUSY; 2621 goto out_unlock; 2622 } 2623 2624 unmap_page(head); 2625 2626 /* block interrupt reentry in xa_lock and spinlock */ 2627 local_irq_disable(); 2628 if (mapping) { 2629 /* 2630 * Check if the head page is present in page cache. 2631 * We assume all tail are present too, if head is there. 2632 */ 2633 xas_lock(&xas); 2634 xas_reset(&xas); 2635 if (xas_load(&xas) != head) 2636 goto fail; 2637 } 2638 2639 /* Prevent deferred_split_scan() touching ->_refcount */ 2640 spin_lock(&ds_queue->split_queue_lock); 2641 if (page_ref_freeze(head, 1 + extra_pins)) { 2642 if (!list_empty(page_deferred_list(head))) { 2643 ds_queue->split_queue_len--; 2644 list_del(page_deferred_list(head)); 2645 } 2646 spin_unlock(&ds_queue->split_queue_lock); 2647 if (mapping) { 2648 int nr = thp_nr_pages(head); 2649 2650 xas_split(&xas, head, thp_order(head)); 2651 if (PageSwapBacked(head)) { 2652 __mod_lruvec_page_state(head, NR_SHMEM_THPS, 2653 -nr); 2654 } else { 2655 __mod_lruvec_page_state(head, NR_FILE_THPS, 2656 -nr); 2657 filemap_nr_thps_dec(mapping); 2658 } 2659 } 2660 2661 __split_huge_page(page, list, end); 2662 ret = 0; 2663 } else { 2664 spin_unlock(&ds_queue->split_queue_lock); 2665 fail: 2666 if (mapping) 2667 xas_unlock(&xas); 2668 local_irq_enable(); 2669 remap_page(folio, folio_nr_pages(folio)); 2670 ret = -EBUSY; 2671 } 2672 2673 out_unlock: 2674 if (anon_vma) { 2675 anon_vma_unlock_write(anon_vma); 2676 put_anon_vma(anon_vma); 2677 } 2678 if (mapping) 2679 i_mmap_unlock_read(mapping); 2680 out: 2681 xas_destroy(&xas); 2682 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2683 return ret; 2684 } 2685 2686 void free_transhuge_page(struct page *page) 2687 { 2688 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2689 unsigned long flags; 2690 2691 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2692 if (!list_empty(page_deferred_list(page))) { 2693 ds_queue->split_queue_len--; 2694 list_del(page_deferred_list(page)); 2695 } 2696 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2697 free_compound_page(page); 2698 } 2699 2700 void deferred_split_huge_page(struct page *page) 2701 { 2702 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2703 #ifdef CONFIG_MEMCG 2704 struct mem_cgroup *memcg = page_memcg(compound_head(page)); 2705 #endif 2706 unsigned long flags; 2707 2708 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2709 2710 /* 2711 * The try_to_unmap() in page reclaim path might reach here too, 2712 * this may cause a race condition to corrupt deferred split queue. 2713 * And, if page reclaim is already handling the same page, it is 2714 * unnecessary to handle it again in shrinker. 2715 * 2716 * Check PageSwapCache to determine if the page is being 2717 * handled by page reclaim since THP swap would add the page into 2718 * swap cache before calling try_to_unmap(). 2719 */ 2720 if (PageSwapCache(page)) 2721 return; 2722 2723 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2724 if (list_empty(page_deferred_list(page))) { 2725 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2726 list_add_tail(page_deferred_list(page), &ds_queue->split_queue); 2727 ds_queue->split_queue_len++; 2728 #ifdef CONFIG_MEMCG 2729 if (memcg) 2730 set_shrinker_bit(memcg, page_to_nid(page), 2731 deferred_split_shrinker.id); 2732 #endif 2733 } 2734 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2735 } 2736 2737 static unsigned long deferred_split_count(struct shrinker *shrink, 2738 struct shrink_control *sc) 2739 { 2740 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2741 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2742 2743 #ifdef CONFIG_MEMCG 2744 if (sc->memcg) 2745 ds_queue = &sc->memcg->deferred_split_queue; 2746 #endif 2747 return READ_ONCE(ds_queue->split_queue_len); 2748 } 2749 2750 static unsigned long deferred_split_scan(struct shrinker *shrink, 2751 struct shrink_control *sc) 2752 { 2753 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2754 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2755 unsigned long flags; 2756 LIST_HEAD(list), *pos, *next; 2757 struct page *page; 2758 int split = 0; 2759 2760 #ifdef CONFIG_MEMCG 2761 if (sc->memcg) 2762 ds_queue = &sc->memcg->deferred_split_queue; 2763 #endif 2764 2765 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2766 /* Take pin on all head pages to avoid freeing them under us */ 2767 list_for_each_safe(pos, next, &ds_queue->split_queue) { 2768 page = list_entry((void *)pos, struct page, deferred_list); 2769 page = compound_head(page); 2770 if (get_page_unless_zero(page)) { 2771 list_move(page_deferred_list(page), &list); 2772 } else { 2773 /* We lost race with put_compound_page() */ 2774 list_del_init(page_deferred_list(page)); 2775 ds_queue->split_queue_len--; 2776 } 2777 if (!--sc->nr_to_scan) 2778 break; 2779 } 2780 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2781 2782 list_for_each_safe(pos, next, &list) { 2783 page = list_entry((void *)pos, struct page, deferred_list); 2784 if (!trylock_page(page)) 2785 goto next; 2786 /* split_huge_page() removes page from list on success */ 2787 if (!split_huge_page(page)) 2788 split++; 2789 unlock_page(page); 2790 next: 2791 put_page(page); 2792 } 2793 2794 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2795 list_splice_tail(&list, &ds_queue->split_queue); 2796 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2797 2798 /* 2799 * Stop shrinker if we didn't split any page, but the queue is empty. 2800 * This can happen if pages were freed under us. 2801 */ 2802 if (!split && list_empty(&ds_queue->split_queue)) 2803 return SHRINK_STOP; 2804 return split; 2805 } 2806 2807 static struct shrinker deferred_split_shrinker = { 2808 .count_objects = deferred_split_count, 2809 .scan_objects = deferred_split_scan, 2810 .seeks = DEFAULT_SEEKS, 2811 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE | 2812 SHRINKER_NONSLAB, 2813 }; 2814 2815 #ifdef CONFIG_DEBUG_FS 2816 static void split_huge_pages_all(void) 2817 { 2818 struct zone *zone; 2819 struct page *page; 2820 unsigned long pfn, max_zone_pfn; 2821 unsigned long total = 0, split = 0; 2822 2823 pr_debug("Split all THPs\n"); 2824 for_each_populated_zone(zone) { 2825 max_zone_pfn = zone_end_pfn(zone); 2826 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2827 if (!pfn_valid(pfn)) 2828 continue; 2829 2830 page = pfn_to_page(pfn); 2831 if (!get_page_unless_zero(page)) 2832 continue; 2833 2834 if (zone != page_zone(page)) 2835 goto next; 2836 2837 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2838 goto next; 2839 2840 total++; 2841 lock_page(page); 2842 if (!split_huge_page(page)) 2843 split++; 2844 unlock_page(page); 2845 next: 2846 put_page(page); 2847 cond_resched(); 2848 } 2849 } 2850 2851 pr_debug("%lu of %lu THP split\n", split, total); 2852 } 2853 2854 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 2855 { 2856 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 2857 is_vm_hugetlb_page(vma); 2858 } 2859 2860 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 2861 unsigned long vaddr_end) 2862 { 2863 int ret = 0; 2864 struct task_struct *task; 2865 struct mm_struct *mm; 2866 unsigned long total = 0, split = 0; 2867 unsigned long addr; 2868 2869 vaddr_start &= PAGE_MASK; 2870 vaddr_end &= PAGE_MASK; 2871 2872 /* Find the task_struct from pid */ 2873 rcu_read_lock(); 2874 task = find_task_by_vpid(pid); 2875 if (!task) { 2876 rcu_read_unlock(); 2877 ret = -ESRCH; 2878 goto out; 2879 } 2880 get_task_struct(task); 2881 rcu_read_unlock(); 2882 2883 /* Find the mm_struct */ 2884 mm = get_task_mm(task); 2885 put_task_struct(task); 2886 2887 if (!mm) { 2888 ret = -EINVAL; 2889 goto out; 2890 } 2891 2892 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 2893 pid, vaddr_start, vaddr_end); 2894 2895 mmap_read_lock(mm); 2896 /* 2897 * always increase addr by PAGE_SIZE, since we could have a PTE page 2898 * table filled with PTE-mapped THPs, each of which is distinct. 2899 */ 2900 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 2901 struct vm_area_struct *vma = find_vma(mm, addr); 2902 struct page *page; 2903 2904 if (!vma || addr < vma->vm_start) 2905 break; 2906 2907 /* skip special VMA and hugetlb VMA */ 2908 if (vma_not_suitable_for_thp_split(vma)) { 2909 addr = vma->vm_end; 2910 continue; 2911 } 2912 2913 /* FOLL_DUMP to ignore special (like zero) pages */ 2914 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 2915 2916 if (IS_ERR(page)) 2917 continue; 2918 if (!page) 2919 continue; 2920 2921 if (!is_transparent_hugepage(page)) 2922 goto next; 2923 2924 total++; 2925 if (!can_split_folio(page_folio(page), NULL)) 2926 goto next; 2927 2928 if (!trylock_page(page)) 2929 goto next; 2930 2931 if (!split_huge_page(page)) 2932 split++; 2933 2934 unlock_page(page); 2935 next: 2936 put_page(page); 2937 cond_resched(); 2938 } 2939 mmap_read_unlock(mm); 2940 mmput(mm); 2941 2942 pr_debug("%lu of %lu THP split\n", split, total); 2943 2944 out: 2945 return ret; 2946 } 2947 2948 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 2949 pgoff_t off_end) 2950 { 2951 struct filename *file; 2952 struct file *candidate; 2953 struct address_space *mapping; 2954 int ret = -EINVAL; 2955 pgoff_t index; 2956 int nr_pages = 1; 2957 unsigned long total = 0, split = 0; 2958 2959 file = getname_kernel(file_path); 2960 if (IS_ERR(file)) 2961 return ret; 2962 2963 candidate = file_open_name(file, O_RDONLY, 0); 2964 if (IS_ERR(candidate)) 2965 goto out; 2966 2967 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 2968 file_path, off_start, off_end); 2969 2970 mapping = candidate->f_mapping; 2971 2972 for (index = off_start; index < off_end; index += nr_pages) { 2973 struct page *fpage = pagecache_get_page(mapping, index, 2974 FGP_ENTRY | FGP_HEAD, 0); 2975 2976 nr_pages = 1; 2977 if (xa_is_value(fpage) || !fpage) 2978 continue; 2979 2980 if (!is_transparent_hugepage(fpage)) 2981 goto next; 2982 2983 total++; 2984 nr_pages = thp_nr_pages(fpage); 2985 2986 if (!trylock_page(fpage)) 2987 goto next; 2988 2989 if (!split_huge_page(fpage)) 2990 split++; 2991 2992 unlock_page(fpage); 2993 next: 2994 put_page(fpage); 2995 cond_resched(); 2996 } 2997 2998 filp_close(candidate, NULL); 2999 ret = 0; 3000 3001 pr_debug("%lu of %lu file-backed THP split\n", split, total); 3002 out: 3003 putname(file); 3004 return ret; 3005 } 3006 3007 #define MAX_INPUT_BUF_SZ 255 3008 3009 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 3010 size_t count, loff_t *ppops) 3011 { 3012 static DEFINE_MUTEX(split_debug_mutex); 3013 ssize_t ret; 3014 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */ 3015 char input_buf[MAX_INPUT_BUF_SZ]; 3016 int pid; 3017 unsigned long vaddr_start, vaddr_end; 3018 3019 ret = mutex_lock_interruptible(&split_debug_mutex); 3020 if (ret) 3021 return ret; 3022 3023 ret = -EFAULT; 3024 3025 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 3026 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 3027 goto out; 3028 3029 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 3030 3031 if (input_buf[0] == '/') { 3032 char *tok; 3033 char *buf = input_buf; 3034 char file_path[MAX_INPUT_BUF_SZ]; 3035 pgoff_t off_start = 0, off_end = 0; 3036 size_t input_len = strlen(input_buf); 3037 3038 tok = strsep(&buf, ","); 3039 if (tok) { 3040 strcpy(file_path, tok); 3041 } else { 3042 ret = -EINVAL; 3043 goto out; 3044 } 3045 3046 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end); 3047 if (ret != 2) { 3048 ret = -EINVAL; 3049 goto out; 3050 } 3051 ret = split_huge_pages_in_file(file_path, off_start, off_end); 3052 if (!ret) 3053 ret = input_len; 3054 3055 goto out; 3056 } 3057 3058 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end); 3059 if (ret == 1 && pid == 1) { 3060 split_huge_pages_all(); 3061 ret = strlen(input_buf); 3062 goto out; 3063 } else if (ret != 3) { 3064 ret = -EINVAL; 3065 goto out; 3066 } 3067 3068 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end); 3069 if (!ret) 3070 ret = strlen(input_buf); 3071 out: 3072 mutex_unlock(&split_debug_mutex); 3073 return ret; 3074 3075 } 3076 3077 static const struct file_operations split_huge_pages_fops = { 3078 .owner = THIS_MODULE, 3079 .write = split_huge_pages_write, 3080 .llseek = no_llseek, 3081 }; 3082 3083 static int __init split_huge_pages_debugfs(void) 3084 { 3085 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3086 &split_huge_pages_fops); 3087 return 0; 3088 } 3089 late_initcall(split_huge_pages_debugfs); 3090 #endif 3091 3092 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3093 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3094 struct page *page) 3095 { 3096 struct vm_area_struct *vma = pvmw->vma; 3097 struct mm_struct *mm = vma->vm_mm; 3098 unsigned long address = pvmw->address; 3099 bool anon_exclusive; 3100 pmd_t pmdval; 3101 swp_entry_t entry; 3102 pmd_t pmdswp; 3103 3104 if (!(pvmw->pmd && !pvmw->pte)) 3105 return 0; 3106 3107 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3108 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3109 3110 anon_exclusive = PageAnon(page) && PageAnonExclusive(page); 3111 if (anon_exclusive && page_try_share_anon_rmap(page)) { 3112 set_pmd_at(mm, address, pvmw->pmd, pmdval); 3113 return -EBUSY; 3114 } 3115 3116 if (pmd_dirty(pmdval)) 3117 set_page_dirty(page); 3118 if (pmd_write(pmdval)) 3119 entry = make_writable_migration_entry(page_to_pfn(page)); 3120 else if (anon_exclusive) 3121 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 3122 else 3123 entry = make_readable_migration_entry(page_to_pfn(page)); 3124 pmdswp = swp_entry_to_pmd(entry); 3125 if (pmd_soft_dirty(pmdval)) 3126 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3127 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3128 page_remove_rmap(page, vma, true); 3129 put_page(page); 3130 trace_set_migration_pmd(address, pmd_val(pmdswp)); 3131 3132 return 0; 3133 } 3134 3135 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3136 { 3137 struct vm_area_struct *vma = pvmw->vma; 3138 struct mm_struct *mm = vma->vm_mm; 3139 unsigned long address = pvmw->address; 3140 unsigned long mmun_start = address & HPAGE_PMD_MASK; 3141 pmd_t pmde; 3142 swp_entry_t entry; 3143 3144 if (!(pvmw->pmd && !pvmw->pte)) 3145 return; 3146 3147 entry = pmd_to_swp_entry(*pvmw->pmd); 3148 get_page(new); 3149 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot)); 3150 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3151 pmde = pmd_mksoft_dirty(pmde); 3152 if (is_writable_migration_entry(entry)) 3153 pmde = maybe_pmd_mkwrite(pmde, vma); 3154 if (pmd_swp_uffd_wp(*pvmw->pmd)) 3155 pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde)); 3156 3157 if (PageAnon(new)) { 3158 rmap_t rmap_flags = RMAP_COMPOUND; 3159 3160 if (!is_readable_migration_entry(entry)) 3161 rmap_flags |= RMAP_EXCLUSIVE; 3162 3163 page_add_anon_rmap(new, vma, mmun_start, rmap_flags); 3164 } else { 3165 page_add_file_rmap(new, vma, true); 3166 } 3167 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new)); 3168 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde); 3169 3170 /* No need to invalidate - it was non-present before */ 3171 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3172 trace_remove_migration_pmd(address, pmd_val(pmde)); 3173 } 3174 #endif 3175