xref: /openbmc/linux/mm/huge_memory.c (revision 0b2f3212)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 
40 #include <asm/tlb.h>
41 #include <asm/pgalloc.h>
42 #include "internal.h"
43 #include "swap.h"
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/thp.h>
47 
48 /*
49  * By default, transparent hugepage support is disabled in order to avoid
50  * risking an increased memory footprint for applications that are not
51  * guaranteed to benefit from it. When transparent hugepage support is
52  * enabled, it is for all mappings, and khugepaged scans all mappings.
53  * Defrag is invoked by khugepaged hugepage allocations and by page faults
54  * for all hugepage allocations.
55  */
56 unsigned long transparent_hugepage_flags __read_mostly =
57 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
58 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
59 #endif
60 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
61 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
62 #endif
63 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
64 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
65 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
66 
67 static struct shrinker deferred_split_shrinker;
68 
69 static atomic_t huge_zero_refcount;
70 struct page *huge_zero_page __read_mostly;
71 unsigned long huge_zero_pfn __read_mostly = ~0UL;
72 
73 bool transparent_hugepage_active(struct vm_area_struct *vma)
74 {
75 	/* The addr is used to check if the vma size fits */
76 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
77 
78 	if (!transhuge_vma_suitable(vma, addr))
79 		return false;
80 	if (vma_is_anonymous(vma))
81 		return __transparent_hugepage_enabled(vma);
82 	if (vma_is_shmem(vma))
83 		return shmem_huge_enabled(vma);
84 	if (transhuge_vma_enabled(vma, vma->vm_flags) && file_thp_enabled(vma))
85 		return true;
86 
87 	return false;
88 }
89 
90 static bool get_huge_zero_page(void)
91 {
92 	struct page *zero_page;
93 retry:
94 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
95 		return true;
96 
97 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
98 			HPAGE_PMD_ORDER);
99 	if (!zero_page) {
100 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
101 		return false;
102 	}
103 	count_vm_event(THP_ZERO_PAGE_ALLOC);
104 	preempt_disable();
105 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
106 		preempt_enable();
107 		__free_pages(zero_page, compound_order(zero_page));
108 		goto retry;
109 	}
110 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
111 
112 	/* We take additional reference here. It will be put back by shrinker */
113 	atomic_set(&huge_zero_refcount, 2);
114 	preempt_enable();
115 	return true;
116 }
117 
118 static void put_huge_zero_page(void)
119 {
120 	/*
121 	 * Counter should never go to zero here. Only shrinker can put
122 	 * last reference.
123 	 */
124 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
125 }
126 
127 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
128 {
129 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
130 		return READ_ONCE(huge_zero_page);
131 
132 	if (!get_huge_zero_page())
133 		return NULL;
134 
135 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
136 		put_huge_zero_page();
137 
138 	return READ_ONCE(huge_zero_page);
139 }
140 
141 void mm_put_huge_zero_page(struct mm_struct *mm)
142 {
143 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
144 		put_huge_zero_page();
145 }
146 
147 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
148 					struct shrink_control *sc)
149 {
150 	/* we can free zero page only if last reference remains */
151 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
152 }
153 
154 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
155 				       struct shrink_control *sc)
156 {
157 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
158 		struct page *zero_page = xchg(&huge_zero_page, NULL);
159 		BUG_ON(zero_page == NULL);
160 		WRITE_ONCE(huge_zero_pfn, ~0UL);
161 		__free_pages(zero_page, compound_order(zero_page));
162 		return HPAGE_PMD_NR;
163 	}
164 
165 	return 0;
166 }
167 
168 static struct shrinker huge_zero_page_shrinker = {
169 	.count_objects = shrink_huge_zero_page_count,
170 	.scan_objects = shrink_huge_zero_page_scan,
171 	.seeks = DEFAULT_SEEKS,
172 };
173 
174 #ifdef CONFIG_SYSFS
175 static ssize_t enabled_show(struct kobject *kobj,
176 			    struct kobj_attribute *attr, char *buf)
177 {
178 	const char *output;
179 
180 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
181 		output = "[always] madvise never";
182 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
183 			  &transparent_hugepage_flags))
184 		output = "always [madvise] never";
185 	else
186 		output = "always madvise [never]";
187 
188 	return sysfs_emit(buf, "%s\n", output);
189 }
190 
191 static ssize_t enabled_store(struct kobject *kobj,
192 			     struct kobj_attribute *attr,
193 			     const char *buf, size_t count)
194 {
195 	ssize_t ret = count;
196 
197 	if (sysfs_streq(buf, "always")) {
198 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
199 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
200 	} else if (sysfs_streq(buf, "madvise")) {
201 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
202 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
203 	} else if (sysfs_streq(buf, "never")) {
204 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
205 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
206 	} else
207 		ret = -EINVAL;
208 
209 	if (ret > 0) {
210 		int err = start_stop_khugepaged();
211 		if (err)
212 			ret = err;
213 	}
214 	return ret;
215 }
216 static struct kobj_attribute enabled_attr =
217 	__ATTR(enabled, 0644, enabled_show, enabled_store);
218 
219 ssize_t single_hugepage_flag_show(struct kobject *kobj,
220 				  struct kobj_attribute *attr, char *buf,
221 				  enum transparent_hugepage_flag flag)
222 {
223 	return sysfs_emit(buf, "%d\n",
224 			  !!test_bit(flag, &transparent_hugepage_flags));
225 }
226 
227 ssize_t single_hugepage_flag_store(struct kobject *kobj,
228 				 struct kobj_attribute *attr,
229 				 const char *buf, size_t count,
230 				 enum transparent_hugepage_flag flag)
231 {
232 	unsigned long value;
233 	int ret;
234 
235 	ret = kstrtoul(buf, 10, &value);
236 	if (ret < 0)
237 		return ret;
238 	if (value > 1)
239 		return -EINVAL;
240 
241 	if (value)
242 		set_bit(flag, &transparent_hugepage_flags);
243 	else
244 		clear_bit(flag, &transparent_hugepage_flags);
245 
246 	return count;
247 }
248 
249 static ssize_t defrag_show(struct kobject *kobj,
250 			   struct kobj_attribute *attr, char *buf)
251 {
252 	const char *output;
253 
254 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
255 		     &transparent_hugepage_flags))
256 		output = "[always] defer defer+madvise madvise never";
257 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
258 			  &transparent_hugepage_flags))
259 		output = "always [defer] defer+madvise madvise never";
260 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
261 			  &transparent_hugepage_flags))
262 		output = "always defer [defer+madvise] madvise never";
263 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
264 			  &transparent_hugepage_flags))
265 		output = "always defer defer+madvise [madvise] never";
266 	else
267 		output = "always defer defer+madvise madvise [never]";
268 
269 	return sysfs_emit(buf, "%s\n", output);
270 }
271 
272 static ssize_t defrag_store(struct kobject *kobj,
273 			    struct kobj_attribute *attr,
274 			    const char *buf, size_t count)
275 {
276 	if (sysfs_streq(buf, "always")) {
277 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
278 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
279 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
280 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
281 	} else if (sysfs_streq(buf, "defer+madvise")) {
282 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
283 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
284 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
285 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
286 	} else if (sysfs_streq(buf, "defer")) {
287 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
288 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
289 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
290 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
291 	} else if (sysfs_streq(buf, "madvise")) {
292 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
293 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
294 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
295 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
296 	} else if (sysfs_streq(buf, "never")) {
297 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
298 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
299 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
300 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
301 	} else
302 		return -EINVAL;
303 
304 	return count;
305 }
306 static struct kobj_attribute defrag_attr =
307 	__ATTR(defrag, 0644, defrag_show, defrag_store);
308 
309 static ssize_t use_zero_page_show(struct kobject *kobj,
310 				  struct kobj_attribute *attr, char *buf)
311 {
312 	return single_hugepage_flag_show(kobj, attr, buf,
313 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
314 }
315 static ssize_t use_zero_page_store(struct kobject *kobj,
316 		struct kobj_attribute *attr, const char *buf, size_t count)
317 {
318 	return single_hugepage_flag_store(kobj, attr, buf, count,
319 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
320 }
321 static struct kobj_attribute use_zero_page_attr =
322 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
323 
324 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
325 				   struct kobj_attribute *attr, char *buf)
326 {
327 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
328 }
329 static struct kobj_attribute hpage_pmd_size_attr =
330 	__ATTR_RO(hpage_pmd_size);
331 
332 static struct attribute *hugepage_attr[] = {
333 	&enabled_attr.attr,
334 	&defrag_attr.attr,
335 	&use_zero_page_attr.attr,
336 	&hpage_pmd_size_attr.attr,
337 #ifdef CONFIG_SHMEM
338 	&shmem_enabled_attr.attr,
339 #endif
340 	NULL,
341 };
342 
343 static const struct attribute_group hugepage_attr_group = {
344 	.attrs = hugepage_attr,
345 };
346 
347 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
348 {
349 	int err;
350 
351 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
352 	if (unlikely(!*hugepage_kobj)) {
353 		pr_err("failed to create transparent hugepage kobject\n");
354 		return -ENOMEM;
355 	}
356 
357 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
358 	if (err) {
359 		pr_err("failed to register transparent hugepage group\n");
360 		goto delete_obj;
361 	}
362 
363 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
364 	if (err) {
365 		pr_err("failed to register transparent hugepage group\n");
366 		goto remove_hp_group;
367 	}
368 
369 	return 0;
370 
371 remove_hp_group:
372 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
373 delete_obj:
374 	kobject_put(*hugepage_kobj);
375 	return err;
376 }
377 
378 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
381 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
382 	kobject_put(hugepage_kobj);
383 }
384 #else
385 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
386 {
387 	return 0;
388 }
389 
390 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
391 {
392 }
393 #endif /* CONFIG_SYSFS */
394 
395 static int __init hugepage_init(void)
396 {
397 	int err;
398 	struct kobject *hugepage_kobj;
399 
400 	if (!has_transparent_hugepage()) {
401 		/*
402 		 * Hardware doesn't support hugepages, hence disable
403 		 * DAX PMD support.
404 		 */
405 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
406 		return -EINVAL;
407 	}
408 
409 	/*
410 	 * hugepages can't be allocated by the buddy allocator
411 	 */
412 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
413 	/*
414 	 * we use page->mapping and page->index in second tail page
415 	 * as list_head: assuming THP order >= 2
416 	 */
417 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
418 
419 	err = hugepage_init_sysfs(&hugepage_kobj);
420 	if (err)
421 		goto err_sysfs;
422 
423 	err = khugepaged_init();
424 	if (err)
425 		goto err_slab;
426 
427 	err = register_shrinker(&huge_zero_page_shrinker);
428 	if (err)
429 		goto err_hzp_shrinker;
430 	err = register_shrinker(&deferred_split_shrinker);
431 	if (err)
432 		goto err_split_shrinker;
433 
434 	/*
435 	 * By default disable transparent hugepages on smaller systems,
436 	 * where the extra memory used could hurt more than TLB overhead
437 	 * is likely to save.  The admin can still enable it through /sys.
438 	 */
439 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
440 		transparent_hugepage_flags = 0;
441 		return 0;
442 	}
443 
444 	err = start_stop_khugepaged();
445 	if (err)
446 		goto err_khugepaged;
447 
448 	return 0;
449 err_khugepaged:
450 	unregister_shrinker(&deferred_split_shrinker);
451 err_split_shrinker:
452 	unregister_shrinker(&huge_zero_page_shrinker);
453 err_hzp_shrinker:
454 	khugepaged_destroy();
455 err_slab:
456 	hugepage_exit_sysfs(hugepage_kobj);
457 err_sysfs:
458 	return err;
459 }
460 subsys_initcall(hugepage_init);
461 
462 static int __init setup_transparent_hugepage(char *str)
463 {
464 	int ret = 0;
465 	if (!str)
466 		goto out;
467 	if (!strcmp(str, "always")) {
468 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
469 			&transparent_hugepage_flags);
470 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
471 			  &transparent_hugepage_flags);
472 		ret = 1;
473 	} else if (!strcmp(str, "madvise")) {
474 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
475 			  &transparent_hugepage_flags);
476 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
477 			&transparent_hugepage_flags);
478 		ret = 1;
479 	} else if (!strcmp(str, "never")) {
480 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
481 			  &transparent_hugepage_flags);
482 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
483 			  &transparent_hugepage_flags);
484 		ret = 1;
485 	}
486 out:
487 	if (!ret)
488 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
489 	return ret;
490 }
491 __setup("transparent_hugepage=", setup_transparent_hugepage);
492 
493 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
494 {
495 	if (likely(vma->vm_flags & VM_WRITE))
496 		pmd = pmd_mkwrite(pmd);
497 	return pmd;
498 }
499 
500 #ifdef CONFIG_MEMCG
501 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
502 {
503 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
504 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
505 
506 	if (memcg)
507 		return &memcg->deferred_split_queue;
508 	else
509 		return &pgdat->deferred_split_queue;
510 }
511 #else
512 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
513 {
514 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
515 
516 	return &pgdat->deferred_split_queue;
517 }
518 #endif
519 
520 void prep_transhuge_page(struct page *page)
521 {
522 	/*
523 	 * we use page->mapping and page->indexlru in second tail page
524 	 * as list_head: assuming THP order >= 2
525 	 */
526 
527 	INIT_LIST_HEAD(page_deferred_list(page));
528 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
529 }
530 
531 static inline bool is_transparent_hugepage(struct page *page)
532 {
533 	if (!PageCompound(page))
534 		return false;
535 
536 	page = compound_head(page);
537 	return is_huge_zero_page(page) ||
538 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
539 }
540 
541 static unsigned long __thp_get_unmapped_area(struct file *filp,
542 		unsigned long addr, unsigned long len,
543 		loff_t off, unsigned long flags, unsigned long size)
544 {
545 	loff_t off_end = off + len;
546 	loff_t off_align = round_up(off, size);
547 	unsigned long len_pad, ret;
548 
549 	if (off_end <= off_align || (off_end - off_align) < size)
550 		return 0;
551 
552 	len_pad = len + size;
553 	if (len_pad < len || (off + len_pad) < off)
554 		return 0;
555 
556 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
557 					      off >> PAGE_SHIFT, flags);
558 
559 	/*
560 	 * The failure might be due to length padding. The caller will retry
561 	 * without the padding.
562 	 */
563 	if (IS_ERR_VALUE(ret))
564 		return 0;
565 
566 	/*
567 	 * Do not try to align to THP boundary if allocation at the address
568 	 * hint succeeds.
569 	 */
570 	if (ret == addr)
571 		return addr;
572 
573 	ret += (off - ret) & (size - 1);
574 	return ret;
575 }
576 
577 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
578 		unsigned long len, unsigned long pgoff, unsigned long flags)
579 {
580 	unsigned long ret;
581 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
582 
583 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
584 	if (ret)
585 		return ret;
586 
587 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
588 }
589 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
590 
591 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
592 			struct page *page, gfp_t gfp)
593 {
594 	struct vm_area_struct *vma = vmf->vma;
595 	pgtable_t pgtable;
596 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
597 	vm_fault_t ret = 0;
598 
599 	VM_BUG_ON_PAGE(!PageCompound(page), page);
600 
601 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
602 		put_page(page);
603 		count_vm_event(THP_FAULT_FALLBACK);
604 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
605 		return VM_FAULT_FALLBACK;
606 	}
607 	cgroup_throttle_swaprate(page, gfp);
608 
609 	pgtable = pte_alloc_one(vma->vm_mm);
610 	if (unlikely(!pgtable)) {
611 		ret = VM_FAULT_OOM;
612 		goto release;
613 	}
614 
615 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
616 	/*
617 	 * The memory barrier inside __SetPageUptodate makes sure that
618 	 * clear_huge_page writes become visible before the set_pmd_at()
619 	 * write.
620 	 */
621 	__SetPageUptodate(page);
622 
623 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
624 	if (unlikely(!pmd_none(*vmf->pmd))) {
625 		goto unlock_release;
626 	} else {
627 		pmd_t entry;
628 
629 		ret = check_stable_address_space(vma->vm_mm);
630 		if (ret)
631 			goto unlock_release;
632 
633 		/* Deliver the page fault to userland */
634 		if (userfaultfd_missing(vma)) {
635 			spin_unlock(vmf->ptl);
636 			put_page(page);
637 			pte_free(vma->vm_mm, pgtable);
638 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
639 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
640 			return ret;
641 		}
642 
643 		entry = mk_huge_pmd(page, vma->vm_page_prot);
644 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
645 		page_add_new_anon_rmap(page, vma, haddr);
646 		lru_cache_add_inactive_or_unevictable(page, vma);
647 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
648 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
649 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
650 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
651 		mm_inc_nr_ptes(vma->vm_mm);
652 		spin_unlock(vmf->ptl);
653 		count_vm_event(THP_FAULT_ALLOC);
654 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
655 	}
656 
657 	return 0;
658 unlock_release:
659 	spin_unlock(vmf->ptl);
660 release:
661 	if (pgtable)
662 		pte_free(vma->vm_mm, pgtable);
663 	put_page(page);
664 	return ret;
665 
666 }
667 
668 /*
669  * always: directly stall for all thp allocations
670  * defer: wake kswapd and fail if not immediately available
671  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
672  *		  fail if not immediately available
673  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
674  *	    available
675  * never: never stall for any thp allocation
676  */
677 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
678 {
679 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
680 
681 	/* Always do synchronous compaction */
682 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
683 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
684 
685 	/* Kick kcompactd and fail quickly */
686 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
687 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
688 
689 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
690 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
691 		return GFP_TRANSHUGE_LIGHT |
692 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
693 					__GFP_KSWAPD_RECLAIM);
694 
695 	/* Only do synchronous compaction if madvised */
696 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
697 		return GFP_TRANSHUGE_LIGHT |
698 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
699 
700 	return GFP_TRANSHUGE_LIGHT;
701 }
702 
703 /* Caller must hold page table lock. */
704 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
705 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
706 		struct page *zero_page)
707 {
708 	pmd_t entry;
709 	if (!pmd_none(*pmd))
710 		return;
711 	entry = mk_pmd(zero_page, vma->vm_page_prot);
712 	entry = pmd_mkhuge(entry);
713 	if (pgtable)
714 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
715 	set_pmd_at(mm, haddr, pmd, entry);
716 	mm_inc_nr_ptes(mm);
717 }
718 
719 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
720 {
721 	struct vm_area_struct *vma = vmf->vma;
722 	gfp_t gfp;
723 	struct folio *folio;
724 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
725 
726 	if (!transhuge_vma_suitable(vma, haddr))
727 		return VM_FAULT_FALLBACK;
728 	if (unlikely(anon_vma_prepare(vma)))
729 		return VM_FAULT_OOM;
730 	khugepaged_enter(vma, vma->vm_flags);
731 
732 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
733 			!mm_forbids_zeropage(vma->vm_mm) &&
734 			transparent_hugepage_use_zero_page()) {
735 		pgtable_t pgtable;
736 		struct page *zero_page;
737 		vm_fault_t ret;
738 		pgtable = pte_alloc_one(vma->vm_mm);
739 		if (unlikely(!pgtable))
740 			return VM_FAULT_OOM;
741 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
742 		if (unlikely(!zero_page)) {
743 			pte_free(vma->vm_mm, pgtable);
744 			count_vm_event(THP_FAULT_FALLBACK);
745 			return VM_FAULT_FALLBACK;
746 		}
747 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
748 		ret = 0;
749 		if (pmd_none(*vmf->pmd)) {
750 			ret = check_stable_address_space(vma->vm_mm);
751 			if (ret) {
752 				spin_unlock(vmf->ptl);
753 				pte_free(vma->vm_mm, pgtable);
754 			} else if (userfaultfd_missing(vma)) {
755 				spin_unlock(vmf->ptl);
756 				pte_free(vma->vm_mm, pgtable);
757 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
758 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
759 			} else {
760 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
761 						   haddr, vmf->pmd, zero_page);
762 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
763 				spin_unlock(vmf->ptl);
764 			}
765 		} else {
766 			spin_unlock(vmf->ptl);
767 			pte_free(vma->vm_mm, pgtable);
768 		}
769 		return ret;
770 	}
771 	gfp = vma_thp_gfp_mask(vma);
772 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
773 	if (unlikely(!folio)) {
774 		count_vm_event(THP_FAULT_FALLBACK);
775 		return VM_FAULT_FALLBACK;
776 	}
777 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
778 }
779 
780 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
781 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
782 		pgtable_t pgtable)
783 {
784 	struct mm_struct *mm = vma->vm_mm;
785 	pmd_t entry;
786 	spinlock_t *ptl;
787 
788 	ptl = pmd_lock(mm, pmd);
789 	if (!pmd_none(*pmd)) {
790 		if (write) {
791 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
792 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
793 				goto out_unlock;
794 			}
795 			entry = pmd_mkyoung(*pmd);
796 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
797 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
798 				update_mmu_cache_pmd(vma, addr, pmd);
799 		}
800 
801 		goto out_unlock;
802 	}
803 
804 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
805 	if (pfn_t_devmap(pfn))
806 		entry = pmd_mkdevmap(entry);
807 	if (write) {
808 		entry = pmd_mkyoung(pmd_mkdirty(entry));
809 		entry = maybe_pmd_mkwrite(entry, vma);
810 	}
811 
812 	if (pgtable) {
813 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
814 		mm_inc_nr_ptes(mm);
815 		pgtable = NULL;
816 	}
817 
818 	set_pmd_at(mm, addr, pmd, entry);
819 	update_mmu_cache_pmd(vma, addr, pmd);
820 
821 out_unlock:
822 	spin_unlock(ptl);
823 	if (pgtable)
824 		pte_free(mm, pgtable);
825 }
826 
827 /**
828  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
829  * @vmf: Structure describing the fault
830  * @pfn: pfn to insert
831  * @pgprot: page protection to use
832  * @write: whether it's a write fault
833  *
834  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
835  * also consult the vmf_insert_mixed_prot() documentation when
836  * @pgprot != @vmf->vma->vm_page_prot.
837  *
838  * Return: vm_fault_t value.
839  */
840 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
841 				   pgprot_t pgprot, bool write)
842 {
843 	unsigned long addr = vmf->address & PMD_MASK;
844 	struct vm_area_struct *vma = vmf->vma;
845 	pgtable_t pgtable = NULL;
846 
847 	/*
848 	 * If we had pmd_special, we could avoid all these restrictions,
849 	 * but we need to be consistent with PTEs and architectures that
850 	 * can't support a 'special' bit.
851 	 */
852 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
853 			!pfn_t_devmap(pfn));
854 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
855 						(VM_PFNMAP|VM_MIXEDMAP));
856 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
857 
858 	if (addr < vma->vm_start || addr >= vma->vm_end)
859 		return VM_FAULT_SIGBUS;
860 
861 	if (arch_needs_pgtable_deposit()) {
862 		pgtable = pte_alloc_one(vma->vm_mm);
863 		if (!pgtable)
864 			return VM_FAULT_OOM;
865 	}
866 
867 	track_pfn_insert(vma, &pgprot, pfn);
868 
869 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
870 	return VM_FAULT_NOPAGE;
871 }
872 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
873 
874 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
875 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
876 {
877 	if (likely(vma->vm_flags & VM_WRITE))
878 		pud = pud_mkwrite(pud);
879 	return pud;
880 }
881 
882 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
883 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
884 {
885 	struct mm_struct *mm = vma->vm_mm;
886 	pud_t entry;
887 	spinlock_t *ptl;
888 
889 	ptl = pud_lock(mm, pud);
890 	if (!pud_none(*pud)) {
891 		if (write) {
892 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
893 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
894 				goto out_unlock;
895 			}
896 			entry = pud_mkyoung(*pud);
897 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
898 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
899 				update_mmu_cache_pud(vma, addr, pud);
900 		}
901 		goto out_unlock;
902 	}
903 
904 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
905 	if (pfn_t_devmap(pfn))
906 		entry = pud_mkdevmap(entry);
907 	if (write) {
908 		entry = pud_mkyoung(pud_mkdirty(entry));
909 		entry = maybe_pud_mkwrite(entry, vma);
910 	}
911 	set_pud_at(mm, addr, pud, entry);
912 	update_mmu_cache_pud(vma, addr, pud);
913 
914 out_unlock:
915 	spin_unlock(ptl);
916 }
917 
918 /**
919  * vmf_insert_pfn_pud_prot - insert a pud size pfn
920  * @vmf: Structure describing the fault
921  * @pfn: pfn to insert
922  * @pgprot: page protection to use
923  * @write: whether it's a write fault
924  *
925  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
926  * also consult the vmf_insert_mixed_prot() documentation when
927  * @pgprot != @vmf->vma->vm_page_prot.
928  *
929  * Return: vm_fault_t value.
930  */
931 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
932 				   pgprot_t pgprot, bool write)
933 {
934 	unsigned long addr = vmf->address & PUD_MASK;
935 	struct vm_area_struct *vma = vmf->vma;
936 
937 	/*
938 	 * If we had pud_special, we could avoid all these restrictions,
939 	 * but we need to be consistent with PTEs and architectures that
940 	 * can't support a 'special' bit.
941 	 */
942 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
943 			!pfn_t_devmap(pfn));
944 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
945 						(VM_PFNMAP|VM_MIXEDMAP));
946 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
947 
948 	if (addr < vma->vm_start || addr >= vma->vm_end)
949 		return VM_FAULT_SIGBUS;
950 
951 	track_pfn_insert(vma, &pgprot, pfn);
952 
953 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
954 	return VM_FAULT_NOPAGE;
955 }
956 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
957 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
958 
959 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
960 		pmd_t *pmd, int flags)
961 {
962 	pmd_t _pmd;
963 
964 	_pmd = pmd_mkyoung(*pmd);
965 	if (flags & FOLL_WRITE)
966 		_pmd = pmd_mkdirty(_pmd);
967 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
968 				pmd, _pmd, flags & FOLL_WRITE))
969 		update_mmu_cache_pmd(vma, addr, pmd);
970 }
971 
972 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
973 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
974 {
975 	unsigned long pfn = pmd_pfn(*pmd);
976 	struct mm_struct *mm = vma->vm_mm;
977 	struct page *page;
978 
979 	assert_spin_locked(pmd_lockptr(mm, pmd));
980 
981 	/*
982 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
983 	 * not be in this function with `flags & FOLL_COW` set.
984 	 */
985 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
986 
987 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
988 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
989 			 (FOLL_PIN | FOLL_GET)))
990 		return NULL;
991 
992 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
993 		return NULL;
994 
995 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
996 		/* pass */;
997 	else
998 		return NULL;
999 
1000 	if (flags & FOLL_TOUCH)
1001 		touch_pmd(vma, addr, pmd, flags);
1002 
1003 	/*
1004 	 * device mapped pages can only be returned if the
1005 	 * caller will manage the page reference count.
1006 	 */
1007 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1008 		return ERR_PTR(-EEXIST);
1009 
1010 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1011 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1012 	if (!*pgmap)
1013 		return ERR_PTR(-EFAULT);
1014 	page = pfn_to_page(pfn);
1015 	if (!try_grab_page(page, flags))
1016 		page = ERR_PTR(-ENOMEM);
1017 
1018 	return page;
1019 }
1020 
1021 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1022 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1023 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1024 {
1025 	spinlock_t *dst_ptl, *src_ptl;
1026 	struct page *src_page;
1027 	pmd_t pmd;
1028 	pgtable_t pgtable = NULL;
1029 	int ret = -ENOMEM;
1030 
1031 	/* Skip if can be re-fill on fault */
1032 	if (!vma_is_anonymous(dst_vma))
1033 		return 0;
1034 
1035 	pgtable = pte_alloc_one(dst_mm);
1036 	if (unlikely(!pgtable))
1037 		goto out;
1038 
1039 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1040 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1041 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1042 
1043 	ret = -EAGAIN;
1044 	pmd = *src_pmd;
1045 
1046 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1047 	if (unlikely(is_swap_pmd(pmd))) {
1048 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1049 
1050 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1051 		if (!is_readable_migration_entry(entry)) {
1052 			entry = make_readable_migration_entry(
1053 							swp_offset(entry));
1054 			pmd = swp_entry_to_pmd(entry);
1055 			if (pmd_swp_soft_dirty(*src_pmd))
1056 				pmd = pmd_swp_mksoft_dirty(pmd);
1057 			if (pmd_swp_uffd_wp(*src_pmd))
1058 				pmd = pmd_swp_mkuffd_wp(pmd);
1059 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1060 		}
1061 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1062 		mm_inc_nr_ptes(dst_mm);
1063 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1064 		if (!userfaultfd_wp(dst_vma))
1065 			pmd = pmd_swp_clear_uffd_wp(pmd);
1066 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1067 		ret = 0;
1068 		goto out_unlock;
1069 	}
1070 #endif
1071 
1072 	if (unlikely(!pmd_trans_huge(pmd))) {
1073 		pte_free(dst_mm, pgtable);
1074 		goto out_unlock;
1075 	}
1076 	/*
1077 	 * When page table lock is held, the huge zero pmd should not be
1078 	 * under splitting since we don't split the page itself, only pmd to
1079 	 * a page table.
1080 	 */
1081 	if (is_huge_zero_pmd(pmd)) {
1082 		/*
1083 		 * get_huge_zero_page() will never allocate a new page here,
1084 		 * since we already have a zero page to copy. It just takes a
1085 		 * reference.
1086 		 */
1087 		mm_get_huge_zero_page(dst_mm);
1088 		goto out_zero_page;
1089 	}
1090 
1091 	src_page = pmd_page(pmd);
1092 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1093 
1094 	get_page(src_page);
1095 	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1096 		/* Page maybe pinned: split and retry the fault on PTEs. */
1097 		put_page(src_page);
1098 		pte_free(dst_mm, pgtable);
1099 		spin_unlock(src_ptl);
1100 		spin_unlock(dst_ptl);
1101 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1102 		return -EAGAIN;
1103 	}
1104 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1105 out_zero_page:
1106 	mm_inc_nr_ptes(dst_mm);
1107 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1108 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1109 	if (!userfaultfd_wp(dst_vma))
1110 		pmd = pmd_clear_uffd_wp(pmd);
1111 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1112 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1113 
1114 	ret = 0;
1115 out_unlock:
1116 	spin_unlock(src_ptl);
1117 	spin_unlock(dst_ptl);
1118 out:
1119 	return ret;
1120 }
1121 
1122 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1123 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1124 		pud_t *pud, int flags)
1125 {
1126 	pud_t _pud;
1127 
1128 	_pud = pud_mkyoung(*pud);
1129 	if (flags & FOLL_WRITE)
1130 		_pud = pud_mkdirty(_pud);
1131 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1132 				pud, _pud, flags & FOLL_WRITE))
1133 		update_mmu_cache_pud(vma, addr, pud);
1134 }
1135 
1136 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1137 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1138 {
1139 	unsigned long pfn = pud_pfn(*pud);
1140 	struct mm_struct *mm = vma->vm_mm;
1141 	struct page *page;
1142 
1143 	assert_spin_locked(pud_lockptr(mm, pud));
1144 
1145 	if (flags & FOLL_WRITE && !pud_write(*pud))
1146 		return NULL;
1147 
1148 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1149 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1150 			 (FOLL_PIN | FOLL_GET)))
1151 		return NULL;
1152 
1153 	if (pud_present(*pud) && pud_devmap(*pud))
1154 		/* pass */;
1155 	else
1156 		return NULL;
1157 
1158 	if (flags & FOLL_TOUCH)
1159 		touch_pud(vma, addr, pud, flags);
1160 
1161 	/*
1162 	 * device mapped pages can only be returned if the
1163 	 * caller will manage the page reference count.
1164 	 *
1165 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1166 	 */
1167 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1168 		return ERR_PTR(-EEXIST);
1169 
1170 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1171 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1172 	if (!*pgmap)
1173 		return ERR_PTR(-EFAULT);
1174 	page = pfn_to_page(pfn);
1175 	if (!try_grab_page(page, flags))
1176 		page = ERR_PTR(-ENOMEM);
1177 
1178 	return page;
1179 }
1180 
1181 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1182 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1183 		  struct vm_area_struct *vma)
1184 {
1185 	spinlock_t *dst_ptl, *src_ptl;
1186 	pud_t pud;
1187 	int ret;
1188 
1189 	dst_ptl = pud_lock(dst_mm, dst_pud);
1190 	src_ptl = pud_lockptr(src_mm, src_pud);
1191 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1192 
1193 	ret = -EAGAIN;
1194 	pud = *src_pud;
1195 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1196 		goto out_unlock;
1197 
1198 	/*
1199 	 * When page table lock is held, the huge zero pud should not be
1200 	 * under splitting since we don't split the page itself, only pud to
1201 	 * a page table.
1202 	 */
1203 	if (is_huge_zero_pud(pud)) {
1204 		/* No huge zero pud yet */
1205 	}
1206 
1207 	/*
1208 	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1209 	 * and split if duplicating fails.
1210 	 */
1211 	pudp_set_wrprotect(src_mm, addr, src_pud);
1212 	pud = pud_mkold(pud_wrprotect(pud));
1213 	set_pud_at(dst_mm, addr, dst_pud, pud);
1214 
1215 	ret = 0;
1216 out_unlock:
1217 	spin_unlock(src_ptl);
1218 	spin_unlock(dst_ptl);
1219 	return ret;
1220 }
1221 
1222 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1223 {
1224 	pud_t entry;
1225 	unsigned long haddr;
1226 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1227 
1228 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1229 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1230 		goto unlock;
1231 
1232 	entry = pud_mkyoung(orig_pud);
1233 	if (write)
1234 		entry = pud_mkdirty(entry);
1235 	haddr = vmf->address & HPAGE_PUD_MASK;
1236 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1237 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1238 
1239 unlock:
1240 	spin_unlock(vmf->ptl);
1241 }
1242 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1243 
1244 void huge_pmd_set_accessed(struct vm_fault *vmf)
1245 {
1246 	pmd_t entry;
1247 	unsigned long haddr;
1248 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1249 	pmd_t orig_pmd = vmf->orig_pmd;
1250 
1251 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1252 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1253 		goto unlock;
1254 
1255 	entry = pmd_mkyoung(orig_pmd);
1256 	if (write)
1257 		entry = pmd_mkdirty(entry);
1258 	haddr = vmf->address & HPAGE_PMD_MASK;
1259 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1260 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1261 
1262 unlock:
1263 	spin_unlock(vmf->ptl);
1264 }
1265 
1266 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1267 {
1268 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1269 	struct vm_area_struct *vma = vmf->vma;
1270 	struct page *page;
1271 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1272 	pmd_t orig_pmd = vmf->orig_pmd;
1273 
1274 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1275 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1276 
1277 	VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
1278 	VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
1279 
1280 	if (is_huge_zero_pmd(orig_pmd))
1281 		goto fallback;
1282 
1283 	spin_lock(vmf->ptl);
1284 
1285 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1286 		spin_unlock(vmf->ptl);
1287 		return 0;
1288 	}
1289 
1290 	page = pmd_page(orig_pmd);
1291 	VM_BUG_ON_PAGE(!PageHead(page), page);
1292 
1293 	/* Early check when only holding the PT lock. */
1294 	if (PageAnonExclusive(page))
1295 		goto reuse;
1296 
1297 	if (!trylock_page(page)) {
1298 		get_page(page);
1299 		spin_unlock(vmf->ptl);
1300 		lock_page(page);
1301 		spin_lock(vmf->ptl);
1302 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1303 			spin_unlock(vmf->ptl);
1304 			unlock_page(page);
1305 			put_page(page);
1306 			return 0;
1307 		}
1308 		put_page(page);
1309 	}
1310 
1311 	/* Recheck after temporarily dropping the PT lock. */
1312 	if (PageAnonExclusive(page)) {
1313 		unlock_page(page);
1314 		goto reuse;
1315 	}
1316 
1317 	/*
1318 	 * See do_wp_page(): we can only reuse the page exclusively if there are
1319 	 * no additional references. Note that we always drain the LRU
1320 	 * pagevecs immediately after adding a THP.
1321 	 */
1322 	if (page_count(page) > 1 + PageSwapCache(page) * thp_nr_pages(page))
1323 		goto unlock_fallback;
1324 	if (PageSwapCache(page))
1325 		try_to_free_swap(page);
1326 	if (page_count(page) == 1) {
1327 		pmd_t entry;
1328 
1329 		page_move_anon_rmap(page, vma);
1330 		unlock_page(page);
1331 reuse:
1332 		if (unlikely(unshare)) {
1333 			spin_unlock(vmf->ptl);
1334 			return 0;
1335 		}
1336 		entry = pmd_mkyoung(orig_pmd);
1337 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1338 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1339 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1340 		spin_unlock(vmf->ptl);
1341 		return VM_FAULT_WRITE;
1342 	}
1343 
1344 unlock_fallback:
1345 	unlock_page(page);
1346 	spin_unlock(vmf->ptl);
1347 fallback:
1348 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1349 	return VM_FAULT_FALLBACK;
1350 }
1351 
1352 /*
1353  * FOLL_FORCE can write to even unwritable pmd's, but only
1354  * after we've gone through a COW cycle and they are dirty.
1355  */
1356 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1357 {
1358 	return pmd_write(pmd) ||
1359 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1360 }
1361 
1362 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1363 				   unsigned long addr,
1364 				   pmd_t *pmd,
1365 				   unsigned int flags)
1366 {
1367 	struct mm_struct *mm = vma->vm_mm;
1368 	struct page *page = NULL;
1369 
1370 	assert_spin_locked(pmd_lockptr(mm, pmd));
1371 
1372 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1373 		goto out;
1374 
1375 	/* Avoid dumping huge zero page */
1376 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1377 		return ERR_PTR(-EFAULT);
1378 
1379 	/* Full NUMA hinting faults to serialise migration in fault paths */
1380 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1381 		goto out;
1382 
1383 	page = pmd_page(*pmd);
1384 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1385 
1386 	if (!pmd_write(*pmd) && gup_must_unshare(flags, page))
1387 		return ERR_PTR(-EMLINK);
1388 
1389 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1390 			!PageAnonExclusive(page), page);
1391 
1392 	if (!try_grab_page(page, flags))
1393 		return ERR_PTR(-ENOMEM);
1394 
1395 	if (flags & FOLL_TOUCH)
1396 		touch_pmd(vma, addr, pmd, flags);
1397 
1398 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1399 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1400 
1401 out:
1402 	return page;
1403 }
1404 
1405 /* NUMA hinting page fault entry point for trans huge pmds */
1406 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1407 {
1408 	struct vm_area_struct *vma = vmf->vma;
1409 	pmd_t oldpmd = vmf->orig_pmd;
1410 	pmd_t pmd;
1411 	struct page *page;
1412 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1413 	int page_nid = NUMA_NO_NODE;
1414 	int target_nid, last_cpupid = -1;
1415 	bool migrated = false;
1416 	bool was_writable = pmd_savedwrite(oldpmd);
1417 	int flags = 0;
1418 
1419 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1420 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1421 		spin_unlock(vmf->ptl);
1422 		goto out;
1423 	}
1424 
1425 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1426 	page = vm_normal_page_pmd(vma, haddr, pmd);
1427 	if (!page)
1428 		goto out_map;
1429 
1430 	/* See similar comment in do_numa_page for explanation */
1431 	if (!was_writable)
1432 		flags |= TNF_NO_GROUP;
1433 
1434 	page_nid = page_to_nid(page);
1435 	last_cpupid = page_cpupid_last(page);
1436 	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1437 				       &flags);
1438 
1439 	if (target_nid == NUMA_NO_NODE) {
1440 		put_page(page);
1441 		goto out_map;
1442 	}
1443 
1444 	spin_unlock(vmf->ptl);
1445 
1446 	migrated = migrate_misplaced_page(page, vma, target_nid);
1447 	if (migrated) {
1448 		flags |= TNF_MIGRATED;
1449 		page_nid = target_nid;
1450 	} else {
1451 		flags |= TNF_MIGRATE_FAIL;
1452 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1453 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1454 			spin_unlock(vmf->ptl);
1455 			goto out;
1456 		}
1457 		goto out_map;
1458 	}
1459 
1460 out:
1461 	if (page_nid != NUMA_NO_NODE)
1462 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1463 				flags);
1464 
1465 	return 0;
1466 
1467 out_map:
1468 	/* Restore the PMD */
1469 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1470 	pmd = pmd_mkyoung(pmd);
1471 	if (was_writable)
1472 		pmd = pmd_mkwrite(pmd);
1473 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1474 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1475 	spin_unlock(vmf->ptl);
1476 	goto out;
1477 }
1478 
1479 /*
1480  * Return true if we do MADV_FREE successfully on entire pmd page.
1481  * Otherwise, return false.
1482  */
1483 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1484 		pmd_t *pmd, unsigned long addr, unsigned long next)
1485 {
1486 	spinlock_t *ptl;
1487 	pmd_t orig_pmd;
1488 	struct page *page;
1489 	struct mm_struct *mm = tlb->mm;
1490 	bool ret = false;
1491 
1492 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1493 
1494 	ptl = pmd_trans_huge_lock(pmd, vma);
1495 	if (!ptl)
1496 		goto out_unlocked;
1497 
1498 	orig_pmd = *pmd;
1499 	if (is_huge_zero_pmd(orig_pmd))
1500 		goto out;
1501 
1502 	if (unlikely(!pmd_present(orig_pmd))) {
1503 		VM_BUG_ON(thp_migration_supported() &&
1504 				  !is_pmd_migration_entry(orig_pmd));
1505 		goto out;
1506 	}
1507 
1508 	page = pmd_page(orig_pmd);
1509 	/*
1510 	 * If other processes are mapping this page, we couldn't discard
1511 	 * the page unless they all do MADV_FREE so let's skip the page.
1512 	 */
1513 	if (total_mapcount(page) != 1)
1514 		goto out;
1515 
1516 	if (!trylock_page(page))
1517 		goto out;
1518 
1519 	/*
1520 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1521 	 * will deactivate only them.
1522 	 */
1523 	if (next - addr != HPAGE_PMD_SIZE) {
1524 		get_page(page);
1525 		spin_unlock(ptl);
1526 		split_huge_page(page);
1527 		unlock_page(page);
1528 		put_page(page);
1529 		goto out_unlocked;
1530 	}
1531 
1532 	if (PageDirty(page))
1533 		ClearPageDirty(page);
1534 	unlock_page(page);
1535 
1536 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1537 		pmdp_invalidate(vma, addr, pmd);
1538 		orig_pmd = pmd_mkold(orig_pmd);
1539 		orig_pmd = pmd_mkclean(orig_pmd);
1540 
1541 		set_pmd_at(mm, addr, pmd, orig_pmd);
1542 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1543 	}
1544 
1545 	mark_page_lazyfree(page);
1546 	ret = true;
1547 out:
1548 	spin_unlock(ptl);
1549 out_unlocked:
1550 	return ret;
1551 }
1552 
1553 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1554 {
1555 	pgtable_t pgtable;
1556 
1557 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1558 	pte_free(mm, pgtable);
1559 	mm_dec_nr_ptes(mm);
1560 }
1561 
1562 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1563 		 pmd_t *pmd, unsigned long addr)
1564 {
1565 	pmd_t orig_pmd;
1566 	spinlock_t *ptl;
1567 
1568 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1569 
1570 	ptl = __pmd_trans_huge_lock(pmd, vma);
1571 	if (!ptl)
1572 		return 0;
1573 	/*
1574 	 * For architectures like ppc64 we look at deposited pgtable
1575 	 * when calling pmdp_huge_get_and_clear. So do the
1576 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1577 	 * operations.
1578 	 */
1579 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1580 						tlb->fullmm);
1581 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1582 	if (vma_is_special_huge(vma)) {
1583 		if (arch_needs_pgtable_deposit())
1584 			zap_deposited_table(tlb->mm, pmd);
1585 		spin_unlock(ptl);
1586 	} else if (is_huge_zero_pmd(orig_pmd)) {
1587 		zap_deposited_table(tlb->mm, pmd);
1588 		spin_unlock(ptl);
1589 	} else {
1590 		struct page *page = NULL;
1591 		int flush_needed = 1;
1592 
1593 		if (pmd_present(orig_pmd)) {
1594 			page = pmd_page(orig_pmd);
1595 			page_remove_rmap(page, vma, true);
1596 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1597 			VM_BUG_ON_PAGE(!PageHead(page), page);
1598 		} else if (thp_migration_supported()) {
1599 			swp_entry_t entry;
1600 
1601 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1602 			entry = pmd_to_swp_entry(orig_pmd);
1603 			page = pfn_swap_entry_to_page(entry);
1604 			flush_needed = 0;
1605 		} else
1606 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1607 
1608 		if (PageAnon(page)) {
1609 			zap_deposited_table(tlb->mm, pmd);
1610 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1611 		} else {
1612 			if (arch_needs_pgtable_deposit())
1613 				zap_deposited_table(tlb->mm, pmd);
1614 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1615 		}
1616 
1617 		spin_unlock(ptl);
1618 		if (flush_needed)
1619 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1620 	}
1621 	return 1;
1622 }
1623 
1624 #ifndef pmd_move_must_withdraw
1625 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1626 					 spinlock_t *old_pmd_ptl,
1627 					 struct vm_area_struct *vma)
1628 {
1629 	/*
1630 	 * With split pmd lock we also need to move preallocated
1631 	 * PTE page table if new_pmd is on different PMD page table.
1632 	 *
1633 	 * We also don't deposit and withdraw tables for file pages.
1634 	 */
1635 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1636 }
1637 #endif
1638 
1639 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1640 {
1641 #ifdef CONFIG_MEM_SOFT_DIRTY
1642 	if (unlikely(is_pmd_migration_entry(pmd)))
1643 		pmd = pmd_swp_mksoft_dirty(pmd);
1644 	else if (pmd_present(pmd))
1645 		pmd = pmd_mksoft_dirty(pmd);
1646 #endif
1647 	return pmd;
1648 }
1649 
1650 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1651 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1652 {
1653 	spinlock_t *old_ptl, *new_ptl;
1654 	pmd_t pmd;
1655 	struct mm_struct *mm = vma->vm_mm;
1656 	bool force_flush = false;
1657 
1658 	/*
1659 	 * The destination pmd shouldn't be established, free_pgtables()
1660 	 * should have release it.
1661 	 */
1662 	if (WARN_ON(!pmd_none(*new_pmd))) {
1663 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1664 		return false;
1665 	}
1666 
1667 	/*
1668 	 * We don't have to worry about the ordering of src and dst
1669 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1670 	 */
1671 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1672 	if (old_ptl) {
1673 		new_ptl = pmd_lockptr(mm, new_pmd);
1674 		if (new_ptl != old_ptl)
1675 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1676 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1677 		if (pmd_present(pmd))
1678 			force_flush = true;
1679 		VM_BUG_ON(!pmd_none(*new_pmd));
1680 
1681 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1682 			pgtable_t pgtable;
1683 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1684 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1685 		}
1686 		pmd = move_soft_dirty_pmd(pmd);
1687 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1688 		if (force_flush)
1689 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1690 		if (new_ptl != old_ptl)
1691 			spin_unlock(new_ptl);
1692 		spin_unlock(old_ptl);
1693 		return true;
1694 	}
1695 	return false;
1696 }
1697 
1698 /*
1699  * Returns
1700  *  - 0 if PMD could not be locked
1701  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1702  *      or if prot_numa but THP migration is not supported
1703  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1704  */
1705 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1706 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1707 		    unsigned long cp_flags)
1708 {
1709 	struct mm_struct *mm = vma->vm_mm;
1710 	spinlock_t *ptl;
1711 	pmd_t oldpmd, entry;
1712 	bool preserve_write;
1713 	int ret;
1714 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1715 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1716 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1717 
1718 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1719 
1720 	if (prot_numa && !thp_migration_supported())
1721 		return 1;
1722 
1723 	ptl = __pmd_trans_huge_lock(pmd, vma);
1724 	if (!ptl)
1725 		return 0;
1726 
1727 	preserve_write = prot_numa && pmd_write(*pmd);
1728 	ret = 1;
1729 
1730 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1731 	if (is_swap_pmd(*pmd)) {
1732 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1733 		struct page *page = pfn_swap_entry_to_page(entry);
1734 
1735 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1736 		if (is_writable_migration_entry(entry)) {
1737 			pmd_t newpmd;
1738 			/*
1739 			 * A protection check is difficult so
1740 			 * just be safe and disable write
1741 			 */
1742 			if (PageAnon(page))
1743 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1744 			else
1745 				entry = make_readable_migration_entry(swp_offset(entry));
1746 			newpmd = swp_entry_to_pmd(entry);
1747 			if (pmd_swp_soft_dirty(*pmd))
1748 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1749 			if (pmd_swp_uffd_wp(*pmd))
1750 				newpmd = pmd_swp_mkuffd_wp(newpmd);
1751 			set_pmd_at(mm, addr, pmd, newpmd);
1752 		}
1753 		goto unlock;
1754 	}
1755 #endif
1756 
1757 	if (prot_numa) {
1758 		struct page *page;
1759 		/*
1760 		 * Avoid trapping faults against the zero page. The read-only
1761 		 * data is likely to be read-cached on the local CPU and
1762 		 * local/remote hits to the zero page are not interesting.
1763 		 */
1764 		if (is_huge_zero_pmd(*pmd))
1765 			goto unlock;
1766 
1767 		if (pmd_protnone(*pmd))
1768 			goto unlock;
1769 
1770 		page = pmd_page(*pmd);
1771 		/*
1772 		 * Skip scanning top tier node if normal numa
1773 		 * balancing is disabled
1774 		 */
1775 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1776 		    node_is_toptier(page_to_nid(page)))
1777 			goto unlock;
1778 	}
1779 	/*
1780 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1781 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1782 	 * which is also under mmap_read_lock(mm):
1783 	 *
1784 	 *	CPU0:				CPU1:
1785 	 *				change_huge_pmd(prot_numa=1)
1786 	 *				 pmdp_huge_get_and_clear_notify()
1787 	 * madvise_dontneed()
1788 	 *  zap_pmd_range()
1789 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1790 	 *   // skip the pmd
1791 	 *				 set_pmd_at();
1792 	 *				 // pmd is re-established
1793 	 *
1794 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1795 	 * which may break userspace.
1796 	 *
1797 	 * pmdp_invalidate_ad() is required to make sure we don't miss
1798 	 * dirty/young flags set by hardware.
1799 	 */
1800 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1801 
1802 	entry = pmd_modify(oldpmd, newprot);
1803 	if (preserve_write)
1804 		entry = pmd_mk_savedwrite(entry);
1805 	if (uffd_wp) {
1806 		entry = pmd_wrprotect(entry);
1807 		entry = pmd_mkuffd_wp(entry);
1808 	} else if (uffd_wp_resolve) {
1809 		/*
1810 		 * Leave the write bit to be handled by PF interrupt
1811 		 * handler, then things like COW could be properly
1812 		 * handled.
1813 		 */
1814 		entry = pmd_clear_uffd_wp(entry);
1815 	}
1816 	ret = HPAGE_PMD_NR;
1817 	set_pmd_at(mm, addr, pmd, entry);
1818 
1819 	if (huge_pmd_needs_flush(oldpmd, entry))
1820 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1821 
1822 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1823 unlock:
1824 	spin_unlock(ptl);
1825 	return ret;
1826 }
1827 
1828 /*
1829  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1830  *
1831  * Note that if it returns page table lock pointer, this routine returns without
1832  * unlocking page table lock. So callers must unlock it.
1833  */
1834 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1835 {
1836 	spinlock_t *ptl;
1837 	ptl = pmd_lock(vma->vm_mm, pmd);
1838 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1839 			pmd_devmap(*pmd)))
1840 		return ptl;
1841 	spin_unlock(ptl);
1842 	return NULL;
1843 }
1844 
1845 /*
1846  * Returns true if a given pud maps a thp, false otherwise.
1847  *
1848  * Note that if it returns true, this routine returns without unlocking page
1849  * table lock. So callers must unlock it.
1850  */
1851 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1852 {
1853 	spinlock_t *ptl;
1854 
1855 	ptl = pud_lock(vma->vm_mm, pud);
1856 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1857 		return ptl;
1858 	spin_unlock(ptl);
1859 	return NULL;
1860 }
1861 
1862 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1863 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1864 		 pud_t *pud, unsigned long addr)
1865 {
1866 	spinlock_t *ptl;
1867 
1868 	ptl = __pud_trans_huge_lock(pud, vma);
1869 	if (!ptl)
1870 		return 0;
1871 	/*
1872 	 * For architectures like ppc64 we look at deposited pgtable
1873 	 * when calling pudp_huge_get_and_clear. So do the
1874 	 * pgtable_trans_huge_withdraw after finishing pudp related
1875 	 * operations.
1876 	 */
1877 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1878 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1879 	if (vma_is_special_huge(vma)) {
1880 		spin_unlock(ptl);
1881 		/* No zero page support yet */
1882 	} else {
1883 		/* No support for anonymous PUD pages yet */
1884 		BUG();
1885 	}
1886 	return 1;
1887 }
1888 
1889 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1890 		unsigned long haddr)
1891 {
1892 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1893 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1894 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1895 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1896 
1897 	count_vm_event(THP_SPLIT_PUD);
1898 
1899 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1900 }
1901 
1902 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1903 		unsigned long address)
1904 {
1905 	spinlock_t *ptl;
1906 	struct mmu_notifier_range range;
1907 
1908 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1909 				address & HPAGE_PUD_MASK,
1910 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1911 	mmu_notifier_invalidate_range_start(&range);
1912 	ptl = pud_lock(vma->vm_mm, pud);
1913 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1914 		goto out;
1915 	__split_huge_pud_locked(vma, pud, range.start);
1916 
1917 out:
1918 	spin_unlock(ptl);
1919 	/*
1920 	 * No need to double call mmu_notifier->invalidate_range() callback as
1921 	 * the above pudp_huge_clear_flush_notify() did already call it.
1922 	 */
1923 	mmu_notifier_invalidate_range_only_end(&range);
1924 }
1925 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1926 
1927 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1928 		unsigned long haddr, pmd_t *pmd)
1929 {
1930 	struct mm_struct *mm = vma->vm_mm;
1931 	pgtable_t pgtable;
1932 	pmd_t _pmd;
1933 	int i;
1934 
1935 	/*
1936 	 * Leave pmd empty until pte is filled note that it is fine to delay
1937 	 * notification until mmu_notifier_invalidate_range_end() as we are
1938 	 * replacing a zero pmd write protected page with a zero pte write
1939 	 * protected page.
1940 	 *
1941 	 * See Documentation/vm/mmu_notifier.rst
1942 	 */
1943 	pmdp_huge_clear_flush(vma, haddr, pmd);
1944 
1945 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1946 	pmd_populate(mm, &_pmd, pgtable);
1947 
1948 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1949 		pte_t *pte, entry;
1950 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1951 		entry = pte_mkspecial(entry);
1952 		pte = pte_offset_map(&_pmd, haddr);
1953 		VM_BUG_ON(!pte_none(*pte));
1954 		set_pte_at(mm, haddr, pte, entry);
1955 		pte_unmap(pte);
1956 	}
1957 	smp_wmb(); /* make pte visible before pmd */
1958 	pmd_populate(mm, pmd, pgtable);
1959 }
1960 
1961 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1962 		unsigned long haddr, bool freeze)
1963 {
1964 	struct mm_struct *mm = vma->vm_mm;
1965 	struct page *page;
1966 	pgtable_t pgtable;
1967 	pmd_t old_pmd, _pmd;
1968 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1969 	bool anon_exclusive = false;
1970 	unsigned long addr;
1971 	int i;
1972 
1973 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1974 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1975 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1976 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
1977 				&& !pmd_devmap(*pmd));
1978 
1979 	count_vm_event(THP_SPLIT_PMD);
1980 
1981 	if (!vma_is_anonymous(vma)) {
1982 		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1983 		/*
1984 		 * We are going to unmap this huge page. So
1985 		 * just go ahead and zap it
1986 		 */
1987 		if (arch_needs_pgtable_deposit())
1988 			zap_deposited_table(mm, pmd);
1989 		if (vma_is_special_huge(vma))
1990 			return;
1991 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
1992 			swp_entry_t entry;
1993 
1994 			entry = pmd_to_swp_entry(old_pmd);
1995 			page = pfn_swap_entry_to_page(entry);
1996 		} else {
1997 			page = pmd_page(old_pmd);
1998 			if (!PageDirty(page) && pmd_dirty(old_pmd))
1999 				set_page_dirty(page);
2000 			if (!PageReferenced(page) && pmd_young(old_pmd))
2001 				SetPageReferenced(page);
2002 			page_remove_rmap(page, vma, true);
2003 			put_page(page);
2004 		}
2005 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2006 		return;
2007 	}
2008 
2009 	if (is_huge_zero_pmd(*pmd)) {
2010 		/*
2011 		 * FIXME: Do we want to invalidate secondary mmu by calling
2012 		 * mmu_notifier_invalidate_range() see comments below inside
2013 		 * __split_huge_pmd() ?
2014 		 *
2015 		 * We are going from a zero huge page write protected to zero
2016 		 * small page also write protected so it does not seems useful
2017 		 * to invalidate secondary mmu at this time.
2018 		 */
2019 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2020 	}
2021 
2022 	/*
2023 	 * Up to this point the pmd is present and huge and userland has the
2024 	 * whole access to the hugepage during the split (which happens in
2025 	 * place). If we overwrite the pmd with the not-huge version pointing
2026 	 * to the pte here (which of course we could if all CPUs were bug
2027 	 * free), userland could trigger a small page size TLB miss on the
2028 	 * small sized TLB while the hugepage TLB entry is still established in
2029 	 * the huge TLB. Some CPU doesn't like that.
2030 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2031 	 * 383 on page 105. Intel should be safe but is also warns that it's
2032 	 * only safe if the permission and cache attributes of the two entries
2033 	 * loaded in the two TLB is identical (which should be the case here).
2034 	 * But it is generally safer to never allow small and huge TLB entries
2035 	 * for the same virtual address to be loaded simultaneously. So instead
2036 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2037 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2038 	 * must remain set at all times on the pmd until the split is complete
2039 	 * for this pmd), then we flush the SMP TLB and finally we write the
2040 	 * non-huge version of the pmd entry with pmd_populate.
2041 	 */
2042 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2043 
2044 	pmd_migration = is_pmd_migration_entry(old_pmd);
2045 	if (unlikely(pmd_migration)) {
2046 		swp_entry_t entry;
2047 
2048 		entry = pmd_to_swp_entry(old_pmd);
2049 		page = pfn_swap_entry_to_page(entry);
2050 		write = is_writable_migration_entry(entry);
2051 		if (PageAnon(page))
2052 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2053 		young = false;
2054 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2055 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2056 	} else {
2057 		page = pmd_page(old_pmd);
2058 		if (pmd_dirty(old_pmd))
2059 			SetPageDirty(page);
2060 		write = pmd_write(old_pmd);
2061 		young = pmd_young(old_pmd);
2062 		soft_dirty = pmd_soft_dirty(old_pmd);
2063 		uffd_wp = pmd_uffd_wp(old_pmd);
2064 
2065 		VM_BUG_ON_PAGE(!page_count(page), page);
2066 		page_ref_add(page, HPAGE_PMD_NR - 1);
2067 
2068 		/*
2069 		 * Without "freeze", we'll simply split the PMD, propagating the
2070 		 * PageAnonExclusive() flag for each PTE by setting it for
2071 		 * each subpage -- no need to (temporarily) clear.
2072 		 *
2073 		 * With "freeze" we want to replace mapped pages by
2074 		 * migration entries right away. This is only possible if we
2075 		 * managed to clear PageAnonExclusive() -- see
2076 		 * set_pmd_migration_entry().
2077 		 *
2078 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2079 		 * only and let try_to_migrate_one() fail later.
2080 		 */
2081 		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2082 		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2083 			freeze = false;
2084 	}
2085 
2086 	/*
2087 	 * Withdraw the table only after we mark the pmd entry invalid.
2088 	 * This's critical for some architectures (Power).
2089 	 */
2090 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2091 	pmd_populate(mm, &_pmd, pgtable);
2092 
2093 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2094 		pte_t entry, *pte;
2095 		/*
2096 		 * Note that NUMA hinting access restrictions are not
2097 		 * transferred to avoid any possibility of altering
2098 		 * permissions across VMAs.
2099 		 */
2100 		if (freeze || pmd_migration) {
2101 			swp_entry_t swp_entry;
2102 			if (write)
2103 				swp_entry = make_writable_migration_entry(
2104 							page_to_pfn(page + i));
2105 			else if (anon_exclusive)
2106 				swp_entry = make_readable_exclusive_migration_entry(
2107 							page_to_pfn(page + i));
2108 			else
2109 				swp_entry = make_readable_migration_entry(
2110 							page_to_pfn(page + i));
2111 			entry = swp_entry_to_pte(swp_entry);
2112 			if (soft_dirty)
2113 				entry = pte_swp_mksoft_dirty(entry);
2114 			if (uffd_wp)
2115 				entry = pte_swp_mkuffd_wp(entry);
2116 		} else {
2117 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2118 			entry = maybe_mkwrite(entry, vma);
2119 			if (anon_exclusive)
2120 				SetPageAnonExclusive(page + i);
2121 			if (!write)
2122 				entry = pte_wrprotect(entry);
2123 			if (!young)
2124 				entry = pte_mkold(entry);
2125 			if (soft_dirty)
2126 				entry = pte_mksoft_dirty(entry);
2127 			if (uffd_wp)
2128 				entry = pte_mkuffd_wp(entry);
2129 		}
2130 		pte = pte_offset_map(&_pmd, addr);
2131 		BUG_ON(!pte_none(*pte));
2132 		set_pte_at(mm, addr, pte, entry);
2133 		if (!pmd_migration)
2134 			atomic_inc(&page[i]._mapcount);
2135 		pte_unmap(pte);
2136 	}
2137 
2138 	if (!pmd_migration) {
2139 		/*
2140 		 * Set PG_double_map before dropping compound_mapcount to avoid
2141 		 * false-negative page_mapped().
2142 		 */
2143 		if (compound_mapcount(page) > 1 &&
2144 		    !TestSetPageDoubleMap(page)) {
2145 			for (i = 0; i < HPAGE_PMD_NR; i++)
2146 				atomic_inc(&page[i]._mapcount);
2147 		}
2148 
2149 		lock_page_memcg(page);
2150 		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2151 			/* Last compound_mapcount is gone. */
2152 			__mod_lruvec_page_state(page, NR_ANON_THPS,
2153 						-HPAGE_PMD_NR);
2154 			if (TestClearPageDoubleMap(page)) {
2155 				/* No need in mapcount reference anymore */
2156 				for (i = 0; i < HPAGE_PMD_NR; i++)
2157 					atomic_dec(&page[i]._mapcount);
2158 			}
2159 		}
2160 		unlock_page_memcg(page);
2161 
2162 		/* Above is effectively page_remove_rmap(page, vma, true) */
2163 		munlock_vma_page(page, vma, true);
2164 	}
2165 
2166 	smp_wmb(); /* make pte visible before pmd */
2167 	pmd_populate(mm, pmd, pgtable);
2168 
2169 	if (freeze) {
2170 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2171 			page_remove_rmap(page + i, vma, false);
2172 			put_page(page + i);
2173 		}
2174 	}
2175 }
2176 
2177 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2178 		unsigned long address, bool freeze, struct folio *folio)
2179 {
2180 	spinlock_t *ptl;
2181 	struct mmu_notifier_range range;
2182 
2183 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2184 				address & HPAGE_PMD_MASK,
2185 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2186 	mmu_notifier_invalidate_range_start(&range);
2187 	ptl = pmd_lock(vma->vm_mm, pmd);
2188 
2189 	/*
2190 	 * If caller asks to setup a migration entry, we need a folio to check
2191 	 * pmd against. Otherwise we can end up replacing wrong folio.
2192 	 */
2193 	VM_BUG_ON(freeze && !folio);
2194 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2195 
2196 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2197 	    is_pmd_migration_entry(*pmd)) {
2198 		if (folio && folio != page_folio(pmd_page(*pmd)))
2199 			goto out;
2200 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2201 	}
2202 
2203 out:
2204 	spin_unlock(ptl);
2205 	/*
2206 	 * No need to double call mmu_notifier->invalidate_range() callback.
2207 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2208 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2209 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2210 	 *    fault will trigger a flush_notify before pointing to a new page
2211 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2212 	 *    page in the meantime)
2213 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2214 	 *     to invalidate secondary tlb entry they are all still valid.
2215 	 *     any further changes to individual pte will notify. So no need
2216 	 *     to call mmu_notifier->invalidate_range()
2217 	 */
2218 	mmu_notifier_invalidate_range_only_end(&range);
2219 }
2220 
2221 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2222 		bool freeze, struct folio *folio)
2223 {
2224 	pgd_t *pgd;
2225 	p4d_t *p4d;
2226 	pud_t *pud;
2227 	pmd_t *pmd;
2228 
2229 	pgd = pgd_offset(vma->vm_mm, address);
2230 	if (!pgd_present(*pgd))
2231 		return;
2232 
2233 	p4d = p4d_offset(pgd, address);
2234 	if (!p4d_present(*p4d))
2235 		return;
2236 
2237 	pud = pud_offset(p4d, address);
2238 	if (!pud_present(*pud))
2239 		return;
2240 
2241 	pmd = pmd_offset(pud, address);
2242 
2243 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2244 }
2245 
2246 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2247 {
2248 	/*
2249 	 * If the new address isn't hpage aligned and it could previously
2250 	 * contain an hugepage: check if we need to split an huge pmd.
2251 	 */
2252 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2253 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2254 			 ALIGN(address, HPAGE_PMD_SIZE)))
2255 		split_huge_pmd_address(vma, address, false, NULL);
2256 }
2257 
2258 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2259 			     unsigned long start,
2260 			     unsigned long end,
2261 			     long adjust_next)
2262 {
2263 	/* Check if we need to split start first. */
2264 	split_huge_pmd_if_needed(vma, start);
2265 
2266 	/* Check if we need to split end next. */
2267 	split_huge_pmd_if_needed(vma, end);
2268 
2269 	/*
2270 	 * If we're also updating the vma->vm_next->vm_start,
2271 	 * check if we need to split it.
2272 	 */
2273 	if (adjust_next > 0) {
2274 		struct vm_area_struct *next = vma->vm_next;
2275 		unsigned long nstart = next->vm_start;
2276 		nstart += adjust_next;
2277 		split_huge_pmd_if_needed(next, nstart);
2278 	}
2279 }
2280 
2281 static void unmap_page(struct page *page)
2282 {
2283 	struct folio *folio = page_folio(page);
2284 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2285 		TTU_SYNC;
2286 
2287 	VM_BUG_ON_PAGE(!PageHead(page), page);
2288 
2289 	/*
2290 	 * Anon pages need migration entries to preserve them, but file
2291 	 * pages can simply be left unmapped, then faulted back on demand.
2292 	 * If that is ever changed (perhaps for mlock), update remap_page().
2293 	 */
2294 	if (folio_test_anon(folio))
2295 		try_to_migrate(folio, ttu_flags);
2296 	else
2297 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2298 }
2299 
2300 static void remap_page(struct folio *folio, unsigned long nr)
2301 {
2302 	int i = 0;
2303 
2304 	/* If unmap_page() uses try_to_migrate() on file, remove this check */
2305 	if (!folio_test_anon(folio))
2306 		return;
2307 	for (;;) {
2308 		remove_migration_ptes(folio, folio, true);
2309 		i += folio_nr_pages(folio);
2310 		if (i >= nr)
2311 			break;
2312 		folio = folio_next(folio);
2313 	}
2314 }
2315 
2316 static void lru_add_page_tail(struct page *head, struct page *tail,
2317 		struct lruvec *lruvec, struct list_head *list)
2318 {
2319 	VM_BUG_ON_PAGE(!PageHead(head), head);
2320 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2321 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2322 	lockdep_assert_held(&lruvec->lru_lock);
2323 
2324 	if (list) {
2325 		/* page reclaim is reclaiming a huge page */
2326 		VM_WARN_ON(PageLRU(head));
2327 		get_page(tail);
2328 		list_add_tail(&tail->lru, list);
2329 	} else {
2330 		/* head is still on lru (and we have it frozen) */
2331 		VM_WARN_ON(!PageLRU(head));
2332 		if (PageUnevictable(tail))
2333 			tail->mlock_count = 0;
2334 		else
2335 			list_add_tail(&tail->lru, &head->lru);
2336 		SetPageLRU(tail);
2337 	}
2338 }
2339 
2340 static void __split_huge_page_tail(struct page *head, int tail,
2341 		struct lruvec *lruvec, struct list_head *list)
2342 {
2343 	struct page *page_tail = head + tail;
2344 
2345 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2346 
2347 	/*
2348 	 * Clone page flags before unfreezing refcount.
2349 	 *
2350 	 * After successful get_page_unless_zero() might follow flags change,
2351 	 * for example lock_page() which set PG_waiters.
2352 	 *
2353 	 * Note that for mapped sub-pages of an anonymous THP,
2354 	 * PG_anon_exclusive has been cleared in unmap_page() and is stored in
2355 	 * the migration entry instead from where remap_page() will restore it.
2356 	 * We can still have PG_anon_exclusive set on effectively unmapped and
2357 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2358 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2359 	 */
2360 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2361 	page_tail->flags |= (head->flags &
2362 			((1L << PG_referenced) |
2363 			 (1L << PG_swapbacked) |
2364 			 (1L << PG_swapcache) |
2365 			 (1L << PG_mlocked) |
2366 			 (1L << PG_uptodate) |
2367 			 (1L << PG_active) |
2368 			 (1L << PG_workingset) |
2369 			 (1L << PG_locked) |
2370 			 (1L << PG_unevictable) |
2371 #ifdef CONFIG_64BIT
2372 			 (1L << PG_arch_2) |
2373 #endif
2374 			 (1L << PG_dirty)));
2375 
2376 	/* ->mapping in first tail page is compound_mapcount */
2377 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2378 			page_tail);
2379 	page_tail->mapping = head->mapping;
2380 	page_tail->index = head->index + tail;
2381 	page_tail->private = 0;
2382 
2383 	/* Page flags must be visible before we make the page non-compound. */
2384 	smp_wmb();
2385 
2386 	/*
2387 	 * Clear PageTail before unfreezing page refcount.
2388 	 *
2389 	 * After successful get_page_unless_zero() might follow put_page()
2390 	 * which needs correct compound_head().
2391 	 */
2392 	clear_compound_head(page_tail);
2393 
2394 	/* Finally unfreeze refcount. Additional reference from page cache. */
2395 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2396 					  PageSwapCache(head)));
2397 
2398 	if (page_is_young(head))
2399 		set_page_young(page_tail);
2400 	if (page_is_idle(head))
2401 		set_page_idle(page_tail);
2402 
2403 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2404 
2405 	/*
2406 	 * always add to the tail because some iterators expect new
2407 	 * pages to show after the currently processed elements - e.g.
2408 	 * migrate_pages
2409 	 */
2410 	lru_add_page_tail(head, page_tail, lruvec, list);
2411 }
2412 
2413 static void __split_huge_page(struct page *page, struct list_head *list,
2414 		pgoff_t end)
2415 {
2416 	struct folio *folio = page_folio(page);
2417 	struct page *head = &folio->page;
2418 	struct lruvec *lruvec;
2419 	struct address_space *swap_cache = NULL;
2420 	unsigned long offset = 0;
2421 	unsigned int nr = thp_nr_pages(head);
2422 	int i;
2423 
2424 	/* complete memcg works before add pages to LRU */
2425 	split_page_memcg(head, nr);
2426 
2427 	if (PageAnon(head) && PageSwapCache(head)) {
2428 		swp_entry_t entry = { .val = page_private(head) };
2429 
2430 		offset = swp_offset(entry);
2431 		swap_cache = swap_address_space(entry);
2432 		xa_lock(&swap_cache->i_pages);
2433 	}
2434 
2435 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2436 	lruvec = folio_lruvec_lock(folio);
2437 
2438 	ClearPageHasHWPoisoned(head);
2439 
2440 	for (i = nr - 1; i >= 1; i--) {
2441 		__split_huge_page_tail(head, i, lruvec, list);
2442 		/* Some pages can be beyond EOF: drop them from page cache */
2443 		if (head[i].index >= end) {
2444 			struct folio *tail = page_folio(head + i);
2445 
2446 			if (shmem_mapping(head->mapping))
2447 				shmem_uncharge(head->mapping->host, 1);
2448 			else if (folio_test_clear_dirty(tail))
2449 				folio_account_cleaned(tail,
2450 					inode_to_wb(folio->mapping->host));
2451 			__filemap_remove_folio(tail, NULL);
2452 			folio_put(tail);
2453 		} else if (!PageAnon(page)) {
2454 			__xa_store(&head->mapping->i_pages, head[i].index,
2455 					head + i, 0);
2456 		} else if (swap_cache) {
2457 			__xa_store(&swap_cache->i_pages, offset + i,
2458 					head + i, 0);
2459 		}
2460 	}
2461 
2462 	ClearPageCompound(head);
2463 	unlock_page_lruvec(lruvec);
2464 	/* Caller disabled irqs, so they are still disabled here */
2465 
2466 	split_page_owner(head, nr);
2467 
2468 	/* See comment in __split_huge_page_tail() */
2469 	if (PageAnon(head)) {
2470 		/* Additional pin to swap cache */
2471 		if (PageSwapCache(head)) {
2472 			page_ref_add(head, 2);
2473 			xa_unlock(&swap_cache->i_pages);
2474 		} else {
2475 			page_ref_inc(head);
2476 		}
2477 	} else {
2478 		/* Additional pin to page cache */
2479 		page_ref_add(head, 2);
2480 		xa_unlock(&head->mapping->i_pages);
2481 	}
2482 	local_irq_enable();
2483 
2484 	remap_page(folio, nr);
2485 
2486 	if (PageSwapCache(head)) {
2487 		swp_entry_t entry = { .val = page_private(head) };
2488 
2489 		split_swap_cluster(entry);
2490 	}
2491 
2492 	for (i = 0; i < nr; i++) {
2493 		struct page *subpage = head + i;
2494 		if (subpage == page)
2495 			continue;
2496 		unlock_page(subpage);
2497 
2498 		/*
2499 		 * Subpages may be freed if there wasn't any mapping
2500 		 * like if add_to_swap() is running on a lru page that
2501 		 * had its mapping zapped. And freeing these pages
2502 		 * requires taking the lru_lock so we do the put_page
2503 		 * of the tail pages after the split is complete.
2504 		 */
2505 		put_page(subpage);
2506 	}
2507 }
2508 
2509 /* Racy check whether the huge page can be split */
2510 bool can_split_folio(struct folio *folio, int *pextra_pins)
2511 {
2512 	int extra_pins;
2513 
2514 	/* Additional pins from page cache */
2515 	if (folio_test_anon(folio))
2516 		extra_pins = folio_test_swapcache(folio) ?
2517 				folio_nr_pages(folio) : 0;
2518 	else
2519 		extra_pins = folio_nr_pages(folio);
2520 	if (pextra_pins)
2521 		*pextra_pins = extra_pins;
2522 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2523 }
2524 
2525 /*
2526  * This function splits huge page into normal pages. @page can point to any
2527  * subpage of huge page to split. Split doesn't change the position of @page.
2528  *
2529  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2530  * The huge page must be locked.
2531  *
2532  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2533  *
2534  * Both head page and tail pages will inherit mapping, flags, and so on from
2535  * the hugepage.
2536  *
2537  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2538  * they are not mapped.
2539  *
2540  * Returns 0 if the hugepage is split successfully.
2541  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2542  * us.
2543  */
2544 int split_huge_page_to_list(struct page *page, struct list_head *list)
2545 {
2546 	struct folio *folio = page_folio(page);
2547 	struct page *head = &folio->page;
2548 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2549 	XA_STATE(xas, &head->mapping->i_pages, head->index);
2550 	struct anon_vma *anon_vma = NULL;
2551 	struct address_space *mapping = NULL;
2552 	int extra_pins, ret;
2553 	pgoff_t end;
2554 	bool is_hzp;
2555 
2556 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2557 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2558 
2559 	is_hzp = is_huge_zero_page(head);
2560 	VM_WARN_ON_ONCE_PAGE(is_hzp, head);
2561 	if (is_hzp)
2562 		return -EBUSY;
2563 
2564 	if (PageWriteback(head))
2565 		return -EBUSY;
2566 
2567 	if (PageAnon(head)) {
2568 		/*
2569 		 * The caller does not necessarily hold an mmap_lock that would
2570 		 * prevent the anon_vma disappearing so we first we take a
2571 		 * reference to it and then lock the anon_vma for write. This
2572 		 * is similar to folio_lock_anon_vma_read except the write lock
2573 		 * is taken to serialise against parallel split or collapse
2574 		 * operations.
2575 		 */
2576 		anon_vma = page_get_anon_vma(head);
2577 		if (!anon_vma) {
2578 			ret = -EBUSY;
2579 			goto out;
2580 		}
2581 		end = -1;
2582 		mapping = NULL;
2583 		anon_vma_lock_write(anon_vma);
2584 	} else {
2585 		mapping = head->mapping;
2586 
2587 		/* Truncated ? */
2588 		if (!mapping) {
2589 			ret = -EBUSY;
2590 			goto out;
2591 		}
2592 
2593 		xas_split_alloc(&xas, head, compound_order(head),
2594 				mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK);
2595 		if (xas_error(&xas)) {
2596 			ret = xas_error(&xas);
2597 			goto out;
2598 		}
2599 
2600 		anon_vma = NULL;
2601 		i_mmap_lock_read(mapping);
2602 
2603 		/*
2604 		 *__split_huge_page() may need to trim off pages beyond EOF:
2605 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2606 		 * which cannot be nested inside the page tree lock. So note
2607 		 * end now: i_size itself may be changed at any moment, but
2608 		 * head page lock is good enough to serialize the trimming.
2609 		 */
2610 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2611 		if (shmem_mapping(mapping))
2612 			end = shmem_fallocend(mapping->host, end);
2613 	}
2614 
2615 	/*
2616 	 * Racy check if we can split the page, before unmap_page() will
2617 	 * split PMDs
2618 	 */
2619 	if (!can_split_folio(folio, &extra_pins)) {
2620 		ret = -EBUSY;
2621 		goto out_unlock;
2622 	}
2623 
2624 	unmap_page(head);
2625 
2626 	/* block interrupt reentry in xa_lock and spinlock */
2627 	local_irq_disable();
2628 	if (mapping) {
2629 		/*
2630 		 * Check if the head page is present in page cache.
2631 		 * We assume all tail are present too, if head is there.
2632 		 */
2633 		xas_lock(&xas);
2634 		xas_reset(&xas);
2635 		if (xas_load(&xas) != head)
2636 			goto fail;
2637 	}
2638 
2639 	/* Prevent deferred_split_scan() touching ->_refcount */
2640 	spin_lock(&ds_queue->split_queue_lock);
2641 	if (page_ref_freeze(head, 1 + extra_pins)) {
2642 		if (!list_empty(page_deferred_list(head))) {
2643 			ds_queue->split_queue_len--;
2644 			list_del(page_deferred_list(head));
2645 		}
2646 		spin_unlock(&ds_queue->split_queue_lock);
2647 		if (mapping) {
2648 			int nr = thp_nr_pages(head);
2649 
2650 			xas_split(&xas, head, thp_order(head));
2651 			if (PageSwapBacked(head)) {
2652 				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
2653 							-nr);
2654 			} else {
2655 				__mod_lruvec_page_state(head, NR_FILE_THPS,
2656 							-nr);
2657 				filemap_nr_thps_dec(mapping);
2658 			}
2659 		}
2660 
2661 		__split_huge_page(page, list, end);
2662 		ret = 0;
2663 	} else {
2664 		spin_unlock(&ds_queue->split_queue_lock);
2665 fail:
2666 		if (mapping)
2667 			xas_unlock(&xas);
2668 		local_irq_enable();
2669 		remap_page(folio, folio_nr_pages(folio));
2670 		ret = -EBUSY;
2671 	}
2672 
2673 out_unlock:
2674 	if (anon_vma) {
2675 		anon_vma_unlock_write(anon_vma);
2676 		put_anon_vma(anon_vma);
2677 	}
2678 	if (mapping)
2679 		i_mmap_unlock_read(mapping);
2680 out:
2681 	xas_destroy(&xas);
2682 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2683 	return ret;
2684 }
2685 
2686 void free_transhuge_page(struct page *page)
2687 {
2688 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2689 	unsigned long flags;
2690 
2691 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2692 	if (!list_empty(page_deferred_list(page))) {
2693 		ds_queue->split_queue_len--;
2694 		list_del(page_deferred_list(page));
2695 	}
2696 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2697 	free_compound_page(page);
2698 }
2699 
2700 void deferred_split_huge_page(struct page *page)
2701 {
2702 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2703 #ifdef CONFIG_MEMCG
2704 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2705 #endif
2706 	unsigned long flags;
2707 
2708 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2709 
2710 	/*
2711 	 * The try_to_unmap() in page reclaim path might reach here too,
2712 	 * this may cause a race condition to corrupt deferred split queue.
2713 	 * And, if page reclaim is already handling the same page, it is
2714 	 * unnecessary to handle it again in shrinker.
2715 	 *
2716 	 * Check PageSwapCache to determine if the page is being
2717 	 * handled by page reclaim since THP swap would add the page into
2718 	 * swap cache before calling try_to_unmap().
2719 	 */
2720 	if (PageSwapCache(page))
2721 		return;
2722 
2723 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2724 	if (list_empty(page_deferred_list(page))) {
2725 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2726 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2727 		ds_queue->split_queue_len++;
2728 #ifdef CONFIG_MEMCG
2729 		if (memcg)
2730 			set_shrinker_bit(memcg, page_to_nid(page),
2731 					 deferred_split_shrinker.id);
2732 #endif
2733 	}
2734 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2735 }
2736 
2737 static unsigned long deferred_split_count(struct shrinker *shrink,
2738 		struct shrink_control *sc)
2739 {
2740 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2741 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2742 
2743 #ifdef CONFIG_MEMCG
2744 	if (sc->memcg)
2745 		ds_queue = &sc->memcg->deferred_split_queue;
2746 #endif
2747 	return READ_ONCE(ds_queue->split_queue_len);
2748 }
2749 
2750 static unsigned long deferred_split_scan(struct shrinker *shrink,
2751 		struct shrink_control *sc)
2752 {
2753 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2754 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2755 	unsigned long flags;
2756 	LIST_HEAD(list), *pos, *next;
2757 	struct page *page;
2758 	int split = 0;
2759 
2760 #ifdef CONFIG_MEMCG
2761 	if (sc->memcg)
2762 		ds_queue = &sc->memcg->deferred_split_queue;
2763 #endif
2764 
2765 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2766 	/* Take pin on all head pages to avoid freeing them under us */
2767 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2768 		page = list_entry((void *)pos, struct page, deferred_list);
2769 		page = compound_head(page);
2770 		if (get_page_unless_zero(page)) {
2771 			list_move(page_deferred_list(page), &list);
2772 		} else {
2773 			/* We lost race with put_compound_page() */
2774 			list_del_init(page_deferred_list(page));
2775 			ds_queue->split_queue_len--;
2776 		}
2777 		if (!--sc->nr_to_scan)
2778 			break;
2779 	}
2780 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2781 
2782 	list_for_each_safe(pos, next, &list) {
2783 		page = list_entry((void *)pos, struct page, deferred_list);
2784 		if (!trylock_page(page))
2785 			goto next;
2786 		/* split_huge_page() removes page from list on success */
2787 		if (!split_huge_page(page))
2788 			split++;
2789 		unlock_page(page);
2790 next:
2791 		put_page(page);
2792 	}
2793 
2794 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2795 	list_splice_tail(&list, &ds_queue->split_queue);
2796 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2797 
2798 	/*
2799 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2800 	 * This can happen if pages were freed under us.
2801 	 */
2802 	if (!split && list_empty(&ds_queue->split_queue))
2803 		return SHRINK_STOP;
2804 	return split;
2805 }
2806 
2807 static struct shrinker deferred_split_shrinker = {
2808 	.count_objects = deferred_split_count,
2809 	.scan_objects = deferred_split_scan,
2810 	.seeks = DEFAULT_SEEKS,
2811 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2812 		 SHRINKER_NONSLAB,
2813 };
2814 
2815 #ifdef CONFIG_DEBUG_FS
2816 static void split_huge_pages_all(void)
2817 {
2818 	struct zone *zone;
2819 	struct page *page;
2820 	unsigned long pfn, max_zone_pfn;
2821 	unsigned long total = 0, split = 0;
2822 
2823 	pr_debug("Split all THPs\n");
2824 	for_each_populated_zone(zone) {
2825 		max_zone_pfn = zone_end_pfn(zone);
2826 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2827 			if (!pfn_valid(pfn))
2828 				continue;
2829 
2830 			page = pfn_to_page(pfn);
2831 			if (!get_page_unless_zero(page))
2832 				continue;
2833 
2834 			if (zone != page_zone(page))
2835 				goto next;
2836 
2837 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2838 				goto next;
2839 
2840 			total++;
2841 			lock_page(page);
2842 			if (!split_huge_page(page))
2843 				split++;
2844 			unlock_page(page);
2845 next:
2846 			put_page(page);
2847 			cond_resched();
2848 		}
2849 	}
2850 
2851 	pr_debug("%lu of %lu THP split\n", split, total);
2852 }
2853 
2854 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2855 {
2856 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2857 		    is_vm_hugetlb_page(vma);
2858 }
2859 
2860 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2861 				unsigned long vaddr_end)
2862 {
2863 	int ret = 0;
2864 	struct task_struct *task;
2865 	struct mm_struct *mm;
2866 	unsigned long total = 0, split = 0;
2867 	unsigned long addr;
2868 
2869 	vaddr_start &= PAGE_MASK;
2870 	vaddr_end &= PAGE_MASK;
2871 
2872 	/* Find the task_struct from pid */
2873 	rcu_read_lock();
2874 	task = find_task_by_vpid(pid);
2875 	if (!task) {
2876 		rcu_read_unlock();
2877 		ret = -ESRCH;
2878 		goto out;
2879 	}
2880 	get_task_struct(task);
2881 	rcu_read_unlock();
2882 
2883 	/* Find the mm_struct */
2884 	mm = get_task_mm(task);
2885 	put_task_struct(task);
2886 
2887 	if (!mm) {
2888 		ret = -EINVAL;
2889 		goto out;
2890 	}
2891 
2892 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2893 		 pid, vaddr_start, vaddr_end);
2894 
2895 	mmap_read_lock(mm);
2896 	/*
2897 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
2898 	 * table filled with PTE-mapped THPs, each of which is distinct.
2899 	 */
2900 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2901 		struct vm_area_struct *vma = find_vma(mm, addr);
2902 		struct page *page;
2903 
2904 		if (!vma || addr < vma->vm_start)
2905 			break;
2906 
2907 		/* skip special VMA and hugetlb VMA */
2908 		if (vma_not_suitable_for_thp_split(vma)) {
2909 			addr = vma->vm_end;
2910 			continue;
2911 		}
2912 
2913 		/* FOLL_DUMP to ignore special (like zero) pages */
2914 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2915 
2916 		if (IS_ERR(page))
2917 			continue;
2918 		if (!page)
2919 			continue;
2920 
2921 		if (!is_transparent_hugepage(page))
2922 			goto next;
2923 
2924 		total++;
2925 		if (!can_split_folio(page_folio(page), NULL))
2926 			goto next;
2927 
2928 		if (!trylock_page(page))
2929 			goto next;
2930 
2931 		if (!split_huge_page(page))
2932 			split++;
2933 
2934 		unlock_page(page);
2935 next:
2936 		put_page(page);
2937 		cond_resched();
2938 	}
2939 	mmap_read_unlock(mm);
2940 	mmput(mm);
2941 
2942 	pr_debug("%lu of %lu THP split\n", split, total);
2943 
2944 out:
2945 	return ret;
2946 }
2947 
2948 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
2949 				pgoff_t off_end)
2950 {
2951 	struct filename *file;
2952 	struct file *candidate;
2953 	struct address_space *mapping;
2954 	int ret = -EINVAL;
2955 	pgoff_t index;
2956 	int nr_pages = 1;
2957 	unsigned long total = 0, split = 0;
2958 
2959 	file = getname_kernel(file_path);
2960 	if (IS_ERR(file))
2961 		return ret;
2962 
2963 	candidate = file_open_name(file, O_RDONLY, 0);
2964 	if (IS_ERR(candidate))
2965 		goto out;
2966 
2967 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
2968 		 file_path, off_start, off_end);
2969 
2970 	mapping = candidate->f_mapping;
2971 
2972 	for (index = off_start; index < off_end; index += nr_pages) {
2973 		struct page *fpage = pagecache_get_page(mapping, index,
2974 						FGP_ENTRY | FGP_HEAD, 0);
2975 
2976 		nr_pages = 1;
2977 		if (xa_is_value(fpage) || !fpage)
2978 			continue;
2979 
2980 		if (!is_transparent_hugepage(fpage))
2981 			goto next;
2982 
2983 		total++;
2984 		nr_pages = thp_nr_pages(fpage);
2985 
2986 		if (!trylock_page(fpage))
2987 			goto next;
2988 
2989 		if (!split_huge_page(fpage))
2990 			split++;
2991 
2992 		unlock_page(fpage);
2993 next:
2994 		put_page(fpage);
2995 		cond_resched();
2996 	}
2997 
2998 	filp_close(candidate, NULL);
2999 	ret = 0;
3000 
3001 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3002 out:
3003 	putname(file);
3004 	return ret;
3005 }
3006 
3007 #define MAX_INPUT_BUF_SZ 255
3008 
3009 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3010 				size_t count, loff_t *ppops)
3011 {
3012 	static DEFINE_MUTEX(split_debug_mutex);
3013 	ssize_t ret;
3014 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3015 	char input_buf[MAX_INPUT_BUF_SZ];
3016 	int pid;
3017 	unsigned long vaddr_start, vaddr_end;
3018 
3019 	ret = mutex_lock_interruptible(&split_debug_mutex);
3020 	if (ret)
3021 		return ret;
3022 
3023 	ret = -EFAULT;
3024 
3025 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3026 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3027 		goto out;
3028 
3029 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3030 
3031 	if (input_buf[0] == '/') {
3032 		char *tok;
3033 		char *buf = input_buf;
3034 		char file_path[MAX_INPUT_BUF_SZ];
3035 		pgoff_t off_start = 0, off_end = 0;
3036 		size_t input_len = strlen(input_buf);
3037 
3038 		tok = strsep(&buf, ",");
3039 		if (tok) {
3040 			strcpy(file_path, tok);
3041 		} else {
3042 			ret = -EINVAL;
3043 			goto out;
3044 		}
3045 
3046 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3047 		if (ret != 2) {
3048 			ret = -EINVAL;
3049 			goto out;
3050 		}
3051 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3052 		if (!ret)
3053 			ret = input_len;
3054 
3055 		goto out;
3056 	}
3057 
3058 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3059 	if (ret == 1 && pid == 1) {
3060 		split_huge_pages_all();
3061 		ret = strlen(input_buf);
3062 		goto out;
3063 	} else if (ret != 3) {
3064 		ret = -EINVAL;
3065 		goto out;
3066 	}
3067 
3068 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3069 	if (!ret)
3070 		ret = strlen(input_buf);
3071 out:
3072 	mutex_unlock(&split_debug_mutex);
3073 	return ret;
3074 
3075 }
3076 
3077 static const struct file_operations split_huge_pages_fops = {
3078 	.owner	 = THIS_MODULE,
3079 	.write	 = split_huge_pages_write,
3080 	.llseek  = no_llseek,
3081 };
3082 
3083 static int __init split_huge_pages_debugfs(void)
3084 {
3085 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3086 			    &split_huge_pages_fops);
3087 	return 0;
3088 }
3089 late_initcall(split_huge_pages_debugfs);
3090 #endif
3091 
3092 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3093 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3094 		struct page *page)
3095 {
3096 	struct vm_area_struct *vma = pvmw->vma;
3097 	struct mm_struct *mm = vma->vm_mm;
3098 	unsigned long address = pvmw->address;
3099 	bool anon_exclusive;
3100 	pmd_t pmdval;
3101 	swp_entry_t entry;
3102 	pmd_t pmdswp;
3103 
3104 	if (!(pvmw->pmd && !pvmw->pte))
3105 		return 0;
3106 
3107 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3108 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3109 
3110 	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3111 	if (anon_exclusive && page_try_share_anon_rmap(page)) {
3112 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3113 		return -EBUSY;
3114 	}
3115 
3116 	if (pmd_dirty(pmdval))
3117 		set_page_dirty(page);
3118 	if (pmd_write(pmdval))
3119 		entry = make_writable_migration_entry(page_to_pfn(page));
3120 	else if (anon_exclusive)
3121 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3122 	else
3123 		entry = make_readable_migration_entry(page_to_pfn(page));
3124 	pmdswp = swp_entry_to_pmd(entry);
3125 	if (pmd_soft_dirty(pmdval))
3126 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3127 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3128 	page_remove_rmap(page, vma, true);
3129 	put_page(page);
3130 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3131 
3132 	return 0;
3133 }
3134 
3135 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3136 {
3137 	struct vm_area_struct *vma = pvmw->vma;
3138 	struct mm_struct *mm = vma->vm_mm;
3139 	unsigned long address = pvmw->address;
3140 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
3141 	pmd_t pmde;
3142 	swp_entry_t entry;
3143 
3144 	if (!(pvmw->pmd && !pvmw->pte))
3145 		return;
3146 
3147 	entry = pmd_to_swp_entry(*pvmw->pmd);
3148 	get_page(new);
3149 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3150 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3151 		pmde = pmd_mksoft_dirty(pmde);
3152 	if (is_writable_migration_entry(entry))
3153 		pmde = maybe_pmd_mkwrite(pmde, vma);
3154 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3155 		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3156 
3157 	if (PageAnon(new)) {
3158 		rmap_t rmap_flags = RMAP_COMPOUND;
3159 
3160 		if (!is_readable_migration_entry(entry))
3161 			rmap_flags |= RMAP_EXCLUSIVE;
3162 
3163 		page_add_anon_rmap(new, vma, mmun_start, rmap_flags);
3164 	} else {
3165 		page_add_file_rmap(new, vma, true);
3166 	}
3167 	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3168 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3169 
3170 	/* No need to invalidate - it was non-present before */
3171 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3172 	trace_remove_migration_pmd(address, pmd_val(pmde));
3173 }
3174 #endif
3175