xref: /openbmc/linux/mm/huge_memory.c (revision 060f03e9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 
41 #include <asm/tlb.h>
42 #include <asm/pgalloc.h>
43 #include "internal.h"
44 #include "swap.h"
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/thp.h>
48 
49 /*
50  * By default, transparent hugepage support is disabled in order to avoid
51  * risking an increased memory footprint for applications that are not
52  * guaranteed to benefit from it. When transparent hugepage support is
53  * enabled, it is for all mappings, and khugepaged scans all mappings.
54  * Defrag is invoked by khugepaged hugepage allocations and by page faults
55  * for all hugepage allocations.
56  */
57 unsigned long transparent_hugepage_flags __read_mostly =
58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
59 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
60 #endif
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
62 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
63 #endif
64 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
65 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
66 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
67 
68 static struct shrinker deferred_split_shrinker;
69 
70 static atomic_t huge_zero_refcount;
71 struct page *huge_zero_page __read_mostly;
72 unsigned long huge_zero_pfn __read_mostly = ~0UL;
73 
74 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
75 			bool smaps, bool in_pf, bool enforce_sysfs)
76 {
77 	if (!vma->vm_mm)		/* vdso */
78 		return false;
79 
80 	/*
81 	 * Explicitly disabled through madvise or prctl, or some
82 	 * architectures may disable THP for some mappings, for
83 	 * example, s390 kvm.
84 	 * */
85 	if ((vm_flags & VM_NOHUGEPAGE) ||
86 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
87 		return false;
88 	/*
89 	 * If the hardware/firmware marked hugepage support disabled.
90 	 */
91 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
92 		return false;
93 
94 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
95 	if (vma_is_dax(vma))
96 		return in_pf;
97 
98 	/*
99 	 * Special VMA and hugetlb VMA.
100 	 * Must be checked after dax since some dax mappings may have
101 	 * VM_MIXEDMAP set.
102 	 */
103 	if (vm_flags & VM_NO_KHUGEPAGED)
104 		return false;
105 
106 	/*
107 	 * Check alignment for file vma and size for both file and anon vma.
108 	 *
109 	 * Skip the check for page fault. Huge fault does the check in fault
110 	 * handlers. And this check is not suitable for huge PUD fault.
111 	 */
112 	if (!in_pf &&
113 	    !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
114 		return false;
115 
116 	/*
117 	 * Enabled via shmem mount options or sysfs settings.
118 	 * Must be done before hugepage flags check since shmem has its
119 	 * own flags.
120 	 */
121 	if (!in_pf && shmem_file(vma->vm_file))
122 		return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
123 				     !enforce_sysfs, vma->vm_mm, vm_flags);
124 
125 	/* Enforce sysfs THP requirements as necessary */
126 	if (enforce_sysfs &&
127 	    (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
128 					   !hugepage_flags_always())))
129 		return false;
130 
131 	/* Only regular file is valid */
132 	if (!in_pf && file_thp_enabled(vma))
133 		return true;
134 
135 	if (!vma_is_anonymous(vma))
136 		return false;
137 
138 	if (vma_is_temporary_stack(vma))
139 		return false;
140 
141 	/*
142 	 * THPeligible bit of smaps should show 1 for proper VMAs even
143 	 * though anon_vma is not initialized yet.
144 	 *
145 	 * Allow page fault since anon_vma may be not initialized until
146 	 * the first page fault.
147 	 */
148 	if (!vma->anon_vma)
149 		return (smaps || in_pf);
150 
151 	return true;
152 }
153 
154 static bool get_huge_zero_page(void)
155 {
156 	struct page *zero_page;
157 retry:
158 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
159 		return true;
160 
161 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
162 			HPAGE_PMD_ORDER);
163 	if (!zero_page) {
164 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
165 		return false;
166 	}
167 	preempt_disable();
168 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
169 		preempt_enable();
170 		__free_pages(zero_page, compound_order(zero_page));
171 		goto retry;
172 	}
173 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
174 
175 	/* We take additional reference here. It will be put back by shrinker */
176 	atomic_set(&huge_zero_refcount, 2);
177 	preempt_enable();
178 	count_vm_event(THP_ZERO_PAGE_ALLOC);
179 	return true;
180 }
181 
182 static void put_huge_zero_page(void)
183 {
184 	/*
185 	 * Counter should never go to zero here. Only shrinker can put
186 	 * last reference.
187 	 */
188 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
189 }
190 
191 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
192 {
193 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
194 		return READ_ONCE(huge_zero_page);
195 
196 	if (!get_huge_zero_page())
197 		return NULL;
198 
199 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
200 		put_huge_zero_page();
201 
202 	return READ_ONCE(huge_zero_page);
203 }
204 
205 void mm_put_huge_zero_page(struct mm_struct *mm)
206 {
207 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
208 		put_huge_zero_page();
209 }
210 
211 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
212 					struct shrink_control *sc)
213 {
214 	/* we can free zero page only if last reference remains */
215 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
216 }
217 
218 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
219 				       struct shrink_control *sc)
220 {
221 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
222 		struct page *zero_page = xchg(&huge_zero_page, NULL);
223 		BUG_ON(zero_page == NULL);
224 		WRITE_ONCE(huge_zero_pfn, ~0UL);
225 		__free_pages(zero_page, compound_order(zero_page));
226 		return HPAGE_PMD_NR;
227 	}
228 
229 	return 0;
230 }
231 
232 static struct shrinker huge_zero_page_shrinker = {
233 	.count_objects = shrink_huge_zero_page_count,
234 	.scan_objects = shrink_huge_zero_page_scan,
235 	.seeks = DEFAULT_SEEKS,
236 };
237 
238 #ifdef CONFIG_SYSFS
239 static ssize_t enabled_show(struct kobject *kobj,
240 			    struct kobj_attribute *attr, char *buf)
241 {
242 	const char *output;
243 
244 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
245 		output = "[always] madvise never";
246 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
247 			  &transparent_hugepage_flags))
248 		output = "always [madvise] never";
249 	else
250 		output = "always madvise [never]";
251 
252 	return sysfs_emit(buf, "%s\n", output);
253 }
254 
255 static ssize_t enabled_store(struct kobject *kobj,
256 			     struct kobj_attribute *attr,
257 			     const char *buf, size_t count)
258 {
259 	ssize_t ret = count;
260 
261 	if (sysfs_streq(buf, "always")) {
262 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
264 	} else if (sysfs_streq(buf, "madvise")) {
265 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
266 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
267 	} else if (sysfs_streq(buf, "never")) {
268 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
269 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 	} else
271 		ret = -EINVAL;
272 
273 	if (ret > 0) {
274 		int err = start_stop_khugepaged();
275 		if (err)
276 			ret = err;
277 	}
278 	return ret;
279 }
280 
281 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
282 
283 ssize_t single_hugepage_flag_show(struct kobject *kobj,
284 				  struct kobj_attribute *attr, char *buf,
285 				  enum transparent_hugepage_flag flag)
286 {
287 	return sysfs_emit(buf, "%d\n",
288 			  !!test_bit(flag, &transparent_hugepage_flags));
289 }
290 
291 ssize_t single_hugepage_flag_store(struct kobject *kobj,
292 				 struct kobj_attribute *attr,
293 				 const char *buf, size_t count,
294 				 enum transparent_hugepage_flag flag)
295 {
296 	unsigned long value;
297 	int ret;
298 
299 	ret = kstrtoul(buf, 10, &value);
300 	if (ret < 0)
301 		return ret;
302 	if (value > 1)
303 		return -EINVAL;
304 
305 	if (value)
306 		set_bit(flag, &transparent_hugepage_flags);
307 	else
308 		clear_bit(flag, &transparent_hugepage_flags);
309 
310 	return count;
311 }
312 
313 static ssize_t defrag_show(struct kobject *kobj,
314 			   struct kobj_attribute *attr, char *buf)
315 {
316 	const char *output;
317 
318 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
319 		     &transparent_hugepage_flags))
320 		output = "[always] defer defer+madvise madvise never";
321 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
322 			  &transparent_hugepage_flags))
323 		output = "always [defer] defer+madvise madvise never";
324 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
325 			  &transparent_hugepage_flags))
326 		output = "always defer [defer+madvise] madvise never";
327 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
328 			  &transparent_hugepage_flags))
329 		output = "always defer defer+madvise [madvise] never";
330 	else
331 		output = "always defer defer+madvise madvise [never]";
332 
333 	return sysfs_emit(buf, "%s\n", output);
334 }
335 
336 static ssize_t defrag_store(struct kobject *kobj,
337 			    struct kobj_attribute *attr,
338 			    const char *buf, size_t count)
339 {
340 	if (sysfs_streq(buf, "always")) {
341 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
342 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
343 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
344 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
345 	} else if (sysfs_streq(buf, "defer+madvise")) {
346 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
347 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
348 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
349 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
350 	} else if (sysfs_streq(buf, "defer")) {
351 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
352 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
353 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
354 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
355 	} else if (sysfs_streq(buf, "madvise")) {
356 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
357 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
358 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
359 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
360 	} else if (sysfs_streq(buf, "never")) {
361 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
362 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
363 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
364 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
365 	} else
366 		return -EINVAL;
367 
368 	return count;
369 }
370 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
371 
372 static ssize_t use_zero_page_show(struct kobject *kobj,
373 				  struct kobj_attribute *attr, char *buf)
374 {
375 	return single_hugepage_flag_show(kobj, attr, buf,
376 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static ssize_t use_zero_page_store(struct kobject *kobj,
379 		struct kobj_attribute *attr, const char *buf, size_t count)
380 {
381 	return single_hugepage_flag_store(kobj, attr, buf, count,
382 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383 }
384 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
385 
386 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
387 				   struct kobj_attribute *attr, char *buf)
388 {
389 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
390 }
391 static struct kobj_attribute hpage_pmd_size_attr =
392 	__ATTR_RO(hpage_pmd_size);
393 
394 static struct attribute *hugepage_attr[] = {
395 	&enabled_attr.attr,
396 	&defrag_attr.attr,
397 	&use_zero_page_attr.attr,
398 	&hpage_pmd_size_attr.attr,
399 #ifdef CONFIG_SHMEM
400 	&shmem_enabled_attr.attr,
401 #endif
402 	NULL,
403 };
404 
405 static const struct attribute_group hugepage_attr_group = {
406 	.attrs = hugepage_attr,
407 };
408 
409 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
410 {
411 	int err;
412 
413 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
414 	if (unlikely(!*hugepage_kobj)) {
415 		pr_err("failed to create transparent hugepage kobject\n");
416 		return -ENOMEM;
417 	}
418 
419 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
420 	if (err) {
421 		pr_err("failed to register transparent hugepage group\n");
422 		goto delete_obj;
423 	}
424 
425 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
426 	if (err) {
427 		pr_err("failed to register transparent hugepage group\n");
428 		goto remove_hp_group;
429 	}
430 
431 	return 0;
432 
433 remove_hp_group:
434 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
435 delete_obj:
436 	kobject_put(*hugepage_kobj);
437 	return err;
438 }
439 
440 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
441 {
442 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
443 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
444 	kobject_put(hugepage_kobj);
445 }
446 #else
447 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
448 {
449 	return 0;
450 }
451 
452 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
453 {
454 }
455 #endif /* CONFIG_SYSFS */
456 
457 static int __init hugepage_init(void)
458 {
459 	int err;
460 	struct kobject *hugepage_kobj;
461 
462 	if (!has_transparent_hugepage()) {
463 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
464 		return -EINVAL;
465 	}
466 
467 	/*
468 	 * hugepages can't be allocated by the buddy allocator
469 	 */
470 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_ORDER);
471 	/*
472 	 * we use page->mapping and page->index in second tail page
473 	 * as list_head: assuming THP order >= 2
474 	 */
475 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
476 
477 	err = hugepage_init_sysfs(&hugepage_kobj);
478 	if (err)
479 		goto err_sysfs;
480 
481 	err = khugepaged_init();
482 	if (err)
483 		goto err_slab;
484 
485 	err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
486 	if (err)
487 		goto err_hzp_shrinker;
488 	err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
489 	if (err)
490 		goto err_split_shrinker;
491 
492 	/*
493 	 * By default disable transparent hugepages on smaller systems,
494 	 * where the extra memory used could hurt more than TLB overhead
495 	 * is likely to save.  The admin can still enable it through /sys.
496 	 */
497 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
498 		transparent_hugepage_flags = 0;
499 		return 0;
500 	}
501 
502 	err = start_stop_khugepaged();
503 	if (err)
504 		goto err_khugepaged;
505 
506 	return 0;
507 err_khugepaged:
508 	unregister_shrinker(&deferred_split_shrinker);
509 err_split_shrinker:
510 	unregister_shrinker(&huge_zero_page_shrinker);
511 err_hzp_shrinker:
512 	khugepaged_destroy();
513 err_slab:
514 	hugepage_exit_sysfs(hugepage_kobj);
515 err_sysfs:
516 	return err;
517 }
518 subsys_initcall(hugepage_init);
519 
520 static int __init setup_transparent_hugepage(char *str)
521 {
522 	int ret = 0;
523 	if (!str)
524 		goto out;
525 	if (!strcmp(str, "always")) {
526 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
527 			&transparent_hugepage_flags);
528 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
529 			  &transparent_hugepage_flags);
530 		ret = 1;
531 	} else if (!strcmp(str, "madvise")) {
532 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
533 			  &transparent_hugepage_flags);
534 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
535 			&transparent_hugepage_flags);
536 		ret = 1;
537 	} else if (!strcmp(str, "never")) {
538 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
539 			  &transparent_hugepage_flags);
540 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
541 			  &transparent_hugepage_flags);
542 		ret = 1;
543 	}
544 out:
545 	if (!ret)
546 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
547 	return ret;
548 }
549 __setup("transparent_hugepage=", setup_transparent_hugepage);
550 
551 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
552 {
553 	if (likely(vma->vm_flags & VM_WRITE))
554 		pmd = pmd_mkwrite(pmd);
555 	return pmd;
556 }
557 
558 #ifdef CONFIG_MEMCG
559 static inline
560 struct deferred_split *get_deferred_split_queue(struct folio *folio)
561 {
562 	struct mem_cgroup *memcg = folio_memcg(folio);
563 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
564 
565 	if (memcg)
566 		return &memcg->deferred_split_queue;
567 	else
568 		return &pgdat->deferred_split_queue;
569 }
570 #else
571 static inline
572 struct deferred_split *get_deferred_split_queue(struct folio *folio)
573 {
574 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
575 
576 	return &pgdat->deferred_split_queue;
577 }
578 #endif
579 
580 void prep_transhuge_page(struct page *page)
581 {
582 	struct folio *folio = (struct folio *)page;
583 
584 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
585 	INIT_LIST_HEAD(&folio->_deferred_list);
586 	folio_set_compound_dtor(folio, TRANSHUGE_PAGE_DTOR);
587 }
588 
589 static inline bool is_transparent_hugepage(struct page *page)
590 {
591 	struct folio *folio;
592 
593 	if (!PageCompound(page))
594 		return false;
595 
596 	folio = page_folio(page);
597 	return is_huge_zero_page(&folio->page) ||
598 	       folio->_folio_dtor == TRANSHUGE_PAGE_DTOR;
599 }
600 
601 static unsigned long __thp_get_unmapped_area(struct file *filp,
602 		unsigned long addr, unsigned long len,
603 		loff_t off, unsigned long flags, unsigned long size)
604 {
605 	loff_t off_end = off + len;
606 	loff_t off_align = round_up(off, size);
607 	unsigned long len_pad, ret;
608 
609 	if (off_end <= off_align || (off_end - off_align) < size)
610 		return 0;
611 
612 	len_pad = len + size;
613 	if (len_pad < len || (off + len_pad) < off)
614 		return 0;
615 
616 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
617 					      off >> PAGE_SHIFT, flags);
618 
619 	/*
620 	 * The failure might be due to length padding. The caller will retry
621 	 * without the padding.
622 	 */
623 	if (IS_ERR_VALUE(ret))
624 		return 0;
625 
626 	/*
627 	 * Do not try to align to THP boundary if allocation at the address
628 	 * hint succeeds.
629 	 */
630 	if (ret == addr)
631 		return addr;
632 
633 	ret += (off - ret) & (size - 1);
634 	return ret;
635 }
636 
637 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
638 		unsigned long len, unsigned long pgoff, unsigned long flags)
639 {
640 	unsigned long ret;
641 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
642 
643 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
644 	if (ret)
645 		return ret;
646 
647 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
648 }
649 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
650 
651 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
652 			struct page *page, gfp_t gfp)
653 {
654 	struct vm_area_struct *vma = vmf->vma;
655 	struct folio *folio = page_folio(page);
656 	pgtable_t pgtable;
657 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
658 	vm_fault_t ret = 0;
659 
660 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
661 
662 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
663 		folio_put(folio);
664 		count_vm_event(THP_FAULT_FALLBACK);
665 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
666 		return VM_FAULT_FALLBACK;
667 	}
668 	folio_throttle_swaprate(folio, gfp);
669 
670 	pgtable = pte_alloc_one(vma->vm_mm);
671 	if (unlikely(!pgtable)) {
672 		ret = VM_FAULT_OOM;
673 		goto release;
674 	}
675 
676 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
677 	/*
678 	 * The memory barrier inside __folio_mark_uptodate makes sure that
679 	 * clear_huge_page writes become visible before the set_pmd_at()
680 	 * write.
681 	 */
682 	__folio_mark_uptodate(folio);
683 
684 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
685 	if (unlikely(!pmd_none(*vmf->pmd))) {
686 		goto unlock_release;
687 	} else {
688 		pmd_t entry;
689 
690 		ret = check_stable_address_space(vma->vm_mm);
691 		if (ret)
692 			goto unlock_release;
693 
694 		/* Deliver the page fault to userland */
695 		if (userfaultfd_missing(vma)) {
696 			spin_unlock(vmf->ptl);
697 			folio_put(folio);
698 			pte_free(vma->vm_mm, pgtable);
699 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
700 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
701 			return ret;
702 		}
703 
704 		entry = mk_huge_pmd(page, vma->vm_page_prot);
705 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
706 		folio_add_new_anon_rmap(folio, vma, haddr);
707 		folio_add_lru_vma(folio, vma);
708 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
709 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
710 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
711 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
712 		mm_inc_nr_ptes(vma->vm_mm);
713 		spin_unlock(vmf->ptl);
714 		count_vm_event(THP_FAULT_ALLOC);
715 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
716 	}
717 
718 	return 0;
719 unlock_release:
720 	spin_unlock(vmf->ptl);
721 release:
722 	if (pgtable)
723 		pte_free(vma->vm_mm, pgtable);
724 	folio_put(folio);
725 	return ret;
726 
727 }
728 
729 /*
730  * always: directly stall for all thp allocations
731  * defer: wake kswapd and fail if not immediately available
732  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
733  *		  fail if not immediately available
734  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
735  *	    available
736  * never: never stall for any thp allocation
737  */
738 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
739 {
740 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
741 
742 	/* Always do synchronous compaction */
743 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
744 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
745 
746 	/* Kick kcompactd and fail quickly */
747 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
748 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
749 
750 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
751 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
752 		return GFP_TRANSHUGE_LIGHT |
753 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
754 					__GFP_KSWAPD_RECLAIM);
755 
756 	/* Only do synchronous compaction if madvised */
757 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
758 		return GFP_TRANSHUGE_LIGHT |
759 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
760 
761 	return GFP_TRANSHUGE_LIGHT;
762 }
763 
764 /* Caller must hold page table lock. */
765 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
766 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
767 		struct page *zero_page)
768 {
769 	pmd_t entry;
770 	if (!pmd_none(*pmd))
771 		return;
772 	entry = mk_pmd(zero_page, vma->vm_page_prot);
773 	entry = pmd_mkhuge(entry);
774 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 	set_pmd_at(mm, haddr, pmd, entry);
776 	mm_inc_nr_ptes(mm);
777 }
778 
779 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
780 {
781 	struct vm_area_struct *vma = vmf->vma;
782 	gfp_t gfp;
783 	struct folio *folio;
784 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
785 
786 	if (!transhuge_vma_suitable(vma, haddr))
787 		return VM_FAULT_FALLBACK;
788 	if (unlikely(anon_vma_prepare(vma)))
789 		return VM_FAULT_OOM;
790 	khugepaged_enter_vma(vma, vma->vm_flags);
791 
792 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
793 			!mm_forbids_zeropage(vma->vm_mm) &&
794 			transparent_hugepage_use_zero_page()) {
795 		pgtable_t pgtable;
796 		struct page *zero_page;
797 		vm_fault_t ret;
798 		pgtable = pte_alloc_one(vma->vm_mm);
799 		if (unlikely(!pgtable))
800 			return VM_FAULT_OOM;
801 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
802 		if (unlikely(!zero_page)) {
803 			pte_free(vma->vm_mm, pgtable);
804 			count_vm_event(THP_FAULT_FALLBACK);
805 			return VM_FAULT_FALLBACK;
806 		}
807 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
808 		ret = 0;
809 		if (pmd_none(*vmf->pmd)) {
810 			ret = check_stable_address_space(vma->vm_mm);
811 			if (ret) {
812 				spin_unlock(vmf->ptl);
813 				pte_free(vma->vm_mm, pgtable);
814 			} else if (userfaultfd_missing(vma)) {
815 				spin_unlock(vmf->ptl);
816 				pte_free(vma->vm_mm, pgtable);
817 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
818 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
819 			} else {
820 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
821 						   haddr, vmf->pmd, zero_page);
822 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
823 				spin_unlock(vmf->ptl);
824 			}
825 		} else {
826 			spin_unlock(vmf->ptl);
827 			pte_free(vma->vm_mm, pgtable);
828 		}
829 		return ret;
830 	}
831 	gfp = vma_thp_gfp_mask(vma);
832 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
833 	if (unlikely(!folio)) {
834 		count_vm_event(THP_FAULT_FALLBACK);
835 		return VM_FAULT_FALLBACK;
836 	}
837 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
838 }
839 
840 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
841 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
842 		pgtable_t pgtable)
843 {
844 	struct mm_struct *mm = vma->vm_mm;
845 	pmd_t entry;
846 	spinlock_t *ptl;
847 
848 	ptl = pmd_lock(mm, pmd);
849 	if (!pmd_none(*pmd)) {
850 		if (write) {
851 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
852 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
853 				goto out_unlock;
854 			}
855 			entry = pmd_mkyoung(*pmd);
856 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
857 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
858 				update_mmu_cache_pmd(vma, addr, pmd);
859 		}
860 
861 		goto out_unlock;
862 	}
863 
864 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
865 	if (pfn_t_devmap(pfn))
866 		entry = pmd_mkdevmap(entry);
867 	if (write) {
868 		entry = pmd_mkyoung(pmd_mkdirty(entry));
869 		entry = maybe_pmd_mkwrite(entry, vma);
870 	}
871 
872 	if (pgtable) {
873 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
874 		mm_inc_nr_ptes(mm);
875 		pgtable = NULL;
876 	}
877 
878 	set_pmd_at(mm, addr, pmd, entry);
879 	update_mmu_cache_pmd(vma, addr, pmd);
880 
881 out_unlock:
882 	spin_unlock(ptl);
883 	if (pgtable)
884 		pte_free(mm, pgtable);
885 }
886 
887 /**
888  * vmf_insert_pfn_pmd - insert a pmd size pfn
889  * @vmf: Structure describing the fault
890  * @pfn: pfn to insert
891  * @write: whether it's a write fault
892  *
893  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
894  *
895  * Return: vm_fault_t value.
896  */
897 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
898 {
899 	unsigned long addr = vmf->address & PMD_MASK;
900 	struct vm_area_struct *vma = vmf->vma;
901 	pgprot_t pgprot = vma->vm_page_prot;
902 	pgtable_t pgtable = NULL;
903 
904 	/*
905 	 * If we had pmd_special, we could avoid all these restrictions,
906 	 * but we need to be consistent with PTEs and architectures that
907 	 * can't support a 'special' bit.
908 	 */
909 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
910 			!pfn_t_devmap(pfn));
911 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
912 						(VM_PFNMAP|VM_MIXEDMAP));
913 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
914 
915 	if (addr < vma->vm_start || addr >= vma->vm_end)
916 		return VM_FAULT_SIGBUS;
917 
918 	if (arch_needs_pgtable_deposit()) {
919 		pgtable = pte_alloc_one(vma->vm_mm);
920 		if (!pgtable)
921 			return VM_FAULT_OOM;
922 	}
923 
924 	track_pfn_insert(vma, &pgprot, pfn);
925 
926 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
927 	return VM_FAULT_NOPAGE;
928 }
929 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
930 
931 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
932 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
933 {
934 	if (likely(vma->vm_flags & VM_WRITE))
935 		pud = pud_mkwrite(pud);
936 	return pud;
937 }
938 
939 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
940 		pud_t *pud, pfn_t pfn, bool write)
941 {
942 	struct mm_struct *mm = vma->vm_mm;
943 	pgprot_t prot = vma->vm_page_prot;
944 	pud_t entry;
945 	spinlock_t *ptl;
946 
947 	ptl = pud_lock(mm, pud);
948 	if (!pud_none(*pud)) {
949 		if (write) {
950 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
951 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
952 				goto out_unlock;
953 			}
954 			entry = pud_mkyoung(*pud);
955 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
956 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
957 				update_mmu_cache_pud(vma, addr, pud);
958 		}
959 		goto out_unlock;
960 	}
961 
962 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
963 	if (pfn_t_devmap(pfn))
964 		entry = pud_mkdevmap(entry);
965 	if (write) {
966 		entry = pud_mkyoung(pud_mkdirty(entry));
967 		entry = maybe_pud_mkwrite(entry, vma);
968 	}
969 	set_pud_at(mm, addr, pud, entry);
970 	update_mmu_cache_pud(vma, addr, pud);
971 
972 out_unlock:
973 	spin_unlock(ptl);
974 }
975 
976 /**
977  * vmf_insert_pfn_pud - insert a pud size pfn
978  * @vmf: Structure describing the fault
979  * @pfn: pfn to insert
980  * @write: whether it's a write fault
981  *
982  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
983  *
984  * Return: vm_fault_t value.
985  */
986 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
987 {
988 	unsigned long addr = vmf->address & PUD_MASK;
989 	struct vm_area_struct *vma = vmf->vma;
990 	pgprot_t pgprot = vma->vm_page_prot;
991 
992 	/*
993 	 * If we had pud_special, we could avoid all these restrictions,
994 	 * but we need to be consistent with PTEs and architectures that
995 	 * can't support a 'special' bit.
996 	 */
997 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
998 			!pfn_t_devmap(pfn));
999 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1000 						(VM_PFNMAP|VM_MIXEDMAP));
1001 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1002 
1003 	if (addr < vma->vm_start || addr >= vma->vm_end)
1004 		return VM_FAULT_SIGBUS;
1005 
1006 	track_pfn_insert(vma, &pgprot, pfn);
1007 
1008 	insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1009 	return VM_FAULT_NOPAGE;
1010 }
1011 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1012 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1013 
1014 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1015 		      pmd_t *pmd, bool write)
1016 {
1017 	pmd_t _pmd;
1018 
1019 	_pmd = pmd_mkyoung(*pmd);
1020 	if (write)
1021 		_pmd = pmd_mkdirty(_pmd);
1022 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1023 				  pmd, _pmd, write))
1024 		update_mmu_cache_pmd(vma, addr, pmd);
1025 }
1026 
1027 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1028 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1029 {
1030 	unsigned long pfn = pmd_pfn(*pmd);
1031 	struct mm_struct *mm = vma->vm_mm;
1032 	struct page *page;
1033 	int ret;
1034 
1035 	assert_spin_locked(pmd_lockptr(mm, pmd));
1036 
1037 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1038 		return NULL;
1039 
1040 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1041 		/* pass */;
1042 	else
1043 		return NULL;
1044 
1045 	if (flags & FOLL_TOUCH)
1046 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1047 
1048 	/*
1049 	 * device mapped pages can only be returned if the
1050 	 * caller will manage the page reference count.
1051 	 */
1052 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1053 		return ERR_PTR(-EEXIST);
1054 
1055 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1056 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1057 	if (!*pgmap)
1058 		return ERR_PTR(-EFAULT);
1059 	page = pfn_to_page(pfn);
1060 	ret = try_grab_page(page, flags);
1061 	if (ret)
1062 		page = ERR_PTR(ret);
1063 
1064 	return page;
1065 }
1066 
1067 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1068 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1069 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1070 {
1071 	spinlock_t *dst_ptl, *src_ptl;
1072 	struct page *src_page;
1073 	pmd_t pmd;
1074 	pgtable_t pgtable = NULL;
1075 	int ret = -ENOMEM;
1076 
1077 	/* Skip if can be re-fill on fault */
1078 	if (!vma_is_anonymous(dst_vma))
1079 		return 0;
1080 
1081 	pgtable = pte_alloc_one(dst_mm);
1082 	if (unlikely(!pgtable))
1083 		goto out;
1084 
1085 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1086 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1087 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1088 
1089 	ret = -EAGAIN;
1090 	pmd = *src_pmd;
1091 
1092 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1093 	if (unlikely(is_swap_pmd(pmd))) {
1094 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1095 
1096 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1097 		if (!is_readable_migration_entry(entry)) {
1098 			entry = make_readable_migration_entry(
1099 							swp_offset(entry));
1100 			pmd = swp_entry_to_pmd(entry);
1101 			if (pmd_swp_soft_dirty(*src_pmd))
1102 				pmd = pmd_swp_mksoft_dirty(pmd);
1103 			if (pmd_swp_uffd_wp(*src_pmd))
1104 				pmd = pmd_swp_mkuffd_wp(pmd);
1105 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1106 		}
1107 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1108 		mm_inc_nr_ptes(dst_mm);
1109 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1110 		if (!userfaultfd_wp(dst_vma))
1111 			pmd = pmd_swp_clear_uffd_wp(pmd);
1112 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1113 		ret = 0;
1114 		goto out_unlock;
1115 	}
1116 #endif
1117 
1118 	if (unlikely(!pmd_trans_huge(pmd))) {
1119 		pte_free(dst_mm, pgtable);
1120 		goto out_unlock;
1121 	}
1122 	/*
1123 	 * When page table lock is held, the huge zero pmd should not be
1124 	 * under splitting since we don't split the page itself, only pmd to
1125 	 * a page table.
1126 	 */
1127 	if (is_huge_zero_pmd(pmd)) {
1128 		/*
1129 		 * get_huge_zero_page() will never allocate a new page here,
1130 		 * since we already have a zero page to copy. It just takes a
1131 		 * reference.
1132 		 */
1133 		mm_get_huge_zero_page(dst_mm);
1134 		goto out_zero_page;
1135 	}
1136 
1137 	src_page = pmd_page(pmd);
1138 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1139 
1140 	get_page(src_page);
1141 	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1142 		/* Page maybe pinned: split and retry the fault on PTEs. */
1143 		put_page(src_page);
1144 		pte_free(dst_mm, pgtable);
1145 		spin_unlock(src_ptl);
1146 		spin_unlock(dst_ptl);
1147 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1148 		return -EAGAIN;
1149 	}
1150 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1151 out_zero_page:
1152 	mm_inc_nr_ptes(dst_mm);
1153 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1154 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1155 	if (!userfaultfd_wp(dst_vma))
1156 		pmd = pmd_clear_uffd_wp(pmd);
1157 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1158 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1159 
1160 	ret = 0;
1161 out_unlock:
1162 	spin_unlock(src_ptl);
1163 	spin_unlock(dst_ptl);
1164 out:
1165 	return ret;
1166 }
1167 
1168 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1169 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1170 		      pud_t *pud, bool write)
1171 {
1172 	pud_t _pud;
1173 
1174 	_pud = pud_mkyoung(*pud);
1175 	if (write)
1176 		_pud = pud_mkdirty(_pud);
1177 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1178 				  pud, _pud, write))
1179 		update_mmu_cache_pud(vma, addr, pud);
1180 }
1181 
1182 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1183 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1184 {
1185 	unsigned long pfn = pud_pfn(*pud);
1186 	struct mm_struct *mm = vma->vm_mm;
1187 	struct page *page;
1188 	int ret;
1189 
1190 	assert_spin_locked(pud_lockptr(mm, pud));
1191 
1192 	if (flags & FOLL_WRITE && !pud_write(*pud))
1193 		return NULL;
1194 
1195 	if (pud_present(*pud) && pud_devmap(*pud))
1196 		/* pass */;
1197 	else
1198 		return NULL;
1199 
1200 	if (flags & FOLL_TOUCH)
1201 		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1202 
1203 	/*
1204 	 * device mapped pages can only be returned if the
1205 	 * caller will manage the page reference count.
1206 	 *
1207 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1208 	 */
1209 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1210 		return ERR_PTR(-EEXIST);
1211 
1212 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1213 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1214 	if (!*pgmap)
1215 		return ERR_PTR(-EFAULT);
1216 	page = pfn_to_page(pfn);
1217 
1218 	ret = try_grab_page(page, flags);
1219 	if (ret)
1220 		page = ERR_PTR(ret);
1221 
1222 	return page;
1223 }
1224 
1225 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1226 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1227 		  struct vm_area_struct *vma)
1228 {
1229 	spinlock_t *dst_ptl, *src_ptl;
1230 	pud_t pud;
1231 	int ret;
1232 
1233 	dst_ptl = pud_lock(dst_mm, dst_pud);
1234 	src_ptl = pud_lockptr(src_mm, src_pud);
1235 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1236 
1237 	ret = -EAGAIN;
1238 	pud = *src_pud;
1239 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1240 		goto out_unlock;
1241 
1242 	/*
1243 	 * When page table lock is held, the huge zero pud should not be
1244 	 * under splitting since we don't split the page itself, only pud to
1245 	 * a page table.
1246 	 */
1247 	if (is_huge_zero_pud(pud)) {
1248 		/* No huge zero pud yet */
1249 	}
1250 
1251 	/*
1252 	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1253 	 * and split if duplicating fails.
1254 	 */
1255 	pudp_set_wrprotect(src_mm, addr, src_pud);
1256 	pud = pud_mkold(pud_wrprotect(pud));
1257 	set_pud_at(dst_mm, addr, dst_pud, pud);
1258 
1259 	ret = 0;
1260 out_unlock:
1261 	spin_unlock(src_ptl);
1262 	spin_unlock(dst_ptl);
1263 	return ret;
1264 }
1265 
1266 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1267 {
1268 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1269 
1270 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1271 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1272 		goto unlock;
1273 
1274 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1275 unlock:
1276 	spin_unlock(vmf->ptl);
1277 }
1278 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1279 
1280 void huge_pmd_set_accessed(struct vm_fault *vmf)
1281 {
1282 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1283 
1284 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1285 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1286 		goto unlock;
1287 
1288 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1289 
1290 unlock:
1291 	spin_unlock(vmf->ptl);
1292 }
1293 
1294 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1295 {
1296 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1297 	struct vm_area_struct *vma = vmf->vma;
1298 	struct folio *folio;
1299 	struct page *page;
1300 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1301 	pmd_t orig_pmd = vmf->orig_pmd;
1302 
1303 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1304 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1305 
1306 	if (is_huge_zero_pmd(orig_pmd))
1307 		goto fallback;
1308 
1309 	spin_lock(vmf->ptl);
1310 
1311 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1312 		spin_unlock(vmf->ptl);
1313 		return 0;
1314 	}
1315 
1316 	page = pmd_page(orig_pmd);
1317 	folio = page_folio(page);
1318 	VM_BUG_ON_PAGE(!PageHead(page), page);
1319 
1320 	/* Early check when only holding the PT lock. */
1321 	if (PageAnonExclusive(page))
1322 		goto reuse;
1323 
1324 	if (!folio_trylock(folio)) {
1325 		folio_get(folio);
1326 		spin_unlock(vmf->ptl);
1327 		folio_lock(folio);
1328 		spin_lock(vmf->ptl);
1329 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1330 			spin_unlock(vmf->ptl);
1331 			folio_unlock(folio);
1332 			folio_put(folio);
1333 			return 0;
1334 		}
1335 		folio_put(folio);
1336 	}
1337 
1338 	/* Recheck after temporarily dropping the PT lock. */
1339 	if (PageAnonExclusive(page)) {
1340 		folio_unlock(folio);
1341 		goto reuse;
1342 	}
1343 
1344 	/*
1345 	 * See do_wp_page(): we can only reuse the folio exclusively if
1346 	 * there are no additional references. Note that we always drain
1347 	 * the LRU cache immediately after adding a THP.
1348 	 */
1349 	if (folio_ref_count(folio) >
1350 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1351 		goto unlock_fallback;
1352 	if (folio_test_swapcache(folio))
1353 		folio_free_swap(folio);
1354 	if (folio_ref_count(folio) == 1) {
1355 		pmd_t entry;
1356 
1357 		page_move_anon_rmap(page, vma);
1358 		folio_unlock(folio);
1359 reuse:
1360 		if (unlikely(unshare)) {
1361 			spin_unlock(vmf->ptl);
1362 			return 0;
1363 		}
1364 		entry = pmd_mkyoung(orig_pmd);
1365 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1366 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1367 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1368 		spin_unlock(vmf->ptl);
1369 		return 0;
1370 	}
1371 
1372 unlock_fallback:
1373 	folio_unlock(folio);
1374 	spin_unlock(vmf->ptl);
1375 fallback:
1376 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1377 	return VM_FAULT_FALLBACK;
1378 }
1379 
1380 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1381 					   unsigned long addr, pmd_t pmd)
1382 {
1383 	struct page *page;
1384 
1385 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1386 		return false;
1387 
1388 	/* Don't touch entries that are not even readable (NUMA hinting). */
1389 	if (pmd_protnone(pmd))
1390 		return false;
1391 
1392 	/* Do we need write faults for softdirty tracking? */
1393 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1394 		return false;
1395 
1396 	/* Do we need write faults for uffd-wp tracking? */
1397 	if (userfaultfd_huge_pmd_wp(vma, pmd))
1398 		return false;
1399 
1400 	if (!(vma->vm_flags & VM_SHARED)) {
1401 		/* See can_change_pte_writable(). */
1402 		page = vm_normal_page_pmd(vma, addr, pmd);
1403 		return page && PageAnon(page) && PageAnonExclusive(page);
1404 	}
1405 
1406 	/* See can_change_pte_writable(). */
1407 	return pmd_dirty(pmd);
1408 }
1409 
1410 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1411 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1412 					struct vm_area_struct *vma,
1413 					unsigned int flags)
1414 {
1415 	/* If the pmd is writable, we can write to the page. */
1416 	if (pmd_write(pmd))
1417 		return true;
1418 
1419 	/* Maybe FOLL_FORCE is set to override it? */
1420 	if (!(flags & FOLL_FORCE))
1421 		return false;
1422 
1423 	/* But FOLL_FORCE has no effect on shared mappings */
1424 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1425 		return false;
1426 
1427 	/* ... or read-only private ones */
1428 	if (!(vma->vm_flags & VM_MAYWRITE))
1429 		return false;
1430 
1431 	/* ... or already writable ones that just need to take a write fault */
1432 	if (vma->vm_flags & VM_WRITE)
1433 		return false;
1434 
1435 	/*
1436 	 * See can_change_pte_writable(): we broke COW and could map the page
1437 	 * writable if we have an exclusive anonymous page ...
1438 	 */
1439 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1440 		return false;
1441 
1442 	/* ... and a write-fault isn't required for other reasons. */
1443 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1444 		return false;
1445 	return !userfaultfd_huge_pmd_wp(vma, pmd);
1446 }
1447 
1448 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1449 				   unsigned long addr,
1450 				   pmd_t *pmd,
1451 				   unsigned int flags)
1452 {
1453 	struct mm_struct *mm = vma->vm_mm;
1454 	struct page *page;
1455 	int ret;
1456 
1457 	assert_spin_locked(pmd_lockptr(mm, pmd));
1458 
1459 	page = pmd_page(*pmd);
1460 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1461 
1462 	if ((flags & FOLL_WRITE) &&
1463 	    !can_follow_write_pmd(*pmd, page, vma, flags))
1464 		return NULL;
1465 
1466 	/* Avoid dumping huge zero page */
1467 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1468 		return ERR_PTR(-EFAULT);
1469 
1470 	/* Full NUMA hinting faults to serialise migration in fault paths */
1471 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags))
1472 		return NULL;
1473 
1474 	if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1475 		return ERR_PTR(-EMLINK);
1476 
1477 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1478 			!PageAnonExclusive(page), page);
1479 
1480 	ret = try_grab_page(page, flags);
1481 	if (ret)
1482 		return ERR_PTR(ret);
1483 
1484 	if (flags & FOLL_TOUCH)
1485 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1486 
1487 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1488 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1489 
1490 	return page;
1491 }
1492 
1493 /* NUMA hinting page fault entry point for trans huge pmds */
1494 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1495 {
1496 	struct vm_area_struct *vma = vmf->vma;
1497 	pmd_t oldpmd = vmf->orig_pmd;
1498 	pmd_t pmd;
1499 	struct page *page;
1500 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1501 	int page_nid = NUMA_NO_NODE;
1502 	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1503 	bool migrated = false, writable = false;
1504 	int flags = 0;
1505 
1506 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1507 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1508 		spin_unlock(vmf->ptl);
1509 		goto out;
1510 	}
1511 
1512 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1513 
1514 	/*
1515 	 * Detect now whether the PMD could be writable; this information
1516 	 * is only valid while holding the PT lock.
1517 	 */
1518 	writable = pmd_write(pmd);
1519 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1520 	    can_change_pmd_writable(vma, vmf->address, pmd))
1521 		writable = true;
1522 
1523 	page = vm_normal_page_pmd(vma, haddr, pmd);
1524 	if (!page)
1525 		goto out_map;
1526 
1527 	/* See similar comment in do_numa_page for explanation */
1528 	if (!writable)
1529 		flags |= TNF_NO_GROUP;
1530 
1531 	page_nid = page_to_nid(page);
1532 	/*
1533 	 * For memory tiering mode, cpupid of slow memory page is used
1534 	 * to record page access time.  So use default value.
1535 	 */
1536 	if (node_is_toptier(page_nid))
1537 		last_cpupid = page_cpupid_last(page);
1538 	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1539 				       &flags);
1540 
1541 	if (target_nid == NUMA_NO_NODE) {
1542 		put_page(page);
1543 		goto out_map;
1544 	}
1545 
1546 	spin_unlock(vmf->ptl);
1547 	writable = false;
1548 
1549 	migrated = migrate_misplaced_page(page, vma, target_nid);
1550 	if (migrated) {
1551 		flags |= TNF_MIGRATED;
1552 		page_nid = target_nid;
1553 	} else {
1554 		flags |= TNF_MIGRATE_FAIL;
1555 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1556 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1557 			spin_unlock(vmf->ptl);
1558 			goto out;
1559 		}
1560 		goto out_map;
1561 	}
1562 
1563 out:
1564 	if (page_nid != NUMA_NO_NODE)
1565 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1566 				flags);
1567 
1568 	return 0;
1569 
1570 out_map:
1571 	/* Restore the PMD */
1572 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1573 	pmd = pmd_mkyoung(pmd);
1574 	if (writable)
1575 		pmd = pmd_mkwrite(pmd);
1576 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1577 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1578 	spin_unlock(vmf->ptl);
1579 	goto out;
1580 }
1581 
1582 /*
1583  * Return true if we do MADV_FREE successfully on entire pmd page.
1584  * Otherwise, return false.
1585  */
1586 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1587 		pmd_t *pmd, unsigned long addr, unsigned long next)
1588 {
1589 	spinlock_t *ptl;
1590 	pmd_t orig_pmd;
1591 	struct folio *folio;
1592 	struct mm_struct *mm = tlb->mm;
1593 	bool ret = false;
1594 
1595 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1596 
1597 	ptl = pmd_trans_huge_lock(pmd, vma);
1598 	if (!ptl)
1599 		goto out_unlocked;
1600 
1601 	orig_pmd = *pmd;
1602 	if (is_huge_zero_pmd(orig_pmd))
1603 		goto out;
1604 
1605 	if (unlikely(!pmd_present(orig_pmd))) {
1606 		VM_BUG_ON(thp_migration_supported() &&
1607 				  !is_pmd_migration_entry(orig_pmd));
1608 		goto out;
1609 	}
1610 
1611 	folio = pfn_folio(pmd_pfn(orig_pmd));
1612 	/*
1613 	 * If other processes are mapping this folio, we couldn't discard
1614 	 * the folio unless they all do MADV_FREE so let's skip the folio.
1615 	 */
1616 	if (folio_mapcount(folio) != 1)
1617 		goto out;
1618 
1619 	if (!folio_trylock(folio))
1620 		goto out;
1621 
1622 	/*
1623 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1624 	 * will deactivate only them.
1625 	 */
1626 	if (next - addr != HPAGE_PMD_SIZE) {
1627 		folio_get(folio);
1628 		spin_unlock(ptl);
1629 		split_folio(folio);
1630 		folio_unlock(folio);
1631 		folio_put(folio);
1632 		goto out_unlocked;
1633 	}
1634 
1635 	if (folio_test_dirty(folio))
1636 		folio_clear_dirty(folio);
1637 	folio_unlock(folio);
1638 
1639 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1640 		pmdp_invalidate(vma, addr, pmd);
1641 		orig_pmd = pmd_mkold(orig_pmd);
1642 		orig_pmd = pmd_mkclean(orig_pmd);
1643 
1644 		set_pmd_at(mm, addr, pmd, orig_pmd);
1645 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1646 	}
1647 
1648 	folio_mark_lazyfree(folio);
1649 	ret = true;
1650 out:
1651 	spin_unlock(ptl);
1652 out_unlocked:
1653 	return ret;
1654 }
1655 
1656 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1657 {
1658 	pgtable_t pgtable;
1659 
1660 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1661 	pte_free(mm, pgtable);
1662 	mm_dec_nr_ptes(mm);
1663 }
1664 
1665 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1666 		 pmd_t *pmd, unsigned long addr)
1667 {
1668 	pmd_t orig_pmd;
1669 	spinlock_t *ptl;
1670 
1671 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1672 
1673 	ptl = __pmd_trans_huge_lock(pmd, vma);
1674 	if (!ptl)
1675 		return 0;
1676 	/*
1677 	 * For architectures like ppc64 we look at deposited pgtable
1678 	 * when calling pmdp_huge_get_and_clear. So do the
1679 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1680 	 * operations.
1681 	 */
1682 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1683 						tlb->fullmm);
1684 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1685 	if (vma_is_special_huge(vma)) {
1686 		if (arch_needs_pgtable_deposit())
1687 			zap_deposited_table(tlb->mm, pmd);
1688 		spin_unlock(ptl);
1689 	} else if (is_huge_zero_pmd(orig_pmd)) {
1690 		zap_deposited_table(tlb->mm, pmd);
1691 		spin_unlock(ptl);
1692 	} else {
1693 		struct page *page = NULL;
1694 		int flush_needed = 1;
1695 
1696 		if (pmd_present(orig_pmd)) {
1697 			page = pmd_page(orig_pmd);
1698 			page_remove_rmap(page, vma, true);
1699 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1700 			VM_BUG_ON_PAGE(!PageHead(page), page);
1701 		} else if (thp_migration_supported()) {
1702 			swp_entry_t entry;
1703 
1704 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1705 			entry = pmd_to_swp_entry(orig_pmd);
1706 			page = pfn_swap_entry_to_page(entry);
1707 			flush_needed = 0;
1708 		} else
1709 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1710 
1711 		if (PageAnon(page)) {
1712 			zap_deposited_table(tlb->mm, pmd);
1713 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1714 		} else {
1715 			if (arch_needs_pgtable_deposit())
1716 				zap_deposited_table(tlb->mm, pmd);
1717 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1718 		}
1719 
1720 		spin_unlock(ptl);
1721 		if (flush_needed)
1722 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1723 	}
1724 	return 1;
1725 }
1726 
1727 #ifndef pmd_move_must_withdraw
1728 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1729 					 spinlock_t *old_pmd_ptl,
1730 					 struct vm_area_struct *vma)
1731 {
1732 	/*
1733 	 * With split pmd lock we also need to move preallocated
1734 	 * PTE page table if new_pmd is on different PMD page table.
1735 	 *
1736 	 * We also don't deposit and withdraw tables for file pages.
1737 	 */
1738 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1739 }
1740 #endif
1741 
1742 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1743 {
1744 #ifdef CONFIG_MEM_SOFT_DIRTY
1745 	if (unlikely(is_pmd_migration_entry(pmd)))
1746 		pmd = pmd_swp_mksoft_dirty(pmd);
1747 	else if (pmd_present(pmd))
1748 		pmd = pmd_mksoft_dirty(pmd);
1749 #endif
1750 	return pmd;
1751 }
1752 
1753 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1754 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1755 {
1756 	spinlock_t *old_ptl, *new_ptl;
1757 	pmd_t pmd;
1758 	struct mm_struct *mm = vma->vm_mm;
1759 	bool force_flush = false;
1760 
1761 	/*
1762 	 * The destination pmd shouldn't be established, free_pgtables()
1763 	 * should have released it; but move_page_tables() might have already
1764 	 * inserted a page table, if racing against shmem/file collapse.
1765 	 */
1766 	if (!pmd_none(*new_pmd)) {
1767 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1768 		return false;
1769 	}
1770 
1771 	/*
1772 	 * We don't have to worry about the ordering of src and dst
1773 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1774 	 */
1775 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1776 	if (old_ptl) {
1777 		new_ptl = pmd_lockptr(mm, new_pmd);
1778 		if (new_ptl != old_ptl)
1779 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1780 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1781 		if (pmd_present(pmd))
1782 			force_flush = true;
1783 		VM_BUG_ON(!pmd_none(*new_pmd));
1784 
1785 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1786 			pgtable_t pgtable;
1787 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1788 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1789 		}
1790 		pmd = move_soft_dirty_pmd(pmd);
1791 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1792 		if (force_flush)
1793 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1794 		if (new_ptl != old_ptl)
1795 			spin_unlock(new_ptl);
1796 		spin_unlock(old_ptl);
1797 		return true;
1798 	}
1799 	return false;
1800 }
1801 
1802 /*
1803  * Returns
1804  *  - 0 if PMD could not be locked
1805  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1806  *      or if prot_numa but THP migration is not supported
1807  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1808  */
1809 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1810 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1811 		    unsigned long cp_flags)
1812 {
1813 	struct mm_struct *mm = vma->vm_mm;
1814 	spinlock_t *ptl;
1815 	pmd_t oldpmd, entry;
1816 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1817 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1818 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1819 	int ret = 1;
1820 
1821 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1822 
1823 	if (prot_numa && !thp_migration_supported())
1824 		return 1;
1825 
1826 	ptl = __pmd_trans_huge_lock(pmd, vma);
1827 	if (!ptl)
1828 		return 0;
1829 
1830 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1831 	if (is_swap_pmd(*pmd)) {
1832 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1833 		struct page *page = pfn_swap_entry_to_page(entry);
1834 		pmd_t newpmd;
1835 
1836 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1837 		if (is_writable_migration_entry(entry)) {
1838 			/*
1839 			 * A protection check is difficult so
1840 			 * just be safe and disable write
1841 			 */
1842 			if (PageAnon(page))
1843 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1844 			else
1845 				entry = make_readable_migration_entry(swp_offset(entry));
1846 			newpmd = swp_entry_to_pmd(entry);
1847 			if (pmd_swp_soft_dirty(*pmd))
1848 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1849 		} else {
1850 			newpmd = *pmd;
1851 		}
1852 
1853 		if (uffd_wp)
1854 			newpmd = pmd_swp_mkuffd_wp(newpmd);
1855 		else if (uffd_wp_resolve)
1856 			newpmd = pmd_swp_clear_uffd_wp(newpmd);
1857 		if (!pmd_same(*pmd, newpmd))
1858 			set_pmd_at(mm, addr, pmd, newpmd);
1859 		goto unlock;
1860 	}
1861 #endif
1862 
1863 	if (prot_numa) {
1864 		struct page *page;
1865 		bool toptier;
1866 		/*
1867 		 * Avoid trapping faults against the zero page. The read-only
1868 		 * data is likely to be read-cached on the local CPU and
1869 		 * local/remote hits to the zero page are not interesting.
1870 		 */
1871 		if (is_huge_zero_pmd(*pmd))
1872 			goto unlock;
1873 
1874 		if (pmd_protnone(*pmd))
1875 			goto unlock;
1876 
1877 		page = pmd_page(*pmd);
1878 		toptier = node_is_toptier(page_to_nid(page));
1879 		/*
1880 		 * Skip scanning top tier node if normal numa
1881 		 * balancing is disabled
1882 		 */
1883 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1884 		    toptier)
1885 			goto unlock;
1886 
1887 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1888 		    !toptier)
1889 			xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1890 	}
1891 	/*
1892 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1893 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1894 	 * which is also under mmap_read_lock(mm):
1895 	 *
1896 	 *	CPU0:				CPU1:
1897 	 *				change_huge_pmd(prot_numa=1)
1898 	 *				 pmdp_huge_get_and_clear_notify()
1899 	 * madvise_dontneed()
1900 	 *  zap_pmd_range()
1901 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1902 	 *   // skip the pmd
1903 	 *				 set_pmd_at();
1904 	 *				 // pmd is re-established
1905 	 *
1906 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1907 	 * which may break userspace.
1908 	 *
1909 	 * pmdp_invalidate_ad() is required to make sure we don't miss
1910 	 * dirty/young flags set by hardware.
1911 	 */
1912 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1913 
1914 	entry = pmd_modify(oldpmd, newprot);
1915 	if (uffd_wp)
1916 		entry = pmd_mkuffd_wp(entry);
1917 	else if (uffd_wp_resolve)
1918 		/*
1919 		 * Leave the write bit to be handled by PF interrupt
1920 		 * handler, then things like COW could be properly
1921 		 * handled.
1922 		 */
1923 		entry = pmd_clear_uffd_wp(entry);
1924 
1925 	/* See change_pte_range(). */
1926 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1927 	    can_change_pmd_writable(vma, addr, entry))
1928 		entry = pmd_mkwrite(entry);
1929 
1930 	ret = HPAGE_PMD_NR;
1931 	set_pmd_at(mm, addr, pmd, entry);
1932 
1933 	if (huge_pmd_needs_flush(oldpmd, entry))
1934 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1935 unlock:
1936 	spin_unlock(ptl);
1937 	return ret;
1938 }
1939 
1940 /*
1941  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1942  *
1943  * Note that if it returns page table lock pointer, this routine returns without
1944  * unlocking page table lock. So callers must unlock it.
1945  */
1946 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1947 {
1948 	spinlock_t *ptl;
1949 	ptl = pmd_lock(vma->vm_mm, pmd);
1950 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1951 			pmd_devmap(*pmd)))
1952 		return ptl;
1953 	spin_unlock(ptl);
1954 	return NULL;
1955 }
1956 
1957 /*
1958  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1959  *
1960  * Note that if it returns page table lock pointer, this routine returns without
1961  * unlocking page table lock. So callers must unlock it.
1962  */
1963 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1964 {
1965 	spinlock_t *ptl;
1966 
1967 	ptl = pud_lock(vma->vm_mm, pud);
1968 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1969 		return ptl;
1970 	spin_unlock(ptl);
1971 	return NULL;
1972 }
1973 
1974 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1975 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1976 		 pud_t *pud, unsigned long addr)
1977 {
1978 	spinlock_t *ptl;
1979 
1980 	ptl = __pud_trans_huge_lock(pud, vma);
1981 	if (!ptl)
1982 		return 0;
1983 
1984 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1985 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1986 	if (vma_is_special_huge(vma)) {
1987 		spin_unlock(ptl);
1988 		/* No zero page support yet */
1989 	} else {
1990 		/* No support for anonymous PUD pages yet */
1991 		BUG();
1992 	}
1993 	return 1;
1994 }
1995 
1996 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1997 		unsigned long haddr)
1998 {
1999 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2000 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2001 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2002 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2003 
2004 	count_vm_event(THP_SPLIT_PUD);
2005 
2006 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2007 }
2008 
2009 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2010 		unsigned long address)
2011 {
2012 	spinlock_t *ptl;
2013 	struct mmu_notifier_range range;
2014 
2015 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2016 				address & HPAGE_PUD_MASK,
2017 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2018 	mmu_notifier_invalidate_range_start(&range);
2019 	ptl = pud_lock(vma->vm_mm, pud);
2020 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2021 		goto out;
2022 	__split_huge_pud_locked(vma, pud, range.start);
2023 
2024 out:
2025 	spin_unlock(ptl);
2026 	/*
2027 	 * No need to double call mmu_notifier->invalidate_range() callback as
2028 	 * the above pudp_huge_clear_flush_notify() did already call it.
2029 	 */
2030 	mmu_notifier_invalidate_range_only_end(&range);
2031 }
2032 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2033 
2034 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2035 		unsigned long haddr, pmd_t *pmd)
2036 {
2037 	struct mm_struct *mm = vma->vm_mm;
2038 	pgtable_t pgtable;
2039 	pmd_t _pmd, old_pmd;
2040 	unsigned long addr;
2041 	pte_t *pte;
2042 	int i;
2043 
2044 	/*
2045 	 * Leave pmd empty until pte is filled note that it is fine to delay
2046 	 * notification until mmu_notifier_invalidate_range_end() as we are
2047 	 * replacing a zero pmd write protected page with a zero pte write
2048 	 * protected page.
2049 	 *
2050 	 * See Documentation/mm/mmu_notifier.rst
2051 	 */
2052 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2053 
2054 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2055 	pmd_populate(mm, &_pmd, pgtable);
2056 
2057 	pte = pte_offset_map(&_pmd, haddr);
2058 	VM_BUG_ON(!pte);
2059 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2060 		pte_t entry;
2061 
2062 		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2063 		entry = pte_mkspecial(entry);
2064 		if (pmd_uffd_wp(old_pmd))
2065 			entry = pte_mkuffd_wp(entry);
2066 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2067 		set_pte_at(mm, addr, pte, entry);
2068 		pte++;
2069 	}
2070 	pte_unmap(pte - 1);
2071 	smp_wmb(); /* make pte visible before pmd */
2072 	pmd_populate(mm, pmd, pgtable);
2073 }
2074 
2075 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2076 		unsigned long haddr, bool freeze)
2077 {
2078 	struct mm_struct *mm = vma->vm_mm;
2079 	struct page *page;
2080 	pgtable_t pgtable;
2081 	pmd_t old_pmd, _pmd;
2082 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2083 	bool anon_exclusive = false, dirty = false;
2084 	unsigned long addr;
2085 	pte_t *pte;
2086 	int i;
2087 
2088 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2089 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2090 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2091 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2092 				&& !pmd_devmap(*pmd));
2093 
2094 	count_vm_event(THP_SPLIT_PMD);
2095 
2096 	if (!vma_is_anonymous(vma)) {
2097 		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2098 		/*
2099 		 * We are going to unmap this huge page. So
2100 		 * just go ahead and zap it
2101 		 */
2102 		if (arch_needs_pgtable_deposit())
2103 			zap_deposited_table(mm, pmd);
2104 		if (vma_is_special_huge(vma))
2105 			return;
2106 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2107 			swp_entry_t entry;
2108 
2109 			entry = pmd_to_swp_entry(old_pmd);
2110 			page = pfn_swap_entry_to_page(entry);
2111 		} else {
2112 			page = pmd_page(old_pmd);
2113 			if (!PageDirty(page) && pmd_dirty(old_pmd))
2114 				set_page_dirty(page);
2115 			if (!PageReferenced(page) && pmd_young(old_pmd))
2116 				SetPageReferenced(page);
2117 			page_remove_rmap(page, vma, true);
2118 			put_page(page);
2119 		}
2120 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2121 		return;
2122 	}
2123 
2124 	if (is_huge_zero_pmd(*pmd)) {
2125 		/*
2126 		 * FIXME: Do we want to invalidate secondary mmu by calling
2127 		 * mmu_notifier_invalidate_range() see comments below inside
2128 		 * __split_huge_pmd() ?
2129 		 *
2130 		 * We are going from a zero huge page write protected to zero
2131 		 * small page also write protected so it does not seems useful
2132 		 * to invalidate secondary mmu at this time.
2133 		 */
2134 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2135 	}
2136 
2137 	/*
2138 	 * Up to this point the pmd is present and huge and userland has the
2139 	 * whole access to the hugepage during the split (which happens in
2140 	 * place). If we overwrite the pmd with the not-huge version pointing
2141 	 * to the pte here (which of course we could if all CPUs were bug
2142 	 * free), userland could trigger a small page size TLB miss on the
2143 	 * small sized TLB while the hugepage TLB entry is still established in
2144 	 * the huge TLB. Some CPU doesn't like that.
2145 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2146 	 * 383 on page 105. Intel should be safe but is also warns that it's
2147 	 * only safe if the permission and cache attributes of the two entries
2148 	 * loaded in the two TLB is identical (which should be the case here).
2149 	 * But it is generally safer to never allow small and huge TLB entries
2150 	 * for the same virtual address to be loaded simultaneously. So instead
2151 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2152 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2153 	 * must remain set at all times on the pmd until the split is complete
2154 	 * for this pmd), then we flush the SMP TLB and finally we write the
2155 	 * non-huge version of the pmd entry with pmd_populate.
2156 	 */
2157 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2158 
2159 	pmd_migration = is_pmd_migration_entry(old_pmd);
2160 	if (unlikely(pmd_migration)) {
2161 		swp_entry_t entry;
2162 
2163 		entry = pmd_to_swp_entry(old_pmd);
2164 		page = pfn_swap_entry_to_page(entry);
2165 		write = is_writable_migration_entry(entry);
2166 		if (PageAnon(page))
2167 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2168 		young = is_migration_entry_young(entry);
2169 		dirty = is_migration_entry_dirty(entry);
2170 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2171 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2172 	} else {
2173 		page = pmd_page(old_pmd);
2174 		if (pmd_dirty(old_pmd)) {
2175 			dirty = true;
2176 			SetPageDirty(page);
2177 		}
2178 		write = pmd_write(old_pmd);
2179 		young = pmd_young(old_pmd);
2180 		soft_dirty = pmd_soft_dirty(old_pmd);
2181 		uffd_wp = pmd_uffd_wp(old_pmd);
2182 
2183 		VM_BUG_ON_PAGE(!page_count(page), page);
2184 
2185 		/*
2186 		 * Without "freeze", we'll simply split the PMD, propagating the
2187 		 * PageAnonExclusive() flag for each PTE by setting it for
2188 		 * each subpage -- no need to (temporarily) clear.
2189 		 *
2190 		 * With "freeze" we want to replace mapped pages by
2191 		 * migration entries right away. This is only possible if we
2192 		 * managed to clear PageAnonExclusive() -- see
2193 		 * set_pmd_migration_entry().
2194 		 *
2195 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2196 		 * only and let try_to_migrate_one() fail later.
2197 		 *
2198 		 * See page_try_share_anon_rmap(): invalidate PMD first.
2199 		 */
2200 		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2201 		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2202 			freeze = false;
2203 		if (!freeze)
2204 			page_ref_add(page, HPAGE_PMD_NR - 1);
2205 	}
2206 
2207 	/*
2208 	 * Withdraw the table only after we mark the pmd entry invalid.
2209 	 * This's critical for some architectures (Power).
2210 	 */
2211 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2212 	pmd_populate(mm, &_pmd, pgtable);
2213 
2214 	pte = pte_offset_map(&_pmd, haddr);
2215 	VM_BUG_ON(!pte);
2216 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2217 		pte_t entry;
2218 		/*
2219 		 * Note that NUMA hinting access restrictions are not
2220 		 * transferred to avoid any possibility of altering
2221 		 * permissions across VMAs.
2222 		 */
2223 		if (freeze || pmd_migration) {
2224 			swp_entry_t swp_entry;
2225 			if (write)
2226 				swp_entry = make_writable_migration_entry(
2227 							page_to_pfn(page + i));
2228 			else if (anon_exclusive)
2229 				swp_entry = make_readable_exclusive_migration_entry(
2230 							page_to_pfn(page + i));
2231 			else
2232 				swp_entry = make_readable_migration_entry(
2233 							page_to_pfn(page + i));
2234 			if (young)
2235 				swp_entry = make_migration_entry_young(swp_entry);
2236 			if (dirty)
2237 				swp_entry = make_migration_entry_dirty(swp_entry);
2238 			entry = swp_entry_to_pte(swp_entry);
2239 			if (soft_dirty)
2240 				entry = pte_swp_mksoft_dirty(entry);
2241 			if (uffd_wp)
2242 				entry = pte_swp_mkuffd_wp(entry);
2243 		} else {
2244 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2245 			if (write)
2246 				entry = pte_mkwrite(entry);
2247 			if (anon_exclusive)
2248 				SetPageAnonExclusive(page + i);
2249 			if (!young)
2250 				entry = pte_mkold(entry);
2251 			/* NOTE: this may set soft-dirty too on some archs */
2252 			if (dirty)
2253 				entry = pte_mkdirty(entry);
2254 			if (soft_dirty)
2255 				entry = pte_mksoft_dirty(entry);
2256 			if (uffd_wp)
2257 				entry = pte_mkuffd_wp(entry);
2258 			page_add_anon_rmap(page + i, vma, addr, false);
2259 		}
2260 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2261 		set_pte_at(mm, addr, pte, entry);
2262 		pte++;
2263 	}
2264 	pte_unmap(pte - 1);
2265 
2266 	if (!pmd_migration)
2267 		page_remove_rmap(page, vma, true);
2268 	if (freeze)
2269 		put_page(page);
2270 
2271 	smp_wmb(); /* make pte visible before pmd */
2272 	pmd_populate(mm, pmd, pgtable);
2273 }
2274 
2275 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2276 		unsigned long address, bool freeze, struct folio *folio)
2277 {
2278 	spinlock_t *ptl;
2279 	struct mmu_notifier_range range;
2280 
2281 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2282 				address & HPAGE_PMD_MASK,
2283 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2284 	mmu_notifier_invalidate_range_start(&range);
2285 	ptl = pmd_lock(vma->vm_mm, pmd);
2286 
2287 	/*
2288 	 * If caller asks to setup a migration entry, we need a folio to check
2289 	 * pmd against. Otherwise we can end up replacing wrong folio.
2290 	 */
2291 	VM_BUG_ON(freeze && !folio);
2292 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2293 
2294 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2295 	    is_pmd_migration_entry(*pmd)) {
2296 		/*
2297 		 * It's safe to call pmd_page when folio is set because it's
2298 		 * guaranteed that pmd is present.
2299 		 */
2300 		if (folio && folio != page_folio(pmd_page(*pmd)))
2301 			goto out;
2302 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2303 	}
2304 
2305 out:
2306 	spin_unlock(ptl);
2307 	/*
2308 	 * No need to double call mmu_notifier->invalidate_range() callback.
2309 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2310 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2311 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2312 	 *    fault will trigger a flush_notify before pointing to a new page
2313 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2314 	 *    page in the meantime)
2315 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2316 	 *     to invalidate secondary tlb entry they are all still valid.
2317 	 *     any further changes to individual pte will notify. So no need
2318 	 *     to call mmu_notifier->invalidate_range()
2319 	 */
2320 	mmu_notifier_invalidate_range_only_end(&range);
2321 }
2322 
2323 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2324 		bool freeze, struct folio *folio)
2325 {
2326 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2327 
2328 	if (!pmd)
2329 		return;
2330 
2331 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2332 }
2333 
2334 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2335 {
2336 	/*
2337 	 * If the new address isn't hpage aligned and it could previously
2338 	 * contain an hugepage: check if we need to split an huge pmd.
2339 	 */
2340 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2341 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2342 			 ALIGN(address, HPAGE_PMD_SIZE)))
2343 		split_huge_pmd_address(vma, address, false, NULL);
2344 }
2345 
2346 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2347 			     unsigned long start,
2348 			     unsigned long end,
2349 			     long adjust_next)
2350 {
2351 	/* Check if we need to split start first. */
2352 	split_huge_pmd_if_needed(vma, start);
2353 
2354 	/* Check if we need to split end next. */
2355 	split_huge_pmd_if_needed(vma, end);
2356 
2357 	/*
2358 	 * If we're also updating the next vma vm_start,
2359 	 * check if we need to split it.
2360 	 */
2361 	if (adjust_next > 0) {
2362 		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2363 		unsigned long nstart = next->vm_start;
2364 		nstart += adjust_next;
2365 		split_huge_pmd_if_needed(next, nstart);
2366 	}
2367 }
2368 
2369 static void unmap_folio(struct folio *folio)
2370 {
2371 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2372 		TTU_SYNC;
2373 
2374 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2375 
2376 	/*
2377 	 * Anon pages need migration entries to preserve them, but file
2378 	 * pages can simply be left unmapped, then faulted back on demand.
2379 	 * If that is ever changed (perhaps for mlock), update remap_page().
2380 	 */
2381 	if (folio_test_anon(folio))
2382 		try_to_migrate(folio, ttu_flags);
2383 	else
2384 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2385 }
2386 
2387 static void remap_page(struct folio *folio, unsigned long nr)
2388 {
2389 	int i = 0;
2390 
2391 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2392 	if (!folio_test_anon(folio))
2393 		return;
2394 	for (;;) {
2395 		remove_migration_ptes(folio, folio, true);
2396 		i += folio_nr_pages(folio);
2397 		if (i >= nr)
2398 			break;
2399 		folio = folio_next(folio);
2400 	}
2401 }
2402 
2403 static void lru_add_page_tail(struct page *head, struct page *tail,
2404 		struct lruvec *lruvec, struct list_head *list)
2405 {
2406 	VM_BUG_ON_PAGE(!PageHead(head), head);
2407 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2408 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2409 	lockdep_assert_held(&lruvec->lru_lock);
2410 
2411 	if (list) {
2412 		/* page reclaim is reclaiming a huge page */
2413 		VM_WARN_ON(PageLRU(head));
2414 		get_page(tail);
2415 		list_add_tail(&tail->lru, list);
2416 	} else {
2417 		/* head is still on lru (and we have it frozen) */
2418 		VM_WARN_ON(!PageLRU(head));
2419 		if (PageUnevictable(tail))
2420 			tail->mlock_count = 0;
2421 		else
2422 			list_add_tail(&tail->lru, &head->lru);
2423 		SetPageLRU(tail);
2424 	}
2425 }
2426 
2427 static void __split_huge_page_tail(struct page *head, int tail,
2428 		struct lruvec *lruvec, struct list_head *list)
2429 {
2430 	struct page *page_tail = head + tail;
2431 
2432 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2433 
2434 	/*
2435 	 * Clone page flags before unfreezing refcount.
2436 	 *
2437 	 * After successful get_page_unless_zero() might follow flags change,
2438 	 * for example lock_page() which set PG_waiters.
2439 	 *
2440 	 * Note that for mapped sub-pages of an anonymous THP,
2441 	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2442 	 * the migration entry instead from where remap_page() will restore it.
2443 	 * We can still have PG_anon_exclusive set on effectively unmapped and
2444 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2445 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2446 	 */
2447 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2448 	page_tail->flags |= (head->flags &
2449 			((1L << PG_referenced) |
2450 			 (1L << PG_swapbacked) |
2451 			 (1L << PG_swapcache) |
2452 			 (1L << PG_mlocked) |
2453 			 (1L << PG_uptodate) |
2454 			 (1L << PG_active) |
2455 			 (1L << PG_workingset) |
2456 			 (1L << PG_locked) |
2457 			 (1L << PG_unevictable) |
2458 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2459 			 (1L << PG_arch_2) |
2460 			 (1L << PG_arch_3) |
2461 #endif
2462 			 (1L << PG_dirty) |
2463 			 LRU_GEN_MASK | LRU_REFS_MASK));
2464 
2465 	/* ->mapping in first and second tail page is replaced by other uses */
2466 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2467 			page_tail);
2468 	page_tail->mapping = head->mapping;
2469 	page_tail->index = head->index + tail;
2470 
2471 	/*
2472 	 * page->private should not be set in tail pages with the exception
2473 	 * of swap cache pages that store the swp_entry_t in tail pages.
2474 	 * Fix up and warn once if private is unexpectedly set.
2475 	 *
2476 	 * What of 32-bit systems, on which folio->_pincount overlays
2477 	 * head[1].private?  No problem: THP_SWAP is not enabled on 32-bit, and
2478 	 * pincount must be 0 for folio_ref_freeze() to have succeeded.
2479 	 */
2480 	if (!folio_test_swapcache(page_folio(head))) {
2481 		VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail);
2482 		page_tail->private = 0;
2483 	}
2484 
2485 	/* Page flags must be visible before we make the page non-compound. */
2486 	smp_wmb();
2487 
2488 	/*
2489 	 * Clear PageTail before unfreezing page refcount.
2490 	 *
2491 	 * After successful get_page_unless_zero() might follow put_page()
2492 	 * which needs correct compound_head().
2493 	 */
2494 	clear_compound_head(page_tail);
2495 
2496 	/* Finally unfreeze refcount. Additional reference from page cache. */
2497 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2498 					  PageSwapCache(head)));
2499 
2500 	if (page_is_young(head))
2501 		set_page_young(page_tail);
2502 	if (page_is_idle(head))
2503 		set_page_idle(page_tail);
2504 
2505 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2506 
2507 	/*
2508 	 * always add to the tail because some iterators expect new
2509 	 * pages to show after the currently processed elements - e.g.
2510 	 * migrate_pages
2511 	 */
2512 	lru_add_page_tail(head, page_tail, lruvec, list);
2513 }
2514 
2515 static void __split_huge_page(struct page *page, struct list_head *list,
2516 		pgoff_t end)
2517 {
2518 	struct folio *folio = page_folio(page);
2519 	struct page *head = &folio->page;
2520 	struct lruvec *lruvec;
2521 	struct address_space *swap_cache = NULL;
2522 	unsigned long offset = 0;
2523 	unsigned int nr = thp_nr_pages(head);
2524 	int i;
2525 
2526 	/* complete memcg works before add pages to LRU */
2527 	split_page_memcg(head, nr);
2528 
2529 	if (PageAnon(head) && PageSwapCache(head)) {
2530 		swp_entry_t entry = { .val = page_private(head) };
2531 
2532 		offset = swp_offset(entry);
2533 		swap_cache = swap_address_space(entry);
2534 		xa_lock(&swap_cache->i_pages);
2535 	}
2536 
2537 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2538 	lruvec = folio_lruvec_lock(folio);
2539 
2540 	ClearPageHasHWPoisoned(head);
2541 
2542 	for (i = nr - 1; i >= 1; i--) {
2543 		__split_huge_page_tail(head, i, lruvec, list);
2544 		/* Some pages can be beyond EOF: drop them from page cache */
2545 		if (head[i].index >= end) {
2546 			struct folio *tail = page_folio(head + i);
2547 
2548 			if (shmem_mapping(head->mapping))
2549 				shmem_uncharge(head->mapping->host, 1);
2550 			else if (folio_test_clear_dirty(tail))
2551 				folio_account_cleaned(tail,
2552 					inode_to_wb(folio->mapping->host));
2553 			__filemap_remove_folio(tail, NULL);
2554 			folio_put(tail);
2555 		} else if (!PageAnon(page)) {
2556 			__xa_store(&head->mapping->i_pages, head[i].index,
2557 					head + i, 0);
2558 		} else if (swap_cache) {
2559 			__xa_store(&swap_cache->i_pages, offset + i,
2560 					head + i, 0);
2561 		}
2562 	}
2563 
2564 	ClearPageCompound(head);
2565 	unlock_page_lruvec(lruvec);
2566 	/* Caller disabled irqs, so they are still disabled here */
2567 
2568 	split_page_owner(head, nr);
2569 
2570 	/* See comment in __split_huge_page_tail() */
2571 	if (PageAnon(head)) {
2572 		/* Additional pin to swap cache */
2573 		if (PageSwapCache(head)) {
2574 			page_ref_add(head, 2);
2575 			xa_unlock(&swap_cache->i_pages);
2576 		} else {
2577 			page_ref_inc(head);
2578 		}
2579 	} else {
2580 		/* Additional pin to page cache */
2581 		page_ref_add(head, 2);
2582 		xa_unlock(&head->mapping->i_pages);
2583 	}
2584 	local_irq_enable();
2585 
2586 	remap_page(folio, nr);
2587 
2588 	if (PageSwapCache(head)) {
2589 		swp_entry_t entry = { .val = page_private(head) };
2590 
2591 		split_swap_cluster(entry);
2592 	}
2593 
2594 	for (i = 0; i < nr; i++) {
2595 		struct page *subpage = head + i;
2596 		if (subpage == page)
2597 			continue;
2598 		unlock_page(subpage);
2599 
2600 		/*
2601 		 * Subpages may be freed if there wasn't any mapping
2602 		 * like if add_to_swap() is running on a lru page that
2603 		 * had its mapping zapped. And freeing these pages
2604 		 * requires taking the lru_lock so we do the put_page
2605 		 * of the tail pages after the split is complete.
2606 		 */
2607 		free_page_and_swap_cache(subpage);
2608 	}
2609 }
2610 
2611 /* Racy check whether the huge page can be split */
2612 bool can_split_folio(struct folio *folio, int *pextra_pins)
2613 {
2614 	int extra_pins;
2615 
2616 	/* Additional pins from page cache */
2617 	if (folio_test_anon(folio))
2618 		extra_pins = folio_test_swapcache(folio) ?
2619 				folio_nr_pages(folio) : 0;
2620 	else
2621 		extra_pins = folio_nr_pages(folio);
2622 	if (pextra_pins)
2623 		*pextra_pins = extra_pins;
2624 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2625 }
2626 
2627 /*
2628  * This function splits huge page into normal pages. @page can point to any
2629  * subpage of huge page to split. Split doesn't change the position of @page.
2630  *
2631  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2632  * The huge page must be locked.
2633  *
2634  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2635  *
2636  * Both head page and tail pages will inherit mapping, flags, and so on from
2637  * the hugepage.
2638  *
2639  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2640  * they are not mapped.
2641  *
2642  * Returns 0 if the hugepage is split successfully.
2643  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2644  * us.
2645  */
2646 int split_huge_page_to_list(struct page *page, struct list_head *list)
2647 {
2648 	struct folio *folio = page_folio(page);
2649 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2650 	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2651 	struct anon_vma *anon_vma = NULL;
2652 	struct address_space *mapping = NULL;
2653 	int extra_pins, ret;
2654 	pgoff_t end;
2655 	bool is_hzp;
2656 
2657 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2658 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2659 
2660 	is_hzp = is_huge_zero_page(&folio->page);
2661 	if (is_hzp) {
2662 		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2663 		return -EBUSY;
2664 	}
2665 
2666 	if (folio_test_writeback(folio))
2667 		return -EBUSY;
2668 
2669 	if (folio_test_anon(folio)) {
2670 		/*
2671 		 * The caller does not necessarily hold an mmap_lock that would
2672 		 * prevent the anon_vma disappearing so we first we take a
2673 		 * reference to it and then lock the anon_vma for write. This
2674 		 * is similar to folio_lock_anon_vma_read except the write lock
2675 		 * is taken to serialise against parallel split or collapse
2676 		 * operations.
2677 		 */
2678 		anon_vma = folio_get_anon_vma(folio);
2679 		if (!anon_vma) {
2680 			ret = -EBUSY;
2681 			goto out;
2682 		}
2683 		end = -1;
2684 		mapping = NULL;
2685 		anon_vma_lock_write(anon_vma);
2686 	} else {
2687 		gfp_t gfp;
2688 
2689 		mapping = folio->mapping;
2690 
2691 		/* Truncated ? */
2692 		if (!mapping) {
2693 			ret = -EBUSY;
2694 			goto out;
2695 		}
2696 
2697 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2698 							GFP_RECLAIM_MASK);
2699 
2700 		if (folio_test_private(folio) &&
2701 				!filemap_release_folio(folio, gfp)) {
2702 			ret = -EBUSY;
2703 			goto out;
2704 		}
2705 
2706 		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2707 		if (xas_error(&xas)) {
2708 			ret = xas_error(&xas);
2709 			goto out;
2710 		}
2711 
2712 		anon_vma = NULL;
2713 		i_mmap_lock_read(mapping);
2714 
2715 		/*
2716 		 *__split_huge_page() may need to trim off pages beyond EOF:
2717 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2718 		 * which cannot be nested inside the page tree lock. So note
2719 		 * end now: i_size itself may be changed at any moment, but
2720 		 * folio lock is good enough to serialize the trimming.
2721 		 */
2722 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2723 		if (shmem_mapping(mapping))
2724 			end = shmem_fallocend(mapping->host, end);
2725 	}
2726 
2727 	/*
2728 	 * Racy check if we can split the page, before unmap_folio() will
2729 	 * split PMDs
2730 	 */
2731 	if (!can_split_folio(folio, &extra_pins)) {
2732 		ret = -EAGAIN;
2733 		goto out_unlock;
2734 	}
2735 
2736 	unmap_folio(folio);
2737 
2738 	/* block interrupt reentry in xa_lock and spinlock */
2739 	local_irq_disable();
2740 	if (mapping) {
2741 		/*
2742 		 * Check if the folio is present in page cache.
2743 		 * We assume all tail are present too, if folio is there.
2744 		 */
2745 		xas_lock(&xas);
2746 		xas_reset(&xas);
2747 		if (xas_load(&xas) != folio)
2748 			goto fail;
2749 	}
2750 
2751 	/* Prevent deferred_split_scan() touching ->_refcount */
2752 	spin_lock(&ds_queue->split_queue_lock);
2753 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
2754 		if (!list_empty(&folio->_deferred_list)) {
2755 			ds_queue->split_queue_len--;
2756 			list_del(&folio->_deferred_list);
2757 		}
2758 		spin_unlock(&ds_queue->split_queue_lock);
2759 		if (mapping) {
2760 			int nr = folio_nr_pages(folio);
2761 
2762 			xas_split(&xas, folio, folio_order(folio));
2763 			if (folio_test_swapbacked(folio)) {
2764 				__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS,
2765 							-nr);
2766 			} else {
2767 				__lruvec_stat_mod_folio(folio, NR_FILE_THPS,
2768 							-nr);
2769 				filemap_nr_thps_dec(mapping);
2770 			}
2771 		}
2772 
2773 		__split_huge_page(page, list, end);
2774 		ret = 0;
2775 	} else {
2776 		spin_unlock(&ds_queue->split_queue_lock);
2777 fail:
2778 		if (mapping)
2779 			xas_unlock(&xas);
2780 		local_irq_enable();
2781 		remap_page(folio, folio_nr_pages(folio));
2782 		ret = -EAGAIN;
2783 	}
2784 
2785 out_unlock:
2786 	if (anon_vma) {
2787 		anon_vma_unlock_write(anon_vma);
2788 		put_anon_vma(anon_vma);
2789 	}
2790 	if (mapping)
2791 		i_mmap_unlock_read(mapping);
2792 out:
2793 	xas_destroy(&xas);
2794 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2795 	return ret;
2796 }
2797 
2798 void free_transhuge_page(struct page *page)
2799 {
2800 	struct folio *folio = (struct folio *)page;
2801 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2802 	unsigned long flags;
2803 
2804 	/*
2805 	 * At this point, there is no one trying to add the folio to
2806 	 * deferred_list. If folio is not in deferred_list, it's safe
2807 	 * to check without acquiring the split_queue_lock.
2808 	 */
2809 	if (data_race(!list_empty(&folio->_deferred_list))) {
2810 		spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2811 		if (!list_empty(&folio->_deferred_list)) {
2812 			ds_queue->split_queue_len--;
2813 			list_del(&folio->_deferred_list);
2814 		}
2815 		spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2816 	}
2817 	free_compound_page(page);
2818 }
2819 
2820 void deferred_split_folio(struct folio *folio)
2821 {
2822 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2823 #ifdef CONFIG_MEMCG
2824 	struct mem_cgroup *memcg = folio_memcg(folio);
2825 #endif
2826 	unsigned long flags;
2827 
2828 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
2829 
2830 	/*
2831 	 * The try_to_unmap() in page reclaim path might reach here too,
2832 	 * this may cause a race condition to corrupt deferred split queue.
2833 	 * And, if page reclaim is already handling the same folio, it is
2834 	 * unnecessary to handle it again in shrinker.
2835 	 *
2836 	 * Check the swapcache flag to determine if the folio is being
2837 	 * handled by page reclaim since THP swap would add the folio into
2838 	 * swap cache before calling try_to_unmap().
2839 	 */
2840 	if (folio_test_swapcache(folio))
2841 		return;
2842 
2843 	if (!list_empty(&folio->_deferred_list))
2844 		return;
2845 
2846 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2847 	if (list_empty(&folio->_deferred_list)) {
2848 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2849 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
2850 		ds_queue->split_queue_len++;
2851 #ifdef CONFIG_MEMCG
2852 		if (memcg)
2853 			set_shrinker_bit(memcg, folio_nid(folio),
2854 					 deferred_split_shrinker.id);
2855 #endif
2856 	}
2857 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2858 }
2859 
2860 static unsigned long deferred_split_count(struct shrinker *shrink,
2861 		struct shrink_control *sc)
2862 {
2863 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2864 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2865 
2866 #ifdef CONFIG_MEMCG
2867 	if (sc->memcg)
2868 		ds_queue = &sc->memcg->deferred_split_queue;
2869 #endif
2870 	return READ_ONCE(ds_queue->split_queue_len);
2871 }
2872 
2873 static unsigned long deferred_split_scan(struct shrinker *shrink,
2874 		struct shrink_control *sc)
2875 {
2876 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2877 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2878 	unsigned long flags;
2879 	LIST_HEAD(list);
2880 	struct folio *folio, *next;
2881 	int split = 0;
2882 
2883 #ifdef CONFIG_MEMCG
2884 	if (sc->memcg)
2885 		ds_queue = &sc->memcg->deferred_split_queue;
2886 #endif
2887 
2888 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2889 	/* Take pin on all head pages to avoid freeing them under us */
2890 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
2891 							_deferred_list) {
2892 		if (folio_try_get(folio)) {
2893 			list_move(&folio->_deferred_list, &list);
2894 		} else {
2895 			/* We lost race with folio_put() */
2896 			list_del_init(&folio->_deferred_list);
2897 			ds_queue->split_queue_len--;
2898 		}
2899 		if (!--sc->nr_to_scan)
2900 			break;
2901 	}
2902 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2903 
2904 	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
2905 		if (!folio_trylock(folio))
2906 			goto next;
2907 		/* split_huge_page() removes page from list on success */
2908 		if (!split_folio(folio))
2909 			split++;
2910 		folio_unlock(folio);
2911 next:
2912 		folio_put(folio);
2913 	}
2914 
2915 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2916 	list_splice_tail(&list, &ds_queue->split_queue);
2917 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2918 
2919 	/*
2920 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2921 	 * This can happen if pages were freed under us.
2922 	 */
2923 	if (!split && list_empty(&ds_queue->split_queue))
2924 		return SHRINK_STOP;
2925 	return split;
2926 }
2927 
2928 static struct shrinker deferred_split_shrinker = {
2929 	.count_objects = deferred_split_count,
2930 	.scan_objects = deferred_split_scan,
2931 	.seeks = DEFAULT_SEEKS,
2932 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2933 		 SHRINKER_NONSLAB,
2934 };
2935 
2936 #ifdef CONFIG_DEBUG_FS
2937 static void split_huge_pages_all(void)
2938 {
2939 	struct zone *zone;
2940 	struct page *page;
2941 	struct folio *folio;
2942 	unsigned long pfn, max_zone_pfn;
2943 	unsigned long total = 0, split = 0;
2944 
2945 	pr_debug("Split all THPs\n");
2946 	for_each_zone(zone) {
2947 		if (!managed_zone(zone))
2948 			continue;
2949 		max_zone_pfn = zone_end_pfn(zone);
2950 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2951 			int nr_pages;
2952 
2953 			page = pfn_to_online_page(pfn);
2954 			if (!page || PageTail(page))
2955 				continue;
2956 			folio = page_folio(page);
2957 			if (!folio_try_get(folio))
2958 				continue;
2959 
2960 			if (unlikely(page_folio(page) != folio))
2961 				goto next;
2962 
2963 			if (zone != folio_zone(folio))
2964 				goto next;
2965 
2966 			if (!folio_test_large(folio)
2967 				|| folio_test_hugetlb(folio)
2968 				|| !folio_test_lru(folio))
2969 				goto next;
2970 
2971 			total++;
2972 			folio_lock(folio);
2973 			nr_pages = folio_nr_pages(folio);
2974 			if (!split_folio(folio))
2975 				split++;
2976 			pfn += nr_pages - 1;
2977 			folio_unlock(folio);
2978 next:
2979 			folio_put(folio);
2980 			cond_resched();
2981 		}
2982 	}
2983 
2984 	pr_debug("%lu of %lu THP split\n", split, total);
2985 }
2986 
2987 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2988 {
2989 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2990 		    is_vm_hugetlb_page(vma);
2991 }
2992 
2993 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2994 				unsigned long vaddr_end)
2995 {
2996 	int ret = 0;
2997 	struct task_struct *task;
2998 	struct mm_struct *mm;
2999 	unsigned long total = 0, split = 0;
3000 	unsigned long addr;
3001 
3002 	vaddr_start &= PAGE_MASK;
3003 	vaddr_end &= PAGE_MASK;
3004 
3005 	/* Find the task_struct from pid */
3006 	rcu_read_lock();
3007 	task = find_task_by_vpid(pid);
3008 	if (!task) {
3009 		rcu_read_unlock();
3010 		ret = -ESRCH;
3011 		goto out;
3012 	}
3013 	get_task_struct(task);
3014 	rcu_read_unlock();
3015 
3016 	/* Find the mm_struct */
3017 	mm = get_task_mm(task);
3018 	put_task_struct(task);
3019 
3020 	if (!mm) {
3021 		ret = -EINVAL;
3022 		goto out;
3023 	}
3024 
3025 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3026 		 pid, vaddr_start, vaddr_end);
3027 
3028 	mmap_read_lock(mm);
3029 	/*
3030 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3031 	 * table filled with PTE-mapped THPs, each of which is distinct.
3032 	 */
3033 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3034 		struct vm_area_struct *vma = vma_lookup(mm, addr);
3035 		struct page *page;
3036 
3037 		if (!vma)
3038 			break;
3039 
3040 		/* skip special VMA and hugetlb VMA */
3041 		if (vma_not_suitable_for_thp_split(vma)) {
3042 			addr = vma->vm_end;
3043 			continue;
3044 		}
3045 
3046 		/* FOLL_DUMP to ignore special (like zero) pages */
3047 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3048 
3049 		if (IS_ERR_OR_NULL(page))
3050 			continue;
3051 
3052 		if (!is_transparent_hugepage(page))
3053 			goto next;
3054 
3055 		total++;
3056 		if (!can_split_folio(page_folio(page), NULL))
3057 			goto next;
3058 
3059 		if (!trylock_page(page))
3060 			goto next;
3061 
3062 		if (!split_huge_page(page))
3063 			split++;
3064 
3065 		unlock_page(page);
3066 next:
3067 		put_page(page);
3068 		cond_resched();
3069 	}
3070 	mmap_read_unlock(mm);
3071 	mmput(mm);
3072 
3073 	pr_debug("%lu of %lu THP split\n", split, total);
3074 
3075 out:
3076 	return ret;
3077 }
3078 
3079 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3080 				pgoff_t off_end)
3081 {
3082 	struct filename *file;
3083 	struct file *candidate;
3084 	struct address_space *mapping;
3085 	int ret = -EINVAL;
3086 	pgoff_t index;
3087 	int nr_pages = 1;
3088 	unsigned long total = 0, split = 0;
3089 
3090 	file = getname_kernel(file_path);
3091 	if (IS_ERR(file))
3092 		return ret;
3093 
3094 	candidate = file_open_name(file, O_RDONLY, 0);
3095 	if (IS_ERR(candidate))
3096 		goto out;
3097 
3098 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3099 		 file_path, off_start, off_end);
3100 
3101 	mapping = candidate->f_mapping;
3102 
3103 	for (index = off_start; index < off_end; index += nr_pages) {
3104 		struct folio *folio = filemap_get_folio(mapping, index);
3105 
3106 		nr_pages = 1;
3107 		if (IS_ERR(folio))
3108 			continue;
3109 
3110 		if (!folio_test_large(folio))
3111 			goto next;
3112 
3113 		total++;
3114 		nr_pages = folio_nr_pages(folio);
3115 
3116 		if (!folio_trylock(folio))
3117 			goto next;
3118 
3119 		if (!split_folio(folio))
3120 			split++;
3121 
3122 		folio_unlock(folio);
3123 next:
3124 		folio_put(folio);
3125 		cond_resched();
3126 	}
3127 
3128 	filp_close(candidate, NULL);
3129 	ret = 0;
3130 
3131 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3132 out:
3133 	putname(file);
3134 	return ret;
3135 }
3136 
3137 #define MAX_INPUT_BUF_SZ 255
3138 
3139 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3140 				size_t count, loff_t *ppops)
3141 {
3142 	static DEFINE_MUTEX(split_debug_mutex);
3143 	ssize_t ret;
3144 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3145 	char input_buf[MAX_INPUT_BUF_SZ];
3146 	int pid;
3147 	unsigned long vaddr_start, vaddr_end;
3148 
3149 	ret = mutex_lock_interruptible(&split_debug_mutex);
3150 	if (ret)
3151 		return ret;
3152 
3153 	ret = -EFAULT;
3154 
3155 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3156 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3157 		goto out;
3158 
3159 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3160 
3161 	if (input_buf[0] == '/') {
3162 		char *tok;
3163 		char *buf = input_buf;
3164 		char file_path[MAX_INPUT_BUF_SZ];
3165 		pgoff_t off_start = 0, off_end = 0;
3166 		size_t input_len = strlen(input_buf);
3167 
3168 		tok = strsep(&buf, ",");
3169 		if (tok) {
3170 			strcpy(file_path, tok);
3171 		} else {
3172 			ret = -EINVAL;
3173 			goto out;
3174 		}
3175 
3176 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3177 		if (ret != 2) {
3178 			ret = -EINVAL;
3179 			goto out;
3180 		}
3181 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3182 		if (!ret)
3183 			ret = input_len;
3184 
3185 		goto out;
3186 	}
3187 
3188 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3189 	if (ret == 1 && pid == 1) {
3190 		split_huge_pages_all();
3191 		ret = strlen(input_buf);
3192 		goto out;
3193 	} else if (ret != 3) {
3194 		ret = -EINVAL;
3195 		goto out;
3196 	}
3197 
3198 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3199 	if (!ret)
3200 		ret = strlen(input_buf);
3201 out:
3202 	mutex_unlock(&split_debug_mutex);
3203 	return ret;
3204 
3205 }
3206 
3207 static const struct file_operations split_huge_pages_fops = {
3208 	.owner	 = THIS_MODULE,
3209 	.write	 = split_huge_pages_write,
3210 	.llseek  = no_llseek,
3211 };
3212 
3213 static int __init split_huge_pages_debugfs(void)
3214 {
3215 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3216 			    &split_huge_pages_fops);
3217 	return 0;
3218 }
3219 late_initcall(split_huge_pages_debugfs);
3220 #endif
3221 
3222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3223 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3224 		struct page *page)
3225 {
3226 	struct vm_area_struct *vma = pvmw->vma;
3227 	struct mm_struct *mm = vma->vm_mm;
3228 	unsigned long address = pvmw->address;
3229 	bool anon_exclusive;
3230 	pmd_t pmdval;
3231 	swp_entry_t entry;
3232 	pmd_t pmdswp;
3233 
3234 	if (!(pvmw->pmd && !pvmw->pte))
3235 		return 0;
3236 
3237 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3238 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3239 
3240 	/* See page_try_share_anon_rmap(): invalidate PMD first. */
3241 	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3242 	if (anon_exclusive && page_try_share_anon_rmap(page)) {
3243 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3244 		return -EBUSY;
3245 	}
3246 
3247 	if (pmd_dirty(pmdval))
3248 		set_page_dirty(page);
3249 	if (pmd_write(pmdval))
3250 		entry = make_writable_migration_entry(page_to_pfn(page));
3251 	else if (anon_exclusive)
3252 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3253 	else
3254 		entry = make_readable_migration_entry(page_to_pfn(page));
3255 	if (pmd_young(pmdval))
3256 		entry = make_migration_entry_young(entry);
3257 	if (pmd_dirty(pmdval))
3258 		entry = make_migration_entry_dirty(entry);
3259 	pmdswp = swp_entry_to_pmd(entry);
3260 	if (pmd_soft_dirty(pmdval))
3261 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3262 	if (pmd_uffd_wp(pmdval))
3263 		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3264 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3265 	page_remove_rmap(page, vma, true);
3266 	put_page(page);
3267 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3268 
3269 	return 0;
3270 }
3271 
3272 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3273 {
3274 	struct vm_area_struct *vma = pvmw->vma;
3275 	struct mm_struct *mm = vma->vm_mm;
3276 	unsigned long address = pvmw->address;
3277 	unsigned long haddr = address & HPAGE_PMD_MASK;
3278 	pmd_t pmde;
3279 	swp_entry_t entry;
3280 
3281 	if (!(pvmw->pmd && !pvmw->pte))
3282 		return;
3283 
3284 	entry = pmd_to_swp_entry(*pvmw->pmd);
3285 	get_page(new);
3286 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3287 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3288 		pmde = pmd_mksoft_dirty(pmde);
3289 	if (is_writable_migration_entry(entry))
3290 		pmde = pmd_mkwrite(pmde);
3291 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3292 		pmde = pmd_mkuffd_wp(pmde);
3293 	if (!is_migration_entry_young(entry))
3294 		pmde = pmd_mkold(pmde);
3295 	/* NOTE: this may contain setting soft-dirty on some archs */
3296 	if (PageDirty(new) && is_migration_entry_dirty(entry))
3297 		pmde = pmd_mkdirty(pmde);
3298 
3299 	if (PageAnon(new)) {
3300 		rmap_t rmap_flags = RMAP_COMPOUND;
3301 
3302 		if (!is_readable_migration_entry(entry))
3303 			rmap_flags |= RMAP_EXCLUSIVE;
3304 
3305 		page_add_anon_rmap(new, vma, haddr, rmap_flags);
3306 	} else {
3307 		page_add_file_rmap(new, vma, true);
3308 	}
3309 	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3310 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3311 
3312 	/* No need to invalidate - it was non-present before */
3313 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3314 	trace_remove_migration_pmd(address, pmd_val(pmde));
3315 }
3316 #endif
3317