1 /* 2 * Copyright (C) 2009 Red Hat, Inc. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/mm.h> 11 #include <linux/sched.h> 12 #include <linux/sched/coredump.h> 13 #include <linux/sched/numa_balancing.h> 14 #include <linux/highmem.h> 15 #include <linux/hugetlb.h> 16 #include <linux/mmu_notifier.h> 17 #include <linux/rmap.h> 18 #include <linux/swap.h> 19 #include <linux/shrinker.h> 20 #include <linux/mm_inline.h> 21 #include <linux/swapops.h> 22 #include <linux/dax.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 36 #include <asm/tlb.h> 37 #include <asm/pgalloc.h> 38 #include "internal.h" 39 40 /* 41 * By default transparent hugepage support is disabled in order that avoid 42 * to risk increase the memory footprint of applications without a guaranteed 43 * benefit. When transparent hugepage support is enabled, is for all mappings, 44 * and khugepaged scans all mappings. 45 * Defrag is invoked by khugepaged hugepage allocations and by page faults 46 * for all hugepage allocations. 47 */ 48 unsigned long transparent_hugepage_flags __read_mostly = 49 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 50 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 51 #endif 52 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 53 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 54 #endif 55 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 57 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 58 59 static struct shrinker deferred_split_shrinker; 60 61 static atomic_t huge_zero_refcount; 62 struct page *huge_zero_page __read_mostly; 63 64 static struct page *get_huge_zero_page(void) 65 { 66 struct page *zero_page; 67 retry: 68 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 69 return READ_ONCE(huge_zero_page); 70 71 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 72 HPAGE_PMD_ORDER); 73 if (!zero_page) { 74 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 75 return NULL; 76 } 77 count_vm_event(THP_ZERO_PAGE_ALLOC); 78 preempt_disable(); 79 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 80 preempt_enable(); 81 __free_pages(zero_page, compound_order(zero_page)); 82 goto retry; 83 } 84 85 /* We take additional reference here. It will be put back by shrinker */ 86 atomic_set(&huge_zero_refcount, 2); 87 preempt_enable(); 88 return READ_ONCE(huge_zero_page); 89 } 90 91 static void put_huge_zero_page(void) 92 { 93 /* 94 * Counter should never go to zero here. Only shrinker can put 95 * last reference. 96 */ 97 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 98 } 99 100 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 101 { 102 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 103 return READ_ONCE(huge_zero_page); 104 105 if (!get_huge_zero_page()) 106 return NULL; 107 108 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 109 put_huge_zero_page(); 110 111 return READ_ONCE(huge_zero_page); 112 } 113 114 void mm_put_huge_zero_page(struct mm_struct *mm) 115 { 116 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 117 put_huge_zero_page(); 118 } 119 120 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 121 struct shrink_control *sc) 122 { 123 /* we can free zero page only if last reference remains */ 124 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 125 } 126 127 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 128 struct shrink_control *sc) 129 { 130 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 131 struct page *zero_page = xchg(&huge_zero_page, NULL); 132 BUG_ON(zero_page == NULL); 133 __free_pages(zero_page, compound_order(zero_page)); 134 return HPAGE_PMD_NR; 135 } 136 137 return 0; 138 } 139 140 static struct shrinker huge_zero_page_shrinker = { 141 .count_objects = shrink_huge_zero_page_count, 142 .scan_objects = shrink_huge_zero_page_scan, 143 .seeks = DEFAULT_SEEKS, 144 }; 145 146 #ifdef CONFIG_SYSFS 147 static ssize_t enabled_show(struct kobject *kobj, 148 struct kobj_attribute *attr, char *buf) 149 { 150 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 151 return sprintf(buf, "[always] madvise never\n"); 152 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) 153 return sprintf(buf, "always [madvise] never\n"); 154 else 155 return sprintf(buf, "always madvise [never]\n"); 156 } 157 158 static ssize_t enabled_store(struct kobject *kobj, 159 struct kobj_attribute *attr, 160 const char *buf, size_t count) 161 { 162 ssize_t ret = count; 163 164 if (!memcmp("always", buf, 165 min(sizeof("always")-1, count))) { 166 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 167 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 168 } else if (!memcmp("madvise", buf, 169 min(sizeof("madvise")-1, count))) { 170 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 171 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 172 } else if (!memcmp("never", buf, 173 min(sizeof("never")-1, count))) { 174 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 175 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 176 } else 177 ret = -EINVAL; 178 179 if (ret > 0) { 180 int err = start_stop_khugepaged(); 181 if (err) 182 ret = err; 183 } 184 return ret; 185 } 186 static struct kobj_attribute enabled_attr = 187 __ATTR(enabled, 0644, enabled_show, enabled_store); 188 189 ssize_t single_hugepage_flag_show(struct kobject *kobj, 190 struct kobj_attribute *attr, char *buf, 191 enum transparent_hugepage_flag flag) 192 { 193 return sprintf(buf, "%d\n", 194 !!test_bit(flag, &transparent_hugepage_flags)); 195 } 196 197 ssize_t single_hugepage_flag_store(struct kobject *kobj, 198 struct kobj_attribute *attr, 199 const char *buf, size_t count, 200 enum transparent_hugepage_flag flag) 201 { 202 unsigned long value; 203 int ret; 204 205 ret = kstrtoul(buf, 10, &value); 206 if (ret < 0) 207 return ret; 208 if (value > 1) 209 return -EINVAL; 210 211 if (value) 212 set_bit(flag, &transparent_hugepage_flags); 213 else 214 clear_bit(flag, &transparent_hugepage_flags); 215 216 return count; 217 } 218 219 static ssize_t defrag_show(struct kobject *kobj, 220 struct kobj_attribute *attr, char *buf) 221 { 222 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 223 return sprintf(buf, "[always] defer defer+madvise madvise never\n"); 224 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 225 return sprintf(buf, "always [defer] defer+madvise madvise never\n"); 226 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 227 return sprintf(buf, "always defer [defer+madvise] madvise never\n"); 228 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 229 return sprintf(buf, "always defer defer+madvise [madvise] never\n"); 230 return sprintf(buf, "always defer defer+madvise madvise [never]\n"); 231 } 232 233 static ssize_t defrag_store(struct kobject *kobj, 234 struct kobj_attribute *attr, 235 const char *buf, size_t count) 236 { 237 if (!memcmp("always", buf, 238 min(sizeof("always")-1, count))) { 239 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 242 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 243 } else if (!memcmp("defer+madvise", buf, 244 min(sizeof("defer+madvise")-1, count))) { 245 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 248 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 249 } else if (!memcmp("defer", buf, 250 min(sizeof("defer")-1, count))) { 251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 255 } else if (!memcmp("madvise", buf, 256 min(sizeof("madvise")-1, count))) { 257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 260 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 261 } else if (!memcmp("never", buf, 262 min(sizeof("never")-1, count))) { 263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 267 } else 268 return -EINVAL; 269 270 return count; 271 } 272 static struct kobj_attribute defrag_attr = 273 __ATTR(defrag, 0644, defrag_show, defrag_store); 274 275 static ssize_t use_zero_page_show(struct kobject *kobj, 276 struct kobj_attribute *attr, char *buf) 277 { 278 return single_hugepage_flag_show(kobj, attr, buf, 279 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 280 } 281 static ssize_t use_zero_page_store(struct kobject *kobj, 282 struct kobj_attribute *attr, const char *buf, size_t count) 283 { 284 return single_hugepage_flag_store(kobj, attr, buf, count, 285 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 286 } 287 static struct kobj_attribute use_zero_page_attr = 288 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 289 290 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 291 struct kobj_attribute *attr, char *buf) 292 { 293 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE); 294 } 295 static struct kobj_attribute hpage_pmd_size_attr = 296 __ATTR_RO(hpage_pmd_size); 297 298 #ifdef CONFIG_DEBUG_VM 299 static ssize_t debug_cow_show(struct kobject *kobj, 300 struct kobj_attribute *attr, char *buf) 301 { 302 return single_hugepage_flag_show(kobj, attr, buf, 303 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 304 } 305 static ssize_t debug_cow_store(struct kobject *kobj, 306 struct kobj_attribute *attr, 307 const char *buf, size_t count) 308 { 309 return single_hugepage_flag_store(kobj, attr, buf, count, 310 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 311 } 312 static struct kobj_attribute debug_cow_attr = 313 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 314 #endif /* CONFIG_DEBUG_VM */ 315 316 static struct attribute *hugepage_attr[] = { 317 &enabled_attr.attr, 318 &defrag_attr.attr, 319 &use_zero_page_attr.attr, 320 &hpage_pmd_size_attr.attr, 321 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) 322 &shmem_enabled_attr.attr, 323 #endif 324 #ifdef CONFIG_DEBUG_VM 325 &debug_cow_attr.attr, 326 #endif 327 NULL, 328 }; 329 330 static struct attribute_group hugepage_attr_group = { 331 .attrs = hugepage_attr, 332 }; 333 334 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 335 { 336 int err; 337 338 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 339 if (unlikely(!*hugepage_kobj)) { 340 pr_err("failed to create transparent hugepage kobject\n"); 341 return -ENOMEM; 342 } 343 344 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 345 if (err) { 346 pr_err("failed to register transparent hugepage group\n"); 347 goto delete_obj; 348 } 349 350 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 351 if (err) { 352 pr_err("failed to register transparent hugepage group\n"); 353 goto remove_hp_group; 354 } 355 356 return 0; 357 358 remove_hp_group: 359 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 360 delete_obj: 361 kobject_put(*hugepage_kobj); 362 return err; 363 } 364 365 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 366 { 367 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 368 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 369 kobject_put(hugepage_kobj); 370 } 371 #else 372 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 373 { 374 return 0; 375 } 376 377 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 378 { 379 } 380 #endif /* CONFIG_SYSFS */ 381 382 static int __init hugepage_init(void) 383 { 384 int err; 385 struct kobject *hugepage_kobj; 386 387 if (!has_transparent_hugepage()) { 388 transparent_hugepage_flags = 0; 389 return -EINVAL; 390 } 391 392 /* 393 * hugepages can't be allocated by the buddy allocator 394 */ 395 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 396 /* 397 * we use page->mapping and page->index in second tail page 398 * as list_head: assuming THP order >= 2 399 */ 400 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 401 402 err = hugepage_init_sysfs(&hugepage_kobj); 403 if (err) 404 goto err_sysfs; 405 406 err = khugepaged_init(); 407 if (err) 408 goto err_slab; 409 410 err = register_shrinker(&huge_zero_page_shrinker); 411 if (err) 412 goto err_hzp_shrinker; 413 err = register_shrinker(&deferred_split_shrinker); 414 if (err) 415 goto err_split_shrinker; 416 417 /* 418 * By default disable transparent hugepages on smaller systems, 419 * where the extra memory used could hurt more than TLB overhead 420 * is likely to save. The admin can still enable it through /sys. 421 */ 422 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) { 423 transparent_hugepage_flags = 0; 424 return 0; 425 } 426 427 err = start_stop_khugepaged(); 428 if (err) 429 goto err_khugepaged; 430 431 return 0; 432 err_khugepaged: 433 unregister_shrinker(&deferred_split_shrinker); 434 err_split_shrinker: 435 unregister_shrinker(&huge_zero_page_shrinker); 436 err_hzp_shrinker: 437 khugepaged_destroy(); 438 err_slab: 439 hugepage_exit_sysfs(hugepage_kobj); 440 err_sysfs: 441 return err; 442 } 443 subsys_initcall(hugepage_init); 444 445 static int __init setup_transparent_hugepage(char *str) 446 { 447 int ret = 0; 448 if (!str) 449 goto out; 450 if (!strcmp(str, "always")) { 451 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 452 &transparent_hugepage_flags); 453 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 454 &transparent_hugepage_flags); 455 ret = 1; 456 } else if (!strcmp(str, "madvise")) { 457 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 458 &transparent_hugepage_flags); 459 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 460 &transparent_hugepage_flags); 461 ret = 1; 462 } else if (!strcmp(str, "never")) { 463 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 464 &transparent_hugepage_flags); 465 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 466 &transparent_hugepage_flags); 467 ret = 1; 468 } 469 out: 470 if (!ret) 471 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 472 return ret; 473 } 474 __setup("transparent_hugepage=", setup_transparent_hugepage); 475 476 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 477 { 478 if (likely(vma->vm_flags & VM_WRITE)) 479 pmd = pmd_mkwrite(pmd); 480 return pmd; 481 } 482 483 static inline struct list_head *page_deferred_list(struct page *page) 484 { 485 /* 486 * ->lru in the tail pages is occupied by compound_head. 487 * Let's use ->mapping + ->index in the second tail page as list_head. 488 */ 489 return (struct list_head *)&page[2].mapping; 490 } 491 492 void prep_transhuge_page(struct page *page) 493 { 494 /* 495 * we use page->mapping and page->indexlru in second tail page 496 * as list_head: assuming THP order >= 2 497 */ 498 499 INIT_LIST_HEAD(page_deferred_list(page)); 500 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 501 } 502 503 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len, 504 loff_t off, unsigned long flags, unsigned long size) 505 { 506 unsigned long addr; 507 loff_t off_end = off + len; 508 loff_t off_align = round_up(off, size); 509 unsigned long len_pad; 510 511 if (off_end <= off_align || (off_end - off_align) < size) 512 return 0; 513 514 len_pad = len + size; 515 if (len_pad < len || (off + len_pad) < off) 516 return 0; 517 518 addr = current->mm->get_unmapped_area(filp, 0, len_pad, 519 off >> PAGE_SHIFT, flags); 520 if (IS_ERR_VALUE(addr)) 521 return 0; 522 523 addr += (off - addr) & (size - 1); 524 return addr; 525 } 526 527 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 528 unsigned long len, unsigned long pgoff, unsigned long flags) 529 { 530 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 531 532 if (addr) 533 goto out; 534 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) 535 goto out; 536 537 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE); 538 if (addr) 539 return addr; 540 541 out: 542 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 543 } 544 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 545 546 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page, 547 gfp_t gfp) 548 { 549 struct vm_area_struct *vma = vmf->vma; 550 struct mem_cgroup *memcg; 551 pgtable_t pgtable; 552 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 553 554 VM_BUG_ON_PAGE(!PageCompound(page), page); 555 556 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) { 557 put_page(page); 558 count_vm_event(THP_FAULT_FALLBACK); 559 return VM_FAULT_FALLBACK; 560 } 561 562 pgtable = pte_alloc_one(vma->vm_mm, haddr); 563 if (unlikely(!pgtable)) { 564 mem_cgroup_cancel_charge(page, memcg, true); 565 put_page(page); 566 return VM_FAULT_OOM; 567 } 568 569 clear_huge_page(page, haddr, HPAGE_PMD_NR); 570 /* 571 * The memory barrier inside __SetPageUptodate makes sure that 572 * clear_huge_page writes become visible before the set_pmd_at() 573 * write. 574 */ 575 __SetPageUptodate(page); 576 577 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 578 if (unlikely(!pmd_none(*vmf->pmd))) { 579 spin_unlock(vmf->ptl); 580 mem_cgroup_cancel_charge(page, memcg, true); 581 put_page(page); 582 pte_free(vma->vm_mm, pgtable); 583 } else { 584 pmd_t entry; 585 586 /* Deliver the page fault to userland */ 587 if (userfaultfd_missing(vma)) { 588 int ret; 589 590 spin_unlock(vmf->ptl); 591 mem_cgroup_cancel_charge(page, memcg, true); 592 put_page(page); 593 pte_free(vma->vm_mm, pgtable); 594 ret = handle_userfault(vmf, VM_UFFD_MISSING); 595 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 596 return ret; 597 } 598 599 entry = mk_huge_pmd(page, vma->vm_page_prot); 600 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 601 page_add_new_anon_rmap(page, vma, haddr, true); 602 mem_cgroup_commit_charge(page, memcg, false, true); 603 lru_cache_add_active_or_unevictable(page, vma); 604 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 605 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 606 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 607 atomic_long_inc(&vma->vm_mm->nr_ptes); 608 spin_unlock(vmf->ptl); 609 count_vm_event(THP_FAULT_ALLOC); 610 } 611 612 return 0; 613 } 614 615 /* 616 * always: directly stall for all thp allocations 617 * defer: wake kswapd and fail if not immediately available 618 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 619 * fail if not immediately available 620 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 621 * available 622 * never: never stall for any thp allocation 623 */ 624 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) 625 { 626 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); 627 628 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 629 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 630 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 631 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 632 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 633 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM : 634 __GFP_KSWAPD_RECLAIM); 635 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 636 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM : 637 0); 638 return GFP_TRANSHUGE_LIGHT; 639 } 640 641 /* Caller must hold page table lock. */ 642 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 643 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 644 struct page *zero_page) 645 { 646 pmd_t entry; 647 if (!pmd_none(*pmd)) 648 return false; 649 entry = mk_pmd(zero_page, vma->vm_page_prot); 650 entry = pmd_mkhuge(entry); 651 if (pgtable) 652 pgtable_trans_huge_deposit(mm, pmd, pgtable); 653 set_pmd_at(mm, haddr, pmd, entry); 654 atomic_long_inc(&mm->nr_ptes); 655 return true; 656 } 657 658 int do_huge_pmd_anonymous_page(struct vm_fault *vmf) 659 { 660 struct vm_area_struct *vma = vmf->vma; 661 gfp_t gfp; 662 struct page *page; 663 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 664 665 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 666 return VM_FAULT_FALLBACK; 667 if (unlikely(anon_vma_prepare(vma))) 668 return VM_FAULT_OOM; 669 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 670 return VM_FAULT_OOM; 671 if (!(vmf->flags & FAULT_FLAG_WRITE) && 672 !mm_forbids_zeropage(vma->vm_mm) && 673 transparent_hugepage_use_zero_page()) { 674 pgtable_t pgtable; 675 struct page *zero_page; 676 bool set; 677 int ret; 678 pgtable = pte_alloc_one(vma->vm_mm, haddr); 679 if (unlikely(!pgtable)) 680 return VM_FAULT_OOM; 681 zero_page = mm_get_huge_zero_page(vma->vm_mm); 682 if (unlikely(!zero_page)) { 683 pte_free(vma->vm_mm, pgtable); 684 count_vm_event(THP_FAULT_FALLBACK); 685 return VM_FAULT_FALLBACK; 686 } 687 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 688 ret = 0; 689 set = false; 690 if (pmd_none(*vmf->pmd)) { 691 if (userfaultfd_missing(vma)) { 692 spin_unlock(vmf->ptl); 693 ret = handle_userfault(vmf, VM_UFFD_MISSING); 694 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 695 } else { 696 set_huge_zero_page(pgtable, vma->vm_mm, vma, 697 haddr, vmf->pmd, zero_page); 698 spin_unlock(vmf->ptl); 699 set = true; 700 } 701 } else 702 spin_unlock(vmf->ptl); 703 if (!set) 704 pte_free(vma->vm_mm, pgtable); 705 return ret; 706 } 707 gfp = alloc_hugepage_direct_gfpmask(vma); 708 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 709 if (unlikely(!page)) { 710 count_vm_event(THP_FAULT_FALLBACK); 711 return VM_FAULT_FALLBACK; 712 } 713 prep_transhuge_page(page); 714 return __do_huge_pmd_anonymous_page(vmf, page, gfp); 715 } 716 717 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 718 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 719 pgtable_t pgtable) 720 { 721 struct mm_struct *mm = vma->vm_mm; 722 pmd_t entry; 723 spinlock_t *ptl; 724 725 ptl = pmd_lock(mm, pmd); 726 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 727 if (pfn_t_devmap(pfn)) 728 entry = pmd_mkdevmap(entry); 729 if (write) { 730 entry = pmd_mkyoung(pmd_mkdirty(entry)); 731 entry = maybe_pmd_mkwrite(entry, vma); 732 } 733 734 if (pgtable) { 735 pgtable_trans_huge_deposit(mm, pmd, pgtable); 736 atomic_long_inc(&mm->nr_ptes); 737 } 738 739 set_pmd_at(mm, addr, pmd, entry); 740 update_mmu_cache_pmd(vma, addr, pmd); 741 spin_unlock(ptl); 742 } 743 744 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 745 pmd_t *pmd, pfn_t pfn, bool write) 746 { 747 pgprot_t pgprot = vma->vm_page_prot; 748 pgtable_t pgtable = NULL; 749 /* 750 * If we had pmd_special, we could avoid all these restrictions, 751 * but we need to be consistent with PTEs and architectures that 752 * can't support a 'special' bit. 753 */ 754 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 755 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 756 (VM_PFNMAP|VM_MIXEDMAP)); 757 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 758 BUG_ON(!pfn_t_devmap(pfn)); 759 760 if (addr < vma->vm_start || addr >= vma->vm_end) 761 return VM_FAULT_SIGBUS; 762 763 if (arch_needs_pgtable_deposit()) { 764 pgtable = pte_alloc_one(vma->vm_mm, addr); 765 if (!pgtable) 766 return VM_FAULT_OOM; 767 } 768 769 track_pfn_insert(vma, &pgprot, pfn); 770 771 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable); 772 return VM_FAULT_NOPAGE; 773 } 774 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 775 776 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 777 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 778 { 779 if (likely(vma->vm_flags & VM_WRITE)) 780 pud = pud_mkwrite(pud); 781 return pud; 782 } 783 784 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 785 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 786 { 787 struct mm_struct *mm = vma->vm_mm; 788 pud_t entry; 789 spinlock_t *ptl; 790 791 ptl = pud_lock(mm, pud); 792 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 793 if (pfn_t_devmap(pfn)) 794 entry = pud_mkdevmap(entry); 795 if (write) { 796 entry = pud_mkyoung(pud_mkdirty(entry)); 797 entry = maybe_pud_mkwrite(entry, vma); 798 } 799 set_pud_at(mm, addr, pud, entry); 800 update_mmu_cache_pud(vma, addr, pud); 801 spin_unlock(ptl); 802 } 803 804 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 805 pud_t *pud, pfn_t pfn, bool write) 806 { 807 pgprot_t pgprot = vma->vm_page_prot; 808 /* 809 * If we had pud_special, we could avoid all these restrictions, 810 * but we need to be consistent with PTEs and architectures that 811 * can't support a 'special' bit. 812 */ 813 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 814 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 815 (VM_PFNMAP|VM_MIXEDMAP)); 816 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 817 BUG_ON(!pfn_t_devmap(pfn)); 818 819 if (addr < vma->vm_start || addr >= vma->vm_end) 820 return VM_FAULT_SIGBUS; 821 822 track_pfn_insert(vma, &pgprot, pfn); 823 824 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write); 825 return VM_FAULT_NOPAGE; 826 } 827 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 828 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 829 830 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 831 pmd_t *pmd) 832 { 833 pmd_t _pmd; 834 835 /* 836 * We should set the dirty bit only for FOLL_WRITE but for now 837 * the dirty bit in the pmd is meaningless. And if the dirty 838 * bit will become meaningful and we'll only set it with 839 * FOLL_WRITE, an atomic set_bit will be required on the pmd to 840 * set the young bit, instead of the current set_pmd_at. 841 */ 842 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); 843 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 844 pmd, _pmd, 1)) 845 update_mmu_cache_pmd(vma, addr, pmd); 846 } 847 848 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 849 pmd_t *pmd, int flags) 850 { 851 unsigned long pfn = pmd_pfn(*pmd); 852 struct mm_struct *mm = vma->vm_mm; 853 struct dev_pagemap *pgmap; 854 struct page *page; 855 856 assert_spin_locked(pmd_lockptr(mm, pmd)); 857 858 /* 859 * When we COW a devmap PMD entry, we split it into PTEs, so we should 860 * not be in this function with `flags & FOLL_COW` set. 861 */ 862 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); 863 864 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 865 return NULL; 866 867 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 868 /* pass */; 869 else 870 return NULL; 871 872 if (flags & FOLL_TOUCH) 873 touch_pmd(vma, addr, pmd); 874 875 /* 876 * device mapped pages can only be returned if the 877 * caller will manage the page reference count. 878 */ 879 if (!(flags & FOLL_GET)) 880 return ERR_PTR(-EEXIST); 881 882 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 883 pgmap = get_dev_pagemap(pfn, NULL); 884 if (!pgmap) 885 return ERR_PTR(-EFAULT); 886 page = pfn_to_page(pfn); 887 get_page(page); 888 put_dev_pagemap(pgmap); 889 890 return page; 891 } 892 893 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 894 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 895 struct vm_area_struct *vma) 896 { 897 spinlock_t *dst_ptl, *src_ptl; 898 struct page *src_page; 899 pmd_t pmd; 900 pgtable_t pgtable = NULL; 901 int ret = -ENOMEM; 902 903 /* Skip if can be re-fill on fault */ 904 if (!vma_is_anonymous(vma)) 905 return 0; 906 907 pgtable = pte_alloc_one(dst_mm, addr); 908 if (unlikely(!pgtable)) 909 goto out; 910 911 dst_ptl = pmd_lock(dst_mm, dst_pmd); 912 src_ptl = pmd_lockptr(src_mm, src_pmd); 913 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 914 915 ret = -EAGAIN; 916 pmd = *src_pmd; 917 if (unlikely(!pmd_trans_huge(pmd))) { 918 pte_free(dst_mm, pgtable); 919 goto out_unlock; 920 } 921 /* 922 * When page table lock is held, the huge zero pmd should not be 923 * under splitting since we don't split the page itself, only pmd to 924 * a page table. 925 */ 926 if (is_huge_zero_pmd(pmd)) { 927 struct page *zero_page; 928 /* 929 * get_huge_zero_page() will never allocate a new page here, 930 * since we already have a zero page to copy. It just takes a 931 * reference. 932 */ 933 zero_page = mm_get_huge_zero_page(dst_mm); 934 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 935 zero_page); 936 ret = 0; 937 goto out_unlock; 938 } 939 940 src_page = pmd_page(pmd); 941 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 942 get_page(src_page); 943 page_dup_rmap(src_page, true); 944 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 945 atomic_long_inc(&dst_mm->nr_ptes); 946 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 947 948 pmdp_set_wrprotect(src_mm, addr, src_pmd); 949 pmd = pmd_mkold(pmd_wrprotect(pmd)); 950 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 951 952 ret = 0; 953 out_unlock: 954 spin_unlock(src_ptl); 955 spin_unlock(dst_ptl); 956 out: 957 return ret; 958 } 959 960 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 961 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 962 pud_t *pud) 963 { 964 pud_t _pud; 965 966 /* 967 * We should set the dirty bit only for FOLL_WRITE but for now 968 * the dirty bit in the pud is meaningless. And if the dirty 969 * bit will become meaningful and we'll only set it with 970 * FOLL_WRITE, an atomic set_bit will be required on the pud to 971 * set the young bit, instead of the current set_pud_at. 972 */ 973 _pud = pud_mkyoung(pud_mkdirty(*pud)); 974 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 975 pud, _pud, 1)) 976 update_mmu_cache_pud(vma, addr, pud); 977 } 978 979 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 980 pud_t *pud, int flags) 981 { 982 unsigned long pfn = pud_pfn(*pud); 983 struct mm_struct *mm = vma->vm_mm; 984 struct dev_pagemap *pgmap; 985 struct page *page; 986 987 assert_spin_locked(pud_lockptr(mm, pud)); 988 989 if (flags & FOLL_WRITE && !pud_write(*pud)) 990 return NULL; 991 992 if (pud_present(*pud) && pud_devmap(*pud)) 993 /* pass */; 994 else 995 return NULL; 996 997 if (flags & FOLL_TOUCH) 998 touch_pud(vma, addr, pud); 999 1000 /* 1001 * device mapped pages can only be returned if the 1002 * caller will manage the page reference count. 1003 */ 1004 if (!(flags & FOLL_GET)) 1005 return ERR_PTR(-EEXIST); 1006 1007 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1008 pgmap = get_dev_pagemap(pfn, NULL); 1009 if (!pgmap) 1010 return ERR_PTR(-EFAULT); 1011 page = pfn_to_page(pfn); 1012 get_page(page); 1013 put_dev_pagemap(pgmap); 1014 1015 return page; 1016 } 1017 1018 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1019 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1020 struct vm_area_struct *vma) 1021 { 1022 spinlock_t *dst_ptl, *src_ptl; 1023 pud_t pud; 1024 int ret; 1025 1026 dst_ptl = pud_lock(dst_mm, dst_pud); 1027 src_ptl = pud_lockptr(src_mm, src_pud); 1028 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1029 1030 ret = -EAGAIN; 1031 pud = *src_pud; 1032 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1033 goto out_unlock; 1034 1035 /* 1036 * When page table lock is held, the huge zero pud should not be 1037 * under splitting since we don't split the page itself, only pud to 1038 * a page table. 1039 */ 1040 if (is_huge_zero_pud(pud)) { 1041 /* No huge zero pud yet */ 1042 } 1043 1044 pudp_set_wrprotect(src_mm, addr, src_pud); 1045 pud = pud_mkold(pud_wrprotect(pud)); 1046 set_pud_at(dst_mm, addr, dst_pud, pud); 1047 1048 ret = 0; 1049 out_unlock: 1050 spin_unlock(src_ptl); 1051 spin_unlock(dst_ptl); 1052 return ret; 1053 } 1054 1055 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1056 { 1057 pud_t entry; 1058 unsigned long haddr; 1059 bool write = vmf->flags & FAULT_FLAG_WRITE; 1060 1061 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1062 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1063 goto unlock; 1064 1065 entry = pud_mkyoung(orig_pud); 1066 if (write) 1067 entry = pud_mkdirty(entry); 1068 haddr = vmf->address & HPAGE_PUD_MASK; 1069 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write)) 1070 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud); 1071 1072 unlock: 1073 spin_unlock(vmf->ptl); 1074 } 1075 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1076 1077 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd) 1078 { 1079 pmd_t entry; 1080 unsigned long haddr; 1081 bool write = vmf->flags & FAULT_FLAG_WRITE; 1082 1083 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1084 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1085 goto unlock; 1086 1087 entry = pmd_mkyoung(orig_pmd); 1088 if (write) 1089 entry = pmd_mkdirty(entry); 1090 haddr = vmf->address & HPAGE_PMD_MASK; 1091 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) 1092 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); 1093 1094 unlock: 1095 spin_unlock(vmf->ptl); 1096 } 1097 1098 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd, 1099 struct page *page) 1100 { 1101 struct vm_area_struct *vma = vmf->vma; 1102 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1103 struct mem_cgroup *memcg; 1104 pgtable_t pgtable; 1105 pmd_t _pmd; 1106 int ret = 0, i; 1107 struct page **pages; 1108 unsigned long mmun_start; /* For mmu_notifiers */ 1109 unsigned long mmun_end; /* For mmu_notifiers */ 1110 1111 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, 1112 GFP_KERNEL); 1113 if (unlikely(!pages)) { 1114 ret |= VM_FAULT_OOM; 1115 goto out; 1116 } 1117 1118 for (i = 0; i < HPAGE_PMD_NR; i++) { 1119 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma, 1120 vmf->address, page_to_nid(page)); 1121 if (unlikely(!pages[i] || 1122 mem_cgroup_try_charge(pages[i], vma->vm_mm, 1123 GFP_KERNEL, &memcg, false))) { 1124 if (pages[i]) 1125 put_page(pages[i]); 1126 while (--i >= 0) { 1127 memcg = (void *)page_private(pages[i]); 1128 set_page_private(pages[i], 0); 1129 mem_cgroup_cancel_charge(pages[i], memcg, 1130 false); 1131 put_page(pages[i]); 1132 } 1133 kfree(pages); 1134 ret |= VM_FAULT_OOM; 1135 goto out; 1136 } 1137 set_page_private(pages[i], (unsigned long)memcg); 1138 } 1139 1140 for (i = 0; i < HPAGE_PMD_NR; i++) { 1141 copy_user_highpage(pages[i], page + i, 1142 haddr + PAGE_SIZE * i, vma); 1143 __SetPageUptodate(pages[i]); 1144 cond_resched(); 1145 } 1146 1147 mmun_start = haddr; 1148 mmun_end = haddr + HPAGE_PMD_SIZE; 1149 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 1150 1151 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1152 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1153 goto out_free_pages; 1154 VM_BUG_ON_PAGE(!PageHead(page), page); 1155 1156 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 1157 /* leave pmd empty until pte is filled */ 1158 1159 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd); 1160 pmd_populate(vma->vm_mm, &_pmd, pgtable); 1161 1162 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1163 pte_t entry; 1164 entry = mk_pte(pages[i], vma->vm_page_prot); 1165 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1166 memcg = (void *)page_private(pages[i]); 1167 set_page_private(pages[i], 0); 1168 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false); 1169 mem_cgroup_commit_charge(pages[i], memcg, false, false); 1170 lru_cache_add_active_or_unevictable(pages[i], vma); 1171 vmf->pte = pte_offset_map(&_pmd, haddr); 1172 VM_BUG_ON(!pte_none(*vmf->pte)); 1173 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry); 1174 pte_unmap(vmf->pte); 1175 } 1176 kfree(pages); 1177 1178 smp_wmb(); /* make pte visible before pmd */ 1179 pmd_populate(vma->vm_mm, vmf->pmd, pgtable); 1180 page_remove_rmap(page, true); 1181 spin_unlock(vmf->ptl); 1182 1183 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1184 1185 ret |= VM_FAULT_WRITE; 1186 put_page(page); 1187 1188 out: 1189 return ret; 1190 1191 out_free_pages: 1192 spin_unlock(vmf->ptl); 1193 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1194 for (i = 0; i < HPAGE_PMD_NR; i++) { 1195 memcg = (void *)page_private(pages[i]); 1196 set_page_private(pages[i], 0); 1197 mem_cgroup_cancel_charge(pages[i], memcg, false); 1198 put_page(pages[i]); 1199 } 1200 kfree(pages); 1201 goto out; 1202 } 1203 1204 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd) 1205 { 1206 struct vm_area_struct *vma = vmf->vma; 1207 struct page *page = NULL, *new_page; 1208 struct mem_cgroup *memcg; 1209 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1210 unsigned long mmun_start; /* For mmu_notifiers */ 1211 unsigned long mmun_end; /* For mmu_notifiers */ 1212 gfp_t huge_gfp; /* for allocation and charge */ 1213 int ret = 0; 1214 1215 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1216 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1217 if (is_huge_zero_pmd(orig_pmd)) 1218 goto alloc; 1219 spin_lock(vmf->ptl); 1220 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1221 goto out_unlock; 1222 1223 page = pmd_page(orig_pmd); 1224 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 1225 /* 1226 * We can only reuse the page if nobody else maps the huge page or it's 1227 * part. 1228 */ 1229 if (page_trans_huge_mapcount(page, NULL) == 1) { 1230 pmd_t entry; 1231 entry = pmd_mkyoung(orig_pmd); 1232 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1233 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1234 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1235 ret |= VM_FAULT_WRITE; 1236 goto out_unlock; 1237 } 1238 get_page(page); 1239 spin_unlock(vmf->ptl); 1240 alloc: 1241 if (transparent_hugepage_enabled(vma) && 1242 !transparent_hugepage_debug_cow()) { 1243 huge_gfp = alloc_hugepage_direct_gfpmask(vma); 1244 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER); 1245 } else 1246 new_page = NULL; 1247 1248 if (likely(new_page)) { 1249 prep_transhuge_page(new_page); 1250 } else { 1251 if (!page) { 1252 split_huge_pmd(vma, vmf->pmd, vmf->address); 1253 ret |= VM_FAULT_FALLBACK; 1254 } else { 1255 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page); 1256 if (ret & VM_FAULT_OOM) { 1257 split_huge_pmd(vma, vmf->pmd, vmf->address); 1258 ret |= VM_FAULT_FALLBACK; 1259 } 1260 put_page(page); 1261 } 1262 count_vm_event(THP_FAULT_FALLBACK); 1263 goto out; 1264 } 1265 1266 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm, 1267 huge_gfp, &memcg, true))) { 1268 put_page(new_page); 1269 split_huge_pmd(vma, vmf->pmd, vmf->address); 1270 if (page) 1271 put_page(page); 1272 ret |= VM_FAULT_FALLBACK; 1273 count_vm_event(THP_FAULT_FALLBACK); 1274 goto out; 1275 } 1276 1277 count_vm_event(THP_FAULT_ALLOC); 1278 1279 if (!page) 1280 clear_huge_page(new_page, haddr, HPAGE_PMD_NR); 1281 else 1282 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); 1283 __SetPageUptodate(new_page); 1284 1285 mmun_start = haddr; 1286 mmun_end = haddr + HPAGE_PMD_SIZE; 1287 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 1288 1289 spin_lock(vmf->ptl); 1290 if (page) 1291 put_page(page); 1292 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1293 spin_unlock(vmf->ptl); 1294 mem_cgroup_cancel_charge(new_page, memcg, true); 1295 put_page(new_page); 1296 goto out_mn; 1297 } else { 1298 pmd_t entry; 1299 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1300 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1301 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd); 1302 page_add_new_anon_rmap(new_page, vma, haddr, true); 1303 mem_cgroup_commit_charge(new_page, memcg, false, true); 1304 lru_cache_add_active_or_unevictable(new_page, vma); 1305 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 1306 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1307 if (!page) { 1308 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1309 } else { 1310 VM_BUG_ON_PAGE(!PageHead(page), page); 1311 page_remove_rmap(page, true); 1312 put_page(page); 1313 } 1314 ret |= VM_FAULT_WRITE; 1315 } 1316 spin_unlock(vmf->ptl); 1317 out_mn: 1318 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1319 out: 1320 return ret; 1321 out_unlock: 1322 spin_unlock(vmf->ptl); 1323 return ret; 1324 } 1325 1326 /* 1327 * FOLL_FORCE can write to even unwritable pmd's, but only 1328 * after we've gone through a COW cycle and they are dirty. 1329 */ 1330 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) 1331 { 1332 return pmd_write(pmd) || 1333 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); 1334 } 1335 1336 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1337 unsigned long addr, 1338 pmd_t *pmd, 1339 unsigned int flags) 1340 { 1341 struct mm_struct *mm = vma->vm_mm; 1342 struct page *page = NULL; 1343 1344 assert_spin_locked(pmd_lockptr(mm, pmd)); 1345 1346 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) 1347 goto out; 1348 1349 /* Avoid dumping huge zero page */ 1350 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1351 return ERR_PTR(-EFAULT); 1352 1353 /* Full NUMA hinting faults to serialise migration in fault paths */ 1354 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1355 goto out; 1356 1357 page = pmd_page(*pmd); 1358 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1359 if (flags & FOLL_TOUCH) 1360 touch_pmd(vma, addr, pmd); 1361 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1362 /* 1363 * We don't mlock() pte-mapped THPs. This way we can avoid 1364 * leaking mlocked pages into non-VM_LOCKED VMAs. 1365 * 1366 * For anon THP: 1367 * 1368 * In most cases the pmd is the only mapping of the page as we 1369 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1370 * writable private mappings in populate_vma_page_range(). 1371 * 1372 * The only scenario when we have the page shared here is if we 1373 * mlocking read-only mapping shared over fork(). We skip 1374 * mlocking such pages. 1375 * 1376 * For file THP: 1377 * 1378 * We can expect PageDoubleMap() to be stable under page lock: 1379 * for file pages we set it in page_add_file_rmap(), which 1380 * requires page to be locked. 1381 */ 1382 1383 if (PageAnon(page) && compound_mapcount(page) != 1) 1384 goto skip_mlock; 1385 if (PageDoubleMap(page) || !page->mapping) 1386 goto skip_mlock; 1387 if (!trylock_page(page)) 1388 goto skip_mlock; 1389 lru_add_drain(); 1390 if (page->mapping && !PageDoubleMap(page)) 1391 mlock_vma_page(page); 1392 unlock_page(page); 1393 } 1394 skip_mlock: 1395 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1396 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1397 if (flags & FOLL_GET) 1398 get_page(page); 1399 1400 out: 1401 return page; 1402 } 1403 1404 /* NUMA hinting page fault entry point for trans huge pmds */ 1405 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd) 1406 { 1407 struct vm_area_struct *vma = vmf->vma; 1408 struct anon_vma *anon_vma = NULL; 1409 struct page *page; 1410 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1411 int page_nid = -1, this_nid = numa_node_id(); 1412 int target_nid, last_cpupid = -1; 1413 bool page_locked; 1414 bool migrated = false; 1415 bool was_writable; 1416 int flags = 0; 1417 1418 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1419 if (unlikely(!pmd_same(pmd, *vmf->pmd))) 1420 goto out_unlock; 1421 1422 /* 1423 * If there are potential migrations, wait for completion and retry 1424 * without disrupting NUMA hinting information. Do not relock and 1425 * check_same as the page may no longer be mapped. 1426 */ 1427 if (unlikely(pmd_trans_migrating(*vmf->pmd))) { 1428 page = pmd_page(*vmf->pmd); 1429 spin_unlock(vmf->ptl); 1430 wait_on_page_locked(page); 1431 goto out; 1432 } 1433 1434 page = pmd_page(pmd); 1435 BUG_ON(is_huge_zero_page(page)); 1436 page_nid = page_to_nid(page); 1437 last_cpupid = page_cpupid_last(page); 1438 count_vm_numa_event(NUMA_HINT_FAULTS); 1439 if (page_nid == this_nid) { 1440 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1441 flags |= TNF_FAULT_LOCAL; 1442 } 1443 1444 /* See similar comment in do_numa_page for explanation */ 1445 if (!pmd_savedwrite(pmd)) 1446 flags |= TNF_NO_GROUP; 1447 1448 /* 1449 * Acquire the page lock to serialise THP migrations but avoid dropping 1450 * page_table_lock if at all possible 1451 */ 1452 page_locked = trylock_page(page); 1453 target_nid = mpol_misplaced(page, vma, haddr); 1454 if (target_nid == -1) { 1455 /* If the page was locked, there are no parallel migrations */ 1456 if (page_locked) 1457 goto clear_pmdnuma; 1458 } 1459 1460 /* Migration could have started since the pmd_trans_migrating check */ 1461 if (!page_locked) { 1462 spin_unlock(vmf->ptl); 1463 wait_on_page_locked(page); 1464 page_nid = -1; 1465 goto out; 1466 } 1467 1468 /* 1469 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1470 * to serialises splits 1471 */ 1472 get_page(page); 1473 spin_unlock(vmf->ptl); 1474 anon_vma = page_lock_anon_vma_read(page); 1475 1476 /* Confirm the PMD did not change while page_table_lock was released */ 1477 spin_lock(vmf->ptl); 1478 if (unlikely(!pmd_same(pmd, *vmf->pmd))) { 1479 unlock_page(page); 1480 put_page(page); 1481 page_nid = -1; 1482 goto out_unlock; 1483 } 1484 1485 /* Bail if we fail to protect against THP splits for any reason */ 1486 if (unlikely(!anon_vma)) { 1487 put_page(page); 1488 page_nid = -1; 1489 goto clear_pmdnuma; 1490 } 1491 1492 /* 1493 * Migrate the THP to the requested node, returns with page unlocked 1494 * and access rights restored. 1495 */ 1496 spin_unlock(vmf->ptl); 1497 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, 1498 vmf->pmd, pmd, vmf->address, page, target_nid); 1499 if (migrated) { 1500 flags |= TNF_MIGRATED; 1501 page_nid = target_nid; 1502 } else 1503 flags |= TNF_MIGRATE_FAIL; 1504 1505 goto out; 1506 clear_pmdnuma: 1507 BUG_ON(!PageLocked(page)); 1508 was_writable = pmd_savedwrite(pmd); 1509 pmd = pmd_modify(pmd, vma->vm_page_prot); 1510 pmd = pmd_mkyoung(pmd); 1511 if (was_writable) 1512 pmd = pmd_mkwrite(pmd); 1513 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1514 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1515 unlock_page(page); 1516 out_unlock: 1517 spin_unlock(vmf->ptl); 1518 1519 out: 1520 if (anon_vma) 1521 page_unlock_anon_vma_read(anon_vma); 1522 1523 if (page_nid != -1) 1524 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1525 flags); 1526 1527 return 0; 1528 } 1529 1530 /* 1531 * Return true if we do MADV_FREE successfully on entire pmd page. 1532 * Otherwise, return false. 1533 */ 1534 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1535 pmd_t *pmd, unsigned long addr, unsigned long next) 1536 { 1537 spinlock_t *ptl; 1538 pmd_t orig_pmd; 1539 struct page *page; 1540 struct mm_struct *mm = tlb->mm; 1541 bool ret = false; 1542 1543 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); 1544 1545 ptl = pmd_trans_huge_lock(pmd, vma); 1546 if (!ptl) 1547 goto out_unlocked; 1548 1549 orig_pmd = *pmd; 1550 if (is_huge_zero_pmd(orig_pmd)) 1551 goto out; 1552 1553 page = pmd_page(orig_pmd); 1554 /* 1555 * If other processes are mapping this page, we couldn't discard 1556 * the page unless they all do MADV_FREE so let's skip the page. 1557 */ 1558 if (page_mapcount(page) != 1) 1559 goto out; 1560 1561 if (!trylock_page(page)) 1562 goto out; 1563 1564 /* 1565 * If user want to discard part-pages of THP, split it so MADV_FREE 1566 * will deactivate only them. 1567 */ 1568 if (next - addr != HPAGE_PMD_SIZE) { 1569 get_page(page); 1570 spin_unlock(ptl); 1571 split_huge_page(page); 1572 put_page(page); 1573 unlock_page(page); 1574 goto out_unlocked; 1575 } 1576 1577 if (PageDirty(page)) 1578 ClearPageDirty(page); 1579 unlock_page(page); 1580 1581 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1582 pmdp_invalidate(vma, addr, pmd); 1583 orig_pmd = pmd_mkold(orig_pmd); 1584 orig_pmd = pmd_mkclean(orig_pmd); 1585 1586 set_pmd_at(mm, addr, pmd, orig_pmd); 1587 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1588 } 1589 1590 mark_page_lazyfree(page); 1591 ret = true; 1592 out: 1593 spin_unlock(ptl); 1594 out_unlocked: 1595 return ret; 1596 } 1597 1598 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1599 { 1600 pgtable_t pgtable; 1601 1602 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1603 pte_free(mm, pgtable); 1604 atomic_long_dec(&mm->nr_ptes); 1605 } 1606 1607 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1608 pmd_t *pmd, unsigned long addr) 1609 { 1610 pmd_t orig_pmd; 1611 spinlock_t *ptl; 1612 1613 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE); 1614 1615 ptl = __pmd_trans_huge_lock(pmd, vma); 1616 if (!ptl) 1617 return 0; 1618 /* 1619 * For architectures like ppc64 we look at deposited pgtable 1620 * when calling pmdp_huge_get_and_clear. So do the 1621 * pgtable_trans_huge_withdraw after finishing pmdp related 1622 * operations. 1623 */ 1624 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1625 tlb->fullmm); 1626 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1627 if (vma_is_dax(vma)) { 1628 if (arch_needs_pgtable_deposit()) 1629 zap_deposited_table(tlb->mm, pmd); 1630 spin_unlock(ptl); 1631 if (is_huge_zero_pmd(orig_pmd)) 1632 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1633 } else if (is_huge_zero_pmd(orig_pmd)) { 1634 zap_deposited_table(tlb->mm, pmd); 1635 spin_unlock(ptl); 1636 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1637 } else { 1638 struct page *page = pmd_page(orig_pmd); 1639 page_remove_rmap(page, true); 1640 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1641 VM_BUG_ON_PAGE(!PageHead(page), page); 1642 if (PageAnon(page)) { 1643 zap_deposited_table(tlb->mm, pmd); 1644 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1645 } else { 1646 if (arch_needs_pgtable_deposit()) 1647 zap_deposited_table(tlb->mm, pmd); 1648 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1649 } 1650 spin_unlock(ptl); 1651 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1652 } 1653 return 1; 1654 } 1655 1656 #ifndef pmd_move_must_withdraw 1657 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1658 spinlock_t *old_pmd_ptl, 1659 struct vm_area_struct *vma) 1660 { 1661 /* 1662 * With split pmd lock we also need to move preallocated 1663 * PTE page table if new_pmd is on different PMD page table. 1664 * 1665 * We also don't deposit and withdraw tables for file pages. 1666 */ 1667 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1668 } 1669 #endif 1670 1671 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1672 unsigned long new_addr, unsigned long old_end, 1673 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush) 1674 { 1675 spinlock_t *old_ptl, *new_ptl; 1676 pmd_t pmd; 1677 struct mm_struct *mm = vma->vm_mm; 1678 bool force_flush = false; 1679 1680 if ((old_addr & ~HPAGE_PMD_MASK) || 1681 (new_addr & ~HPAGE_PMD_MASK) || 1682 old_end - old_addr < HPAGE_PMD_SIZE) 1683 return false; 1684 1685 /* 1686 * The destination pmd shouldn't be established, free_pgtables() 1687 * should have release it. 1688 */ 1689 if (WARN_ON(!pmd_none(*new_pmd))) { 1690 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1691 return false; 1692 } 1693 1694 /* 1695 * We don't have to worry about the ordering of src and dst 1696 * ptlocks because exclusive mmap_sem prevents deadlock. 1697 */ 1698 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1699 if (old_ptl) { 1700 new_ptl = pmd_lockptr(mm, new_pmd); 1701 if (new_ptl != old_ptl) 1702 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1703 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1704 if (pmd_present(pmd) && pmd_dirty(pmd)) 1705 force_flush = true; 1706 VM_BUG_ON(!pmd_none(*new_pmd)); 1707 1708 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1709 pgtable_t pgtable; 1710 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1711 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1712 } 1713 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); 1714 if (new_ptl != old_ptl) 1715 spin_unlock(new_ptl); 1716 if (force_flush) 1717 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1718 else 1719 *need_flush = true; 1720 spin_unlock(old_ptl); 1721 return true; 1722 } 1723 return false; 1724 } 1725 1726 /* 1727 * Returns 1728 * - 0 if PMD could not be locked 1729 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1730 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1731 */ 1732 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1733 unsigned long addr, pgprot_t newprot, int prot_numa) 1734 { 1735 struct mm_struct *mm = vma->vm_mm; 1736 spinlock_t *ptl; 1737 pmd_t entry; 1738 bool preserve_write; 1739 int ret; 1740 1741 ptl = __pmd_trans_huge_lock(pmd, vma); 1742 if (!ptl) 1743 return 0; 1744 1745 preserve_write = prot_numa && pmd_write(*pmd); 1746 ret = 1; 1747 1748 /* 1749 * Avoid trapping faults against the zero page. The read-only 1750 * data is likely to be read-cached on the local CPU and 1751 * local/remote hits to the zero page are not interesting. 1752 */ 1753 if (prot_numa && is_huge_zero_pmd(*pmd)) 1754 goto unlock; 1755 1756 if (prot_numa && pmd_protnone(*pmd)) 1757 goto unlock; 1758 1759 /* 1760 * In case prot_numa, we are under down_read(mmap_sem). It's critical 1761 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 1762 * which is also under down_read(mmap_sem): 1763 * 1764 * CPU0: CPU1: 1765 * change_huge_pmd(prot_numa=1) 1766 * pmdp_huge_get_and_clear_notify() 1767 * madvise_dontneed() 1768 * zap_pmd_range() 1769 * pmd_trans_huge(*pmd) == 0 (without ptl) 1770 * // skip the pmd 1771 * set_pmd_at(); 1772 * // pmd is re-established 1773 * 1774 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 1775 * which may break userspace. 1776 * 1777 * pmdp_invalidate() is required to make sure we don't miss 1778 * dirty/young flags set by hardware. 1779 */ 1780 entry = *pmd; 1781 pmdp_invalidate(vma, addr, pmd); 1782 1783 /* 1784 * Recover dirty/young flags. It relies on pmdp_invalidate to not 1785 * corrupt them. 1786 */ 1787 if (pmd_dirty(*pmd)) 1788 entry = pmd_mkdirty(entry); 1789 if (pmd_young(*pmd)) 1790 entry = pmd_mkyoung(entry); 1791 1792 entry = pmd_modify(entry, newprot); 1793 if (preserve_write) 1794 entry = pmd_mk_savedwrite(entry); 1795 ret = HPAGE_PMD_NR; 1796 set_pmd_at(mm, addr, pmd, entry); 1797 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry)); 1798 unlock: 1799 spin_unlock(ptl); 1800 return ret; 1801 } 1802 1803 /* 1804 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1805 * 1806 * Note that if it returns page table lock pointer, this routine returns without 1807 * unlocking page table lock. So callers must unlock it. 1808 */ 1809 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1810 { 1811 spinlock_t *ptl; 1812 ptl = pmd_lock(vma->vm_mm, pmd); 1813 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd))) 1814 return ptl; 1815 spin_unlock(ptl); 1816 return NULL; 1817 } 1818 1819 /* 1820 * Returns true if a given pud maps a thp, false otherwise. 1821 * 1822 * Note that if it returns true, this routine returns without unlocking page 1823 * table lock. So callers must unlock it. 1824 */ 1825 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1826 { 1827 spinlock_t *ptl; 1828 1829 ptl = pud_lock(vma->vm_mm, pud); 1830 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1831 return ptl; 1832 spin_unlock(ptl); 1833 return NULL; 1834 } 1835 1836 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1837 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1838 pud_t *pud, unsigned long addr) 1839 { 1840 pud_t orig_pud; 1841 spinlock_t *ptl; 1842 1843 ptl = __pud_trans_huge_lock(pud, vma); 1844 if (!ptl) 1845 return 0; 1846 /* 1847 * For architectures like ppc64 we look at deposited pgtable 1848 * when calling pudp_huge_get_and_clear. So do the 1849 * pgtable_trans_huge_withdraw after finishing pudp related 1850 * operations. 1851 */ 1852 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud, 1853 tlb->fullmm); 1854 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1855 if (vma_is_dax(vma)) { 1856 spin_unlock(ptl); 1857 /* No zero page support yet */ 1858 } else { 1859 /* No support for anonymous PUD pages yet */ 1860 BUG(); 1861 } 1862 return 1; 1863 } 1864 1865 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 1866 unsigned long haddr) 1867 { 1868 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 1869 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1870 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 1871 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 1872 1873 count_vm_event(THP_SPLIT_PUD); 1874 1875 pudp_huge_clear_flush_notify(vma, haddr, pud); 1876 } 1877 1878 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 1879 unsigned long address) 1880 { 1881 spinlock_t *ptl; 1882 struct mm_struct *mm = vma->vm_mm; 1883 unsigned long haddr = address & HPAGE_PUD_MASK; 1884 1885 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE); 1886 ptl = pud_lock(mm, pud); 1887 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 1888 goto out; 1889 __split_huge_pud_locked(vma, pud, haddr); 1890 1891 out: 1892 spin_unlock(ptl); 1893 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE); 1894 } 1895 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1896 1897 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1898 unsigned long haddr, pmd_t *pmd) 1899 { 1900 struct mm_struct *mm = vma->vm_mm; 1901 pgtable_t pgtable; 1902 pmd_t _pmd; 1903 int i; 1904 1905 /* leave pmd empty until pte is filled */ 1906 pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1907 1908 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1909 pmd_populate(mm, &_pmd, pgtable); 1910 1911 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1912 pte_t *pte, entry; 1913 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 1914 entry = pte_mkspecial(entry); 1915 pte = pte_offset_map(&_pmd, haddr); 1916 VM_BUG_ON(!pte_none(*pte)); 1917 set_pte_at(mm, haddr, pte, entry); 1918 pte_unmap(pte); 1919 } 1920 smp_wmb(); /* make pte visible before pmd */ 1921 pmd_populate(mm, pmd, pgtable); 1922 } 1923 1924 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 1925 unsigned long haddr, bool freeze) 1926 { 1927 struct mm_struct *mm = vma->vm_mm; 1928 struct page *page; 1929 pgtable_t pgtable; 1930 pmd_t _pmd; 1931 bool young, write, dirty, soft_dirty; 1932 unsigned long addr; 1933 int i; 1934 1935 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 1936 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1937 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 1938 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)); 1939 1940 count_vm_event(THP_SPLIT_PMD); 1941 1942 if (!vma_is_anonymous(vma)) { 1943 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1944 /* 1945 * We are going to unmap this huge page. So 1946 * just go ahead and zap it 1947 */ 1948 if (arch_needs_pgtable_deposit()) 1949 zap_deposited_table(mm, pmd); 1950 if (vma_is_dax(vma)) 1951 return; 1952 page = pmd_page(_pmd); 1953 if (!PageReferenced(page) && pmd_young(_pmd)) 1954 SetPageReferenced(page); 1955 page_remove_rmap(page, true); 1956 put_page(page); 1957 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1958 return; 1959 } else if (is_huge_zero_pmd(*pmd)) { 1960 return __split_huge_zero_page_pmd(vma, haddr, pmd); 1961 } 1962 1963 page = pmd_page(*pmd); 1964 VM_BUG_ON_PAGE(!page_count(page), page); 1965 page_ref_add(page, HPAGE_PMD_NR - 1); 1966 write = pmd_write(*pmd); 1967 young = pmd_young(*pmd); 1968 dirty = pmd_dirty(*pmd); 1969 soft_dirty = pmd_soft_dirty(*pmd); 1970 1971 pmdp_huge_split_prepare(vma, haddr, pmd); 1972 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1973 pmd_populate(mm, &_pmd, pgtable); 1974 1975 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 1976 pte_t entry, *pte; 1977 /* 1978 * Note that NUMA hinting access restrictions are not 1979 * transferred to avoid any possibility of altering 1980 * permissions across VMAs. 1981 */ 1982 if (freeze) { 1983 swp_entry_t swp_entry; 1984 swp_entry = make_migration_entry(page + i, write); 1985 entry = swp_entry_to_pte(swp_entry); 1986 if (soft_dirty) 1987 entry = pte_swp_mksoft_dirty(entry); 1988 } else { 1989 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 1990 entry = maybe_mkwrite(entry, vma); 1991 if (!write) 1992 entry = pte_wrprotect(entry); 1993 if (!young) 1994 entry = pte_mkold(entry); 1995 if (soft_dirty) 1996 entry = pte_mksoft_dirty(entry); 1997 } 1998 if (dirty) 1999 SetPageDirty(page + i); 2000 pte = pte_offset_map(&_pmd, addr); 2001 BUG_ON(!pte_none(*pte)); 2002 set_pte_at(mm, addr, pte, entry); 2003 atomic_inc(&page[i]._mapcount); 2004 pte_unmap(pte); 2005 } 2006 2007 /* 2008 * Set PG_double_map before dropping compound_mapcount to avoid 2009 * false-negative page_mapped(). 2010 */ 2011 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) { 2012 for (i = 0; i < HPAGE_PMD_NR; i++) 2013 atomic_inc(&page[i]._mapcount); 2014 } 2015 2016 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 2017 /* Last compound_mapcount is gone. */ 2018 __dec_node_page_state(page, NR_ANON_THPS); 2019 if (TestClearPageDoubleMap(page)) { 2020 /* No need in mapcount reference anymore */ 2021 for (i = 0; i < HPAGE_PMD_NR; i++) 2022 atomic_dec(&page[i]._mapcount); 2023 } 2024 } 2025 2026 smp_wmb(); /* make pte visible before pmd */ 2027 /* 2028 * Up to this point the pmd is present and huge and userland has the 2029 * whole access to the hugepage during the split (which happens in 2030 * place). If we overwrite the pmd with the not-huge version pointing 2031 * to the pte here (which of course we could if all CPUs were bug 2032 * free), userland could trigger a small page size TLB miss on the 2033 * small sized TLB while the hugepage TLB entry is still established in 2034 * the huge TLB. Some CPU doesn't like that. 2035 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum 2036 * 383 on page 93. Intel should be safe but is also warns that it's 2037 * only safe if the permission and cache attributes of the two entries 2038 * loaded in the two TLB is identical (which should be the case here). 2039 * But it is generally safer to never allow small and huge TLB entries 2040 * for the same virtual address to be loaded simultaneously. So instead 2041 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2042 * current pmd notpresent (atomically because here the pmd_trans_huge 2043 * and pmd_trans_splitting must remain set at all times on the pmd 2044 * until the split is complete for this pmd), then we flush the SMP TLB 2045 * and finally we write the non-huge version of the pmd entry with 2046 * pmd_populate. 2047 */ 2048 pmdp_invalidate(vma, haddr, pmd); 2049 pmd_populate(mm, pmd, pgtable); 2050 2051 if (freeze) { 2052 for (i = 0; i < HPAGE_PMD_NR; i++) { 2053 page_remove_rmap(page + i, false); 2054 put_page(page + i); 2055 } 2056 } 2057 } 2058 2059 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2060 unsigned long address, bool freeze, struct page *page) 2061 { 2062 spinlock_t *ptl; 2063 struct mm_struct *mm = vma->vm_mm; 2064 unsigned long haddr = address & HPAGE_PMD_MASK; 2065 2066 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE); 2067 ptl = pmd_lock(mm, pmd); 2068 2069 /* 2070 * If caller asks to setup a migration entries, we need a page to check 2071 * pmd against. Otherwise we can end up replacing wrong page. 2072 */ 2073 VM_BUG_ON(freeze && !page); 2074 if (page && page != pmd_page(*pmd)) 2075 goto out; 2076 2077 if (pmd_trans_huge(*pmd)) { 2078 page = pmd_page(*pmd); 2079 if (PageMlocked(page)) 2080 clear_page_mlock(page); 2081 } else if (!pmd_devmap(*pmd)) 2082 goto out; 2083 __split_huge_pmd_locked(vma, pmd, haddr, freeze); 2084 out: 2085 spin_unlock(ptl); 2086 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE); 2087 } 2088 2089 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2090 bool freeze, struct page *page) 2091 { 2092 pgd_t *pgd; 2093 p4d_t *p4d; 2094 pud_t *pud; 2095 pmd_t *pmd; 2096 2097 pgd = pgd_offset(vma->vm_mm, address); 2098 if (!pgd_present(*pgd)) 2099 return; 2100 2101 p4d = p4d_offset(pgd, address); 2102 if (!p4d_present(*p4d)) 2103 return; 2104 2105 pud = pud_offset(p4d, address); 2106 if (!pud_present(*pud)) 2107 return; 2108 2109 pmd = pmd_offset(pud, address); 2110 2111 __split_huge_pmd(vma, pmd, address, freeze, page); 2112 } 2113 2114 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2115 unsigned long start, 2116 unsigned long end, 2117 long adjust_next) 2118 { 2119 /* 2120 * If the new start address isn't hpage aligned and it could 2121 * previously contain an hugepage: check if we need to split 2122 * an huge pmd. 2123 */ 2124 if (start & ~HPAGE_PMD_MASK && 2125 (start & HPAGE_PMD_MASK) >= vma->vm_start && 2126 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2127 split_huge_pmd_address(vma, start, false, NULL); 2128 2129 /* 2130 * If the new end address isn't hpage aligned and it could 2131 * previously contain an hugepage: check if we need to split 2132 * an huge pmd. 2133 */ 2134 if (end & ~HPAGE_PMD_MASK && 2135 (end & HPAGE_PMD_MASK) >= vma->vm_start && 2136 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2137 split_huge_pmd_address(vma, end, false, NULL); 2138 2139 /* 2140 * If we're also updating the vma->vm_next->vm_start, if the new 2141 * vm_next->vm_start isn't page aligned and it could previously 2142 * contain an hugepage: check if we need to split an huge pmd. 2143 */ 2144 if (adjust_next > 0) { 2145 struct vm_area_struct *next = vma->vm_next; 2146 unsigned long nstart = next->vm_start; 2147 nstart += adjust_next << PAGE_SHIFT; 2148 if (nstart & ~HPAGE_PMD_MASK && 2149 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 2150 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 2151 split_huge_pmd_address(next, nstart, false, NULL); 2152 } 2153 } 2154 2155 static void freeze_page(struct page *page) 2156 { 2157 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | 2158 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD; 2159 bool unmap_success; 2160 2161 VM_BUG_ON_PAGE(!PageHead(page), page); 2162 2163 if (PageAnon(page)) 2164 ttu_flags |= TTU_MIGRATION; 2165 2166 unmap_success = try_to_unmap(page, ttu_flags); 2167 VM_BUG_ON_PAGE(!unmap_success, page); 2168 } 2169 2170 static void unfreeze_page(struct page *page) 2171 { 2172 int i; 2173 if (PageTransHuge(page)) { 2174 remove_migration_ptes(page, page, true); 2175 } else { 2176 for (i = 0; i < HPAGE_PMD_NR; i++) 2177 remove_migration_ptes(page + i, page + i, true); 2178 } 2179 } 2180 2181 static void __split_huge_page_tail(struct page *head, int tail, 2182 struct lruvec *lruvec, struct list_head *list) 2183 { 2184 struct page *page_tail = head + tail; 2185 2186 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2187 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail); 2188 2189 /* 2190 * tail_page->_refcount is zero and not changing from under us. But 2191 * get_page_unless_zero() may be running from under us on the 2192 * tail_page. If we used atomic_set() below instead of atomic_inc() or 2193 * atomic_add(), we would then run atomic_set() concurrently with 2194 * get_page_unless_zero(), and atomic_set() is implemented in C not 2195 * using locked ops. spin_unlock on x86 sometime uses locked ops 2196 * because of PPro errata 66, 92, so unless somebody can guarantee 2197 * atomic_set() here would be safe on all archs (and not only on x86), 2198 * it's safer to use atomic_inc()/atomic_add(). 2199 */ 2200 if (PageAnon(head)) { 2201 page_ref_inc(page_tail); 2202 } else { 2203 /* Additional pin to radix tree */ 2204 page_ref_add(page_tail, 2); 2205 } 2206 2207 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2208 page_tail->flags |= (head->flags & 2209 ((1L << PG_referenced) | 2210 (1L << PG_swapbacked) | 2211 (1L << PG_mlocked) | 2212 (1L << PG_uptodate) | 2213 (1L << PG_active) | 2214 (1L << PG_locked) | 2215 (1L << PG_unevictable) | 2216 (1L << PG_dirty))); 2217 2218 /* 2219 * After clearing PageTail the gup refcount can be released. 2220 * Page flags also must be visible before we make the page non-compound. 2221 */ 2222 smp_wmb(); 2223 2224 clear_compound_head(page_tail); 2225 2226 if (page_is_young(head)) 2227 set_page_young(page_tail); 2228 if (page_is_idle(head)) 2229 set_page_idle(page_tail); 2230 2231 /* ->mapping in first tail page is compound_mapcount */ 2232 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2233 page_tail); 2234 page_tail->mapping = head->mapping; 2235 2236 page_tail->index = head->index + tail; 2237 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2238 lru_add_page_tail(head, page_tail, lruvec, list); 2239 } 2240 2241 static void __split_huge_page(struct page *page, struct list_head *list, 2242 unsigned long flags) 2243 { 2244 struct page *head = compound_head(page); 2245 struct zone *zone = page_zone(head); 2246 struct lruvec *lruvec; 2247 pgoff_t end = -1; 2248 int i; 2249 2250 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat); 2251 2252 /* complete memcg works before add pages to LRU */ 2253 mem_cgroup_split_huge_fixup(head); 2254 2255 if (!PageAnon(page)) 2256 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE); 2257 2258 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 2259 __split_huge_page_tail(head, i, lruvec, list); 2260 /* Some pages can be beyond i_size: drop them from page cache */ 2261 if (head[i].index >= end) { 2262 __ClearPageDirty(head + i); 2263 __delete_from_page_cache(head + i, NULL); 2264 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) 2265 shmem_uncharge(head->mapping->host, 1); 2266 put_page(head + i); 2267 } 2268 } 2269 2270 ClearPageCompound(head); 2271 /* See comment in __split_huge_page_tail() */ 2272 if (PageAnon(head)) { 2273 page_ref_inc(head); 2274 } else { 2275 /* Additional pin to radix tree */ 2276 page_ref_add(head, 2); 2277 spin_unlock(&head->mapping->tree_lock); 2278 } 2279 2280 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 2281 2282 unfreeze_page(head); 2283 2284 for (i = 0; i < HPAGE_PMD_NR; i++) { 2285 struct page *subpage = head + i; 2286 if (subpage == page) 2287 continue; 2288 unlock_page(subpage); 2289 2290 /* 2291 * Subpages may be freed if there wasn't any mapping 2292 * like if add_to_swap() is running on a lru page that 2293 * had its mapping zapped. And freeing these pages 2294 * requires taking the lru_lock so we do the put_page 2295 * of the tail pages after the split is complete. 2296 */ 2297 put_page(subpage); 2298 } 2299 } 2300 2301 int total_mapcount(struct page *page) 2302 { 2303 int i, compound, ret; 2304 2305 VM_BUG_ON_PAGE(PageTail(page), page); 2306 2307 if (likely(!PageCompound(page))) 2308 return atomic_read(&page->_mapcount) + 1; 2309 2310 compound = compound_mapcount(page); 2311 if (PageHuge(page)) 2312 return compound; 2313 ret = compound; 2314 for (i = 0; i < HPAGE_PMD_NR; i++) 2315 ret += atomic_read(&page[i]._mapcount) + 1; 2316 /* File pages has compound_mapcount included in _mapcount */ 2317 if (!PageAnon(page)) 2318 return ret - compound * HPAGE_PMD_NR; 2319 if (PageDoubleMap(page)) 2320 ret -= HPAGE_PMD_NR; 2321 return ret; 2322 } 2323 2324 /* 2325 * This calculates accurately how many mappings a transparent hugepage 2326 * has (unlike page_mapcount() which isn't fully accurate). This full 2327 * accuracy is primarily needed to know if copy-on-write faults can 2328 * reuse the page and change the mapping to read-write instead of 2329 * copying them. At the same time this returns the total_mapcount too. 2330 * 2331 * The function returns the highest mapcount any one of the subpages 2332 * has. If the return value is one, even if different processes are 2333 * mapping different subpages of the transparent hugepage, they can 2334 * all reuse it, because each process is reusing a different subpage. 2335 * 2336 * The total_mapcount is instead counting all virtual mappings of the 2337 * subpages. If the total_mapcount is equal to "one", it tells the 2338 * caller all mappings belong to the same "mm" and in turn the 2339 * anon_vma of the transparent hugepage can become the vma->anon_vma 2340 * local one as no other process may be mapping any of the subpages. 2341 * 2342 * It would be more accurate to replace page_mapcount() with 2343 * page_trans_huge_mapcount(), however we only use 2344 * page_trans_huge_mapcount() in the copy-on-write faults where we 2345 * need full accuracy to avoid breaking page pinning, because 2346 * page_trans_huge_mapcount() is slower than page_mapcount(). 2347 */ 2348 int page_trans_huge_mapcount(struct page *page, int *total_mapcount) 2349 { 2350 int i, ret, _total_mapcount, mapcount; 2351 2352 /* hugetlbfs shouldn't call it */ 2353 VM_BUG_ON_PAGE(PageHuge(page), page); 2354 2355 if (likely(!PageTransCompound(page))) { 2356 mapcount = atomic_read(&page->_mapcount) + 1; 2357 if (total_mapcount) 2358 *total_mapcount = mapcount; 2359 return mapcount; 2360 } 2361 2362 page = compound_head(page); 2363 2364 _total_mapcount = ret = 0; 2365 for (i = 0; i < HPAGE_PMD_NR; i++) { 2366 mapcount = atomic_read(&page[i]._mapcount) + 1; 2367 ret = max(ret, mapcount); 2368 _total_mapcount += mapcount; 2369 } 2370 if (PageDoubleMap(page)) { 2371 ret -= 1; 2372 _total_mapcount -= HPAGE_PMD_NR; 2373 } 2374 mapcount = compound_mapcount(page); 2375 ret += mapcount; 2376 _total_mapcount += mapcount; 2377 if (total_mapcount) 2378 *total_mapcount = _total_mapcount; 2379 return ret; 2380 } 2381 2382 /* 2383 * This function splits huge page into normal pages. @page can point to any 2384 * subpage of huge page to split. Split doesn't change the position of @page. 2385 * 2386 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2387 * The huge page must be locked. 2388 * 2389 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2390 * 2391 * Both head page and tail pages will inherit mapping, flags, and so on from 2392 * the hugepage. 2393 * 2394 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2395 * they are not mapped. 2396 * 2397 * Returns 0 if the hugepage is split successfully. 2398 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2399 * us. 2400 */ 2401 int split_huge_page_to_list(struct page *page, struct list_head *list) 2402 { 2403 struct page *head = compound_head(page); 2404 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); 2405 struct anon_vma *anon_vma = NULL; 2406 struct address_space *mapping = NULL; 2407 int count, mapcount, extra_pins, ret; 2408 bool mlocked; 2409 unsigned long flags; 2410 2411 VM_BUG_ON_PAGE(is_huge_zero_page(page), page); 2412 VM_BUG_ON_PAGE(!PageLocked(page), page); 2413 VM_BUG_ON_PAGE(!PageCompound(page), page); 2414 2415 if (PageAnon(head)) { 2416 /* 2417 * The caller does not necessarily hold an mmap_sem that would 2418 * prevent the anon_vma disappearing so we first we take a 2419 * reference to it and then lock the anon_vma for write. This 2420 * is similar to page_lock_anon_vma_read except the write lock 2421 * is taken to serialise against parallel split or collapse 2422 * operations. 2423 */ 2424 anon_vma = page_get_anon_vma(head); 2425 if (!anon_vma) { 2426 ret = -EBUSY; 2427 goto out; 2428 } 2429 extra_pins = 0; 2430 mapping = NULL; 2431 anon_vma_lock_write(anon_vma); 2432 } else { 2433 mapping = head->mapping; 2434 2435 /* Truncated ? */ 2436 if (!mapping) { 2437 ret = -EBUSY; 2438 goto out; 2439 } 2440 2441 /* Addidional pins from radix tree */ 2442 extra_pins = HPAGE_PMD_NR; 2443 anon_vma = NULL; 2444 i_mmap_lock_read(mapping); 2445 } 2446 2447 /* 2448 * Racy check if we can split the page, before freeze_page() will 2449 * split PMDs 2450 */ 2451 if (total_mapcount(head) != page_count(head) - extra_pins - 1) { 2452 ret = -EBUSY; 2453 goto out_unlock; 2454 } 2455 2456 mlocked = PageMlocked(page); 2457 freeze_page(head); 2458 VM_BUG_ON_PAGE(compound_mapcount(head), head); 2459 2460 /* Make sure the page is not on per-CPU pagevec as it takes pin */ 2461 if (mlocked) 2462 lru_add_drain(); 2463 2464 /* prevent PageLRU to go away from under us, and freeze lru stats */ 2465 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags); 2466 2467 if (mapping) { 2468 void **pslot; 2469 2470 spin_lock(&mapping->tree_lock); 2471 pslot = radix_tree_lookup_slot(&mapping->page_tree, 2472 page_index(head)); 2473 /* 2474 * Check if the head page is present in radix tree. 2475 * We assume all tail are present too, if head is there. 2476 */ 2477 if (radix_tree_deref_slot_protected(pslot, 2478 &mapping->tree_lock) != head) 2479 goto fail; 2480 } 2481 2482 /* Prevent deferred_split_scan() touching ->_refcount */ 2483 spin_lock(&pgdata->split_queue_lock); 2484 count = page_count(head); 2485 mapcount = total_mapcount(head); 2486 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { 2487 if (!list_empty(page_deferred_list(head))) { 2488 pgdata->split_queue_len--; 2489 list_del(page_deferred_list(head)); 2490 } 2491 if (mapping) 2492 __dec_node_page_state(page, NR_SHMEM_THPS); 2493 spin_unlock(&pgdata->split_queue_lock); 2494 __split_huge_page(page, list, flags); 2495 ret = 0; 2496 } else { 2497 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { 2498 pr_alert("total_mapcount: %u, page_count(): %u\n", 2499 mapcount, count); 2500 if (PageTail(page)) 2501 dump_page(head, NULL); 2502 dump_page(page, "total_mapcount(head) > 0"); 2503 BUG(); 2504 } 2505 spin_unlock(&pgdata->split_queue_lock); 2506 fail: if (mapping) 2507 spin_unlock(&mapping->tree_lock); 2508 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 2509 unfreeze_page(head); 2510 ret = -EBUSY; 2511 } 2512 2513 out_unlock: 2514 if (anon_vma) { 2515 anon_vma_unlock_write(anon_vma); 2516 put_anon_vma(anon_vma); 2517 } 2518 if (mapping) 2519 i_mmap_unlock_read(mapping); 2520 out: 2521 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2522 return ret; 2523 } 2524 2525 void free_transhuge_page(struct page *page) 2526 { 2527 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2528 unsigned long flags; 2529 2530 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2531 if (!list_empty(page_deferred_list(page))) { 2532 pgdata->split_queue_len--; 2533 list_del(page_deferred_list(page)); 2534 } 2535 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2536 free_compound_page(page); 2537 } 2538 2539 void deferred_split_huge_page(struct page *page) 2540 { 2541 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2542 unsigned long flags; 2543 2544 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2545 2546 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2547 if (list_empty(page_deferred_list(page))) { 2548 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2549 list_add_tail(page_deferred_list(page), &pgdata->split_queue); 2550 pgdata->split_queue_len++; 2551 } 2552 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2553 } 2554 2555 static unsigned long deferred_split_count(struct shrinker *shrink, 2556 struct shrink_control *sc) 2557 { 2558 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2559 return ACCESS_ONCE(pgdata->split_queue_len); 2560 } 2561 2562 static unsigned long deferred_split_scan(struct shrinker *shrink, 2563 struct shrink_control *sc) 2564 { 2565 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2566 unsigned long flags; 2567 LIST_HEAD(list), *pos, *next; 2568 struct page *page; 2569 int split = 0; 2570 2571 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2572 /* Take pin on all head pages to avoid freeing them under us */ 2573 list_for_each_safe(pos, next, &pgdata->split_queue) { 2574 page = list_entry((void *)pos, struct page, mapping); 2575 page = compound_head(page); 2576 if (get_page_unless_zero(page)) { 2577 list_move(page_deferred_list(page), &list); 2578 } else { 2579 /* We lost race with put_compound_page() */ 2580 list_del_init(page_deferred_list(page)); 2581 pgdata->split_queue_len--; 2582 } 2583 if (!--sc->nr_to_scan) 2584 break; 2585 } 2586 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2587 2588 list_for_each_safe(pos, next, &list) { 2589 page = list_entry((void *)pos, struct page, mapping); 2590 lock_page(page); 2591 /* split_huge_page() removes page from list on success */ 2592 if (!split_huge_page(page)) 2593 split++; 2594 unlock_page(page); 2595 put_page(page); 2596 } 2597 2598 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2599 list_splice_tail(&list, &pgdata->split_queue); 2600 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2601 2602 /* 2603 * Stop shrinker if we didn't split any page, but the queue is empty. 2604 * This can happen if pages were freed under us. 2605 */ 2606 if (!split && list_empty(&pgdata->split_queue)) 2607 return SHRINK_STOP; 2608 return split; 2609 } 2610 2611 static struct shrinker deferred_split_shrinker = { 2612 .count_objects = deferred_split_count, 2613 .scan_objects = deferred_split_scan, 2614 .seeks = DEFAULT_SEEKS, 2615 .flags = SHRINKER_NUMA_AWARE, 2616 }; 2617 2618 #ifdef CONFIG_DEBUG_FS 2619 static int split_huge_pages_set(void *data, u64 val) 2620 { 2621 struct zone *zone; 2622 struct page *page; 2623 unsigned long pfn, max_zone_pfn; 2624 unsigned long total = 0, split = 0; 2625 2626 if (val != 1) 2627 return -EINVAL; 2628 2629 for_each_populated_zone(zone) { 2630 max_zone_pfn = zone_end_pfn(zone); 2631 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2632 if (!pfn_valid(pfn)) 2633 continue; 2634 2635 page = pfn_to_page(pfn); 2636 if (!get_page_unless_zero(page)) 2637 continue; 2638 2639 if (zone != page_zone(page)) 2640 goto next; 2641 2642 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2643 goto next; 2644 2645 total++; 2646 lock_page(page); 2647 if (!split_huge_page(page)) 2648 split++; 2649 unlock_page(page); 2650 next: 2651 put_page(page); 2652 } 2653 } 2654 2655 pr_info("%lu of %lu THP split\n", split, total); 2656 2657 return 0; 2658 } 2659 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, 2660 "%llu\n"); 2661 2662 static int __init split_huge_pages_debugfs(void) 2663 { 2664 void *ret; 2665 2666 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 2667 &split_huge_pages_fops); 2668 if (!ret) 2669 pr_warn("Failed to create split_huge_pages in debugfs"); 2670 return 0; 2671 } 2672 late_initcall(split_huge_pages_debugfs); 2673 #endif 2674