1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 #include <linux/compat.h>
41
42 #include <asm/tlb.h>
43 #include <asm/pgalloc.h>
44 #include "internal.h"
45 #include "swap.h"
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/thp.h>
49
50 /*
51 * By default, transparent hugepage support is disabled in order to avoid
52 * risking an increased memory footprint for applications that are not
53 * guaranteed to benefit from it. When transparent hugepage support is
54 * enabled, it is for all mappings, and khugepaged scans all mappings.
55 * Defrag is invoked by khugepaged hugepage allocations and by page faults
56 * for all hugepage allocations.
57 */
58 unsigned long transparent_hugepage_flags __read_mostly =
59 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
60 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
61 #endif
62 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
63 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
64 #endif
65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
66 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
67 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
68
69 static struct shrinker deferred_split_shrinker;
70
71 static atomic_t huge_zero_refcount;
72 struct page *huge_zero_page __read_mostly;
73 unsigned long huge_zero_pfn __read_mostly = ~0UL;
74
hugepage_vma_check(struct vm_area_struct * vma,unsigned long vm_flags,bool smaps,bool in_pf,bool enforce_sysfs)75 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
76 bool smaps, bool in_pf, bool enforce_sysfs)
77 {
78 if (!vma->vm_mm) /* vdso */
79 return false;
80
81 /*
82 * Explicitly disabled through madvise or prctl, or some
83 * architectures may disable THP for some mappings, for
84 * example, s390 kvm.
85 * */
86 if ((vm_flags & VM_NOHUGEPAGE) ||
87 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
88 return false;
89 /*
90 * If the hardware/firmware marked hugepage support disabled.
91 */
92 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
93 return false;
94
95 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
96 if (vma_is_dax(vma))
97 return in_pf;
98
99 /*
100 * Special VMA and hugetlb VMA.
101 * Must be checked after dax since some dax mappings may have
102 * VM_MIXEDMAP set.
103 */
104 if (vm_flags & VM_NO_KHUGEPAGED)
105 return false;
106
107 /*
108 * Check alignment for file vma and size for both file and anon vma.
109 *
110 * Skip the check for page fault. Huge fault does the check in fault
111 * handlers. And this check is not suitable for huge PUD fault.
112 */
113 if (!in_pf &&
114 !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
115 return false;
116
117 /*
118 * Enabled via shmem mount options or sysfs settings.
119 * Must be done before hugepage flags check since shmem has its
120 * own flags.
121 */
122 if (!in_pf && shmem_file(vma->vm_file))
123 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
124 !enforce_sysfs, vma->vm_mm, vm_flags);
125
126 /* Enforce sysfs THP requirements as necessary */
127 if (enforce_sysfs &&
128 (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
129 !hugepage_flags_always())))
130 return false;
131
132 /* Only regular file is valid */
133 if (!in_pf && file_thp_enabled(vma))
134 return true;
135
136 if (!vma_is_anonymous(vma))
137 return false;
138
139 if (vma_is_temporary_stack(vma))
140 return false;
141
142 /*
143 * THPeligible bit of smaps should show 1 for proper VMAs even
144 * though anon_vma is not initialized yet.
145 *
146 * Allow page fault since anon_vma may be not initialized until
147 * the first page fault.
148 */
149 if (!vma->anon_vma)
150 return (smaps || in_pf);
151
152 return true;
153 }
154
get_huge_zero_page(void)155 static bool get_huge_zero_page(void)
156 {
157 struct page *zero_page;
158 retry:
159 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
160 return true;
161
162 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
163 HPAGE_PMD_ORDER);
164 if (!zero_page) {
165 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
166 return false;
167 }
168 preempt_disable();
169 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
170 preempt_enable();
171 __free_pages(zero_page, compound_order(zero_page));
172 goto retry;
173 }
174 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
175
176 /* We take additional reference here. It will be put back by shrinker */
177 atomic_set(&huge_zero_refcount, 2);
178 preempt_enable();
179 count_vm_event(THP_ZERO_PAGE_ALLOC);
180 return true;
181 }
182
put_huge_zero_page(void)183 static void put_huge_zero_page(void)
184 {
185 /*
186 * Counter should never go to zero here. Only shrinker can put
187 * last reference.
188 */
189 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
190 }
191
mm_get_huge_zero_page(struct mm_struct * mm)192 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
193 {
194 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
195 return READ_ONCE(huge_zero_page);
196
197 if (!get_huge_zero_page())
198 return NULL;
199
200 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
201 put_huge_zero_page();
202
203 return READ_ONCE(huge_zero_page);
204 }
205
mm_put_huge_zero_page(struct mm_struct * mm)206 void mm_put_huge_zero_page(struct mm_struct *mm)
207 {
208 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
209 put_huge_zero_page();
210 }
211
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)212 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
213 struct shrink_control *sc)
214 {
215 /* we can free zero page only if last reference remains */
216 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
217 }
218
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)219 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
220 struct shrink_control *sc)
221 {
222 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
223 struct page *zero_page = xchg(&huge_zero_page, NULL);
224 BUG_ON(zero_page == NULL);
225 WRITE_ONCE(huge_zero_pfn, ~0UL);
226 __free_pages(zero_page, compound_order(zero_page));
227 return HPAGE_PMD_NR;
228 }
229
230 return 0;
231 }
232
233 static struct shrinker huge_zero_page_shrinker = {
234 .count_objects = shrink_huge_zero_page_count,
235 .scan_objects = shrink_huge_zero_page_scan,
236 .seeks = DEFAULT_SEEKS,
237 };
238
239 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)240 static ssize_t enabled_show(struct kobject *kobj,
241 struct kobj_attribute *attr, char *buf)
242 {
243 const char *output;
244
245 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
246 output = "[always] madvise never";
247 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
248 &transparent_hugepage_flags))
249 output = "always [madvise] never";
250 else
251 output = "always madvise [never]";
252
253 return sysfs_emit(buf, "%s\n", output);
254 }
255
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)256 static ssize_t enabled_store(struct kobject *kobj,
257 struct kobj_attribute *attr,
258 const char *buf, size_t count)
259 {
260 ssize_t ret = count;
261
262 if (sysfs_streq(buf, "always")) {
263 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
265 } else if (sysfs_streq(buf, "madvise")) {
266 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
267 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else if (sysfs_streq(buf, "never")) {
269 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
270 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
271 } else
272 ret = -EINVAL;
273
274 if (ret > 0) {
275 int err = start_stop_khugepaged();
276 if (err)
277 ret = err;
278 }
279 return ret;
280 }
281
282 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
283
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)284 ssize_t single_hugepage_flag_show(struct kobject *kobj,
285 struct kobj_attribute *attr, char *buf,
286 enum transparent_hugepage_flag flag)
287 {
288 return sysfs_emit(buf, "%d\n",
289 !!test_bit(flag, &transparent_hugepage_flags));
290 }
291
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)292 ssize_t single_hugepage_flag_store(struct kobject *kobj,
293 struct kobj_attribute *attr,
294 const char *buf, size_t count,
295 enum transparent_hugepage_flag flag)
296 {
297 unsigned long value;
298 int ret;
299
300 ret = kstrtoul(buf, 10, &value);
301 if (ret < 0)
302 return ret;
303 if (value > 1)
304 return -EINVAL;
305
306 if (value)
307 set_bit(flag, &transparent_hugepage_flags);
308 else
309 clear_bit(flag, &transparent_hugepage_flags);
310
311 return count;
312 }
313
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)314 static ssize_t defrag_show(struct kobject *kobj,
315 struct kobj_attribute *attr, char *buf)
316 {
317 const char *output;
318
319 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
320 &transparent_hugepage_flags))
321 output = "[always] defer defer+madvise madvise never";
322 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
323 &transparent_hugepage_flags))
324 output = "always [defer] defer+madvise madvise never";
325 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
326 &transparent_hugepage_flags))
327 output = "always defer [defer+madvise] madvise never";
328 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
329 &transparent_hugepage_flags))
330 output = "always defer defer+madvise [madvise] never";
331 else
332 output = "always defer defer+madvise madvise [never]";
333
334 return sysfs_emit(buf, "%s\n", output);
335 }
336
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)337 static ssize_t defrag_store(struct kobject *kobj,
338 struct kobj_attribute *attr,
339 const char *buf, size_t count)
340 {
341 if (sysfs_streq(buf, "always")) {
342 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
343 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
344 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
345 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
346 } else if (sysfs_streq(buf, "defer+madvise")) {
347 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
348 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
349 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
350 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
351 } else if (sysfs_streq(buf, "defer")) {
352 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
353 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
354 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
355 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
356 } else if (sysfs_streq(buf, "madvise")) {
357 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
358 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
359 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
360 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
361 } else if (sysfs_streq(buf, "never")) {
362 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
363 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
364 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
365 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
366 } else
367 return -EINVAL;
368
369 return count;
370 }
371 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
372
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)373 static ssize_t use_zero_page_show(struct kobject *kobj,
374 struct kobj_attribute *attr, char *buf)
375 {
376 return single_hugepage_flag_show(kobj, attr, buf,
377 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)379 static ssize_t use_zero_page_store(struct kobject *kobj,
380 struct kobj_attribute *attr, const char *buf, size_t count)
381 {
382 return single_hugepage_flag_store(kobj, attr, buf, count,
383 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
384 }
385 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
386
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)387 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
388 struct kobj_attribute *attr, char *buf)
389 {
390 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
391 }
392 static struct kobj_attribute hpage_pmd_size_attr =
393 __ATTR_RO(hpage_pmd_size);
394
395 static struct attribute *hugepage_attr[] = {
396 &enabled_attr.attr,
397 &defrag_attr.attr,
398 &use_zero_page_attr.attr,
399 &hpage_pmd_size_attr.attr,
400 #ifdef CONFIG_SHMEM
401 &shmem_enabled_attr.attr,
402 #endif
403 NULL,
404 };
405
406 static const struct attribute_group hugepage_attr_group = {
407 .attrs = hugepage_attr,
408 };
409
hugepage_init_sysfs(struct kobject ** hugepage_kobj)410 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
411 {
412 int err;
413
414 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
415 if (unlikely(!*hugepage_kobj)) {
416 pr_err("failed to create transparent hugepage kobject\n");
417 return -ENOMEM;
418 }
419
420 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
421 if (err) {
422 pr_err("failed to register transparent hugepage group\n");
423 goto delete_obj;
424 }
425
426 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
427 if (err) {
428 pr_err("failed to register transparent hugepage group\n");
429 goto remove_hp_group;
430 }
431
432 return 0;
433
434 remove_hp_group:
435 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
436 delete_obj:
437 kobject_put(*hugepage_kobj);
438 return err;
439 }
440
hugepage_exit_sysfs(struct kobject * hugepage_kobj)441 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
442 {
443 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
444 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
445 kobject_put(hugepage_kobj);
446 }
447 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)448 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
449 {
450 return 0;
451 }
452
hugepage_exit_sysfs(struct kobject * hugepage_kobj)453 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
454 {
455 }
456 #endif /* CONFIG_SYSFS */
457
hugepage_init(void)458 static int __init hugepage_init(void)
459 {
460 int err;
461 struct kobject *hugepage_kobj;
462
463 if (!has_transparent_hugepage()) {
464 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
465 return -EINVAL;
466 }
467
468 /*
469 * hugepages can't be allocated by the buddy allocator
470 */
471 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_ORDER);
472 /*
473 * we use page->mapping and page->index in second tail page
474 * as list_head: assuming THP order >= 2
475 */
476 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
477
478 err = hugepage_init_sysfs(&hugepage_kobj);
479 if (err)
480 goto err_sysfs;
481
482 err = khugepaged_init();
483 if (err)
484 goto err_slab;
485
486 err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
487 if (err)
488 goto err_hzp_shrinker;
489 err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
490 if (err)
491 goto err_split_shrinker;
492
493 /*
494 * By default disable transparent hugepages on smaller systems,
495 * where the extra memory used could hurt more than TLB overhead
496 * is likely to save. The admin can still enable it through /sys.
497 */
498 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
499 transparent_hugepage_flags = 0;
500 return 0;
501 }
502
503 err = start_stop_khugepaged();
504 if (err)
505 goto err_khugepaged;
506
507 return 0;
508 err_khugepaged:
509 unregister_shrinker(&deferred_split_shrinker);
510 err_split_shrinker:
511 unregister_shrinker(&huge_zero_page_shrinker);
512 err_hzp_shrinker:
513 khugepaged_destroy();
514 err_slab:
515 hugepage_exit_sysfs(hugepage_kobj);
516 err_sysfs:
517 return err;
518 }
519 subsys_initcall(hugepage_init);
520
setup_transparent_hugepage(char * str)521 static int __init setup_transparent_hugepage(char *str)
522 {
523 int ret = 0;
524 if (!str)
525 goto out;
526 if (!strcmp(str, "always")) {
527 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
528 &transparent_hugepage_flags);
529 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
530 &transparent_hugepage_flags);
531 ret = 1;
532 } else if (!strcmp(str, "madvise")) {
533 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
534 &transparent_hugepage_flags);
535 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
536 &transparent_hugepage_flags);
537 ret = 1;
538 } else if (!strcmp(str, "never")) {
539 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
540 &transparent_hugepage_flags);
541 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
542 &transparent_hugepage_flags);
543 ret = 1;
544 }
545 out:
546 if (!ret)
547 pr_warn("transparent_hugepage= cannot parse, ignored\n");
548 return ret;
549 }
550 __setup("transparent_hugepage=", setup_transparent_hugepage);
551
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)552 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
553 {
554 if (likely(vma->vm_flags & VM_WRITE))
555 pmd = pmd_mkwrite(pmd, vma);
556 return pmd;
557 }
558
559 #ifdef CONFIG_MEMCG
560 static inline
get_deferred_split_queue(struct folio * folio)561 struct deferred_split *get_deferred_split_queue(struct folio *folio)
562 {
563 struct mem_cgroup *memcg = folio_memcg(folio);
564 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
565
566 if (memcg)
567 return &memcg->deferred_split_queue;
568 else
569 return &pgdat->deferred_split_queue;
570 }
571 #else
572 static inline
get_deferred_split_queue(struct folio * folio)573 struct deferred_split *get_deferred_split_queue(struct folio *folio)
574 {
575 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
576
577 return &pgdat->deferred_split_queue;
578 }
579 #endif
580
folio_prep_large_rmappable(struct folio * folio)581 void folio_prep_large_rmappable(struct folio *folio)
582 {
583 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
584 INIT_LIST_HEAD(&folio->_deferred_list);
585 folio_set_large_rmappable(folio);
586 }
587
is_transparent_hugepage(struct folio * folio)588 static inline bool is_transparent_hugepage(struct folio *folio)
589 {
590 if (!folio_test_large(folio))
591 return false;
592
593 return is_huge_zero_page(&folio->page) ||
594 folio_test_large_rmappable(folio);
595 }
596
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size)597 static unsigned long __thp_get_unmapped_area(struct file *filp,
598 unsigned long addr, unsigned long len,
599 loff_t off, unsigned long flags, unsigned long size)
600 {
601 loff_t off_end = off + len;
602 loff_t off_align = round_up(off, size);
603 unsigned long len_pad, ret;
604
605 if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
606 return 0;
607
608 if (off_end <= off_align || (off_end - off_align) < size)
609 return 0;
610
611 len_pad = len + size;
612 if (len_pad < len || (off + len_pad) < off)
613 return 0;
614
615 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
616 off >> PAGE_SHIFT, flags);
617
618 /*
619 * The failure might be due to length padding. The caller will retry
620 * without the padding.
621 */
622 if (IS_ERR_VALUE(ret))
623 return 0;
624
625 /*
626 * Do not try to align to THP boundary if allocation at the address
627 * hint succeeds.
628 */
629 if (ret == addr)
630 return addr;
631
632 ret += (off - ret) & (size - 1);
633 return ret;
634 }
635
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)636 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
637 unsigned long len, unsigned long pgoff, unsigned long flags)
638 {
639 unsigned long ret;
640 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
641
642 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
643 if (ret)
644 return ret;
645
646 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
647 }
648 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
649
__do_huge_pmd_anonymous_page(struct vm_fault * vmf,struct page * page,gfp_t gfp)650 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
651 struct page *page, gfp_t gfp)
652 {
653 struct vm_area_struct *vma = vmf->vma;
654 struct folio *folio = page_folio(page);
655 pgtable_t pgtable;
656 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
657 vm_fault_t ret = 0;
658
659 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
660
661 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
662 folio_put(folio);
663 count_vm_event(THP_FAULT_FALLBACK);
664 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
665 return VM_FAULT_FALLBACK;
666 }
667 folio_throttle_swaprate(folio, gfp);
668
669 pgtable = pte_alloc_one(vma->vm_mm);
670 if (unlikely(!pgtable)) {
671 ret = VM_FAULT_OOM;
672 goto release;
673 }
674
675 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
676 /*
677 * The memory barrier inside __folio_mark_uptodate makes sure that
678 * clear_huge_page writes become visible before the set_pmd_at()
679 * write.
680 */
681 __folio_mark_uptodate(folio);
682
683 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
684 if (unlikely(!pmd_none(*vmf->pmd))) {
685 goto unlock_release;
686 } else {
687 pmd_t entry;
688
689 ret = check_stable_address_space(vma->vm_mm);
690 if (ret)
691 goto unlock_release;
692
693 /* Deliver the page fault to userland */
694 if (userfaultfd_missing(vma)) {
695 spin_unlock(vmf->ptl);
696 folio_put(folio);
697 pte_free(vma->vm_mm, pgtable);
698 ret = handle_userfault(vmf, VM_UFFD_MISSING);
699 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
700 return ret;
701 }
702
703 entry = mk_huge_pmd(page, vma->vm_page_prot);
704 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
705 folio_add_new_anon_rmap(folio, vma, haddr);
706 folio_add_lru_vma(folio, vma);
707 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
708 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
709 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
710 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
711 mm_inc_nr_ptes(vma->vm_mm);
712 spin_unlock(vmf->ptl);
713 count_vm_event(THP_FAULT_ALLOC);
714 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
715 }
716
717 return 0;
718 unlock_release:
719 spin_unlock(vmf->ptl);
720 release:
721 if (pgtable)
722 pte_free(vma->vm_mm, pgtable);
723 folio_put(folio);
724 return ret;
725
726 }
727
728 /*
729 * always: directly stall for all thp allocations
730 * defer: wake kswapd and fail if not immediately available
731 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
732 * fail if not immediately available
733 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
734 * available
735 * never: never stall for any thp allocation
736 */
vma_thp_gfp_mask(struct vm_area_struct * vma)737 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
738 {
739 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
740
741 /* Always do synchronous compaction */
742 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
743 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
744
745 /* Kick kcompactd and fail quickly */
746 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
747 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
748
749 /* Synchronous compaction if madvised, otherwise kick kcompactd */
750 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
751 return GFP_TRANSHUGE_LIGHT |
752 (vma_madvised ? __GFP_DIRECT_RECLAIM :
753 __GFP_KSWAPD_RECLAIM);
754
755 /* Only do synchronous compaction if madvised */
756 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
757 return GFP_TRANSHUGE_LIGHT |
758 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
759
760 return GFP_TRANSHUGE_LIGHT;
761 }
762
763 /* Caller must hold page table lock. */
set_huge_zero_page(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct page * zero_page)764 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
765 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
766 struct page *zero_page)
767 {
768 pmd_t entry;
769 if (!pmd_none(*pmd))
770 return;
771 entry = mk_pmd(zero_page, vma->vm_page_prot);
772 entry = pmd_mkhuge(entry);
773 pgtable_trans_huge_deposit(mm, pmd, pgtable);
774 set_pmd_at(mm, haddr, pmd, entry);
775 mm_inc_nr_ptes(mm);
776 }
777
do_huge_pmd_anonymous_page(struct vm_fault * vmf)778 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
779 {
780 struct vm_area_struct *vma = vmf->vma;
781 gfp_t gfp;
782 struct folio *folio;
783 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
784
785 if (!transhuge_vma_suitable(vma, haddr))
786 return VM_FAULT_FALLBACK;
787 if (unlikely(anon_vma_prepare(vma)))
788 return VM_FAULT_OOM;
789 khugepaged_enter_vma(vma, vma->vm_flags);
790
791 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
792 !mm_forbids_zeropage(vma->vm_mm) &&
793 transparent_hugepage_use_zero_page()) {
794 pgtable_t pgtable;
795 struct page *zero_page;
796 vm_fault_t ret;
797 pgtable = pte_alloc_one(vma->vm_mm);
798 if (unlikely(!pgtable))
799 return VM_FAULT_OOM;
800 zero_page = mm_get_huge_zero_page(vma->vm_mm);
801 if (unlikely(!zero_page)) {
802 pte_free(vma->vm_mm, pgtable);
803 count_vm_event(THP_FAULT_FALLBACK);
804 return VM_FAULT_FALLBACK;
805 }
806 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
807 ret = 0;
808 if (pmd_none(*vmf->pmd)) {
809 ret = check_stable_address_space(vma->vm_mm);
810 if (ret) {
811 spin_unlock(vmf->ptl);
812 pte_free(vma->vm_mm, pgtable);
813 } else if (userfaultfd_missing(vma)) {
814 spin_unlock(vmf->ptl);
815 pte_free(vma->vm_mm, pgtable);
816 ret = handle_userfault(vmf, VM_UFFD_MISSING);
817 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
818 } else {
819 set_huge_zero_page(pgtable, vma->vm_mm, vma,
820 haddr, vmf->pmd, zero_page);
821 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
822 spin_unlock(vmf->ptl);
823 }
824 } else {
825 spin_unlock(vmf->ptl);
826 pte_free(vma->vm_mm, pgtable);
827 }
828 return ret;
829 }
830 gfp = vma_thp_gfp_mask(vma);
831 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
832 if (unlikely(!folio)) {
833 count_vm_event(THP_FAULT_FALLBACK);
834 return VM_FAULT_FALLBACK;
835 }
836 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
837 }
838
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,pgprot_t prot,bool write,pgtable_t pgtable)839 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
840 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
841 pgtable_t pgtable)
842 {
843 struct mm_struct *mm = vma->vm_mm;
844 pmd_t entry;
845 spinlock_t *ptl;
846
847 ptl = pmd_lock(mm, pmd);
848 if (!pmd_none(*pmd)) {
849 if (write) {
850 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
851 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
852 goto out_unlock;
853 }
854 entry = pmd_mkyoung(*pmd);
855 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
856 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
857 update_mmu_cache_pmd(vma, addr, pmd);
858 }
859
860 goto out_unlock;
861 }
862
863 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
864 if (pfn_t_devmap(pfn))
865 entry = pmd_mkdevmap(entry);
866 if (write) {
867 entry = pmd_mkyoung(pmd_mkdirty(entry));
868 entry = maybe_pmd_mkwrite(entry, vma);
869 }
870
871 if (pgtable) {
872 pgtable_trans_huge_deposit(mm, pmd, pgtable);
873 mm_inc_nr_ptes(mm);
874 pgtable = NULL;
875 }
876
877 set_pmd_at(mm, addr, pmd, entry);
878 update_mmu_cache_pmd(vma, addr, pmd);
879
880 out_unlock:
881 spin_unlock(ptl);
882 if (pgtable)
883 pte_free(mm, pgtable);
884 }
885
886 /**
887 * vmf_insert_pfn_pmd - insert a pmd size pfn
888 * @vmf: Structure describing the fault
889 * @pfn: pfn to insert
890 * @write: whether it's a write fault
891 *
892 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
893 *
894 * Return: vm_fault_t value.
895 */
vmf_insert_pfn_pmd(struct vm_fault * vmf,pfn_t pfn,bool write)896 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
897 {
898 unsigned long addr = vmf->address & PMD_MASK;
899 struct vm_area_struct *vma = vmf->vma;
900 pgprot_t pgprot = vma->vm_page_prot;
901 pgtable_t pgtable = NULL;
902
903 /*
904 * If we had pmd_special, we could avoid all these restrictions,
905 * but we need to be consistent with PTEs and architectures that
906 * can't support a 'special' bit.
907 */
908 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
909 !pfn_t_devmap(pfn));
910 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
911 (VM_PFNMAP|VM_MIXEDMAP));
912 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
913
914 if (addr < vma->vm_start || addr >= vma->vm_end)
915 return VM_FAULT_SIGBUS;
916
917 if (arch_needs_pgtable_deposit()) {
918 pgtable = pte_alloc_one(vma->vm_mm);
919 if (!pgtable)
920 return VM_FAULT_OOM;
921 }
922
923 track_pfn_insert(vma, &pgprot, pfn);
924
925 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
926 return VM_FAULT_NOPAGE;
927 }
928 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
929
930 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)931 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
932 {
933 if (likely(vma->vm_flags & VM_WRITE))
934 pud = pud_mkwrite(pud);
935 return pud;
936 }
937
insert_pfn_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,pfn_t pfn,bool write)938 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
939 pud_t *pud, pfn_t pfn, bool write)
940 {
941 struct mm_struct *mm = vma->vm_mm;
942 pgprot_t prot = vma->vm_page_prot;
943 pud_t entry;
944 spinlock_t *ptl;
945
946 ptl = pud_lock(mm, pud);
947 if (!pud_none(*pud)) {
948 if (write) {
949 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
950 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
951 goto out_unlock;
952 }
953 entry = pud_mkyoung(*pud);
954 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
955 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
956 update_mmu_cache_pud(vma, addr, pud);
957 }
958 goto out_unlock;
959 }
960
961 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
962 if (pfn_t_devmap(pfn))
963 entry = pud_mkdevmap(entry);
964 if (write) {
965 entry = pud_mkyoung(pud_mkdirty(entry));
966 entry = maybe_pud_mkwrite(entry, vma);
967 }
968 set_pud_at(mm, addr, pud, entry);
969 update_mmu_cache_pud(vma, addr, pud);
970
971 out_unlock:
972 spin_unlock(ptl);
973 }
974
975 /**
976 * vmf_insert_pfn_pud - insert a pud size pfn
977 * @vmf: Structure describing the fault
978 * @pfn: pfn to insert
979 * @write: whether it's a write fault
980 *
981 * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
982 *
983 * Return: vm_fault_t value.
984 */
vmf_insert_pfn_pud(struct vm_fault * vmf,pfn_t pfn,bool write)985 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
986 {
987 unsigned long addr = vmf->address & PUD_MASK;
988 struct vm_area_struct *vma = vmf->vma;
989 pgprot_t pgprot = vma->vm_page_prot;
990
991 /*
992 * If we had pud_special, we could avoid all these restrictions,
993 * but we need to be consistent with PTEs and architectures that
994 * can't support a 'special' bit.
995 */
996 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
997 !pfn_t_devmap(pfn));
998 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
999 (VM_PFNMAP|VM_MIXEDMAP));
1000 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1001
1002 if (addr < vma->vm_start || addr >= vma->vm_end)
1003 return VM_FAULT_SIGBUS;
1004
1005 track_pfn_insert(vma, &pgprot, pfn);
1006
1007 insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1008 return VM_FAULT_NOPAGE;
1009 }
1010 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1011 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1012
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,bool write)1013 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1014 pmd_t *pmd, bool write)
1015 {
1016 pmd_t _pmd;
1017
1018 _pmd = pmd_mkyoung(*pmd);
1019 if (write)
1020 _pmd = pmd_mkdirty(_pmd);
1021 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1022 pmd, _pmd, write))
1023 update_mmu_cache_pmd(vma, addr, pmd);
1024 }
1025
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags,struct dev_pagemap ** pgmap)1026 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1027 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1028 {
1029 unsigned long pfn = pmd_pfn(*pmd);
1030 struct mm_struct *mm = vma->vm_mm;
1031 struct page *page;
1032 int ret;
1033
1034 assert_spin_locked(pmd_lockptr(mm, pmd));
1035
1036 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1037 return NULL;
1038
1039 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1040 /* pass */;
1041 else
1042 return NULL;
1043
1044 if (flags & FOLL_TOUCH)
1045 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1046
1047 /*
1048 * device mapped pages can only be returned if the
1049 * caller will manage the page reference count.
1050 */
1051 if (!(flags & (FOLL_GET | FOLL_PIN)))
1052 return ERR_PTR(-EEXIST);
1053
1054 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1055 *pgmap = get_dev_pagemap(pfn, *pgmap);
1056 if (!*pgmap)
1057 return ERR_PTR(-EFAULT);
1058 page = pfn_to_page(pfn);
1059 ret = try_grab_folio(page_folio(page), 1, flags);
1060 if (ret)
1061 page = ERR_PTR(ret);
1062
1063 return page;
1064 }
1065
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1066 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1067 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1068 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1069 {
1070 spinlock_t *dst_ptl, *src_ptl;
1071 struct page *src_page;
1072 pmd_t pmd;
1073 pgtable_t pgtable = NULL;
1074 int ret = -ENOMEM;
1075
1076 /* Skip if can be re-fill on fault */
1077 if (!vma_is_anonymous(dst_vma))
1078 return 0;
1079
1080 pgtable = pte_alloc_one(dst_mm);
1081 if (unlikely(!pgtable))
1082 goto out;
1083
1084 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1085 src_ptl = pmd_lockptr(src_mm, src_pmd);
1086 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1087
1088 ret = -EAGAIN;
1089 pmd = *src_pmd;
1090
1091 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1092 if (unlikely(is_swap_pmd(pmd))) {
1093 swp_entry_t entry = pmd_to_swp_entry(pmd);
1094
1095 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1096 if (!is_readable_migration_entry(entry)) {
1097 entry = make_readable_migration_entry(
1098 swp_offset(entry));
1099 pmd = swp_entry_to_pmd(entry);
1100 if (pmd_swp_soft_dirty(*src_pmd))
1101 pmd = pmd_swp_mksoft_dirty(pmd);
1102 if (pmd_swp_uffd_wp(*src_pmd))
1103 pmd = pmd_swp_mkuffd_wp(pmd);
1104 set_pmd_at(src_mm, addr, src_pmd, pmd);
1105 }
1106 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1107 mm_inc_nr_ptes(dst_mm);
1108 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1109 if (!userfaultfd_wp(dst_vma))
1110 pmd = pmd_swp_clear_uffd_wp(pmd);
1111 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1112 ret = 0;
1113 goto out_unlock;
1114 }
1115 #endif
1116
1117 if (unlikely(!pmd_trans_huge(pmd))) {
1118 pte_free(dst_mm, pgtable);
1119 goto out_unlock;
1120 }
1121 /*
1122 * When page table lock is held, the huge zero pmd should not be
1123 * under splitting since we don't split the page itself, only pmd to
1124 * a page table.
1125 */
1126 if (is_huge_zero_pmd(pmd)) {
1127 /*
1128 * get_huge_zero_page() will never allocate a new page here,
1129 * since we already have a zero page to copy. It just takes a
1130 * reference.
1131 */
1132 mm_get_huge_zero_page(dst_mm);
1133 goto out_zero_page;
1134 }
1135
1136 src_page = pmd_page(pmd);
1137 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1138
1139 get_page(src_page);
1140 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1141 /* Page maybe pinned: split and retry the fault on PTEs. */
1142 put_page(src_page);
1143 pte_free(dst_mm, pgtable);
1144 spin_unlock(src_ptl);
1145 spin_unlock(dst_ptl);
1146 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1147 return -EAGAIN;
1148 }
1149 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1150 out_zero_page:
1151 mm_inc_nr_ptes(dst_mm);
1152 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1153 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1154 if (!userfaultfd_wp(dst_vma))
1155 pmd = pmd_clear_uffd_wp(pmd);
1156 pmd = pmd_mkold(pmd_wrprotect(pmd));
1157 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1158
1159 ret = 0;
1160 out_unlock:
1161 spin_unlock(src_ptl);
1162 spin_unlock(dst_ptl);
1163 out:
1164 return ret;
1165 }
1166
1167 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,bool write)1168 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1169 pud_t *pud, bool write)
1170 {
1171 pud_t _pud;
1172
1173 _pud = pud_mkyoung(*pud);
1174 if (write)
1175 _pud = pud_mkdirty(_pud);
1176 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1177 pud, _pud, write))
1178 update_mmu_cache_pud(vma, addr, pud);
1179 }
1180
follow_devmap_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags,struct dev_pagemap ** pgmap)1181 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1182 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1183 {
1184 unsigned long pfn = pud_pfn(*pud);
1185 struct mm_struct *mm = vma->vm_mm;
1186 struct page *page;
1187 int ret;
1188
1189 assert_spin_locked(pud_lockptr(mm, pud));
1190
1191 if (flags & FOLL_WRITE && !pud_write(*pud))
1192 return NULL;
1193
1194 if (pud_present(*pud) && pud_devmap(*pud))
1195 /* pass */;
1196 else
1197 return NULL;
1198
1199 if (flags & FOLL_TOUCH)
1200 touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1201
1202 /*
1203 * device mapped pages can only be returned if the
1204 * caller will manage the page reference count.
1205 *
1206 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1207 */
1208 if (!(flags & (FOLL_GET | FOLL_PIN)))
1209 return ERR_PTR(-EEXIST);
1210
1211 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1212 *pgmap = get_dev_pagemap(pfn, *pgmap);
1213 if (!*pgmap)
1214 return ERR_PTR(-EFAULT);
1215 page = pfn_to_page(pfn);
1216
1217 ret = try_grab_folio(page_folio(page), 1, flags);
1218 if (ret)
1219 page = ERR_PTR(ret);
1220
1221 return page;
1222 }
1223
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1224 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1225 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1226 struct vm_area_struct *vma)
1227 {
1228 spinlock_t *dst_ptl, *src_ptl;
1229 pud_t pud;
1230 int ret;
1231
1232 dst_ptl = pud_lock(dst_mm, dst_pud);
1233 src_ptl = pud_lockptr(src_mm, src_pud);
1234 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1235
1236 ret = -EAGAIN;
1237 pud = *src_pud;
1238 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1239 goto out_unlock;
1240
1241 /*
1242 * When page table lock is held, the huge zero pud should not be
1243 * under splitting since we don't split the page itself, only pud to
1244 * a page table.
1245 */
1246 if (is_huge_zero_pud(pud)) {
1247 /* No huge zero pud yet */
1248 }
1249
1250 /*
1251 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1252 * and split if duplicating fails.
1253 */
1254 pudp_set_wrprotect(src_mm, addr, src_pud);
1255 pud = pud_mkold(pud_wrprotect(pud));
1256 set_pud_at(dst_mm, addr, dst_pud, pud);
1257
1258 ret = 0;
1259 out_unlock:
1260 spin_unlock(src_ptl);
1261 spin_unlock(dst_ptl);
1262 return ret;
1263 }
1264
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1265 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1266 {
1267 bool write = vmf->flags & FAULT_FLAG_WRITE;
1268
1269 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1270 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1271 goto unlock;
1272
1273 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1274 unlock:
1275 spin_unlock(vmf->ptl);
1276 }
1277 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1278
huge_pmd_set_accessed(struct vm_fault * vmf)1279 void huge_pmd_set_accessed(struct vm_fault *vmf)
1280 {
1281 bool write = vmf->flags & FAULT_FLAG_WRITE;
1282
1283 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1284 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1285 goto unlock;
1286
1287 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1288
1289 unlock:
1290 spin_unlock(vmf->ptl);
1291 }
1292
do_huge_pmd_wp_page(struct vm_fault * vmf)1293 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1294 {
1295 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1296 struct vm_area_struct *vma = vmf->vma;
1297 struct folio *folio;
1298 struct page *page;
1299 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1300 pmd_t orig_pmd = vmf->orig_pmd;
1301
1302 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1303 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1304
1305 if (is_huge_zero_pmd(orig_pmd))
1306 goto fallback;
1307
1308 spin_lock(vmf->ptl);
1309
1310 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1311 spin_unlock(vmf->ptl);
1312 return 0;
1313 }
1314
1315 page = pmd_page(orig_pmd);
1316 folio = page_folio(page);
1317 VM_BUG_ON_PAGE(!PageHead(page), page);
1318
1319 /* Early check when only holding the PT lock. */
1320 if (PageAnonExclusive(page))
1321 goto reuse;
1322
1323 if (!folio_trylock(folio)) {
1324 folio_get(folio);
1325 spin_unlock(vmf->ptl);
1326 folio_lock(folio);
1327 spin_lock(vmf->ptl);
1328 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1329 spin_unlock(vmf->ptl);
1330 folio_unlock(folio);
1331 folio_put(folio);
1332 return 0;
1333 }
1334 folio_put(folio);
1335 }
1336
1337 /* Recheck after temporarily dropping the PT lock. */
1338 if (PageAnonExclusive(page)) {
1339 folio_unlock(folio);
1340 goto reuse;
1341 }
1342
1343 /*
1344 * See do_wp_page(): we can only reuse the folio exclusively if
1345 * there are no additional references. Note that we always drain
1346 * the LRU cache immediately after adding a THP.
1347 */
1348 if (folio_ref_count(folio) >
1349 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1350 goto unlock_fallback;
1351 if (folio_test_swapcache(folio))
1352 folio_free_swap(folio);
1353 if (folio_ref_count(folio) == 1) {
1354 pmd_t entry;
1355
1356 page_move_anon_rmap(page, vma);
1357 folio_unlock(folio);
1358 reuse:
1359 if (unlikely(unshare)) {
1360 spin_unlock(vmf->ptl);
1361 return 0;
1362 }
1363 entry = pmd_mkyoung(orig_pmd);
1364 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1365 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1366 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1367 spin_unlock(vmf->ptl);
1368 return 0;
1369 }
1370
1371 unlock_fallback:
1372 folio_unlock(folio);
1373 spin_unlock(vmf->ptl);
1374 fallback:
1375 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1376 return VM_FAULT_FALLBACK;
1377 }
1378
can_change_pmd_writable(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)1379 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1380 unsigned long addr, pmd_t pmd)
1381 {
1382 struct page *page;
1383
1384 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1385 return false;
1386
1387 /* Don't touch entries that are not even readable (NUMA hinting). */
1388 if (pmd_protnone(pmd))
1389 return false;
1390
1391 /* Do we need write faults for softdirty tracking? */
1392 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1393 return false;
1394
1395 /* Do we need write faults for uffd-wp tracking? */
1396 if (userfaultfd_huge_pmd_wp(vma, pmd))
1397 return false;
1398
1399 if (!(vma->vm_flags & VM_SHARED)) {
1400 /* See can_change_pte_writable(). */
1401 page = vm_normal_page_pmd(vma, addr, pmd);
1402 return page && PageAnon(page) && PageAnonExclusive(page);
1403 }
1404
1405 /* See can_change_pte_writable(). */
1406 return pmd_dirty(pmd);
1407 }
1408
1409 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
can_follow_write_pmd(pmd_t pmd,struct page * page,struct vm_area_struct * vma,unsigned int flags)1410 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1411 struct vm_area_struct *vma,
1412 unsigned int flags)
1413 {
1414 /* If the pmd is writable, we can write to the page. */
1415 if (pmd_write(pmd))
1416 return true;
1417
1418 /* Maybe FOLL_FORCE is set to override it? */
1419 if (!(flags & FOLL_FORCE))
1420 return false;
1421
1422 /* But FOLL_FORCE has no effect on shared mappings */
1423 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1424 return false;
1425
1426 /* ... or read-only private ones */
1427 if (!(vma->vm_flags & VM_MAYWRITE))
1428 return false;
1429
1430 /* ... or already writable ones that just need to take a write fault */
1431 if (vma->vm_flags & VM_WRITE)
1432 return false;
1433
1434 /*
1435 * See can_change_pte_writable(): we broke COW and could map the page
1436 * writable if we have an exclusive anonymous page ...
1437 */
1438 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1439 return false;
1440
1441 /* ... and a write-fault isn't required for other reasons. */
1442 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1443 return false;
1444 return !userfaultfd_huge_pmd_wp(vma, pmd);
1445 }
1446
follow_trans_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags)1447 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1448 unsigned long addr,
1449 pmd_t *pmd,
1450 unsigned int flags)
1451 {
1452 struct mm_struct *mm = vma->vm_mm;
1453 struct page *page;
1454 int ret;
1455
1456 assert_spin_locked(pmd_lockptr(mm, pmd));
1457
1458 page = pmd_page(*pmd);
1459 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1460
1461 if ((flags & FOLL_WRITE) &&
1462 !can_follow_write_pmd(*pmd, page, vma, flags))
1463 return NULL;
1464
1465 /* Avoid dumping huge zero page */
1466 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1467 return ERR_PTR(-EFAULT);
1468
1469 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
1470 return NULL;
1471
1472 if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1473 return ERR_PTR(-EMLINK);
1474
1475 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1476 !PageAnonExclusive(page), page);
1477
1478 ret = try_grab_folio(page_folio(page), 1, flags);
1479 if (ret)
1480 return ERR_PTR(ret);
1481
1482 if (flags & FOLL_TOUCH)
1483 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1484
1485 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1486 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1487
1488 return page;
1489 }
1490
1491 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf)1492 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1493 {
1494 struct vm_area_struct *vma = vmf->vma;
1495 pmd_t oldpmd = vmf->orig_pmd;
1496 pmd_t pmd;
1497 struct page *page;
1498 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1499 int page_nid = NUMA_NO_NODE;
1500 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1501 bool migrated = false, writable = false;
1502 int flags = 0;
1503
1504 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1505 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1506 spin_unlock(vmf->ptl);
1507 return 0;
1508 }
1509
1510 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1511
1512 /*
1513 * Detect now whether the PMD could be writable; this information
1514 * is only valid while holding the PT lock.
1515 */
1516 writable = pmd_write(pmd);
1517 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1518 can_change_pmd_writable(vma, vmf->address, pmd))
1519 writable = true;
1520
1521 page = vm_normal_page_pmd(vma, haddr, pmd);
1522 if (!page)
1523 goto out_map;
1524
1525 /* See similar comment in do_numa_page for explanation */
1526 if (!writable)
1527 flags |= TNF_NO_GROUP;
1528
1529 page_nid = page_to_nid(page);
1530 /*
1531 * For memory tiering mode, cpupid of slow memory page is used
1532 * to record page access time. So use default value.
1533 */
1534 if (node_is_toptier(page_nid))
1535 last_cpupid = page_cpupid_last(page);
1536 target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1537 &flags);
1538
1539 if (target_nid == NUMA_NO_NODE) {
1540 put_page(page);
1541 goto out_map;
1542 }
1543
1544 spin_unlock(vmf->ptl);
1545 writable = false;
1546
1547 migrated = migrate_misplaced_page(page, vma, target_nid);
1548 if (migrated) {
1549 flags |= TNF_MIGRATED;
1550 page_nid = target_nid;
1551 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1552 return 0;
1553 }
1554
1555 flags |= TNF_MIGRATE_FAIL;
1556 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1557 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1558 spin_unlock(vmf->ptl);
1559 return 0;
1560 }
1561 out_map:
1562 /* Restore the PMD */
1563 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1564 pmd = pmd_mkyoung(pmd);
1565 if (writable)
1566 pmd = pmd_mkwrite(pmd, vma);
1567 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1568 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1569 spin_unlock(vmf->ptl);
1570
1571 if (page_nid != NUMA_NO_NODE)
1572 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1573 return 0;
1574 }
1575
1576 /*
1577 * Return true if we do MADV_FREE successfully on entire pmd page.
1578 * Otherwise, return false.
1579 */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)1580 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1581 pmd_t *pmd, unsigned long addr, unsigned long next)
1582 {
1583 spinlock_t *ptl;
1584 pmd_t orig_pmd;
1585 struct folio *folio;
1586 struct mm_struct *mm = tlb->mm;
1587 bool ret = false;
1588
1589 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1590
1591 ptl = pmd_trans_huge_lock(pmd, vma);
1592 if (!ptl)
1593 goto out_unlocked;
1594
1595 orig_pmd = *pmd;
1596 if (is_huge_zero_pmd(orig_pmd))
1597 goto out;
1598
1599 if (unlikely(!pmd_present(orig_pmd))) {
1600 VM_BUG_ON(thp_migration_supported() &&
1601 !is_pmd_migration_entry(orig_pmd));
1602 goto out;
1603 }
1604
1605 folio = pfn_folio(pmd_pfn(orig_pmd));
1606 /*
1607 * If other processes are mapping this folio, we couldn't discard
1608 * the folio unless they all do MADV_FREE so let's skip the folio.
1609 */
1610 if (folio_estimated_sharers(folio) != 1)
1611 goto out;
1612
1613 if (!folio_trylock(folio))
1614 goto out;
1615
1616 /*
1617 * If user want to discard part-pages of THP, split it so MADV_FREE
1618 * will deactivate only them.
1619 */
1620 if (next - addr != HPAGE_PMD_SIZE) {
1621 folio_get(folio);
1622 spin_unlock(ptl);
1623 split_folio(folio);
1624 folio_unlock(folio);
1625 folio_put(folio);
1626 goto out_unlocked;
1627 }
1628
1629 if (folio_test_dirty(folio))
1630 folio_clear_dirty(folio);
1631 folio_unlock(folio);
1632
1633 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1634 pmdp_invalidate(vma, addr, pmd);
1635 orig_pmd = pmd_mkold(orig_pmd);
1636 orig_pmd = pmd_mkclean(orig_pmd);
1637
1638 set_pmd_at(mm, addr, pmd, orig_pmd);
1639 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1640 }
1641
1642 folio_mark_lazyfree(folio);
1643 ret = true;
1644 out:
1645 spin_unlock(ptl);
1646 out_unlocked:
1647 return ret;
1648 }
1649
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)1650 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1651 {
1652 pgtable_t pgtable;
1653
1654 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1655 pte_free(mm, pgtable);
1656 mm_dec_nr_ptes(mm);
1657 }
1658
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)1659 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1660 pmd_t *pmd, unsigned long addr)
1661 {
1662 pmd_t orig_pmd;
1663 spinlock_t *ptl;
1664
1665 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1666
1667 ptl = __pmd_trans_huge_lock(pmd, vma);
1668 if (!ptl)
1669 return 0;
1670 /*
1671 * For architectures like ppc64 we look at deposited pgtable
1672 * when calling pmdp_huge_get_and_clear. So do the
1673 * pgtable_trans_huge_withdraw after finishing pmdp related
1674 * operations.
1675 */
1676 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1677 tlb->fullmm);
1678 arch_check_zapped_pmd(vma, orig_pmd);
1679 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1680 if (vma_is_special_huge(vma)) {
1681 if (arch_needs_pgtable_deposit())
1682 zap_deposited_table(tlb->mm, pmd);
1683 spin_unlock(ptl);
1684 } else if (is_huge_zero_pmd(orig_pmd)) {
1685 zap_deposited_table(tlb->mm, pmd);
1686 spin_unlock(ptl);
1687 } else {
1688 struct page *page = NULL;
1689 int flush_needed = 1;
1690
1691 if (pmd_present(orig_pmd)) {
1692 page = pmd_page(orig_pmd);
1693 page_remove_rmap(page, vma, true);
1694 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1695 VM_BUG_ON_PAGE(!PageHead(page), page);
1696 } else if (thp_migration_supported()) {
1697 swp_entry_t entry;
1698
1699 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1700 entry = pmd_to_swp_entry(orig_pmd);
1701 page = pfn_swap_entry_to_page(entry);
1702 flush_needed = 0;
1703 } else
1704 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1705
1706 if (PageAnon(page)) {
1707 zap_deposited_table(tlb->mm, pmd);
1708 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1709 } else {
1710 if (arch_needs_pgtable_deposit())
1711 zap_deposited_table(tlb->mm, pmd);
1712 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1713 }
1714
1715 spin_unlock(ptl);
1716 if (flush_needed)
1717 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1718 }
1719 return 1;
1720 }
1721
1722 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)1723 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1724 spinlock_t *old_pmd_ptl,
1725 struct vm_area_struct *vma)
1726 {
1727 /*
1728 * With split pmd lock we also need to move preallocated
1729 * PTE page table if new_pmd is on different PMD page table.
1730 *
1731 * We also don't deposit and withdraw tables for file pages.
1732 */
1733 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1734 }
1735 #endif
1736
move_soft_dirty_pmd(pmd_t pmd)1737 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1738 {
1739 #ifdef CONFIG_MEM_SOFT_DIRTY
1740 if (unlikely(is_pmd_migration_entry(pmd)))
1741 pmd = pmd_swp_mksoft_dirty(pmd);
1742 else if (pmd_present(pmd))
1743 pmd = pmd_mksoft_dirty(pmd);
1744 #endif
1745 return pmd;
1746 }
1747
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)1748 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1749 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1750 {
1751 spinlock_t *old_ptl, *new_ptl;
1752 pmd_t pmd;
1753 struct mm_struct *mm = vma->vm_mm;
1754 bool force_flush = false;
1755
1756 /*
1757 * The destination pmd shouldn't be established, free_pgtables()
1758 * should have released it; but move_page_tables() might have already
1759 * inserted a page table, if racing against shmem/file collapse.
1760 */
1761 if (!pmd_none(*new_pmd)) {
1762 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1763 return false;
1764 }
1765
1766 /*
1767 * We don't have to worry about the ordering of src and dst
1768 * ptlocks because exclusive mmap_lock prevents deadlock.
1769 */
1770 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1771 if (old_ptl) {
1772 new_ptl = pmd_lockptr(mm, new_pmd);
1773 if (new_ptl != old_ptl)
1774 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1775 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1776 if (pmd_present(pmd))
1777 force_flush = true;
1778 VM_BUG_ON(!pmd_none(*new_pmd));
1779
1780 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1781 pgtable_t pgtable;
1782 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1783 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1784 }
1785 pmd = move_soft_dirty_pmd(pmd);
1786 set_pmd_at(mm, new_addr, new_pmd, pmd);
1787 if (force_flush)
1788 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1789 if (new_ptl != old_ptl)
1790 spin_unlock(new_ptl);
1791 spin_unlock(old_ptl);
1792 return true;
1793 }
1794 return false;
1795 }
1796
1797 /*
1798 * Returns
1799 * - 0 if PMD could not be locked
1800 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1801 * or if prot_numa but THP migration is not supported
1802 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
1803 */
change_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)1804 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1805 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1806 unsigned long cp_flags)
1807 {
1808 struct mm_struct *mm = vma->vm_mm;
1809 spinlock_t *ptl;
1810 pmd_t oldpmd, entry;
1811 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1812 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1813 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1814 int ret = 1;
1815
1816 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1817
1818 if (prot_numa && !thp_migration_supported())
1819 return 1;
1820
1821 ptl = __pmd_trans_huge_lock(pmd, vma);
1822 if (!ptl)
1823 return 0;
1824
1825 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1826 if (is_swap_pmd(*pmd)) {
1827 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1828 struct page *page = pfn_swap_entry_to_page(entry);
1829 pmd_t newpmd;
1830
1831 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1832 if (is_writable_migration_entry(entry)) {
1833 /*
1834 * A protection check is difficult so
1835 * just be safe and disable write
1836 */
1837 if (PageAnon(page))
1838 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1839 else
1840 entry = make_readable_migration_entry(swp_offset(entry));
1841 newpmd = swp_entry_to_pmd(entry);
1842 if (pmd_swp_soft_dirty(*pmd))
1843 newpmd = pmd_swp_mksoft_dirty(newpmd);
1844 } else {
1845 newpmd = *pmd;
1846 }
1847
1848 if (uffd_wp)
1849 newpmd = pmd_swp_mkuffd_wp(newpmd);
1850 else if (uffd_wp_resolve)
1851 newpmd = pmd_swp_clear_uffd_wp(newpmd);
1852 if (!pmd_same(*pmd, newpmd))
1853 set_pmd_at(mm, addr, pmd, newpmd);
1854 goto unlock;
1855 }
1856 #endif
1857
1858 if (prot_numa) {
1859 struct page *page;
1860 bool toptier;
1861 /*
1862 * Avoid trapping faults against the zero page. The read-only
1863 * data is likely to be read-cached on the local CPU and
1864 * local/remote hits to the zero page are not interesting.
1865 */
1866 if (is_huge_zero_pmd(*pmd))
1867 goto unlock;
1868
1869 if (pmd_protnone(*pmd))
1870 goto unlock;
1871
1872 page = pmd_page(*pmd);
1873 toptier = node_is_toptier(page_to_nid(page));
1874 /*
1875 * Skip scanning top tier node if normal numa
1876 * balancing is disabled
1877 */
1878 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1879 toptier)
1880 goto unlock;
1881
1882 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1883 !toptier)
1884 xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1885 }
1886 /*
1887 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1888 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1889 * which is also under mmap_read_lock(mm):
1890 *
1891 * CPU0: CPU1:
1892 * change_huge_pmd(prot_numa=1)
1893 * pmdp_huge_get_and_clear_notify()
1894 * madvise_dontneed()
1895 * zap_pmd_range()
1896 * pmd_trans_huge(*pmd) == 0 (without ptl)
1897 * // skip the pmd
1898 * set_pmd_at();
1899 * // pmd is re-established
1900 *
1901 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1902 * which may break userspace.
1903 *
1904 * pmdp_invalidate_ad() is required to make sure we don't miss
1905 * dirty/young flags set by hardware.
1906 */
1907 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1908
1909 entry = pmd_modify(oldpmd, newprot);
1910 if (uffd_wp)
1911 entry = pmd_mkuffd_wp(entry);
1912 else if (uffd_wp_resolve)
1913 /*
1914 * Leave the write bit to be handled by PF interrupt
1915 * handler, then things like COW could be properly
1916 * handled.
1917 */
1918 entry = pmd_clear_uffd_wp(entry);
1919
1920 /* See change_pte_range(). */
1921 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1922 can_change_pmd_writable(vma, addr, entry))
1923 entry = pmd_mkwrite(entry, vma);
1924
1925 ret = HPAGE_PMD_NR;
1926 set_pmd_at(mm, addr, pmd, entry);
1927
1928 if (huge_pmd_needs_flush(oldpmd, entry))
1929 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1930 unlock:
1931 spin_unlock(ptl);
1932 return ret;
1933 }
1934
1935 /*
1936 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1937 *
1938 * Note that if it returns page table lock pointer, this routine returns without
1939 * unlocking page table lock. So callers must unlock it.
1940 */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)1941 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1942 {
1943 spinlock_t *ptl;
1944 ptl = pmd_lock(vma->vm_mm, pmd);
1945 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1946 pmd_devmap(*pmd)))
1947 return ptl;
1948 spin_unlock(ptl);
1949 return NULL;
1950 }
1951
1952 /*
1953 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1954 *
1955 * Note that if it returns page table lock pointer, this routine returns without
1956 * unlocking page table lock. So callers must unlock it.
1957 */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)1958 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1959 {
1960 spinlock_t *ptl;
1961
1962 ptl = pud_lock(vma->vm_mm, pud);
1963 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1964 return ptl;
1965 spin_unlock(ptl);
1966 return NULL;
1967 }
1968
1969 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)1970 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1971 pud_t *pud, unsigned long addr)
1972 {
1973 spinlock_t *ptl;
1974
1975 ptl = __pud_trans_huge_lock(pud, vma);
1976 if (!ptl)
1977 return 0;
1978
1979 pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
1980 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1981 if (vma_is_special_huge(vma)) {
1982 spin_unlock(ptl);
1983 /* No zero page support yet */
1984 } else {
1985 /* No support for anonymous PUD pages yet */
1986 BUG();
1987 }
1988 return 1;
1989 }
1990
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)1991 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1992 unsigned long haddr)
1993 {
1994 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1995 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1996 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1997 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1998
1999 count_vm_event(THP_SPLIT_PUD);
2000
2001 pudp_huge_clear_flush(vma, haddr, pud);
2002 }
2003
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2004 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2005 unsigned long address)
2006 {
2007 spinlock_t *ptl;
2008 struct mmu_notifier_range range;
2009
2010 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2011 address & HPAGE_PUD_MASK,
2012 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2013 mmu_notifier_invalidate_range_start(&range);
2014 ptl = pud_lock(vma->vm_mm, pud);
2015 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2016 goto out;
2017 __split_huge_pud_locked(vma, pud, range.start);
2018
2019 out:
2020 spin_unlock(ptl);
2021 mmu_notifier_invalidate_range_end(&range);
2022 }
2023 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2024
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)2025 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2026 unsigned long haddr, pmd_t *pmd)
2027 {
2028 struct mm_struct *mm = vma->vm_mm;
2029 pgtable_t pgtable;
2030 pmd_t _pmd, old_pmd;
2031 unsigned long addr;
2032 pte_t *pte;
2033 int i;
2034
2035 /*
2036 * Leave pmd empty until pte is filled note that it is fine to delay
2037 * notification until mmu_notifier_invalidate_range_end() as we are
2038 * replacing a zero pmd write protected page with a zero pte write
2039 * protected page.
2040 *
2041 * See Documentation/mm/mmu_notifier.rst
2042 */
2043 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2044
2045 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2046 pmd_populate(mm, &_pmd, pgtable);
2047
2048 pte = pte_offset_map(&_pmd, haddr);
2049 VM_BUG_ON(!pte);
2050 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2051 pte_t entry;
2052
2053 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2054 entry = pte_mkspecial(entry);
2055 if (pmd_uffd_wp(old_pmd))
2056 entry = pte_mkuffd_wp(entry);
2057 VM_BUG_ON(!pte_none(ptep_get(pte)));
2058 set_pte_at(mm, addr, pte, entry);
2059 pte++;
2060 }
2061 pte_unmap(pte - 1);
2062 smp_wmb(); /* make pte visible before pmd */
2063 pmd_populate(mm, pmd, pgtable);
2064 }
2065
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2066 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2067 unsigned long haddr, bool freeze)
2068 {
2069 struct mm_struct *mm = vma->vm_mm;
2070 struct page *page;
2071 pgtable_t pgtable;
2072 pmd_t old_pmd, _pmd;
2073 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2074 bool anon_exclusive = false, dirty = false;
2075 unsigned long addr;
2076 pte_t *pte;
2077 int i;
2078
2079 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2080 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2081 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2082 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2083 && !pmd_devmap(*pmd));
2084
2085 count_vm_event(THP_SPLIT_PMD);
2086
2087 if (!vma_is_anonymous(vma)) {
2088 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2089 /*
2090 * We are going to unmap this huge page. So
2091 * just go ahead and zap it
2092 */
2093 if (arch_needs_pgtable_deposit())
2094 zap_deposited_table(mm, pmd);
2095 if (vma_is_special_huge(vma))
2096 return;
2097 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2098 swp_entry_t entry;
2099
2100 entry = pmd_to_swp_entry(old_pmd);
2101 page = pfn_swap_entry_to_page(entry);
2102 } else {
2103 page = pmd_page(old_pmd);
2104 if (!PageDirty(page) && pmd_dirty(old_pmd))
2105 set_page_dirty(page);
2106 if (!PageReferenced(page) && pmd_young(old_pmd))
2107 SetPageReferenced(page);
2108 page_remove_rmap(page, vma, true);
2109 put_page(page);
2110 }
2111 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2112 return;
2113 }
2114
2115 if (is_huge_zero_pmd(*pmd)) {
2116 /*
2117 * FIXME: Do we want to invalidate secondary mmu by calling
2118 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2119 * inside __split_huge_pmd() ?
2120 *
2121 * We are going from a zero huge page write protected to zero
2122 * small page also write protected so it does not seems useful
2123 * to invalidate secondary mmu at this time.
2124 */
2125 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2126 }
2127
2128 pmd_migration = is_pmd_migration_entry(*pmd);
2129 if (unlikely(pmd_migration)) {
2130 swp_entry_t entry;
2131
2132 old_pmd = *pmd;
2133 entry = pmd_to_swp_entry(old_pmd);
2134 page = pfn_swap_entry_to_page(entry);
2135 write = is_writable_migration_entry(entry);
2136 if (PageAnon(page))
2137 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2138 young = is_migration_entry_young(entry);
2139 dirty = is_migration_entry_dirty(entry);
2140 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2141 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2142 } else {
2143 /*
2144 * Up to this point the pmd is present and huge and userland has
2145 * the whole access to the hugepage during the split (which
2146 * happens in place). If we overwrite the pmd with the not-huge
2147 * version pointing to the pte here (which of course we could if
2148 * all CPUs were bug free), userland could trigger a small page
2149 * size TLB miss on the small sized TLB while the hugepage TLB
2150 * entry is still established in the huge TLB. Some CPU doesn't
2151 * like that. See
2152 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2153 * 383 on page 105. Intel should be safe but is also warns that
2154 * it's only safe if the permission and cache attributes of the
2155 * two entries loaded in the two TLB is identical (which should
2156 * be the case here). But it is generally safer to never allow
2157 * small and huge TLB entries for the same virtual address to be
2158 * loaded simultaneously. So instead of doing "pmd_populate();
2159 * flush_pmd_tlb_range();" we first mark the current pmd
2160 * notpresent (atomically because here the pmd_trans_huge must
2161 * remain set at all times on the pmd until the split is
2162 * complete for this pmd), then we flush the SMP TLB and finally
2163 * we write the non-huge version of the pmd entry with
2164 * pmd_populate.
2165 */
2166 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2167 page = pmd_page(old_pmd);
2168 if (pmd_dirty(old_pmd)) {
2169 dirty = true;
2170 SetPageDirty(page);
2171 }
2172 write = pmd_write(old_pmd);
2173 young = pmd_young(old_pmd);
2174 soft_dirty = pmd_soft_dirty(old_pmd);
2175 uffd_wp = pmd_uffd_wp(old_pmd);
2176
2177 VM_BUG_ON_PAGE(!page_count(page), page);
2178
2179 /*
2180 * Without "freeze", we'll simply split the PMD, propagating the
2181 * PageAnonExclusive() flag for each PTE by setting it for
2182 * each subpage -- no need to (temporarily) clear.
2183 *
2184 * With "freeze" we want to replace mapped pages by
2185 * migration entries right away. This is only possible if we
2186 * managed to clear PageAnonExclusive() -- see
2187 * set_pmd_migration_entry().
2188 *
2189 * In case we cannot clear PageAnonExclusive(), split the PMD
2190 * only and let try_to_migrate_one() fail later.
2191 *
2192 * See page_try_share_anon_rmap(): invalidate PMD first.
2193 */
2194 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2195 if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2196 freeze = false;
2197 if (!freeze)
2198 page_ref_add(page, HPAGE_PMD_NR - 1);
2199 }
2200
2201 /*
2202 * Withdraw the table only after we mark the pmd entry invalid.
2203 * This's critical for some architectures (Power).
2204 */
2205 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2206 pmd_populate(mm, &_pmd, pgtable);
2207
2208 pte = pte_offset_map(&_pmd, haddr);
2209 VM_BUG_ON(!pte);
2210 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2211 pte_t entry;
2212 /*
2213 * Note that NUMA hinting access restrictions are not
2214 * transferred to avoid any possibility of altering
2215 * permissions across VMAs.
2216 */
2217 if (freeze || pmd_migration) {
2218 swp_entry_t swp_entry;
2219 if (write)
2220 swp_entry = make_writable_migration_entry(
2221 page_to_pfn(page + i));
2222 else if (anon_exclusive)
2223 swp_entry = make_readable_exclusive_migration_entry(
2224 page_to_pfn(page + i));
2225 else
2226 swp_entry = make_readable_migration_entry(
2227 page_to_pfn(page + i));
2228 if (young)
2229 swp_entry = make_migration_entry_young(swp_entry);
2230 if (dirty)
2231 swp_entry = make_migration_entry_dirty(swp_entry);
2232 entry = swp_entry_to_pte(swp_entry);
2233 if (soft_dirty)
2234 entry = pte_swp_mksoft_dirty(entry);
2235 if (uffd_wp)
2236 entry = pte_swp_mkuffd_wp(entry);
2237 } else {
2238 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2239 if (write)
2240 entry = pte_mkwrite(entry, vma);
2241 if (anon_exclusive)
2242 SetPageAnonExclusive(page + i);
2243 if (!young)
2244 entry = pte_mkold(entry);
2245 /* NOTE: this may set soft-dirty too on some archs */
2246 if (dirty)
2247 entry = pte_mkdirty(entry);
2248 if (soft_dirty)
2249 entry = pte_mksoft_dirty(entry);
2250 if (uffd_wp)
2251 entry = pte_mkuffd_wp(entry);
2252 page_add_anon_rmap(page + i, vma, addr, RMAP_NONE);
2253 }
2254 VM_BUG_ON(!pte_none(ptep_get(pte)));
2255 set_pte_at(mm, addr, pte, entry);
2256 pte++;
2257 }
2258 pte_unmap(pte - 1);
2259
2260 if (!pmd_migration)
2261 page_remove_rmap(page, vma, true);
2262 if (freeze)
2263 put_page(page);
2264
2265 smp_wmb(); /* make pte visible before pmd */
2266 pmd_populate(mm, pmd, pgtable);
2267 }
2268
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct folio * folio)2269 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2270 unsigned long address, bool freeze, struct folio *folio)
2271 {
2272 spinlock_t *ptl;
2273 struct mmu_notifier_range range;
2274
2275 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2276 address & HPAGE_PMD_MASK,
2277 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2278 mmu_notifier_invalidate_range_start(&range);
2279 ptl = pmd_lock(vma->vm_mm, pmd);
2280
2281 /*
2282 * If caller asks to setup a migration entry, we need a folio to check
2283 * pmd against. Otherwise we can end up replacing wrong folio.
2284 */
2285 VM_BUG_ON(freeze && !folio);
2286 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2287
2288 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2289 is_pmd_migration_entry(*pmd)) {
2290 /*
2291 * It's safe to call pmd_page when folio is set because it's
2292 * guaranteed that pmd is present.
2293 */
2294 if (folio && folio != page_folio(pmd_page(*pmd)))
2295 goto out;
2296 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2297 }
2298
2299 out:
2300 spin_unlock(ptl);
2301 mmu_notifier_invalidate_range_end(&range);
2302 }
2303
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct folio * folio)2304 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2305 bool freeze, struct folio *folio)
2306 {
2307 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2308
2309 if (!pmd)
2310 return;
2311
2312 __split_huge_pmd(vma, pmd, address, freeze, folio);
2313 }
2314
split_huge_pmd_if_needed(struct vm_area_struct * vma,unsigned long address)2315 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2316 {
2317 /*
2318 * If the new address isn't hpage aligned and it could previously
2319 * contain an hugepage: check if we need to split an huge pmd.
2320 */
2321 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2322 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2323 ALIGN(address, HPAGE_PMD_SIZE)))
2324 split_huge_pmd_address(vma, address, false, NULL);
2325 }
2326
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)2327 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2328 unsigned long start,
2329 unsigned long end,
2330 long adjust_next)
2331 {
2332 /* Check if we need to split start first. */
2333 split_huge_pmd_if_needed(vma, start);
2334
2335 /* Check if we need to split end next. */
2336 split_huge_pmd_if_needed(vma, end);
2337
2338 /*
2339 * If we're also updating the next vma vm_start,
2340 * check if we need to split it.
2341 */
2342 if (adjust_next > 0) {
2343 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2344 unsigned long nstart = next->vm_start;
2345 nstart += adjust_next;
2346 split_huge_pmd_if_needed(next, nstart);
2347 }
2348 }
2349
unmap_folio(struct folio * folio)2350 static void unmap_folio(struct folio *folio)
2351 {
2352 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2353 TTU_SYNC;
2354
2355 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2356
2357 /*
2358 * Anon pages need migration entries to preserve them, but file
2359 * pages can simply be left unmapped, then faulted back on demand.
2360 * If that is ever changed (perhaps for mlock), update remap_page().
2361 */
2362 if (folio_test_anon(folio))
2363 try_to_migrate(folio, ttu_flags);
2364 else
2365 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2366 }
2367
remap_page(struct folio * folio,unsigned long nr)2368 static void remap_page(struct folio *folio, unsigned long nr)
2369 {
2370 int i = 0;
2371
2372 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
2373 if (!folio_test_anon(folio))
2374 return;
2375 for (;;) {
2376 remove_migration_ptes(folio, folio, true);
2377 i += folio_nr_pages(folio);
2378 if (i >= nr)
2379 break;
2380 folio = folio_next(folio);
2381 }
2382 }
2383
lru_add_page_tail(struct page * head,struct page * tail,struct lruvec * lruvec,struct list_head * list)2384 static void lru_add_page_tail(struct page *head, struct page *tail,
2385 struct lruvec *lruvec, struct list_head *list)
2386 {
2387 VM_BUG_ON_PAGE(!PageHead(head), head);
2388 VM_BUG_ON_PAGE(PageCompound(tail), head);
2389 VM_BUG_ON_PAGE(PageLRU(tail), head);
2390 lockdep_assert_held(&lruvec->lru_lock);
2391
2392 if (list) {
2393 /* page reclaim is reclaiming a huge page */
2394 VM_WARN_ON(PageLRU(head));
2395 get_page(tail);
2396 list_add_tail(&tail->lru, list);
2397 } else {
2398 /* head is still on lru (and we have it frozen) */
2399 VM_WARN_ON(!PageLRU(head));
2400 if (PageUnevictable(tail))
2401 tail->mlock_count = 0;
2402 else
2403 list_add_tail(&tail->lru, &head->lru);
2404 SetPageLRU(tail);
2405 }
2406 }
2407
__split_huge_page_tail(struct folio * folio,int tail,struct lruvec * lruvec,struct list_head * list)2408 static void __split_huge_page_tail(struct folio *folio, int tail,
2409 struct lruvec *lruvec, struct list_head *list)
2410 {
2411 struct page *head = &folio->page;
2412 struct page *page_tail = head + tail;
2413 /*
2414 * Careful: new_folio is not a "real" folio before we cleared PageTail.
2415 * Don't pass it around before clear_compound_head().
2416 */
2417 struct folio *new_folio = (struct folio *)page_tail;
2418
2419 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2420
2421 /*
2422 * Clone page flags before unfreezing refcount.
2423 *
2424 * After successful get_page_unless_zero() might follow flags change,
2425 * for example lock_page() which set PG_waiters.
2426 *
2427 * Note that for mapped sub-pages of an anonymous THP,
2428 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2429 * the migration entry instead from where remap_page() will restore it.
2430 * We can still have PG_anon_exclusive set on effectively unmapped and
2431 * unreferenced sub-pages of an anonymous THP: we can simply drop
2432 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2433 */
2434 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2435 page_tail->flags |= (head->flags &
2436 ((1L << PG_referenced) |
2437 (1L << PG_swapbacked) |
2438 (1L << PG_swapcache) |
2439 (1L << PG_mlocked) |
2440 (1L << PG_uptodate) |
2441 (1L << PG_active) |
2442 (1L << PG_workingset) |
2443 (1L << PG_locked) |
2444 (1L << PG_unevictable) |
2445 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2446 (1L << PG_arch_2) |
2447 (1L << PG_arch_3) |
2448 #endif
2449 (1L << PG_dirty) |
2450 LRU_GEN_MASK | LRU_REFS_MASK));
2451
2452 /* ->mapping in first and second tail page is replaced by other uses */
2453 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2454 page_tail);
2455 page_tail->mapping = head->mapping;
2456 page_tail->index = head->index + tail;
2457
2458 /*
2459 * page->private should not be set in tail pages. Fix up and warn once
2460 * if private is unexpectedly set.
2461 */
2462 if (unlikely(page_tail->private)) {
2463 VM_WARN_ON_ONCE_PAGE(true, page_tail);
2464 page_tail->private = 0;
2465 }
2466 if (folio_test_swapcache(folio))
2467 new_folio->swap.val = folio->swap.val + tail;
2468
2469 /* Page flags must be visible before we make the page non-compound. */
2470 smp_wmb();
2471
2472 /*
2473 * Clear PageTail before unfreezing page refcount.
2474 *
2475 * After successful get_page_unless_zero() might follow put_page()
2476 * which needs correct compound_head().
2477 */
2478 clear_compound_head(page_tail);
2479
2480 /* Finally unfreeze refcount. Additional reference from page cache. */
2481 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2482 PageSwapCache(head)));
2483
2484 if (page_is_young(head))
2485 set_page_young(page_tail);
2486 if (page_is_idle(head))
2487 set_page_idle(page_tail);
2488
2489 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2490
2491 /*
2492 * always add to the tail because some iterators expect new
2493 * pages to show after the currently processed elements - e.g.
2494 * migrate_pages
2495 */
2496 lru_add_page_tail(head, page_tail, lruvec, list);
2497 }
2498
__split_huge_page(struct page * page,struct list_head * list,pgoff_t end)2499 static void __split_huge_page(struct page *page, struct list_head *list,
2500 pgoff_t end)
2501 {
2502 struct folio *folio = page_folio(page);
2503 struct page *head = &folio->page;
2504 struct lruvec *lruvec;
2505 struct address_space *swap_cache = NULL;
2506 unsigned long offset = 0;
2507 unsigned int nr = thp_nr_pages(head);
2508 int i, nr_dropped = 0;
2509
2510 /* complete memcg works before add pages to LRU */
2511 split_page_memcg(head, nr);
2512
2513 if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
2514 offset = swp_offset(folio->swap);
2515 swap_cache = swap_address_space(folio->swap);
2516 xa_lock(&swap_cache->i_pages);
2517 }
2518
2519 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2520 lruvec = folio_lruvec_lock(folio);
2521
2522 ClearPageHasHWPoisoned(head);
2523
2524 for (i = nr - 1; i >= 1; i--) {
2525 __split_huge_page_tail(folio, i, lruvec, list);
2526 /* Some pages can be beyond EOF: drop them from page cache */
2527 if (head[i].index >= end) {
2528 struct folio *tail = page_folio(head + i);
2529
2530 if (shmem_mapping(head->mapping))
2531 nr_dropped++;
2532 else if (folio_test_clear_dirty(tail))
2533 folio_account_cleaned(tail,
2534 inode_to_wb(folio->mapping->host));
2535 __filemap_remove_folio(tail, NULL);
2536 folio_put(tail);
2537 } else if (!PageAnon(page)) {
2538 __xa_store(&head->mapping->i_pages, head[i].index,
2539 head + i, 0);
2540 } else if (swap_cache) {
2541 __xa_store(&swap_cache->i_pages, offset + i,
2542 head + i, 0);
2543 }
2544 }
2545
2546 ClearPageCompound(head);
2547 unlock_page_lruvec(lruvec);
2548 /* Caller disabled irqs, so they are still disabled here */
2549
2550 split_page_owner(head, nr);
2551
2552 /* See comment in __split_huge_page_tail() */
2553 if (PageAnon(head)) {
2554 /* Additional pin to swap cache */
2555 if (PageSwapCache(head)) {
2556 page_ref_add(head, 2);
2557 xa_unlock(&swap_cache->i_pages);
2558 } else {
2559 page_ref_inc(head);
2560 }
2561 } else {
2562 /* Additional pin to page cache */
2563 page_ref_add(head, 2);
2564 xa_unlock(&head->mapping->i_pages);
2565 }
2566 local_irq_enable();
2567
2568 if (nr_dropped)
2569 shmem_uncharge(head->mapping->host, nr_dropped);
2570 remap_page(folio, nr);
2571
2572 if (folio_test_swapcache(folio))
2573 split_swap_cluster(folio->swap);
2574
2575 for (i = 0; i < nr; i++) {
2576 struct page *subpage = head + i;
2577 if (subpage == page)
2578 continue;
2579 unlock_page(subpage);
2580
2581 /*
2582 * Subpages may be freed if there wasn't any mapping
2583 * like if add_to_swap() is running on a lru page that
2584 * had its mapping zapped. And freeing these pages
2585 * requires taking the lru_lock so we do the put_page
2586 * of the tail pages after the split is complete.
2587 */
2588 free_page_and_swap_cache(subpage);
2589 }
2590 }
2591
2592 /* Racy check whether the huge page can be split */
can_split_folio(struct folio * folio,int * pextra_pins)2593 bool can_split_folio(struct folio *folio, int *pextra_pins)
2594 {
2595 int extra_pins;
2596
2597 /* Additional pins from page cache */
2598 if (folio_test_anon(folio))
2599 extra_pins = folio_test_swapcache(folio) ?
2600 folio_nr_pages(folio) : 0;
2601 else
2602 extra_pins = folio_nr_pages(folio);
2603 if (pextra_pins)
2604 *pextra_pins = extra_pins;
2605 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2606 }
2607
2608 /*
2609 * This function splits huge page into normal pages. @page can point to any
2610 * subpage of huge page to split. Split doesn't change the position of @page.
2611 *
2612 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2613 * The huge page must be locked.
2614 *
2615 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2616 *
2617 * Both head page and tail pages will inherit mapping, flags, and so on from
2618 * the hugepage.
2619 *
2620 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2621 * they are not mapped.
2622 *
2623 * Returns 0 if the hugepage is split successfully.
2624 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2625 * us.
2626 */
split_huge_page_to_list(struct page * page,struct list_head * list)2627 int split_huge_page_to_list(struct page *page, struct list_head *list)
2628 {
2629 struct folio *folio = page_folio(page);
2630 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2631 XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2632 struct anon_vma *anon_vma = NULL;
2633 struct address_space *mapping = NULL;
2634 int extra_pins, ret;
2635 pgoff_t end;
2636 bool is_hzp;
2637
2638 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2639 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2640
2641 is_hzp = is_huge_zero_page(&folio->page);
2642 if (is_hzp) {
2643 pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2644 return -EBUSY;
2645 }
2646
2647 if (folio_test_writeback(folio))
2648 return -EBUSY;
2649
2650 if (folio_test_anon(folio)) {
2651 /*
2652 * The caller does not necessarily hold an mmap_lock that would
2653 * prevent the anon_vma disappearing so we first we take a
2654 * reference to it and then lock the anon_vma for write. This
2655 * is similar to folio_lock_anon_vma_read except the write lock
2656 * is taken to serialise against parallel split or collapse
2657 * operations.
2658 */
2659 anon_vma = folio_get_anon_vma(folio);
2660 if (!anon_vma) {
2661 ret = -EBUSY;
2662 goto out;
2663 }
2664 end = -1;
2665 mapping = NULL;
2666 anon_vma_lock_write(anon_vma);
2667 } else {
2668 gfp_t gfp;
2669
2670 mapping = folio->mapping;
2671
2672 /* Truncated ? */
2673 if (!mapping) {
2674 ret = -EBUSY;
2675 goto out;
2676 }
2677
2678 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2679 GFP_RECLAIM_MASK);
2680
2681 if (!filemap_release_folio(folio, gfp)) {
2682 ret = -EBUSY;
2683 goto out;
2684 }
2685
2686 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2687 if (xas_error(&xas)) {
2688 ret = xas_error(&xas);
2689 goto out;
2690 }
2691
2692 anon_vma = NULL;
2693 i_mmap_lock_read(mapping);
2694
2695 /*
2696 *__split_huge_page() may need to trim off pages beyond EOF:
2697 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2698 * which cannot be nested inside the page tree lock. So note
2699 * end now: i_size itself may be changed at any moment, but
2700 * folio lock is good enough to serialize the trimming.
2701 */
2702 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2703 if (shmem_mapping(mapping))
2704 end = shmem_fallocend(mapping->host, end);
2705 }
2706
2707 /*
2708 * Racy check if we can split the page, before unmap_folio() will
2709 * split PMDs
2710 */
2711 if (!can_split_folio(folio, &extra_pins)) {
2712 ret = -EAGAIN;
2713 goto out_unlock;
2714 }
2715
2716 unmap_folio(folio);
2717
2718 /* block interrupt reentry in xa_lock and spinlock */
2719 local_irq_disable();
2720 if (mapping) {
2721 /*
2722 * Check if the folio is present in page cache.
2723 * We assume all tail are present too, if folio is there.
2724 */
2725 xas_lock(&xas);
2726 xas_reset(&xas);
2727 if (xas_load(&xas) != folio)
2728 goto fail;
2729 }
2730
2731 /* Prevent deferred_split_scan() touching ->_refcount */
2732 spin_lock(&ds_queue->split_queue_lock);
2733 if (folio_ref_freeze(folio, 1 + extra_pins)) {
2734 if (!list_empty(&folio->_deferred_list)) {
2735 ds_queue->split_queue_len--;
2736 list_del(&folio->_deferred_list);
2737 }
2738 spin_unlock(&ds_queue->split_queue_lock);
2739 if (mapping) {
2740 int nr = folio_nr_pages(folio);
2741
2742 xas_split(&xas, folio, folio_order(folio));
2743 if (folio_test_pmd_mappable(folio)) {
2744 if (folio_test_swapbacked(folio)) {
2745 __lruvec_stat_mod_folio(folio,
2746 NR_SHMEM_THPS, -nr);
2747 } else {
2748 __lruvec_stat_mod_folio(folio,
2749 NR_FILE_THPS, -nr);
2750 filemap_nr_thps_dec(mapping);
2751 }
2752 }
2753 }
2754
2755 __split_huge_page(page, list, end);
2756 ret = 0;
2757 } else {
2758 spin_unlock(&ds_queue->split_queue_lock);
2759 fail:
2760 if (mapping)
2761 xas_unlock(&xas);
2762 local_irq_enable();
2763 remap_page(folio, folio_nr_pages(folio));
2764 ret = -EAGAIN;
2765 }
2766
2767 out_unlock:
2768 if (anon_vma) {
2769 anon_vma_unlock_write(anon_vma);
2770 put_anon_vma(anon_vma);
2771 }
2772 if (mapping)
2773 i_mmap_unlock_read(mapping);
2774 out:
2775 xas_destroy(&xas);
2776 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2777 return ret;
2778 }
2779
folio_undo_large_rmappable(struct folio * folio)2780 void folio_undo_large_rmappable(struct folio *folio)
2781 {
2782 struct deferred_split *ds_queue;
2783 unsigned long flags;
2784
2785 /*
2786 * At this point, there is no one trying to add the folio to
2787 * deferred_list. If folio is not in deferred_list, it's safe
2788 * to check without acquiring the split_queue_lock.
2789 */
2790 if (data_race(list_empty(&folio->_deferred_list)))
2791 return;
2792
2793 ds_queue = get_deferred_split_queue(folio);
2794 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2795 if (!list_empty(&folio->_deferred_list)) {
2796 ds_queue->split_queue_len--;
2797 list_del(&folio->_deferred_list);
2798 }
2799 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2800 }
2801
deferred_split_folio(struct folio * folio)2802 void deferred_split_folio(struct folio *folio)
2803 {
2804 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2805 #ifdef CONFIG_MEMCG
2806 struct mem_cgroup *memcg = folio_memcg(folio);
2807 #endif
2808 unsigned long flags;
2809
2810 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
2811
2812 /*
2813 * The try_to_unmap() in page reclaim path might reach here too,
2814 * this may cause a race condition to corrupt deferred split queue.
2815 * And, if page reclaim is already handling the same folio, it is
2816 * unnecessary to handle it again in shrinker.
2817 *
2818 * Check the swapcache flag to determine if the folio is being
2819 * handled by page reclaim since THP swap would add the folio into
2820 * swap cache before calling try_to_unmap().
2821 */
2822 if (folio_test_swapcache(folio))
2823 return;
2824
2825 if (!list_empty(&folio->_deferred_list))
2826 return;
2827
2828 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2829 if (list_empty(&folio->_deferred_list)) {
2830 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2831 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
2832 ds_queue->split_queue_len++;
2833 #ifdef CONFIG_MEMCG
2834 if (memcg)
2835 set_shrinker_bit(memcg, folio_nid(folio),
2836 deferred_split_shrinker.id);
2837 #endif
2838 }
2839 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2840 }
2841
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)2842 static unsigned long deferred_split_count(struct shrinker *shrink,
2843 struct shrink_control *sc)
2844 {
2845 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2846 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2847
2848 #ifdef CONFIG_MEMCG
2849 if (sc->memcg)
2850 ds_queue = &sc->memcg->deferred_split_queue;
2851 #endif
2852 return READ_ONCE(ds_queue->split_queue_len);
2853 }
2854
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)2855 static unsigned long deferred_split_scan(struct shrinker *shrink,
2856 struct shrink_control *sc)
2857 {
2858 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2859 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2860 unsigned long flags;
2861 LIST_HEAD(list);
2862 struct folio *folio, *next;
2863 int split = 0;
2864
2865 #ifdef CONFIG_MEMCG
2866 if (sc->memcg)
2867 ds_queue = &sc->memcg->deferred_split_queue;
2868 #endif
2869
2870 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2871 /* Take pin on all head pages to avoid freeing them under us */
2872 list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
2873 _deferred_list) {
2874 if (folio_try_get(folio)) {
2875 list_move(&folio->_deferred_list, &list);
2876 } else {
2877 /* We lost race with folio_put() */
2878 list_del_init(&folio->_deferred_list);
2879 ds_queue->split_queue_len--;
2880 }
2881 if (!--sc->nr_to_scan)
2882 break;
2883 }
2884 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2885
2886 list_for_each_entry_safe(folio, next, &list, _deferred_list) {
2887 if (!folio_trylock(folio))
2888 goto next;
2889 /* split_huge_page() removes page from list on success */
2890 if (!split_folio(folio))
2891 split++;
2892 folio_unlock(folio);
2893 next:
2894 folio_put(folio);
2895 }
2896
2897 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2898 list_splice_tail(&list, &ds_queue->split_queue);
2899 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2900
2901 /*
2902 * Stop shrinker if we didn't split any page, but the queue is empty.
2903 * This can happen if pages were freed under us.
2904 */
2905 if (!split && list_empty(&ds_queue->split_queue))
2906 return SHRINK_STOP;
2907 return split;
2908 }
2909
2910 static struct shrinker deferred_split_shrinker = {
2911 .count_objects = deferred_split_count,
2912 .scan_objects = deferred_split_scan,
2913 .seeks = DEFAULT_SEEKS,
2914 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2915 SHRINKER_NONSLAB,
2916 };
2917
2918 #ifdef CONFIG_DEBUG_FS
split_huge_pages_all(void)2919 static void split_huge_pages_all(void)
2920 {
2921 struct zone *zone;
2922 struct page *page;
2923 struct folio *folio;
2924 unsigned long pfn, max_zone_pfn;
2925 unsigned long total = 0, split = 0;
2926
2927 pr_debug("Split all THPs\n");
2928 for_each_zone(zone) {
2929 if (!managed_zone(zone))
2930 continue;
2931 max_zone_pfn = zone_end_pfn(zone);
2932 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2933 int nr_pages;
2934
2935 page = pfn_to_online_page(pfn);
2936 if (!page || PageTail(page))
2937 continue;
2938 folio = page_folio(page);
2939 if (!folio_try_get(folio))
2940 continue;
2941
2942 if (unlikely(page_folio(page) != folio))
2943 goto next;
2944
2945 if (zone != folio_zone(folio))
2946 goto next;
2947
2948 if (!folio_test_large(folio)
2949 || folio_test_hugetlb(folio)
2950 || !folio_test_lru(folio))
2951 goto next;
2952
2953 total++;
2954 folio_lock(folio);
2955 nr_pages = folio_nr_pages(folio);
2956 if (!split_folio(folio))
2957 split++;
2958 pfn += nr_pages - 1;
2959 folio_unlock(folio);
2960 next:
2961 folio_put(folio);
2962 cond_resched();
2963 }
2964 }
2965
2966 pr_debug("%lu of %lu THP split\n", split, total);
2967 }
2968
vma_not_suitable_for_thp_split(struct vm_area_struct * vma)2969 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2970 {
2971 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2972 is_vm_hugetlb_page(vma);
2973 }
2974
split_huge_pages_pid(int pid,unsigned long vaddr_start,unsigned long vaddr_end)2975 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2976 unsigned long vaddr_end)
2977 {
2978 int ret = 0;
2979 struct task_struct *task;
2980 struct mm_struct *mm;
2981 unsigned long total = 0, split = 0;
2982 unsigned long addr;
2983
2984 vaddr_start &= PAGE_MASK;
2985 vaddr_end &= PAGE_MASK;
2986
2987 /* Find the task_struct from pid */
2988 rcu_read_lock();
2989 task = find_task_by_vpid(pid);
2990 if (!task) {
2991 rcu_read_unlock();
2992 ret = -ESRCH;
2993 goto out;
2994 }
2995 get_task_struct(task);
2996 rcu_read_unlock();
2997
2998 /* Find the mm_struct */
2999 mm = get_task_mm(task);
3000 put_task_struct(task);
3001
3002 if (!mm) {
3003 ret = -EINVAL;
3004 goto out;
3005 }
3006
3007 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3008 pid, vaddr_start, vaddr_end);
3009
3010 mmap_read_lock(mm);
3011 /*
3012 * always increase addr by PAGE_SIZE, since we could have a PTE page
3013 * table filled with PTE-mapped THPs, each of which is distinct.
3014 */
3015 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3016 struct vm_area_struct *vma = vma_lookup(mm, addr);
3017 struct page *page;
3018 struct folio *folio;
3019
3020 if (!vma)
3021 break;
3022
3023 /* skip special VMA and hugetlb VMA */
3024 if (vma_not_suitable_for_thp_split(vma)) {
3025 addr = vma->vm_end;
3026 continue;
3027 }
3028
3029 /* FOLL_DUMP to ignore special (like zero) pages */
3030 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3031
3032 if (IS_ERR_OR_NULL(page))
3033 continue;
3034
3035 folio = page_folio(page);
3036 if (!is_transparent_hugepage(folio))
3037 goto next;
3038
3039 total++;
3040 if (!can_split_folio(folio, NULL))
3041 goto next;
3042
3043 if (!folio_trylock(folio))
3044 goto next;
3045
3046 if (!split_folio(folio))
3047 split++;
3048
3049 folio_unlock(folio);
3050 next:
3051 folio_put(folio);
3052 cond_resched();
3053 }
3054 mmap_read_unlock(mm);
3055 mmput(mm);
3056
3057 pr_debug("%lu of %lu THP split\n", split, total);
3058
3059 out:
3060 return ret;
3061 }
3062
split_huge_pages_in_file(const char * file_path,pgoff_t off_start,pgoff_t off_end)3063 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3064 pgoff_t off_end)
3065 {
3066 struct filename *file;
3067 struct file *candidate;
3068 struct address_space *mapping;
3069 int ret = -EINVAL;
3070 pgoff_t index;
3071 int nr_pages = 1;
3072 unsigned long total = 0, split = 0;
3073
3074 file = getname_kernel(file_path);
3075 if (IS_ERR(file))
3076 return ret;
3077
3078 candidate = file_open_name(file, O_RDONLY, 0);
3079 if (IS_ERR(candidate))
3080 goto out;
3081
3082 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3083 file_path, off_start, off_end);
3084
3085 mapping = candidate->f_mapping;
3086
3087 for (index = off_start; index < off_end; index += nr_pages) {
3088 struct folio *folio = filemap_get_folio(mapping, index);
3089
3090 nr_pages = 1;
3091 if (IS_ERR(folio))
3092 continue;
3093
3094 if (!folio_test_large(folio))
3095 goto next;
3096
3097 total++;
3098 nr_pages = folio_nr_pages(folio);
3099
3100 if (!folio_trylock(folio))
3101 goto next;
3102
3103 if (!split_folio(folio))
3104 split++;
3105
3106 folio_unlock(folio);
3107 next:
3108 folio_put(folio);
3109 cond_resched();
3110 }
3111
3112 filp_close(candidate, NULL);
3113 ret = 0;
3114
3115 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3116 out:
3117 putname(file);
3118 return ret;
3119 }
3120
3121 #define MAX_INPUT_BUF_SZ 255
3122
split_huge_pages_write(struct file * file,const char __user * buf,size_t count,loff_t * ppops)3123 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3124 size_t count, loff_t *ppops)
3125 {
3126 static DEFINE_MUTEX(split_debug_mutex);
3127 ssize_t ret;
3128 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3129 char input_buf[MAX_INPUT_BUF_SZ];
3130 int pid;
3131 unsigned long vaddr_start, vaddr_end;
3132
3133 ret = mutex_lock_interruptible(&split_debug_mutex);
3134 if (ret)
3135 return ret;
3136
3137 ret = -EFAULT;
3138
3139 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3140 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3141 goto out;
3142
3143 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3144
3145 if (input_buf[0] == '/') {
3146 char *tok;
3147 char *buf = input_buf;
3148 char file_path[MAX_INPUT_BUF_SZ];
3149 pgoff_t off_start = 0, off_end = 0;
3150 size_t input_len = strlen(input_buf);
3151
3152 tok = strsep(&buf, ",");
3153 if (tok) {
3154 strcpy(file_path, tok);
3155 } else {
3156 ret = -EINVAL;
3157 goto out;
3158 }
3159
3160 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3161 if (ret != 2) {
3162 ret = -EINVAL;
3163 goto out;
3164 }
3165 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3166 if (!ret)
3167 ret = input_len;
3168
3169 goto out;
3170 }
3171
3172 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3173 if (ret == 1 && pid == 1) {
3174 split_huge_pages_all();
3175 ret = strlen(input_buf);
3176 goto out;
3177 } else if (ret != 3) {
3178 ret = -EINVAL;
3179 goto out;
3180 }
3181
3182 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3183 if (!ret)
3184 ret = strlen(input_buf);
3185 out:
3186 mutex_unlock(&split_debug_mutex);
3187 return ret;
3188
3189 }
3190
3191 static const struct file_operations split_huge_pages_fops = {
3192 .owner = THIS_MODULE,
3193 .write = split_huge_pages_write,
3194 .llseek = no_llseek,
3195 };
3196
split_huge_pages_debugfs(void)3197 static int __init split_huge_pages_debugfs(void)
3198 {
3199 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3200 &split_huge_pages_fops);
3201 return 0;
3202 }
3203 late_initcall(split_huge_pages_debugfs);
3204 #endif
3205
3206 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)3207 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3208 struct page *page)
3209 {
3210 struct vm_area_struct *vma = pvmw->vma;
3211 struct mm_struct *mm = vma->vm_mm;
3212 unsigned long address = pvmw->address;
3213 bool anon_exclusive;
3214 pmd_t pmdval;
3215 swp_entry_t entry;
3216 pmd_t pmdswp;
3217
3218 if (!(pvmw->pmd && !pvmw->pte))
3219 return 0;
3220
3221 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3222 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3223
3224 /* See page_try_share_anon_rmap(): invalidate PMD first. */
3225 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3226 if (anon_exclusive && page_try_share_anon_rmap(page)) {
3227 set_pmd_at(mm, address, pvmw->pmd, pmdval);
3228 return -EBUSY;
3229 }
3230
3231 if (pmd_dirty(pmdval))
3232 set_page_dirty(page);
3233 if (pmd_write(pmdval))
3234 entry = make_writable_migration_entry(page_to_pfn(page));
3235 else if (anon_exclusive)
3236 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3237 else
3238 entry = make_readable_migration_entry(page_to_pfn(page));
3239 if (pmd_young(pmdval))
3240 entry = make_migration_entry_young(entry);
3241 if (pmd_dirty(pmdval))
3242 entry = make_migration_entry_dirty(entry);
3243 pmdswp = swp_entry_to_pmd(entry);
3244 if (pmd_soft_dirty(pmdval))
3245 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3246 if (pmd_uffd_wp(pmdval))
3247 pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3248 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3249 page_remove_rmap(page, vma, true);
3250 put_page(page);
3251 trace_set_migration_pmd(address, pmd_val(pmdswp));
3252
3253 return 0;
3254 }
3255
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)3256 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3257 {
3258 struct vm_area_struct *vma = pvmw->vma;
3259 struct mm_struct *mm = vma->vm_mm;
3260 unsigned long address = pvmw->address;
3261 unsigned long haddr = address & HPAGE_PMD_MASK;
3262 pmd_t pmde;
3263 swp_entry_t entry;
3264
3265 if (!(pvmw->pmd && !pvmw->pte))
3266 return;
3267
3268 entry = pmd_to_swp_entry(*pvmw->pmd);
3269 get_page(new);
3270 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3271 if (pmd_swp_soft_dirty(*pvmw->pmd))
3272 pmde = pmd_mksoft_dirty(pmde);
3273 if (is_writable_migration_entry(entry))
3274 pmde = pmd_mkwrite(pmde, vma);
3275 if (pmd_swp_uffd_wp(*pvmw->pmd))
3276 pmde = pmd_mkuffd_wp(pmde);
3277 if (!is_migration_entry_young(entry))
3278 pmde = pmd_mkold(pmde);
3279 /* NOTE: this may contain setting soft-dirty on some archs */
3280 if (PageDirty(new) && is_migration_entry_dirty(entry))
3281 pmde = pmd_mkdirty(pmde);
3282
3283 if (PageAnon(new)) {
3284 rmap_t rmap_flags = RMAP_COMPOUND;
3285
3286 if (!is_readable_migration_entry(entry))
3287 rmap_flags |= RMAP_EXCLUSIVE;
3288
3289 page_add_anon_rmap(new, vma, haddr, rmap_flags);
3290 } else {
3291 page_add_file_rmap(new, vma, true);
3292 }
3293 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3294 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3295
3296 /* No need to invalidate - it was non-present before */
3297 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3298 trace_remove_migration_pmd(address, pmd_val(pmde));
3299 }
3300 #endif
3301