1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2013 Red Hat Inc. 4 * 5 * Authors: Jérôme Glisse <jglisse@redhat.com> 6 */ 7 /* 8 * Refer to include/linux/hmm.h for information about heterogeneous memory 9 * management or HMM for short. 10 */ 11 #include <linux/pagewalk.h> 12 #include <linux/hmm.h> 13 #include <linux/init.h> 14 #include <linux/rmap.h> 15 #include <linux/swap.h> 16 #include <linux/slab.h> 17 #include <linux/sched.h> 18 #include <linux/mmzone.h> 19 #include <linux/pagemap.h> 20 #include <linux/swapops.h> 21 #include <linux/hugetlb.h> 22 #include <linux/memremap.h> 23 #include <linux/sched/mm.h> 24 #include <linux/jump_label.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/mmu_notifier.h> 27 #include <linux/memory_hotplug.h> 28 29 struct hmm_vma_walk { 30 struct hmm_range *range; 31 unsigned long last; 32 }; 33 34 enum { 35 HMM_NEED_FAULT = 1 << 0, 36 HMM_NEED_WRITE_FAULT = 1 << 1, 37 HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT, 38 }; 39 40 static int hmm_pfns_fill(unsigned long addr, unsigned long end, 41 struct hmm_range *range, unsigned long cpu_flags) 42 { 43 unsigned long i = (addr - range->start) >> PAGE_SHIFT; 44 45 for (; addr < end; addr += PAGE_SIZE, i++) 46 range->hmm_pfns[i] = cpu_flags; 47 return 0; 48 } 49 50 /* 51 * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s) 52 * @addr: range virtual start address (inclusive) 53 * @end: range virtual end address (exclusive) 54 * @required_fault: HMM_NEED_* flags 55 * @walk: mm_walk structure 56 * Return: -EBUSY after page fault, or page fault error 57 * 58 * This function will be called whenever pmd_none() or pte_none() returns true, 59 * or whenever there is no page directory covering the virtual address range. 60 */ 61 static int hmm_vma_fault(unsigned long addr, unsigned long end, 62 unsigned int required_fault, struct mm_walk *walk) 63 { 64 struct hmm_vma_walk *hmm_vma_walk = walk->private; 65 struct vm_area_struct *vma = walk->vma; 66 unsigned int fault_flags = FAULT_FLAG_REMOTE; 67 68 WARN_ON_ONCE(!required_fault); 69 hmm_vma_walk->last = addr; 70 71 if (required_fault & HMM_NEED_WRITE_FAULT) { 72 if (!(vma->vm_flags & VM_WRITE)) 73 return -EPERM; 74 fault_flags |= FAULT_FLAG_WRITE; 75 } 76 77 for (; addr < end; addr += PAGE_SIZE) 78 if (handle_mm_fault(vma, addr, fault_flags) & VM_FAULT_ERROR) 79 return -EFAULT; 80 return -EBUSY; 81 } 82 83 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk, 84 unsigned long pfn_req_flags, 85 unsigned long cpu_flags) 86 { 87 struct hmm_range *range = hmm_vma_walk->range; 88 89 /* 90 * So we not only consider the individual per page request we also 91 * consider the default flags requested for the range. The API can 92 * be used 2 ways. The first one where the HMM user coalesces 93 * multiple page faults into one request and sets flags per pfn for 94 * those faults. The second one where the HMM user wants to pre- 95 * fault a range with specific flags. For the latter one it is a 96 * waste to have the user pre-fill the pfn arrays with a default 97 * flags value. 98 */ 99 pfn_req_flags &= range->pfn_flags_mask; 100 pfn_req_flags |= range->default_flags; 101 102 /* We aren't ask to do anything ... */ 103 if (!(pfn_req_flags & HMM_PFN_REQ_FAULT)) 104 return 0; 105 106 /* Need to write fault ? */ 107 if ((pfn_req_flags & HMM_PFN_REQ_WRITE) && 108 !(cpu_flags & HMM_PFN_WRITE)) 109 return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT; 110 111 /* If CPU page table is not valid then we need to fault */ 112 if (!(cpu_flags & HMM_PFN_VALID)) 113 return HMM_NEED_FAULT; 114 return 0; 115 } 116 117 static unsigned int 118 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk, 119 const unsigned long hmm_pfns[], unsigned long npages, 120 unsigned long cpu_flags) 121 { 122 struct hmm_range *range = hmm_vma_walk->range; 123 unsigned int required_fault = 0; 124 unsigned long i; 125 126 /* 127 * If the default flags do not request to fault pages, and the mask does 128 * not allow for individual pages to be faulted, then 129 * hmm_pte_need_fault() will always return 0. 130 */ 131 if (!((range->default_flags | range->pfn_flags_mask) & 132 HMM_PFN_REQ_FAULT)) 133 return 0; 134 135 for (i = 0; i < npages; ++i) { 136 required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i], 137 cpu_flags); 138 if (required_fault == HMM_NEED_ALL_BITS) 139 return required_fault; 140 } 141 return required_fault; 142 } 143 144 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end, 145 __always_unused int depth, struct mm_walk *walk) 146 { 147 struct hmm_vma_walk *hmm_vma_walk = walk->private; 148 struct hmm_range *range = hmm_vma_walk->range; 149 unsigned int required_fault; 150 unsigned long i, npages; 151 unsigned long *hmm_pfns; 152 153 i = (addr - range->start) >> PAGE_SHIFT; 154 npages = (end - addr) >> PAGE_SHIFT; 155 hmm_pfns = &range->hmm_pfns[i]; 156 required_fault = 157 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0); 158 if (!walk->vma) { 159 if (required_fault) 160 return -EFAULT; 161 return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR); 162 } 163 if (required_fault) 164 return hmm_vma_fault(addr, end, required_fault, walk); 165 return hmm_pfns_fill(addr, end, range, 0); 166 } 167 168 static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range, 169 pmd_t pmd) 170 { 171 if (pmd_protnone(pmd)) 172 return 0; 173 return pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID; 174 } 175 176 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 177 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, 178 unsigned long end, unsigned long hmm_pfns[], 179 pmd_t pmd) 180 { 181 struct hmm_vma_walk *hmm_vma_walk = walk->private; 182 struct hmm_range *range = hmm_vma_walk->range; 183 unsigned long pfn, npages, i; 184 unsigned int required_fault; 185 unsigned long cpu_flags; 186 187 npages = (end - addr) >> PAGE_SHIFT; 188 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd); 189 required_fault = 190 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags); 191 if (required_fault) 192 return hmm_vma_fault(addr, end, required_fault, walk); 193 194 pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 195 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) 196 hmm_pfns[i] = pfn | cpu_flags; 197 return 0; 198 } 199 #else /* CONFIG_TRANSPARENT_HUGEPAGE */ 200 /* stub to allow the code below to compile */ 201 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, 202 unsigned long end, unsigned long hmm_pfns[], pmd_t pmd); 203 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 204 205 static inline bool hmm_is_device_private_entry(struct hmm_range *range, 206 swp_entry_t entry) 207 { 208 return is_device_private_entry(entry) && 209 device_private_entry_to_page(entry)->pgmap->owner == 210 range->dev_private_owner; 211 } 212 213 static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range, 214 pte_t pte) 215 { 216 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte)) 217 return 0; 218 return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID; 219 } 220 221 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr, 222 unsigned long end, pmd_t *pmdp, pte_t *ptep, 223 unsigned long *hmm_pfn) 224 { 225 struct hmm_vma_walk *hmm_vma_walk = walk->private; 226 struct hmm_range *range = hmm_vma_walk->range; 227 unsigned int required_fault; 228 unsigned long cpu_flags; 229 pte_t pte = *ptep; 230 uint64_t pfn_req_flags = *hmm_pfn; 231 232 if (pte_none(pte)) { 233 required_fault = 234 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0); 235 if (required_fault) 236 goto fault; 237 *hmm_pfn = 0; 238 return 0; 239 } 240 241 if (!pte_present(pte)) { 242 swp_entry_t entry = pte_to_swp_entry(pte); 243 244 /* 245 * Never fault in device private pages pages, but just report 246 * the PFN even if not present. 247 */ 248 if (hmm_is_device_private_entry(range, entry)) { 249 cpu_flags = HMM_PFN_VALID; 250 if (is_write_device_private_entry(entry)) 251 cpu_flags |= HMM_PFN_WRITE; 252 *hmm_pfn = device_private_entry_to_pfn(entry) | 253 cpu_flags; 254 return 0; 255 } 256 257 required_fault = 258 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0); 259 if (!required_fault) { 260 *hmm_pfn = 0; 261 return 0; 262 } 263 264 if (!non_swap_entry(entry)) 265 goto fault; 266 267 if (is_migration_entry(entry)) { 268 pte_unmap(ptep); 269 hmm_vma_walk->last = addr; 270 migration_entry_wait(walk->mm, pmdp, addr); 271 return -EBUSY; 272 } 273 274 /* Report error for everything else */ 275 pte_unmap(ptep); 276 return -EFAULT; 277 } 278 279 cpu_flags = pte_to_hmm_pfn_flags(range, pte); 280 required_fault = 281 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags); 282 if (required_fault) 283 goto fault; 284 285 /* 286 * Since each architecture defines a struct page for the zero page, just 287 * fall through and treat it like a normal page. 288 */ 289 if (pte_special(pte) && !is_zero_pfn(pte_pfn(pte))) { 290 if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) { 291 pte_unmap(ptep); 292 return -EFAULT; 293 } 294 *hmm_pfn = HMM_PFN_ERROR; 295 return 0; 296 } 297 298 *hmm_pfn = pte_pfn(pte) | cpu_flags; 299 return 0; 300 301 fault: 302 pte_unmap(ptep); 303 /* Fault any virtual address we were asked to fault */ 304 return hmm_vma_fault(addr, end, required_fault, walk); 305 } 306 307 static int hmm_vma_walk_pmd(pmd_t *pmdp, 308 unsigned long start, 309 unsigned long end, 310 struct mm_walk *walk) 311 { 312 struct hmm_vma_walk *hmm_vma_walk = walk->private; 313 struct hmm_range *range = hmm_vma_walk->range; 314 unsigned long *hmm_pfns = 315 &range->hmm_pfns[(start - range->start) >> PAGE_SHIFT]; 316 unsigned long npages = (end - start) >> PAGE_SHIFT; 317 unsigned long addr = start; 318 pte_t *ptep; 319 pmd_t pmd; 320 321 again: 322 pmd = READ_ONCE(*pmdp); 323 if (pmd_none(pmd)) 324 return hmm_vma_walk_hole(start, end, -1, walk); 325 326 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) { 327 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) { 328 hmm_vma_walk->last = addr; 329 pmd_migration_entry_wait(walk->mm, pmdp); 330 return -EBUSY; 331 } 332 return hmm_pfns_fill(start, end, range, 0); 333 } 334 335 if (!pmd_present(pmd)) { 336 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) 337 return -EFAULT; 338 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); 339 } 340 341 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) { 342 /* 343 * No need to take pmd_lock here, even if some other thread 344 * is splitting the huge pmd we will get that event through 345 * mmu_notifier callback. 346 * 347 * So just read pmd value and check again it's a transparent 348 * huge or device mapping one and compute corresponding pfn 349 * values. 350 */ 351 pmd = pmd_read_atomic(pmdp); 352 barrier(); 353 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd)) 354 goto again; 355 356 return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd); 357 } 358 359 /* 360 * We have handled all the valid cases above ie either none, migration, 361 * huge or transparent huge. At this point either it is a valid pmd 362 * entry pointing to pte directory or it is a bad pmd that will not 363 * recover. 364 */ 365 if (pmd_bad(pmd)) { 366 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) 367 return -EFAULT; 368 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); 369 } 370 371 ptep = pte_offset_map(pmdp, addr); 372 for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) { 373 int r; 374 375 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns); 376 if (r) { 377 /* hmm_vma_handle_pte() did pte_unmap() */ 378 return r; 379 } 380 } 381 pte_unmap(ptep - 1); 382 return 0; 383 } 384 385 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \ 386 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 387 static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range, 388 pud_t pud) 389 { 390 if (!pud_present(pud)) 391 return 0; 392 return pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID; 393 } 394 395 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end, 396 struct mm_walk *walk) 397 { 398 struct hmm_vma_walk *hmm_vma_walk = walk->private; 399 struct hmm_range *range = hmm_vma_walk->range; 400 unsigned long addr = start; 401 pud_t pud; 402 int ret = 0; 403 spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma); 404 405 if (!ptl) 406 return 0; 407 408 /* Normally we don't want to split the huge page */ 409 walk->action = ACTION_CONTINUE; 410 411 pud = READ_ONCE(*pudp); 412 if (pud_none(pud)) { 413 spin_unlock(ptl); 414 return hmm_vma_walk_hole(start, end, -1, walk); 415 } 416 417 if (pud_huge(pud) && pud_devmap(pud)) { 418 unsigned long i, npages, pfn; 419 unsigned int required_fault; 420 unsigned long *hmm_pfns; 421 unsigned long cpu_flags; 422 423 if (!pud_present(pud)) { 424 spin_unlock(ptl); 425 return hmm_vma_walk_hole(start, end, -1, walk); 426 } 427 428 i = (addr - range->start) >> PAGE_SHIFT; 429 npages = (end - addr) >> PAGE_SHIFT; 430 hmm_pfns = &range->hmm_pfns[i]; 431 432 cpu_flags = pud_to_hmm_pfn_flags(range, pud); 433 required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns, 434 npages, cpu_flags); 435 if (required_fault) { 436 spin_unlock(ptl); 437 return hmm_vma_fault(addr, end, required_fault, walk); 438 } 439 440 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 441 for (i = 0; i < npages; ++i, ++pfn) 442 hmm_pfns[i] = pfn | cpu_flags; 443 goto out_unlock; 444 } 445 446 /* Ask for the PUD to be split */ 447 walk->action = ACTION_SUBTREE; 448 449 out_unlock: 450 spin_unlock(ptl); 451 return ret; 452 } 453 #else 454 #define hmm_vma_walk_pud NULL 455 #endif 456 457 #ifdef CONFIG_HUGETLB_PAGE 458 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask, 459 unsigned long start, unsigned long end, 460 struct mm_walk *walk) 461 { 462 unsigned long addr = start, i, pfn; 463 struct hmm_vma_walk *hmm_vma_walk = walk->private; 464 struct hmm_range *range = hmm_vma_walk->range; 465 struct vm_area_struct *vma = walk->vma; 466 unsigned int required_fault; 467 unsigned long pfn_req_flags; 468 unsigned long cpu_flags; 469 spinlock_t *ptl; 470 pte_t entry; 471 472 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte); 473 entry = huge_ptep_get(pte); 474 475 i = (start - range->start) >> PAGE_SHIFT; 476 pfn_req_flags = range->hmm_pfns[i]; 477 cpu_flags = pte_to_hmm_pfn_flags(range, entry); 478 required_fault = 479 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags); 480 if (required_fault) { 481 spin_unlock(ptl); 482 return hmm_vma_fault(addr, end, required_fault, walk); 483 } 484 485 pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT); 486 for (; addr < end; addr += PAGE_SIZE, i++, pfn++) 487 range->hmm_pfns[i] = pfn | cpu_flags; 488 489 spin_unlock(ptl); 490 return 0; 491 } 492 #else 493 #define hmm_vma_walk_hugetlb_entry NULL 494 #endif /* CONFIG_HUGETLB_PAGE */ 495 496 static int hmm_vma_walk_test(unsigned long start, unsigned long end, 497 struct mm_walk *walk) 498 { 499 struct hmm_vma_walk *hmm_vma_walk = walk->private; 500 struct hmm_range *range = hmm_vma_walk->range; 501 struct vm_area_struct *vma = walk->vma; 502 503 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) && 504 vma->vm_flags & VM_READ) 505 return 0; 506 507 /* 508 * vma ranges that don't have struct page backing them or map I/O 509 * devices directly cannot be handled by hmm_range_fault(). 510 * 511 * If the vma does not allow read access, then assume that it does not 512 * allow write access either. HMM does not support architectures that 513 * allow write without read. 514 * 515 * If a fault is requested for an unsupported range then it is a hard 516 * failure. 517 */ 518 if (hmm_range_need_fault(hmm_vma_walk, 519 range->hmm_pfns + 520 ((start - range->start) >> PAGE_SHIFT), 521 (end - start) >> PAGE_SHIFT, 0)) 522 return -EFAULT; 523 524 hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); 525 526 /* Skip this vma and continue processing the next vma. */ 527 return 1; 528 } 529 530 static const struct mm_walk_ops hmm_walk_ops = { 531 .pud_entry = hmm_vma_walk_pud, 532 .pmd_entry = hmm_vma_walk_pmd, 533 .pte_hole = hmm_vma_walk_hole, 534 .hugetlb_entry = hmm_vma_walk_hugetlb_entry, 535 .test_walk = hmm_vma_walk_test, 536 }; 537 538 /** 539 * hmm_range_fault - try to fault some address in a virtual address range 540 * @range: argument structure 541 * 542 * Returns 0 on success or one of the following error codes: 543 * 544 * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma 545 * (e.g., device file vma). 546 * -ENOMEM: Out of memory. 547 * -EPERM: Invalid permission (e.g., asking for write and range is read 548 * only). 549 * -EBUSY: The range has been invalidated and the caller needs to wait for 550 * the invalidation to finish. 551 * -EFAULT: A page was requested to be valid and could not be made valid 552 * ie it has no backing VMA or it is illegal to access 553 * 554 * This is similar to get_user_pages(), except that it can read the page tables 555 * without mutating them (ie causing faults). 556 */ 557 int hmm_range_fault(struct hmm_range *range) 558 { 559 struct hmm_vma_walk hmm_vma_walk = { 560 .range = range, 561 .last = range->start, 562 }; 563 struct mm_struct *mm = range->notifier->mm; 564 int ret; 565 566 mmap_assert_locked(mm); 567 568 do { 569 /* If range is no longer valid force retry. */ 570 if (mmu_interval_check_retry(range->notifier, 571 range->notifier_seq)) 572 return -EBUSY; 573 ret = walk_page_range(mm, hmm_vma_walk.last, range->end, 574 &hmm_walk_ops, &hmm_vma_walk); 575 /* 576 * When -EBUSY is returned the loop restarts with 577 * hmm_vma_walk.last set to an address that has not been stored 578 * in pfns. All entries < last in the pfn array are set to their 579 * output, and all >= are still at their input values. 580 */ 581 } while (ret == -EBUSY); 582 return ret; 583 } 584 EXPORT_SYMBOL(hmm_range_fault); 585