xref: /openbmc/linux/mm/hmm.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013 Red Hat Inc.
4  *
5  * Authors: Jérôme Glisse <jglisse@redhat.com>
6  */
7 /*
8  * Refer to include/linux/hmm.h for information about heterogeneous memory
9  * management or HMM for short.
10  */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
28 
29 struct hmm_vma_walk {
30 	struct hmm_range	*range;
31 	unsigned long		last;
32 };
33 
34 enum {
35 	HMM_NEED_FAULT = 1 << 0,
36 	HMM_NEED_WRITE_FAULT = 1 << 1,
37 	HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
38 };
39 
40 static int hmm_pfns_fill(unsigned long addr, unsigned long end,
41 			 struct hmm_range *range, unsigned long cpu_flags)
42 {
43 	unsigned long i = (addr - range->start) >> PAGE_SHIFT;
44 
45 	for (; addr < end; addr += PAGE_SIZE, i++)
46 		range->hmm_pfns[i] = cpu_flags;
47 	return 0;
48 }
49 
50 /*
51  * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
52  * @addr: range virtual start address (inclusive)
53  * @end: range virtual end address (exclusive)
54  * @required_fault: HMM_NEED_* flags
55  * @walk: mm_walk structure
56  * Return: -EBUSY after page fault, or page fault error
57  *
58  * This function will be called whenever pmd_none() or pte_none() returns true,
59  * or whenever there is no page directory covering the virtual address range.
60  */
61 static int hmm_vma_fault(unsigned long addr, unsigned long end,
62 			 unsigned int required_fault, struct mm_walk *walk)
63 {
64 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
65 	struct vm_area_struct *vma = walk->vma;
66 	unsigned int fault_flags = FAULT_FLAG_REMOTE;
67 
68 	WARN_ON_ONCE(!required_fault);
69 	hmm_vma_walk->last = addr;
70 
71 	if (required_fault & HMM_NEED_WRITE_FAULT) {
72 		if (!(vma->vm_flags & VM_WRITE))
73 			return -EPERM;
74 		fault_flags |= FAULT_FLAG_WRITE;
75 	}
76 
77 	for (; addr < end; addr += PAGE_SIZE)
78 		if (handle_mm_fault(vma, addr, fault_flags) & VM_FAULT_ERROR)
79 			return -EFAULT;
80 	return -EBUSY;
81 }
82 
83 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
84 				       unsigned long pfn_req_flags,
85 				       unsigned long cpu_flags)
86 {
87 	struct hmm_range *range = hmm_vma_walk->range;
88 
89 	/*
90 	 * So we not only consider the individual per page request we also
91 	 * consider the default flags requested for the range. The API can
92 	 * be used 2 ways. The first one where the HMM user coalesces
93 	 * multiple page faults into one request and sets flags per pfn for
94 	 * those faults. The second one where the HMM user wants to pre-
95 	 * fault a range with specific flags. For the latter one it is a
96 	 * waste to have the user pre-fill the pfn arrays with a default
97 	 * flags value.
98 	 */
99 	pfn_req_flags &= range->pfn_flags_mask;
100 	pfn_req_flags |= range->default_flags;
101 
102 	/* We aren't ask to do anything ... */
103 	if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
104 		return 0;
105 
106 	/* Need to write fault ? */
107 	if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
108 	    !(cpu_flags & HMM_PFN_WRITE))
109 		return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
110 
111 	/* If CPU page table is not valid then we need to fault */
112 	if (!(cpu_flags & HMM_PFN_VALID))
113 		return HMM_NEED_FAULT;
114 	return 0;
115 }
116 
117 static unsigned int
118 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
119 		     const unsigned long hmm_pfns[], unsigned long npages,
120 		     unsigned long cpu_flags)
121 {
122 	struct hmm_range *range = hmm_vma_walk->range;
123 	unsigned int required_fault = 0;
124 	unsigned long i;
125 
126 	/*
127 	 * If the default flags do not request to fault pages, and the mask does
128 	 * not allow for individual pages to be faulted, then
129 	 * hmm_pte_need_fault() will always return 0.
130 	 */
131 	if (!((range->default_flags | range->pfn_flags_mask) &
132 	      HMM_PFN_REQ_FAULT))
133 		return 0;
134 
135 	for (i = 0; i < npages; ++i) {
136 		required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
137 						     cpu_flags);
138 		if (required_fault == HMM_NEED_ALL_BITS)
139 			return required_fault;
140 	}
141 	return required_fault;
142 }
143 
144 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
145 			     __always_unused int depth, struct mm_walk *walk)
146 {
147 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
148 	struct hmm_range *range = hmm_vma_walk->range;
149 	unsigned int required_fault;
150 	unsigned long i, npages;
151 	unsigned long *hmm_pfns;
152 
153 	i = (addr - range->start) >> PAGE_SHIFT;
154 	npages = (end - addr) >> PAGE_SHIFT;
155 	hmm_pfns = &range->hmm_pfns[i];
156 	required_fault =
157 		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
158 	if (!walk->vma) {
159 		if (required_fault)
160 			return -EFAULT;
161 		return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
162 	}
163 	if (required_fault)
164 		return hmm_vma_fault(addr, end, required_fault, walk);
165 	return hmm_pfns_fill(addr, end, range, 0);
166 }
167 
168 static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
169 						 pmd_t pmd)
170 {
171 	if (pmd_protnone(pmd))
172 		return 0;
173 	return pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
174 }
175 
176 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
177 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
178 			      unsigned long end, unsigned long hmm_pfns[],
179 			      pmd_t pmd)
180 {
181 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
182 	struct hmm_range *range = hmm_vma_walk->range;
183 	unsigned long pfn, npages, i;
184 	unsigned int required_fault;
185 	unsigned long cpu_flags;
186 
187 	npages = (end - addr) >> PAGE_SHIFT;
188 	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
189 	required_fault =
190 		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
191 	if (required_fault)
192 		return hmm_vma_fault(addr, end, required_fault, walk);
193 
194 	pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
195 	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
196 		hmm_pfns[i] = pfn | cpu_flags;
197 	return 0;
198 }
199 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
200 /* stub to allow the code below to compile */
201 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
202 		unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
203 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
204 
205 static inline bool hmm_is_device_private_entry(struct hmm_range *range,
206 		swp_entry_t entry)
207 {
208 	return is_device_private_entry(entry) &&
209 		device_private_entry_to_page(entry)->pgmap->owner ==
210 		range->dev_private_owner;
211 }
212 
213 static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
214 						 pte_t pte)
215 {
216 	if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
217 		return 0;
218 	return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
219 }
220 
221 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
222 			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
223 			      unsigned long *hmm_pfn)
224 {
225 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
226 	struct hmm_range *range = hmm_vma_walk->range;
227 	unsigned int required_fault;
228 	unsigned long cpu_flags;
229 	pte_t pte = *ptep;
230 	uint64_t pfn_req_flags = *hmm_pfn;
231 
232 	if (pte_none(pte)) {
233 		required_fault =
234 			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
235 		if (required_fault)
236 			goto fault;
237 		*hmm_pfn = 0;
238 		return 0;
239 	}
240 
241 	if (!pte_present(pte)) {
242 		swp_entry_t entry = pte_to_swp_entry(pte);
243 
244 		/*
245 		 * Never fault in device private pages pages, but just report
246 		 * the PFN even if not present.
247 		 */
248 		if (hmm_is_device_private_entry(range, entry)) {
249 			cpu_flags = HMM_PFN_VALID;
250 			if (is_write_device_private_entry(entry))
251 				cpu_flags |= HMM_PFN_WRITE;
252 			*hmm_pfn = device_private_entry_to_pfn(entry) |
253 					cpu_flags;
254 			return 0;
255 		}
256 
257 		required_fault =
258 			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
259 		if (!required_fault) {
260 			*hmm_pfn = 0;
261 			return 0;
262 		}
263 
264 		if (!non_swap_entry(entry))
265 			goto fault;
266 
267 		if (is_migration_entry(entry)) {
268 			pte_unmap(ptep);
269 			hmm_vma_walk->last = addr;
270 			migration_entry_wait(walk->mm, pmdp, addr);
271 			return -EBUSY;
272 		}
273 
274 		/* Report error for everything else */
275 		pte_unmap(ptep);
276 		return -EFAULT;
277 	}
278 
279 	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
280 	required_fault =
281 		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
282 	if (required_fault)
283 		goto fault;
284 
285 	/*
286 	 * Since each architecture defines a struct page for the zero page, just
287 	 * fall through and treat it like a normal page.
288 	 */
289 	if (pte_special(pte) && !is_zero_pfn(pte_pfn(pte))) {
290 		if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
291 			pte_unmap(ptep);
292 			return -EFAULT;
293 		}
294 		*hmm_pfn = HMM_PFN_ERROR;
295 		return 0;
296 	}
297 
298 	*hmm_pfn = pte_pfn(pte) | cpu_flags;
299 	return 0;
300 
301 fault:
302 	pte_unmap(ptep);
303 	/* Fault any virtual address we were asked to fault */
304 	return hmm_vma_fault(addr, end, required_fault, walk);
305 }
306 
307 static int hmm_vma_walk_pmd(pmd_t *pmdp,
308 			    unsigned long start,
309 			    unsigned long end,
310 			    struct mm_walk *walk)
311 {
312 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
313 	struct hmm_range *range = hmm_vma_walk->range;
314 	unsigned long *hmm_pfns =
315 		&range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
316 	unsigned long npages = (end - start) >> PAGE_SHIFT;
317 	unsigned long addr = start;
318 	pte_t *ptep;
319 	pmd_t pmd;
320 
321 again:
322 	pmd = READ_ONCE(*pmdp);
323 	if (pmd_none(pmd))
324 		return hmm_vma_walk_hole(start, end, -1, walk);
325 
326 	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
327 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
328 			hmm_vma_walk->last = addr;
329 			pmd_migration_entry_wait(walk->mm, pmdp);
330 			return -EBUSY;
331 		}
332 		return hmm_pfns_fill(start, end, range, 0);
333 	}
334 
335 	if (!pmd_present(pmd)) {
336 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
337 			return -EFAULT;
338 		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
339 	}
340 
341 	if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
342 		/*
343 		 * No need to take pmd_lock here, even if some other thread
344 		 * is splitting the huge pmd we will get that event through
345 		 * mmu_notifier callback.
346 		 *
347 		 * So just read pmd value and check again it's a transparent
348 		 * huge or device mapping one and compute corresponding pfn
349 		 * values.
350 		 */
351 		pmd = pmd_read_atomic(pmdp);
352 		barrier();
353 		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
354 			goto again;
355 
356 		return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
357 	}
358 
359 	/*
360 	 * We have handled all the valid cases above ie either none, migration,
361 	 * huge or transparent huge. At this point either it is a valid pmd
362 	 * entry pointing to pte directory or it is a bad pmd that will not
363 	 * recover.
364 	 */
365 	if (pmd_bad(pmd)) {
366 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
367 			return -EFAULT;
368 		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
369 	}
370 
371 	ptep = pte_offset_map(pmdp, addr);
372 	for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
373 		int r;
374 
375 		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
376 		if (r) {
377 			/* hmm_vma_handle_pte() did pte_unmap() */
378 			return r;
379 		}
380 	}
381 	pte_unmap(ptep - 1);
382 	return 0;
383 }
384 
385 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
386     defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
387 static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
388 						 pud_t pud)
389 {
390 	if (!pud_present(pud))
391 		return 0;
392 	return pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
393 }
394 
395 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
396 		struct mm_walk *walk)
397 {
398 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
399 	struct hmm_range *range = hmm_vma_walk->range;
400 	unsigned long addr = start;
401 	pud_t pud;
402 	int ret = 0;
403 	spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
404 
405 	if (!ptl)
406 		return 0;
407 
408 	/* Normally we don't want to split the huge page */
409 	walk->action = ACTION_CONTINUE;
410 
411 	pud = READ_ONCE(*pudp);
412 	if (pud_none(pud)) {
413 		spin_unlock(ptl);
414 		return hmm_vma_walk_hole(start, end, -1, walk);
415 	}
416 
417 	if (pud_huge(pud) && pud_devmap(pud)) {
418 		unsigned long i, npages, pfn;
419 		unsigned int required_fault;
420 		unsigned long *hmm_pfns;
421 		unsigned long cpu_flags;
422 
423 		if (!pud_present(pud)) {
424 			spin_unlock(ptl);
425 			return hmm_vma_walk_hole(start, end, -1, walk);
426 		}
427 
428 		i = (addr - range->start) >> PAGE_SHIFT;
429 		npages = (end - addr) >> PAGE_SHIFT;
430 		hmm_pfns = &range->hmm_pfns[i];
431 
432 		cpu_flags = pud_to_hmm_pfn_flags(range, pud);
433 		required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
434 						      npages, cpu_flags);
435 		if (required_fault) {
436 			spin_unlock(ptl);
437 			return hmm_vma_fault(addr, end, required_fault, walk);
438 		}
439 
440 		pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
441 		for (i = 0; i < npages; ++i, ++pfn)
442 			hmm_pfns[i] = pfn | cpu_flags;
443 		goto out_unlock;
444 	}
445 
446 	/* Ask for the PUD to be split */
447 	walk->action = ACTION_SUBTREE;
448 
449 out_unlock:
450 	spin_unlock(ptl);
451 	return ret;
452 }
453 #else
454 #define hmm_vma_walk_pud	NULL
455 #endif
456 
457 #ifdef CONFIG_HUGETLB_PAGE
458 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
459 				      unsigned long start, unsigned long end,
460 				      struct mm_walk *walk)
461 {
462 	unsigned long addr = start, i, pfn;
463 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
464 	struct hmm_range *range = hmm_vma_walk->range;
465 	struct vm_area_struct *vma = walk->vma;
466 	unsigned int required_fault;
467 	unsigned long pfn_req_flags;
468 	unsigned long cpu_flags;
469 	spinlock_t *ptl;
470 	pte_t entry;
471 
472 	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
473 	entry = huge_ptep_get(pte);
474 
475 	i = (start - range->start) >> PAGE_SHIFT;
476 	pfn_req_flags = range->hmm_pfns[i];
477 	cpu_flags = pte_to_hmm_pfn_flags(range, entry);
478 	required_fault =
479 		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
480 	if (required_fault) {
481 		spin_unlock(ptl);
482 		return hmm_vma_fault(addr, end, required_fault, walk);
483 	}
484 
485 	pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
486 	for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
487 		range->hmm_pfns[i] = pfn | cpu_flags;
488 
489 	spin_unlock(ptl);
490 	return 0;
491 }
492 #else
493 #define hmm_vma_walk_hugetlb_entry NULL
494 #endif /* CONFIG_HUGETLB_PAGE */
495 
496 static int hmm_vma_walk_test(unsigned long start, unsigned long end,
497 			     struct mm_walk *walk)
498 {
499 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
500 	struct hmm_range *range = hmm_vma_walk->range;
501 	struct vm_area_struct *vma = walk->vma;
502 
503 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) &&
504 	    vma->vm_flags & VM_READ)
505 		return 0;
506 
507 	/*
508 	 * vma ranges that don't have struct page backing them or map I/O
509 	 * devices directly cannot be handled by hmm_range_fault().
510 	 *
511 	 * If the vma does not allow read access, then assume that it does not
512 	 * allow write access either. HMM does not support architectures that
513 	 * allow write without read.
514 	 *
515 	 * If a fault is requested for an unsupported range then it is a hard
516 	 * failure.
517 	 */
518 	if (hmm_range_need_fault(hmm_vma_walk,
519 				 range->hmm_pfns +
520 					 ((start - range->start) >> PAGE_SHIFT),
521 				 (end - start) >> PAGE_SHIFT, 0))
522 		return -EFAULT;
523 
524 	hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
525 
526 	/* Skip this vma and continue processing the next vma. */
527 	return 1;
528 }
529 
530 static const struct mm_walk_ops hmm_walk_ops = {
531 	.pud_entry	= hmm_vma_walk_pud,
532 	.pmd_entry	= hmm_vma_walk_pmd,
533 	.pte_hole	= hmm_vma_walk_hole,
534 	.hugetlb_entry	= hmm_vma_walk_hugetlb_entry,
535 	.test_walk	= hmm_vma_walk_test,
536 };
537 
538 /**
539  * hmm_range_fault - try to fault some address in a virtual address range
540  * @range:	argument structure
541  *
542  * Returns 0 on success or one of the following error codes:
543  *
544  * -EINVAL:	Invalid arguments or mm or virtual address is in an invalid vma
545  *		(e.g., device file vma).
546  * -ENOMEM:	Out of memory.
547  * -EPERM:	Invalid permission (e.g., asking for write and range is read
548  *		only).
549  * -EBUSY:	The range has been invalidated and the caller needs to wait for
550  *		the invalidation to finish.
551  * -EFAULT:     A page was requested to be valid and could not be made valid
552  *              ie it has no backing VMA or it is illegal to access
553  *
554  * This is similar to get_user_pages(), except that it can read the page tables
555  * without mutating them (ie causing faults).
556  */
557 int hmm_range_fault(struct hmm_range *range)
558 {
559 	struct hmm_vma_walk hmm_vma_walk = {
560 		.range = range,
561 		.last = range->start,
562 	};
563 	struct mm_struct *mm = range->notifier->mm;
564 	int ret;
565 
566 	mmap_assert_locked(mm);
567 
568 	do {
569 		/* If range is no longer valid force retry. */
570 		if (mmu_interval_check_retry(range->notifier,
571 					     range->notifier_seq))
572 			return -EBUSY;
573 		ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
574 				      &hmm_walk_ops, &hmm_vma_walk);
575 		/*
576 		 * When -EBUSY is returned the loop restarts with
577 		 * hmm_vma_walk.last set to an address that has not been stored
578 		 * in pfns. All entries < last in the pfn array are set to their
579 		 * output, and all >= are still at their input values.
580 		 */
581 	} while (ret == -EBUSY);
582 	return ret;
583 }
584 EXPORT_SYMBOL(hmm_range_fault);
585