xref: /openbmc/linux/mm/hmm.c (revision e1e38ea1)
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35 
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37 
38 #if IS_ENABLED(CONFIG_HMM_MIRROR)
39 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
40 
41 /*
42  * struct hmm - HMM per mm struct
43  *
44  * @mm: mm struct this HMM struct is bound to
45  * @lock: lock protecting ranges list
46  * @sequence: we track updates to the CPU page table with a sequence number
47  * @ranges: list of range being snapshotted
48  * @mirrors: list of mirrors for this mm
49  * @mmu_notifier: mmu notifier to track updates to CPU page table
50  * @mirrors_sem: read/write semaphore protecting the mirrors list
51  */
52 struct hmm {
53 	struct mm_struct	*mm;
54 	spinlock_t		lock;
55 	atomic_t		sequence;
56 	struct list_head	ranges;
57 	struct list_head	mirrors;
58 	struct mmu_notifier	mmu_notifier;
59 	struct rw_semaphore	mirrors_sem;
60 };
61 
62 /*
63  * hmm_register - register HMM against an mm (HMM internal)
64  *
65  * @mm: mm struct to attach to
66  *
67  * This is not intended to be used directly by device drivers. It allocates an
68  * HMM struct if mm does not have one, and initializes it.
69  */
70 static struct hmm *hmm_register(struct mm_struct *mm)
71 {
72 	struct hmm *hmm = READ_ONCE(mm->hmm);
73 	bool cleanup = false;
74 
75 	/*
76 	 * The hmm struct can only be freed once the mm_struct goes away,
77 	 * hence we should always have pre-allocated an new hmm struct
78 	 * above.
79 	 */
80 	if (hmm)
81 		return hmm;
82 
83 	hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
84 	if (!hmm)
85 		return NULL;
86 	INIT_LIST_HEAD(&hmm->mirrors);
87 	init_rwsem(&hmm->mirrors_sem);
88 	atomic_set(&hmm->sequence, 0);
89 	hmm->mmu_notifier.ops = NULL;
90 	INIT_LIST_HEAD(&hmm->ranges);
91 	spin_lock_init(&hmm->lock);
92 	hmm->mm = mm;
93 
94 	/*
95 	 * We should only get here if hold the mmap_sem in write mode ie on
96 	 * registration of first mirror through hmm_mirror_register()
97 	 */
98 	hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
99 	if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
100 		kfree(hmm);
101 		return NULL;
102 	}
103 
104 	spin_lock(&mm->page_table_lock);
105 	if (!mm->hmm)
106 		mm->hmm = hmm;
107 	else
108 		cleanup = true;
109 	spin_unlock(&mm->page_table_lock);
110 
111 	if (cleanup) {
112 		mmu_notifier_unregister(&hmm->mmu_notifier, mm);
113 		kfree(hmm);
114 	}
115 
116 	return mm->hmm;
117 }
118 
119 void hmm_mm_destroy(struct mm_struct *mm)
120 {
121 	kfree(mm->hmm);
122 }
123 
124 static void hmm_invalidate_range(struct hmm *hmm,
125 				 enum hmm_update_type action,
126 				 unsigned long start,
127 				 unsigned long end)
128 {
129 	struct hmm_mirror *mirror;
130 	struct hmm_range *range;
131 
132 	spin_lock(&hmm->lock);
133 	list_for_each_entry(range, &hmm->ranges, list) {
134 		unsigned long addr, idx, npages;
135 
136 		if (end < range->start || start >= range->end)
137 			continue;
138 
139 		range->valid = false;
140 		addr = max(start, range->start);
141 		idx = (addr - range->start) >> PAGE_SHIFT;
142 		npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
143 		memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
144 	}
145 	spin_unlock(&hmm->lock);
146 
147 	down_read(&hmm->mirrors_sem);
148 	list_for_each_entry(mirror, &hmm->mirrors, list)
149 		mirror->ops->sync_cpu_device_pagetables(mirror, action,
150 							start, end);
151 	up_read(&hmm->mirrors_sem);
152 }
153 
154 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
155 {
156 	struct hmm_mirror *mirror;
157 	struct hmm *hmm = mm->hmm;
158 
159 	down_write(&hmm->mirrors_sem);
160 	mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
161 					  list);
162 	while (mirror) {
163 		list_del_init(&mirror->list);
164 		if (mirror->ops->release) {
165 			/*
166 			 * Drop mirrors_sem so callback can wait on any pending
167 			 * work that might itself trigger mmu_notifier callback
168 			 * and thus would deadlock with us.
169 			 */
170 			up_write(&hmm->mirrors_sem);
171 			mirror->ops->release(mirror);
172 			down_write(&hmm->mirrors_sem);
173 		}
174 		mirror = list_first_entry_or_null(&hmm->mirrors,
175 						  struct hmm_mirror, list);
176 	}
177 	up_write(&hmm->mirrors_sem);
178 }
179 
180 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
181 				       struct mm_struct *mm,
182 				       unsigned long start,
183 				       unsigned long end,
184 				       bool blockable)
185 {
186 	struct hmm *hmm = mm->hmm;
187 
188 	VM_BUG_ON(!hmm);
189 
190 	atomic_inc(&hmm->sequence);
191 
192 	return 0;
193 }
194 
195 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
196 				     struct mm_struct *mm,
197 				     unsigned long start,
198 				     unsigned long end)
199 {
200 	struct hmm *hmm = mm->hmm;
201 
202 	VM_BUG_ON(!hmm);
203 
204 	hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
205 }
206 
207 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
208 	.release		= hmm_release,
209 	.invalidate_range_start	= hmm_invalidate_range_start,
210 	.invalidate_range_end	= hmm_invalidate_range_end,
211 };
212 
213 /*
214  * hmm_mirror_register() - register a mirror against an mm
215  *
216  * @mirror: new mirror struct to register
217  * @mm: mm to register against
218  *
219  * To start mirroring a process address space, the device driver must register
220  * an HMM mirror struct.
221  *
222  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
223  */
224 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
225 {
226 	/* Sanity check */
227 	if (!mm || !mirror || !mirror->ops)
228 		return -EINVAL;
229 
230 again:
231 	mirror->hmm = hmm_register(mm);
232 	if (!mirror->hmm)
233 		return -ENOMEM;
234 
235 	down_write(&mirror->hmm->mirrors_sem);
236 	if (mirror->hmm->mm == NULL) {
237 		/*
238 		 * A racing hmm_mirror_unregister() is about to destroy the hmm
239 		 * struct. Try again to allocate a new one.
240 		 */
241 		up_write(&mirror->hmm->mirrors_sem);
242 		mirror->hmm = NULL;
243 		goto again;
244 	} else {
245 		list_add(&mirror->list, &mirror->hmm->mirrors);
246 		up_write(&mirror->hmm->mirrors_sem);
247 	}
248 
249 	return 0;
250 }
251 EXPORT_SYMBOL(hmm_mirror_register);
252 
253 /*
254  * hmm_mirror_unregister() - unregister a mirror
255  *
256  * @mirror: new mirror struct to register
257  *
258  * Stop mirroring a process address space, and cleanup.
259  */
260 void hmm_mirror_unregister(struct hmm_mirror *mirror)
261 {
262 	bool should_unregister = false;
263 	struct mm_struct *mm;
264 	struct hmm *hmm;
265 
266 	if (mirror->hmm == NULL)
267 		return;
268 
269 	hmm = mirror->hmm;
270 	down_write(&hmm->mirrors_sem);
271 	list_del_init(&mirror->list);
272 	should_unregister = list_empty(&hmm->mirrors);
273 	mirror->hmm = NULL;
274 	mm = hmm->mm;
275 	hmm->mm = NULL;
276 	up_write(&hmm->mirrors_sem);
277 
278 	if (!should_unregister || mm == NULL)
279 		return;
280 
281 	spin_lock(&mm->page_table_lock);
282 	if (mm->hmm == hmm)
283 		mm->hmm = NULL;
284 	spin_unlock(&mm->page_table_lock);
285 
286 	mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
287 	kfree(hmm);
288 }
289 EXPORT_SYMBOL(hmm_mirror_unregister);
290 
291 struct hmm_vma_walk {
292 	struct hmm_range	*range;
293 	unsigned long		last;
294 	bool			fault;
295 	bool			block;
296 };
297 
298 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
299 			    bool write_fault, uint64_t *pfn)
300 {
301 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
302 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
303 	struct hmm_range *range = hmm_vma_walk->range;
304 	struct vm_area_struct *vma = walk->vma;
305 	vm_fault_t ret;
306 
307 	flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
308 	flags |= write_fault ? FAULT_FLAG_WRITE : 0;
309 	ret = handle_mm_fault(vma, addr, flags);
310 	if (ret & VM_FAULT_RETRY)
311 		return -EBUSY;
312 	if (ret & VM_FAULT_ERROR) {
313 		*pfn = range->values[HMM_PFN_ERROR];
314 		return -EFAULT;
315 	}
316 
317 	return -EAGAIN;
318 }
319 
320 static int hmm_pfns_bad(unsigned long addr,
321 			unsigned long end,
322 			struct mm_walk *walk)
323 {
324 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
325 	struct hmm_range *range = hmm_vma_walk->range;
326 	uint64_t *pfns = range->pfns;
327 	unsigned long i;
328 
329 	i = (addr - range->start) >> PAGE_SHIFT;
330 	for (; addr < end; addr += PAGE_SIZE, i++)
331 		pfns[i] = range->values[HMM_PFN_ERROR];
332 
333 	return 0;
334 }
335 
336 /*
337  * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
338  * @start: range virtual start address (inclusive)
339  * @end: range virtual end address (exclusive)
340  * @fault: should we fault or not ?
341  * @write_fault: write fault ?
342  * @walk: mm_walk structure
343  * Returns: 0 on success, -EAGAIN after page fault, or page fault error
344  *
345  * This function will be called whenever pmd_none() or pte_none() returns true,
346  * or whenever there is no page directory covering the virtual address range.
347  */
348 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
349 			      bool fault, bool write_fault,
350 			      struct mm_walk *walk)
351 {
352 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
353 	struct hmm_range *range = hmm_vma_walk->range;
354 	uint64_t *pfns = range->pfns;
355 	unsigned long i;
356 
357 	hmm_vma_walk->last = addr;
358 	i = (addr - range->start) >> PAGE_SHIFT;
359 	for (; addr < end; addr += PAGE_SIZE, i++) {
360 		pfns[i] = range->values[HMM_PFN_NONE];
361 		if (fault || write_fault) {
362 			int ret;
363 
364 			ret = hmm_vma_do_fault(walk, addr, write_fault,
365 					       &pfns[i]);
366 			if (ret != -EAGAIN)
367 				return ret;
368 		}
369 	}
370 
371 	return (fault || write_fault) ? -EAGAIN : 0;
372 }
373 
374 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
375 				      uint64_t pfns, uint64_t cpu_flags,
376 				      bool *fault, bool *write_fault)
377 {
378 	struct hmm_range *range = hmm_vma_walk->range;
379 
380 	*fault = *write_fault = false;
381 	if (!hmm_vma_walk->fault)
382 		return;
383 
384 	/* We aren't ask to do anything ... */
385 	if (!(pfns & range->flags[HMM_PFN_VALID]))
386 		return;
387 	/* If this is device memory than only fault if explicitly requested */
388 	if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
389 		/* Do we fault on device memory ? */
390 		if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
391 			*write_fault = pfns & range->flags[HMM_PFN_WRITE];
392 			*fault = true;
393 		}
394 		return;
395 	}
396 
397 	/* If CPU page table is not valid then we need to fault */
398 	*fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
399 	/* Need to write fault ? */
400 	if ((pfns & range->flags[HMM_PFN_WRITE]) &&
401 	    !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
402 		*write_fault = true;
403 		*fault = true;
404 	}
405 }
406 
407 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
408 				 const uint64_t *pfns, unsigned long npages,
409 				 uint64_t cpu_flags, bool *fault,
410 				 bool *write_fault)
411 {
412 	unsigned long i;
413 
414 	if (!hmm_vma_walk->fault) {
415 		*fault = *write_fault = false;
416 		return;
417 	}
418 
419 	for (i = 0; i < npages; ++i) {
420 		hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
421 				   fault, write_fault);
422 		if ((*fault) || (*write_fault))
423 			return;
424 	}
425 }
426 
427 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
428 			     struct mm_walk *walk)
429 {
430 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
431 	struct hmm_range *range = hmm_vma_walk->range;
432 	bool fault, write_fault;
433 	unsigned long i, npages;
434 	uint64_t *pfns;
435 
436 	i = (addr - range->start) >> PAGE_SHIFT;
437 	npages = (end - addr) >> PAGE_SHIFT;
438 	pfns = &range->pfns[i];
439 	hmm_range_need_fault(hmm_vma_walk, pfns, npages,
440 			     0, &fault, &write_fault);
441 	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
442 }
443 
444 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
445 {
446 	if (pmd_protnone(pmd))
447 		return 0;
448 	return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
449 				range->flags[HMM_PFN_WRITE] :
450 				range->flags[HMM_PFN_VALID];
451 }
452 
453 static int hmm_vma_handle_pmd(struct mm_walk *walk,
454 			      unsigned long addr,
455 			      unsigned long end,
456 			      uint64_t *pfns,
457 			      pmd_t pmd)
458 {
459 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
460 	struct hmm_range *range = hmm_vma_walk->range;
461 	unsigned long pfn, npages, i;
462 	bool fault, write_fault;
463 	uint64_t cpu_flags;
464 
465 	npages = (end - addr) >> PAGE_SHIFT;
466 	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
467 	hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
468 			     &fault, &write_fault);
469 
470 	if (pmd_protnone(pmd) || fault || write_fault)
471 		return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
472 
473 	pfn = pmd_pfn(pmd) + pte_index(addr);
474 	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
475 		pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
476 	hmm_vma_walk->last = end;
477 	return 0;
478 }
479 
480 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
481 {
482 	if (pte_none(pte) || !pte_present(pte))
483 		return 0;
484 	return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
485 				range->flags[HMM_PFN_WRITE] :
486 				range->flags[HMM_PFN_VALID];
487 }
488 
489 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
490 			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
491 			      uint64_t *pfn)
492 {
493 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
494 	struct hmm_range *range = hmm_vma_walk->range;
495 	struct vm_area_struct *vma = walk->vma;
496 	bool fault, write_fault;
497 	uint64_t cpu_flags;
498 	pte_t pte = *ptep;
499 	uint64_t orig_pfn = *pfn;
500 
501 	*pfn = range->values[HMM_PFN_NONE];
502 	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
503 	hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
504 			   &fault, &write_fault);
505 
506 	if (pte_none(pte)) {
507 		if (fault || write_fault)
508 			goto fault;
509 		return 0;
510 	}
511 
512 	if (!pte_present(pte)) {
513 		swp_entry_t entry = pte_to_swp_entry(pte);
514 
515 		if (!non_swap_entry(entry)) {
516 			if (fault || write_fault)
517 				goto fault;
518 			return 0;
519 		}
520 
521 		/*
522 		 * This is a special swap entry, ignore migration, use
523 		 * device and report anything else as error.
524 		 */
525 		if (is_device_private_entry(entry)) {
526 			cpu_flags = range->flags[HMM_PFN_VALID] |
527 				range->flags[HMM_PFN_DEVICE_PRIVATE];
528 			cpu_flags |= is_write_device_private_entry(entry) ?
529 				range->flags[HMM_PFN_WRITE] : 0;
530 			hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
531 					   &fault, &write_fault);
532 			if (fault || write_fault)
533 				goto fault;
534 			*pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
535 			*pfn |= cpu_flags;
536 			return 0;
537 		}
538 
539 		if (is_migration_entry(entry)) {
540 			if (fault || write_fault) {
541 				pte_unmap(ptep);
542 				hmm_vma_walk->last = addr;
543 				migration_entry_wait(vma->vm_mm,
544 						     pmdp, addr);
545 				return -EAGAIN;
546 			}
547 			return 0;
548 		}
549 
550 		/* Report error for everything else */
551 		*pfn = range->values[HMM_PFN_ERROR];
552 		return -EFAULT;
553 	}
554 
555 	if (fault || write_fault)
556 		goto fault;
557 
558 	*pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
559 	return 0;
560 
561 fault:
562 	pte_unmap(ptep);
563 	/* Fault any virtual address we were asked to fault */
564 	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
565 }
566 
567 static int hmm_vma_walk_pmd(pmd_t *pmdp,
568 			    unsigned long start,
569 			    unsigned long end,
570 			    struct mm_walk *walk)
571 {
572 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
573 	struct hmm_range *range = hmm_vma_walk->range;
574 	uint64_t *pfns = range->pfns;
575 	unsigned long addr = start, i;
576 	pte_t *ptep;
577 
578 	i = (addr - range->start) >> PAGE_SHIFT;
579 
580 again:
581 	if (pmd_none(*pmdp))
582 		return hmm_vma_walk_hole(start, end, walk);
583 
584 	if (pmd_huge(*pmdp) && (range->vma->vm_flags & VM_HUGETLB))
585 		return hmm_pfns_bad(start, end, walk);
586 
587 	if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
588 		pmd_t pmd;
589 
590 		/*
591 		 * No need to take pmd_lock here, even if some other threads
592 		 * is splitting the huge pmd we will get that event through
593 		 * mmu_notifier callback.
594 		 *
595 		 * So just read pmd value and check again its a transparent
596 		 * huge or device mapping one and compute corresponding pfn
597 		 * values.
598 		 */
599 		pmd = pmd_read_atomic(pmdp);
600 		barrier();
601 		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
602 			goto again;
603 
604 		return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
605 	}
606 
607 	if (pmd_bad(*pmdp))
608 		return hmm_pfns_bad(start, end, walk);
609 
610 	ptep = pte_offset_map(pmdp, addr);
611 	for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
612 		int r;
613 
614 		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
615 		if (r) {
616 			/* hmm_vma_handle_pte() did unmap pte directory */
617 			hmm_vma_walk->last = addr;
618 			return r;
619 		}
620 	}
621 	pte_unmap(ptep - 1);
622 
623 	hmm_vma_walk->last = addr;
624 	return 0;
625 }
626 
627 static void hmm_pfns_clear(struct hmm_range *range,
628 			   uint64_t *pfns,
629 			   unsigned long addr,
630 			   unsigned long end)
631 {
632 	for (; addr < end; addr += PAGE_SIZE, pfns++)
633 		*pfns = range->values[HMM_PFN_NONE];
634 }
635 
636 static void hmm_pfns_special(struct hmm_range *range)
637 {
638 	unsigned long addr = range->start, i = 0;
639 
640 	for (; addr < range->end; addr += PAGE_SIZE, i++)
641 		range->pfns[i] = range->values[HMM_PFN_SPECIAL];
642 }
643 
644 /*
645  * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
646  * @range: range being snapshotted
647  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
648  *          vma permission, 0 success
649  *
650  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
651  * validity is tracked by range struct. See hmm_vma_range_done() for further
652  * information.
653  *
654  * The range struct is initialized here. It tracks the CPU page table, but only
655  * if the function returns success (0), in which case the caller must then call
656  * hmm_vma_range_done() to stop CPU page table update tracking on this range.
657  *
658  * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
659  * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
660  */
661 int hmm_vma_get_pfns(struct hmm_range *range)
662 {
663 	struct vm_area_struct *vma = range->vma;
664 	struct hmm_vma_walk hmm_vma_walk;
665 	struct mm_walk mm_walk;
666 	struct hmm *hmm;
667 
668 	/* Sanity check, this really should not happen ! */
669 	if (range->start < vma->vm_start || range->start >= vma->vm_end)
670 		return -EINVAL;
671 	if (range->end < vma->vm_start || range->end > vma->vm_end)
672 		return -EINVAL;
673 
674 	hmm = hmm_register(vma->vm_mm);
675 	if (!hmm)
676 		return -ENOMEM;
677 	/* Caller must have registered a mirror, via hmm_mirror_register() ! */
678 	if (!hmm->mmu_notifier.ops)
679 		return -EINVAL;
680 
681 	/* FIXME support hugetlb fs */
682 	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
683 			vma_is_dax(vma)) {
684 		hmm_pfns_special(range);
685 		return -EINVAL;
686 	}
687 
688 	if (!(vma->vm_flags & VM_READ)) {
689 		/*
690 		 * If vma do not allow read access, then assume that it does
691 		 * not allow write access, either. Architecture that allow
692 		 * write without read access are not supported by HMM, because
693 		 * operations such has atomic access would not work.
694 		 */
695 		hmm_pfns_clear(range, range->pfns, range->start, range->end);
696 		return -EPERM;
697 	}
698 
699 	/* Initialize range to track CPU page table update */
700 	spin_lock(&hmm->lock);
701 	range->valid = true;
702 	list_add_rcu(&range->list, &hmm->ranges);
703 	spin_unlock(&hmm->lock);
704 
705 	hmm_vma_walk.fault = false;
706 	hmm_vma_walk.range = range;
707 	mm_walk.private = &hmm_vma_walk;
708 
709 	mm_walk.vma = vma;
710 	mm_walk.mm = vma->vm_mm;
711 	mm_walk.pte_entry = NULL;
712 	mm_walk.test_walk = NULL;
713 	mm_walk.hugetlb_entry = NULL;
714 	mm_walk.pmd_entry = hmm_vma_walk_pmd;
715 	mm_walk.pte_hole = hmm_vma_walk_hole;
716 
717 	walk_page_range(range->start, range->end, &mm_walk);
718 	return 0;
719 }
720 EXPORT_SYMBOL(hmm_vma_get_pfns);
721 
722 /*
723  * hmm_vma_range_done() - stop tracking change to CPU page table over a range
724  * @range: range being tracked
725  * Returns: false if range data has been invalidated, true otherwise
726  *
727  * Range struct is used to track updates to the CPU page table after a call to
728  * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
729  * using the data,  or wants to lock updates to the data it got from those
730  * functions, it must call the hmm_vma_range_done() function, which will then
731  * stop tracking CPU page table updates.
732  *
733  * Note that device driver must still implement general CPU page table update
734  * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
735  * the mmu_notifier API directly.
736  *
737  * CPU page table update tracking done through hmm_range is only temporary and
738  * to be used while trying to duplicate CPU page table contents for a range of
739  * virtual addresses.
740  *
741  * There are two ways to use this :
742  * again:
743  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
744  *   trans = device_build_page_table_update_transaction(pfns);
745  *   device_page_table_lock();
746  *   if (!hmm_vma_range_done(range)) {
747  *     device_page_table_unlock();
748  *     goto again;
749  *   }
750  *   device_commit_transaction(trans);
751  *   device_page_table_unlock();
752  *
753  * Or:
754  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
755  *   device_page_table_lock();
756  *   hmm_vma_range_done(range);
757  *   device_update_page_table(range->pfns);
758  *   device_page_table_unlock();
759  */
760 bool hmm_vma_range_done(struct hmm_range *range)
761 {
762 	unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
763 	struct hmm *hmm;
764 
765 	if (range->end <= range->start) {
766 		BUG();
767 		return false;
768 	}
769 
770 	hmm = hmm_register(range->vma->vm_mm);
771 	if (!hmm) {
772 		memset(range->pfns, 0, sizeof(*range->pfns) * npages);
773 		return false;
774 	}
775 
776 	spin_lock(&hmm->lock);
777 	list_del_rcu(&range->list);
778 	spin_unlock(&hmm->lock);
779 
780 	return range->valid;
781 }
782 EXPORT_SYMBOL(hmm_vma_range_done);
783 
784 /*
785  * hmm_vma_fault() - try to fault some address in a virtual address range
786  * @range: range being faulted
787  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
788  * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
789  *
790  * This is similar to a regular CPU page fault except that it will not trigger
791  * any memory migration if the memory being faulted is not accessible by CPUs.
792  *
793  * On error, for one virtual address in the range, the function will mark the
794  * corresponding HMM pfn entry with an error flag.
795  *
796  * Expected use pattern:
797  * retry:
798  *   down_read(&mm->mmap_sem);
799  *   // Find vma and address device wants to fault, initialize hmm_pfn_t
800  *   // array accordingly
801  *   ret = hmm_vma_fault(range, write, block);
802  *   switch (ret) {
803  *   case -EAGAIN:
804  *     hmm_vma_range_done(range);
805  *     // You might want to rate limit or yield to play nicely, you may
806  *     // also commit any valid pfn in the array assuming that you are
807  *     // getting true from hmm_vma_range_monitor_end()
808  *     goto retry;
809  *   case 0:
810  *     break;
811  *   case -ENOMEM:
812  *   case -EINVAL:
813  *   case -EPERM:
814  *   default:
815  *     // Handle error !
816  *     up_read(&mm->mmap_sem)
817  *     return;
818  *   }
819  *   // Take device driver lock that serialize device page table update
820  *   driver_lock_device_page_table_update();
821  *   hmm_vma_range_done(range);
822  *   // Commit pfns we got from hmm_vma_fault()
823  *   driver_unlock_device_page_table_update();
824  *   up_read(&mm->mmap_sem)
825  *
826  * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
827  * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
828  *
829  * YOU HAVE BEEN WARNED !
830  */
831 int hmm_vma_fault(struct hmm_range *range, bool block)
832 {
833 	struct vm_area_struct *vma = range->vma;
834 	unsigned long start = range->start;
835 	struct hmm_vma_walk hmm_vma_walk;
836 	struct mm_walk mm_walk;
837 	struct hmm *hmm;
838 	int ret;
839 
840 	/* Sanity check, this really should not happen ! */
841 	if (range->start < vma->vm_start || range->start >= vma->vm_end)
842 		return -EINVAL;
843 	if (range->end < vma->vm_start || range->end > vma->vm_end)
844 		return -EINVAL;
845 
846 	hmm = hmm_register(vma->vm_mm);
847 	if (!hmm) {
848 		hmm_pfns_clear(range, range->pfns, range->start, range->end);
849 		return -ENOMEM;
850 	}
851 	/* Caller must have registered a mirror using hmm_mirror_register() */
852 	if (!hmm->mmu_notifier.ops)
853 		return -EINVAL;
854 
855 	/* FIXME support hugetlb fs */
856 	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
857 			vma_is_dax(vma)) {
858 		hmm_pfns_special(range);
859 		return -EINVAL;
860 	}
861 
862 	if (!(vma->vm_flags & VM_READ)) {
863 		/*
864 		 * If vma do not allow read access, then assume that it does
865 		 * not allow write access, either. Architecture that allow
866 		 * write without read access are not supported by HMM, because
867 		 * operations such has atomic access would not work.
868 		 */
869 		hmm_pfns_clear(range, range->pfns, range->start, range->end);
870 		return -EPERM;
871 	}
872 
873 	/* Initialize range to track CPU page table update */
874 	spin_lock(&hmm->lock);
875 	range->valid = true;
876 	list_add_rcu(&range->list, &hmm->ranges);
877 	spin_unlock(&hmm->lock);
878 
879 	hmm_vma_walk.fault = true;
880 	hmm_vma_walk.block = block;
881 	hmm_vma_walk.range = range;
882 	mm_walk.private = &hmm_vma_walk;
883 	hmm_vma_walk.last = range->start;
884 
885 	mm_walk.vma = vma;
886 	mm_walk.mm = vma->vm_mm;
887 	mm_walk.pte_entry = NULL;
888 	mm_walk.test_walk = NULL;
889 	mm_walk.hugetlb_entry = NULL;
890 	mm_walk.pmd_entry = hmm_vma_walk_pmd;
891 	mm_walk.pte_hole = hmm_vma_walk_hole;
892 
893 	do {
894 		ret = walk_page_range(start, range->end, &mm_walk);
895 		start = hmm_vma_walk.last;
896 	} while (ret == -EAGAIN);
897 
898 	if (ret) {
899 		unsigned long i;
900 
901 		i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
902 		hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last,
903 			       range->end);
904 		hmm_vma_range_done(range);
905 	}
906 	return ret;
907 }
908 EXPORT_SYMBOL(hmm_vma_fault);
909 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
910 
911 
912 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
913 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
914 				       unsigned long addr)
915 {
916 	struct page *page;
917 
918 	page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
919 	if (!page)
920 		return NULL;
921 	lock_page(page);
922 	return page;
923 }
924 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
925 
926 
927 static void hmm_devmem_ref_release(struct percpu_ref *ref)
928 {
929 	struct hmm_devmem *devmem;
930 
931 	devmem = container_of(ref, struct hmm_devmem, ref);
932 	complete(&devmem->completion);
933 }
934 
935 static void hmm_devmem_ref_exit(void *data)
936 {
937 	struct percpu_ref *ref = data;
938 	struct hmm_devmem *devmem;
939 
940 	devmem = container_of(ref, struct hmm_devmem, ref);
941 	percpu_ref_exit(ref);
942 	devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
943 }
944 
945 static void hmm_devmem_ref_kill(void *data)
946 {
947 	struct percpu_ref *ref = data;
948 	struct hmm_devmem *devmem;
949 
950 	devmem = container_of(ref, struct hmm_devmem, ref);
951 	percpu_ref_kill(ref);
952 	wait_for_completion(&devmem->completion);
953 	devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
954 }
955 
956 static int hmm_devmem_fault(struct vm_area_struct *vma,
957 			    unsigned long addr,
958 			    const struct page *page,
959 			    unsigned int flags,
960 			    pmd_t *pmdp)
961 {
962 	struct hmm_devmem *devmem = page->pgmap->data;
963 
964 	return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
965 }
966 
967 static void hmm_devmem_free(struct page *page, void *data)
968 {
969 	struct hmm_devmem *devmem = data;
970 
971 	page->mapping = NULL;
972 
973 	devmem->ops->free(devmem, page);
974 }
975 
976 static DEFINE_MUTEX(hmm_devmem_lock);
977 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
978 
979 static void hmm_devmem_radix_release(struct resource *resource)
980 {
981 	resource_size_t key;
982 
983 	mutex_lock(&hmm_devmem_lock);
984 	for (key = resource->start;
985 	     key <= resource->end;
986 	     key += PA_SECTION_SIZE)
987 		radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
988 	mutex_unlock(&hmm_devmem_lock);
989 }
990 
991 static void hmm_devmem_release(struct device *dev, void *data)
992 {
993 	struct hmm_devmem *devmem = data;
994 	struct resource *resource = devmem->resource;
995 	unsigned long start_pfn, npages;
996 	struct zone *zone;
997 	struct page *page;
998 
999 	if (percpu_ref_tryget_live(&devmem->ref)) {
1000 		dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
1001 		percpu_ref_put(&devmem->ref);
1002 	}
1003 
1004 	/* pages are dead and unused, undo the arch mapping */
1005 	start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
1006 	npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
1007 
1008 	page = pfn_to_page(start_pfn);
1009 	zone = page_zone(page);
1010 
1011 	mem_hotplug_begin();
1012 	if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
1013 		__remove_pages(zone, start_pfn, npages, NULL);
1014 	else
1015 		arch_remove_memory(start_pfn << PAGE_SHIFT,
1016 				   npages << PAGE_SHIFT, NULL);
1017 	mem_hotplug_done();
1018 
1019 	hmm_devmem_radix_release(resource);
1020 }
1021 
1022 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
1023 {
1024 	resource_size_t key, align_start, align_size, align_end;
1025 	struct device *device = devmem->device;
1026 	int ret, nid, is_ram;
1027 	unsigned long pfn;
1028 
1029 	align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
1030 	align_size = ALIGN(devmem->resource->start +
1031 			   resource_size(devmem->resource),
1032 			   PA_SECTION_SIZE) - align_start;
1033 
1034 	is_ram = region_intersects(align_start, align_size,
1035 				   IORESOURCE_SYSTEM_RAM,
1036 				   IORES_DESC_NONE);
1037 	if (is_ram == REGION_MIXED) {
1038 		WARN_ONCE(1, "%s attempted on mixed region %pr\n",
1039 				__func__, devmem->resource);
1040 		return -ENXIO;
1041 	}
1042 	if (is_ram == REGION_INTERSECTS)
1043 		return -ENXIO;
1044 
1045 	if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
1046 		devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1047 	else
1048 		devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1049 
1050 	devmem->pagemap.res = *devmem->resource;
1051 	devmem->pagemap.page_fault = hmm_devmem_fault;
1052 	devmem->pagemap.page_free = hmm_devmem_free;
1053 	devmem->pagemap.dev = devmem->device;
1054 	devmem->pagemap.ref = &devmem->ref;
1055 	devmem->pagemap.data = devmem;
1056 
1057 	mutex_lock(&hmm_devmem_lock);
1058 	align_end = align_start + align_size - 1;
1059 	for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
1060 		struct hmm_devmem *dup;
1061 
1062 		dup = radix_tree_lookup(&hmm_devmem_radix,
1063 					key >> PA_SECTION_SHIFT);
1064 		if (dup) {
1065 			dev_err(device, "%s: collides with mapping for %s\n",
1066 				__func__, dev_name(dup->device));
1067 			mutex_unlock(&hmm_devmem_lock);
1068 			ret = -EBUSY;
1069 			goto error;
1070 		}
1071 		ret = radix_tree_insert(&hmm_devmem_radix,
1072 					key >> PA_SECTION_SHIFT,
1073 					devmem);
1074 		if (ret) {
1075 			dev_err(device, "%s: failed: %d\n", __func__, ret);
1076 			mutex_unlock(&hmm_devmem_lock);
1077 			goto error_radix;
1078 		}
1079 	}
1080 	mutex_unlock(&hmm_devmem_lock);
1081 
1082 	nid = dev_to_node(device);
1083 	if (nid < 0)
1084 		nid = numa_mem_id();
1085 
1086 	mem_hotplug_begin();
1087 	/*
1088 	 * For device private memory we call add_pages() as we only need to
1089 	 * allocate and initialize struct page for the device memory. More-
1090 	 * over the device memory is un-accessible thus we do not want to
1091 	 * create a linear mapping for the memory like arch_add_memory()
1092 	 * would do.
1093 	 *
1094 	 * For device public memory, which is accesible by the CPU, we do
1095 	 * want the linear mapping and thus use arch_add_memory().
1096 	 */
1097 	if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
1098 		ret = arch_add_memory(nid, align_start, align_size, NULL,
1099 				false);
1100 	else
1101 		ret = add_pages(nid, align_start >> PAGE_SHIFT,
1102 				align_size >> PAGE_SHIFT, NULL, false);
1103 	if (ret) {
1104 		mem_hotplug_done();
1105 		goto error_add_memory;
1106 	}
1107 	move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
1108 				align_start >> PAGE_SHIFT,
1109 				align_size >> PAGE_SHIFT, NULL);
1110 	mem_hotplug_done();
1111 
1112 	for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
1113 		struct page *page = pfn_to_page(pfn);
1114 
1115 		page->pgmap = &devmem->pagemap;
1116 	}
1117 	return 0;
1118 
1119 error_add_memory:
1120 	untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
1121 error_radix:
1122 	hmm_devmem_radix_release(devmem->resource);
1123 error:
1124 	return ret;
1125 }
1126 
1127 static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
1128 {
1129 	struct hmm_devmem *devmem = data;
1130 
1131 	return devmem->resource == match_data;
1132 }
1133 
1134 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
1135 {
1136 	devres_release(devmem->device, &hmm_devmem_release,
1137 		       &hmm_devmem_match, devmem->resource);
1138 }
1139 
1140 /*
1141  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1142  *
1143  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1144  * @device: device struct to bind the resource too
1145  * @size: size in bytes of the device memory to add
1146  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1147  *
1148  * This function first finds an empty range of physical address big enough to
1149  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1150  * in turn allocates struct pages. It does not do anything beyond that; all
1151  * events affecting the memory will go through the various callbacks provided
1152  * by hmm_devmem_ops struct.
1153  *
1154  * Device driver should call this function during device initialization and
1155  * is then responsible of memory management. HMM only provides helpers.
1156  */
1157 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1158 				  struct device *device,
1159 				  unsigned long size)
1160 {
1161 	struct hmm_devmem *devmem;
1162 	resource_size_t addr;
1163 	int ret;
1164 
1165 	dev_pagemap_get_ops();
1166 
1167 	devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1168 				   GFP_KERNEL, dev_to_node(device));
1169 	if (!devmem)
1170 		return ERR_PTR(-ENOMEM);
1171 
1172 	init_completion(&devmem->completion);
1173 	devmem->pfn_first = -1UL;
1174 	devmem->pfn_last = -1UL;
1175 	devmem->resource = NULL;
1176 	devmem->device = device;
1177 	devmem->ops = ops;
1178 
1179 	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1180 			      0, GFP_KERNEL);
1181 	if (ret)
1182 		goto error_percpu_ref;
1183 
1184 	ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1185 	if (ret)
1186 		goto error_devm_add_action;
1187 
1188 	size = ALIGN(size, PA_SECTION_SIZE);
1189 	addr = min((unsigned long)iomem_resource.end,
1190 		   (1UL << MAX_PHYSMEM_BITS) - 1);
1191 	addr = addr - size + 1UL;
1192 
1193 	/*
1194 	 * FIXME add a new helper to quickly walk resource tree and find free
1195 	 * range
1196 	 *
1197 	 * FIXME what about ioport_resource resource ?
1198 	 */
1199 	for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1200 		ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1201 		if (ret != REGION_DISJOINT)
1202 			continue;
1203 
1204 		devmem->resource = devm_request_mem_region(device, addr, size,
1205 							   dev_name(device));
1206 		if (!devmem->resource) {
1207 			ret = -ENOMEM;
1208 			goto error_no_resource;
1209 		}
1210 		break;
1211 	}
1212 	if (!devmem->resource) {
1213 		ret = -ERANGE;
1214 		goto error_no_resource;
1215 	}
1216 
1217 	devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1218 	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1219 	devmem->pfn_last = devmem->pfn_first +
1220 			   (resource_size(devmem->resource) >> PAGE_SHIFT);
1221 
1222 	ret = hmm_devmem_pages_create(devmem);
1223 	if (ret)
1224 		goto error_pages;
1225 
1226 	devres_add(device, devmem);
1227 
1228 	ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1229 	if (ret) {
1230 		hmm_devmem_remove(devmem);
1231 		return ERR_PTR(ret);
1232 	}
1233 
1234 	return devmem;
1235 
1236 error_pages:
1237 	devm_release_mem_region(device, devmem->resource->start,
1238 				resource_size(devmem->resource));
1239 error_no_resource:
1240 error_devm_add_action:
1241 	hmm_devmem_ref_kill(&devmem->ref);
1242 	hmm_devmem_ref_exit(&devmem->ref);
1243 error_percpu_ref:
1244 	devres_free(devmem);
1245 	return ERR_PTR(ret);
1246 }
1247 EXPORT_SYMBOL(hmm_devmem_add);
1248 
1249 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1250 					   struct device *device,
1251 					   struct resource *res)
1252 {
1253 	struct hmm_devmem *devmem;
1254 	int ret;
1255 
1256 	if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1257 		return ERR_PTR(-EINVAL);
1258 
1259 	dev_pagemap_get_ops();
1260 
1261 	devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1262 				   GFP_KERNEL, dev_to_node(device));
1263 	if (!devmem)
1264 		return ERR_PTR(-ENOMEM);
1265 
1266 	init_completion(&devmem->completion);
1267 	devmem->pfn_first = -1UL;
1268 	devmem->pfn_last = -1UL;
1269 	devmem->resource = res;
1270 	devmem->device = device;
1271 	devmem->ops = ops;
1272 
1273 	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1274 			      0, GFP_KERNEL);
1275 	if (ret)
1276 		goto error_percpu_ref;
1277 
1278 	ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1279 	if (ret)
1280 		goto error_devm_add_action;
1281 
1282 
1283 	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1284 	devmem->pfn_last = devmem->pfn_first +
1285 			   (resource_size(devmem->resource) >> PAGE_SHIFT);
1286 
1287 	ret = hmm_devmem_pages_create(devmem);
1288 	if (ret)
1289 		goto error_devm_add_action;
1290 
1291 	devres_add(device, devmem);
1292 
1293 	ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1294 	if (ret) {
1295 		hmm_devmem_remove(devmem);
1296 		return ERR_PTR(ret);
1297 	}
1298 
1299 	return devmem;
1300 
1301 error_devm_add_action:
1302 	hmm_devmem_ref_kill(&devmem->ref);
1303 	hmm_devmem_ref_exit(&devmem->ref);
1304 error_percpu_ref:
1305 	devres_free(devmem);
1306 	return ERR_PTR(ret);
1307 }
1308 EXPORT_SYMBOL(hmm_devmem_add_resource);
1309 
1310 /*
1311  * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1312  *
1313  * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1314  *
1315  * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1316  * of the device driver. It will free struct page and remove the resource that
1317  * reserved the physical address range for this device memory.
1318  */
1319 void hmm_devmem_remove(struct hmm_devmem *devmem)
1320 {
1321 	resource_size_t start, size;
1322 	struct device *device;
1323 	bool cdm = false;
1324 
1325 	if (!devmem)
1326 		return;
1327 
1328 	device = devmem->device;
1329 	start = devmem->resource->start;
1330 	size = resource_size(devmem->resource);
1331 
1332 	cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1333 	hmm_devmem_ref_kill(&devmem->ref);
1334 	hmm_devmem_ref_exit(&devmem->ref);
1335 	hmm_devmem_pages_remove(devmem);
1336 
1337 	if (!cdm)
1338 		devm_release_mem_region(device, start, size);
1339 }
1340 EXPORT_SYMBOL(hmm_devmem_remove);
1341 
1342 /*
1343  * A device driver that wants to handle multiple devices memory through a
1344  * single fake device can use hmm_device to do so. This is purely a helper
1345  * and it is not needed to make use of any HMM functionality.
1346  */
1347 #define HMM_DEVICE_MAX 256
1348 
1349 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1350 static DEFINE_SPINLOCK(hmm_device_lock);
1351 static struct class *hmm_device_class;
1352 static dev_t hmm_device_devt;
1353 
1354 static void hmm_device_release(struct device *device)
1355 {
1356 	struct hmm_device *hmm_device;
1357 
1358 	hmm_device = container_of(device, struct hmm_device, device);
1359 	spin_lock(&hmm_device_lock);
1360 	clear_bit(hmm_device->minor, hmm_device_mask);
1361 	spin_unlock(&hmm_device_lock);
1362 
1363 	kfree(hmm_device);
1364 }
1365 
1366 struct hmm_device *hmm_device_new(void *drvdata)
1367 {
1368 	struct hmm_device *hmm_device;
1369 
1370 	hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1371 	if (!hmm_device)
1372 		return ERR_PTR(-ENOMEM);
1373 
1374 	spin_lock(&hmm_device_lock);
1375 	hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1376 	if (hmm_device->minor >= HMM_DEVICE_MAX) {
1377 		spin_unlock(&hmm_device_lock);
1378 		kfree(hmm_device);
1379 		return ERR_PTR(-EBUSY);
1380 	}
1381 	set_bit(hmm_device->minor, hmm_device_mask);
1382 	spin_unlock(&hmm_device_lock);
1383 
1384 	dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1385 	hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1386 					hmm_device->minor);
1387 	hmm_device->device.release = hmm_device_release;
1388 	dev_set_drvdata(&hmm_device->device, drvdata);
1389 	hmm_device->device.class = hmm_device_class;
1390 	device_initialize(&hmm_device->device);
1391 
1392 	return hmm_device;
1393 }
1394 EXPORT_SYMBOL(hmm_device_new);
1395 
1396 void hmm_device_put(struct hmm_device *hmm_device)
1397 {
1398 	put_device(&hmm_device->device);
1399 }
1400 EXPORT_SYMBOL(hmm_device_put);
1401 
1402 static int __init hmm_init(void)
1403 {
1404 	int ret;
1405 
1406 	ret = alloc_chrdev_region(&hmm_device_devt, 0,
1407 				  HMM_DEVICE_MAX,
1408 				  "hmm_device");
1409 	if (ret)
1410 		return ret;
1411 
1412 	hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1413 	if (IS_ERR(hmm_device_class)) {
1414 		unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1415 		return PTR_ERR(hmm_device_class);
1416 	}
1417 	return 0;
1418 }
1419 
1420 device_initcall(hmm_init);
1421 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
1422