1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2013 Red Hat Inc. 4 * 5 * Authors: Jérôme Glisse <jglisse@redhat.com> 6 */ 7 /* 8 * Refer to include/linux/hmm.h for information about heterogeneous memory 9 * management or HMM for short. 10 */ 11 #include <linux/pagewalk.h> 12 #include <linux/hmm.h> 13 #include <linux/init.h> 14 #include <linux/rmap.h> 15 #include <linux/swap.h> 16 #include <linux/slab.h> 17 #include <linux/sched.h> 18 #include <linux/mmzone.h> 19 #include <linux/pagemap.h> 20 #include <linux/swapops.h> 21 #include <linux/hugetlb.h> 22 #include <linux/memremap.h> 23 #include <linux/sched/mm.h> 24 #include <linux/jump_label.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/mmu_notifier.h> 27 #include <linux/memory_hotplug.h> 28 29 struct hmm_vma_walk { 30 struct hmm_range *range; 31 unsigned long last; 32 }; 33 34 enum { 35 HMM_NEED_FAULT = 1 << 0, 36 HMM_NEED_WRITE_FAULT = 1 << 1, 37 HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT, 38 }; 39 40 static int hmm_pfns_fill(unsigned long addr, unsigned long end, 41 struct hmm_range *range, unsigned long cpu_flags) 42 { 43 unsigned long i = (addr - range->start) >> PAGE_SHIFT; 44 45 for (; addr < end; addr += PAGE_SIZE, i++) 46 range->hmm_pfns[i] = cpu_flags; 47 return 0; 48 } 49 50 /* 51 * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s) 52 * @addr: range virtual start address (inclusive) 53 * @end: range virtual end address (exclusive) 54 * @required_fault: HMM_NEED_* flags 55 * @walk: mm_walk structure 56 * Return: -EBUSY after page fault, or page fault error 57 * 58 * This function will be called whenever pmd_none() or pte_none() returns true, 59 * or whenever there is no page directory covering the virtual address range. 60 */ 61 static int hmm_vma_fault(unsigned long addr, unsigned long end, 62 unsigned int required_fault, struct mm_walk *walk) 63 { 64 struct hmm_vma_walk *hmm_vma_walk = walk->private; 65 struct vm_area_struct *vma = walk->vma; 66 unsigned int fault_flags = FAULT_FLAG_REMOTE; 67 68 WARN_ON_ONCE(!required_fault); 69 hmm_vma_walk->last = addr; 70 71 if (required_fault & HMM_NEED_WRITE_FAULT) { 72 if (!(vma->vm_flags & VM_WRITE)) 73 return -EPERM; 74 fault_flags |= FAULT_FLAG_WRITE; 75 } 76 77 for (; addr < end; addr += PAGE_SIZE) 78 if (handle_mm_fault(vma, addr, fault_flags, NULL) & 79 VM_FAULT_ERROR) 80 return -EFAULT; 81 return -EBUSY; 82 } 83 84 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk, 85 unsigned long pfn_req_flags, 86 unsigned long cpu_flags) 87 { 88 struct hmm_range *range = hmm_vma_walk->range; 89 90 /* 91 * So we not only consider the individual per page request we also 92 * consider the default flags requested for the range. The API can 93 * be used 2 ways. The first one where the HMM user coalesces 94 * multiple page faults into one request and sets flags per pfn for 95 * those faults. The second one where the HMM user wants to pre- 96 * fault a range with specific flags. For the latter one it is a 97 * waste to have the user pre-fill the pfn arrays with a default 98 * flags value. 99 */ 100 pfn_req_flags &= range->pfn_flags_mask; 101 pfn_req_flags |= range->default_flags; 102 103 /* We aren't ask to do anything ... */ 104 if (!(pfn_req_flags & HMM_PFN_REQ_FAULT)) 105 return 0; 106 107 /* Need to write fault ? */ 108 if ((pfn_req_flags & HMM_PFN_REQ_WRITE) && 109 !(cpu_flags & HMM_PFN_WRITE)) 110 return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT; 111 112 /* If CPU page table is not valid then we need to fault */ 113 if (!(cpu_flags & HMM_PFN_VALID)) 114 return HMM_NEED_FAULT; 115 return 0; 116 } 117 118 static unsigned int 119 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk, 120 const unsigned long hmm_pfns[], unsigned long npages, 121 unsigned long cpu_flags) 122 { 123 struct hmm_range *range = hmm_vma_walk->range; 124 unsigned int required_fault = 0; 125 unsigned long i; 126 127 /* 128 * If the default flags do not request to fault pages, and the mask does 129 * not allow for individual pages to be faulted, then 130 * hmm_pte_need_fault() will always return 0. 131 */ 132 if (!((range->default_flags | range->pfn_flags_mask) & 133 HMM_PFN_REQ_FAULT)) 134 return 0; 135 136 for (i = 0; i < npages; ++i) { 137 required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i], 138 cpu_flags); 139 if (required_fault == HMM_NEED_ALL_BITS) 140 return required_fault; 141 } 142 return required_fault; 143 } 144 145 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end, 146 __always_unused int depth, struct mm_walk *walk) 147 { 148 struct hmm_vma_walk *hmm_vma_walk = walk->private; 149 struct hmm_range *range = hmm_vma_walk->range; 150 unsigned int required_fault; 151 unsigned long i, npages; 152 unsigned long *hmm_pfns; 153 154 i = (addr - range->start) >> PAGE_SHIFT; 155 npages = (end - addr) >> PAGE_SHIFT; 156 hmm_pfns = &range->hmm_pfns[i]; 157 required_fault = 158 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0); 159 if (!walk->vma) { 160 if (required_fault) 161 return -EFAULT; 162 return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR); 163 } 164 if (required_fault) 165 return hmm_vma_fault(addr, end, required_fault, walk); 166 return hmm_pfns_fill(addr, end, range, 0); 167 } 168 169 static inline unsigned long hmm_pfn_flags_order(unsigned long order) 170 { 171 return order << HMM_PFN_ORDER_SHIFT; 172 } 173 174 static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range, 175 pmd_t pmd) 176 { 177 if (pmd_protnone(pmd)) 178 return 0; 179 return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : 180 HMM_PFN_VALID) | 181 hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT); 182 } 183 184 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 185 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, 186 unsigned long end, unsigned long hmm_pfns[], 187 pmd_t pmd) 188 { 189 struct hmm_vma_walk *hmm_vma_walk = walk->private; 190 struct hmm_range *range = hmm_vma_walk->range; 191 unsigned long pfn, npages, i; 192 unsigned int required_fault; 193 unsigned long cpu_flags; 194 195 npages = (end - addr) >> PAGE_SHIFT; 196 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd); 197 required_fault = 198 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags); 199 if (required_fault) 200 return hmm_vma_fault(addr, end, required_fault, walk); 201 202 pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 203 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) 204 hmm_pfns[i] = pfn | cpu_flags; 205 return 0; 206 } 207 #else /* CONFIG_TRANSPARENT_HUGEPAGE */ 208 /* stub to allow the code below to compile */ 209 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, 210 unsigned long end, unsigned long hmm_pfns[], pmd_t pmd); 211 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 212 213 static inline bool hmm_is_device_private_entry(struct hmm_range *range, 214 swp_entry_t entry) 215 { 216 return is_device_private_entry(entry) && 217 device_private_entry_to_page(entry)->pgmap->owner == 218 range->dev_private_owner; 219 } 220 221 static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range, 222 pte_t pte) 223 { 224 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte)) 225 return 0; 226 return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID; 227 } 228 229 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr, 230 unsigned long end, pmd_t *pmdp, pte_t *ptep, 231 unsigned long *hmm_pfn) 232 { 233 struct hmm_vma_walk *hmm_vma_walk = walk->private; 234 struct hmm_range *range = hmm_vma_walk->range; 235 unsigned int required_fault; 236 unsigned long cpu_flags; 237 pte_t pte = *ptep; 238 uint64_t pfn_req_flags = *hmm_pfn; 239 240 if (pte_none(pte)) { 241 required_fault = 242 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0); 243 if (required_fault) 244 goto fault; 245 *hmm_pfn = 0; 246 return 0; 247 } 248 249 if (!pte_present(pte)) { 250 swp_entry_t entry = pte_to_swp_entry(pte); 251 252 /* 253 * Never fault in device private pages, but just report 254 * the PFN even if not present. 255 */ 256 if (hmm_is_device_private_entry(range, entry)) { 257 cpu_flags = HMM_PFN_VALID; 258 if (is_write_device_private_entry(entry)) 259 cpu_flags |= HMM_PFN_WRITE; 260 *hmm_pfn = device_private_entry_to_pfn(entry) | 261 cpu_flags; 262 return 0; 263 } 264 265 required_fault = 266 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0); 267 if (!required_fault) { 268 *hmm_pfn = 0; 269 return 0; 270 } 271 272 if (!non_swap_entry(entry)) 273 goto fault; 274 275 if (is_migration_entry(entry)) { 276 pte_unmap(ptep); 277 hmm_vma_walk->last = addr; 278 migration_entry_wait(walk->mm, pmdp, addr); 279 return -EBUSY; 280 } 281 282 /* Report error for everything else */ 283 pte_unmap(ptep); 284 return -EFAULT; 285 } 286 287 cpu_flags = pte_to_hmm_pfn_flags(range, pte); 288 required_fault = 289 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags); 290 if (required_fault) 291 goto fault; 292 293 /* 294 * Since each architecture defines a struct page for the zero page, just 295 * fall through and treat it like a normal page. 296 */ 297 if (pte_special(pte) && !is_zero_pfn(pte_pfn(pte))) { 298 if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) { 299 pte_unmap(ptep); 300 return -EFAULT; 301 } 302 *hmm_pfn = HMM_PFN_ERROR; 303 return 0; 304 } 305 306 *hmm_pfn = pte_pfn(pte) | cpu_flags; 307 return 0; 308 309 fault: 310 pte_unmap(ptep); 311 /* Fault any virtual address we were asked to fault */ 312 return hmm_vma_fault(addr, end, required_fault, walk); 313 } 314 315 static int hmm_vma_walk_pmd(pmd_t *pmdp, 316 unsigned long start, 317 unsigned long end, 318 struct mm_walk *walk) 319 { 320 struct hmm_vma_walk *hmm_vma_walk = walk->private; 321 struct hmm_range *range = hmm_vma_walk->range; 322 unsigned long *hmm_pfns = 323 &range->hmm_pfns[(start - range->start) >> PAGE_SHIFT]; 324 unsigned long npages = (end - start) >> PAGE_SHIFT; 325 unsigned long addr = start; 326 pte_t *ptep; 327 pmd_t pmd; 328 329 again: 330 pmd = READ_ONCE(*pmdp); 331 if (pmd_none(pmd)) 332 return hmm_vma_walk_hole(start, end, -1, walk); 333 334 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) { 335 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) { 336 hmm_vma_walk->last = addr; 337 pmd_migration_entry_wait(walk->mm, pmdp); 338 return -EBUSY; 339 } 340 return hmm_pfns_fill(start, end, range, 0); 341 } 342 343 if (!pmd_present(pmd)) { 344 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) 345 return -EFAULT; 346 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); 347 } 348 349 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) { 350 /* 351 * No need to take pmd_lock here, even if some other thread 352 * is splitting the huge pmd we will get that event through 353 * mmu_notifier callback. 354 * 355 * So just read pmd value and check again it's a transparent 356 * huge or device mapping one and compute corresponding pfn 357 * values. 358 */ 359 pmd = pmd_read_atomic(pmdp); 360 barrier(); 361 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd)) 362 goto again; 363 364 return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd); 365 } 366 367 /* 368 * We have handled all the valid cases above ie either none, migration, 369 * huge or transparent huge. At this point either it is a valid pmd 370 * entry pointing to pte directory or it is a bad pmd that will not 371 * recover. 372 */ 373 if (pmd_bad(pmd)) { 374 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) 375 return -EFAULT; 376 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); 377 } 378 379 ptep = pte_offset_map(pmdp, addr); 380 for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) { 381 int r; 382 383 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns); 384 if (r) { 385 /* hmm_vma_handle_pte() did pte_unmap() */ 386 return r; 387 } 388 } 389 pte_unmap(ptep - 1); 390 return 0; 391 } 392 393 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \ 394 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 395 static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range, 396 pud_t pud) 397 { 398 if (!pud_present(pud)) 399 return 0; 400 return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : 401 HMM_PFN_VALID) | 402 hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT); 403 } 404 405 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end, 406 struct mm_walk *walk) 407 { 408 struct hmm_vma_walk *hmm_vma_walk = walk->private; 409 struct hmm_range *range = hmm_vma_walk->range; 410 unsigned long addr = start; 411 pud_t pud; 412 int ret = 0; 413 spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma); 414 415 if (!ptl) 416 return 0; 417 418 /* Normally we don't want to split the huge page */ 419 walk->action = ACTION_CONTINUE; 420 421 pud = READ_ONCE(*pudp); 422 if (pud_none(pud)) { 423 spin_unlock(ptl); 424 return hmm_vma_walk_hole(start, end, -1, walk); 425 } 426 427 if (pud_huge(pud) && pud_devmap(pud)) { 428 unsigned long i, npages, pfn; 429 unsigned int required_fault; 430 unsigned long *hmm_pfns; 431 unsigned long cpu_flags; 432 433 if (!pud_present(pud)) { 434 spin_unlock(ptl); 435 return hmm_vma_walk_hole(start, end, -1, walk); 436 } 437 438 i = (addr - range->start) >> PAGE_SHIFT; 439 npages = (end - addr) >> PAGE_SHIFT; 440 hmm_pfns = &range->hmm_pfns[i]; 441 442 cpu_flags = pud_to_hmm_pfn_flags(range, pud); 443 required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns, 444 npages, cpu_flags); 445 if (required_fault) { 446 spin_unlock(ptl); 447 return hmm_vma_fault(addr, end, required_fault, walk); 448 } 449 450 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 451 for (i = 0; i < npages; ++i, ++pfn) 452 hmm_pfns[i] = pfn | cpu_flags; 453 goto out_unlock; 454 } 455 456 /* Ask for the PUD to be split */ 457 walk->action = ACTION_SUBTREE; 458 459 out_unlock: 460 spin_unlock(ptl); 461 return ret; 462 } 463 #else 464 #define hmm_vma_walk_pud NULL 465 #endif 466 467 #ifdef CONFIG_HUGETLB_PAGE 468 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask, 469 unsigned long start, unsigned long end, 470 struct mm_walk *walk) 471 { 472 unsigned long addr = start, i, pfn; 473 struct hmm_vma_walk *hmm_vma_walk = walk->private; 474 struct hmm_range *range = hmm_vma_walk->range; 475 struct vm_area_struct *vma = walk->vma; 476 unsigned int required_fault; 477 unsigned long pfn_req_flags; 478 unsigned long cpu_flags; 479 spinlock_t *ptl; 480 pte_t entry; 481 482 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte); 483 entry = huge_ptep_get(pte); 484 485 i = (start - range->start) >> PAGE_SHIFT; 486 pfn_req_flags = range->hmm_pfns[i]; 487 cpu_flags = pte_to_hmm_pfn_flags(range, entry) | 488 hmm_pfn_flags_order(huge_page_order(hstate_vma(vma))); 489 required_fault = 490 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags); 491 if (required_fault) { 492 spin_unlock(ptl); 493 return hmm_vma_fault(addr, end, required_fault, walk); 494 } 495 496 pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT); 497 for (; addr < end; addr += PAGE_SIZE, i++, pfn++) 498 range->hmm_pfns[i] = pfn | cpu_flags; 499 500 spin_unlock(ptl); 501 return 0; 502 } 503 #else 504 #define hmm_vma_walk_hugetlb_entry NULL 505 #endif /* CONFIG_HUGETLB_PAGE */ 506 507 static int hmm_vma_walk_test(unsigned long start, unsigned long end, 508 struct mm_walk *walk) 509 { 510 struct hmm_vma_walk *hmm_vma_walk = walk->private; 511 struct hmm_range *range = hmm_vma_walk->range; 512 struct vm_area_struct *vma = walk->vma; 513 514 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) && 515 vma->vm_flags & VM_READ) 516 return 0; 517 518 /* 519 * vma ranges that don't have struct page backing them or map I/O 520 * devices directly cannot be handled by hmm_range_fault(). 521 * 522 * If the vma does not allow read access, then assume that it does not 523 * allow write access either. HMM does not support architectures that 524 * allow write without read. 525 * 526 * If a fault is requested for an unsupported range then it is a hard 527 * failure. 528 */ 529 if (hmm_range_need_fault(hmm_vma_walk, 530 range->hmm_pfns + 531 ((start - range->start) >> PAGE_SHIFT), 532 (end - start) >> PAGE_SHIFT, 0)) 533 return -EFAULT; 534 535 hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); 536 537 /* Skip this vma and continue processing the next vma. */ 538 return 1; 539 } 540 541 static const struct mm_walk_ops hmm_walk_ops = { 542 .pud_entry = hmm_vma_walk_pud, 543 .pmd_entry = hmm_vma_walk_pmd, 544 .pte_hole = hmm_vma_walk_hole, 545 .hugetlb_entry = hmm_vma_walk_hugetlb_entry, 546 .test_walk = hmm_vma_walk_test, 547 }; 548 549 /** 550 * hmm_range_fault - try to fault some address in a virtual address range 551 * @range: argument structure 552 * 553 * Returns 0 on success or one of the following error codes: 554 * 555 * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma 556 * (e.g., device file vma). 557 * -ENOMEM: Out of memory. 558 * -EPERM: Invalid permission (e.g., asking for write and range is read 559 * only). 560 * -EBUSY: The range has been invalidated and the caller needs to wait for 561 * the invalidation to finish. 562 * -EFAULT: A page was requested to be valid and could not be made valid 563 * ie it has no backing VMA or it is illegal to access 564 * 565 * This is similar to get_user_pages(), except that it can read the page tables 566 * without mutating them (ie causing faults). 567 */ 568 int hmm_range_fault(struct hmm_range *range) 569 { 570 struct hmm_vma_walk hmm_vma_walk = { 571 .range = range, 572 .last = range->start, 573 }; 574 struct mm_struct *mm = range->notifier->mm; 575 int ret; 576 577 mmap_assert_locked(mm); 578 579 do { 580 /* If range is no longer valid force retry. */ 581 if (mmu_interval_check_retry(range->notifier, 582 range->notifier_seq)) 583 return -EBUSY; 584 ret = walk_page_range(mm, hmm_vma_walk.last, range->end, 585 &hmm_walk_ops, &hmm_vma_walk); 586 /* 587 * When -EBUSY is returned the loop restarts with 588 * hmm_vma_walk.last set to an address that has not been stored 589 * in pfns. All entries < last in the pfn array are set to their 590 * output, and all >= are still at their input values. 591 */ 592 } while (ret == -EBUSY); 593 return ret; 594 } 595 EXPORT_SYMBOL(hmm_range_fault); 596