xref: /openbmc/linux/mm/hmm.c (revision d89775fc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013 Red Hat Inc.
4  *
5  * Authors: Jérôme Glisse <jglisse@redhat.com>
6  */
7 /*
8  * Refer to include/linux/hmm.h for information about heterogeneous memory
9  * management or HMM for short.
10  */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
28 
29 struct hmm_vma_walk {
30 	struct hmm_range	*range;
31 	unsigned long		last;
32 };
33 
34 enum {
35 	HMM_NEED_FAULT = 1 << 0,
36 	HMM_NEED_WRITE_FAULT = 1 << 1,
37 	HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
38 };
39 
40 static int hmm_pfns_fill(unsigned long addr, unsigned long end,
41 			 struct hmm_range *range, unsigned long cpu_flags)
42 {
43 	unsigned long i = (addr - range->start) >> PAGE_SHIFT;
44 
45 	for (; addr < end; addr += PAGE_SIZE, i++)
46 		range->hmm_pfns[i] = cpu_flags;
47 	return 0;
48 }
49 
50 /*
51  * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
52  * @addr: range virtual start address (inclusive)
53  * @end: range virtual end address (exclusive)
54  * @required_fault: HMM_NEED_* flags
55  * @walk: mm_walk structure
56  * Return: -EBUSY after page fault, or page fault error
57  *
58  * This function will be called whenever pmd_none() or pte_none() returns true,
59  * or whenever there is no page directory covering the virtual address range.
60  */
61 static int hmm_vma_fault(unsigned long addr, unsigned long end,
62 			 unsigned int required_fault, struct mm_walk *walk)
63 {
64 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
65 	struct vm_area_struct *vma = walk->vma;
66 	unsigned int fault_flags = FAULT_FLAG_REMOTE;
67 
68 	WARN_ON_ONCE(!required_fault);
69 	hmm_vma_walk->last = addr;
70 
71 	if (required_fault & HMM_NEED_WRITE_FAULT) {
72 		if (!(vma->vm_flags & VM_WRITE))
73 			return -EPERM;
74 		fault_flags |= FAULT_FLAG_WRITE;
75 	}
76 
77 	for (; addr < end; addr += PAGE_SIZE)
78 		if (handle_mm_fault(vma, addr, fault_flags) & VM_FAULT_ERROR)
79 			return -EFAULT;
80 	return -EBUSY;
81 }
82 
83 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
84 				       unsigned long pfn_req_flags,
85 				       unsigned long cpu_flags)
86 {
87 	struct hmm_range *range = hmm_vma_walk->range;
88 
89 	/*
90 	 * So we not only consider the individual per page request we also
91 	 * consider the default flags requested for the range. The API can
92 	 * be used 2 ways. The first one where the HMM user coalesces
93 	 * multiple page faults into one request and sets flags per pfn for
94 	 * those faults. The second one where the HMM user wants to pre-
95 	 * fault a range with specific flags. For the latter one it is a
96 	 * waste to have the user pre-fill the pfn arrays with a default
97 	 * flags value.
98 	 */
99 	pfn_req_flags &= range->pfn_flags_mask;
100 	pfn_req_flags |= range->default_flags;
101 
102 	/* We aren't ask to do anything ... */
103 	if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
104 		return 0;
105 
106 	/* Need to write fault ? */
107 	if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
108 	    !(cpu_flags & HMM_PFN_WRITE))
109 		return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
110 
111 	/* If CPU page table is not valid then we need to fault */
112 	if (!(cpu_flags & HMM_PFN_VALID))
113 		return HMM_NEED_FAULT;
114 	return 0;
115 }
116 
117 static unsigned int
118 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
119 		     const unsigned long hmm_pfns[], unsigned long npages,
120 		     unsigned long cpu_flags)
121 {
122 	struct hmm_range *range = hmm_vma_walk->range;
123 	unsigned int required_fault = 0;
124 	unsigned long i;
125 
126 	/*
127 	 * If the default flags do not request to fault pages, and the mask does
128 	 * not allow for individual pages to be faulted, then
129 	 * hmm_pte_need_fault() will always return 0.
130 	 */
131 	if (!((range->default_flags | range->pfn_flags_mask) &
132 	      HMM_PFN_REQ_FAULT))
133 		return 0;
134 
135 	for (i = 0; i < npages; ++i) {
136 		required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
137 						     cpu_flags);
138 		if (required_fault == HMM_NEED_ALL_BITS)
139 			return required_fault;
140 	}
141 	return required_fault;
142 }
143 
144 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
145 			     __always_unused int depth, struct mm_walk *walk)
146 {
147 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
148 	struct hmm_range *range = hmm_vma_walk->range;
149 	unsigned int required_fault;
150 	unsigned long i, npages;
151 	unsigned long *hmm_pfns;
152 
153 	i = (addr - range->start) >> PAGE_SHIFT;
154 	npages = (end - addr) >> PAGE_SHIFT;
155 	hmm_pfns = &range->hmm_pfns[i];
156 	required_fault =
157 		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
158 	if (!walk->vma) {
159 		if (required_fault)
160 			return -EFAULT;
161 		return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
162 	}
163 	if (required_fault)
164 		return hmm_vma_fault(addr, end, required_fault, walk);
165 	return hmm_pfns_fill(addr, end, range, 0);
166 }
167 
168 static inline unsigned long hmm_pfn_flags_order(unsigned long order)
169 {
170 	return order << HMM_PFN_ORDER_SHIFT;
171 }
172 
173 static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
174 						 pmd_t pmd)
175 {
176 	if (pmd_protnone(pmd))
177 		return 0;
178 	return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
179 				 HMM_PFN_VALID) |
180 	       hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
181 }
182 
183 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
184 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
185 			      unsigned long end, unsigned long hmm_pfns[],
186 			      pmd_t pmd)
187 {
188 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
189 	struct hmm_range *range = hmm_vma_walk->range;
190 	unsigned long pfn, npages, i;
191 	unsigned int required_fault;
192 	unsigned long cpu_flags;
193 
194 	npages = (end - addr) >> PAGE_SHIFT;
195 	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
196 	required_fault =
197 		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
198 	if (required_fault)
199 		return hmm_vma_fault(addr, end, required_fault, walk);
200 
201 	pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
202 	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
203 		hmm_pfns[i] = pfn | cpu_flags;
204 	return 0;
205 }
206 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
207 /* stub to allow the code below to compile */
208 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
209 		unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
210 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
211 
212 static inline bool hmm_is_device_private_entry(struct hmm_range *range,
213 		swp_entry_t entry)
214 {
215 	return is_device_private_entry(entry) &&
216 		device_private_entry_to_page(entry)->pgmap->owner ==
217 		range->dev_private_owner;
218 }
219 
220 static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
221 						 pte_t pte)
222 {
223 	if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
224 		return 0;
225 	return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
226 }
227 
228 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
229 			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
230 			      unsigned long *hmm_pfn)
231 {
232 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
233 	struct hmm_range *range = hmm_vma_walk->range;
234 	unsigned int required_fault;
235 	unsigned long cpu_flags;
236 	pte_t pte = *ptep;
237 	uint64_t pfn_req_flags = *hmm_pfn;
238 
239 	if (pte_none(pte)) {
240 		required_fault =
241 			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
242 		if (required_fault)
243 			goto fault;
244 		*hmm_pfn = 0;
245 		return 0;
246 	}
247 
248 	if (!pte_present(pte)) {
249 		swp_entry_t entry = pte_to_swp_entry(pte);
250 
251 		/*
252 		 * Never fault in device private pages, but just report
253 		 * the PFN even if not present.
254 		 */
255 		if (hmm_is_device_private_entry(range, entry)) {
256 			cpu_flags = HMM_PFN_VALID;
257 			if (is_write_device_private_entry(entry))
258 				cpu_flags |= HMM_PFN_WRITE;
259 			*hmm_pfn = device_private_entry_to_pfn(entry) |
260 					cpu_flags;
261 			return 0;
262 		}
263 
264 		required_fault =
265 			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
266 		if (!required_fault) {
267 			*hmm_pfn = 0;
268 			return 0;
269 		}
270 
271 		if (!non_swap_entry(entry))
272 			goto fault;
273 
274 		if (is_migration_entry(entry)) {
275 			pte_unmap(ptep);
276 			hmm_vma_walk->last = addr;
277 			migration_entry_wait(walk->mm, pmdp, addr);
278 			return -EBUSY;
279 		}
280 
281 		/* Report error for everything else */
282 		pte_unmap(ptep);
283 		return -EFAULT;
284 	}
285 
286 	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
287 	required_fault =
288 		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
289 	if (required_fault)
290 		goto fault;
291 
292 	/*
293 	 * Since each architecture defines a struct page for the zero page, just
294 	 * fall through and treat it like a normal page.
295 	 */
296 	if (pte_special(pte) && !is_zero_pfn(pte_pfn(pte))) {
297 		if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
298 			pte_unmap(ptep);
299 			return -EFAULT;
300 		}
301 		*hmm_pfn = HMM_PFN_ERROR;
302 		return 0;
303 	}
304 
305 	*hmm_pfn = pte_pfn(pte) | cpu_flags;
306 	return 0;
307 
308 fault:
309 	pte_unmap(ptep);
310 	/* Fault any virtual address we were asked to fault */
311 	return hmm_vma_fault(addr, end, required_fault, walk);
312 }
313 
314 static int hmm_vma_walk_pmd(pmd_t *pmdp,
315 			    unsigned long start,
316 			    unsigned long end,
317 			    struct mm_walk *walk)
318 {
319 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
320 	struct hmm_range *range = hmm_vma_walk->range;
321 	unsigned long *hmm_pfns =
322 		&range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
323 	unsigned long npages = (end - start) >> PAGE_SHIFT;
324 	unsigned long addr = start;
325 	pte_t *ptep;
326 	pmd_t pmd;
327 
328 again:
329 	pmd = READ_ONCE(*pmdp);
330 	if (pmd_none(pmd))
331 		return hmm_vma_walk_hole(start, end, -1, walk);
332 
333 	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
334 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
335 			hmm_vma_walk->last = addr;
336 			pmd_migration_entry_wait(walk->mm, pmdp);
337 			return -EBUSY;
338 		}
339 		return hmm_pfns_fill(start, end, range, 0);
340 	}
341 
342 	if (!pmd_present(pmd)) {
343 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
344 			return -EFAULT;
345 		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
346 	}
347 
348 	if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
349 		/*
350 		 * No need to take pmd_lock here, even if some other thread
351 		 * is splitting the huge pmd we will get that event through
352 		 * mmu_notifier callback.
353 		 *
354 		 * So just read pmd value and check again it's a transparent
355 		 * huge or device mapping one and compute corresponding pfn
356 		 * values.
357 		 */
358 		pmd = pmd_read_atomic(pmdp);
359 		barrier();
360 		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
361 			goto again;
362 
363 		return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
364 	}
365 
366 	/*
367 	 * We have handled all the valid cases above ie either none, migration,
368 	 * huge or transparent huge. At this point either it is a valid pmd
369 	 * entry pointing to pte directory or it is a bad pmd that will not
370 	 * recover.
371 	 */
372 	if (pmd_bad(pmd)) {
373 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
374 			return -EFAULT;
375 		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
376 	}
377 
378 	ptep = pte_offset_map(pmdp, addr);
379 	for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
380 		int r;
381 
382 		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
383 		if (r) {
384 			/* hmm_vma_handle_pte() did pte_unmap() */
385 			return r;
386 		}
387 	}
388 	pte_unmap(ptep - 1);
389 	return 0;
390 }
391 
392 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
393     defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
394 static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
395 						 pud_t pud)
396 {
397 	if (!pud_present(pud))
398 		return 0;
399 	return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
400 				 HMM_PFN_VALID) |
401 	       hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT);
402 }
403 
404 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
405 		struct mm_walk *walk)
406 {
407 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
408 	struct hmm_range *range = hmm_vma_walk->range;
409 	unsigned long addr = start;
410 	pud_t pud;
411 	int ret = 0;
412 	spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
413 
414 	if (!ptl)
415 		return 0;
416 
417 	/* Normally we don't want to split the huge page */
418 	walk->action = ACTION_CONTINUE;
419 
420 	pud = READ_ONCE(*pudp);
421 	if (pud_none(pud)) {
422 		spin_unlock(ptl);
423 		return hmm_vma_walk_hole(start, end, -1, walk);
424 	}
425 
426 	if (pud_huge(pud) && pud_devmap(pud)) {
427 		unsigned long i, npages, pfn;
428 		unsigned int required_fault;
429 		unsigned long *hmm_pfns;
430 		unsigned long cpu_flags;
431 
432 		if (!pud_present(pud)) {
433 			spin_unlock(ptl);
434 			return hmm_vma_walk_hole(start, end, -1, walk);
435 		}
436 
437 		i = (addr - range->start) >> PAGE_SHIFT;
438 		npages = (end - addr) >> PAGE_SHIFT;
439 		hmm_pfns = &range->hmm_pfns[i];
440 
441 		cpu_flags = pud_to_hmm_pfn_flags(range, pud);
442 		required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
443 						      npages, cpu_flags);
444 		if (required_fault) {
445 			spin_unlock(ptl);
446 			return hmm_vma_fault(addr, end, required_fault, walk);
447 		}
448 
449 		pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
450 		for (i = 0; i < npages; ++i, ++pfn)
451 			hmm_pfns[i] = pfn | cpu_flags;
452 		goto out_unlock;
453 	}
454 
455 	/* Ask for the PUD to be split */
456 	walk->action = ACTION_SUBTREE;
457 
458 out_unlock:
459 	spin_unlock(ptl);
460 	return ret;
461 }
462 #else
463 #define hmm_vma_walk_pud	NULL
464 #endif
465 
466 #ifdef CONFIG_HUGETLB_PAGE
467 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
468 				      unsigned long start, unsigned long end,
469 				      struct mm_walk *walk)
470 {
471 	unsigned long addr = start, i, pfn;
472 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
473 	struct hmm_range *range = hmm_vma_walk->range;
474 	struct vm_area_struct *vma = walk->vma;
475 	unsigned int required_fault;
476 	unsigned long pfn_req_flags;
477 	unsigned long cpu_flags;
478 	spinlock_t *ptl;
479 	pte_t entry;
480 
481 	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
482 	entry = huge_ptep_get(pte);
483 
484 	i = (start - range->start) >> PAGE_SHIFT;
485 	pfn_req_flags = range->hmm_pfns[i];
486 	cpu_flags = pte_to_hmm_pfn_flags(range, entry) |
487 		    hmm_pfn_flags_order(huge_page_order(hstate_vma(vma)));
488 	required_fault =
489 		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
490 	if (required_fault) {
491 		spin_unlock(ptl);
492 		return hmm_vma_fault(addr, end, required_fault, walk);
493 	}
494 
495 	pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
496 	for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
497 		range->hmm_pfns[i] = pfn | cpu_flags;
498 
499 	spin_unlock(ptl);
500 	return 0;
501 }
502 #else
503 #define hmm_vma_walk_hugetlb_entry NULL
504 #endif /* CONFIG_HUGETLB_PAGE */
505 
506 static int hmm_vma_walk_test(unsigned long start, unsigned long end,
507 			     struct mm_walk *walk)
508 {
509 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
510 	struct hmm_range *range = hmm_vma_walk->range;
511 	struct vm_area_struct *vma = walk->vma;
512 
513 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) &&
514 	    vma->vm_flags & VM_READ)
515 		return 0;
516 
517 	/*
518 	 * vma ranges that don't have struct page backing them or map I/O
519 	 * devices directly cannot be handled by hmm_range_fault().
520 	 *
521 	 * If the vma does not allow read access, then assume that it does not
522 	 * allow write access either. HMM does not support architectures that
523 	 * allow write without read.
524 	 *
525 	 * If a fault is requested for an unsupported range then it is a hard
526 	 * failure.
527 	 */
528 	if (hmm_range_need_fault(hmm_vma_walk,
529 				 range->hmm_pfns +
530 					 ((start - range->start) >> PAGE_SHIFT),
531 				 (end - start) >> PAGE_SHIFT, 0))
532 		return -EFAULT;
533 
534 	hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
535 
536 	/* Skip this vma and continue processing the next vma. */
537 	return 1;
538 }
539 
540 static const struct mm_walk_ops hmm_walk_ops = {
541 	.pud_entry	= hmm_vma_walk_pud,
542 	.pmd_entry	= hmm_vma_walk_pmd,
543 	.pte_hole	= hmm_vma_walk_hole,
544 	.hugetlb_entry	= hmm_vma_walk_hugetlb_entry,
545 	.test_walk	= hmm_vma_walk_test,
546 };
547 
548 /**
549  * hmm_range_fault - try to fault some address in a virtual address range
550  * @range:	argument structure
551  *
552  * Returns 0 on success or one of the following error codes:
553  *
554  * -EINVAL:	Invalid arguments or mm or virtual address is in an invalid vma
555  *		(e.g., device file vma).
556  * -ENOMEM:	Out of memory.
557  * -EPERM:	Invalid permission (e.g., asking for write and range is read
558  *		only).
559  * -EBUSY:	The range has been invalidated and the caller needs to wait for
560  *		the invalidation to finish.
561  * -EFAULT:     A page was requested to be valid and could not be made valid
562  *              ie it has no backing VMA or it is illegal to access
563  *
564  * This is similar to get_user_pages(), except that it can read the page tables
565  * without mutating them (ie causing faults).
566  */
567 int hmm_range_fault(struct hmm_range *range)
568 {
569 	struct hmm_vma_walk hmm_vma_walk = {
570 		.range = range,
571 		.last = range->start,
572 	};
573 	struct mm_struct *mm = range->notifier->mm;
574 	int ret;
575 
576 	mmap_assert_locked(mm);
577 
578 	do {
579 		/* If range is no longer valid force retry. */
580 		if (mmu_interval_check_retry(range->notifier,
581 					     range->notifier_seq))
582 			return -EBUSY;
583 		ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
584 				      &hmm_walk_ops, &hmm_vma_walk);
585 		/*
586 		 * When -EBUSY is returned the loop restarts with
587 		 * hmm_vma_walk.last set to an address that has not been stored
588 		 * in pfns. All entries < last in the pfn array are set to their
589 		 * output, and all >= are still at their input values.
590 		 */
591 	} while (ret == -EBUSY);
592 	return ret;
593 }
594 EXPORT_SYMBOL(hmm_range_fault);
595