1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2013 Red Hat Inc. 4 * 5 * Authors: Jérôme Glisse <jglisse@redhat.com> 6 */ 7 /* 8 * Refer to include/linux/hmm.h for information about heterogeneous memory 9 * management or HMM for short. 10 */ 11 #include <linux/pagewalk.h> 12 #include <linux/hmm.h> 13 #include <linux/init.h> 14 #include <linux/rmap.h> 15 #include <linux/swap.h> 16 #include <linux/slab.h> 17 #include <linux/sched.h> 18 #include <linux/mmzone.h> 19 #include <linux/pagemap.h> 20 #include <linux/swapops.h> 21 #include <linux/hugetlb.h> 22 #include <linux/memremap.h> 23 #include <linux/sched/mm.h> 24 #include <linux/jump_label.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/mmu_notifier.h> 27 #include <linux/memory_hotplug.h> 28 29 struct hmm_vma_walk { 30 struct hmm_range *range; 31 unsigned long last; 32 }; 33 34 enum { 35 HMM_NEED_FAULT = 1 << 0, 36 HMM_NEED_WRITE_FAULT = 1 << 1, 37 HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT, 38 }; 39 40 static int hmm_pfns_fill(unsigned long addr, unsigned long end, 41 struct hmm_range *range, unsigned long cpu_flags) 42 { 43 unsigned long i = (addr - range->start) >> PAGE_SHIFT; 44 45 for (; addr < end; addr += PAGE_SIZE, i++) 46 range->hmm_pfns[i] = cpu_flags; 47 return 0; 48 } 49 50 /* 51 * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s) 52 * @addr: range virtual start address (inclusive) 53 * @end: range virtual end address (exclusive) 54 * @required_fault: HMM_NEED_* flags 55 * @walk: mm_walk structure 56 * Return: -EBUSY after page fault, or page fault error 57 * 58 * This function will be called whenever pmd_none() or pte_none() returns true, 59 * or whenever there is no page directory covering the virtual address range. 60 */ 61 static int hmm_vma_fault(unsigned long addr, unsigned long end, 62 unsigned int required_fault, struct mm_walk *walk) 63 { 64 struct hmm_vma_walk *hmm_vma_walk = walk->private; 65 struct vm_area_struct *vma = walk->vma; 66 unsigned int fault_flags = FAULT_FLAG_REMOTE; 67 68 WARN_ON_ONCE(!required_fault); 69 hmm_vma_walk->last = addr; 70 71 if (required_fault & HMM_NEED_WRITE_FAULT) { 72 if (!(vma->vm_flags & VM_WRITE)) 73 return -EPERM; 74 fault_flags |= FAULT_FLAG_WRITE; 75 } 76 77 for (; addr < end; addr += PAGE_SIZE) 78 if (handle_mm_fault(vma, addr, fault_flags) & VM_FAULT_ERROR) 79 return -EFAULT; 80 return -EBUSY; 81 } 82 83 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk, 84 unsigned long pfn_req_flags, 85 unsigned long cpu_flags) 86 { 87 struct hmm_range *range = hmm_vma_walk->range; 88 89 /* 90 * So we not only consider the individual per page request we also 91 * consider the default flags requested for the range. The API can 92 * be used 2 ways. The first one where the HMM user coalesces 93 * multiple page faults into one request and sets flags per pfn for 94 * those faults. The second one where the HMM user wants to pre- 95 * fault a range with specific flags. For the latter one it is a 96 * waste to have the user pre-fill the pfn arrays with a default 97 * flags value. 98 */ 99 pfn_req_flags &= range->pfn_flags_mask; 100 pfn_req_flags |= range->default_flags; 101 102 /* We aren't ask to do anything ... */ 103 if (!(pfn_req_flags & HMM_PFN_REQ_FAULT)) 104 return 0; 105 106 /* Need to write fault ? */ 107 if ((pfn_req_flags & HMM_PFN_REQ_WRITE) && 108 !(cpu_flags & HMM_PFN_WRITE)) 109 return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT; 110 111 /* If CPU page table is not valid then we need to fault */ 112 if (!(cpu_flags & HMM_PFN_VALID)) 113 return HMM_NEED_FAULT; 114 return 0; 115 } 116 117 static unsigned int 118 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk, 119 const unsigned long hmm_pfns[], unsigned long npages, 120 unsigned long cpu_flags) 121 { 122 struct hmm_range *range = hmm_vma_walk->range; 123 unsigned int required_fault = 0; 124 unsigned long i; 125 126 /* 127 * If the default flags do not request to fault pages, and the mask does 128 * not allow for individual pages to be faulted, then 129 * hmm_pte_need_fault() will always return 0. 130 */ 131 if (!((range->default_flags | range->pfn_flags_mask) & 132 HMM_PFN_REQ_FAULT)) 133 return 0; 134 135 for (i = 0; i < npages; ++i) { 136 required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i], 137 cpu_flags); 138 if (required_fault == HMM_NEED_ALL_BITS) 139 return required_fault; 140 } 141 return required_fault; 142 } 143 144 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end, 145 __always_unused int depth, struct mm_walk *walk) 146 { 147 struct hmm_vma_walk *hmm_vma_walk = walk->private; 148 struct hmm_range *range = hmm_vma_walk->range; 149 unsigned int required_fault; 150 unsigned long i, npages; 151 unsigned long *hmm_pfns; 152 153 i = (addr - range->start) >> PAGE_SHIFT; 154 npages = (end - addr) >> PAGE_SHIFT; 155 hmm_pfns = &range->hmm_pfns[i]; 156 required_fault = 157 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0); 158 if (!walk->vma) { 159 if (required_fault) 160 return -EFAULT; 161 return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR); 162 } 163 if (required_fault) 164 return hmm_vma_fault(addr, end, required_fault, walk); 165 return hmm_pfns_fill(addr, end, range, 0); 166 } 167 168 static inline unsigned long hmm_pfn_flags_order(unsigned long order) 169 { 170 return order << HMM_PFN_ORDER_SHIFT; 171 } 172 173 static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range, 174 pmd_t pmd) 175 { 176 if (pmd_protnone(pmd)) 177 return 0; 178 return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : 179 HMM_PFN_VALID) | 180 hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT); 181 } 182 183 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 184 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, 185 unsigned long end, unsigned long hmm_pfns[], 186 pmd_t pmd) 187 { 188 struct hmm_vma_walk *hmm_vma_walk = walk->private; 189 struct hmm_range *range = hmm_vma_walk->range; 190 unsigned long pfn, npages, i; 191 unsigned int required_fault; 192 unsigned long cpu_flags; 193 194 npages = (end - addr) >> PAGE_SHIFT; 195 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd); 196 required_fault = 197 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags); 198 if (required_fault) 199 return hmm_vma_fault(addr, end, required_fault, walk); 200 201 pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 202 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) 203 hmm_pfns[i] = pfn | cpu_flags; 204 return 0; 205 } 206 #else /* CONFIG_TRANSPARENT_HUGEPAGE */ 207 /* stub to allow the code below to compile */ 208 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, 209 unsigned long end, unsigned long hmm_pfns[], pmd_t pmd); 210 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 211 212 static inline bool hmm_is_device_private_entry(struct hmm_range *range, 213 swp_entry_t entry) 214 { 215 return is_device_private_entry(entry) && 216 device_private_entry_to_page(entry)->pgmap->owner == 217 range->dev_private_owner; 218 } 219 220 static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range, 221 pte_t pte) 222 { 223 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte)) 224 return 0; 225 return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID; 226 } 227 228 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr, 229 unsigned long end, pmd_t *pmdp, pte_t *ptep, 230 unsigned long *hmm_pfn) 231 { 232 struct hmm_vma_walk *hmm_vma_walk = walk->private; 233 struct hmm_range *range = hmm_vma_walk->range; 234 unsigned int required_fault; 235 unsigned long cpu_flags; 236 pte_t pte = *ptep; 237 uint64_t pfn_req_flags = *hmm_pfn; 238 239 if (pte_none(pte)) { 240 required_fault = 241 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0); 242 if (required_fault) 243 goto fault; 244 *hmm_pfn = 0; 245 return 0; 246 } 247 248 if (!pte_present(pte)) { 249 swp_entry_t entry = pte_to_swp_entry(pte); 250 251 /* 252 * Never fault in device private pages, but just report 253 * the PFN even if not present. 254 */ 255 if (hmm_is_device_private_entry(range, entry)) { 256 cpu_flags = HMM_PFN_VALID; 257 if (is_write_device_private_entry(entry)) 258 cpu_flags |= HMM_PFN_WRITE; 259 *hmm_pfn = device_private_entry_to_pfn(entry) | 260 cpu_flags; 261 return 0; 262 } 263 264 required_fault = 265 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0); 266 if (!required_fault) { 267 *hmm_pfn = 0; 268 return 0; 269 } 270 271 if (!non_swap_entry(entry)) 272 goto fault; 273 274 if (is_migration_entry(entry)) { 275 pte_unmap(ptep); 276 hmm_vma_walk->last = addr; 277 migration_entry_wait(walk->mm, pmdp, addr); 278 return -EBUSY; 279 } 280 281 /* Report error for everything else */ 282 pte_unmap(ptep); 283 return -EFAULT; 284 } 285 286 cpu_flags = pte_to_hmm_pfn_flags(range, pte); 287 required_fault = 288 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags); 289 if (required_fault) 290 goto fault; 291 292 /* 293 * Since each architecture defines a struct page for the zero page, just 294 * fall through and treat it like a normal page. 295 */ 296 if (pte_special(pte) && !is_zero_pfn(pte_pfn(pte))) { 297 if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) { 298 pte_unmap(ptep); 299 return -EFAULT; 300 } 301 *hmm_pfn = HMM_PFN_ERROR; 302 return 0; 303 } 304 305 *hmm_pfn = pte_pfn(pte) | cpu_flags; 306 return 0; 307 308 fault: 309 pte_unmap(ptep); 310 /* Fault any virtual address we were asked to fault */ 311 return hmm_vma_fault(addr, end, required_fault, walk); 312 } 313 314 static int hmm_vma_walk_pmd(pmd_t *pmdp, 315 unsigned long start, 316 unsigned long end, 317 struct mm_walk *walk) 318 { 319 struct hmm_vma_walk *hmm_vma_walk = walk->private; 320 struct hmm_range *range = hmm_vma_walk->range; 321 unsigned long *hmm_pfns = 322 &range->hmm_pfns[(start - range->start) >> PAGE_SHIFT]; 323 unsigned long npages = (end - start) >> PAGE_SHIFT; 324 unsigned long addr = start; 325 pte_t *ptep; 326 pmd_t pmd; 327 328 again: 329 pmd = READ_ONCE(*pmdp); 330 if (pmd_none(pmd)) 331 return hmm_vma_walk_hole(start, end, -1, walk); 332 333 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) { 334 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) { 335 hmm_vma_walk->last = addr; 336 pmd_migration_entry_wait(walk->mm, pmdp); 337 return -EBUSY; 338 } 339 return hmm_pfns_fill(start, end, range, 0); 340 } 341 342 if (!pmd_present(pmd)) { 343 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) 344 return -EFAULT; 345 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); 346 } 347 348 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) { 349 /* 350 * No need to take pmd_lock here, even if some other thread 351 * is splitting the huge pmd we will get that event through 352 * mmu_notifier callback. 353 * 354 * So just read pmd value and check again it's a transparent 355 * huge or device mapping one and compute corresponding pfn 356 * values. 357 */ 358 pmd = pmd_read_atomic(pmdp); 359 barrier(); 360 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd)) 361 goto again; 362 363 return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd); 364 } 365 366 /* 367 * We have handled all the valid cases above ie either none, migration, 368 * huge or transparent huge. At this point either it is a valid pmd 369 * entry pointing to pte directory or it is a bad pmd that will not 370 * recover. 371 */ 372 if (pmd_bad(pmd)) { 373 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) 374 return -EFAULT; 375 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); 376 } 377 378 ptep = pte_offset_map(pmdp, addr); 379 for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) { 380 int r; 381 382 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns); 383 if (r) { 384 /* hmm_vma_handle_pte() did pte_unmap() */ 385 return r; 386 } 387 } 388 pte_unmap(ptep - 1); 389 return 0; 390 } 391 392 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \ 393 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 394 static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range, 395 pud_t pud) 396 { 397 if (!pud_present(pud)) 398 return 0; 399 return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : 400 HMM_PFN_VALID) | 401 hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT); 402 } 403 404 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end, 405 struct mm_walk *walk) 406 { 407 struct hmm_vma_walk *hmm_vma_walk = walk->private; 408 struct hmm_range *range = hmm_vma_walk->range; 409 unsigned long addr = start; 410 pud_t pud; 411 int ret = 0; 412 spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma); 413 414 if (!ptl) 415 return 0; 416 417 /* Normally we don't want to split the huge page */ 418 walk->action = ACTION_CONTINUE; 419 420 pud = READ_ONCE(*pudp); 421 if (pud_none(pud)) { 422 spin_unlock(ptl); 423 return hmm_vma_walk_hole(start, end, -1, walk); 424 } 425 426 if (pud_huge(pud) && pud_devmap(pud)) { 427 unsigned long i, npages, pfn; 428 unsigned int required_fault; 429 unsigned long *hmm_pfns; 430 unsigned long cpu_flags; 431 432 if (!pud_present(pud)) { 433 spin_unlock(ptl); 434 return hmm_vma_walk_hole(start, end, -1, walk); 435 } 436 437 i = (addr - range->start) >> PAGE_SHIFT; 438 npages = (end - addr) >> PAGE_SHIFT; 439 hmm_pfns = &range->hmm_pfns[i]; 440 441 cpu_flags = pud_to_hmm_pfn_flags(range, pud); 442 required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns, 443 npages, cpu_flags); 444 if (required_fault) { 445 spin_unlock(ptl); 446 return hmm_vma_fault(addr, end, required_fault, walk); 447 } 448 449 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 450 for (i = 0; i < npages; ++i, ++pfn) 451 hmm_pfns[i] = pfn | cpu_flags; 452 goto out_unlock; 453 } 454 455 /* Ask for the PUD to be split */ 456 walk->action = ACTION_SUBTREE; 457 458 out_unlock: 459 spin_unlock(ptl); 460 return ret; 461 } 462 #else 463 #define hmm_vma_walk_pud NULL 464 #endif 465 466 #ifdef CONFIG_HUGETLB_PAGE 467 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask, 468 unsigned long start, unsigned long end, 469 struct mm_walk *walk) 470 { 471 unsigned long addr = start, i, pfn; 472 struct hmm_vma_walk *hmm_vma_walk = walk->private; 473 struct hmm_range *range = hmm_vma_walk->range; 474 struct vm_area_struct *vma = walk->vma; 475 unsigned int required_fault; 476 unsigned long pfn_req_flags; 477 unsigned long cpu_flags; 478 spinlock_t *ptl; 479 pte_t entry; 480 481 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte); 482 entry = huge_ptep_get(pte); 483 484 i = (start - range->start) >> PAGE_SHIFT; 485 pfn_req_flags = range->hmm_pfns[i]; 486 cpu_flags = pte_to_hmm_pfn_flags(range, entry) | 487 hmm_pfn_flags_order(huge_page_order(hstate_vma(vma))); 488 required_fault = 489 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags); 490 if (required_fault) { 491 spin_unlock(ptl); 492 return hmm_vma_fault(addr, end, required_fault, walk); 493 } 494 495 pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT); 496 for (; addr < end; addr += PAGE_SIZE, i++, pfn++) 497 range->hmm_pfns[i] = pfn | cpu_flags; 498 499 spin_unlock(ptl); 500 return 0; 501 } 502 #else 503 #define hmm_vma_walk_hugetlb_entry NULL 504 #endif /* CONFIG_HUGETLB_PAGE */ 505 506 static int hmm_vma_walk_test(unsigned long start, unsigned long end, 507 struct mm_walk *walk) 508 { 509 struct hmm_vma_walk *hmm_vma_walk = walk->private; 510 struct hmm_range *range = hmm_vma_walk->range; 511 struct vm_area_struct *vma = walk->vma; 512 513 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) && 514 vma->vm_flags & VM_READ) 515 return 0; 516 517 /* 518 * vma ranges that don't have struct page backing them or map I/O 519 * devices directly cannot be handled by hmm_range_fault(). 520 * 521 * If the vma does not allow read access, then assume that it does not 522 * allow write access either. HMM does not support architectures that 523 * allow write without read. 524 * 525 * If a fault is requested for an unsupported range then it is a hard 526 * failure. 527 */ 528 if (hmm_range_need_fault(hmm_vma_walk, 529 range->hmm_pfns + 530 ((start - range->start) >> PAGE_SHIFT), 531 (end - start) >> PAGE_SHIFT, 0)) 532 return -EFAULT; 533 534 hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); 535 536 /* Skip this vma and continue processing the next vma. */ 537 return 1; 538 } 539 540 static const struct mm_walk_ops hmm_walk_ops = { 541 .pud_entry = hmm_vma_walk_pud, 542 .pmd_entry = hmm_vma_walk_pmd, 543 .pte_hole = hmm_vma_walk_hole, 544 .hugetlb_entry = hmm_vma_walk_hugetlb_entry, 545 .test_walk = hmm_vma_walk_test, 546 }; 547 548 /** 549 * hmm_range_fault - try to fault some address in a virtual address range 550 * @range: argument structure 551 * 552 * Returns 0 on success or one of the following error codes: 553 * 554 * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma 555 * (e.g., device file vma). 556 * -ENOMEM: Out of memory. 557 * -EPERM: Invalid permission (e.g., asking for write and range is read 558 * only). 559 * -EBUSY: The range has been invalidated and the caller needs to wait for 560 * the invalidation to finish. 561 * -EFAULT: A page was requested to be valid and could not be made valid 562 * ie it has no backing VMA or it is illegal to access 563 * 564 * This is similar to get_user_pages(), except that it can read the page tables 565 * without mutating them (ie causing faults). 566 */ 567 int hmm_range_fault(struct hmm_range *range) 568 { 569 struct hmm_vma_walk hmm_vma_walk = { 570 .range = range, 571 .last = range->start, 572 }; 573 struct mm_struct *mm = range->notifier->mm; 574 int ret; 575 576 mmap_assert_locked(mm); 577 578 do { 579 /* If range is no longer valid force retry. */ 580 if (mmu_interval_check_retry(range->notifier, 581 range->notifier_seq)) 582 return -EBUSY; 583 ret = walk_page_range(mm, hmm_vma_walk.last, range->end, 584 &hmm_walk_ops, &hmm_vma_walk); 585 /* 586 * When -EBUSY is returned the loop restarts with 587 * hmm_vma_walk.last set to an address that has not been stored 588 * in pfns. All entries < last in the pfn array are set to their 589 * output, and all >= are still at their input values. 590 */ 591 } while (ret == -EBUSY); 592 return ret; 593 } 594 EXPORT_SYMBOL(hmm_range_fault); 595