xref: /openbmc/linux/mm/hmm.c (revision bd329f028f1cd51c7623c326147af07c6d832193)
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35 
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37 
38 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
39 /*
40  * Device private memory see HMM (Documentation/vm/hmm.txt) or hmm.h
41  */
42 DEFINE_STATIC_KEY_FALSE(device_private_key);
43 EXPORT_SYMBOL(device_private_key);
44 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
45 
46 
47 #if IS_ENABLED(CONFIG_HMM_MIRROR)
48 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
49 
50 /*
51  * struct hmm - HMM per mm struct
52  *
53  * @mm: mm struct this HMM struct is bound to
54  * @lock: lock protecting ranges list
55  * @sequence: we track updates to the CPU page table with a sequence number
56  * @ranges: list of range being snapshotted
57  * @mirrors: list of mirrors for this mm
58  * @mmu_notifier: mmu notifier to track updates to CPU page table
59  * @mirrors_sem: read/write semaphore protecting the mirrors list
60  */
61 struct hmm {
62 	struct mm_struct	*mm;
63 	spinlock_t		lock;
64 	atomic_t		sequence;
65 	struct list_head	ranges;
66 	struct list_head	mirrors;
67 	struct mmu_notifier	mmu_notifier;
68 	struct rw_semaphore	mirrors_sem;
69 };
70 
71 /*
72  * hmm_register - register HMM against an mm (HMM internal)
73  *
74  * @mm: mm struct to attach to
75  *
76  * This is not intended to be used directly by device drivers. It allocates an
77  * HMM struct if mm does not have one, and initializes it.
78  */
79 static struct hmm *hmm_register(struct mm_struct *mm)
80 {
81 	struct hmm *hmm = READ_ONCE(mm->hmm);
82 	bool cleanup = false;
83 
84 	/*
85 	 * The hmm struct can only be freed once the mm_struct goes away,
86 	 * hence we should always have pre-allocated an new hmm struct
87 	 * above.
88 	 */
89 	if (hmm)
90 		return hmm;
91 
92 	hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
93 	if (!hmm)
94 		return NULL;
95 	INIT_LIST_HEAD(&hmm->mirrors);
96 	init_rwsem(&hmm->mirrors_sem);
97 	atomic_set(&hmm->sequence, 0);
98 	hmm->mmu_notifier.ops = NULL;
99 	INIT_LIST_HEAD(&hmm->ranges);
100 	spin_lock_init(&hmm->lock);
101 	hmm->mm = mm;
102 
103 	/*
104 	 * We should only get here if hold the mmap_sem in write mode ie on
105 	 * registration of first mirror through hmm_mirror_register()
106 	 */
107 	hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
108 	if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
109 		kfree(hmm);
110 		return NULL;
111 	}
112 
113 	spin_lock(&mm->page_table_lock);
114 	if (!mm->hmm)
115 		mm->hmm = hmm;
116 	else
117 		cleanup = true;
118 	spin_unlock(&mm->page_table_lock);
119 
120 	if (cleanup) {
121 		mmu_notifier_unregister(&hmm->mmu_notifier, mm);
122 		kfree(hmm);
123 	}
124 
125 	return mm->hmm;
126 }
127 
128 void hmm_mm_destroy(struct mm_struct *mm)
129 {
130 	kfree(mm->hmm);
131 }
132 
133 static void hmm_invalidate_range(struct hmm *hmm,
134 				 enum hmm_update_type action,
135 				 unsigned long start,
136 				 unsigned long end)
137 {
138 	struct hmm_mirror *mirror;
139 	struct hmm_range *range;
140 
141 	spin_lock(&hmm->lock);
142 	list_for_each_entry(range, &hmm->ranges, list) {
143 		unsigned long addr, idx, npages;
144 
145 		if (end < range->start || start >= range->end)
146 			continue;
147 
148 		range->valid = false;
149 		addr = max(start, range->start);
150 		idx = (addr - range->start) >> PAGE_SHIFT;
151 		npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
152 		memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
153 	}
154 	spin_unlock(&hmm->lock);
155 
156 	down_read(&hmm->mirrors_sem);
157 	list_for_each_entry(mirror, &hmm->mirrors, list)
158 		mirror->ops->sync_cpu_device_pagetables(mirror, action,
159 							start, end);
160 	up_read(&hmm->mirrors_sem);
161 }
162 
163 static void hmm_invalidate_range_start(struct mmu_notifier *mn,
164 				       struct mm_struct *mm,
165 				       unsigned long start,
166 				       unsigned long end)
167 {
168 	struct hmm *hmm = mm->hmm;
169 
170 	VM_BUG_ON(!hmm);
171 
172 	atomic_inc(&hmm->sequence);
173 }
174 
175 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
176 				     struct mm_struct *mm,
177 				     unsigned long start,
178 				     unsigned long end)
179 {
180 	struct hmm *hmm = mm->hmm;
181 
182 	VM_BUG_ON(!hmm);
183 
184 	hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
185 }
186 
187 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
188 	.invalidate_range_start	= hmm_invalidate_range_start,
189 	.invalidate_range_end	= hmm_invalidate_range_end,
190 };
191 
192 /*
193  * hmm_mirror_register() - register a mirror against an mm
194  *
195  * @mirror: new mirror struct to register
196  * @mm: mm to register against
197  *
198  * To start mirroring a process address space, the device driver must register
199  * an HMM mirror struct.
200  *
201  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
202  */
203 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
204 {
205 	/* Sanity check */
206 	if (!mm || !mirror || !mirror->ops)
207 		return -EINVAL;
208 
209 	mirror->hmm = hmm_register(mm);
210 	if (!mirror->hmm)
211 		return -ENOMEM;
212 
213 	down_write(&mirror->hmm->mirrors_sem);
214 	list_add(&mirror->list, &mirror->hmm->mirrors);
215 	up_write(&mirror->hmm->mirrors_sem);
216 
217 	return 0;
218 }
219 EXPORT_SYMBOL(hmm_mirror_register);
220 
221 /*
222  * hmm_mirror_unregister() - unregister a mirror
223  *
224  * @mirror: new mirror struct to register
225  *
226  * Stop mirroring a process address space, and cleanup.
227  */
228 void hmm_mirror_unregister(struct hmm_mirror *mirror)
229 {
230 	struct hmm *hmm = mirror->hmm;
231 
232 	down_write(&hmm->mirrors_sem);
233 	list_del(&mirror->list);
234 	up_write(&hmm->mirrors_sem);
235 }
236 EXPORT_SYMBOL(hmm_mirror_unregister);
237 
238 struct hmm_vma_walk {
239 	struct hmm_range	*range;
240 	unsigned long		last;
241 	bool			fault;
242 	bool			block;
243 	bool			write;
244 };
245 
246 static int hmm_vma_do_fault(struct mm_walk *walk,
247 			    unsigned long addr,
248 			    hmm_pfn_t *pfn)
249 {
250 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
251 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
252 	struct vm_area_struct *vma = walk->vma;
253 	int r;
254 
255 	flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
256 	flags |= hmm_vma_walk->write ? FAULT_FLAG_WRITE : 0;
257 	r = handle_mm_fault(vma, addr, flags);
258 	if (r & VM_FAULT_RETRY)
259 		return -EBUSY;
260 	if (r & VM_FAULT_ERROR) {
261 		*pfn = HMM_PFN_ERROR;
262 		return -EFAULT;
263 	}
264 
265 	return -EAGAIN;
266 }
267 
268 static void hmm_pfns_special(hmm_pfn_t *pfns,
269 			     unsigned long addr,
270 			     unsigned long end)
271 {
272 	for (; addr < end; addr += PAGE_SIZE, pfns++)
273 		*pfns = HMM_PFN_SPECIAL;
274 }
275 
276 static int hmm_pfns_bad(unsigned long addr,
277 			unsigned long end,
278 			struct mm_walk *walk)
279 {
280 	struct hmm_range *range = walk->private;
281 	hmm_pfn_t *pfns = range->pfns;
282 	unsigned long i;
283 
284 	i = (addr - range->start) >> PAGE_SHIFT;
285 	for (; addr < end; addr += PAGE_SIZE, i++)
286 		pfns[i] = HMM_PFN_ERROR;
287 
288 	return 0;
289 }
290 
291 static void hmm_pfns_clear(hmm_pfn_t *pfns,
292 			   unsigned long addr,
293 			   unsigned long end)
294 {
295 	for (; addr < end; addr += PAGE_SIZE, pfns++)
296 		*pfns = 0;
297 }
298 
299 static int hmm_vma_walk_hole(unsigned long addr,
300 			     unsigned long end,
301 			     struct mm_walk *walk)
302 {
303 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
304 	struct hmm_range *range = hmm_vma_walk->range;
305 	hmm_pfn_t *pfns = range->pfns;
306 	unsigned long i;
307 
308 	hmm_vma_walk->last = addr;
309 	i = (addr - range->start) >> PAGE_SHIFT;
310 	for (; addr < end; addr += PAGE_SIZE, i++) {
311 		pfns[i] = HMM_PFN_EMPTY;
312 		if (hmm_vma_walk->fault) {
313 			int ret;
314 
315 			ret = hmm_vma_do_fault(walk, addr, &pfns[i]);
316 			if (ret != -EAGAIN)
317 				return ret;
318 		}
319 	}
320 
321 	return hmm_vma_walk->fault ? -EAGAIN : 0;
322 }
323 
324 static int hmm_vma_walk_clear(unsigned long addr,
325 			      unsigned long end,
326 			      struct mm_walk *walk)
327 {
328 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
329 	struct hmm_range *range = hmm_vma_walk->range;
330 	hmm_pfn_t *pfns = range->pfns;
331 	unsigned long i;
332 
333 	hmm_vma_walk->last = addr;
334 	i = (addr - range->start) >> PAGE_SHIFT;
335 	for (; addr < end; addr += PAGE_SIZE, i++) {
336 		pfns[i] = 0;
337 		if (hmm_vma_walk->fault) {
338 			int ret;
339 
340 			ret = hmm_vma_do_fault(walk, addr, &pfns[i]);
341 			if (ret != -EAGAIN)
342 				return ret;
343 		}
344 	}
345 
346 	return hmm_vma_walk->fault ? -EAGAIN : 0;
347 }
348 
349 static int hmm_vma_walk_pmd(pmd_t *pmdp,
350 			    unsigned long start,
351 			    unsigned long end,
352 			    struct mm_walk *walk)
353 {
354 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
355 	struct hmm_range *range = hmm_vma_walk->range;
356 	struct vm_area_struct *vma = walk->vma;
357 	hmm_pfn_t *pfns = range->pfns;
358 	unsigned long addr = start, i;
359 	bool write_fault;
360 	hmm_pfn_t flag;
361 	pte_t *ptep;
362 
363 	i = (addr - range->start) >> PAGE_SHIFT;
364 	flag = vma->vm_flags & VM_READ ? HMM_PFN_READ : 0;
365 	write_fault = hmm_vma_walk->fault & hmm_vma_walk->write;
366 
367 again:
368 	if (pmd_none(*pmdp))
369 		return hmm_vma_walk_hole(start, end, walk);
370 
371 	if (pmd_huge(*pmdp) && vma->vm_flags & VM_HUGETLB)
372 		return hmm_pfns_bad(start, end, walk);
373 
374 	if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
375 		unsigned long pfn;
376 		pmd_t pmd;
377 
378 		/*
379 		 * No need to take pmd_lock here, even if some other threads
380 		 * is splitting the huge pmd we will get that event through
381 		 * mmu_notifier callback.
382 		 *
383 		 * So just read pmd value and check again its a transparent
384 		 * huge or device mapping one and compute corresponding pfn
385 		 * values.
386 		 */
387 		pmd = pmd_read_atomic(pmdp);
388 		barrier();
389 		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
390 			goto again;
391 		if (pmd_protnone(pmd))
392 			return hmm_vma_walk_clear(start, end, walk);
393 
394 		if (write_fault && !pmd_write(pmd))
395 			return hmm_vma_walk_clear(start, end, walk);
396 
397 		pfn = pmd_pfn(pmd) + pte_index(addr);
398 		flag |= pmd_write(pmd) ? HMM_PFN_WRITE : 0;
399 		for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
400 			pfns[i] = hmm_pfn_t_from_pfn(pfn) | flag;
401 		return 0;
402 	}
403 
404 	if (pmd_bad(*pmdp))
405 		return hmm_pfns_bad(start, end, walk);
406 
407 	ptep = pte_offset_map(pmdp, addr);
408 	for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
409 		pte_t pte = *ptep;
410 
411 		pfns[i] = 0;
412 
413 		if (pte_none(pte)) {
414 			pfns[i] = HMM_PFN_EMPTY;
415 			if (hmm_vma_walk->fault)
416 				goto fault;
417 			continue;
418 		}
419 
420 		if (!pte_present(pte)) {
421 			swp_entry_t entry = pte_to_swp_entry(pte);
422 
423 			if (!non_swap_entry(entry)) {
424 				if (hmm_vma_walk->fault)
425 					goto fault;
426 				continue;
427 			}
428 
429 			/*
430 			 * This is a special swap entry, ignore migration, use
431 			 * device and report anything else as error.
432 			 */
433 			if (is_device_private_entry(entry)) {
434 				pfns[i] = hmm_pfn_t_from_pfn(swp_offset(entry));
435 				if (is_write_device_private_entry(entry)) {
436 					pfns[i] |= HMM_PFN_WRITE;
437 				} else if (write_fault)
438 					goto fault;
439 				pfns[i] |= HMM_PFN_DEVICE_UNADDRESSABLE;
440 				pfns[i] |= flag;
441 			} else if (is_migration_entry(entry)) {
442 				if (hmm_vma_walk->fault) {
443 					pte_unmap(ptep);
444 					hmm_vma_walk->last = addr;
445 					migration_entry_wait(vma->vm_mm,
446 							     pmdp, addr);
447 					return -EAGAIN;
448 				}
449 				continue;
450 			} else {
451 				/* Report error for everything else */
452 				pfns[i] = HMM_PFN_ERROR;
453 			}
454 			continue;
455 		}
456 
457 		if (write_fault && !pte_write(pte))
458 			goto fault;
459 
460 		pfns[i] = hmm_pfn_t_from_pfn(pte_pfn(pte)) | flag;
461 		pfns[i] |= pte_write(pte) ? HMM_PFN_WRITE : 0;
462 		continue;
463 
464 fault:
465 		pte_unmap(ptep);
466 		/* Fault all pages in range */
467 		return hmm_vma_walk_clear(start, end, walk);
468 	}
469 	pte_unmap(ptep - 1);
470 
471 	return 0;
472 }
473 
474 /*
475  * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
476  * @vma: virtual memory area containing the virtual address range
477  * @range: used to track snapshot validity
478  * @start: range virtual start address (inclusive)
479  * @end: range virtual end address (exclusive)
480  * @entries: array of hmm_pfn_t: provided by the caller, filled in by function
481  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, 0 success
482  *
483  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
484  * validity is tracked by range struct. See hmm_vma_range_done() for further
485  * information.
486  *
487  * The range struct is initialized here. It tracks the CPU page table, but only
488  * if the function returns success (0), in which case the caller must then call
489  * hmm_vma_range_done() to stop CPU page table update tracking on this range.
490  *
491  * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
492  * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
493  */
494 int hmm_vma_get_pfns(struct vm_area_struct *vma,
495 		     struct hmm_range *range,
496 		     unsigned long start,
497 		     unsigned long end,
498 		     hmm_pfn_t *pfns)
499 {
500 	struct hmm_vma_walk hmm_vma_walk;
501 	struct mm_walk mm_walk;
502 	struct hmm *hmm;
503 
504 	/* FIXME support hugetlb fs */
505 	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
506 		hmm_pfns_special(pfns, start, end);
507 		return -EINVAL;
508 	}
509 
510 	/* Sanity check, this really should not happen ! */
511 	if (start < vma->vm_start || start >= vma->vm_end)
512 		return -EINVAL;
513 	if (end < vma->vm_start || end > vma->vm_end)
514 		return -EINVAL;
515 
516 	hmm = hmm_register(vma->vm_mm);
517 	if (!hmm)
518 		return -ENOMEM;
519 	/* Caller must have registered a mirror, via hmm_mirror_register() ! */
520 	if (!hmm->mmu_notifier.ops)
521 		return -EINVAL;
522 
523 	/* Initialize range to track CPU page table update */
524 	range->start = start;
525 	range->pfns = pfns;
526 	range->end = end;
527 	spin_lock(&hmm->lock);
528 	range->valid = true;
529 	list_add_rcu(&range->list, &hmm->ranges);
530 	spin_unlock(&hmm->lock);
531 
532 	hmm_vma_walk.fault = false;
533 	hmm_vma_walk.range = range;
534 	mm_walk.private = &hmm_vma_walk;
535 
536 	mm_walk.vma = vma;
537 	mm_walk.mm = vma->vm_mm;
538 	mm_walk.pte_entry = NULL;
539 	mm_walk.test_walk = NULL;
540 	mm_walk.hugetlb_entry = NULL;
541 	mm_walk.pmd_entry = hmm_vma_walk_pmd;
542 	mm_walk.pte_hole = hmm_vma_walk_hole;
543 
544 	walk_page_range(start, end, &mm_walk);
545 	return 0;
546 }
547 EXPORT_SYMBOL(hmm_vma_get_pfns);
548 
549 /*
550  * hmm_vma_range_done() - stop tracking change to CPU page table over a range
551  * @vma: virtual memory area containing the virtual address range
552  * @range: range being tracked
553  * Returns: false if range data has been invalidated, true otherwise
554  *
555  * Range struct is used to track updates to the CPU page table after a call to
556  * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
557  * using the data,  or wants to lock updates to the data it got from those
558  * functions, it must call the hmm_vma_range_done() function, which will then
559  * stop tracking CPU page table updates.
560  *
561  * Note that device driver must still implement general CPU page table update
562  * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
563  * the mmu_notifier API directly.
564  *
565  * CPU page table update tracking done through hmm_range is only temporary and
566  * to be used while trying to duplicate CPU page table contents for a range of
567  * virtual addresses.
568  *
569  * There are two ways to use this :
570  * again:
571  *   hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...);
572  *   trans = device_build_page_table_update_transaction(pfns);
573  *   device_page_table_lock();
574  *   if (!hmm_vma_range_done(vma, range)) {
575  *     device_page_table_unlock();
576  *     goto again;
577  *   }
578  *   device_commit_transaction(trans);
579  *   device_page_table_unlock();
580  *
581  * Or:
582  *   hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...);
583  *   device_page_table_lock();
584  *   hmm_vma_range_done(vma, range);
585  *   device_update_page_table(pfns);
586  *   device_page_table_unlock();
587  */
588 bool hmm_vma_range_done(struct vm_area_struct *vma, struct hmm_range *range)
589 {
590 	unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
591 	struct hmm *hmm;
592 
593 	if (range->end <= range->start) {
594 		BUG();
595 		return false;
596 	}
597 
598 	hmm = hmm_register(vma->vm_mm);
599 	if (!hmm) {
600 		memset(range->pfns, 0, sizeof(*range->pfns) * npages);
601 		return false;
602 	}
603 
604 	spin_lock(&hmm->lock);
605 	list_del_rcu(&range->list);
606 	spin_unlock(&hmm->lock);
607 
608 	return range->valid;
609 }
610 EXPORT_SYMBOL(hmm_vma_range_done);
611 
612 /*
613  * hmm_vma_fault() - try to fault some address in a virtual address range
614  * @vma: virtual memory area containing the virtual address range
615  * @range: use to track pfns array content validity
616  * @start: fault range virtual start address (inclusive)
617  * @end: fault range virtual end address (exclusive)
618  * @pfns: array of hmm_pfn_t, only entry with fault flag set will be faulted
619  * @write: is it a write fault
620  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
621  * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
622  *
623  * This is similar to a regular CPU page fault except that it will not trigger
624  * any memory migration if the memory being faulted is not accessible by CPUs.
625  *
626  * On error, for one virtual address in the range, the function will set the
627  * hmm_pfn_t error flag for the corresponding pfn entry.
628  *
629  * Expected use pattern:
630  * retry:
631  *   down_read(&mm->mmap_sem);
632  *   // Find vma and address device wants to fault, initialize hmm_pfn_t
633  *   // array accordingly
634  *   ret = hmm_vma_fault(vma, start, end, pfns, allow_retry);
635  *   switch (ret) {
636  *   case -EAGAIN:
637  *     hmm_vma_range_done(vma, range);
638  *     // You might want to rate limit or yield to play nicely, you may
639  *     // also commit any valid pfn in the array assuming that you are
640  *     // getting true from hmm_vma_range_monitor_end()
641  *     goto retry;
642  *   case 0:
643  *     break;
644  *   default:
645  *     // Handle error !
646  *     up_read(&mm->mmap_sem)
647  *     return;
648  *   }
649  *   // Take device driver lock that serialize device page table update
650  *   driver_lock_device_page_table_update();
651  *   hmm_vma_range_done(vma, range);
652  *   // Commit pfns we got from hmm_vma_fault()
653  *   driver_unlock_device_page_table_update();
654  *   up_read(&mm->mmap_sem)
655  *
656  * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
657  * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
658  *
659  * YOU HAVE BEEN WARNED !
660  */
661 int hmm_vma_fault(struct vm_area_struct *vma,
662 		  struct hmm_range *range,
663 		  unsigned long start,
664 		  unsigned long end,
665 		  hmm_pfn_t *pfns,
666 		  bool write,
667 		  bool block)
668 {
669 	struct hmm_vma_walk hmm_vma_walk;
670 	struct mm_walk mm_walk;
671 	struct hmm *hmm;
672 	int ret;
673 
674 	/* Sanity check, this really should not happen ! */
675 	if (start < vma->vm_start || start >= vma->vm_end)
676 		return -EINVAL;
677 	if (end < vma->vm_start || end > vma->vm_end)
678 		return -EINVAL;
679 
680 	hmm = hmm_register(vma->vm_mm);
681 	if (!hmm) {
682 		hmm_pfns_clear(pfns, start, end);
683 		return -ENOMEM;
684 	}
685 	/* Caller must have registered a mirror using hmm_mirror_register() */
686 	if (!hmm->mmu_notifier.ops)
687 		return -EINVAL;
688 
689 	/* Initialize range to track CPU page table update */
690 	range->start = start;
691 	range->pfns = pfns;
692 	range->end = end;
693 	spin_lock(&hmm->lock);
694 	range->valid = true;
695 	list_add_rcu(&range->list, &hmm->ranges);
696 	spin_unlock(&hmm->lock);
697 
698 	/* FIXME support hugetlb fs */
699 	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
700 		hmm_pfns_special(pfns, start, end);
701 		return 0;
702 	}
703 
704 	hmm_vma_walk.fault = true;
705 	hmm_vma_walk.write = write;
706 	hmm_vma_walk.block = block;
707 	hmm_vma_walk.range = range;
708 	mm_walk.private = &hmm_vma_walk;
709 	hmm_vma_walk.last = range->start;
710 
711 	mm_walk.vma = vma;
712 	mm_walk.mm = vma->vm_mm;
713 	mm_walk.pte_entry = NULL;
714 	mm_walk.test_walk = NULL;
715 	mm_walk.hugetlb_entry = NULL;
716 	mm_walk.pmd_entry = hmm_vma_walk_pmd;
717 	mm_walk.pte_hole = hmm_vma_walk_hole;
718 
719 	do {
720 		ret = walk_page_range(start, end, &mm_walk);
721 		start = hmm_vma_walk.last;
722 	} while (ret == -EAGAIN);
723 
724 	if (ret) {
725 		unsigned long i;
726 
727 		i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
728 		hmm_pfns_clear(&pfns[i], hmm_vma_walk.last, end);
729 		hmm_vma_range_done(vma, range);
730 	}
731 	return ret;
732 }
733 EXPORT_SYMBOL(hmm_vma_fault);
734 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
735 
736 
737 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
738 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
739 				       unsigned long addr)
740 {
741 	struct page *page;
742 
743 	page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
744 	if (!page)
745 		return NULL;
746 	lock_page(page);
747 	return page;
748 }
749 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
750 
751 
752 static void hmm_devmem_ref_release(struct percpu_ref *ref)
753 {
754 	struct hmm_devmem *devmem;
755 
756 	devmem = container_of(ref, struct hmm_devmem, ref);
757 	complete(&devmem->completion);
758 }
759 
760 static void hmm_devmem_ref_exit(void *data)
761 {
762 	struct percpu_ref *ref = data;
763 	struct hmm_devmem *devmem;
764 
765 	devmem = container_of(ref, struct hmm_devmem, ref);
766 	percpu_ref_exit(ref);
767 	devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
768 }
769 
770 static void hmm_devmem_ref_kill(void *data)
771 {
772 	struct percpu_ref *ref = data;
773 	struct hmm_devmem *devmem;
774 
775 	devmem = container_of(ref, struct hmm_devmem, ref);
776 	percpu_ref_kill(ref);
777 	wait_for_completion(&devmem->completion);
778 	devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
779 }
780 
781 static int hmm_devmem_fault(struct vm_area_struct *vma,
782 			    unsigned long addr,
783 			    const struct page *page,
784 			    unsigned int flags,
785 			    pmd_t *pmdp)
786 {
787 	struct hmm_devmem *devmem = page->pgmap->data;
788 
789 	return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
790 }
791 
792 static void hmm_devmem_free(struct page *page, void *data)
793 {
794 	struct hmm_devmem *devmem = data;
795 
796 	devmem->ops->free(devmem, page);
797 }
798 
799 static DEFINE_MUTEX(hmm_devmem_lock);
800 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
801 
802 static void hmm_devmem_radix_release(struct resource *resource)
803 {
804 	resource_size_t key, align_start, align_size;
805 
806 	align_start = resource->start & ~(PA_SECTION_SIZE - 1);
807 	align_size = ALIGN(resource_size(resource), PA_SECTION_SIZE);
808 
809 	mutex_lock(&hmm_devmem_lock);
810 	for (key = resource->start;
811 	     key <= resource->end;
812 	     key += PA_SECTION_SIZE)
813 		radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
814 	mutex_unlock(&hmm_devmem_lock);
815 }
816 
817 static void hmm_devmem_release(struct device *dev, void *data)
818 {
819 	struct hmm_devmem *devmem = data;
820 	struct resource *resource = devmem->resource;
821 	unsigned long start_pfn, npages;
822 	struct zone *zone;
823 	struct page *page;
824 
825 	if (percpu_ref_tryget_live(&devmem->ref)) {
826 		dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
827 		percpu_ref_put(&devmem->ref);
828 	}
829 
830 	/* pages are dead and unused, undo the arch mapping */
831 	start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
832 	npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
833 
834 	page = pfn_to_page(start_pfn);
835 	zone = page_zone(page);
836 
837 	mem_hotplug_begin();
838 	if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
839 		__remove_pages(zone, start_pfn, npages, NULL);
840 	else
841 		arch_remove_memory(start_pfn << PAGE_SHIFT,
842 				   npages << PAGE_SHIFT, NULL);
843 	mem_hotplug_done();
844 
845 	hmm_devmem_radix_release(resource);
846 }
847 
848 static struct hmm_devmem *hmm_devmem_find(resource_size_t phys)
849 {
850 	WARN_ON_ONCE(!rcu_read_lock_held());
851 
852 	return radix_tree_lookup(&hmm_devmem_radix, phys >> PA_SECTION_SHIFT);
853 }
854 
855 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
856 {
857 	resource_size_t key, align_start, align_size, align_end;
858 	struct device *device = devmem->device;
859 	int ret, nid, is_ram;
860 	unsigned long pfn;
861 
862 	align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
863 	align_size = ALIGN(devmem->resource->start +
864 			   resource_size(devmem->resource),
865 			   PA_SECTION_SIZE) - align_start;
866 
867 	is_ram = region_intersects(align_start, align_size,
868 				   IORESOURCE_SYSTEM_RAM,
869 				   IORES_DESC_NONE);
870 	if (is_ram == REGION_MIXED) {
871 		WARN_ONCE(1, "%s attempted on mixed region %pr\n",
872 				__func__, devmem->resource);
873 		return -ENXIO;
874 	}
875 	if (is_ram == REGION_INTERSECTS)
876 		return -ENXIO;
877 
878 	if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
879 		devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
880 	else
881 		devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
882 
883 	devmem->pagemap.res = *devmem->resource;
884 	devmem->pagemap.page_fault = hmm_devmem_fault;
885 	devmem->pagemap.page_free = hmm_devmem_free;
886 	devmem->pagemap.dev = devmem->device;
887 	devmem->pagemap.ref = &devmem->ref;
888 	devmem->pagemap.data = devmem;
889 
890 	mutex_lock(&hmm_devmem_lock);
891 	align_end = align_start + align_size - 1;
892 	for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
893 		struct hmm_devmem *dup;
894 
895 		rcu_read_lock();
896 		dup = hmm_devmem_find(key);
897 		rcu_read_unlock();
898 		if (dup) {
899 			dev_err(device, "%s: collides with mapping for %s\n",
900 				__func__, dev_name(dup->device));
901 			mutex_unlock(&hmm_devmem_lock);
902 			ret = -EBUSY;
903 			goto error;
904 		}
905 		ret = radix_tree_insert(&hmm_devmem_radix,
906 					key >> PA_SECTION_SHIFT,
907 					devmem);
908 		if (ret) {
909 			dev_err(device, "%s: failed: %d\n", __func__, ret);
910 			mutex_unlock(&hmm_devmem_lock);
911 			goto error_radix;
912 		}
913 	}
914 	mutex_unlock(&hmm_devmem_lock);
915 
916 	nid = dev_to_node(device);
917 	if (nid < 0)
918 		nid = numa_mem_id();
919 
920 	mem_hotplug_begin();
921 	/*
922 	 * For device private memory we call add_pages() as we only need to
923 	 * allocate and initialize struct page for the device memory. More-
924 	 * over the device memory is un-accessible thus we do not want to
925 	 * create a linear mapping for the memory like arch_add_memory()
926 	 * would do.
927 	 *
928 	 * For device public memory, which is accesible by the CPU, we do
929 	 * want the linear mapping and thus use arch_add_memory().
930 	 */
931 	if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
932 		ret = arch_add_memory(nid, align_start, align_size, NULL,
933 				false);
934 	else
935 		ret = add_pages(nid, align_start >> PAGE_SHIFT,
936 				align_size >> PAGE_SHIFT, NULL, false);
937 	if (ret) {
938 		mem_hotplug_done();
939 		goto error_add_memory;
940 	}
941 	move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
942 				align_start >> PAGE_SHIFT,
943 				align_size >> PAGE_SHIFT, NULL);
944 	mem_hotplug_done();
945 
946 	for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
947 		struct page *page = pfn_to_page(pfn);
948 
949 		page->pgmap = &devmem->pagemap;
950 	}
951 	return 0;
952 
953 error_add_memory:
954 	untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
955 error_radix:
956 	hmm_devmem_radix_release(devmem->resource);
957 error:
958 	return ret;
959 }
960 
961 static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
962 {
963 	struct hmm_devmem *devmem = data;
964 
965 	return devmem->resource == match_data;
966 }
967 
968 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
969 {
970 	devres_release(devmem->device, &hmm_devmem_release,
971 		       &hmm_devmem_match, devmem->resource);
972 }
973 
974 /*
975  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
976  *
977  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
978  * @device: device struct to bind the resource too
979  * @size: size in bytes of the device memory to add
980  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
981  *
982  * This function first finds an empty range of physical address big enough to
983  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
984  * in turn allocates struct pages. It does not do anything beyond that; all
985  * events affecting the memory will go through the various callbacks provided
986  * by hmm_devmem_ops struct.
987  *
988  * Device driver should call this function during device initialization and
989  * is then responsible of memory management. HMM only provides helpers.
990  */
991 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
992 				  struct device *device,
993 				  unsigned long size)
994 {
995 	struct hmm_devmem *devmem;
996 	resource_size_t addr;
997 	int ret;
998 
999 	static_branch_enable(&device_private_key);
1000 
1001 	devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1002 				   GFP_KERNEL, dev_to_node(device));
1003 	if (!devmem)
1004 		return ERR_PTR(-ENOMEM);
1005 
1006 	init_completion(&devmem->completion);
1007 	devmem->pfn_first = -1UL;
1008 	devmem->pfn_last = -1UL;
1009 	devmem->resource = NULL;
1010 	devmem->device = device;
1011 	devmem->ops = ops;
1012 
1013 	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1014 			      0, GFP_KERNEL);
1015 	if (ret)
1016 		goto error_percpu_ref;
1017 
1018 	ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1019 	if (ret)
1020 		goto error_devm_add_action;
1021 
1022 	size = ALIGN(size, PA_SECTION_SIZE);
1023 	addr = min((unsigned long)iomem_resource.end,
1024 		   (1UL << MAX_PHYSMEM_BITS) - 1);
1025 	addr = addr - size + 1UL;
1026 
1027 	/*
1028 	 * FIXME add a new helper to quickly walk resource tree and find free
1029 	 * range
1030 	 *
1031 	 * FIXME what about ioport_resource resource ?
1032 	 */
1033 	for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1034 		ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1035 		if (ret != REGION_DISJOINT)
1036 			continue;
1037 
1038 		devmem->resource = devm_request_mem_region(device, addr, size,
1039 							   dev_name(device));
1040 		if (!devmem->resource) {
1041 			ret = -ENOMEM;
1042 			goto error_no_resource;
1043 		}
1044 		break;
1045 	}
1046 	if (!devmem->resource) {
1047 		ret = -ERANGE;
1048 		goto error_no_resource;
1049 	}
1050 
1051 	devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1052 	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1053 	devmem->pfn_last = devmem->pfn_first +
1054 			   (resource_size(devmem->resource) >> PAGE_SHIFT);
1055 
1056 	ret = hmm_devmem_pages_create(devmem);
1057 	if (ret)
1058 		goto error_pages;
1059 
1060 	devres_add(device, devmem);
1061 
1062 	ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1063 	if (ret) {
1064 		hmm_devmem_remove(devmem);
1065 		return ERR_PTR(ret);
1066 	}
1067 
1068 	return devmem;
1069 
1070 error_pages:
1071 	devm_release_mem_region(device, devmem->resource->start,
1072 				resource_size(devmem->resource));
1073 error_no_resource:
1074 error_devm_add_action:
1075 	hmm_devmem_ref_kill(&devmem->ref);
1076 	hmm_devmem_ref_exit(&devmem->ref);
1077 error_percpu_ref:
1078 	devres_free(devmem);
1079 	return ERR_PTR(ret);
1080 }
1081 EXPORT_SYMBOL(hmm_devmem_add);
1082 
1083 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1084 					   struct device *device,
1085 					   struct resource *res)
1086 {
1087 	struct hmm_devmem *devmem;
1088 	int ret;
1089 
1090 	if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1091 		return ERR_PTR(-EINVAL);
1092 
1093 	static_branch_enable(&device_private_key);
1094 
1095 	devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1096 				   GFP_KERNEL, dev_to_node(device));
1097 	if (!devmem)
1098 		return ERR_PTR(-ENOMEM);
1099 
1100 	init_completion(&devmem->completion);
1101 	devmem->pfn_first = -1UL;
1102 	devmem->pfn_last = -1UL;
1103 	devmem->resource = res;
1104 	devmem->device = device;
1105 	devmem->ops = ops;
1106 
1107 	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1108 			      0, GFP_KERNEL);
1109 	if (ret)
1110 		goto error_percpu_ref;
1111 
1112 	ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1113 	if (ret)
1114 		goto error_devm_add_action;
1115 
1116 
1117 	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1118 	devmem->pfn_last = devmem->pfn_first +
1119 			   (resource_size(devmem->resource) >> PAGE_SHIFT);
1120 
1121 	ret = hmm_devmem_pages_create(devmem);
1122 	if (ret)
1123 		goto error_devm_add_action;
1124 
1125 	devres_add(device, devmem);
1126 
1127 	ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1128 	if (ret) {
1129 		hmm_devmem_remove(devmem);
1130 		return ERR_PTR(ret);
1131 	}
1132 
1133 	return devmem;
1134 
1135 error_devm_add_action:
1136 	hmm_devmem_ref_kill(&devmem->ref);
1137 	hmm_devmem_ref_exit(&devmem->ref);
1138 error_percpu_ref:
1139 	devres_free(devmem);
1140 	return ERR_PTR(ret);
1141 }
1142 EXPORT_SYMBOL(hmm_devmem_add_resource);
1143 
1144 /*
1145  * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1146  *
1147  * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1148  *
1149  * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1150  * of the device driver. It will free struct page and remove the resource that
1151  * reserved the physical address range for this device memory.
1152  */
1153 void hmm_devmem_remove(struct hmm_devmem *devmem)
1154 {
1155 	resource_size_t start, size;
1156 	struct device *device;
1157 	bool cdm = false;
1158 
1159 	if (!devmem)
1160 		return;
1161 
1162 	device = devmem->device;
1163 	start = devmem->resource->start;
1164 	size = resource_size(devmem->resource);
1165 
1166 	cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1167 	hmm_devmem_ref_kill(&devmem->ref);
1168 	hmm_devmem_ref_exit(&devmem->ref);
1169 	hmm_devmem_pages_remove(devmem);
1170 
1171 	if (!cdm)
1172 		devm_release_mem_region(device, start, size);
1173 }
1174 EXPORT_SYMBOL(hmm_devmem_remove);
1175 
1176 /*
1177  * A device driver that wants to handle multiple devices memory through a
1178  * single fake device can use hmm_device to do so. This is purely a helper
1179  * and it is not needed to make use of any HMM functionality.
1180  */
1181 #define HMM_DEVICE_MAX 256
1182 
1183 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1184 static DEFINE_SPINLOCK(hmm_device_lock);
1185 static struct class *hmm_device_class;
1186 static dev_t hmm_device_devt;
1187 
1188 static void hmm_device_release(struct device *device)
1189 {
1190 	struct hmm_device *hmm_device;
1191 
1192 	hmm_device = container_of(device, struct hmm_device, device);
1193 	spin_lock(&hmm_device_lock);
1194 	clear_bit(hmm_device->minor, hmm_device_mask);
1195 	spin_unlock(&hmm_device_lock);
1196 
1197 	kfree(hmm_device);
1198 }
1199 
1200 struct hmm_device *hmm_device_new(void *drvdata)
1201 {
1202 	struct hmm_device *hmm_device;
1203 
1204 	hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1205 	if (!hmm_device)
1206 		return ERR_PTR(-ENOMEM);
1207 
1208 	spin_lock(&hmm_device_lock);
1209 	hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1210 	if (hmm_device->minor >= HMM_DEVICE_MAX) {
1211 		spin_unlock(&hmm_device_lock);
1212 		kfree(hmm_device);
1213 		return ERR_PTR(-EBUSY);
1214 	}
1215 	set_bit(hmm_device->minor, hmm_device_mask);
1216 	spin_unlock(&hmm_device_lock);
1217 
1218 	dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1219 	hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1220 					hmm_device->minor);
1221 	hmm_device->device.release = hmm_device_release;
1222 	dev_set_drvdata(&hmm_device->device, drvdata);
1223 	hmm_device->device.class = hmm_device_class;
1224 	device_initialize(&hmm_device->device);
1225 
1226 	return hmm_device;
1227 }
1228 EXPORT_SYMBOL(hmm_device_new);
1229 
1230 void hmm_device_put(struct hmm_device *hmm_device)
1231 {
1232 	put_device(&hmm_device->device);
1233 }
1234 EXPORT_SYMBOL(hmm_device_put);
1235 
1236 static int __init hmm_init(void)
1237 {
1238 	int ret;
1239 
1240 	ret = alloc_chrdev_region(&hmm_device_devt, 0,
1241 				  HMM_DEVICE_MAX,
1242 				  "hmm_device");
1243 	if (ret)
1244 		return ret;
1245 
1246 	hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1247 	if (IS_ERR(hmm_device_class)) {
1248 		unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1249 		return PTR_ERR(hmm_device_class);
1250 	}
1251 	return 0;
1252 }
1253 
1254 device_initcall(hmm_init);
1255 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
1256