xref: /openbmc/linux/mm/hmm.c (revision b18d2847)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013 Red Hat Inc.
4  *
5  * Authors: Jérôme Glisse <jglisse@redhat.com>
6  */
7 /*
8  * Refer to include/linux/hmm.h for information about heterogeneous memory
9  * management or HMM for short.
10  */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
28 
29 #include "internal.h"
30 
31 struct hmm_vma_walk {
32 	struct hmm_range	*range;
33 	unsigned long		last;
34 };
35 
36 enum {
37 	HMM_NEED_FAULT = 1 << 0,
38 	HMM_NEED_WRITE_FAULT = 1 << 1,
39 	HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
40 };
41 
42 static int hmm_pfns_fill(unsigned long addr, unsigned long end,
43 			 struct hmm_range *range, unsigned long cpu_flags)
44 {
45 	unsigned long i = (addr - range->start) >> PAGE_SHIFT;
46 
47 	for (; addr < end; addr += PAGE_SIZE, i++)
48 		range->hmm_pfns[i] = cpu_flags;
49 	return 0;
50 }
51 
52 /*
53  * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
54  * @addr: range virtual start address (inclusive)
55  * @end: range virtual end address (exclusive)
56  * @required_fault: HMM_NEED_* flags
57  * @walk: mm_walk structure
58  * Return: -EBUSY after page fault, or page fault error
59  *
60  * This function will be called whenever pmd_none() or pte_none() returns true,
61  * or whenever there is no page directory covering the virtual address range.
62  */
63 static int hmm_vma_fault(unsigned long addr, unsigned long end,
64 			 unsigned int required_fault, struct mm_walk *walk)
65 {
66 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
67 	struct vm_area_struct *vma = walk->vma;
68 	unsigned int fault_flags = FAULT_FLAG_REMOTE;
69 
70 	WARN_ON_ONCE(!required_fault);
71 	hmm_vma_walk->last = addr;
72 
73 	if (required_fault & HMM_NEED_WRITE_FAULT) {
74 		if (!(vma->vm_flags & VM_WRITE))
75 			return -EPERM;
76 		fault_flags |= FAULT_FLAG_WRITE;
77 	}
78 
79 	for (; addr < end; addr += PAGE_SIZE)
80 		if (handle_mm_fault(vma, addr, fault_flags, NULL) &
81 		    VM_FAULT_ERROR)
82 			return -EFAULT;
83 	return -EBUSY;
84 }
85 
86 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
87 				       unsigned long pfn_req_flags,
88 				       unsigned long cpu_flags)
89 {
90 	struct hmm_range *range = hmm_vma_walk->range;
91 
92 	/*
93 	 * So we not only consider the individual per page request we also
94 	 * consider the default flags requested for the range. The API can
95 	 * be used 2 ways. The first one where the HMM user coalesces
96 	 * multiple page faults into one request and sets flags per pfn for
97 	 * those faults. The second one where the HMM user wants to pre-
98 	 * fault a range with specific flags. For the latter one it is a
99 	 * waste to have the user pre-fill the pfn arrays with a default
100 	 * flags value.
101 	 */
102 	pfn_req_flags &= range->pfn_flags_mask;
103 	pfn_req_flags |= range->default_flags;
104 
105 	/* We aren't ask to do anything ... */
106 	if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
107 		return 0;
108 
109 	/* Need to write fault ? */
110 	if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
111 	    !(cpu_flags & HMM_PFN_WRITE))
112 		return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
113 
114 	/* If CPU page table is not valid then we need to fault */
115 	if (!(cpu_flags & HMM_PFN_VALID))
116 		return HMM_NEED_FAULT;
117 	return 0;
118 }
119 
120 static unsigned int
121 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
122 		     const unsigned long hmm_pfns[], unsigned long npages,
123 		     unsigned long cpu_flags)
124 {
125 	struct hmm_range *range = hmm_vma_walk->range;
126 	unsigned int required_fault = 0;
127 	unsigned long i;
128 
129 	/*
130 	 * If the default flags do not request to fault pages, and the mask does
131 	 * not allow for individual pages to be faulted, then
132 	 * hmm_pte_need_fault() will always return 0.
133 	 */
134 	if (!((range->default_flags | range->pfn_flags_mask) &
135 	      HMM_PFN_REQ_FAULT))
136 		return 0;
137 
138 	for (i = 0; i < npages; ++i) {
139 		required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
140 						     cpu_flags);
141 		if (required_fault == HMM_NEED_ALL_BITS)
142 			return required_fault;
143 	}
144 	return required_fault;
145 }
146 
147 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
148 			     __always_unused int depth, struct mm_walk *walk)
149 {
150 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
151 	struct hmm_range *range = hmm_vma_walk->range;
152 	unsigned int required_fault;
153 	unsigned long i, npages;
154 	unsigned long *hmm_pfns;
155 
156 	i = (addr - range->start) >> PAGE_SHIFT;
157 	npages = (end - addr) >> PAGE_SHIFT;
158 	hmm_pfns = &range->hmm_pfns[i];
159 	required_fault =
160 		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
161 	if (!walk->vma) {
162 		if (required_fault)
163 			return -EFAULT;
164 		return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
165 	}
166 	if (required_fault)
167 		return hmm_vma_fault(addr, end, required_fault, walk);
168 	return hmm_pfns_fill(addr, end, range, 0);
169 }
170 
171 static inline unsigned long hmm_pfn_flags_order(unsigned long order)
172 {
173 	return order << HMM_PFN_ORDER_SHIFT;
174 }
175 
176 static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
177 						 pmd_t pmd)
178 {
179 	if (pmd_protnone(pmd))
180 		return 0;
181 	return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
182 				 HMM_PFN_VALID) |
183 	       hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
184 }
185 
186 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
187 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
188 			      unsigned long end, unsigned long hmm_pfns[],
189 			      pmd_t pmd)
190 {
191 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
192 	struct hmm_range *range = hmm_vma_walk->range;
193 	unsigned long pfn, npages, i;
194 	unsigned int required_fault;
195 	unsigned long cpu_flags;
196 
197 	npages = (end - addr) >> PAGE_SHIFT;
198 	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
199 	required_fault =
200 		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
201 	if (required_fault)
202 		return hmm_vma_fault(addr, end, required_fault, walk);
203 
204 	pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
205 	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
206 		hmm_pfns[i] = pfn | cpu_flags;
207 	return 0;
208 }
209 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
210 /* stub to allow the code below to compile */
211 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
212 		unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
213 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
214 
215 static inline bool hmm_is_device_private_entry(struct hmm_range *range,
216 		swp_entry_t entry)
217 {
218 	return is_device_private_entry(entry) &&
219 		pfn_swap_entry_to_page(entry)->pgmap->owner ==
220 		range->dev_private_owner;
221 }
222 
223 static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
224 						 pte_t pte)
225 {
226 	if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
227 		return 0;
228 	return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
229 }
230 
231 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
232 			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
233 			      unsigned long *hmm_pfn)
234 {
235 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
236 	struct hmm_range *range = hmm_vma_walk->range;
237 	unsigned int required_fault;
238 	unsigned long cpu_flags;
239 	pte_t pte = *ptep;
240 	uint64_t pfn_req_flags = *hmm_pfn;
241 
242 	if (pte_none(pte)) {
243 		required_fault =
244 			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
245 		if (required_fault)
246 			goto fault;
247 		*hmm_pfn = 0;
248 		return 0;
249 	}
250 
251 	if (!pte_present(pte)) {
252 		swp_entry_t entry = pte_to_swp_entry(pte);
253 
254 		/*
255 		 * Never fault in device private pages, but just report
256 		 * the PFN even if not present.
257 		 */
258 		if (hmm_is_device_private_entry(range, entry)) {
259 			cpu_flags = HMM_PFN_VALID;
260 			if (is_writable_device_private_entry(entry))
261 				cpu_flags |= HMM_PFN_WRITE;
262 			*hmm_pfn = swp_offset(entry) | cpu_flags;
263 			return 0;
264 		}
265 
266 		required_fault =
267 			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
268 		if (!required_fault) {
269 			*hmm_pfn = 0;
270 			return 0;
271 		}
272 
273 		if (!non_swap_entry(entry))
274 			goto fault;
275 
276 		if (is_device_exclusive_entry(entry))
277 			goto fault;
278 
279 		if (is_migration_entry(entry)) {
280 			pte_unmap(ptep);
281 			hmm_vma_walk->last = addr;
282 			migration_entry_wait(walk->mm, pmdp, addr);
283 			return -EBUSY;
284 		}
285 
286 		/* Report error for everything else */
287 		pte_unmap(ptep);
288 		return -EFAULT;
289 	}
290 
291 	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
292 	required_fault =
293 		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
294 	if (required_fault)
295 		goto fault;
296 
297 	/*
298 	 * Bypass devmap pte such as DAX page when all pfn requested
299 	 * flags(pfn_req_flags) are fulfilled.
300 	 * Since each architecture defines a struct page for the zero page, just
301 	 * fall through and treat it like a normal page.
302 	 */
303 	if (!vm_normal_page(walk->vma, addr, pte) &&
304 	    !pte_devmap(pte) &&
305 	    !is_zero_pfn(pte_pfn(pte))) {
306 		if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
307 			pte_unmap(ptep);
308 			return -EFAULT;
309 		}
310 		*hmm_pfn = HMM_PFN_ERROR;
311 		return 0;
312 	}
313 
314 	*hmm_pfn = pte_pfn(pte) | cpu_flags;
315 	return 0;
316 
317 fault:
318 	pte_unmap(ptep);
319 	/* Fault any virtual address we were asked to fault */
320 	return hmm_vma_fault(addr, end, required_fault, walk);
321 }
322 
323 static int hmm_vma_walk_pmd(pmd_t *pmdp,
324 			    unsigned long start,
325 			    unsigned long end,
326 			    struct mm_walk *walk)
327 {
328 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
329 	struct hmm_range *range = hmm_vma_walk->range;
330 	unsigned long *hmm_pfns =
331 		&range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
332 	unsigned long npages = (end - start) >> PAGE_SHIFT;
333 	unsigned long addr = start;
334 	pte_t *ptep;
335 	pmd_t pmd;
336 
337 again:
338 	pmd = READ_ONCE(*pmdp);
339 	if (pmd_none(pmd))
340 		return hmm_vma_walk_hole(start, end, -1, walk);
341 
342 	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
343 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
344 			hmm_vma_walk->last = addr;
345 			pmd_migration_entry_wait(walk->mm, pmdp);
346 			return -EBUSY;
347 		}
348 		return hmm_pfns_fill(start, end, range, 0);
349 	}
350 
351 	if (!pmd_present(pmd)) {
352 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
353 			return -EFAULT;
354 		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
355 	}
356 
357 	if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
358 		/*
359 		 * No need to take pmd_lock here, even if some other thread
360 		 * is splitting the huge pmd we will get that event through
361 		 * mmu_notifier callback.
362 		 *
363 		 * So just read pmd value and check again it's a transparent
364 		 * huge or device mapping one and compute corresponding pfn
365 		 * values.
366 		 */
367 		pmd = pmd_read_atomic(pmdp);
368 		barrier();
369 		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
370 			goto again;
371 
372 		return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
373 	}
374 
375 	/*
376 	 * We have handled all the valid cases above ie either none, migration,
377 	 * huge or transparent huge. At this point either it is a valid pmd
378 	 * entry pointing to pte directory or it is a bad pmd that will not
379 	 * recover.
380 	 */
381 	if (pmd_bad(pmd)) {
382 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
383 			return -EFAULT;
384 		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
385 	}
386 
387 	ptep = pte_offset_map(pmdp, addr);
388 	for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
389 		int r;
390 
391 		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
392 		if (r) {
393 			/* hmm_vma_handle_pte() did pte_unmap() */
394 			return r;
395 		}
396 	}
397 	pte_unmap(ptep - 1);
398 	return 0;
399 }
400 
401 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
402     defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
403 static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
404 						 pud_t pud)
405 {
406 	if (!pud_present(pud))
407 		return 0;
408 	return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
409 				 HMM_PFN_VALID) |
410 	       hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT);
411 }
412 
413 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
414 		struct mm_walk *walk)
415 {
416 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
417 	struct hmm_range *range = hmm_vma_walk->range;
418 	unsigned long addr = start;
419 	pud_t pud;
420 	spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
421 
422 	if (!ptl)
423 		return 0;
424 
425 	/* Normally we don't want to split the huge page */
426 	walk->action = ACTION_CONTINUE;
427 
428 	pud = READ_ONCE(*pudp);
429 	if (pud_none(pud)) {
430 		spin_unlock(ptl);
431 		return hmm_vma_walk_hole(start, end, -1, walk);
432 	}
433 
434 	if (pud_huge(pud) && pud_devmap(pud)) {
435 		unsigned long i, npages, pfn;
436 		unsigned int required_fault;
437 		unsigned long *hmm_pfns;
438 		unsigned long cpu_flags;
439 
440 		if (!pud_present(pud)) {
441 			spin_unlock(ptl);
442 			return hmm_vma_walk_hole(start, end, -1, walk);
443 		}
444 
445 		i = (addr - range->start) >> PAGE_SHIFT;
446 		npages = (end - addr) >> PAGE_SHIFT;
447 		hmm_pfns = &range->hmm_pfns[i];
448 
449 		cpu_flags = pud_to_hmm_pfn_flags(range, pud);
450 		required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
451 						      npages, cpu_flags);
452 		if (required_fault) {
453 			spin_unlock(ptl);
454 			return hmm_vma_fault(addr, end, required_fault, walk);
455 		}
456 
457 		pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
458 		for (i = 0; i < npages; ++i, ++pfn)
459 			hmm_pfns[i] = pfn | cpu_flags;
460 		goto out_unlock;
461 	}
462 
463 	/* Ask for the PUD to be split */
464 	walk->action = ACTION_SUBTREE;
465 
466 out_unlock:
467 	spin_unlock(ptl);
468 	return 0;
469 }
470 #else
471 #define hmm_vma_walk_pud	NULL
472 #endif
473 
474 #ifdef CONFIG_HUGETLB_PAGE
475 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
476 				      unsigned long start, unsigned long end,
477 				      struct mm_walk *walk)
478 {
479 	unsigned long addr = start, i, pfn;
480 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
481 	struct hmm_range *range = hmm_vma_walk->range;
482 	struct vm_area_struct *vma = walk->vma;
483 	unsigned int required_fault;
484 	unsigned long pfn_req_flags;
485 	unsigned long cpu_flags;
486 	spinlock_t *ptl;
487 	pte_t entry;
488 
489 	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
490 	entry = huge_ptep_get(pte);
491 
492 	i = (start - range->start) >> PAGE_SHIFT;
493 	pfn_req_flags = range->hmm_pfns[i];
494 	cpu_flags = pte_to_hmm_pfn_flags(range, entry) |
495 		    hmm_pfn_flags_order(huge_page_order(hstate_vma(vma)));
496 	required_fault =
497 		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
498 	if (required_fault) {
499 		spin_unlock(ptl);
500 		return hmm_vma_fault(addr, end, required_fault, walk);
501 	}
502 
503 	pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
504 	for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
505 		range->hmm_pfns[i] = pfn | cpu_flags;
506 
507 	spin_unlock(ptl);
508 	return 0;
509 }
510 #else
511 #define hmm_vma_walk_hugetlb_entry NULL
512 #endif /* CONFIG_HUGETLB_PAGE */
513 
514 static int hmm_vma_walk_test(unsigned long start, unsigned long end,
515 			     struct mm_walk *walk)
516 {
517 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
518 	struct hmm_range *range = hmm_vma_walk->range;
519 	struct vm_area_struct *vma = walk->vma;
520 
521 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)) &&
522 	    vma->vm_flags & VM_READ)
523 		return 0;
524 
525 	/*
526 	 * vma ranges that don't have struct page backing them or map I/O
527 	 * devices directly cannot be handled by hmm_range_fault().
528 	 *
529 	 * If the vma does not allow read access, then assume that it does not
530 	 * allow write access either. HMM does not support architectures that
531 	 * allow write without read.
532 	 *
533 	 * If a fault is requested for an unsupported range then it is a hard
534 	 * failure.
535 	 */
536 	if (hmm_range_need_fault(hmm_vma_walk,
537 				 range->hmm_pfns +
538 					 ((start - range->start) >> PAGE_SHIFT),
539 				 (end - start) >> PAGE_SHIFT, 0))
540 		return -EFAULT;
541 
542 	hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
543 
544 	/* Skip this vma and continue processing the next vma. */
545 	return 1;
546 }
547 
548 static const struct mm_walk_ops hmm_walk_ops = {
549 	.pud_entry	= hmm_vma_walk_pud,
550 	.pmd_entry	= hmm_vma_walk_pmd,
551 	.pte_hole	= hmm_vma_walk_hole,
552 	.hugetlb_entry	= hmm_vma_walk_hugetlb_entry,
553 	.test_walk	= hmm_vma_walk_test,
554 };
555 
556 /**
557  * hmm_range_fault - try to fault some address in a virtual address range
558  * @range:	argument structure
559  *
560  * Returns 0 on success or one of the following error codes:
561  *
562  * -EINVAL:	Invalid arguments or mm or virtual address is in an invalid vma
563  *		(e.g., device file vma).
564  * -ENOMEM:	Out of memory.
565  * -EPERM:	Invalid permission (e.g., asking for write and range is read
566  *		only).
567  * -EBUSY:	The range has been invalidated and the caller needs to wait for
568  *		the invalidation to finish.
569  * -EFAULT:     A page was requested to be valid and could not be made valid
570  *              ie it has no backing VMA or it is illegal to access
571  *
572  * This is similar to get_user_pages(), except that it can read the page tables
573  * without mutating them (ie causing faults).
574  */
575 int hmm_range_fault(struct hmm_range *range)
576 {
577 	struct hmm_vma_walk hmm_vma_walk = {
578 		.range = range,
579 		.last = range->start,
580 	};
581 	struct mm_struct *mm = range->notifier->mm;
582 	int ret;
583 
584 	mmap_assert_locked(mm);
585 
586 	do {
587 		/* If range is no longer valid force retry. */
588 		if (mmu_interval_check_retry(range->notifier,
589 					     range->notifier_seq))
590 			return -EBUSY;
591 		ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
592 				      &hmm_walk_ops, &hmm_vma_walk);
593 		/*
594 		 * When -EBUSY is returned the loop restarts with
595 		 * hmm_vma_walk.last set to an address that has not been stored
596 		 * in pfns. All entries < last in the pfn array are set to their
597 		 * output, and all >= are still at their input values.
598 		 */
599 	} while (ret == -EBUSY);
600 	return ret;
601 }
602 EXPORT_SYMBOL(hmm_range_fault);
603