1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2013 Red Hat Inc. 4 * 5 * Authors: Jérôme Glisse <jglisse@redhat.com> 6 */ 7 /* 8 * Refer to include/linux/hmm.h for information about heterogeneous memory 9 * management or HMM for short. 10 */ 11 #include <linux/pagewalk.h> 12 #include <linux/hmm.h> 13 #include <linux/init.h> 14 #include <linux/rmap.h> 15 #include <linux/swap.h> 16 #include <linux/slab.h> 17 #include <linux/sched.h> 18 #include <linux/mmzone.h> 19 #include <linux/pagemap.h> 20 #include <linux/swapops.h> 21 #include <linux/hugetlb.h> 22 #include <linux/memremap.h> 23 #include <linux/sched/mm.h> 24 #include <linux/jump_label.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/mmu_notifier.h> 27 #include <linux/memory_hotplug.h> 28 29 #include "internal.h" 30 31 struct hmm_vma_walk { 32 struct hmm_range *range; 33 unsigned long last; 34 }; 35 36 enum { 37 HMM_NEED_FAULT = 1 << 0, 38 HMM_NEED_WRITE_FAULT = 1 << 1, 39 HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT, 40 }; 41 42 static int hmm_pfns_fill(unsigned long addr, unsigned long end, 43 struct hmm_range *range, unsigned long cpu_flags) 44 { 45 unsigned long i = (addr - range->start) >> PAGE_SHIFT; 46 47 for (; addr < end; addr += PAGE_SIZE, i++) 48 range->hmm_pfns[i] = cpu_flags; 49 return 0; 50 } 51 52 /* 53 * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s) 54 * @addr: range virtual start address (inclusive) 55 * @end: range virtual end address (exclusive) 56 * @required_fault: HMM_NEED_* flags 57 * @walk: mm_walk structure 58 * Return: -EBUSY after page fault, or page fault error 59 * 60 * This function will be called whenever pmd_none() or pte_none() returns true, 61 * or whenever there is no page directory covering the virtual address range. 62 */ 63 static int hmm_vma_fault(unsigned long addr, unsigned long end, 64 unsigned int required_fault, struct mm_walk *walk) 65 { 66 struct hmm_vma_walk *hmm_vma_walk = walk->private; 67 struct vm_area_struct *vma = walk->vma; 68 unsigned int fault_flags = FAULT_FLAG_REMOTE; 69 70 WARN_ON_ONCE(!required_fault); 71 hmm_vma_walk->last = addr; 72 73 if (required_fault & HMM_NEED_WRITE_FAULT) { 74 if (!(vma->vm_flags & VM_WRITE)) 75 return -EPERM; 76 fault_flags |= FAULT_FLAG_WRITE; 77 } 78 79 for (; addr < end; addr += PAGE_SIZE) 80 if (handle_mm_fault(vma, addr, fault_flags, NULL) & 81 VM_FAULT_ERROR) 82 return -EFAULT; 83 return -EBUSY; 84 } 85 86 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk, 87 unsigned long pfn_req_flags, 88 unsigned long cpu_flags) 89 { 90 struct hmm_range *range = hmm_vma_walk->range; 91 92 /* 93 * So we not only consider the individual per page request we also 94 * consider the default flags requested for the range. The API can 95 * be used 2 ways. The first one where the HMM user coalesces 96 * multiple page faults into one request and sets flags per pfn for 97 * those faults. The second one where the HMM user wants to pre- 98 * fault a range with specific flags. For the latter one it is a 99 * waste to have the user pre-fill the pfn arrays with a default 100 * flags value. 101 */ 102 pfn_req_flags &= range->pfn_flags_mask; 103 pfn_req_flags |= range->default_flags; 104 105 /* We aren't ask to do anything ... */ 106 if (!(pfn_req_flags & HMM_PFN_REQ_FAULT)) 107 return 0; 108 109 /* Need to write fault ? */ 110 if ((pfn_req_flags & HMM_PFN_REQ_WRITE) && 111 !(cpu_flags & HMM_PFN_WRITE)) 112 return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT; 113 114 /* If CPU page table is not valid then we need to fault */ 115 if (!(cpu_flags & HMM_PFN_VALID)) 116 return HMM_NEED_FAULT; 117 return 0; 118 } 119 120 static unsigned int 121 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk, 122 const unsigned long hmm_pfns[], unsigned long npages, 123 unsigned long cpu_flags) 124 { 125 struct hmm_range *range = hmm_vma_walk->range; 126 unsigned int required_fault = 0; 127 unsigned long i; 128 129 /* 130 * If the default flags do not request to fault pages, and the mask does 131 * not allow for individual pages to be faulted, then 132 * hmm_pte_need_fault() will always return 0. 133 */ 134 if (!((range->default_flags | range->pfn_flags_mask) & 135 HMM_PFN_REQ_FAULT)) 136 return 0; 137 138 for (i = 0; i < npages; ++i) { 139 required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i], 140 cpu_flags); 141 if (required_fault == HMM_NEED_ALL_BITS) 142 return required_fault; 143 } 144 return required_fault; 145 } 146 147 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end, 148 __always_unused int depth, struct mm_walk *walk) 149 { 150 struct hmm_vma_walk *hmm_vma_walk = walk->private; 151 struct hmm_range *range = hmm_vma_walk->range; 152 unsigned int required_fault; 153 unsigned long i, npages; 154 unsigned long *hmm_pfns; 155 156 i = (addr - range->start) >> PAGE_SHIFT; 157 npages = (end - addr) >> PAGE_SHIFT; 158 hmm_pfns = &range->hmm_pfns[i]; 159 required_fault = 160 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0); 161 if (!walk->vma) { 162 if (required_fault) 163 return -EFAULT; 164 return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR); 165 } 166 if (required_fault) 167 return hmm_vma_fault(addr, end, required_fault, walk); 168 return hmm_pfns_fill(addr, end, range, 0); 169 } 170 171 static inline unsigned long hmm_pfn_flags_order(unsigned long order) 172 { 173 return order << HMM_PFN_ORDER_SHIFT; 174 } 175 176 static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range, 177 pmd_t pmd) 178 { 179 if (pmd_protnone(pmd)) 180 return 0; 181 return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : 182 HMM_PFN_VALID) | 183 hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT); 184 } 185 186 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 187 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, 188 unsigned long end, unsigned long hmm_pfns[], 189 pmd_t pmd) 190 { 191 struct hmm_vma_walk *hmm_vma_walk = walk->private; 192 struct hmm_range *range = hmm_vma_walk->range; 193 unsigned long pfn, npages, i; 194 unsigned int required_fault; 195 unsigned long cpu_flags; 196 197 npages = (end - addr) >> PAGE_SHIFT; 198 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd); 199 required_fault = 200 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags); 201 if (required_fault) 202 return hmm_vma_fault(addr, end, required_fault, walk); 203 204 pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 205 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) 206 hmm_pfns[i] = pfn | cpu_flags; 207 return 0; 208 } 209 #else /* CONFIG_TRANSPARENT_HUGEPAGE */ 210 /* stub to allow the code below to compile */ 211 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, 212 unsigned long end, unsigned long hmm_pfns[], pmd_t pmd); 213 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 214 215 static inline bool hmm_is_device_private_entry(struct hmm_range *range, 216 swp_entry_t entry) 217 { 218 return is_device_private_entry(entry) && 219 pfn_swap_entry_to_page(entry)->pgmap->owner == 220 range->dev_private_owner; 221 } 222 223 static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range, 224 pte_t pte) 225 { 226 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte)) 227 return 0; 228 return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID; 229 } 230 231 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr, 232 unsigned long end, pmd_t *pmdp, pte_t *ptep, 233 unsigned long *hmm_pfn) 234 { 235 struct hmm_vma_walk *hmm_vma_walk = walk->private; 236 struct hmm_range *range = hmm_vma_walk->range; 237 unsigned int required_fault; 238 unsigned long cpu_flags; 239 pte_t pte = *ptep; 240 uint64_t pfn_req_flags = *hmm_pfn; 241 242 if (pte_none(pte)) { 243 required_fault = 244 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0); 245 if (required_fault) 246 goto fault; 247 *hmm_pfn = 0; 248 return 0; 249 } 250 251 if (!pte_present(pte)) { 252 swp_entry_t entry = pte_to_swp_entry(pte); 253 254 /* 255 * Never fault in device private pages, but just report 256 * the PFN even if not present. 257 */ 258 if (hmm_is_device_private_entry(range, entry)) { 259 cpu_flags = HMM_PFN_VALID; 260 if (is_writable_device_private_entry(entry)) 261 cpu_flags |= HMM_PFN_WRITE; 262 *hmm_pfn = swp_offset(entry) | cpu_flags; 263 return 0; 264 } 265 266 required_fault = 267 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0); 268 if (!required_fault) { 269 *hmm_pfn = 0; 270 return 0; 271 } 272 273 if (!non_swap_entry(entry)) 274 goto fault; 275 276 if (is_device_exclusive_entry(entry)) 277 goto fault; 278 279 if (is_migration_entry(entry)) { 280 pte_unmap(ptep); 281 hmm_vma_walk->last = addr; 282 migration_entry_wait(walk->mm, pmdp, addr); 283 return -EBUSY; 284 } 285 286 /* Report error for everything else */ 287 pte_unmap(ptep); 288 return -EFAULT; 289 } 290 291 cpu_flags = pte_to_hmm_pfn_flags(range, pte); 292 required_fault = 293 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags); 294 if (required_fault) 295 goto fault; 296 297 /* 298 * Bypass devmap pte such as DAX page when all pfn requested 299 * flags(pfn_req_flags) are fulfilled. 300 * Since each architecture defines a struct page for the zero page, just 301 * fall through and treat it like a normal page. 302 */ 303 if (!vm_normal_page(walk->vma, addr, pte) && 304 !pte_devmap(pte) && 305 !is_zero_pfn(pte_pfn(pte))) { 306 if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) { 307 pte_unmap(ptep); 308 return -EFAULT; 309 } 310 *hmm_pfn = HMM_PFN_ERROR; 311 return 0; 312 } 313 314 *hmm_pfn = pte_pfn(pte) | cpu_flags; 315 return 0; 316 317 fault: 318 pte_unmap(ptep); 319 /* Fault any virtual address we were asked to fault */ 320 return hmm_vma_fault(addr, end, required_fault, walk); 321 } 322 323 static int hmm_vma_walk_pmd(pmd_t *pmdp, 324 unsigned long start, 325 unsigned long end, 326 struct mm_walk *walk) 327 { 328 struct hmm_vma_walk *hmm_vma_walk = walk->private; 329 struct hmm_range *range = hmm_vma_walk->range; 330 unsigned long *hmm_pfns = 331 &range->hmm_pfns[(start - range->start) >> PAGE_SHIFT]; 332 unsigned long npages = (end - start) >> PAGE_SHIFT; 333 unsigned long addr = start; 334 pte_t *ptep; 335 pmd_t pmd; 336 337 again: 338 pmd = READ_ONCE(*pmdp); 339 if (pmd_none(pmd)) 340 return hmm_vma_walk_hole(start, end, -1, walk); 341 342 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) { 343 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) { 344 hmm_vma_walk->last = addr; 345 pmd_migration_entry_wait(walk->mm, pmdp); 346 return -EBUSY; 347 } 348 return hmm_pfns_fill(start, end, range, 0); 349 } 350 351 if (!pmd_present(pmd)) { 352 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) 353 return -EFAULT; 354 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); 355 } 356 357 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) { 358 /* 359 * No need to take pmd_lock here, even if some other thread 360 * is splitting the huge pmd we will get that event through 361 * mmu_notifier callback. 362 * 363 * So just read pmd value and check again it's a transparent 364 * huge or device mapping one and compute corresponding pfn 365 * values. 366 */ 367 pmd = pmd_read_atomic(pmdp); 368 barrier(); 369 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd)) 370 goto again; 371 372 return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd); 373 } 374 375 /* 376 * We have handled all the valid cases above ie either none, migration, 377 * huge or transparent huge. At this point either it is a valid pmd 378 * entry pointing to pte directory or it is a bad pmd that will not 379 * recover. 380 */ 381 if (pmd_bad(pmd)) { 382 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) 383 return -EFAULT; 384 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); 385 } 386 387 ptep = pte_offset_map(pmdp, addr); 388 for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) { 389 int r; 390 391 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns); 392 if (r) { 393 /* hmm_vma_handle_pte() did pte_unmap() */ 394 return r; 395 } 396 } 397 pte_unmap(ptep - 1); 398 return 0; 399 } 400 401 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \ 402 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 403 static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range, 404 pud_t pud) 405 { 406 if (!pud_present(pud)) 407 return 0; 408 return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : 409 HMM_PFN_VALID) | 410 hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT); 411 } 412 413 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end, 414 struct mm_walk *walk) 415 { 416 struct hmm_vma_walk *hmm_vma_walk = walk->private; 417 struct hmm_range *range = hmm_vma_walk->range; 418 unsigned long addr = start; 419 pud_t pud; 420 spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma); 421 422 if (!ptl) 423 return 0; 424 425 /* Normally we don't want to split the huge page */ 426 walk->action = ACTION_CONTINUE; 427 428 pud = READ_ONCE(*pudp); 429 if (pud_none(pud)) { 430 spin_unlock(ptl); 431 return hmm_vma_walk_hole(start, end, -1, walk); 432 } 433 434 if (pud_huge(pud) && pud_devmap(pud)) { 435 unsigned long i, npages, pfn; 436 unsigned int required_fault; 437 unsigned long *hmm_pfns; 438 unsigned long cpu_flags; 439 440 if (!pud_present(pud)) { 441 spin_unlock(ptl); 442 return hmm_vma_walk_hole(start, end, -1, walk); 443 } 444 445 i = (addr - range->start) >> PAGE_SHIFT; 446 npages = (end - addr) >> PAGE_SHIFT; 447 hmm_pfns = &range->hmm_pfns[i]; 448 449 cpu_flags = pud_to_hmm_pfn_flags(range, pud); 450 required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns, 451 npages, cpu_flags); 452 if (required_fault) { 453 spin_unlock(ptl); 454 return hmm_vma_fault(addr, end, required_fault, walk); 455 } 456 457 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 458 for (i = 0; i < npages; ++i, ++pfn) 459 hmm_pfns[i] = pfn | cpu_flags; 460 goto out_unlock; 461 } 462 463 /* Ask for the PUD to be split */ 464 walk->action = ACTION_SUBTREE; 465 466 out_unlock: 467 spin_unlock(ptl); 468 return 0; 469 } 470 #else 471 #define hmm_vma_walk_pud NULL 472 #endif 473 474 #ifdef CONFIG_HUGETLB_PAGE 475 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask, 476 unsigned long start, unsigned long end, 477 struct mm_walk *walk) 478 { 479 unsigned long addr = start, i, pfn; 480 struct hmm_vma_walk *hmm_vma_walk = walk->private; 481 struct hmm_range *range = hmm_vma_walk->range; 482 struct vm_area_struct *vma = walk->vma; 483 unsigned int required_fault; 484 unsigned long pfn_req_flags; 485 unsigned long cpu_flags; 486 spinlock_t *ptl; 487 pte_t entry; 488 489 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte); 490 entry = huge_ptep_get(pte); 491 492 i = (start - range->start) >> PAGE_SHIFT; 493 pfn_req_flags = range->hmm_pfns[i]; 494 cpu_flags = pte_to_hmm_pfn_flags(range, entry) | 495 hmm_pfn_flags_order(huge_page_order(hstate_vma(vma))); 496 required_fault = 497 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags); 498 if (required_fault) { 499 spin_unlock(ptl); 500 return hmm_vma_fault(addr, end, required_fault, walk); 501 } 502 503 pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT); 504 for (; addr < end; addr += PAGE_SIZE, i++, pfn++) 505 range->hmm_pfns[i] = pfn | cpu_flags; 506 507 spin_unlock(ptl); 508 return 0; 509 } 510 #else 511 #define hmm_vma_walk_hugetlb_entry NULL 512 #endif /* CONFIG_HUGETLB_PAGE */ 513 514 static int hmm_vma_walk_test(unsigned long start, unsigned long end, 515 struct mm_walk *walk) 516 { 517 struct hmm_vma_walk *hmm_vma_walk = walk->private; 518 struct hmm_range *range = hmm_vma_walk->range; 519 struct vm_area_struct *vma = walk->vma; 520 521 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)) && 522 vma->vm_flags & VM_READ) 523 return 0; 524 525 /* 526 * vma ranges that don't have struct page backing them or map I/O 527 * devices directly cannot be handled by hmm_range_fault(). 528 * 529 * If the vma does not allow read access, then assume that it does not 530 * allow write access either. HMM does not support architectures that 531 * allow write without read. 532 * 533 * If a fault is requested for an unsupported range then it is a hard 534 * failure. 535 */ 536 if (hmm_range_need_fault(hmm_vma_walk, 537 range->hmm_pfns + 538 ((start - range->start) >> PAGE_SHIFT), 539 (end - start) >> PAGE_SHIFT, 0)) 540 return -EFAULT; 541 542 hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); 543 544 /* Skip this vma and continue processing the next vma. */ 545 return 1; 546 } 547 548 static const struct mm_walk_ops hmm_walk_ops = { 549 .pud_entry = hmm_vma_walk_pud, 550 .pmd_entry = hmm_vma_walk_pmd, 551 .pte_hole = hmm_vma_walk_hole, 552 .hugetlb_entry = hmm_vma_walk_hugetlb_entry, 553 .test_walk = hmm_vma_walk_test, 554 }; 555 556 /** 557 * hmm_range_fault - try to fault some address in a virtual address range 558 * @range: argument structure 559 * 560 * Returns 0 on success or one of the following error codes: 561 * 562 * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma 563 * (e.g., device file vma). 564 * -ENOMEM: Out of memory. 565 * -EPERM: Invalid permission (e.g., asking for write and range is read 566 * only). 567 * -EBUSY: The range has been invalidated and the caller needs to wait for 568 * the invalidation to finish. 569 * -EFAULT: A page was requested to be valid and could not be made valid 570 * ie it has no backing VMA or it is illegal to access 571 * 572 * This is similar to get_user_pages(), except that it can read the page tables 573 * without mutating them (ie causing faults). 574 */ 575 int hmm_range_fault(struct hmm_range *range) 576 { 577 struct hmm_vma_walk hmm_vma_walk = { 578 .range = range, 579 .last = range->start, 580 }; 581 struct mm_struct *mm = range->notifier->mm; 582 int ret; 583 584 mmap_assert_locked(mm); 585 586 do { 587 /* If range is no longer valid force retry. */ 588 if (mmu_interval_check_retry(range->notifier, 589 range->notifier_seq)) 590 return -EBUSY; 591 ret = walk_page_range(mm, hmm_vma_walk.last, range->end, 592 &hmm_walk_ops, &hmm_vma_walk); 593 /* 594 * When -EBUSY is returned the loop restarts with 595 * hmm_vma_walk.last set to an address that has not been stored 596 * in pfns. All entries < last in the pfn array are set to their 597 * output, and all >= are still at their input values. 598 */ 599 } while (ret == -EBUSY); 600 return ret; 601 } 602 EXPORT_SYMBOL(hmm_range_fault); 603