1 /* 2 * Copyright 2013 Red Hat Inc. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * Authors: Jérôme Glisse <jglisse@redhat.com> 15 */ 16 /* 17 * Refer to include/linux/hmm.h for information about heterogeneous memory 18 * management or HMM for short. 19 */ 20 #include <linux/mm.h> 21 #include <linux/hmm.h> 22 #include <linux/init.h> 23 #include <linux/rmap.h> 24 #include <linux/swap.h> 25 #include <linux/slab.h> 26 #include <linux/sched.h> 27 #include <linux/mmzone.h> 28 #include <linux/pagemap.h> 29 #include <linux/swapops.h> 30 #include <linux/hugetlb.h> 31 #include <linux/memremap.h> 32 #include <linux/jump_label.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/memory_hotplug.h> 35 36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT) 37 38 #if IS_ENABLED(CONFIG_HMM_MIRROR) 39 static const struct mmu_notifier_ops hmm_mmu_notifier_ops; 40 41 /* 42 * struct hmm - HMM per mm struct 43 * 44 * @mm: mm struct this HMM struct is bound to 45 * @lock: lock protecting ranges list 46 * @sequence: we track updates to the CPU page table with a sequence number 47 * @ranges: list of range being snapshotted 48 * @mirrors: list of mirrors for this mm 49 * @mmu_notifier: mmu notifier to track updates to CPU page table 50 * @mirrors_sem: read/write semaphore protecting the mirrors list 51 */ 52 struct hmm { 53 struct mm_struct *mm; 54 spinlock_t lock; 55 atomic_t sequence; 56 struct list_head ranges; 57 struct list_head mirrors; 58 struct mmu_notifier mmu_notifier; 59 struct rw_semaphore mirrors_sem; 60 }; 61 62 /* 63 * hmm_register - register HMM against an mm (HMM internal) 64 * 65 * @mm: mm struct to attach to 66 * 67 * This is not intended to be used directly by device drivers. It allocates an 68 * HMM struct if mm does not have one, and initializes it. 69 */ 70 static struct hmm *hmm_register(struct mm_struct *mm) 71 { 72 struct hmm *hmm = READ_ONCE(mm->hmm); 73 bool cleanup = false; 74 75 /* 76 * The hmm struct can only be freed once the mm_struct goes away, 77 * hence we should always have pre-allocated an new hmm struct 78 * above. 79 */ 80 if (hmm) 81 return hmm; 82 83 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL); 84 if (!hmm) 85 return NULL; 86 INIT_LIST_HEAD(&hmm->mirrors); 87 init_rwsem(&hmm->mirrors_sem); 88 atomic_set(&hmm->sequence, 0); 89 hmm->mmu_notifier.ops = NULL; 90 INIT_LIST_HEAD(&hmm->ranges); 91 spin_lock_init(&hmm->lock); 92 hmm->mm = mm; 93 94 /* 95 * We should only get here if hold the mmap_sem in write mode ie on 96 * registration of first mirror through hmm_mirror_register() 97 */ 98 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops; 99 if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) { 100 kfree(hmm); 101 return NULL; 102 } 103 104 spin_lock(&mm->page_table_lock); 105 if (!mm->hmm) 106 mm->hmm = hmm; 107 else 108 cleanup = true; 109 spin_unlock(&mm->page_table_lock); 110 111 if (cleanup) { 112 mmu_notifier_unregister(&hmm->mmu_notifier, mm); 113 kfree(hmm); 114 } 115 116 return mm->hmm; 117 } 118 119 void hmm_mm_destroy(struct mm_struct *mm) 120 { 121 kfree(mm->hmm); 122 } 123 124 static void hmm_invalidate_range(struct hmm *hmm, 125 enum hmm_update_type action, 126 unsigned long start, 127 unsigned long end) 128 { 129 struct hmm_mirror *mirror; 130 struct hmm_range *range; 131 132 spin_lock(&hmm->lock); 133 list_for_each_entry(range, &hmm->ranges, list) { 134 unsigned long addr, idx, npages; 135 136 if (end < range->start || start >= range->end) 137 continue; 138 139 range->valid = false; 140 addr = max(start, range->start); 141 idx = (addr - range->start) >> PAGE_SHIFT; 142 npages = (min(range->end, end) - addr) >> PAGE_SHIFT; 143 memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages); 144 } 145 spin_unlock(&hmm->lock); 146 147 down_read(&hmm->mirrors_sem); 148 list_for_each_entry(mirror, &hmm->mirrors, list) 149 mirror->ops->sync_cpu_device_pagetables(mirror, action, 150 start, end); 151 up_read(&hmm->mirrors_sem); 152 } 153 154 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm) 155 { 156 struct hmm_mirror *mirror; 157 struct hmm *hmm = mm->hmm; 158 159 down_write(&hmm->mirrors_sem); 160 mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror, 161 list); 162 while (mirror) { 163 list_del_init(&mirror->list); 164 if (mirror->ops->release) { 165 /* 166 * Drop mirrors_sem so callback can wait on any pending 167 * work that might itself trigger mmu_notifier callback 168 * and thus would deadlock with us. 169 */ 170 up_write(&hmm->mirrors_sem); 171 mirror->ops->release(mirror); 172 down_write(&hmm->mirrors_sem); 173 } 174 mirror = list_first_entry_or_null(&hmm->mirrors, 175 struct hmm_mirror, list); 176 } 177 up_write(&hmm->mirrors_sem); 178 } 179 180 static int hmm_invalidate_range_start(struct mmu_notifier *mn, 181 struct mm_struct *mm, 182 unsigned long start, 183 unsigned long end, 184 bool blockable) 185 { 186 struct hmm *hmm = mm->hmm; 187 188 VM_BUG_ON(!hmm); 189 190 atomic_inc(&hmm->sequence); 191 192 return 0; 193 } 194 195 static void hmm_invalidate_range_end(struct mmu_notifier *mn, 196 struct mm_struct *mm, 197 unsigned long start, 198 unsigned long end) 199 { 200 struct hmm *hmm = mm->hmm; 201 202 VM_BUG_ON(!hmm); 203 204 hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end); 205 } 206 207 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = { 208 .release = hmm_release, 209 .invalidate_range_start = hmm_invalidate_range_start, 210 .invalidate_range_end = hmm_invalidate_range_end, 211 }; 212 213 /* 214 * hmm_mirror_register() - register a mirror against an mm 215 * 216 * @mirror: new mirror struct to register 217 * @mm: mm to register against 218 * 219 * To start mirroring a process address space, the device driver must register 220 * an HMM mirror struct. 221 * 222 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE ! 223 */ 224 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm) 225 { 226 /* Sanity check */ 227 if (!mm || !mirror || !mirror->ops) 228 return -EINVAL; 229 230 again: 231 mirror->hmm = hmm_register(mm); 232 if (!mirror->hmm) 233 return -ENOMEM; 234 235 down_write(&mirror->hmm->mirrors_sem); 236 if (mirror->hmm->mm == NULL) { 237 /* 238 * A racing hmm_mirror_unregister() is about to destroy the hmm 239 * struct. Try again to allocate a new one. 240 */ 241 up_write(&mirror->hmm->mirrors_sem); 242 mirror->hmm = NULL; 243 goto again; 244 } else { 245 list_add(&mirror->list, &mirror->hmm->mirrors); 246 up_write(&mirror->hmm->mirrors_sem); 247 } 248 249 return 0; 250 } 251 EXPORT_SYMBOL(hmm_mirror_register); 252 253 /* 254 * hmm_mirror_unregister() - unregister a mirror 255 * 256 * @mirror: new mirror struct to register 257 * 258 * Stop mirroring a process address space, and cleanup. 259 */ 260 void hmm_mirror_unregister(struct hmm_mirror *mirror) 261 { 262 bool should_unregister = false; 263 struct mm_struct *mm; 264 struct hmm *hmm; 265 266 if (mirror->hmm == NULL) 267 return; 268 269 hmm = mirror->hmm; 270 down_write(&hmm->mirrors_sem); 271 list_del_init(&mirror->list); 272 should_unregister = list_empty(&hmm->mirrors); 273 mirror->hmm = NULL; 274 mm = hmm->mm; 275 hmm->mm = NULL; 276 up_write(&hmm->mirrors_sem); 277 278 if (!should_unregister || mm == NULL) 279 return; 280 281 spin_lock(&mm->page_table_lock); 282 if (mm->hmm == hmm) 283 mm->hmm = NULL; 284 spin_unlock(&mm->page_table_lock); 285 286 mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm); 287 kfree(hmm); 288 } 289 EXPORT_SYMBOL(hmm_mirror_unregister); 290 291 struct hmm_vma_walk { 292 struct hmm_range *range; 293 unsigned long last; 294 bool fault; 295 bool block; 296 }; 297 298 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr, 299 bool write_fault, uint64_t *pfn) 300 { 301 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE; 302 struct hmm_vma_walk *hmm_vma_walk = walk->private; 303 struct hmm_range *range = hmm_vma_walk->range; 304 struct vm_area_struct *vma = walk->vma; 305 vm_fault_t ret; 306 307 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY; 308 flags |= write_fault ? FAULT_FLAG_WRITE : 0; 309 ret = handle_mm_fault(vma, addr, flags); 310 if (ret & VM_FAULT_RETRY) 311 return -EBUSY; 312 if (ret & VM_FAULT_ERROR) { 313 *pfn = range->values[HMM_PFN_ERROR]; 314 return -EFAULT; 315 } 316 317 return -EAGAIN; 318 } 319 320 static int hmm_pfns_bad(unsigned long addr, 321 unsigned long end, 322 struct mm_walk *walk) 323 { 324 struct hmm_vma_walk *hmm_vma_walk = walk->private; 325 struct hmm_range *range = hmm_vma_walk->range; 326 uint64_t *pfns = range->pfns; 327 unsigned long i; 328 329 i = (addr - range->start) >> PAGE_SHIFT; 330 for (; addr < end; addr += PAGE_SIZE, i++) 331 pfns[i] = range->values[HMM_PFN_ERROR]; 332 333 return 0; 334 } 335 336 /* 337 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s) 338 * @start: range virtual start address (inclusive) 339 * @end: range virtual end address (exclusive) 340 * @fault: should we fault or not ? 341 * @write_fault: write fault ? 342 * @walk: mm_walk structure 343 * Returns: 0 on success, -EAGAIN after page fault, or page fault error 344 * 345 * This function will be called whenever pmd_none() or pte_none() returns true, 346 * or whenever there is no page directory covering the virtual address range. 347 */ 348 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end, 349 bool fault, bool write_fault, 350 struct mm_walk *walk) 351 { 352 struct hmm_vma_walk *hmm_vma_walk = walk->private; 353 struct hmm_range *range = hmm_vma_walk->range; 354 uint64_t *pfns = range->pfns; 355 unsigned long i; 356 357 hmm_vma_walk->last = addr; 358 i = (addr - range->start) >> PAGE_SHIFT; 359 for (; addr < end; addr += PAGE_SIZE, i++) { 360 pfns[i] = range->values[HMM_PFN_NONE]; 361 if (fault || write_fault) { 362 int ret; 363 364 ret = hmm_vma_do_fault(walk, addr, write_fault, 365 &pfns[i]); 366 if (ret != -EAGAIN) 367 return ret; 368 } 369 } 370 371 return (fault || write_fault) ? -EAGAIN : 0; 372 } 373 374 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk, 375 uint64_t pfns, uint64_t cpu_flags, 376 bool *fault, bool *write_fault) 377 { 378 struct hmm_range *range = hmm_vma_walk->range; 379 380 *fault = *write_fault = false; 381 if (!hmm_vma_walk->fault) 382 return; 383 384 /* We aren't ask to do anything ... */ 385 if (!(pfns & range->flags[HMM_PFN_VALID])) 386 return; 387 /* If this is device memory than only fault if explicitly requested */ 388 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) { 389 /* Do we fault on device memory ? */ 390 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) { 391 *write_fault = pfns & range->flags[HMM_PFN_WRITE]; 392 *fault = true; 393 } 394 return; 395 } 396 397 /* If CPU page table is not valid then we need to fault */ 398 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]); 399 /* Need to write fault ? */ 400 if ((pfns & range->flags[HMM_PFN_WRITE]) && 401 !(cpu_flags & range->flags[HMM_PFN_WRITE])) { 402 *write_fault = true; 403 *fault = true; 404 } 405 } 406 407 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk, 408 const uint64_t *pfns, unsigned long npages, 409 uint64_t cpu_flags, bool *fault, 410 bool *write_fault) 411 { 412 unsigned long i; 413 414 if (!hmm_vma_walk->fault) { 415 *fault = *write_fault = false; 416 return; 417 } 418 419 for (i = 0; i < npages; ++i) { 420 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags, 421 fault, write_fault); 422 if ((*fault) || (*write_fault)) 423 return; 424 } 425 } 426 427 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end, 428 struct mm_walk *walk) 429 { 430 struct hmm_vma_walk *hmm_vma_walk = walk->private; 431 struct hmm_range *range = hmm_vma_walk->range; 432 bool fault, write_fault; 433 unsigned long i, npages; 434 uint64_t *pfns; 435 436 i = (addr - range->start) >> PAGE_SHIFT; 437 npages = (end - addr) >> PAGE_SHIFT; 438 pfns = &range->pfns[i]; 439 hmm_range_need_fault(hmm_vma_walk, pfns, npages, 440 0, &fault, &write_fault); 441 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); 442 } 443 444 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd) 445 { 446 if (pmd_protnone(pmd)) 447 return 0; 448 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] | 449 range->flags[HMM_PFN_WRITE] : 450 range->flags[HMM_PFN_VALID]; 451 } 452 453 static int hmm_vma_handle_pmd(struct mm_walk *walk, 454 unsigned long addr, 455 unsigned long end, 456 uint64_t *pfns, 457 pmd_t pmd) 458 { 459 struct hmm_vma_walk *hmm_vma_walk = walk->private; 460 struct hmm_range *range = hmm_vma_walk->range; 461 unsigned long pfn, npages, i; 462 bool fault, write_fault; 463 uint64_t cpu_flags; 464 465 npages = (end - addr) >> PAGE_SHIFT; 466 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd); 467 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags, 468 &fault, &write_fault); 469 470 if (pmd_protnone(pmd) || fault || write_fault) 471 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); 472 473 pfn = pmd_pfn(pmd) + pte_index(addr); 474 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) 475 pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags; 476 hmm_vma_walk->last = end; 477 return 0; 478 } 479 480 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte) 481 { 482 if (pte_none(pte) || !pte_present(pte)) 483 return 0; 484 return pte_write(pte) ? range->flags[HMM_PFN_VALID] | 485 range->flags[HMM_PFN_WRITE] : 486 range->flags[HMM_PFN_VALID]; 487 } 488 489 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr, 490 unsigned long end, pmd_t *pmdp, pte_t *ptep, 491 uint64_t *pfn) 492 { 493 struct hmm_vma_walk *hmm_vma_walk = walk->private; 494 struct hmm_range *range = hmm_vma_walk->range; 495 struct vm_area_struct *vma = walk->vma; 496 bool fault, write_fault; 497 uint64_t cpu_flags; 498 pte_t pte = *ptep; 499 uint64_t orig_pfn = *pfn; 500 501 *pfn = range->values[HMM_PFN_NONE]; 502 cpu_flags = pte_to_hmm_pfn_flags(range, pte); 503 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, 504 &fault, &write_fault); 505 506 if (pte_none(pte)) { 507 if (fault || write_fault) 508 goto fault; 509 return 0; 510 } 511 512 if (!pte_present(pte)) { 513 swp_entry_t entry = pte_to_swp_entry(pte); 514 515 if (!non_swap_entry(entry)) { 516 if (fault || write_fault) 517 goto fault; 518 return 0; 519 } 520 521 /* 522 * This is a special swap entry, ignore migration, use 523 * device and report anything else as error. 524 */ 525 if (is_device_private_entry(entry)) { 526 cpu_flags = range->flags[HMM_PFN_VALID] | 527 range->flags[HMM_PFN_DEVICE_PRIVATE]; 528 cpu_flags |= is_write_device_private_entry(entry) ? 529 range->flags[HMM_PFN_WRITE] : 0; 530 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, 531 &fault, &write_fault); 532 if (fault || write_fault) 533 goto fault; 534 *pfn = hmm_pfn_from_pfn(range, swp_offset(entry)); 535 *pfn |= cpu_flags; 536 return 0; 537 } 538 539 if (is_migration_entry(entry)) { 540 if (fault || write_fault) { 541 pte_unmap(ptep); 542 hmm_vma_walk->last = addr; 543 migration_entry_wait(vma->vm_mm, 544 pmdp, addr); 545 return -EAGAIN; 546 } 547 return 0; 548 } 549 550 /* Report error for everything else */ 551 *pfn = range->values[HMM_PFN_ERROR]; 552 return -EFAULT; 553 } 554 555 if (fault || write_fault) 556 goto fault; 557 558 *pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags; 559 return 0; 560 561 fault: 562 pte_unmap(ptep); 563 /* Fault any virtual address we were asked to fault */ 564 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); 565 } 566 567 static int hmm_vma_walk_pmd(pmd_t *pmdp, 568 unsigned long start, 569 unsigned long end, 570 struct mm_walk *walk) 571 { 572 struct hmm_vma_walk *hmm_vma_walk = walk->private; 573 struct hmm_range *range = hmm_vma_walk->range; 574 uint64_t *pfns = range->pfns; 575 unsigned long addr = start, i; 576 pte_t *ptep; 577 578 i = (addr - range->start) >> PAGE_SHIFT; 579 580 again: 581 if (pmd_none(*pmdp)) 582 return hmm_vma_walk_hole(start, end, walk); 583 584 if (pmd_huge(*pmdp) && (range->vma->vm_flags & VM_HUGETLB)) 585 return hmm_pfns_bad(start, end, walk); 586 587 if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) { 588 pmd_t pmd; 589 590 /* 591 * No need to take pmd_lock here, even if some other threads 592 * is splitting the huge pmd we will get that event through 593 * mmu_notifier callback. 594 * 595 * So just read pmd value and check again its a transparent 596 * huge or device mapping one and compute corresponding pfn 597 * values. 598 */ 599 pmd = pmd_read_atomic(pmdp); 600 barrier(); 601 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd)) 602 goto again; 603 604 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd); 605 } 606 607 if (pmd_bad(*pmdp)) 608 return hmm_pfns_bad(start, end, walk); 609 610 ptep = pte_offset_map(pmdp, addr); 611 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) { 612 int r; 613 614 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]); 615 if (r) { 616 /* hmm_vma_handle_pte() did unmap pte directory */ 617 hmm_vma_walk->last = addr; 618 return r; 619 } 620 } 621 pte_unmap(ptep - 1); 622 623 hmm_vma_walk->last = addr; 624 return 0; 625 } 626 627 static void hmm_pfns_clear(struct hmm_range *range, 628 uint64_t *pfns, 629 unsigned long addr, 630 unsigned long end) 631 { 632 for (; addr < end; addr += PAGE_SIZE, pfns++) 633 *pfns = range->values[HMM_PFN_NONE]; 634 } 635 636 static void hmm_pfns_special(struct hmm_range *range) 637 { 638 unsigned long addr = range->start, i = 0; 639 640 for (; addr < range->end; addr += PAGE_SIZE, i++) 641 range->pfns[i] = range->values[HMM_PFN_SPECIAL]; 642 } 643 644 /* 645 * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses 646 * @range: range being snapshotted 647 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid 648 * vma permission, 0 success 649 * 650 * This snapshots the CPU page table for a range of virtual addresses. Snapshot 651 * validity is tracked by range struct. See hmm_vma_range_done() for further 652 * information. 653 * 654 * The range struct is initialized here. It tracks the CPU page table, but only 655 * if the function returns success (0), in which case the caller must then call 656 * hmm_vma_range_done() to stop CPU page table update tracking on this range. 657 * 658 * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS 659 * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED ! 660 */ 661 int hmm_vma_get_pfns(struct hmm_range *range) 662 { 663 struct vm_area_struct *vma = range->vma; 664 struct hmm_vma_walk hmm_vma_walk; 665 struct mm_walk mm_walk; 666 struct hmm *hmm; 667 668 /* Sanity check, this really should not happen ! */ 669 if (range->start < vma->vm_start || range->start >= vma->vm_end) 670 return -EINVAL; 671 if (range->end < vma->vm_start || range->end > vma->vm_end) 672 return -EINVAL; 673 674 hmm = hmm_register(vma->vm_mm); 675 if (!hmm) 676 return -ENOMEM; 677 /* Caller must have registered a mirror, via hmm_mirror_register() ! */ 678 if (!hmm->mmu_notifier.ops) 679 return -EINVAL; 680 681 /* FIXME support hugetlb fs */ 682 if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) || 683 vma_is_dax(vma)) { 684 hmm_pfns_special(range); 685 return -EINVAL; 686 } 687 688 if (!(vma->vm_flags & VM_READ)) { 689 /* 690 * If vma do not allow read access, then assume that it does 691 * not allow write access, either. Architecture that allow 692 * write without read access are not supported by HMM, because 693 * operations such has atomic access would not work. 694 */ 695 hmm_pfns_clear(range, range->pfns, range->start, range->end); 696 return -EPERM; 697 } 698 699 /* Initialize range to track CPU page table update */ 700 spin_lock(&hmm->lock); 701 range->valid = true; 702 list_add_rcu(&range->list, &hmm->ranges); 703 spin_unlock(&hmm->lock); 704 705 hmm_vma_walk.fault = false; 706 hmm_vma_walk.range = range; 707 mm_walk.private = &hmm_vma_walk; 708 709 mm_walk.vma = vma; 710 mm_walk.mm = vma->vm_mm; 711 mm_walk.pte_entry = NULL; 712 mm_walk.test_walk = NULL; 713 mm_walk.hugetlb_entry = NULL; 714 mm_walk.pmd_entry = hmm_vma_walk_pmd; 715 mm_walk.pte_hole = hmm_vma_walk_hole; 716 717 walk_page_range(range->start, range->end, &mm_walk); 718 return 0; 719 } 720 EXPORT_SYMBOL(hmm_vma_get_pfns); 721 722 /* 723 * hmm_vma_range_done() - stop tracking change to CPU page table over a range 724 * @range: range being tracked 725 * Returns: false if range data has been invalidated, true otherwise 726 * 727 * Range struct is used to track updates to the CPU page table after a call to 728 * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done 729 * using the data, or wants to lock updates to the data it got from those 730 * functions, it must call the hmm_vma_range_done() function, which will then 731 * stop tracking CPU page table updates. 732 * 733 * Note that device driver must still implement general CPU page table update 734 * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using 735 * the mmu_notifier API directly. 736 * 737 * CPU page table update tracking done through hmm_range is only temporary and 738 * to be used while trying to duplicate CPU page table contents for a range of 739 * virtual addresses. 740 * 741 * There are two ways to use this : 742 * again: 743 * hmm_vma_get_pfns(range); or hmm_vma_fault(...); 744 * trans = device_build_page_table_update_transaction(pfns); 745 * device_page_table_lock(); 746 * if (!hmm_vma_range_done(range)) { 747 * device_page_table_unlock(); 748 * goto again; 749 * } 750 * device_commit_transaction(trans); 751 * device_page_table_unlock(); 752 * 753 * Or: 754 * hmm_vma_get_pfns(range); or hmm_vma_fault(...); 755 * device_page_table_lock(); 756 * hmm_vma_range_done(range); 757 * device_update_page_table(range->pfns); 758 * device_page_table_unlock(); 759 */ 760 bool hmm_vma_range_done(struct hmm_range *range) 761 { 762 unsigned long npages = (range->end - range->start) >> PAGE_SHIFT; 763 struct hmm *hmm; 764 765 if (range->end <= range->start) { 766 BUG(); 767 return false; 768 } 769 770 hmm = hmm_register(range->vma->vm_mm); 771 if (!hmm) { 772 memset(range->pfns, 0, sizeof(*range->pfns) * npages); 773 return false; 774 } 775 776 spin_lock(&hmm->lock); 777 list_del_rcu(&range->list); 778 spin_unlock(&hmm->lock); 779 780 return range->valid; 781 } 782 EXPORT_SYMBOL(hmm_vma_range_done); 783 784 /* 785 * hmm_vma_fault() - try to fault some address in a virtual address range 786 * @range: range being faulted 787 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem) 788 * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop) 789 * 790 * This is similar to a regular CPU page fault except that it will not trigger 791 * any memory migration if the memory being faulted is not accessible by CPUs. 792 * 793 * On error, for one virtual address in the range, the function will mark the 794 * corresponding HMM pfn entry with an error flag. 795 * 796 * Expected use pattern: 797 * retry: 798 * down_read(&mm->mmap_sem); 799 * // Find vma and address device wants to fault, initialize hmm_pfn_t 800 * // array accordingly 801 * ret = hmm_vma_fault(range, write, block); 802 * switch (ret) { 803 * case -EAGAIN: 804 * hmm_vma_range_done(range); 805 * // You might want to rate limit or yield to play nicely, you may 806 * // also commit any valid pfn in the array assuming that you are 807 * // getting true from hmm_vma_range_monitor_end() 808 * goto retry; 809 * case 0: 810 * break; 811 * case -ENOMEM: 812 * case -EINVAL: 813 * case -EPERM: 814 * default: 815 * // Handle error ! 816 * up_read(&mm->mmap_sem) 817 * return; 818 * } 819 * // Take device driver lock that serialize device page table update 820 * driver_lock_device_page_table_update(); 821 * hmm_vma_range_done(range); 822 * // Commit pfns we got from hmm_vma_fault() 823 * driver_unlock_device_page_table_update(); 824 * up_read(&mm->mmap_sem) 825 * 826 * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0) 827 * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION ! 828 * 829 * YOU HAVE BEEN WARNED ! 830 */ 831 int hmm_vma_fault(struct hmm_range *range, bool block) 832 { 833 struct vm_area_struct *vma = range->vma; 834 unsigned long start = range->start; 835 struct hmm_vma_walk hmm_vma_walk; 836 struct mm_walk mm_walk; 837 struct hmm *hmm; 838 int ret; 839 840 /* Sanity check, this really should not happen ! */ 841 if (range->start < vma->vm_start || range->start >= vma->vm_end) 842 return -EINVAL; 843 if (range->end < vma->vm_start || range->end > vma->vm_end) 844 return -EINVAL; 845 846 hmm = hmm_register(vma->vm_mm); 847 if (!hmm) { 848 hmm_pfns_clear(range, range->pfns, range->start, range->end); 849 return -ENOMEM; 850 } 851 /* Caller must have registered a mirror using hmm_mirror_register() */ 852 if (!hmm->mmu_notifier.ops) 853 return -EINVAL; 854 855 /* FIXME support hugetlb fs */ 856 if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) || 857 vma_is_dax(vma)) { 858 hmm_pfns_special(range); 859 return -EINVAL; 860 } 861 862 if (!(vma->vm_flags & VM_READ)) { 863 /* 864 * If vma do not allow read access, then assume that it does 865 * not allow write access, either. Architecture that allow 866 * write without read access are not supported by HMM, because 867 * operations such has atomic access would not work. 868 */ 869 hmm_pfns_clear(range, range->pfns, range->start, range->end); 870 return -EPERM; 871 } 872 873 /* Initialize range to track CPU page table update */ 874 spin_lock(&hmm->lock); 875 range->valid = true; 876 list_add_rcu(&range->list, &hmm->ranges); 877 spin_unlock(&hmm->lock); 878 879 hmm_vma_walk.fault = true; 880 hmm_vma_walk.block = block; 881 hmm_vma_walk.range = range; 882 mm_walk.private = &hmm_vma_walk; 883 hmm_vma_walk.last = range->start; 884 885 mm_walk.vma = vma; 886 mm_walk.mm = vma->vm_mm; 887 mm_walk.pte_entry = NULL; 888 mm_walk.test_walk = NULL; 889 mm_walk.hugetlb_entry = NULL; 890 mm_walk.pmd_entry = hmm_vma_walk_pmd; 891 mm_walk.pte_hole = hmm_vma_walk_hole; 892 893 do { 894 ret = walk_page_range(start, range->end, &mm_walk); 895 start = hmm_vma_walk.last; 896 } while (ret == -EAGAIN); 897 898 if (ret) { 899 unsigned long i; 900 901 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT; 902 hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last, 903 range->end); 904 hmm_vma_range_done(range); 905 } 906 return ret; 907 } 908 EXPORT_SYMBOL(hmm_vma_fault); 909 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */ 910 911 912 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC) 913 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma, 914 unsigned long addr) 915 { 916 struct page *page; 917 918 page = alloc_page_vma(GFP_HIGHUSER, vma, addr); 919 if (!page) 920 return NULL; 921 lock_page(page); 922 return page; 923 } 924 EXPORT_SYMBOL(hmm_vma_alloc_locked_page); 925 926 927 static void hmm_devmem_ref_release(struct percpu_ref *ref) 928 { 929 struct hmm_devmem *devmem; 930 931 devmem = container_of(ref, struct hmm_devmem, ref); 932 complete(&devmem->completion); 933 } 934 935 static void hmm_devmem_ref_exit(void *data) 936 { 937 struct percpu_ref *ref = data; 938 struct hmm_devmem *devmem; 939 940 devmem = container_of(ref, struct hmm_devmem, ref); 941 percpu_ref_exit(ref); 942 devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data); 943 } 944 945 static void hmm_devmem_ref_kill(void *data) 946 { 947 struct percpu_ref *ref = data; 948 struct hmm_devmem *devmem; 949 950 devmem = container_of(ref, struct hmm_devmem, ref); 951 percpu_ref_kill(ref); 952 wait_for_completion(&devmem->completion); 953 devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data); 954 } 955 956 static int hmm_devmem_fault(struct vm_area_struct *vma, 957 unsigned long addr, 958 const struct page *page, 959 unsigned int flags, 960 pmd_t *pmdp) 961 { 962 struct hmm_devmem *devmem = page->pgmap->data; 963 964 return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp); 965 } 966 967 static void hmm_devmem_free(struct page *page, void *data) 968 { 969 struct hmm_devmem *devmem = data; 970 971 devmem->ops->free(devmem, page); 972 } 973 974 static DEFINE_MUTEX(hmm_devmem_lock); 975 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL); 976 977 static void hmm_devmem_radix_release(struct resource *resource) 978 { 979 resource_size_t key; 980 981 mutex_lock(&hmm_devmem_lock); 982 for (key = resource->start; 983 key <= resource->end; 984 key += PA_SECTION_SIZE) 985 radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT); 986 mutex_unlock(&hmm_devmem_lock); 987 } 988 989 static void hmm_devmem_release(struct device *dev, void *data) 990 { 991 struct hmm_devmem *devmem = data; 992 struct resource *resource = devmem->resource; 993 unsigned long start_pfn, npages; 994 struct zone *zone; 995 struct page *page; 996 997 if (percpu_ref_tryget_live(&devmem->ref)) { 998 dev_WARN(dev, "%s: page mapping is still live!\n", __func__); 999 percpu_ref_put(&devmem->ref); 1000 } 1001 1002 /* pages are dead and unused, undo the arch mapping */ 1003 start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT; 1004 npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT; 1005 1006 page = pfn_to_page(start_pfn); 1007 zone = page_zone(page); 1008 1009 mem_hotplug_begin(); 1010 if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) 1011 __remove_pages(zone, start_pfn, npages, NULL); 1012 else 1013 arch_remove_memory(start_pfn << PAGE_SHIFT, 1014 npages << PAGE_SHIFT, NULL); 1015 mem_hotplug_done(); 1016 1017 hmm_devmem_radix_release(resource); 1018 } 1019 1020 static int hmm_devmem_pages_create(struct hmm_devmem *devmem) 1021 { 1022 resource_size_t key, align_start, align_size, align_end; 1023 struct device *device = devmem->device; 1024 int ret, nid, is_ram; 1025 unsigned long pfn; 1026 1027 align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1); 1028 align_size = ALIGN(devmem->resource->start + 1029 resource_size(devmem->resource), 1030 PA_SECTION_SIZE) - align_start; 1031 1032 is_ram = region_intersects(align_start, align_size, 1033 IORESOURCE_SYSTEM_RAM, 1034 IORES_DESC_NONE); 1035 if (is_ram == REGION_MIXED) { 1036 WARN_ONCE(1, "%s attempted on mixed region %pr\n", 1037 __func__, devmem->resource); 1038 return -ENXIO; 1039 } 1040 if (is_ram == REGION_INTERSECTS) 1041 return -ENXIO; 1042 1043 if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY) 1044 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC; 1045 else 1046 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE; 1047 1048 devmem->pagemap.res = *devmem->resource; 1049 devmem->pagemap.page_fault = hmm_devmem_fault; 1050 devmem->pagemap.page_free = hmm_devmem_free; 1051 devmem->pagemap.dev = devmem->device; 1052 devmem->pagemap.ref = &devmem->ref; 1053 devmem->pagemap.data = devmem; 1054 1055 mutex_lock(&hmm_devmem_lock); 1056 align_end = align_start + align_size - 1; 1057 for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) { 1058 struct hmm_devmem *dup; 1059 1060 dup = radix_tree_lookup(&hmm_devmem_radix, 1061 key >> PA_SECTION_SHIFT); 1062 if (dup) { 1063 dev_err(device, "%s: collides with mapping for %s\n", 1064 __func__, dev_name(dup->device)); 1065 mutex_unlock(&hmm_devmem_lock); 1066 ret = -EBUSY; 1067 goto error; 1068 } 1069 ret = radix_tree_insert(&hmm_devmem_radix, 1070 key >> PA_SECTION_SHIFT, 1071 devmem); 1072 if (ret) { 1073 dev_err(device, "%s: failed: %d\n", __func__, ret); 1074 mutex_unlock(&hmm_devmem_lock); 1075 goto error_radix; 1076 } 1077 } 1078 mutex_unlock(&hmm_devmem_lock); 1079 1080 nid = dev_to_node(device); 1081 if (nid < 0) 1082 nid = numa_mem_id(); 1083 1084 mem_hotplug_begin(); 1085 /* 1086 * For device private memory we call add_pages() as we only need to 1087 * allocate and initialize struct page for the device memory. More- 1088 * over the device memory is un-accessible thus we do not want to 1089 * create a linear mapping for the memory like arch_add_memory() 1090 * would do. 1091 * 1092 * For device public memory, which is accesible by the CPU, we do 1093 * want the linear mapping and thus use arch_add_memory(). 1094 */ 1095 if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC) 1096 ret = arch_add_memory(nid, align_start, align_size, NULL, 1097 false); 1098 else 1099 ret = add_pages(nid, align_start >> PAGE_SHIFT, 1100 align_size >> PAGE_SHIFT, NULL, false); 1101 if (ret) { 1102 mem_hotplug_done(); 1103 goto error_add_memory; 1104 } 1105 move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE], 1106 align_start >> PAGE_SHIFT, 1107 align_size >> PAGE_SHIFT, NULL); 1108 mem_hotplug_done(); 1109 1110 for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) { 1111 struct page *page = pfn_to_page(pfn); 1112 1113 page->pgmap = &devmem->pagemap; 1114 } 1115 return 0; 1116 1117 error_add_memory: 1118 untrack_pfn(NULL, PHYS_PFN(align_start), align_size); 1119 error_radix: 1120 hmm_devmem_radix_release(devmem->resource); 1121 error: 1122 return ret; 1123 } 1124 1125 static int hmm_devmem_match(struct device *dev, void *data, void *match_data) 1126 { 1127 struct hmm_devmem *devmem = data; 1128 1129 return devmem->resource == match_data; 1130 } 1131 1132 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem) 1133 { 1134 devres_release(devmem->device, &hmm_devmem_release, 1135 &hmm_devmem_match, devmem->resource); 1136 } 1137 1138 /* 1139 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory 1140 * 1141 * @ops: memory event device driver callback (see struct hmm_devmem_ops) 1142 * @device: device struct to bind the resource too 1143 * @size: size in bytes of the device memory to add 1144 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise 1145 * 1146 * This function first finds an empty range of physical address big enough to 1147 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which 1148 * in turn allocates struct pages. It does not do anything beyond that; all 1149 * events affecting the memory will go through the various callbacks provided 1150 * by hmm_devmem_ops struct. 1151 * 1152 * Device driver should call this function during device initialization and 1153 * is then responsible of memory management. HMM only provides helpers. 1154 */ 1155 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops, 1156 struct device *device, 1157 unsigned long size) 1158 { 1159 struct hmm_devmem *devmem; 1160 resource_size_t addr; 1161 int ret; 1162 1163 dev_pagemap_get_ops(); 1164 1165 devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem), 1166 GFP_KERNEL, dev_to_node(device)); 1167 if (!devmem) 1168 return ERR_PTR(-ENOMEM); 1169 1170 init_completion(&devmem->completion); 1171 devmem->pfn_first = -1UL; 1172 devmem->pfn_last = -1UL; 1173 devmem->resource = NULL; 1174 devmem->device = device; 1175 devmem->ops = ops; 1176 1177 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release, 1178 0, GFP_KERNEL); 1179 if (ret) 1180 goto error_percpu_ref; 1181 1182 ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref); 1183 if (ret) 1184 goto error_devm_add_action; 1185 1186 size = ALIGN(size, PA_SECTION_SIZE); 1187 addr = min((unsigned long)iomem_resource.end, 1188 (1UL << MAX_PHYSMEM_BITS) - 1); 1189 addr = addr - size + 1UL; 1190 1191 /* 1192 * FIXME add a new helper to quickly walk resource tree and find free 1193 * range 1194 * 1195 * FIXME what about ioport_resource resource ? 1196 */ 1197 for (; addr > size && addr >= iomem_resource.start; addr -= size) { 1198 ret = region_intersects(addr, size, 0, IORES_DESC_NONE); 1199 if (ret != REGION_DISJOINT) 1200 continue; 1201 1202 devmem->resource = devm_request_mem_region(device, addr, size, 1203 dev_name(device)); 1204 if (!devmem->resource) { 1205 ret = -ENOMEM; 1206 goto error_no_resource; 1207 } 1208 break; 1209 } 1210 if (!devmem->resource) { 1211 ret = -ERANGE; 1212 goto error_no_resource; 1213 } 1214 1215 devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY; 1216 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT; 1217 devmem->pfn_last = devmem->pfn_first + 1218 (resource_size(devmem->resource) >> PAGE_SHIFT); 1219 1220 ret = hmm_devmem_pages_create(devmem); 1221 if (ret) 1222 goto error_pages; 1223 1224 devres_add(device, devmem); 1225 1226 ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref); 1227 if (ret) { 1228 hmm_devmem_remove(devmem); 1229 return ERR_PTR(ret); 1230 } 1231 1232 return devmem; 1233 1234 error_pages: 1235 devm_release_mem_region(device, devmem->resource->start, 1236 resource_size(devmem->resource)); 1237 error_no_resource: 1238 error_devm_add_action: 1239 hmm_devmem_ref_kill(&devmem->ref); 1240 hmm_devmem_ref_exit(&devmem->ref); 1241 error_percpu_ref: 1242 devres_free(devmem); 1243 return ERR_PTR(ret); 1244 } 1245 EXPORT_SYMBOL(hmm_devmem_add); 1246 1247 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops, 1248 struct device *device, 1249 struct resource *res) 1250 { 1251 struct hmm_devmem *devmem; 1252 int ret; 1253 1254 if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY) 1255 return ERR_PTR(-EINVAL); 1256 1257 dev_pagemap_get_ops(); 1258 1259 devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem), 1260 GFP_KERNEL, dev_to_node(device)); 1261 if (!devmem) 1262 return ERR_PTR(-ENOMEM); 1263 1264 init_completion(&devmem->completion); 1265 devmem->pfn_first = -1UL; 1266 devmem->pfn_last = -1UL; 1267 devmem->resource = res; 1268 devmem->device = device; 1269 devmem->ops = ops; 1270 1271 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release, 1272 0, GFP_KERNEL); 1273 if (ret) 1274 goto error_percpu_ref; 1275 1276 ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref); 1277 if (ret) 1278 goto error_devm_add_action; 1279 1280 1281 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT; 1282 devmem->pfn_last = devmem->pfn_first + 1283 (resource_size(devmem->resource) >> PAGE_SHIFT); 1284 1285 ret = hmm_devmem_pages_create(devmem); 1286 if (ret) 1287 goto error_devm_add_action; 1288 1289 devres_add(device, devmem); 1290 1291 ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref); 1292 if (ret) { 1293 hmm_devmem_remove(devmem); 1294 return ERR_PTR(ret); 1295 } 1296 1297 return devmem; 1298 1299 error_devm_add_action: 1300 hmm_devmem_ref_kill(&devmem->ref); 1301 hmm_devmem_ref_exit(&devmem->ref); 1302 error_percpu_ref: 1303 devres_free(devmem); 1304 return ERR_PTR(ret); 1305 } 1306 EXPORT_SYMBOL(hmm_devmem_add_resource); 1307 1308 /* 1309 * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE) 1310 * 1311 * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory 1312 * 1313 * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf 1314 * of the device driver. It will free struct page and remove the resource that 1315 * reserved the physical address range for this device memory. 1316 */ 1317 void hmm_devmem_remove(struct hmm_devmem *devmem) 1318 { 1319 resource_size_t start, size; 1320 struct device *device; 1321 bool cdm = false; 1322 1323 if (!devmem) 1324 return; 1325 1326 device = devmem->device; 1327 start = devmem->resource->start; 1328 size = resource_size(devmem->resource); 1329 1330 cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY; 1331 hmm_devmem_ref_kill(&devmem->ref); 1332 hmm_devmem_ref_exit(&devmem->ref); 1333 hmm_devmem_pages_remove(devmem); 1334 1335 if (!cdm) 1336 devm_release_mem_region(device, start, size); 1337 } 1338 EXPORT_SYMBOL(hmm_devmem_remove); 1339 1340 /* 1341 * A device driver that wants to handle multiple devices memory through a 1342 * single fake device can use hmm_device to do so. This is purely a helper 1343 * and it is not needed to make use of any HMM functionality. 1344 */ 1345 #define HMM_DEVICE_MAX 256 1346 1347 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX); 1348 static DEFINE_SPINLOCK(hmm_device_lock); 1349 static struct class *hmm_device_class; 1350 static dev_t hmm_device_devt; 1351 1352 static void hmm_device_release(struct device *device) 1353 { 1354 struct hmm_device *hmm_device; 1355 1356 hmm_device = container_of(device, struct hmm_device, device); 1357 spin_lock(&hmm_device_lock); 1358 clear_bit(hmm_device->minor, hmm_device_mask); 1359 spin_unlock(&hmm_device_lock); 1360 1361 kfree(hmm_device); 1362 } 1363 1364 struct hmm_device *hmm_device_new(void *drvdata) 1365 { 1366 struct hmm_device *hmm_device; 1367 1368 hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL); 1369 if (!hmm_device) 1370 return ERR_PTR(-ENOMEM); 1371 1372 spin_lock(&hmm_device_lock); 1373 hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX); 1374 if (hmm_device->minor >= HMM_DEVICE_MAX) { 1375 spin_unlock(&hmm_device_lock); 1376 kfree(hmm_device); 1377 return ERR_PTR(-EBUSY); 1378 } 1379 set_bit(hmm_device->minor, hmm_device_mask); 1380 spin_unlock(&hmm_device_lock); 1381 1382 dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor); 1383 hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt), 1384 hmm_device->minor); 1385 hmm_device->device.release = hmm_device_release; 1386 dev_set_drvdata(&hmm_device->device, drvdata); 1387 hmm_device->device.class = hmm_device_class; 1388 device_initialize(&hmm_device->device); 1389 1390 return hmm_device; 1391 } 1392 EXPORT_SYMBOL(hmm_device_new); 1393 1394 void hmm_device_put(struct hmm_device *hmm_device) 1395 { 1396 put_device(&hmm_device->device); 1397 } 1398 EXPORT_SYMBOL(hmm_device_put); 1399 1400 static int __init hmm_init(void) 1401 { 1402 int ret; 1403 1404 ret = alloc_chrdev_region(&hmm_device_devt, 0, 1405 HMM_DEVICE_MAX, 1406 "hmm_device"); 1407 if (ret) 1408 return ret; 1409 1410 hmm_device_class = class_create(THIS_MODULE, "hmm_device"); 1411 if (IS_ERR(hmm_device_class)) { 1412 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX); 1413 return PTR_ERR(hmm_device_class); 1414 } 1415 return 0; 1416 } 1417 1418 device_initcall(hmm_init); 1419 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */ 1420