xref: /openbmc/linux/mm/hmm.c (revision a3cbcadfdfc330c28a45f06e8f92fd1d59aafa19)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * Copyright 2013 Red Hat Inc.
4   *
5   * Authors: Jérôme Glisse <jglisse@redhat.com>
6   */
7  /*
8   * Refer to include/linux/hmm.h for information about heterogeneous memory
9   * management or HMM for short.
10   */
11  #include <linux/pagewalk.h>
12  #include <linux/hmm.h>
13  #include <linux/init.h>
14  #include <linux/rmap.h>
15  #include <linux/swap.h>
16  #include <linux/slab.h>
17  #include <linux/sched.h>
18  #include <linux/mmzone.h>
19  #include <linux/pagemap.h>
20  #include <linux/swapops.h>
21  #include <linux/hugetlb.h>
22  #include <linux/memremap.h>
23  #include <linux/sched/mm.h>
24  #include <linux/jump_label.h>
25  #include <linux/dma-mapping.h>
26  #include <linux/mmu_notifier.h>
27  #include <linux/memory_hotplug.h>
28  
29  #include "internal.h"
30  
31  struct hmm_vma_walk {
32  	struct hmm_range	*range;
33  	unsigned long		last;
34  };
35  
36  enum {
37  	HMM_NEED_FAULT = 1 << 0,
38  	HMM_NEED_WRITE_FAULT = 1 << 1,
39  	HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
40  };
41  
42  static int hmm_pfns_fill(unsigned long addr, unsigned long end,
43  			 struct hmm_range *range, unsigned long cpu_flags)
44  {
45  	unsigned long i = (addr - range->start) >> PAGE_SHIFT;
46  
47  	for (; addr < end; addr += PAGE_SIZE, i++)
48  		range->hmm_pfns[i] = cpu_flags;
49  	return 0;
50  }
51  
52  /*
53   * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
54   * @addr: range virtual start address (inclusive)
55   * @end: range virtual end address (exclusive)
56   * @required_fault: HMM_NEED_* flags
57   * @walk: mm_walk structure
58   * Return: -EBUSY after page fault, or page fault error
59   *
60   * This function will be called whenever pmd_none() or pte_none() returns true,
61   * or whenever there is no page directory covering the virtual address range.
62   */
63  static int hmm_vma_fault(unsigned long addr, unsigned long end,
64  			 unsigned int required_fault, struct mm_walk *walk)
65  {
66  	struct hmm_vma_walk *hmm_vma_walk = walk->private;
67  	struct vm_area_struct *vma = walk->vma;
68  	unsigned int fault_flags = FAULT_FLAG_REMOTE;
69  
70  	WARN_ON_ONCE(!required_fault);
71  	hmm_vma_walk->last = addr;
72  
73  	if (required_fault & HMM_NEED_WRITE_FAULT) {
74  		if (!(vma->vm_flags & VM_WRITE))
75  			return -EPERM;
76  		fault_flags |= FAULT_FLAG_WRITE;
77  	}
78  
79  	for (; addr < end; addr += PAGE_SIZE)
80  		if (handle_mm_fault(vma, addr, fault_flags, NULL) &
81  		    VM_FAULT_ERROR)
82  			return -EFAULT;
83  	return -EBUSY;
84  }
85  
86  static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
87  				       unsigned long pfn_req_flags,
88  				       unsigned long cpu_flags)
89  {
90  	struct hmm_range *range = hmm_vma_walk->range;
91  
92  	/*
93  	 * So we not only consider the individual per page request we also
94  	 * consider the default flags requested for the range. The API can
95  	 * be used 2 ways. The first one where the HMM user coalesces
96  	 * multiple page faults into one request and sets flags per pfn for
97  	 * those faults. The second one where the HMM user wants to pre-
98  	 * fault a range with specific flags. For the latter one it is a
99  	 * waste to have the user pre-fill the pfn arrays with a default
100  	 * flags value.
101  	 */
102  	pfn_req_flags &= range->pfn_flags_mask;
103  	pfn_req_flags |= range->default_flags;
104  
105  	/* We aren't ask to do anything ... */
106  	if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
107  		return 0;
108  
109  	/* Need to write fault ? */
110  	if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
111  	    !(cpu_flags & HMM_PFN_WRITE))
112  		return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
113  
114  	/* If CPU page table is not valid then we need to fault */
115  	if (!(cpu_flags & HMM_PFN_VALID))
116  		return HMM_NEED_FAULT;
117  	return 0;
118  }
119  
120  static unsigned int
121  hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
122  		     const unsigned long hmm_pfns[], unsigned long npages,
123  		     unsigned long cpu_flags)
124  {
125  	struct hmm_range *range = hmm_vma_walk->range;
126  	unsigned int required_fault = 0;
127  	unsigned long i;
128  
129  	/*
130  	 * If the default flags do not request to fault pages, and the mask does
131  	 * not allow for individual pages to be faulted, then
132  	 * hmm_pte_need_fault() will always return 0.
133  	 */
134  	if (!((range->default_flags | range->pfn_flags_mask) &
135  	      HMM_PFN_REQ_FAULT))
136  		return 0;
137  
138  	for (i = 0; i < npages; ++i) {
139  		required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
140  						     cpu_flags);
141  		if (required_fault == HMM_NEED_ALL_BITS)
142  			return required_fault;
143  	}
144  	return required_fault;
145  }
146  
147  static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
148  			     __always_unused int depth, struct mm_walk *walk)
149  {
150  	struct hmm_vma_walk *hmm_vma_walk = walk->private;
151  	struct hmm_range *range = hmm_vma_walk->range;
152  	unsigned int required_fault;
153  	unsigned long i, npages;
154  	unsigned long *hmm_pfns;
155  
156  	i = (addr - range->start) >> PAGE_SHIFT;
157  	npages = (end - addr) >> PAGE_SHIFT;
158  	hmm_pfns = &range->hmm_pfns[i];
159  	required_fault =
160  		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
161  	if (!walk->vma) {
162  		if (required_fault)
163  			return -EFAULT;
164  		return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
165  	}
166  	if (required_fault)
167  		return hmm_vma_fault(addr, end, required_fault, walk);
168  	return hmm_pfns_fill(addr, end, range, 0);
169  }
170  
171  static inline unsigned long hmm_pfn_flags_order(unsigned long order)
172  {
173  	return order << HMM_PFN_ORDER_SHIFT;
174  }
175  
176  static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
177  						 pmd_t pmd)
178  {
179  	if (pmd_protnone(pmd))
180  		return 0;
181  	return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
182  				 HMM_PFN_VALID) |
183  	       hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
184  }
185  
186  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
187  static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
188  			      unsigned long end, unsigned long hmm_pfns[],
189  			      pmd_t pmd)
190  {
191  	struct hmm_vma_walk *hmm_vma_walk = walk->private;
192  	struct hmm_range *range = hmm_vma_walk->range;
193  	unsigned long pfn, npages, i;
194  	unsigned int required_fault;
195  	unsigned long cpu_flags;
196  
197  	npages = (end - addr) >> PAGE_SHIFT;
198  	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
199  	required_fault =
200  		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
201  	if (required_fault)
202  		return hmm_vma_fault(addr, end, required_fault, walk);
203  
204  	pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
205  	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
206  		hmm_pfns[i] = pfn | cpu_flags;
207  	return 0;
208  }
209  #else /* CONFIG_TRANSPARENT_HUGEPAGE */
210  /* stub to allow the code below to compile */
211  int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
212  		unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
213  #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
214  
215  static inline bool hmm_is_device_private_entry(struct hmm_range *range,
216  		swp_entry_t entry)
217  {
218  	return is_device_private_entry(entry) &&
219  		pfn_swap_entry_to_page(entry)->pgmap->owner ==
220  		range->dev_private_owner;
221  }
222  
223  static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
224  						 pte_t pte)
225  {
226  	if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
227  		return 0;
228  	return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
229  }
230  
231  static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
232  			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
233  			      unsigned long *hmm_pfn)
234  {
235  	struct hmm_vma_walk *hmm_vma_walk = walk->private;
236  	struct hmm_range *range = hmm_vma_walk->range;
237  	unsigned int required_fault;
238  	unsigned long cpu_flags;
239  	pte_t pte = *ptep;
240  	uint64_t pfn_req_flags = *hmm_pfn;
241  
242  	if (pte_none(pte)) {
243  		required_fault =
244  			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
245  		if (required_fault)
246  			goto fault;
247  		*hmm_pfn = 0;
248  		return 0;
249  	}
250  
251  	if (!pte_present(pte)) {
252  		swp_entry_t entry = pte_to_swp_entry(pte);
253  
254  		/*
255  		 * Never fault in device private pages, but just report
256  		 * the PFN even if not present.
257  		 */
258  		if (hmm_is_device_private_entry(range, entry)) {
259  			cpu_flags = HMM_PFN_VALID;
260  			if (is_writable_device_private_entry(entry))
261  				cpu_flags |= HMM_PFN_WRITE;
262  			*hmm_pfn = swp_offset(entry) | cpu_flags;
263  			return 0;
264  		}
265  
266  		required_fault =
267  			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
268  		if (!required_fault) {
269  			*hmm_pfn = 0;
270  			return 0;
271  		}
272  
273  		if (!non_swap_entry(entry))
274  			goto fault;
275  
276  		if (is_device_exclusive_entry(entry))
277  			goto fault;
278  
279  		if (is_migration_entry(entry)) {
280  			pte_unmap(ptep);
281  			hmm_vma_walk->last = addr;
282  			migration_entry_wait(walk->mm, pmdp, addr);
283  			return -EBUSY;
284  		}
285  
286  		/* Report error for everything else */
287  		pte_unmap(ptep);
288  		return -EFAULT;
289  	}
290  
291  	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
292  	required_fault =
293  		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
294  	if (required_fault)
295  		goto fault;
296  
297  	/*
298  	 * Since each architecture defines a struct page for the zero page, just
299  	 * fall through and treat it like a normal page.
300  	 */
301  	if (pte_special(pte) && !is_zero_pfn(pte_pfn(pte))) {
302  		if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
303  			pte_unmap(ptep);
304  			return -EFAULT;
305  		}
306  		*hmm_pfn = HMM_PFN_ERROR;
307  		return 0;
308  	}
309  
310  	*hmm_pfn = pte_pfn(pte) | cpu_flags;
311  	return 0;
312  
313  fault:
314  	pte_unmap(ptep);
315  	/* Fault any virtual address we were asked to fault */
316  	return hmm_vma_fault(addr, end, required_fault, walk);
317  }
318  
319  static int hmm_vma_walk_pmd(pmd_t *pmdp,
320  			    unsigned long start,
321  			    unsigned long end,
322  			    struct mm_walk *walk)
323  {
324  	struct hmm_vma_walk *hmm_vma_walk = walk->private;
325  	struct hmm_range *range = hmm_vma_walk->range;
326  	unsigned long *hmm_pfns =
327  		&range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
328  	unsigned long npages = (end - start) >> PAGE_SHIFT;
329  	unsigned long addr = start;
330  	pte_t *ptep;
331  	pmd_t pmd;
332  
333  again:
334  	pmd = READ_ONCE(*pmdp);
335  	if (pmd_none(pmd))
336  		return hmm_vma_walk_hole(start, end, -1, walk);
337  
338  	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
339  		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
340  			hmm_vma_walk->last = addr;
341  			pmd_migration_entry_wait(walk->mm, pmdp);
342  			return -EBUSY;
343  		}
344  		return hmm_pfns_fill(start, end, range, 0);
345  	}
346  
347  	if (!pmd_present(pmd)) {
348  		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
349  			return -EFAULT;
350  		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
351  	}
352  
353  	if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
354  		/*
355  		 * No need to take pmd_lock here, even if some other thread
356  		 * is splitting the huge pmd we will get that event through
357  		 * mmu_notifier callback.
358  		 *
359  		 * So just read pmd value and check again it's a transparent
360  		 * huge or device mapping one and compute corresponding pfn
361  		 * values.
362  		 */
363  		pmd = pmd_read_atomic(pmdp);
364  		barrier();
365  		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
366  			goto again;
367  
368  		return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
369  	}
370  
371  	/*
372  	 * We have handled all the valid cases above ie either none, migration,
373  	 * huge or transparent huge. At this point either it is a valid pmd
374  	 * entry pointing to pte directory or it is a bad pmd that will not
375  	 * recover.
376  	 */
377  	if (pmd_bad(pmd)) {
378  		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
379  			return -EFAULT;
380  		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
381  	}
382  
383  	ptep = pte_offset_map(pmdp, addr);
384  	for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
385  		int r;
386  
387  		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
388  		if (r) {
389  			/* hmm_vma_handle_pte() did pte_unmap() */
390  			return r;
391  		}
392  	}
393  	pte_unmap(ptep - 1);
394  	return 0;
395  }
396  
397  #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
398      defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
399  static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
400  						 pud_t pud)
401  {
402  	if (!pud_present(pud))
403  		return 0;
404  	return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
405  				 HMM_PFN_VALID) |
406  	       hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT);
407  }
408  
409  static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
410  		struct mm_walk *walk)
411  {
412  	struct hmm_vma_walk *hmm_vma_walk = walk->private;
413  	struct hmm_range *range = hmm_vma_walk->range;
414  	unsigned long addr = start;
415  	pud_t pud;
416  	int ret = 0;
417  	spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
418  
419  	if (!ptl)
420  		return 0;
421  
422  	/* Normally we don't want to split the huge page */
423  	walk->action = ACTION_CONTINUE;
424  
425  	pud = READ_ONCE(*pudp);
426  	if (pud_none(pud)) {
427  		spin_unlock(ptl);
428  		return hmm_vma_walk_hole(start, end, -1, walk);
429  	}
430  
431  	if (pud_huge(pud) && pud_devmap(pud)) {
432  		unsigned long i, npages, pfn;
433  		unsigned int required_fault;
434  		unsigned long *hmm_pfns;
435  		unsigned long cpu_flags;
436  
437  		if (!pud_present(pud)) {
438  			spin_unlock(ptl);
439  			return hmm_vma_walk_hole(start, end, -1, walk);
440  		}
441  
442  		i = (addr - range->start) >> PAGE_SHIFT;
443  		npages = (end - addr) >> PAGE_SHIFT;
444  		hmm_pfns = &range->hmm_pfns[i];
445  
446  		cpu_flags = pud_to_hmm_pfn_flags(range, pud);
447  		required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
448  						      npages, cpu_flags);
449  		if (required_fault) {
450  			spin_unlock(ptl);
451  			return hmm_vma_fault(addr, end, required_fault, walk);
452  		}
453  
454  		pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
455  		for (i = 0; i < npages; ++i, ++pfn)
456  			hmm_pfns[i] = pfn | cpu_flags;
457  		goto out_unlock;
458  	}
459  
460  	/* Ask for the PUD to be split */
461  	walk->action = ACTION_SUBTREE;
462  
463  out_unlock:
464  	spin_unlock(ptl);
465  	return ret;
466  }
467  #else
468  #define hmm_vma_walk_pud	NULL
469  #endif
470  
471  #ifdef CONFIG_HUGETLB_PAGE
472  static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
473  				      unsigned long start, unsigned long end,
474  				      struct mm_walk *walk)
475  {
476  	unsigned long addr = start, i, pfn;
477  	struct hmm_vma_walk *hmm_vma_walk = walk->private;
478  	struct hmm_range *range = hmm_vma_walk->range;
479  	struct vm_area_struct *vma = walk->vma;
480  	unsigned int required_fault;
481  	unsigned long pfn_req_flags;
482  	unsigned long cpu_flags;
483  	spinlock_t *ptl;
484  	pte_t entry;
485  
486  	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
487  	entry = huge_ptep_get(pte);
488  
489  	i = (start - range->start) >> PAGE_SHIFT;
490  	pfn_req_flags = range->hmm_pfns[i];
491  	cpu_flags = pte_to_hmm_pfn_flags(range, entry) |
492  		    hmm_pfn_flags_order(huge_page_order(hstate_vma(vma)));
493  	required_fault =
494  		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
495  	if (required_fault) {
496  		spin_unlock(ptl);
497  		return hmm_vma_fault(addr, end, required_fault, walk);
498  	}
499  
500  	pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
501  	for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
502  		range->hmm_pfns[i] = pfn | cpu_flags;
503  
504  	spin_unlock(ptl);
505  	return 0;
506  }
507  #else
508  #define hmm_vma_walk_hugetlb_entry NULL
509  #endif /* CONFIG_HUGETLB_PAGE */
510  
511  static int hmm_vma_walk_test(unsigned long start, unsigned long end,
512  			     struct mm_walk *walk)
513  {
514  	struct hmm_vma_walk *hmm_vma_walk = walk->private;
515  	struct hmm_range *range = hmm_vma_walk->range;
516  	struct vm_area_struct *vma = walk->vma;
517  
518  	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) &&
519  	    vma->vm_flags & VM_READ)
520  		return 0;
521  
522  	/*
523  	 * vma ranges that don't have struct page backing them or map I/O
524  	 * devices directly cannot be handled by hmm_range_fault().
525  	 *
526  	 * If the vma does not allow read access, then assume that it does not
527  	 * allow write access either. HMM does not support architectures that
528  	 * allow write without read.
529  	 *
530  	 * If a fault is requested for an unsupported range then it is a hard
531  	 * failure.
532  	 */
533  	if (hmm_range_need_fault(hmm_vma_walk,
534  				 range->hmm_pfns +
535  					 ((start - range->start) >> PAGE_SHIFT),
536  				 (end - start) >> PAGE_SHIFT, 0))
537  		return -EFAULT;
538  
539  	hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
540  
541  	/* Skip this vma and continue processing the next vma. */
542  	return 1;
543  }
544  
545  static const struct mm_walk_ops hmm_walk_ops = {
546  	.pud_entry	= hmm_vma_walk_pud,
547  	.pmd_entry	= hmm_vma_walk_pmd,
548  	.pte_hole	= hmm_vma_walk_hole,
549  	.hugetlb_entry	= hmm_vma_walk_hugetlb_entry,
550  	.test_walk	= hmm_vma_walk_test,
551  };
552  
553  /**
554   * hmm_range_fault - try to fault some address in a virtual address range
555   * @range:	argument structure
556   *
557   * Returns 0 on success or one of the following error codes:
558   *
559   * -EINVAL:	Invalid arguments or mm or virtual address is in an invalid vma
560   *		(e.g., device file vma).
561   * -ENOMEM:	Out of memory.
562   * -EPERM:	Invalid permission (e.g., asking for write and range is read
563   *		only).
564   * -EBUSY:	The range has been invalidated and the caller needs to wait for
565   *		the invalidation to finish.
566   * -EFAULT:     A page was requested to be valid and could not be made valid
567   *              ie it has no backing VMA or it is illegal to access
568   *
569   * This is similar to get_user_pages(), except that it can read the page tables
570   * without mutating them (ie causing faults).
571   */
572  int hmm_range_fault(struct hmm_range *range)
573  {
574  	struct hmm_vma_walk hmm_vma_walk = {
575  		.range = range,
576  		.last = range->start,
577  	};
578  	struct mm_struct *mm = range->notifier->mm;
579  	int ret;
580  
581  	mmap_assert_locked(mm);
582  
583  	do {
584  		/* If range is no longer valid force retry. */
585  		if (mmu_interval_check_retry(range->notifier,
586  					     range->notifier_seq))
587  			return -EBUSY;
588  		ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
589  				      &hmm_walk_ops, &hmm_vma_walk);
590  		/*
591  		 * When -EBUSY is returned the loop restarts with
592  		 * hmm_vma_walk.last set to an address that has not been stored
593  		 * in pfns. All entries < last in the pfn array are set to their
594  		 * output, and all >= are still at their input values.
595  		 */
596  	} while (ret == -EBUSY);
597  	return ret;
598  }
599  EXPORT_SYMBOL(hmm_range_fault);
600