1 /* 2 * Copyright 2013 Red Hat Inc. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * Authors: Jérôme Glisse <jglisse@redhat.com> 15 */ 16 /* 17 * Refer to include/linux/hmm.h for information about heterogeneous memory 18 * management or HMM for short. 19 */ 20 #include <linux/mm.h> 21 #include <linux/hmm.h> 22 #include <linux/init.h> 23 #include <linux/rmap.h> 24 #include <linux/swap.h> 25 #include <linux/slab.h> 26 #include <linux/sched.h> 27 #include <linux/mmzone.h> 28 #include <linux/pagemap.h> 29 #include <linux/swapops.h> 30 #include <linux/hugetlb.h> 31 #include <linux/memremap.h> 32 #include <linux/jump_label.h> 33 #include <linux/dma-mapping.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/memory_hotplug.h> 36 37 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT) 38 39 #if IS_ENABLED(CONFIG_HMM_MIRROR) 40 static const struct mmu_notifier_ops hmm_mmu_notifier_ops; 41 42 static inline struct hmm *mm_get_hmm(struct mm_struct *mm) 43 { 44 struct hmm *hmm = READ_ONCE(mm->hmm); 45 46 if (hmm && kref_get_unless_zero(&hmm->kref)) 47 return hmm; 48 49 return NULL; 50 } 51 52 /** 53 * hmm_get_or_create - register HMM against an mm (HMM internal) 54 * 55 * @mm: mm struct to attach to 56 * Returns: returns an HMM object, either by referencing the existing 57 * (per-process) object, or by creating a new one. 58 * 59 * This is not intended to be used directly by device drivers. If mm already 60 * has an HMM struct then it get a reference on it and returns it. Otherwise 61 * it allocates an HMM struct, initializes it, associate it with the mm and 62 * returns it. 63 */ 64 static struct hmm *hmm_get_or_create(struct mm_struct *mm) 65 { 66 struct hmm *hmm = mm_get_hmm(mm); 67 bool cleanup = false; 68 69 if (hmm) 70 return hmm; 71 72 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL); 73 if (!hmm) 74 return NULL; 75 init_waitqueue_head(&hmm->wq); 76 INIT_LIST_HEAD(&hmm->mirrors); 77 init_rwsem(&hmm->mirrors_sem); 78 hmm->mmu_notifier.ops = NULL; 79 INIT_LIST_HEAD(&hmm->ranges); 80 mutex_init(&hmm->lock); 81 kref_init(&hmm->kref); 82 hmm->notifiers = 0; 83 hmm->dead = false; 84 hmm->mm = mm; 85 86 spin_lock(&mm->page_table_lock); 87 if (!mm->hmm) 88 mm->hmm = hmm; 89 else 90 cleanup = true; 91 spin_unlock(&mm->page_table_lock); 92 93 if (cleanup) 94 goto error; 95 96 /* 97 * We should only get here if hold the mmap_sem in write mode ie on 98 * registration of first mirror through hmm_mirror_register() 99 */ 100 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops; 101 if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) 102 goto error_mm; 103 104 return hmm; 105 106 error_mm: 107 spin_lock(&mm->page_table_lock); 108 if (mm->hmm == hmm) 109 mm->hmm = NULL; 110 spin_unlock(&mm->page_table_lock); 111 error: 112 kfree(hmm); 113 return NULL; 114 } 115 116 static void hmm_free(struct kref *kref) 117 { 118 struct hmm *hmm = container_of(kref, struct hmm, kref); 119 struct mm_struct *mm = hmm->mm; 120 121 mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm); 122 123 spin_lock(&mm->page_table_lock); 124 if (mm->hmm == hmm) 125 mm->hmm = NULL; 126 spin_unlock(&mm->page_table_lock); 127 128 kfree(hmm); 129 } 130 131 static inline void hmm_put(struct hmm *hmm) 132 { 133 kref_put(&hmm->kref, hmm_free); 134 } 135 136 void hmm_mm_destroy(struct mm_struct *mm) 137 { 138 struct hmm *hmm; 139 140 spin_lock(&mm->page_table_lock); 141 hmm = mm_get_hmm(mm); 142 mm->hmm = NULL; 143 if (hmm) { 144 hmm->mm = NULL; 145 hmm->dead = true; 146 spin_unlock(&mm->page_table_lock); 147 hmm_put(hmm); 148 return; 149 } 150 151 spin_unlock(&mm->page_table_lock); 152 } 153 154 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm) 155 { 156 struct hmm *hmm = mm_get_hmm(mm); 157 struct hmm_mirror *mirror; 158 struct hmm_range *range; 159 160 /* Report this HMM as dying. */ 161 hmm->dead = true; 162 163 /* Wake-up everyone waiting on any range. */ 164 mutex_lock(&hmm->lock); 165 list_for_each_entry(range, &hmm->ranges, list) { 166 range->valid = false; 167 } 168 wake_up_all(&hmm->wq); 169 mutex_unlock(&hmm->lock); 170 171 down_write(&hmm->mirrors_sem); 172 mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror, 173 list); 174 while (mirror) { 175 list_del_init(&mirror->list); 176 if (mirror->ops->release) { 177 /* 178 * Drop mirrors_sem so callback can wait on any pending 179 * work that might itself trigger mmu_notifier callback 180 * and thus would deadlock with us. 181 */ 182 up_write(&hmm->mirrors_sem); 183 mirror->ops->release(mirror); 184 down_write(&hmm->mirrors_sem); 185 } 186 mirror = list_first_entry_or_null(&hmm->mirrors, 187 struct hmm_mirror, list); 188 } 189 up_write(&hmm->mirrors_sem); 190 191 hmm_put(hmm); 192 } 193 194 static int hmm_invalidate_range_start(struct mmu_notifier *mn, 195 const struct mmu_notifier_range *nrange) 196 { 197 struct hmm *hmm = mm_get_hmm(nrange->mm); 198 struct hmm_mirror *mirror; 199 struct hmm_update update; 200 struct hmm_range *range; 201 int ret = 0; 202 203 VM_BUG_ON(!hmm); 204 205 update.start = nrange->start; 206 update.end = nrange->end; 207 update.event = HMM_UPDATE_INVALIDATE; 208 update.blockable = mmu_notifier_range_blockable(nrange); 209 210 if (mmu_notifier_range_blockable(nrange)) 211 mutex_lock(&hmm->lock); 212 else if (!mutex_trylock(&hmm->lock)) { 213 ret = -EAGAIN; 214 goto out; 215 } 216 hmm->notifiers++; 217 list_for_each_entry(range, &hmm->ranges, list) { 218 if (update.end < range->start || update.start >= range->end) 219 continue; 220 221 range->valid = false; 222 } 223 mutex_unlock(&hmm->lock); 224 225 if (mmu_notifier_range_blockable(nrange)) 226 down_read(&hmm->mirrors_sem); 227 else if (!down_read_trylock(&hmm->mirrors_sem)) { 228 ret = -EAGAIN; 229 goto out; 230 } 231 list_for_each_entry(mirror, &hmm->mirrors, list) { 232 int ret; 233 234 ret = mirror->ops->sync_cpu_device_pagetables(mirror, &update); 235 if (!update.blockable && ret == -EAGAIN) { 236 up_read(&hmm->mirrors_sem); 237 ret = -EAGAIN; 238 goto out; 239 } 240 } 241 up_read(&hmm->mirrors_sem); 242 243 out: 244 hmm_put(hmm); 245 return ret; 246 } 247 248 static void hmm_invalidate_range_end(struct mmu_notifier *mn, 249 const struct mmu_notifier_range *nrange) 250 { 251 struct hmm *hmm = mm_get_hmm(nrange->mm); 252 253 VM_BUG_ON(!hmm); 254 255 mutex_lock(&hmm->lock); 256 hmm->notifiers--; 257 if (!hmm->notifiers) { 258 struct hmm_range *range; 259 260 list_for_each_entry(range, &hmm->ranges, list) { 261 if (range->valid) 262 continue; 263 range->valid = true; 264 } 265 wake_up_all(&hmm->wq); 266 } 267 mutex_unlock(&hmm->lock); 268 269 hmm_put(hmm); 270 } 271 272 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = { 273 .release = hmm_release, 274 .invalidate_range_start = hmm_invalidate_range_start, 275 .invalidate_range_end = hmm_invalidate_range_end, 276 }; 277 278 /* 279 * hmm_mirror_register() - register a mirror against an mm 280 * 281 * @mirror: new mirror struct to register 282 * @mm: mm to register against 283 * 284 * To start mirroring a process address space, the device driver must register 285 * an HMM mirror struct. 286 * 287 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE ! 288 */ 289 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm) 290 { 291 /* Sanity check */ 292 if (!mm || !mirror || !mirror->ops) 293 return -EINVAL; 294 295 mirror->hmm = hmm_get_or_create(mm); 296 if (!mirror->hmm) 297 return -ENOMEM; 298 299 down_write(&mirror->hmm->mirrors_sem); 300 list_add(&mirror->list, &mirror->hmm->mirrors); 301 up_write(&mirror->hmm->mirrors_sem); 302 303 return 0; 304 } 305 EXPORT_SYMBOL(hmm_mirror_register); 306 307 /* 308 * hmm_mirror_unregister() - unregister a mirror 309 * 310 * @mirror: new mirror struct to register 311 * 312 * Stop mirroring a process address space, and cleanup. 313 */ 314 void hmm_mirror_unregister(struct hmm_mirror *mirror) 315 { 316 struct hmm *hmm = READ_ONCE(mirror->hmm); 317 318 if (hmm == NULL) 319 return; 320 321 down_write(&hmm->mirrors_sem); 322 list_del_init(&mirror->list); 323 /* To protect us against double unregister ... */ 324 mirror->hmm = NULL; 325 up_write(&hmm->mirrors_sem); 326 327 hmm_put(hmm); 328 } 329 EXPORT_SYMBOL(hmm_mirror_unregister); 330 331 struct hmm_vma_walk { 332 struct hmm_range *range; 333 struct dev_pagemap *pgmap; 334 unsigned long last; 335 bool fault; 336 bool block; 337 }; 338 339 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr, 340 bool write_fault, uint64_t *pfn) 341 { 342 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE; 343 struct hmm_vma_walk *hmm_vma_walk = walk->private; 344 struct hmm_range *range = hmm_vma_walk->range; 345 struct vm_area_struct *vma = walk->vma; 346 vm_fault_t ret; 347 348 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY; 349 flags |= write_fault ? FAULT_FLAG_WRITE : 0; 350 ret = handle_mm_fault(vma, addr, flags); 351 if (ret & VM_FAULT_RETRY) 352 return -EAGAIN; 353 if (ret & VM_FAULT_ERROR) { 354 *pfn = range->values[HMM_PFN_ERROR]; 355 return -EFAULT; 356 } 357 358 return -EBUSY; 359 } 360 361 static int hmm_pfns_bad(unsigned long addr, 362 unsigned long end, 363 struct mm_walk *walk) 364 { 365 struct hmm_vma_walk *hmm_vma_walk = walk->private; 366 struct hmm_range *range = hmm_vma_walk->range; 367 uint64_t *pfns = range->pfns; 368 unsigned long i; 369 370 i = (addr - range->start) >> PAGE_SHIFT; 371 for (; addr < end; addr += PAGE_SIZE, i++) 372 pfns[i] = range->values[HMM_PFN_ERROR]; 373 374 return 0; 375 } 376 377 /* 378 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s) 379 * @start: range virtual start address (inclusive) 380 * @end: range virtual end address (exclusive) 381 * @fault: should we fault or not ? 382 * @write_fault: write fault ? 383 * @walk: mm_walk structure 384 * Returns: 0 on success, -EBUSY after page fault, or page fault error 385 * 386 * This function will be called whenever pmd_none() or pte_none() returns true, 387 * or whenever there is no page directory covering the virtual address range. 388 */ 389 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end, 390 bool fault, bool write_fault, 391 struct mm_walk *walk) 392 { 393 struct hmm_vma_walk *hmm_vma_walk = walk->private; 394 struct hmm_range *range = hmm_vma_walk->range; 395 uint64_t *pfns = range->pfns; 396 unsigned long i, page_size; 397 398 hmm_vma_walk->last = addr; 399 page_size = hmm_range_page_size(range); 400 i = (addr - range->start) >> range->page_shift; 401 402 for (; addr < end; addr += page_size, i++) { 403 pfns[i] = range->values[HMM_PFN_NONE]; 404 if (fault || write_fault) { 405 int ret; 406 407 ret = hmm_vma_do_fault(walk, addr, write_fault, 408 &pfns[i]); 409 if (ret != -EBUSY) 410 return ret; 411 } 412 } 413 414 return (fault || write_fault) ? -EBUSY : 0; 415 } 416 417 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk, 418 uint64_t pfns, uint64_t cpu_flags, 419 bool *fault, bool *write_fault) 420 { 421 struct hmm_range *range = hmm_vma_walk->range; 422 423 if (!hmm_vma_walk->fault) 424 return; 425 426 /* 427 * So we not only consider the individual per page request we also 428 * consider the default flags requested for the range. The API can 429 * be use in 2 fashions. The first one where the HMM user coalesce 430 * multiple page fault into one request and set flags per pfns for 431 * of those faults. The second one where the HMM user want to pre- 432 * fault a range with specific flags. For the latter one it is a 433 * waste to have the user pre-fill the pfn arrays with a default 434 * flags value. 435 */ 436 pfns = (pfns & range->pfn_flags_mask) | range->default_flags; 437 438 /* We aren't ask to do anything ... */ 439 if (!(pfns & range->flags[HMM_PFN_VALID])) 440 return; 441 /* If this is device memory than only fault if explicitly requested */ 442 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) { 443 /* Do we fault on device memory ? */ 444 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) { 445 *write_fault = pfns & range->flags[HMM_PFN_WRITE]; 446 *fault = true; 447 } 448 return; 449 } 450 451 /* If CPU page table is not valid then we need to fault */ 452 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]); 453 /* Need to write fault ? */ 454 if ((pfns & range->flags[HMM_PFN_WRITE]) && 455 !(cpu_flags & range->flags[HMM_PFN_WRITE])) { 456 *write_fault = true; 457 *fault = true; 458 } 459 } 460 461 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk, 462 const uint64_t *pfns, unsigned long npages, 463 uint64_t cpu_flags, bool *fault, 464 bool *write_fault) 465 { 466 unsigned long i; 467 468 if (!hmm_vma_walk->fault) { 469 *fault = *write_fault = false; 470 return; 471 } 472 473 *fault = *write_fault = false; 474 for (i = 0; i < npages; ++i) { 475 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags, 476 fault, write_fault); 477 if ((*write_fault)) 478 return; 479 } 480 } 481 482 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end, 483 struct mm_walk *walk) 484 { 485 struct hmm_vma_walk *hmm_vma_walk = walk->private; 486 struct hmm_range *range = hmm_vma_walk->range; 487 bool fault, write_fault; 488 unsigned long i, npages; 489 uint64_t *pfns; 490 491 i = (addr - range->start) >> PAGE_SHIFT; 492 npages = (end - addr) >> PAGE_SHIFT; 493 pfns = &range->pfns[i]; 494 hmm_range_need_fault(hmm_vma_walk, pfns, npages, 495 0, &fault, &write_fault); 496 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); 497 } 498 499 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd) 500 { 501 if (pmd_protnone(pmd)) 502 return 0; 503 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] | 504 range->flags[HMM_PFN_WRITE] : 505 range->flags[HMM_PFN_VALID]; 506 } 507 508 static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud) 509 { 510 if (!pud_present(pud)) 511 return 0; 512 return pud_write(pud) ? range->flags[HMM_PFN_VALID] | 513 range->flags[HMM_PFN_WRITE] : 514 range->flags[HMM_PFN_VALID]; 515 } 516 517 static int hmm_vma_handle_pmd(struct mm_walk *walk, 518 unsigned long addr, 519 unsigned long end, 520 uint64_t *pfns, 521 pmd_t pmd) 522 { 523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 524 struct hmm_vma_walk *hmm_vma_walk = walk->private; 525 struct hmm_range *range = hmm_vma_walk->range; 526 unsigned long pfn, npages, i; 527 bool fault, write_fault; 528 uint64_t cpu_flags; 529 530 npages = (end - addr) >> PAGE_SHIFT; 531 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd); 532 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags, 533 &fault, &write_fault); 534 535 if (pmd_protnone(pmd) || fault || write_fault) 536 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); 537 538 pfn = pmd_pfn(pmd) + pte_index(addr); 539 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) { 540 if (pmd_devmap(pmd)) { 541 hmm_vma_walk->pgmap = get_dev_pagemap(pfn, 542 hmm_vma_walk->pgmap); 543 if (unlikely(!hmm_vma_walk->pgmap)) 544 return -EBUSY; 545 } 546 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags; 547 } 548 if (hmm_vma_walk->pgmap) { 549 put_dev_pagemap(hmm_vma_walk->pgmap); 550 hmm_vma_walk->pgmap = NULL; 551 } 552 hmm_vma_walk->last = end; 553 return 0; 554 #else 555 /* If THP is not enabled then we should never reach that code ! */ 556 return -EINVAL; 557 #endif 558 } 559 560 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte) 561 { 562 if (pte_none(pte) || !pte_present(pte)) 563 return 0; 564 return pte_write(pte) ? range->flags[HMM_PFN_VALID] | 565 range->flags[HMM_PFN_WRITE] : 566 range->flags[HMM_PFN_VALID]; 567 } 568 569 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr, 570 unsigned long end, pmd_t *pmdp, pte_t *ptep, 571 uint64_t *pfn) 572 { 573 struct hmm_vma_walk *hmm_vma_walk = walk->private; 574 struct hmm_range *range = hmm_vma_walk->range; 575 struct vm_area_struct *vma = walk->vma; 576 bool fault, write_fault; 577 uint64_t cpu_flags; 578 pte_t pte = *ptep; 579 uint64_t orig_pfn = *pfn; 580 581 *pfn = range->values[HMM_PFN_NONE]; 582 fault = write_fault = false; 583 584 if (pte_none(pte)) { 585 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0, 586 &fault, &write_fault); 587 if (fault || write_fault) 588 goto fault; 589 return 0; 590 } 591 592 if (!pte_present(pte)) { 593 swp_entry_t entry = pte_to_swp_entry(pte); 594 595 if (!non_swap_entry(entry)) { 596 if (fault || write_fault) 597 goto fault; 598 return 0; 599 } 600 601 /* 602 * This is a special swap entry, ignore migration, use 603 * device and report anything else as error. 604 */ 605 if (is_device_private_entry(entry)) { 606 cpu_flags = range->flags[HMM_PFN_VALID] | 607 range->flags[HMM_PFN_DEVICE_PRIVATE]; 608 cpu_flags |= is_write_device_private_entry(entry) ? 609 range->flags[HMM_PFN_WRITE] : 0; 610 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, 611 &fault, &write_fault); 612 if (fault || write_fault) 613 goto fault; 614 *pfn = hmm_device_entry_from_pfn(range, 615 swp_offset(entry)); 616 *pfn |= cpu_flags; 617 return 0; 618 } 619 620 if (is_migration_entry(entry)) { 621 if (fault || write_fault) { 622 pte_unmap(ptep); 623 hmm_vma_walk->last = addr; 624 migration_entry_wait(vma->vm_mm, 625 pmdp, addr); 626 return -EBUSY; 627 } 628 return 0; 629 } 630 631 /* Report error for everything else */ 632 *pfn = range->values[HMM_PFN_ERROR]; 633 return -EFAULT; 634 } else { 635 cpu_flags = pte_to_hmm_pfn_flags(range, pte); 636 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, 637 &fault, &write_fault); 638 } 639 640 if (fault || write_fault) 641 goto fault; 642 643 if (pte_devmap(pte)) { 644 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte), 645 hmm_vma_walk->pgmap); 646 if (unlikely(!hmm_vma_walk->pgmap)) 647 return -EBUSY; 648 } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) { 649 *pfn = range->values[HMM_PFN_SPECIAL]; 650 return -EFAULT; 651 } 652 653 *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags; 654 return 0; 655 656 fault: 657 if (hmm_vma_walk->pgmap) { 658 put_dev_pagemap(hmm_vma_walk->pgmap); 659 hmm_vma_walk->pgmap = NULL; 660 } 661 pte_unmap(ptep); 662 /* Fault any virtual address we were asked to fault */ 663 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); 664 } 665 666 static int hmm_vma_walk_pmd(pmd_t *pmdp, 667 unsigned long start, 668 unsigned long end, 669 struct mm_walk *walk) 670 { 671 struct hmm_vma_walk *hmm_vma_walk = walk->private; 672 struct hmm_range *range = hmm_vma_walk->range; 673 struct vm_area_struct *vma = walk->vma; 674 uint64_t *pfns = range->pfns; 675 unsigned long addr = start, i; 676 pte_t *ptep; 677 pmd_t pmd; 678 679 680 again: 681 pmd = READ_ONCE(*pmdp); 682 if (pmd_none(pmd)) 683 return hmm_vma_walk_hole(start, end, walk); 684 685 if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB)) 686 return hmm_pfns_bad(start, end, walk); 687 688 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) { 689 bool fault, write_fault; 690 unsigned long npages; 691 uint64_t *pfns; 692 693 i = (addr - range->start) >> PAGE_SHIFT; 694 npages = (end - addr) >> PAGE_SHIFT; 695 pfns = &range->pfns[i]; 696 697 hmm_range_need_fault(hmm_vma_walk, pfns, npages, 698 0, &fault, &write_fault); 699 if (fault || write_fault) { 700 hmm_vma_walk->last = addr; 701 pmd_migration_entry_wait(vma->vm_mm, pmdp); 702 return -EBUSY; 703 } 704 return 0; 705 } else if (!pmd_present(pmd)) 706 return hmm_pfns_bad(start, end, walk); 707 708 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) { 709 /* 710 * No need to take pmd_lock here, even if some other threads 711 * is splitting the huge pmd we will get that event through 712 * mmu_notifier callback. 713 * 714 * So just read pmd value and check again its a transparent 715 * huge or device mapping one and compute corresponding pfn 716 * values. 717 */ 718 pmd = pmd_read_atomic(pmdp); 719 barrier(); 720 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd)) 721 goto again; 722 723 i = (addr - range->start) >> PAGE_SHIFT; 724 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd); 725 } 726 727 /* 728 * We have handled all the valid case above ie either none, migration, 729 * huge or transparent huge. At this point either it is a valid pmd 730 * entry pointing to pte directory or it is a bad pmd that will not 731 * recover. 732 */ 733 if (pmd_bad(pmd)) 734 return hmm_pfns_bad(start, end, walk); 735 736 ptep = pte_offset_map(pmdp, addr); 737 i = (addr - range->start) >> PAGE_SHIFT; 738 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) { 739 int r; 740 741 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]); 742 if (r) { 743 /* hmm_vma_handle_pte() did unmap pte directory */ 744 hmm_vma_walk->last = addr; 745 return r; 746 } 747 } 748 if (hmm_vma_walk->pgmap) { 749 /* 750 * We do put_dev_pagemap() here and not in hmm_vma_handle_pte() 751 * so that we can leverage get_dev_pagemap() optimization which 752 * will not re-take a reference on a pgmap if we already have 753 * one. 754 */ 755 put_dev_pagemap(hmm_vma_walk->pgmap); 756 hmm_vma_walk->pgmap = NULL; 757 } 758 pte_unmap(ptep - 1); 759 760 hmm_vma_walk->last = addr; 761 return 0; 762 } 763 764 static int hmm_vma_walk_pud(pud_t *pudp, 765 unsigned long start, 766 unsigned long end, 767 struct mm_walk *walk) 768 { 769 struct hmm_vma_walk *hmm_vma_walk = walk->private; 770 struct hmm_range *range = hmm_vma_walk->range; 771 unsigned long addr = start, next; 772 pmd_t *pmdp; 773 pud_t pud; 774 int ret; 775 776 again: 777 pud = READ_ONCE(*pudp); 778 if (pud_none(pud)) 779 return hmm_vma_walk_hole(start, end, walk); 780 781 if (pud_huge(pud) && pud_devmap(pud)) { 782 unsigned long i, npages, pfn; 783 uint64_t *pfns, cpu_flags; 784 bool fault, write_fault; 785 786 if (!pud_present(pud)) 787 return hmm_vma_walk_hole(start, end, walk); 788 789 i = (addr - range->start) >> PAGE_SHIFT; 790 npages = (end - addr) >> PAGE_SHIFT; 791 pfns = &range->pfns[i]; 792 793 cpu_flags = pud_to_hmm_pfn_flags(range, pud); 794 hmm_range_need_fault(hmm_vma_walk, pfns, npages, 795 cpu_flags, &fault, &write_fault); 796 if (fault || write_fault) 797 return hmm_vma_walk_hole_(addr, end, fault, 798 write_fault, walk); 799 800 #ifdef CONFIG_HUGETLB_PAGE 801 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 802 for (i = 0; i < npages; ++i, ++pfn) { 803 hmm_vma_walk->pgmap = get_dev_pagemap(pfn, 804 hmm_vma_walk->pgmap); 805 if (unlikely(!hmm_vma_walk->pgmap)) 806 return -EBUSY; 807 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | 808 cpu_flags; 809 } 810 if (hmm_vma_walk->pgmap) { 811 put_dev_pagemap(hmm_vma_walk->pgmap); 812 hmm_vma_walk->pgmap = NULL; 813 } 814 hmm_vma_walk->last = end; 815 return 0; 816 #else 817 return -EINVAL; 818 #endif 819 } 820 821 split_huge_pud(walk->vma, pudp, addr); 822 if (pud_none(*pudp)) 823 goto again; 824 825 pmdp = pmd_offset(pudp, addr); 826 do { 827 next = pmd_addr_end(addr, end); 828 ret = hmm_vma_walk_pmd(pmdp, addr, next, walk); 829 if (ret) 830 return ret; 831 } while (pmdp++, addr = next, addr != end); 832 833 return 0; 834 } 835 836 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask, 837 unsigned long start, unsigned long end, 838 struct mm_walk *walk) 839 { 840 #ifdef CONFIG_HUGETLB_PAGE 841 unsigned long addr = start, i, pfn, mask, size, pfn_inc; 842 struct hmm_vma_walk *hmm_vma_walk = walk->private; 843 struct hmm_range *range = hmm_vma_walk->range; 844 struct vm_area_struct *vma = walk->vma; 845 struct hstate *h = hstate_vma(vma); 846 uint64_t orig_pfn, cpu_flags; 847 bool fault, write_fault; 848 spinlock_t *ptl; 849 pte_t entry; 850 int ret = 0; 851 852 size = 1UL << huge_page_shift(h); 853 mask = size - 1; 854 if (range->page_shift != PAGE_SHIFT) { 855 /* Make sure we are looking at full page. */ 856 if (start & mask) 857 return -EINVAL; 858 if (end < (start + size)) 859 return -EINVAL; 860 pfn_inc = size >> PAGE_SHIFT; 861 } else { 862 pfn_inc = 1; 863 size = PAGE_SIZE; 864 } 865 866 867 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte); 868 entry = huge_ptep_get(pte); 869 870 i = (start - range->start) >> range->page_shift; 871 orig_pfn = range->pfns[i]; 872 range->pfns[i] = range->values[HMM_PFN_NONE]; 873 cpu_flags = pte_to_hmm_pfn_flags(range, entry); 874 fault = write_fault = false; 875 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags, 876 &fault, &write_fault); 877 if (fault || write_fault) { 878 ret = -ENOENT; 879 goto unlock; 880 } 881 882 pfn = pte_pfn(entry) + ((start & mask) >> range->page_shift); 883 for (; addr < end; addr += size, i++, pfn += pfn_inc) 884 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) | 885 cpu_flags; 886 hmm_vma_walk->last = end; 887 888 unlock: 889 spin_unlock(ptl); 890 891 if (ret == -ENOENT) 892 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk); 893 894 return ret; 895 #else /* CONFIG_HUGETLB_PAGE */ 896 return -EINVAL; 897 #endif 898 } 899 900 static void hmm_pfns_clear(struct hmm_range *range, 901 uint64_t *pfns, 902 unsigned long addr, 903 unsigned long end) 904 { 905 for (; addr < end; addr += PAGE_SIZE, pfns++) 906 *pfns = range->values[HMM_PFN_NONE]; 907 } 908 909 /* 910 * hmm_range_register() - start tracking change to CPU page table over a range 911 * @range: range 912 * @mm: the mm struct for the range of virtual address 913 * @start: start virtual address (inclusive) 914 * @end: end virtual address (exclusive) 915 * @page_shift: expect page shift for the range 916 * Returns 0 on success, -EFAULT if the address space is no longer valid 917 * 918 * Track updates to the CPU page table see include/linux/hmm.h 919 */ 920 int hmm_range_register(struct hmm_range *range, 921 struct mm_struct *mm, 922 unsigned long start, 923 unsigned long end, 924 unsigned page_shift) 925 { 926 unsigned long mask = ((1UL << page_shift) - 1UL); 927 928 range->valid = false; 929 range->hmm = NULL; 930 931 if ((start & mask) || (end & mask)) 932 return -EINVAL; 933 if (start >= end) 934 return -EINVAL; 935 936 range->page_shift = page_shift; 937 range->start = start; 938 range->end = end; 939 940 range->hmm = hmm_get_or_create(mm); 941 if (!range->hmm) 942 return -EFAULT; 943 944 /* Check if hmm_mm_destroy() was call. */ 945 if (range->hmm->mm == NULL || range->hmm->dead) { 946 hmm_put(range->hmm); 947 return -EFAULT; 948 } 949 950 /* Initialize range to track CPU page table update */ 951 mutex_lock(&range->hmm->lock); 952 953 list_add_rcu(&range->list, &range->hmm->ranges); 954 955 /* 956 * If there are any concurrent notifiers we have to wait for them for 957 * the range to be valid (see hmm_range_wait_until_valid()). 958 */ 959 if (!range->hmm->notifiers) 960 range->valid = true; 961 mutex_unlock(&range->hmm->lock); 962 963 return 0; 964 } 965 EXPORT_SYMBOL(hmm_range_register); 966 967 /* 968 * hmm_range_unregister() - stop tracking change to CPU page table over a range 969 * @range: range 970 * 971 * Range struct is used to track updates to the CPU page table after a call to 972 * hmm_range_register(). See include/linux/hmm.h for how to use it. 973 */ 974 void hmm_range_unregister(struct hmm_range *range) 975 { 976 /* Sanity check this really should not happen. */ 977 if (range->hmm == NULL || range->end <= range->start) 978 return; 979 980 mutex_lock(&range->hmm->lock); 981 list_del_rcu(&range->list); 982 mutex_unlock(&range->hmm->lock); 983 984 /* Drop reference taken by hmm_range_register() */ 985 range->valid = false; 986 hmm_put(range->hmm); 987 range->hmm = NULL; 988 } 989 EXPORT_SYMBOL(hmm_range_unregister); 990 991 /* 992 * hmm_range_snapshot() - snapshot CPU page table for a range 993 * @range: range 994 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid 995 * permission (for instance asking for write and range is read only), 996 * -EAGAIN if you need to retry, -EFAULT invalid (ie either no valid 997 * vma or it is illegal to access that range), number of valid pages 998 * in range->pfns[] (from range start address). 999 * 1000 * This snapshots the CPU page table for a range of virtual addresses. Snapshot 1001 * validity is tracked by range struct. See in include/linux/hmm.h for example 1002 * on how to use. 1003 */ 1004 long hmm_range_snapshot(struct hmm_range *range) 1005 { 1006 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP; 1007 unsigned long start = range->start, end; 1008 struct hmm_vma_walk hmm_vma_walk; 1009 struct hmm *hmm = range->hmm; 1010 struct vm_area_struct *vma; 1011 struct mm_walk mm_walk; 1012 1013 /* Check if hmm_mm_destroy() was call. */ 1014 if (hmm->mm == NULL || hmm->dead) 1015 return -EFAULT; 1016 1017 do { 1018 /* If range is no longer valid force retry. */ 1019 if (!range->valid) 1020 return -EAGAIN; 1021 1022 vma = find_vma(hmm->mm, start); 1023 if (vma == NULL || (vma->vm_flags & device_vma)) 1024 return -EFAULT; 1025 1026 if (is_vm_hugetlb_page(vma)) { 1027 struct hstate *h = hstate_vma(vma); 1028 1029 if (huge_page_shift(h) != range->page_shift && 1030 range->page_shift != PAGE_SHIFT) 1031 return -EINVAL; 1032 } else { 1033 if (range->page_shift != PAGE_SHIFT) 1034 return -EINVAL; 1035 } 1036 1037 if (!(vma->vm_flags & VM_READ)) { 1038 /* 1039 * If vma do not allow read access, then assume that it 1040 * does not allow write access, either. HMM does not 1041 * support architecture that allow write without read. 1042 */ 1043 hmm_pfns_clear(range, range->pfns, 1044 range->start, range->end); 1045 return -EPERM; 1046 } 1047 1048 range->vma = vma; 1049 hmm_vma_walk.pgmap = NULL; 1050 hmm_vma_walk.last = start; 1051 hmm_vma_walk.fault = false; 1052 hmm_vma_walk.range = range; 1053 mm_walk.private = &hmm_vma_walk; 1054 end = min(range->end, vma->vm_end); 1055 1056 mm_walk.vma = vma; 1057 mm_walk.mm = vma->vm_mm; 1058 mm_walk.pte_entry = NULL; 1059 mm_walk.test_walk = NULL; 1060 mm_walk.hugetlb_entry = NULL; 1061 mm_walk.pud_entry = hmm_vma_walk_pud; 1062 mm_walk.pmd_entry = hmm_vma_walk_pmd; 1063 mm_walk.pte_hole = hmm_vma_walk_hole; 1064 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry; 1065 1066 walk_page_range(start, end, &mm_walk); 1067 start = end; 1068 } while (start < range->end); 1069 1070 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT; 1071 } 1072 EXPORT_SYMBOL(hmm_range_snapshot); 1073 1074 /* 1075 * hmm_range_fault() - try to fault some address in a virtual address range 1076 * @range: range being faulted 1077 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem) 1078 * Returns: number of valid pages in range->pfns[] (from range start 1079 * address). This may be zero. If the return value is negative, 1080 * then one of the following values may be returned: 1081 * 1082 * -EINVAL invalid arguments or mm or virtual address are in an 1083 * invalid vma (for instance device file vma). 1084 * -ENOMEM: Out of memory. 1085 * -EPERM: Invalid permission (for instance asking for write and 1086 * range is read only). 1087 * -EAGAIN: If you need to retry and mmap_sem was drop. This can only 1088 * happens if block argument is false. 1089 * -EBUSY: If the the range is being invalidated and you should wait 1090 * for invalidation to finish. 1091 * -EFAULT: Invalid (ie either no valid vma or it is illegal to access 1092 * that range), number of valid pages in range->pfns[] (from 1093 * range start address). 1094 * 1095 * This is similar to a regular CPU page fault except that it will not trigger 1096 * any memory migration if the memory being faulted is not accessible by CPUs 1097 * and caller does not ask for migration. 1098 * 1099 * On error, for one virtual address in the range, the function will mark the 1100 * corresponding HMM pfn entry with an error flag. 1101 */ 1102 long hmm_range_fault(struct hmm_range *range, bool block) 1103 { 1104 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP; 1105 unsigned long start = range->start, end; 1106 struct hmm_vma_walk hmm_vma_walk; 1107 struct hmm *hmm = range->hmm; 1108 struct vm_area_struct *vma; 1109 struct mm_walk mm_walk; 1110 int ret; 1111 1112 /* Check if hmm_mm_destroy() was call. */ 1113 if (hmm->mm == NULL || hmm->dead) 1114 return -EFAULT; 1115 1116 do { 1117 /* If range is no longer valid force retry. */ 1118 if (!range->valid) { 1119 up_read(&hmm->mm->mmap_sem); 1120 return -EAGAIN; 1121 } 1122 1123 vma = find_vma(hmm->mm, start); 1124 if (vma == NULL || (vma->vm_flags & device_vma)) 1125 return -EFAULT; 1126 1127 if (is_vm_hugetlb_page(vma)) { 1128 if (huge_page_shift(hstate_vma(vma)) != 1129 range->page_shift && 1130 range->page_shift != PAGE_SHIFT) 1131 return -EINVAL; 1132 } else { 1133 if (range->page_shift != PAGE_SHIFT) 1134 return -EINVAL; 1135 } 1136 1137 if (!(vma->vm_flags & VM_READ)) { 1138 /* 1139 * If vma do not allow read access, then assume that it 1140 * does not allow write access, either. HMM does not 1141 * support architecture that allow write without read. 1142 */ 1143 hmm_pfns_clear(range, range->pfns, 1144 range->start, range->end); 1145 return -EPERM; 1146 } 1147 1148 range->vma = vma; 1149 hmm_vma_walk.pgmap = NULL; 1150 hmm_vma_walk.last = start; 1151 hmm_vma_walk.fault = true; 1152 hmm_vma_walk.block = block; 1153 hmm_vma_walk.range = range; 1154 mm_walk.private = &hmm_vma_walk; 1155 end = min(range->end, vma->vm_end); 1156 1157 mm_walk.vma = vma; 1158 mm_walk.mm = vma->vm_mm; 1159 mm_walk.pte_entry = NULL; 1160 mm_walk.test_walk = NULL; 1161 mm_walk.hugetlb_entry = NULL; 1162 mm_walk.pud_entry = hmm_vma_walk_pud; 1163 mm_walk.pmd_entry = hmm_vma_walk_pmd; 1164 mm_walk.pte_hole = hmm_vma_walk_hole; 1165 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry; 1166 1167 do { 1168 ret = walk_page_range(start, end, &mm_walk); 1169 start = hmm_vma_walk.last; 1170 1171 /* Keep trying while the range is valid. */ 1172 } while (ret == -EBUSY && range->valid); 1173 1174 if (ret) { 1175 unsigned long i; 1176 1177 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT; 1178 hmm_pfns_clear(range, &range->pfns[i], 1179 hmm_vma_walk.last, range->end); 1180 return ret; 1181 } 1182 start = end; 1183 1184 } while (start < range->end); 1185 1186 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT; 1187 } 1188 EXPORT_SYMBOL(hmm_range_fault); 1189 1190 /** 1191 * hmm_range_dma_map() - hmm_range_fault() and dma map page all in one. 1192 * @range: range being faulted 1193 * @device: device against to dma map page to 1194 * @daddrs: dma address of mapped pages 1195 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem) 1196 * Returns: number of pages mapped on success, -EAGAIN if mmap_sem have been 1197 * drop and you need to try again, some other error value otherwise 1198 * 1199 * Note same usage pattern as hmm_range_fault(). 1200 */ 1201 long hmm_range_dma_map(struct hmm_range *range, 1202 struct device *device, 1203 dma_addr_t *daddrs, 1204 bool block) 1205 { 1206 unsigned long i, npages, mapped; 1207 long ret; 1208 1209 ret = hmm_range_fault(range, block); 1210 if (ret <= 0) 1211 return ret ? ret : -EBUSY; 1212 1213 npages = (range->end - range->start) >> PAGE_SHIFT; 1214 for (i = 0, mapped = 0; i < npages; ++i) { 1215 enum dma_data_direction dir = DMA_TO_DEVICE; 1216 struct page *page; 1217 1218 /* 1219 * FIXME need to update DMA API to provide invalid DMA address 1220 * value instead of a function to test dma address value. This 1221 * would remove lot of dumb code duplicated accross many arch. 1222 * 1223 * For now setting it to 0 here is good enough as the pfns[] 1224 * value is what is use to check what is valid and what isn't. 1225 */ 1226 daddrs[i] = 0; 1227 1228 page = hmm_device_entry_to_page(range, range->pfns[i]); 1229 if (page == NULL) 1230 continue; 1231 1232 /* Check if range is being invalidated */ 1233 if (!range->valid) { 1234 ret = -EBUSY; 1235 goto unmap; 1236 } 1237 1238 /* If it is read and write than map bi-directional. */ 1239 if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) 1240 dir = DMA_BIDIRECTIONAL; 1241 1242 daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir); 1243 if (dma_mapping_error(device, daddrs[i])) { 1244 ret = -EFAULT; 1245 goto unmap; 1246 } 1247 1248 mapped++; 1249 } 1250 1251 return mapped; 1252 1253 unmap: 1254 for (npages = i, i = 0; (i < npages) && mapped; ++i) { 1255 enum dma_data_direction dir = DMA_TO_DEVICE; 1256 struct page *page; 1257 1258 page = hmm_device_entry_to_page(range, range->pfns[i]); 1259 if (page == NULL) 1260 continue; 1261 1262 if (dma_mapping_error(device, daddrs[i])) 1263 continue; 1264 1265 /* If it is read and write than map bi-directional. */ 1266 if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) 1267 dir = DMA_BIDIRECTIONAL; 1268 1269 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir); 1270 mapped--; 1271 } 1272 1273 return ret; 1274 } 1275 EXPORT_SYMBOL(hmm_range_dma_map); 1276 1277 /** 1278 * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map() 1279 * @range: range being unmapped 1280 * @vma: the vma against which the range (optional) 1281 * @device: device against which dma map was done 1282 * @daddrs: dma address of mapped pages 1283 * @dirty: dirty page if it had the write flag set 1284 * Returns: number of page unmapped on success, -EINVAL otherwise 1285 * 1286 * Note that caller MUST abide by mmu notifier or use HMM mirror and abide 1287 * to the sync_cpu_device_pagetables() callback so that it is safe here to 1288 * call set_page_dirty(). Caller must also take appropriate locks to avoid 1289 * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress. 1290 */ 1291 long hmm_range_dma_unmap(struct hmm_range *range, 1292 struct vm_area_struct *vma, 1293 struct device *device, 1294 dma_addr_t *daddrs, 1295 bool dirty) 1296 { 1297 unsigned long i, npages; 1298 long cpages = 0; 1299 1300 /* Sanity check. */ 1301 if (range->end <= range->start) 1302 return -EINVAL; 1303 if (!daddrs) 1304 return -EINVAL; 1305 if (!range->pfns) 1306 return -EINVAL; 1307 1308 npages = (range->end - range->start) >> PAGE_SHIFT; 1309 for (i = 0; i < npages; ++i) { 1310 enum dma_data_direction dir = DMA_TO_DEVICE; 1311 struct page *page; 1312 1313 page = hmm_device_entry_to_page(range, range->pfns[i]); 1314 if (page == NULL) 1315 continue; 1316 1317 /* If it is read and write than map bi-directional. */ 1318 if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) { 1319 dir = DMA_BIDIRECTIONAL; 1320 1321 /* 1322 * See comments in function description on why it is 1323 * safe here to call set_page_dirty() 1324 */ 1325 if (dirty) 1326 set_page_dirty(page); 1327 } 1328 1329 /* Unmap and clear pfns/dma address */ 1330 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir); 1331 range->pfns[i] = range->values[HMM_PFN_NONE]; 1332 /* FIXME see comments in hmm_vma_dma_map() */ 1333 daddrs[i] = 0; 1334 cpages++; 1335 } 1336 1337 return cpages; 1338 } 1339 EXPORT_SYMBOL(hmm_range_dma_unmap); 1340 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */ 1341 1342 1343 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC) 1344 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma, 1345 unsigned long addr) 1346 { 1347 struct page *page; 1348 1349 page = alloc_page_vma(GFP_HIGHUSER, vma, addr); 1350 if (!page) 1351 return NULL; 1352 lock_page(page); 1353 return page; 1354 } 1355 EXPORT_SYMBOL(hmm_vma_alloc_locked_page); 1356 1357 1358 static void hmm_devmem_ref_release(struct percpu_ref *ref) 1359 { 1360 struct hmm_devmem *devmem; 1361 1362 devmem = container_of(ref, struct hmm_devmem, ref); 1363 complete(&devmem->completion); 1364 } 1365 1366 static void hmm_devmem_ref_exit(void *data) 1367 { 1368 struct percpu_ref *ref = data; 1369 struct hmm_devmem *devmem; 1370 1371 devmem = container_of(ref, struct hmm_devmem, ref); 1372 wait_for_completion(&devmem->completion); 1373 percpu_ref_exit(ref); 1374 } 1375 1376 static void hmm_devmem_ref_kill(struct percpu_ref *ref) 1377 { 1378 percpu_ref_kill(ref); 1379 } 1380 1381 static vm_fault_t hmm_devmem_fault(struct vm_area_struct *vma, 1382 unsigned long addr, 1383 const struct page *page, 1384 unsigned int flags, 1385 pmd_t *pmdp) 1386 { 1387 struct hmm_devmem *devmem = page->pgmap->data; 1388 1389 return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp); 1390 } 1391 1392 static void hmm_devmem_free(struct page *page, void *data) 1393 { 1394 struct hmm_devmem *devmem = data; 1395 1396 page->mapping = NULL; 1397 1398 devmem->ops->free(devmem, page); 1399 } 1400 1401 /* 1402 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory 1403 * 1404 * @ops: memory event device driver callback (see struct hmm_devmem_ops) 1405 * @device: device struct to bind the resource too 1406 * @size: size in bytes of the device memory to add 1407 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise 1408 * 1409 * This function first finds an empty range of physical address big enough to 1410 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which 1411 * in turn allocates struct pages. It does not do anything beyond that; all 1412 * events affecting the memory will go through the various callbacks provided 1413 * by hmm_devmem_ops struct. 1414 * 1415 * Device driver should call this function during device initialization and 1416 * is then responsible of memory management. HMM only provides helpers. 1417 */ 1418 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops, 1419 struct device *device, 1420 unsigned long size) 1421 { 1422 struct hmm_devmem *devmem; 1423 resource_size_t addr; 1424 void *result; 1425 int ret; 1426 1427 dev_pagemap_get_ops(); 1428 1429 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL); 1430 if (!devmem) 1431 return ERR_PTR(-ENOMEM); 1432 1433 init_completion(&devmem->completion); 1434 devmem->pfn_first = -1UL; 1435 devmem->pfn_last = -1UL; 1436 devmem->resource = NULL; 1437 devmem->device = device; 1438 devmem->ops = ops; 1439 1440 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release, 1441 0, GFP_KERNEL); 1442 if (ret) 1443 return ERR_PTR(ret); 1444 1445 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref); 1446 if (ret) 1447 return ERR_PTR(ret); 1448 1449 size = ALIGN(size, PA_SECTION_SIZE); 1450 addr = min((unsigned long)iomem_resource.end, 1451 (1UL << MAX_PHYSMEM_BITS) - 1); 1452 addr = addr - size + 1UL; 1453 1454 /* 1455 * FIXME add a new helper to quickly walk resource tree and find free 1456 * range 1457 * 1458 * FIXME what about ioport_resource resource ? 1459 */ 1460 for (; addr > size && addr >= iomem_resource.start; addr -= size) { 1461 ret = region_intersects(addr, size, 0, IORES_DESC_NONE); 1462 if (ret != REGION_DISJOINT) 1463 continue; 1464 1465 devmem->resource = devm_request_mem_region(device, addr, size, 1466 dev_name(device)); 1467 if (!devmem->resource) 1468 return ERR_PTR(-ENOMEM); 1469 break; 1470 } 1471 if (!devmem->resource) 1472 return ERR_PTR(-ERANGE); 1473 1474 devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY; 1475 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT; 1476 devmem->pfn_last = devmem->pfn_first + 1477 (resource_size(devmem->resource) >> PAGE_SHIFT); 1478 devmem->page_fault = hmm_devmem_fault; 1479 1480 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE; 1481 devmem->pagemap.res = *devmem->resource; 1482 devmem->pagemap.page_free = hmm_devmem_free; 1483 devmem->pagemap.altmap_valid = false; 1484 devmem->pagemap.ref = &devmem->ref; 1485 devmem->pagemap.data = devmem; 1486 devmem->pagemap.kill = hmm_devmem_ref_kill; 1487 1488 result = devm_memremap_pages(devmem->device, &devmem->pagemap); 1489 if (IS_ERR(result)) 1490 return result; 1491 return devmem; 1492 } 1493 EXPORT_SYMBOL_GPL(hmm_devmem_add); 1494 1495 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops, 1496 struct device *device, 1497 struct resource *res) 1498 { 1499 struct hmm_devmem *devmem; 1500 void *result; 1501 int ret; 1502 1503 if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY) 1504 return ERR_PTR(-EINVAL); 1505 1506 dev_pagemap_get_ops(); 1507 1508 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL); 1509 if (!devmem) 1510 return ERR_PTR(-ENOMEM); 1511 1512 init_completion(&devmem->completion); 1513 devmem->pfn_first = -1UL; 1514 devmem->pfn_last = -1UL; 1515 devmem->resource = res; 1516 devmem->device = device; 1517 devmem->ops = ops; 1518 1519 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release, 1520 0, GFP_KERNEL); 1521 if (ret) 1522 return ERR_PTR(ret); 1523 1524 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, 1525 &devmem->ref); 1526 if (ret) 1527 return ERR_PTR(ret); 1528 1529 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT; 1530 devmem->pfn_last = devmem->pfn_first + 1531 (resource_size(devmem->resource) >> PAGE_SHIFT); 1532 devmem->page_fault = hmm_devmem_fault; 1533 1534 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC; 1535 devmem->pagemap.res = *devmem->resource; 1536 devmem->pagemap.page_free = hmm_devmem_free; 1537 devmem->pagemap.altmap_valid = false; 1538 devmem->pagemap.ref = &devmem->ref; 1539 devmem->pagemap.data = devmem; 1540 devmem->pagemap.kill = hmm_devmem_ref_kill; 1541 1542 result = devm_memremap_pages(devmem->device, &devmem->pagemap); 1543 if (IS_ERR(result)) 1544 return result; 1545 return devmem; 1546 } 1547 EXPORT_SYMBOL_GPL(hmm_devmem_add_resource); 1548 1549 /* 1550 * A device driver that wants to handle multiple devices memory through a 1551 * single fake device can use hmm_device to do so. This is purely a helper 1552 * and it is not needed to make use of any HMM functionality. 1553 */ 1554 #define HMM_DEVICE_MAX 256 1555 1556 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX); 1557 static DEFINE_SPINLOCK(hmm_device_lock); 1558 static struct class *hmm_device_class; 1559 static dev_t hmm_device_devt; 1560 1561 static void hmm_device_release(struct device *device) 1562 { 1563 struct hmm_device *hmm_device; 1564 1565 hmm_device = container_of(device, struct hmm_device, device); 1566 spin_lock(&hmm_device_lock); 1567 clear_bit(hmm_device->minor, hmm_device_mask); 1568 spin_unlock(&hmm_device_lock); 1569 1570 kfree(hmm_device); 1571 } 1572 1573 struct hmm_device *hmm_device_new(void *drvdata) 1574 { 1575 struct hmm_device *hmm_device; 1576 1577 hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL); 1578 if (!hmm_device) 1579 return ERR_PTR(-ENOMEM); 1580 1581 spin_lock(&hmm_device_lock); 1582 hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX); 1583 if (hmm_device->minor >= HMM_DEVICE_MAX) { 1584 spin_unlock(&hmm_device_lock); 1585 kfree(hmm_device); 1586 return ERR_PTR(-EBUSY); 1587 } 1588 set_bit(hmm_device->minor, hmm_device_mask); 1589 spin_unlock(&hmm_device_lock); 1590 1591 dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor); 1592 hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt), 1593 hmm_device->minor); 1594 hmm_device->device.release = hmm_device_release; 1595 dev_set_drvdata(&hmm_device->device, drvdata); 1596 hmm_device->device.class = hmm_device_class; 1597 device_initialize(&hmm_device->device); 1598 1599 return hmm_device; 1600 } 1601 EXPORT_SYMBOL(hmm_device_new); 1602 1603 void hmm_device_put(struct hmm_device *hmm_device) 1604 { 1605 put_device(&hmm_device->device); 1606 } 1607 EXPORT_SYMBOL(hmm_device_put); 1608 1609 static int __init hmm_init(void) 1610 { 1611 int ret; 1612 1613 ret = alloc_chrdev_region(&hmm_device_devt, 0, 1614 HMM_DEVICE_MAX, 1615 "hmm_device"); 1616 if (ret) 1617 return ret; 1618 1619 hmm_device_class = class_create(THIS_MODULE, "hmm_device"); 1620 if (IS_ERR(hmm_device_class)) { 1621 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX); 1622 return PTR_ERR(hmm_device_class); 1623 } 1624 return 0; 1625 } 1626 1627 device_initcall(hmm_init); 1628 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */ 1629