xref: /openbmc/linux/mm/hmm.c (revision 8795a739)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013 Red Hat Inc.
4  *
5  * Authors: Jérôme Glisse <jglisse@redhat.com>
6  */
7 /*
8  * Refer to include/linux/hmm.h for information about heterogeneous memory
9  * management or HMM for short.
10  */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
28 
29 static struct mmu_notifier *hmm_alloc_notifier(struct mm_struct *mm)
30 {
31 	struct hmm *hmm;
32 
33 	hmm = kzalloc(sizeof(*hmm), GFP_KERNEL);
34 	if (!hmm)
35 		return ERR_PTR(-ENOMEM);
36 
37 	init_waitqueue_head(&hmm->wq);
38 	INIT_LIST_HEAD(&hmm->mirrors);
39 	init_rwsem(&hmm->mirrors_sem);
40 	INIT_LIST_HEAD(&hmm->ranges);
41 	spin_lock_init(&hmm->ranges_lock);
42 	hmm->notifiers = 0;
43 	return &hmm->mmu_notifier;
44 }
45 
46 static void hmm_free_notifier(struct mmu_notifier *mn)
47 {
48 	struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
49 
50 	WARN_ON(!list_empty(&hmm->ranges));
51 	WARN_ON(!list_empty(&hmm->mirrors));
52 	kfree(hmm);
53 }
54 
55 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
56 {
57 	struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
58 	struct hmm_mirror *mirror;
59 
60 	/*
61 	 * Since hmm_range_register() holds the mmget() lock hmm_release() is
62 	 * prevented as long as a range exists.
63 	 */
64 	WARN_ON(!list_empty_careful(&hmm->ranges));
65 
66 	down_read(&hmm->mirrors_sem);
67 	list_for_each_entry(mirror, &hmm->mirrors, list) {
68 		/*
69 		 * Note: The driver is not allowed to trigger
70 		 * hmm_mirror_unregister() from this thread.
71 		 */
72 		if (mirror->ops->release)
73 			mirror->ops->release(mirror);
74 	}
75 	up_read(&hmm->mirrors_sem);
76 }
77 
78 static void notifiers_decrement(struct hmm *hmm)
79 {
80 	unsigned long flags;
81 
82 	spin_lock_irqsave(&hmm->ranges_lock, flags);
83 	hmm->notifiers--;
84 	if (!hmm->notifiers) {
85 		struct hmm_range *range;
86 
87 		list_for_each_entry(range, &hmm->ranges, list) {
88 			if (range->valid)
89 				continue;
90 			range->valid = true;
91 		}
92 		wake_up_all(&hmm->wq);
93 	}
94 	spin_unlock_irqrestore(&hmm->ranges_lock, flags);
95 }
96 
97 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
98 			const struct mmu_notifier_range *nrange)
99 {
100 	struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
101 	struct hmm_mirror *mirror;
102 	struct hmm_range *range;
103 	unsigned long flags;
104 	int ret = 0;
105 
106 	spin_lock_irqsave(&hmm->ranges_lock, flags);
107 	hmm->notifiers++;
108 	list_for_each_entry(range, &hmm->ranges, list) {
109 		if (nrange->end < range->start || nrange->start >= range->end)
110 			continue;
111 
112 		range->valid = false;
113 	}
114 	spin_unlock_irqrestore(&hmm->ranges_lock, flags);
115 
116 	if (mmu_notifier_range_blockable(nrange))
117 		down_read(&hmm->mirrors_sem);
118 	else if (!down_read_trylock(&hmm->mirrors_sem)) {
119 		ret = -EAGAIN;
120 		goto out;
121 	}
122 
123 	list_for_each_entry(mirror, &hmm->mirrors, list) {
124 		int rc;
125 
126 		rc = mirror->ops->sync_cpu_device_pagetables(mirror, nrange);
127 		if (rc) {
128 			if (WARN_ON(mmu_notifier_range_blockable(nrange) ||
129 			    rc != -EAGAIN))
130 				continue;
131 			ret = -EAGAIN;
132 			break;
133 		}
134 	}
135 	up_read(&hmm->mirrors_sem);
136 
137 out:
138 	if (ret)
139 		notifiers_decrement(hmm);
140 	return ret;
141 }
142 
143 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
144 			const struct mmu_notifier_range *nrange)
145 {
146 	struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
147 
148 	notifiers_decrement(hmm);
149 }
150 
151 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
152 	.release		= hmm_release,
153 	.invalidate_range_start	= hmm_invalidate_range_start,
154 	.invalidate_range_end	= hmm_invalidate_range_end,
155 	.alloc_notifier		= hmm_alloc_notifier,
156 	.free_notifier		= hmm_free_notifier,
157 };
158 
159 /*
160  * hmm_mirror_register() - register a mirror against an mm
161  *
162  * @mirror: new mirror struct to register
163  * @mm: mm to register against
164  * Return: 0 on success, -ENOMEM if no memory, -EINVAL if invalid arguments
165  *
166  * To start mirroring a process address space, the device driver must register
167  * an HMM mirror struct.
168  *
169  * The caller cannot unregister the hmm_mirror while any ranges are
170  * registered.
171  *
172  * Callers using this function must put a call to mmu_notifier_synchronize()
173  * in their module exit functions.
174  */
175 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
176 {
177 	struct mmu_notifier *mn;
178 
179 	lockdep_assert_held_write(&mm->mmap_sem);
180 
181 	/* Sanity check */
182 	if (!mm || !mirror || !mirror->ops)
183 		return -EINVAL;
184 
185 	mn = mmu_notifier_get_locked(&hmm_mmu_notifier_ops, mm);
186 	if (IS_ERR(mn))
187 		return PTR_ERR(mn);
188 	mirror->hmm = container_of(mn, struct hmm, mmu_notifier);
189 
190 	down_write(&mirror->hmm->mirrors_sem);
191 	list_add(&mirror->list, &mirror->hmm->mirrors);
192 	up_write(&mirror->hmm->mirrors_sem);
193 
194 	return 0;
195 }
196 EXPORT_SYMBOL(hmm_mirror_register);
197 
198 /*
199  * hmm_mirror_unregister() - unregister a mirror
200  *
201  * @mirror: mirror struct to unregister
202  *
203  * Stop mirroring a process address space, and cleanup.
204  */
205 void hmm_mirror_unregister(struct hmm_mirror *mirror)
206 {
207 	struct hmm *hmm = mirror->hmm;
208 
209 	down_write(&hmm->mirrors_sem);
210 	list_del(&mirror->list);
211 	up_write(&hmm->mirrors_sem);
212 	mmu_notifier_put(&hmm->mmu_notifier);
213 }
214 EXPORT_SYMBOL(hmm_mirror_unregister);
215 
216 struct hmm_vma_walk {
217 	struct hmm_range	*range;
218 	struct dev_pagemap	*pgmap;
219 	unsigned long		last;
220 	unsigned int		flags;
221 };
222 
223 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
224 			    bool write_fault, uint64_t *pfn)
225 {
226 	unsigned int flags = FAULT_FLAG_REMOTE;
227 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
228 	struct hmm_range *range = hmm_vma_walk->range;
229 	struct vm_area_struct *vma = walk->vma;
230 	vm_fault_t ret;
231 
232 	if (!vma)
233 		goto err;
234 
235 	if (hmm_vma_walk->flags & HMM_FAULT_ALLOW_RETRY)
236 		flags |= FAULT_FLAG_ALLOW_RETRY;
237 	if (write_fault)
238 		flags |= FAULT_FLAG_WRITE;
239 
240 	ret = handle_mm_fault(vma, addr, flags);
241 	if (ret & VM_FAULT_RETRY) {
242 		/* Note, handle_mm_fault did up_read(&mm->mmap_sem)) */
243 		return -EAGAIN;
244 	}
245 	if (ret & VM_FAULT_ERROR)
246 		goto err;
247 
248 	return -EBUSY;
249 
250 err:
251 	*pfn = range->values[HMM_PFN_ERROR];
252 	return -EFAULT;
253 }
254 
255 static int hmm_pfns_bad(unsigned long addr,
256 			unsigned long end,
257 			struct mm_walk *walk)
258 {
259 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
260 	struct hmm_range *range = hmm_vma_walk->range;
261 	uint64_t *pfns = range->pfns;
262 	unsigned long i;
263 
264 	i = (addr - range->start) >> PAGE_SHIFT;
265 	for (; addr < end; addr += PAGE_SIZE, i++)
266 		pfns[i] = range->values[HMM_PFN_ERROR];
267 
268 	return 0;
269 }
270 
271 /*
272  * hmm_vma_walk_hole_() - handle a range lacking valid pmd or pte(s)
273  * @addr: range virtual start address (inclusive)
274  * @end: range virtual end address (exclusive)
275  * @fault: should we fault or not ?
276  * @write_fault: write fault ?
277  * @walk: mm_walk structure
278  * Return: 0 on success, -EBUSY after page fault, or page fault error
279  *
280  * This function will be called whenever pmd_none() or pte_none() returns true,
281  * or whenever there is no page directory covering the virtual address range.
282  */
283 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
284 			      bool fault, bool write_fault,
285 			      struct mm_walk *walk)
286 {
287 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
288 	struct hmm_range *range = hmm_vma_walk->range;
289 	uint64_t *pfns = range->pfns;
290 	unsigned long i;
291 
292 	hmm_vma_walk->last = addr;
293 	i = (addr - range->start) >> PAGE_SHIFT;
294 
295 	if (write_fault && walk->vma && !(walk->vma->vm_flags & VM_WRITE))
296 		return -EPERM;
297 
298 	for (; addr < end; addr += PAGE_SIZE, i++) {
299 		pfns[i] = range->values[HMM_PFN_NONE];
300 		if (fault || write_fault) {
301 			int ret;
302 
303 			ret = hmm_vma_do_fault(walk, addr, write_fault,
304 					       &pfns[i]);
305 			if (ret != -EBUSY)
306 				return ret;
307 		}
308 	}
309 
310 	return (fault || write_fault) ? -EBUSY : 0;
311 }
312 
313 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
314 				      uint64_t pfns, uint64_t cpu_flags,
315 				      bool *fault, bool *write_fault)
316 {
317 	struct hmm_range *range = hmm_vma_walk->range;
318 
319 	if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT)
320 		return;
321 
322 	/*
323 	 * So we not only consider the individual per page request we also
324 	 * consider the default flags requested for the range. The API can
325 	 * be used 2 ways. The first one where the HMM user coalesces
326 	 * multiple page faults into one request and sets flags per pfn for
327 	 * those faults. The second one where the HMM user wants to pre-
328 	 * fault a range with specific flags. For the latter one it is a
329 	 * waste to have the user pre-fill the pfn arrays with a default
330 	 * flags value.
331 	 */
332 	pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
333 
334 	/* We aren't ask to do anything ... */
335 	if (!(pfns & range->flags[HMM_PFN_VALID]))
336 		return;
337 	/* If this is device memory then only fault if explicitly requested */
338 	if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
339 		/* Do we fault on device memory ? */
340 		if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
341 			*write_fault = pfns & range->flags[HMM_PFN_WRITE];
342 			*fault = true;
343 		}
344 		return;
345 	}
346 
347 	/* If CPU page table is not valid then we need to fault */
348 	*fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
349 	/* Need to write fault ? */
350 	if ((pfns & range->flags[HMM_PFN_WRITE]) &&
351 	    !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
352 		*write_fault = true;
353 		*fault = true;
354 	}
355 }
356 
357 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
358 				 const uint64_t *pfns, unsigned long npages,
359 				 uint64_t cpu_flags, bool *fault,
360 				 bool *write_fault)
361 {
362 	unsigned long i;
363 
364 	if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT) {
365 		*fault = *write_fault = false;
366 		return;
367 	}
368 
369 	*fault = *write_fault = false;
370 	for (i = 0; i < npages; ++i) {
371 		hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
372 				   fault, write_fault);
373 		if ((*write_fault))
374 			return;
375 	}
376 }
377 
378 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
379 			     struct mm_walk *walk)
380 {
381 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
382 	struct hmm_range *range = hmm_vma_walk->range;
383 	bool fault, write_fault;
384 	unsigned long i, npages;
385 	uint64_t *pfns;
386 
387 	i = (addr - range->start) >> PAGE_SHIFT;
388 	npages = (end - addr) >> PAGE_SHIFT;
389 	pfns = &range->pfns[i];
390 	hmm_range_need_fault(hmm_vma_walk, pfns, npages,
391 			     0, &fault, &write_fault);
392 	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
393 }
394 
395 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
396 {
397 	if (pmd_protnone(pmd))
398 		return 0;
399 	return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
400 				range->flags[HMM_PFN_WRITE] :
401 				range->flags[HMM_PFN_VALID];
402 }
403 
404 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
405 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
406 		unsigned long end, uint64_t *pfns, pmd_t pmd)
407 {
408 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
409 	struct hmm_range *range = hmm_vma_walk->range;
410 	unsigned long pfn, npages, i;
411 	bool fault, write_fault;
412 	uint64_t cpu_flags;
413 
414 	npages = (end - addr) >> PAGE_SHIFT;
415 	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
416 	hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
417 			     &fault, &write_fault);
418 
419 	if (pmd_protnone(pmd) || fault || write_fault)
420 		return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
421 
422 	pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
423 	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
424 		if (pmd_devmap(pmd)) {
425 			hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
426 					      hmm_vma_walk->pgmap);
427 			if (unlikely(!hmm_vma_walk->pgmap))
428 				return -EBUSY;
429 		}
430 		pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
431 	}
432 	if (hmm_vma_walk->pgmap) {
433 		put_dev_pagemap(hmm_vma_walk->pgmap);
434 		hmm_vma_walk->pgmap = NULL;
435 	}
436 	hmm_vma_walk->last = end;
437 	return 0;
438 }
439 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
440 /* stub to allow the code below to compile */
441 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
442 		unsigned long end, uint64_t *pfns, pmd_t pmd);
443 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
444 
445 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
446 {
447 	if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
448 		return 0;
449 	return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
450 				range->flags[HMM_PFN_WRITE] :
451 				range->flags[HMM_PFN_VALID];
452 }
453 
454 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
455 			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
456 			      uint64_t *pfn)
457 {
458 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
459 	struct hmm_range *range = hmm_vma_walk->range;
460 	bool fault, write_fault;
461 	uint64_t cpu_flags;
462 	pte_t pte = *ptep;
463 	uint64_t orig_pfn = *pfn;
464 
465 	*pfn = range->values[HMM_PFN_NONE];
466 	fault = write_fault = false;
467 
468 	if (pte_none(pte)) {
469 		hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
470 				   &fault, &write_fault);
471 		if (fault || write_fault)
472 			goto fault;
473 		return 0;
474 	}
475 
476 	if (!pte_present(pte)) {
477 		swp_entry_t entry = pte_to_swp_entry(pte);
478 
479 		if (!non_swap_entry(entry)) {
480 			cpu_flags = pte_to_hmm_pfn_flags(range, pte);
481 			hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
482 					   &fault, &write_fault);
483 			if (fault || write_fault)
484 				goto fault;
485 			return 0;
486 		}
487 
488 		/*
489 		 * This is a special swap entry, ignore migration, use
490 		 * device and report anything else as error.
491 		 */
492 		if (is_device_private_entry(entry)) {
493 			cpu_flags = range->flags[HMM_PFN_VALID] |
494 				range->flags[HMM_PFN_DEVICE_PRIVATE];
495 			cpu_flags |= is_write_device_private_entry(entry) ?
496 				range->flags[HMM_PFN_WRITE] : 0;
497 			hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
498 					   &fault, &write_fault);
499 			if (fault || write_fault)
500 				goto fault;
501 			*pfn = hmm_device_entry_from_pfn(range,
502 					    swp_offset(entry));
503 			*pfn |= cpu_flags;
504 			return 0;
505 		}
506 
507 		if (is_migration_entry(entry)) {
508 			if (fault || write_fault) {
509 				pte_unmap(ptep);
510 				hmm_vma_walk->last = addr;
511 				migration_entry_wait(walk->mm, pmdp, addr);
512 				return -EBUSY;
513 			}
514 			return 0;
515 		}
516 
517 		/* Report error for everything else */
518 		*pfn = range->values[HMM_PFN_ERROR];
519 		return -EFAULT;
520 	} else {
521 		cpu_flags = pte_to_hmm_pfn_flags(range, pte);
522 		hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
523 				   &fault, &write_fault);
524 	}
525 
526 	if (fault || write_fault)
527 		goto fault;
528 
529 	if (pte_devmap(pte)) {
530 		hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
531 					      hmm_vma_walk->pgmap);
532 		if (unlikely(!hmm_vma_walk->pgmap))
533 			return -EBUSY;
534 	} else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
535 		*pfn = range->values[HMM_PFN_SPECIAL];
536 		return -EFAULT;
537 	}
538 
539 	*pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
540 	return 0;
541 
542 fault:
543 	if (hmm_vma_walk->pgmap) {
544 		put_dev_pagemap(hmm_vma_walk->pgmap);
545 		hmm_vma_walk->pgmap = NULL;
546 	}
547 	pte_unmap(ptep);
548 	/* Fault any virtual address we were asked to fault */
549 	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
550 }
551 
552 static int hmm_vma_walk_pmd(pmd_t *pmdp,
553 			    unsigned long start,
554 			    unsigned long end,
555 			    struct mm_walk *walk)
556 {
557 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
558 	struct hmm_range *range = hmm_vma_walk->range;
559 	uint64_t *pfns = range->pfns;
560 	unsigned long addr = start, i;
561 	pte_t *ptep;
562 	pmd_t pmd;
563 
564 again:
565 	pmd = READ_ONCE(*pmdp);
566 	if (pmd_none(pmd))
567 		return hmm_vma_walk_hole(start, end, walk);
568 
569 	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
570 		bool fault, write_fault;
571 		unsigned long npages;
572 		uint64_t *pfns;
573 
574 		i = (addr - range->start) >> PAGE_SHIFT;
575 		npages = (end - addr) >> PAGE_SHIFT;
576 		pfns = &range->pfns[i];
577 
578 		hmm_range_need_fault(hmm_vma_walk, pfns, npages,
579 				     0, &fault, &write_fault);
580 		if (fault || write_fault) {
581 			hmm_vma_walk->last = addr;
582 			pmd_migration_entry_wait(walk->mm, pmdp);
583 			return -EBUSY;
584 		}
585 		return 0;
586 	} else if (!pmd_present(pmd))
587 		return hmm_pfns_bad(start, end, walk);
588 
589 	if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
590 		/*
591 		 * No need to take pmd_lock here, even if some other thread
592 		 * is splitting the huge pmd we will get that event through
593 		 * mmu_notifier callback.
594 		 *
595 		 * So just read pmd value and check again it's a transparent
596 		 * huge or device mapping one and compute corresponding pfn
597 		 * values.
598 		 */
599 		pmd = pmd_read_atomic(pmdp);
600 		barrier();
601 		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
602 			goto again;
603 
604 		i = (addr - range->start) >> PAGE_SHIFT;
605 		return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
606 	}
607 
608 	/*
609 	 * We have handled all the valid cases above ie either none, migration,
610 	 * huge or transparent huge. At this point either it is a valid pmd
611 	 * entry pointing to pte directory or it is a bad pmd that will not
612 	 * recover.
613 	 */
614 	if (pmd_bad(pmd))
615 		return hmm_pfns_bad(start, end, walk);
616 
617 	ptep = pte_offset_map(pmdp, addr);
618 	i = (addr - range->start) >> PAGE_SHIFT;
619 	for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
620 		int r;
621 
622 		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
623 		if (r) {
624 			/* hmm_vma_handle_pte() did unmap pte directory */
625 			hmm_vma_walk->last = addr;
626 			return r;
627 		}
628 	}
629 	if (hmm_vma_walk->pgmap) {
630 		/*
631 		 * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
632 		 * so that we can leverage get_dev_pagemap() optimization which
633 		 * will not re-take a reference on a pgmap if we already have
634 		 * one.
635 		 */
636 		put_dev_pagemap(hmm_vma_walk->pgmap);
637 		hmm_vma_walk->pgmap = NULL;
638 	}
639 	pte_unmap(ptep - 1);
640 
641 	hmm_vma_walk->last = addr;
642 	return 0;
643 }
644 
645 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
646     defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
647 static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
648 {
649 	if (!pud_present(pud))
650 		return 0;
651 	return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
652 				range->flags[HMM_PFN_WRITE] :
653 				range->flags[HMM_PFN_VALID];
654 }
655 
656 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
657 		struct mm_walk *walk)
658 {
659 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
660 	struct hmm_range *range = hmm_vma_walk->range;
661 	unsigned long addr = start, next;
662 	pmd_t *pmdp;
663 	pud_t pud;
664 	int ret;
665 
666 again:
667 	pud = READ_ONCE(*pudp);
668 	if (pud_none(pud))
669 		return hmm_vma_walk_hole(start, end, walk);
670 
671 	if (pud_huge(pud) && pud_devmap(pud)) {
672 		unsigned long i, npages, pfn;
673 		uint64_t *pfns, cpu_flags;
674 		bool fault, write_fault;
675 
676 		if (!pud_present(pud))
677 			return hmm_vma_walk_hole(start, end, walk);
678 
679 		i = (addr - range->start) >> PAGE_SHIFT;
680 		npages = (end - addr) >> PAGE_SHIFT;
681 		pfns = &range->pfns[i];
682 
683 		cpu_flags = pud_to_hmm_pfn_flags(range, pud);
684 		hmm_range_need_fault(hmm_vma_walk, pfns, npages,
685 				     cpu_flags, &fault, &write_fault);
686 		if (fault || write_fault)
687 			return hmm_vma_walk_hole_(addr, end, fault,
688 						write_fault, walk);
689 
690 		pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
691 		for (i = 0; i < npages; ++i, ++pfn) {
692 			hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
693 					      hmm_vma_walk->pgmap);
694 			if (unlikely(!hmm_vma_walk->pgmap))
695 				return -EBUSY;
696 			pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
697 				  cpu_flags;
698 		}
699 		if (hmm_vma_walk->pgmap) {
700 			put_dev_pagemap(hmm_vma_walk->pgmap);
701 			hmm_vma_walk->pgmap = NULL;
702 		}
703 		hmm_vma_walk->last = end;
704 		return 0;
705 	}
706 
707 	split_huge_pud(walk->vma, pudp, addr);
708 	if (pud_none(*pudp))
709 		goto again;
710 
711 	pmdp = pmd_offset(pudp, addr);
712 	do {
713 		next = pmd_addr_end(addr, end);
714 		ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
715 		if (ret)
716 			return ret;
717 	} while (pmdp++, addr = next, addr != end);
718 
719 	return 0;
720 }
721 #else
722 #define hmm_vma_walk_pud	NULL
723 #endif
724 
725 #ifdef CONFIG_HUGETLB_PAGE
726 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
727 				      unsigned long start, unsigned long end,
728 				      struct mm_walk *walk)
729 {
730 	unsigned long addr = start, i, pfn;
731 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
732 	struct hmm_range *range = hmm_vma_walk->range;
733 	struct vm_area_struct *vma = walk->vma;
734 	uint64_t orig_pfn, cpu_flags;
735 	bool fault, write_fault;
736 	spinlock_t *ptl;
737 	pte_t entry;
738 	int ret = 0;
739 
740 	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
741 	entry = huge_ptep_get(pte);
742 
743 	i = (start - range->start) >> PAGE_SHIFT;
744 	orig_pfn = range->pfns[i];
745 	range->pfns[i] = range->values[HMM_PFN_NONE];
746 	cpu_flags = pte_to_hmm_pfn_flags(range, entry);
747 	fault = write_fault = false;
748 	hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
749 			   &fault, &write_fault);
750 	if (fault || write_fault) {
751 		ret = -ENOENT;
752 		goto unlock;
753 	}
754 
755 	pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
756 	for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
757 		range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
758 				 cpu_flags;
759 	hmm_vma_walk->last = end;
760 
761 unlock:
762 	spin_unlock(ptl);
763 
764 	if (ret == -ENOENT)
765 		return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
766 
767 	return ret;
768 }
769 #else
770 #define hmm_vma_walk_hugetlb_entry NULL
771 #endif /* CONFIG_HUGETLB_PAGE */
772 
773 static void hmm_pfns_clear(struct hmm_range *range,
774 			   uint64_t *pfns,
775 			   unsigned long addr,
776 			   unsigned long end)
777 {
778 	for (; addr < end; addr += PAGE_SIZE, pfns++)
779 		*pfns = range->values[HMM_PFN_NONE];
780 }
781 
782 /*
783  * hmm_range_register() - start tracking change to CPU page table over a range
784  * @range: range
785  * @mm: the mm struct for the range of virtual address
786  *
787  * Return: 0 on success, -EFAULT if the address space is no longer valid
788  *
789  * Track updates to the CPU page table see include/linux/hmm.h
790  */
791 int hmm_range_register(struct hmm_range *range, struct hmm_mirror *mirror)
792 {
793 	struct hmm *hmm = mirror->hmm;
794 	unsigned long flags;
795 
796 	range->valid = false;
797 	range->hmm = NULL;
798 
799 	if ((range->start & (PAGE_SIZE - 1)) || (range->end & (PAGE_SIZE - 1)))
800 		return -EINVAL;
801 	if (range->start >= range->end)
802 		return -EINVAL;
803 
804 	/* Prevent hmm_release() from running while the range is valid */
805 	if (!mmget_not_zero(hmm->mmu_notifier.mm))
806 		return -EFAULT;
807 
808 	/* Initialize range to track CPU page table updates. */
809 	spin_lock_irqsave(&hmm->ranges_lock, flags);
810 
811 	range->hmm = hmm;
812 	list_add(&range->list, &hmm->ranges);
813 
814 	/*
815 	 * If there are any concurrent notifiers we have to wait for them for
816 	 * the range to be valid (see hmm_range_wait_until_valid()).
817 	 */
818 	if (!hmm->notifiers)
819 		range->valid = true;
820 	spin_unlock_irqrestore(&hmm->ranges_lock, flags);
821 
822 	return 0;
823 }
824 EXPORT_SYMBOL(hmm_range_register);
825 
826 /*
827  * hmm_range_unregister() - stop tracking change to CPU page table over a range
828  * @range: range
829  *
830  * Range struct is used to track updates to the CPU page table after a call to
831  * hmm_range_register(). See include/linux/hmm.h for how to use it.
832  */
833 void hmm_range_unregister(struct hmm_range *range)
834 {
835 	struct hmm *hmm = range->hmm;
836 	unsigned long flags;
837 
838 	spin_lock_irqsave(&hmm->ranges_lock, flags);
839 	list_del_init(&range->list);
840 	spin_unlock_irqrestore(&hmm->ranges_lock, flags);
841 
842 	/* Drop reference taken by hmm_range_register() */
843 	mmput(hmm->mmu_notifier.mm);
844 
845 	/*
846 	 * The range is now invalid and the ref on the hmm is dropped, so
847 	 * poison the pointer.  Leave other fields in place, for the caller's
848 	 * use.
849 	 */
850 	range->valid = false;
851 	memset(&range->hmm, POISON_INUSE, sizeof(range->hmm));
852 }
853 EXPORT_SYMBOL(hmm_range_unregister);
854 
855 static const struct mm_walk_ops hmm_walk_ops = {
856 	.pud_entry	= hmm_vma_walk_pud,
857 	.pmd_entry	= hmm_vma_walk_pmd,
858 	.pte_hole	= hmm_vma_walk_hole,
859 	.hugetlb_entry	= hmm_vma_walk_hugetlb_entry,
860 };
861 
862 /**
863  * hmm_range_fault - try to fault some address in a virtual address range
864  * @range:	range being faulted
865  * @flags:	HMM_FAULT_* flags
866  *
867  * Return: the number of valid pages in range->pfns[] (from range start
868  * address), which may be zero.  On error one of the following status codes
869  * can be returned:
870  *
871  * -EINVAL:	Invalid arguments or mm or virtual address is in an invalid vma
872  *		(e.g., device file vma).
873  * -ENOMEM:	Out of memory.
874  * -EPERM:	Invalid permission (e.g., asking for write and range is read
875  *		only).
876  * -EAGAIN:	A page fault needs to be retried and mmap_sem was dropped.
877  * -EBUSY:	The range has been invalidated and the caller needs to wait for
878  *		the invalidation to finish.
879  * -EFAULT:	Invalid (i.e., either no valid vma or it is illegal to access
880  *		that range) number of valid pages in range->pfns[] (from
881  *              range start address).
882  *
883  * This is similar to a regular CPU page fault except that it will not trigger
884  * any memory migration if the memory being faulted is not accessible by CPUs
885  * and caller does not ask for migration.
886  *
887  * On error, for one virtual address in the range, the function will mark the
888  * corresponding HMM pfn entry with an error flag.
889  */
890 long hmm_range_fault(struct hmm_range *range, unsigned int flags)
891 {
892 	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
893 	unsigned long start = range->start, end;
894 	struct hmm_vma_walk hmm_vma_walk;
895 	struct hmm *hmm = range->hmm;
896 	struct vm_area_struct *vma;
897 	int ret;
898 
899 	lockdep_assert_held(&hmm->mmu_notifier.mm->mmap_sem);
900 
901 	do {
902 		/* If range is no longer valid force retry. */
903 		if (!range->valid)
904 			return -EBUSY;
905 
906 		vma = find_vma(hmm->mmu_notifier.mm, start);
907 		if (vma == NULL || (vma->vm_flags & device_vma))
908 			return -EFAULT;
909 
910 		if (!(vma->vm_flags & VM_READ)) {
911 			/*
912 			 * If vma do not allow read access, then assume that it
913 			 * does not allow write access, either. HMM does not
914 			 * support architecture that allow write without read.
915 			 */
916 			hmm_pfns_clear(range, range->pfns,
917 				range->start, range->end);
918 			return -EPERM;
919 		}
920 
921 		hmm_vma_walk.pgmap = NULL;
922 		hmm_vma_walk.last = start;
923 		hmm_vma_walk.flags = flags;
924 		hmm_vma_walk.range = range;
925 		end = min(range->end, vma->vm_end);
926 
927 		walk_page_range(vma->vm_mm, start, end, &hmm_walk_ops,
928 				&hmm_vma_walk);
929 
930 		do {
931 			ret = walk_page_range(vma->vm_mm, start, end,
932 					&hmm_walk_ops, &hmm_vma_walk);
933 			start = hmm_vma_walk.last;
934 
935 			/* Keep trying while the range is valid. */
936 		} while (ret == -EBUSY && range->valid);
937 
938 		if (ret) {
939 			unsigned long i;
940 
941 			i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
942 			hmm_pfns_clear(range, &range->pfns[i],
943 				hmm_vma_walk.last, range->end);
944 			return ret;
945 		}
946 		start = end;
947 
948 	} while (start < range->end);
949 
950 	return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
951 }
952 EXPORT_SYMBOL(hmm_range_fault);
953 
954 /**
955  * hmm_range_dma_map - hmm_range_fault() and dma map page all in one.
956  * @range:	range being faulted
957  * @device:	device to map page to
958  * @daddrs:	array of dma addresses for the mapped pages
959  * @flags:	HMM_FAULT_*
960  *
961  * Return: the number of pages mapped on success (including zero), or any
962  * status return from hmm_range_fault() otherwise.
963  */
964 long hmm_range_dma_map(struct hmm_range *range, struct device *device,
965 		dma_addr_t *daddrs, unsigned int flags)
966 {
967 	unsigned long i, npages, mapped;
968 	long ret;
969 
970 	ret = hmm_range_fault(range, flags);
971 	if (ret <= 0)
972 		return ret ? ret : -EBUSY;
973 
974 	npages = (range->end - range->start) >> PAGE_SHIFT;
975 	for (i = 0, mapped = 0; i < npages; ++i) {
976 		enum dma_data_direction dir = DMA_TO_DEVICE;
977 		struct page *page;
978 
979 		/*
980 		 * FIXME need to update DMA API to provide invalid DMA address
981 		 * value instead of a function to test dma address value. This
982 		 * would remove lot of dumb code duplicated accross many arch.
983 		 *
984 		 * For now setting it to 0 here is good enough as the pfns[]
985 		 * value is what is use to check what is valid and what isn't.
986 		 */
987 		daddrs[i] = 0;
988 
989 		page = hmm_device_entry_to_page(range, range->pfns[i]);
990 		if (page == NULL)
991 			continue;
992 
993 		/* Check if range is being invalidated */
994 		if (!range->valid) {
995 			ret = -EBUSY;
996 			goto unmap;
997 		}
998 
999 		/* If it is read and write than map bi-directional. */
1000 		if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1001 			dir = DMA_BIDIRECTIONAL;
1002 
1003 		daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir);
1004 		if (dma_mapping_error(device, daddrs[i])) {
1005 			ret = -EFAULT;
1006 			goto unmap;
1007 		}
1008 
1009 		mapped++;
1010 	}
1011 
1012 	return mapped;
1013 
1014 unmap:
1015 	for (npages = i, i = 0; (i < npages) && mapped; ++i) {
1016 		enum dma_data_direction dir = DMA_TO_DEVICE;
1017 		struct page *page;
1018 
1019 		page = hmm_device_entry_to_page(range, range->pfns[i]);
1020 		if (page == NULL)
1021 			continue;
1022 
1023 		if (dma_mapping_error(device, daddrs[i]))
1024 			continue;
1025 
1026 		/* If it is read and write than map bi-directional. */
1027 		if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1028 			dir = DMA_BIDIRECTIONAL;
1029 
1030 		dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1031 		mapped--;
1032 	}
1033 
1034 	return ret;
1035 }
1036 EXPORT_SYMBOL(hmm_range_dma_map);
1037 
1038 /**
1039  * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map()
1040  * @range: range being unmapped
1041  * @device: device against which dma map was done
1042  * @daddrs: dma address of mapped pages
1043  * @dirty: dirty page if it had the write flag set
1044  * Return: number of page unmapped on success, -EINVAL otherwise
1045  *
1046  * Note that caller MUST abide by mmu notifier or use HMM mirror and abide
1047  * to the sync_cpu_device_pagetables() callback so that it is safe here to
1048  * call set_page_dirty(). Caller must also take appropriate locks to avoid
1049  * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress.
1050  */
1051 long hmm_range_dma_unmap(struct hmm_range *range,
1052 			 struct device *device,
1053 			 dma_addr_t *daddrs,
1054 			 bool dirty)
1055 {
1056 	unsigned long i, npages;
1057 	long cpages = 0;
1058 
1059 	/* Sanity check. */
1060 	if (range->end <= range->start)
1061 		return -EINVAL;
1062 	if (!daddrs)
1063 		return -EINVAL;
1064 	if (!range->pfns)
1065 		return -EINVAL;
1066 
1067 	npages = (range->end - range->start) >> PAGE_SHIFT;
1068 	for (i = 0; i < npages; ++i) {
1069 		enum dma_data_direction dir = DMA_TO_DEVICE;
1070 		struct page *page;
1071 
1072 		page = hmm_device_entry_to_page(range, range->pfns[i]);
1073 		if (page == NULL)
1074 			continue;
1075 
1076 		/* If it is read and write than map bi-directional. */
1077 		if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) {
1078 			dir = DMA_BIDIRECTIONAL;
1079 
1080 			/*
1081 			 * See comments in function description on why it is
1082 			 * safe here to call set_page_dirty()
1083 			 */
1084 			if (dirty)
1085 				set_page_dirty(page);
1086 		}
1087 
1088 		/* Unmap and clear pfns/dma address */
1089 		dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1090 		range->pfns[i] = range->values[HMM_PFN_NONE];
1091 		/* FIXME see comments in hmm_vma_dma_map() */
1092 		daddrs[i] = 0;
1093 		cpages++;
1094 	}
1095 
1096 	return cpages;
1097 }
1098 EXPORT_SYMBOL(hmm_range_dma_unmap);
1099