xref: /openbmc/linux/mm/hmm.c (revision 83268fa6)
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35 
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37 
38 #if IS_ENABLED(CONFIG_HMM_MIRROR)
39 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
40 
41 /*
42  * struct hmm - HMM per mm struct
43  *
44  * @mm: mm struct this HMM struct is bound to
45  * @lock: lock protecting ranges list
46  * @ranges: list of range being snapshotted
47  * @mirrors: list of mirrors for this mm
48  * @mmu_notifier: mmu notifier to track updates to CPU page table
49  * @mirrors_sem: read/write semaphore protecting the mirrors list
50  */
51 struct hmm {
52 	struct mm_struct	*mm;
53 	spinlock_t		lock;
54 	struct list_head	ranges;
55 	struct list_head	mirrors;
56 	struct mmu_notifier	mmu_notifier;
57 	struct rw_semaphore	mirrors_sem;
58 };
59 
60 /*
61  * hmm_register - register HMM against an mm (HMM internal)
62  *
63  * @mm: mm struct to attach to
64  *
65  * This is not intended to be used directly by device drivers. It allocates an
66  * HMM struct if mm does not have one, and initializes it.
67  */
68 static struct hmm *hmm_register(struct mm_struct *mm)
69 {
70 	struct hmm *hmm = READ_ONCE(mm->hmm);
71 	bool cleanup = false;
72 
73 	/*
74 	 * The hmm struct can only be freed once the mm_struct goes away,
75 	 * hence we should always have pre-allocated an new hmm struct
76 	 * above.
77 	 */
78 	if (hmm)
79 		return hmm;
80 
81 	hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
82 	if (!hmm)
83 		return NULL;
84 	INIT_LIST_HEAD(&hmm->mirrors);
85 	init_rwsem(&hmm->mirrors_sem);
86 	hmm->mmu_notifier.ops = NULL;
87 	INIT_LIST_HEAD(&hmm->ranges);
88 	spin_lock_init(&hmm->lock);
89 	hmm->mm = mm;
90 
91 	spin_lock(&mm->page_table_lock);
92 	if (!mm->hmm)
93 		mm->hmm = hmm;
94 	else
95 		cleanup = true;
96 	spin_unlock(&mm->page_table_lock);
97 
98 	if (cleanup)
99 		goto error;
100 
101 	/*
102 	 * We should only get here if hold the mmap_sem in write mode ie on
103 	 * registration of first mirror through hmm_mirror_register()
104 	 */
105 	hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
106 	if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
107 		goto error_mm;
108 
109 	return mm->hmm;
110 
111 error_mm:
112 	spin_lock(&mm->page_table_lock);
113 	if (mm->hmm == hmm)
114 		mm->hmm = NULL;
115 	spin_unlock(&mm->page_table_lock);
116 error:
117 	kfree(hmm);
118 	return NULL;
119 }
120 
121 void hmm_mm_destroy(struct mm_struct *mm)
122 {
123 	kfree(mm->hmm);
124 }
125 
126 static int hmm_invalidate_range(struct hmm *hmm, bool device,
127 				const struct hmm_update *update)
128 {
129 	struct hmm_mirror *mirror;
130 	struct hmm_range *range;
131 
132 	spin_lock(&hmm->lock);
133 	list_for_each_entry(range, &hmm->ranges, list) {
134 		unsigned long addr, idx, npages;
135 
136 		if (update->end < range->start || update->start >= range->end)
137 			continue;
138 
139 		range->valid = false;
140 		addr = max(update->start, range->start);
141 		idx = (addr - range->start) >> PAGE_SHIFT;
142 		npages = (min(range->end, update->end) - addr) >> PAGE_SHIFT;
143 		memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
144 	}
145 	spin_unlock(&hmm->lock);
146 
147 	if (!device)
148 		return 0;
149 
150 	down_read(&hmm->mirrors_sem);
151 	list_for_each_entry(mirror, &hmm->mirrors, list) {
152 		int ret;
153 
154 		ret = mirror->ops->sync_cpu_device_pagetables(mirror, update);
155 		if (!update->blockable && ret == -EAGAIN) {
156 			up_read(&hmm->mirrors_sem);
157 			return -EAGAIN;
158 		}
159 	}
160 	up_read(&hmm->mirrors_sem);
161 
162 	return 0;
163 }
164 
165 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
166 {
167 	struct hmm_mirror *mirror;
168 	struct hmm *hmm = mm->hmm;
169 
170 	down_write(&hmm->mirrors_sem);
171 	mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
172 					  list);
173 	while (mirror) {
174 		list_del_init(&mirror->list);
175 		if (mirror->ops->release) {
176 			/*
177 			 * Drop mirrors_sem so callback can wait on any pending
178 			 * work that might itself trigger mmu_notifier callback
179 			 * and thus would deadlock with us.
180 			 */
181 			up_write(&hmm->mirrors_sem);
182 			mirror->ops->release(mirror);
183 			down_write(&hmm->mirrors_sem);
184 		}
185 		mirror = list_first_entry_or_null(&hmm->mirrors,
186 						  struct hmm_mirror, list);
187 	}
188 	up_write(&hmm->mirrors_sem);
189 }
190 
191 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
192 				      struct mm_struct *mm,
193 				      unsigned long start,
194 				      unsigned long end,
195 				      bool blockable)
196 {
197 	struct hmm_update update;
198 	struct hmm *hmm = mm->hmm;
199 
200 	VM_BUG_ON(!hmm);
201 
202 	update.start = start;
203 	update.end = end;
204 	update.event = HMM_UPDATE_INVALIDATE;
205 	update.blockable = blockable;
206 	return hmm_invalidate_range(hmm, true, &update);
207 }
208 
209 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
210 				     struct mm_struct *mm,
211 				     unsigned long start,
212 				     unsigned long end)
213 {
214 	struct hmm_update update;
215 	struct hmm *hmm = mm->hmm;
216 
217 	VM_BUG_ON(!hmm);
218 
219 	update.start = start;
220 	update.end = end;
221 	update.event = HMM_UPDATE_INVALIDATE;
222 	update.blockable = true;
223 	hmm_invalidate_range(hmm, false, &update);
224 }
225 
226 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
227 	.release		= hmm_release,
228 	.invalidate_range_start	= hmm_invalidate_range_start,
229 	.invalidate_range_end	= hmm_invalidate_range_end,
230 };
231 
232 /*
233  * hmm_mirror_register() - register a mirror against an mm
234  *
235  * @mirror: new mirror struct to register
236  * @mm: mm to register against
237  *
238  * To start mirroring a process address space, the device driver must register
239  * an HMM mirror struct.
240  *
241  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
242  */
243 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
244 {
245 	/* Sanity check */
246 	if (!mm || !mirror || !mirror->ops)
247 		return -EINVAL;
248 
249 again:
250 	mirror->hmm = hmm_register(mm);
251 	if (!mirror->hmm)
252 		return -ENOMEM;
253 
254 	down_write(&mirror->hmm->mirrors_sem);
255 	if (mirror->hmm->mm == NULL) {
256 		/*
257 		 * A racing hmm_mirror_unregister() is about to destroy the hmm
258 		 * struct. Try again to allocate a new one.
259 		 */
260 		up_write(&mirror->hmm->mirrors_sem);
261 		mirror->hmm = NULL;
262 		goto again;
263 	} else {
264 		list_add(&mirror->list, &mirror->hmm->mirrors);
265 		up_write(&mirror->hmm->mirrors_sem);
266 	}
267 
268 	return 0;
269 }
270 EXPORT_SYMBOL(hmm_mirror_register);
271 
272 /*
273  * hmm_mirror_unregister() - unregister a mirror
274  *
275  * @mirror: new mirror struct to register
276  *
277  * Stop mirroring a process address space, and cleanup.
278  */
279 void hmm_mirror_unregister(struct hmm_mirror *mirror)
280 {
281 	bool should_unregister = false;
282 	struct mm_struct *mm;
283 	struct hmm *hmm;
284 
285 	if (mirror->hmm == NULL)
286 		return;
287 
288 	hmm = mirror->hmm;
289 	down_write(&hmm->mirrors_sem);
290 	list_del_init(&mirror->list);
291 	should_unregister = list_empty(&hmm->mirrors);
292 	mirror->hmm = NULL;
293 	mm = hmm->mm;
294 	hmm->mm = NULL;
295 	up_write(&hmm->mirrors_sem);
296 
297 	if (!should_unregister || mm == NULL)
298 		return;
299 
300 	mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
301 
302 	spin_lock(&mm->page_table_lock);
303 	if (mm->hmm == hmm)
304 		mm->hmm = NULL;
305 	spin_unlock(&mm->page_table_lock);
306 
307 	kfree(hmm);
308 }
309 EXPORT_SYMBOL(hmm_mirror_unregister);
310 
311 struct hmm_vma_walk {
312 	struct hmm_range	*range;
313 	unsigned long		last;
314 	bool			fault;
315 	bool			block;
316 };
317 
318 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
319 			    bool write_fault, uint64_t *pfn)
320 {
321 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
322 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
323 	struct hmm_range *range = hmm_vma_walk->range;
324 	struct vm_area_struct *vma = walk->vma;
325 	vm_fault_t ret;
326 
327 	flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
328 	flags |= write_fault ? FAULT_FLAG_WRITE : 0;
329 	ret = handle_mm_fault(vma, addr, flags);
330 	if (ret & VM_FAULT_RETRY)
331 		return -EBUSY;
332 	if (ret & VM_FAULT_ERROR) {
333 		*pfn = range->values[HMM_PFN_ERROR];
334 		return -EFAULT;
335 	}
336 
337 	return -EAGAIN;
338 }
339 
340 static int hmm_pfns_bad(unsigned long addr,
341 			unsigned long end,
342 			struct mm_walk *walk)
343 {
344 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
345 	struct hmm_range *range = hmm_vma_walk->range;
346 	uint64_t *pfns = range->pfns;
347 	unsigned long i;
348 
349 	i = (addr - range->start) >> PAGE_SHIFT;
350 	for (; addr < end; addr += PAGE_SIZE, i++)
351 		pfns[i] = range->values[HMM_PFN_ERROR];
352 
353 	return 0;
354 }
355 
356 /*
357  * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
358  * @start: range virtual start address (inclusive)
359  * @end: range virtual end address (exclusive)
360  * @fault: should we fault or not ?
361  * @write_fault: write fault ?
362  * @walk: mm_walk structure
363  * Returns: 0 on success, -EAGAIN after page fault, or page fault error
364  *
365  * This function will be called whenever pmd_none() or pte_none() returns true,
366  * or whenever there is no page directory covering the virtual address range.
367  */
368 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
369 			      bool fault, bool write_fault,
370 			      struct mm_walk *walk)
371 {
372 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
373 	struct hmm_range *range = hmm_vma_walk->range;
374 	uint64_t *pfns = range->pfns;
375 	unsigned long i;
376 
377 	hmm_vma_walk->last = addr;
378 	i = (addr - range->start) >> PAGE_SHIFT;
379 	for (; addr < end; addr += PAGE_SIZE, i++) {
380 		pfns[i] = range->values[HMM_PFN_NONE];
381 		if (fault || write_fault) {
382 			int ret;
383 
384 			ret = hmm_vma_do_fault(walk, addr, write_fault,
385 					       &pfns[i]);
386 			if (ret != -EAGAIN)
387 				return ret;
388 		}
389 	}
390 
391 	return (fault || write_fault) ? -EAGAIN : 0;
392 }
393 
394 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
395 				      uint64_t pfns, uint64_t cpu_flags,
396 				      bool *fault, bool *write_fault)
397 {
398 	struct hmm_range *range = hmm_vma_walk->range;
399 
400 	*fault = *write_fault = false;
401 	if (!hmm_vma_walk->fault)
402 		return;
403 
404 	/* We aren't ask to do anything ... */
405 	if (!(pfns & range->flags[HMM_PFN_VALID]))
406 		return;
407 	/* If this is device memory than only fault if explicitly requested */
408 	if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
409 		/* Do we fault on device memory ? */
410 		if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
411 			*write_fault = pfns & range->flags[HMM_PFN_WRITE];
412 			*fault = true;
413 		}
414 		return;
415 	}
416 
417 	/* If CPU page table is not valid then we need to fault */
418 	*fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
419 	/* Need to write fault ? */
420 	if ((pfns & range->flags[HMM_PFN_WRITE]) &&
421 	    !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
422 		*write_fault = true;
423 		*fault = true;
424 	}
425 }
426 
427 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
428 				 const uint64_t *pfns, unsigned long npages,
429 				 uint64_t cpu_flags, bool *fault,
430 				 bool *write_fault)
431 {
432 	unsigned long i;
433 
434 	if (!hmm_vma_walk->fault) {
435 		*fault = *write_fault = false;
436 		return;
437 	}
438 
439 	for (i = 0; i < npages; ++i) {
440 		hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
441 				   fault, write_fault);
442 		if ((*fault) || (*write_fault))
443 			return;
444 	}
445 }
446 
447 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
448 			     struct mm_walk *walk)
449 {
450 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
451 	struct hmm_range *range = hmm_vma_walk->range;
452 	bool fault, write_fault;
453 	unsigned long i, npages;
454 	uint64_t *pfns;
455 
456 	i = (addr - range->start) >> PAGE_SHIFT;
457 	npages = (end - addr) >> PAGE_SHIFT;
458 	pfns = &range->pfns[i];
459 	hmm_range_need_fault(hmm_vma_walk, pfns, npages,
460 			     0, &fault, &write_fault);
461 	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
462 }
463 
464 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
465 {
466 	if (pmd_protnone(pmd))
467 		return 0;
468 	return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
469 				range->flags[HMM_PFN_WRITE] :
470 				range->flags[HMM_PFN_VALID];
471 }
472 
473 static int hmm_vma_handle_pmd(struct mm_walk *walk,
474 			      unsigned long addr,
475 			      unsigned long end,
476 			      uint64_t *pfns,
477 			      pmd_t pmd)
478 {
479 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
480 	struct hmm_range *range = hmm_vma_walk->range;
481 	unsigned long pfn, npages, i;
482 	bool fault, write_fault;
483 	uint64_t cpu_flags;
484 
485 	npages = (end - addr) >> PAGE_SHIFT;
486 	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
487 	hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
488 			     &fault, &write_fault);
489 
490 	if (pmd_protnone(pmd) || fault || write_fault)
491 		return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
492 
493 	pfn = pmd_pfn(pmd) + pte_index(addr);
494 	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
495 		pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
496 	hmm_vma_walk->last = end;
497 	return 0;
498 }
499 
500 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
501 {
502 	if (pte_none(pte) || !pte_present(pte))
503 		return 0;
504 	return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
505 				range->flags[HMM_PFN_WRITE] :
506 				range->flags[HMM_PFN_VALID];
507 }
508 
509 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
510 			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
511 			      uint64_t *pfn)
512 {
513 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
514 	struct hmm_range *range = hmm_vma_walk->range;
515 	struct vm_area_struct *vma = walk->vma;
516 	bool fault, write_fault;
517 	uint64_t cpu_flags;
518 	pte_t pte = *ptep;
519 	uint64_t orig_pfn = *pfn;
520 
521 	*pfn = range->values[HMM_PFN_NONE];
522 	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
523 	hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
524 			   &fault, &write_fault);
525 
526 	if (pte_none(pte)) {
527 		if (fault || write_fault)
528 			goto fault;
529 		return 0;
530 	}
531 
532 	if (!pte_present(pte)) {
533 		swp_entry_t entry = pte_to_swp_entry(pte);
534 
535 		if (!non_swap_entry(entry)) {
536 			if (fault || write_fault)
537 				goto fault;
538 			return 0;
539 		}
540 
541 		/*
542 		 * This is a special swap entry, ignore migration, use
543 		 * device and report anything else as error.
544 		 */
545 		if (is_device_private_entry(entry)) {
546 			cpu_flags = range->flags[HMM_PFN_VALID] |
547 				range->flags[HMM_PFN_DEVICE_PRIVATE];
548 			cpu_flags |= is_write_device_private_entry(entry) ?
549 				range->flags[HMM_PFN_WRITE] : 0;
550 			hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
551 					   &fault, &write_fault);
552 			if (fault || write_fault)
553 				goto fault;
554 			*pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
555 			*pfn |= cpu_flags;
556 			return 0;
557 		}
558 
559 		if (is_migration_entry(entry)) {
560 			if (fault || write_fault) {
561 				pte_unmap(ptep);
562 				hmm_vma_walk->last = addr;
563 				migration_entry_wait(vma->vm_mm,
564 						     pmdp, addr);
565 				return -EAGAIN;
566 			}
567 			return 0;
568 		}
569 
570 		/* Report error for everything else */
571 		*pfn = range->values[HMM_PFN_ERROR];
572 		return -EFAULT;
573 	}
574 
575 	if (fault || write_fault)
576 		goto fault;
577 
578 	*pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
579 	return 0;
580 
581 fault:
582 	pte_unmap(ptep);
583 	/* Fault any virtual address we were asked to fault */
584 	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
585 }
586 
587 static int hmm_vma_walk_pmd(pmd_t *pmdp,
588 			    unsigned long start,
589 			    unsigned long end,
590 			    struct mm_walk *walk)
591 {
592 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
593 	struct hmm_range *range = hmm_vma_walk->range;
594 	struct vm_area_struct *vma = walk->vma;
595 	uint64_t *pfns = range->pfns;
596 	unsigned long addr = start, i;
597 	pte_t *ptep;
598 	pmd_t pmd;
599 
600 
601 again:
602 	pmd = READ_ONCE(*pmdp);
603 	if (pmd_none(pmd))
604 		return hmm_vma_walk_hole(start, end, walk);
605 
606 	if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
607 		return hmm_pfns_bad(start, end, walk);
608 
609 	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
610 		bool fault, write_fault;
611 		unsigned long npages;
612 		uint64_t *pfns;
613 
614 		i = (addr - range->start) >> PAGE_SHIFT;
615 		npages = (end - addr) >> PAGE_SHIFT;
616 		pfns = &range->pfns[i];
617 
618 		hmm_range_need_fault(hmm_vma_walk, pfns, npages,
619 				     0, &fault, &write_fault);
620 		if (fault || write_fault) {
621 			hmm_vma_walk->last = addr;
622 			pmd_migration_entry_wait(vma->vm_mm, pmdp);
623 			return -EAGAIN;
624 		}
625 		return 0;
626 	} else if (!pmd_present(pmd))
627 		return hmm_pfns_bad(start, end, walk);
628 
629 	if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
630 		/*
631 		 * No need to take pmd_lock here, even if some other threads
632 		 * is splitting the huge pmd we will get that event through
633 		 * mmu_notifier callback.
634 		 *
635 		 * So just read pmd value and check again its a transparent
636 		 * huge or device mapping one and compute corresponding pfn
637 		 * values.
638 		 */
639 		pmd = pmd_read_atomic(pmdp);
640 		barrier();
641 		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
642 			goto again;
643 
644 		i = (addr - range->start) >> PAGE_SHIFT;
645 		return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
646 	}
647 
648 	/*
649 	 * We have handled all the valid case above ie either none, migration,
650 	 * huge or transparent huge. At this point either it is a valid pmd
651 	 * entry pointing to pte directory or it is a bad pmd that will not
652 	 * recover.
653 	 */
654 	if (pmd_bad(pmd))
655 		return hmm_pfns_bad(start, end, walk);
656 
657 	ptep = pte_offset_map(pmdp, addr);
658 	i = (addr - range->start) >> PAGE_SHIFT;
659 	for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
660 		int r;
661 
662 		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
663 		if (r) {
664 			/* hmm_vma_handle_pte() did unmap pte directory */
665 			hmm_vma_walk->last = addr;
666 			return r;
667 		}
668 	}
669 	pte_unmap(ptep - 1);
670 
671 	hmm_vma_walk->last = addr;
672 	return 0;
673 }
674 
675 static void hmm_pfns_clear(struct hmm_range *range,
676 			   uint64_t *pfns,
677 			   unsigned long addr,
678 			   unsigned long end)
679 {
680 	for (; addr < end; addr += PAGE_SIZE, pfns++)
681 		*pfns = range->values[HMM_PFN_NONE];
682 }
683 
684 static void hmm_pfns_special(struct hmm_range *range)
685 {
686 	unsigned long addr = range->start, i = 0;
687 
688 	for (; addr < range->end; addr += PAGE_SIZE, i++)
689 		range->pfns[i] = range->values[HMM_PFN_SPECIAL];
690 }
691 
692 /*
693  * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
694  * @range: range being snapshotted
695  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
696  *          vma permission, 0 success
697  *
698  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
699  * validity is tracked by range struct. See hmm_vma_range_done() for further
700  * information.
701  *
702  * The range struct is initialized here. It tracks the CPU page table, but only
703  * if the function returns success (0), in which case the caller must then call
704  * hmm_vma_range_done() to stop CPU page table update tracking on this range.
705  *
706  * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
707  * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
708  */
709 int hmm_vma_get_pfns(struct hmm_range *range)
710 {
711 	struct vm_area_struct *vma = range->vma;
712 	struct hmm_vma_walk hmm_vma_walk;
713 	struct mm_walk mm_walk;
714 	struct hmm *hmm;
715 
716 	/* Sanity check, this really should not happen ! */
717 	if (range->start < vma->vm_start || range->start >= vma->vm_end)
718 		return -EINVAL;
719 	if (range->end < vma->vm_start || range->end > vma->vm_end)
720 		return -EINVAL;
721 
722 	hmm = hmm_register(vma->vm_mm);
723 	if (!hmm)
724 		return -ENOMEM;
725 	/* Caller must have registered a mirror, via hmm_mirror_register() ! */
726 	if (!hmm->mmu_notifier.ops)
727 		return -EINVAL;
728 
729 	/* FIXME support hugetlb fs */
730 	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
731 			vma_is_dax(vma)) {
732 		hmm_pfns_special(range);
733 		return -EINVAL;
734 	}
735 
736 	if (!(vma->vm_flags & VM_READ)) {
737 		/*
738 		 * If vma do not allow read access, then assume that it does
739 		 * not allow write access, either. Architecture that allow
740 		 * write without read access are not supported by HMM, because
741 		 * operations such has atomic access would not work.
742 		 */
743 		hmm_pfns_clear(range, range->pfns, range->start, range->end);
744 		return -EPERM;
745 	}
746 
747 	/* Initialize range to track CPU page table update */
748 	spin_lock(&hmm->lock);
749 	range->valid = true;
750 	list_add_rcu(&range->list, &hmm->ranges);
751 	spin_unlock(&hmm->lock);
752 
753 	hmm_vma_walk.fault = false;
754 	hmm_vma_walk.range = range;
755 	mm_walk.private = &hmm_vma_walk;
756 
757 	mm_walk.vma = vma;
758 	mm_walk.mm = vma->vm_mm;
759 	mm_walk.pte_entry = NULL;
760 	mm_walk.test_walk = NULL;
761 	mm_walk.hugetlb_entry = NULL;
762 	mm_walk.pmd_entry = hmm_vma_walk_pmd;
763 	mm_walk.pte_hole = hmm_vma_walk_hole;
764 
765 	walk_page_range(range->start, range->end, &mm_walk);
766 	return 0;
767 }
768 EXPORT_SYMBOL(hmm_vma_get_pfns);
769 
770 /*
771  * hmm_vma_range_done() - stop tracking change to CPU page table over a range
772  * @range: range being tracked
773  * Returns: false if range data has been invalidated, true otherwise
774  *
775  * Range struct is used to track updates to the CPU page table after a call to
776  * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
777  * using the data,  or wants to lock updates to the data it got from those
778  * functions, it must call the hmm_vma_range_done() function, which will then
779  * stop tracking CPU page table updates.
780  *
781  * Note that device driver must still implement general CPU page table update
782  * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
783  * the mmu_notifier API directly.
784  *
785  * CPU page table update tracking done through hmm_range is only temporary and
786  * to be used while trying to duplicate CPU page table contents for a range of
787  * virtual addresses.
788  *
789  * There are two ways to use this :
790  * again:
791  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
792  *   trans = device_build_page_table_update_transaction(pfns);
793  *   device_page_table_lock();
794  *   if (!hmm_vma_range_done(range)) {
795  *     device_page_table_unlock();
796  *     goto again;
797  *   }
798  *   device_commit_transaction(trans);
799  *   device_page_table_unlock();
800  *
801  * Or:
802  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
803  *   device_page_table_lock();
804  *   hmm_vma_range_done(range);
805  *   device_update_page_table(range->pfns);
806  *   device_page_table_unlock();
807  */
808 bool hmm_vma_range_done(struct hmm_range *range)
809 {
810 	unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
811 	struct hmm *hmm;
812 
813 	if (range->end <= range->start) {
814 		BUG();
815 		return false;
816 	}
817 
818 	hmm = hmm_register(range->vma->vm_mm);
819 	if (!hmm) {
820 		memset(range->pfns, 0, sizeof(*range->pfns) * npages);
821 		return false;
822 	}
823 
824 	spin_lock(&hmm->lock);
825 	list_del_rcu(&range->list);
826 	spin_unlock(&hmm->lock);
827 
828 	return range->valid;
829 }
830 EXPORT_SYMBOL(hmm_vma_range_done);
831 
832 /*
833  * hmm_vma_fault() - try to fault some address in a virtual address range
834  * @range: range being faulted
835  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
836  * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
837  *
838  * This is similar to a regular CPU page fault except that it will not trigger
839  * any memory migration if the memory being faulted is not accessible by CPUs.
840  *
841  * On error, for one virtual address in the range, the function will mark the
842  * corresponding HMM pfn entry with an error flag.
843  *
844  * Expected use pattern:
845  * retry:
846  *   down_read(&mm->mmap_sem);
847  *   // Find vma and address device wants to fault, initialize hmm_pfn_t
848  *   // array accordingly
849  *   ret = hmm_vma_fault(range, write, block);
850  *   switch (ret) {
851  *   case -EAGAIN:
852  *     hmm_vma_range_done(range);
853  *     // You might want to rate limit or yield to play nicely, you may
854  *     // also commit any valid pfn in the array assuming that you are
855  *     // getting true from hmm_vma_range_monitor_end()
856  *     goto retry;
857  *   case 0:
858  *     break;
859  *   case -ENOMEM:
860  *   case -EINVAL:
861  *   case -EPERM:
862  *   default:
863  *     // Handle error !
864  *     up_read(&mm->mmap_sem)
865  *     return;
866  *   }
867  *   // Take device driver lock that serialize device page table update
868  *   driver_lock_device_page_table_update();
869  *   hmm_vma_range_done(range);
870  *   // Commit pfns we got from hmm_vma_fault()
871  *   driver_unlock_device_page_table_update();
872  *   up_read(&mm->mmap_sem)
873  *
874  * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
875  * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
876  *
877  * YOU HAVE BEEN WARNED !
878  */
879 int hmm_vma_fault(struct hmm_range *range, bool block)
880 {
881 	struct vm_area_struct *vma = range->vma;
882 	unsigned long start = range->start;
883 	struct hmm_vma_walk hmm_vma_walk;
884 	struct mm_walk mm_walk;
885 	struct hmm *hmm;
886 	int ret;
887 
888 	/* Sanity check, this really should not happen ! */
889 	if (range->start < vma->vm_start || range->start >= vma->vm_end)
890 		return -EINVAL;
891 	if (range->end < vma->vm_start || range->end > vma->vm_end)
892 		return -EINVAL;
893 
894 	hmm = hmm_register(vma->vm_mm);
895 	if (!hmm) {
896 		hmm_pfns_clear(range, range->pfns, range->start, range->end);
897 		return -ENOMEM;
898 	}
899 	/* Caller must have registered a mirror using hmm_mirror_register() */
900 	if (!hmm->mmu_notifier.ops)
901 		return -EINVAL;
902 
903 	/* FIXME support hugetlb fs */
904 	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
905 			vma_is_dax(vma)) {
906 		hmm_pfns_special(range);
907 		return -EINVAL;
908 	}
909 
910 	if (!(vma->vm_flags & VM_READ)) {
911 		/*
912 		 * If vma do not allow read access, then assume that it does
913 		 * not allow write access, either. Architecture that allow
914 		 * write without read access are not supported by HMM, because
915 		 * operations such has atomic access would not work.
916 		 */
917 		hmm_pfns_clear(range, range->pfns, range->start, range->end);
918 		return -EPERM;
919 	}
920 
921 	/* Initialize range to track CPU page table update */
922 	spin_lock(&hmm->lock);
923 	range->valid = true;
924 	list_add_rcu(&range->list, &hmm->ranges);
925 	spin_unlock(&hmm->lock);
926 
927 	hmm_vma_walk.fault = true;
928 	hmm_vma_walk.block = block;
929 	hmm_vma_walk.range = range;
930 	mm_walk.private = &hmm_vma_walk;
931 	hmm_vma_walk.last = range->start;
932 
933 	mm_walk.vma = vma;
934 	mm_walk.mm = vma->vm_mm;
935 	mm_walk.pte_entry = NULL;
936 	mm_walk.test_walk = NULL;
937 	mm_walk.hugetlb_entry = NULL;
938 	mm_walk.pmd_entry = hmm_vma_walk_pmd;
939 	mm_walk.pte_hole = hmm_vma_walk_hole;
940 
941 	do {
942 		ret = walk_page_range(start, range->end, &mm_walk);
943 		start = hmm_vma_walk.last;
944 	} while (ret == -EAGAIN);
945 
946 	if (ret) {
947 		unsigned long i;
948 
949 		i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
950 		hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last,
951 			       range->end);
952 		hmm_vma_range_done(range);
953 	}
954 	return ret;
955 }
956 EXPORT_SYMBOL(hmm_vma_fault);
957 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
958 
959 
960 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
961 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
962 				       unsigned long addr)
963 {
964 	struct page *page;
965 
966 	page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
967 	if (!page)
968 		return NULL;
969 	lock_page(page);
970 	return page;
971 }
972 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
973 
974 
975 static void hmm_devmem_ref_release(struct percpu_ref *ref)
976 {
977 	struct hmm_devmem *devmem;
978 
979 	devmem = container_of(ref, struct hmm_devmem, ref);
980 	complete(&devmem->completion);
981 }
982 
983 static void hmm_devmem_ref_exit(void *data)
984 {
985 	struct percpu_ref *ref = data;
986 	struct hmm_devmem *devmem;
987 
988 	devmem = container_of(ref, struct hmm_devmem, ref);
989 	percpu_ref_exit(ref);
990 	devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
991 }
992 
993 static void hmm_devmem_ref_kill(void *data)
994 {
995 	struct percpu_ref *ref = data;
996 	struct hmm_devmem *devmem;
997 
998 	devmem = container_of(ref, struct hmm_devmem, ref);
999 	percpu_ref_kill(ref);
1000 	wait_for_completion(&devmem->completion);
1001 	devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
1002 }
1003 
1004 static int hmm_devmem_fault(struct vm_area_struct *vma,
1005 			    unsigned long addr,
1006 			    const struct page *page,
1007 			    unsigned int flags,
1008 			    pmd_t *pmdp)
1009 {
1010 	struct hmm_devmem *devmem = page->pgmap->data;
1011 
1012 	return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
1013 }
1014 
1015 static void hmm_devmem_free(struct page *page, void *data)
1016 {
1017 	struct hmm_devmem *devmem = data;
1018 
1019 	page->mapping = NULL;
1020 
1021 	devmem->ops->free(devmem, page);
1022 }
1023 
1024 static DEFINE_MUTEX(hmm_devmem_lock);
1025 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
1026 
1027 static void hmm_devmem_radix_release(struct resource *resource)
1028 {
1029 	resource_size_t key;
1030 
1031 	mutex_lock(&hmm_devmem_lock);
1032 	for (key = resource->start;
1033 	     key <= resource->end;
1034 	     key += PA_SECTION_SIZE)
1035 		radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
1036 	mutex_unlock(&hmm_devmem_lock);
1037 }
1038 
1039 static void hmm_devmem_release(struct device *dev, void *data)
1040 {
1041 	struct hmm_devmem *devmem = data;
1042 	struct resource *resource = devmem->resource;
1043 	unsigned long start_pfn, npages;
1044 	struct zone *zone;
1045 	struct page *page;
1046 
1047 	if (percpu_ref_tryget_live(&devmem->ref)) {
1048 		dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
1049 		percpu_ref_put(&devmem->ref);
1050 	}
1051 
1052 	/* pages are dead and unused, undo the arch mapping */
1053 	start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
1054 	npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
1055 
1056 	page = pfn_to_page(start_pfn);
1057 	zone = page_zone(page);
1058 
1059 	mem_hotplug_begin();
1060 	if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
1061 		__remove_pages(zone, start_pfn, npages, NULL);
1062 	else
1063 		arch_remove_memory(start_pfn << PAGE_SHIFT,
1064 				   npages << PAGE_SHIFT, NULL);
1065 	mem_hotplug_done();
1066 
1067 	hmm_devmem_radix_release(resource);
1068 }
1069 
1070 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
1071 {
1072 	resource_size_t key, align_start, align_size, align_end;
1073 	struct device *device = devmem->device;
1074 	int ret, nid, is_ram;
1075 
1076 	align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
1077 	align_size = ALIGN(devmem->resource->start +
1078 			   resource_size(devmem->resource),
1079 			   PA_SECTION_SIZE) - align_start;
1080 
1081 	is_ram = region_intersects(align_start, align_size,
1082 				   IORESOURCE_SYSTEM_RAM,
1083 				   IORES_DESC_NONE);
1084 	if (is_ram == REGION_MIXED) {
1085 		WARN_ONCE(1, "%s attempted on mixed region %pr\n",
1086 				__func__, devmem->resource);
1087 		return -ENXIO;
1088 	}
1089 	if (is_ram == REGION_INTERSECTS)
1090 		return -ENXIO;
1091 
1092 	if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
1093 		devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1094 	else
1095 		devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1096 
1097 	devmem->pagemap.res = *devmem->resource;
1098 	devmem->pagemap.page_fault = hmm_devmem_fault;
1099 	devmem->pagemap.page_free = hmm_devmem_free;
1100 	devmem->pagemap.dev = devmem->device;
1101 	devmem->pagemap.ref = &devmem->ref;
1102 	devmem->pagemap.data = devmem;
1103 
1104 	mutex_lock(&hmm_devmem_lock);
1105 	align_end = align_start + align_size - 1;
1106 	for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
1107 		struct hmm_devmem *dup;
1108 
1109 		dup = radix_tree_lookup(&hmm_devmem_radix,
1110 					key >> PA_SECTION_SHIFT);
1111 		if (dup) {
1112 			dev_err(device, "%s: collides with mapping for %s\n",
1113 				__func__, dev_name(dup->device));
1114 			mutex_unlock(&hmm_devmem_lock);
1115 			ret = -EBUSY;
1116 			goto error;
1117 		}
1118 		ret = radix_tree_insert(&hmm_devmem_radix,
1119 					key >> PA_SECTION_SHIFT,
1120 					devmem);
1121 		if (ret) {
1122 			dev_err(device, "%s: failed: %d\n", __func__, ret);
1123 			mutex_unlock(&hmm_devmem_lock);
1124 			goto error_radix;
1125 		}
1126 	}
1127 	mutex_unlock(&hmm_devmem_lock);
1128 
1129 	nid = dev_to_node(device);
1130 	if (nid < 0)
1131 		nid = numa_mem_id();
1132 
1133 	mem_hotplug_begin();
1134 	/*
1135 	 * For device private memory we call add_pages() as we only need to
1136 	 * allocate and initialize struct page for the device memory. More-
1137 	 * over the device memory is un-accessible thus we do not want to
1138 	 * create a linear mapping for the memory like arch_add_memory()
1139 	 * would do.
1140 	 *
1141 	 * For device public memory, which is accesible by the CPU, we do
1142 	 * want the linear mapping and thus use arch_add_memory().
1143 	 */
1144 	if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
1145 		ret = arch_add_memory(nid, align_start, align_size, NULL,
1146 				false);
1147 	else
1148 		ret = add_pages(nid, align_start >> PAGE_SHIFT,
1149 				align_size >> PAGE_SHIFT, NULL, false);
1150 	if (ret) {
1151 		mem_hotplug_done();
1152 		goto error_add_memory;
1153 	}
1154 	move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
1155 				align_start >> PAGE_SHIFT,
1156 				align_size >> PAGE_SHIFT, NULL);
1157 	mem_hotplug_done();
1158 
1159 	/*
1160 	 * Initialization of the pages has been deferred until now in order
1161 	 * to allow us to do the work while not holding the hotplug lock.
1162 	 */
1163 	memmap_init_zone_device(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
1164 				align_start >> PAGE_SHIFT,
1165 				align_size >> PAGE_SHIFT, &devmem->pagemap);
1166 
1167 	return 0;
1168 
1169 error_add_memory:
1170 	untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
1171 error_radix:
1172 	hmm_devmem_radix_release(devmem->resource);
1173 error:
1174 	return ret;
1175 }
1176 
1177 static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
1178 {
1179 	struct hmm_devmem *devmem = data;
1180 
1181 	return devmem->resource == match_data;
1182 }
1183 
1184 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
1185 {
1186 	devres_release(devmem->device, &hmm_devmem_release,
1187 		       &hmm_devmem_match, devmem->resource);
1188 }
1189 
1190 /*
1191  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1192  *
1193  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1194  * @device: device struct to bind the resource too
1195  * @size: size in bytes of the device memory to add
1196  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1197  *
1198  * This function first finds an empty range of physical address big enough to
1199  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1200  * in turn allocates struct pages. It does not do anything beyond that; all
1201  * events affecting the memory will go through the various callbacks provided
1202  * by hmm_devmem_ops struct.
1203  *
1204  * Device driver should call this function during device initialization and
1205  * is then responsible of memory management. HMM only provides helpers.
1206  */
1207 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1208 				  struct device *device,
1209 				  unsigned long size)
1210 {
1211 	struct hmm_devmem *devmem;
1212 	resource_size_t addr;
1213 	int ret;
1214 
1215 	dev_pagemap_get_ops();
1216 
1217 	devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1218 				   GFP_KERNEL, dev_to_node(device));
1219 	if (!devmem)
1220 		return ERR_PTR(-ENOMEM);
1221 
1222 	init_completion(&devmem->completion);
1223 	devmem->pfn_first = -1UL;
1224 	devmem->pfn_last = -1UL;
1225 	devmem->resource = NULL;
1226 	devmem->device = device;
1227 	devmem->ops = ops;
1228 
1229 	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1230 			      0, GFP_KERNEL);
1231 	if (ret)
1232 		goto error_percpu_ref;
1233 
1234 	ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1235 	if (ret)
1236 		goto error_devm_add_action;
1237 
1238 	size = ALIGN(size, PA_SECTION_SIZE);
1239 	addr = min((unsigned long)iomem_resource.end,
1240 		   (1UL << MAX_PHYSMEM_BITS) - 1);
1241 	addr = addr - size + 1UL;
1242 
1243 	/*
1244 	 * FIXME add a new helper to quickly walk resource tree and find free
1245 	 * range
1246 	 *
1247 	 * FIXME what about ioport_resource resource ?
1248 	 */
1249 	for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1250 		ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1251 		if (ret != REGION_DISJOINT)
1252 			continue;
1253 
1254 		devmem->resource = devm_request_mem_region(device, addr, size,
1255 							   dev_name(device));
1256 		if (!devmem->resource) {
1257 			ret = -ENOMEM;
1258 			goto error_no_resource;
1259 		}
1260 		break;
1261 	}
1262 	if (!devmem->resource) {
1263 		ret = -ERANGE;
1264 		goto error_no_resource;
1265 	}
1266 
1267 	devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1268 	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1269 	devmem->pfn_last = devmem->pfn_first +
1270 			   (resource_size(devmem->resource) >> PAGE_SHIFT);
1271 
1272 	ret = hmm_devmem_pages_create(devmem);
1273 	if (ret)
1274 		goto error_pages;
1275 
1276 	devres_add(device, devmem);
1277 
1278 	ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1279 	if (ret) {
1280 		hmm_devmem_remove(devmem);
1281 		return ERR_PTR(ret);
1282 	}
1283 
1284 	return devmem;
1285 
1286 error_pages:
1287 	devm_release_mem_region(device, devmem->resource->start,
1288 				resource_size(devmem->resource));
1289 error_no_resource:
1290 error_devm_add_action:
1291 	hmm_devmem_ref_kill(&devmem->ref);
1292 	hmm_devmem_ref_exit(&devmem->ref);
1293 error_percpu_ref:
1294 	devres_free(devmem);
1295 	return ERR_PTR(ret);
1296 }
1297 EXPORT_SYMBOL(hmm_devmem_add);
1298 
1299 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1300 					   struct device *device,
1301 					   struct resource *res)
1302 {
1303 	struct hmm_devmem *devmem;
1304 	int ret;
1305 
1306 	if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1307 		return ERR_PTR(-EINVAL);
1308 
1309 	dev_pagemap_get_ops();
1310 
1311 	devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1312 				   GFP_KERNEL, dev_to_node(device));
1313 	if (!devmem)
1314 		return ERR_PTR(-ENOMEM);
1315 
1316 	init_completion(&devmem->completion);
1317 	devmem->pfn_first = -1UL;
1318 	devmem->pfn_last = -1UL;
1319 	devmem->resource = res;
1320 	devmem->device = device;
1321 	devmem->ops = ops;
1322 
1323 	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1324 			      0, GFP_KERNEL);
1325 	if (ret)
1326 		goto error_percpu_ref;
1327 
1328 	ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1329 	if (ret)
1330 		goto error_devm_add_action;
1331 
1332 
1333 	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1334 	devmem->pfn_last = devmem->pfn_first +
1335 			   (resource_size(devmem->resource) >> PAGE_SHIFT);
1336 
1337 	ret = hmm_devmem_pages_create(devmem);
1338 	if (ret)
1339 		goto error_devm_add_action;
1340 
1341 	devres_add(device, devmem);
1342 
1343 	ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1344 	if (ret) {
1345 		hmm_devmem_remove(devmem);
1346 		return ERR_PTR(ret);
1347 	}
1348 
1349 	return devmem;
1350 
1351 error_devm_add_action:
1352 	hmm_devmem_ref_kill(&devmem->ref);
1353 	hmm_devmem_ref_exit(&devmem->ref);
1354 error_percpu_ref:
1355 	devres_free(devmem);
1356 	return ERR_PTR(ret);
1357 }
1358 EXPORT_SYMBOL(hmm_devmem_add_resource);
1359 
1360 /*
1361  * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1362  *
1363  * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1364  *
1365  * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1366  * of the device driver. It will free struct page and remove the resource that
1367  * reserved the physical address range for this device memory.
1368  */
1369 void hmm_devmem_remove(struct hmm_devmem *devmem)
1370 {
1371 	resource_size_t start, size;
1372 	struct device *device;
1373 	bool cdm = false;
1374 
1375 	if (!devmem)
1376 		return;
1377 
1378 	device = devmem->device;
1379 	start = devmem->resource->start;
1380 	size = resource_size(devmem->resource);
1381 
1382 	cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1383 	hmm_devmem_ref_kill(&devmem->ref);
1384 	hmm_devmem_ref_exit(&devmem->ref);
1385 	hmm_devmem_pages_remove(devmem);
1386 
1387 	if (!cdm)
1388 		devm_release_mem_region(device, start, size);
1389 }
1390 EXPORT_SYMBOL(hmm_devmem_remove);
1391 
1392 /*
1393  * A device driver that wants to handle multiple devices memory through a
1394  * single fake device can use hmm_device to do so. This is purely a helper
1395  * and it is not needed to make use of any HMM functionality.
1396  */
1397 #define HMM_DEVICE_MAX 256
1398 
1399 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1400 static DEFINE_SPINLOCK(hmm_device_lock);
1401 static struct class *hmm_device_class;
1402 static dev_t hmm_device_devt;
1403 
1404 static void hmm_device_release(struct device *device)
1405 {
1406 	struct hmm_device *hmm_device;
1407 
1408 	hmm_device = container_of(device, struct hmm_device, device);
1409 	spin_lock(&hmm_device_lock);
1410 	clear_bit(hmm_device->minor, hmm_device_mask);
1411 	spin_unlock(&hmm_device_lock);
1412 
1413 	kfree(hmm_device);
1414 }
1415 
1416 struct hmm_device *hmm_device_new(void *drvdata)
1417 {
1418 	struct hmm_device *hmm_device;
1419 
1420 	hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1421 	if (!hmm_device)
1422 		return ERR_PTR(-ENOMEM);
1423 
1424 	spin_lock(&hmm_device_lock);
1425 	hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1426 	if (hmm_device->minor >= HMM_DEVICE_MAX) {
1427 		spin_unlock(&hmm_device_lock);
1428 		kfree(hmm_device);
1429 		return ERR_PTR(-EBUSY);
1430 	}
1431 	set_bit(hmm_device->minor, hmm_device_mask);
1432 	spin_unlock(&hmm_device_lock);
1433 
1434 	dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1435 	hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1436 					hmm_device->minor);
1437 	hmm_device->device.release = hmm_device_release;
1438 	dev_set_drvdata(&hmm_device->device, drvdata);
1439 	hmm_device->device.class = hmm_device_class;
1440 	device_initialize(&hmm_device->device);
1441 
1442 	return hmm_device;
1443 }
1444 EXPORT_SYMBOL(hmm_device_new);
1445 
1446 void hmm_device_put(struct hmm_device *hmm_device)
1447 {
1448 	put_device(&hmm_device->device);
1449 }
1450 EXPORT_SYMBOL(hmm_device_put);
1451 
1452 static int __init hmm_init(void)
1453 {
1454 	int ret;
1455 
1456 	ret = alloc_chrdev_region(&hmm_device_devt, 0,
1457 				  HMM_DEVICE_MAX,
1458 				  "hmm_device");
1459 	if (ret)
1460 		return ret;
1461 
1462 	hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1463 	if (IS_ERR(hmm_device_class)) {
1464 		unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1465 		return PTR_ERR(hmm_device_class);
1466 	}
1467 	return 0;
1468 }
1469 
1470 device_initcall(hmm_init);
1471 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
1472